Tapas K Kundu

50
Tapas K Kundu Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, JNCASR, Bangalore-64 INDIA Small molecule modulators of Epigenetic modifications: Implications in Therapeutics

Transcript of Tapas K Kundu

Tapas K KunduTranscription and Disease Laboratory,

Molecular Biology and Genetics Unit,

JNCASR, Bangalore-64

INDIA

Small molecule modulators of Epigenetic modifications: Implications in Therapeutics

Model of functional nuclear architecture

9.5 The solenoid model of condensed

chromatin

Figure 9-31

Histone

Deacetylases

HDAC1

HDAC2

SIRT1

Histone

Methyltransferases

SUV39A

G9A

Dot1

ATP dependent

Remodeling complexes

NURD

HP1

Non Histone

Chromatin Proteins/

Histone Chaperones

MeCP2PARP1

Histone

Acetyltransferases

p300

CBP

GCN5

PCAF

Histone

Methyltransferases

Ash1

CARM1

PRMT1

ATP dependent

Remodeling complexes

RSC

SWI/SNF

NURF

Non Histone Chromatin

Proteins / Histone Chaperones

HMGs

NPM1Nucleolin

Factors Influencing Transcriptional Competence of Chromatin

OPENCLOSED

Kinases

Aurora B

MSK1/2

Epigenetic Marker Profile

AcetylationH3K9,14, 18,23, 56 Ac

H4K5,8, 12, 16Ac

Methylation

H3K4,R17 Me

H4R3 Me

H3K36, K79 me

Phosphorylation

H3S10, T3 P

ACTIVE

TAGS

MethylationH3K9,K27 Me

H4K20 Me,

Phosphorylation

H3S28 P

REPRESSIVE

TAGS

Heterochromatin

Euchromatin

Epigenetic signature of Active/Inactive chromatin

Adapted from

Latham et al., Nat

Struc Mol Biol.,

2007

Crosstalk of histone modifications

THESE MODIFICATIONS AND THE MACHINERY

ARE NOT ONLY INVOLVED IN PHYSIOLOGICAL

OUTCOMES BUT ALSO IN

PATHOPHYSIOLOGICAL STATES

Histone chaperones in Transcription

Shandilya J, et al., 2007;41, Chromatin and Disease (Book), Springer press.

Swaminathan et al., Mol. Cell. Biol., 2005

2.Histone removal1.Histone exchange

H2A/H2BH3.3/H4

H3/H4

H2A/H2B

H3/H4

HIRA

NPM1( ? )

Nucleophosmin (NPM1/B23)

Multifunctional protein

Predominantly localized in the Nucleolus

1 294

Oligomer

NPM1 FL

NPM1

Swaminathan

Jayasha

Functional Diversity of NPM1

NPM1

Ribosome Biogenesis

Nuclear-Cytoplasm Shuttle

P53 Stabilization

Nucleolar Translocation

DNA Repair/Stress Response

Centrosome Duplication

Transcriptional Regulation

Post translational Modification

Acetylation Deacetylation

Phosphorylation

Sumoylation

NPM1

Borer et al., Cell,

1989

Tarapore et al., Cell Cycle.

2002

Okuwaki et al., Mol. Biol. Cell, 2002 Colombo et al., Nat. Cell Biol. 2002

Swaminathan et al., Mol. Cell. Biol., 2005

Wu and Yung, J. Biol. Chem., 2002

Borer et al., Cell,

1989

[5S rDNA

Nucleosome positioning

sequence

[

5 Gal4

Sites

Adenovirus Major Late Promoter

+1

G-less cassette[

5S rDNANucleosome positioning

sequence

[

5 Gal4

Sites

Adenovirus Major Late Promoter

+1

G-less cassette

Gadad et. al and Kundu TK, Chromatin Protocols, 2009 (2nd Ed.), Humana press

In vitro Transcription system

An W et al., Mol Cell, 9, 811–821, (2002)

NPM1 enhances Transcription from the Chromatin

template

Swaminathan et al., Mol. Cell. Biol. 2005

Acetylation of NPM1 is necessary to activate chromatin

Transcription

Role of Acetylation in Modulating NPM1 function

1. NPM1 gets acetylated by p300 at its C-terminus

2. Acetylated NPM1 has Enhanced histone chaperone activity

and interaction ability with acetylated histones

3. Acetylation of NPM1 is a Prerequisite for it to activate acetylation

dependent transcription from chromatin template

Swaminathan et al, Mol. Cell. Biol., 25, 7534, (2005).

215

257 267 292

Identification of NPM1 Acetylation sites

Anti-Acetylated NPM1 antibody

AcNPM1-01 [(KLH)-C-

NG(AcK)DS(AcK)PSSTPRSKGQ

ESF(AcK)(AcK)Q (residues 210 to

231)]

AcNPM1-02 [(KLH)-C-

MQASIE(AcK)GGSLPKVEA(AcK

)FI (residues 251 to 269)].

KDa

38

29

α AcNPM1-02α AcNPM1-01

KDa

38

29

α AcNPM1-02α AcNPM1-01

α AcNPM1-02

α NPM1

1 2 3

II

Ponceau

α AcNPM1-01

WT r

NP

M1

Ac-W

T r

NP

M1

Ac-7

K-7

R

mu

tan

t rN

PM

1

α NPM1

I

Coomassie

α AcNPM1-02

α NPM1

1 2 3

II

Ponceau

α AcNPM1-01

WT r

NP

M1

Ac-W

T r

NP

M1

Ac-7

K-7

R

mu

tan

t rN

PM

1

α NPM1

I

Coomassie

212 229 230

p300/KAT3B acetylates NPM1 in vitro and in vivo

Acetylation of NPM1 in the cellular context

1 2 3 4 5 6 7 8 9

Core Histones

Acetyl CoA

HAT ++++++++-

+++++++++

+++++++++

++++++++-

+++++++++

+++++++++

p300 CBP PCAF Tip60

α Ac-K

Ponceau

1 2 3 4 5 6 7 8 9

++++++++-

+++++++++

+++++++++

++++++++-

+++++++++

+++++++++NPM1

Acetyl CoA

HAT

p300 CBP PCAF Tip60

α Ac-K

Ponceau-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-11 2

Series1

sip300 siSIRT1

Fo

ld e

xp

res

sio

n o

ve

r c

on

tro

l

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-11 2

Series1

sip300 siSIRT1

Fo

ld e

xp

res

sio

n o

ve

r c

on

tro

l

Control

siRNA p300 siRNA

1 2 3

α AcNPM1

α NPM1

Control

siRNA p300 siRNA

1 2 3

α AcNPM1

α NPM1

NPM1

[3H]-Acetyl CoA

CBP

p300

PCAF

Tip60

GCN5 +-----

-+----

--+---

---+--

----+-

++++++

++++++

+-----

-+----

--+---

---+--

----+-

++++++

++++++

1 2 3 4 5 6

(Autoradiogram)

(Coomassie)

[H3] NPM1

NPM1

1 2 3 4 5 6

(Autoradiogram)

(Coomassie)

[H3] NPM1

NPM1

(Autoradiogram)

(Coomassie)

[H3] NPM1

NPM1

Deacetylation of NPM1 in the cellular context

+ + + + + +

- + + + + +

- - + + - -

- - - - + +

- - - + - +

+ + + + + +

- + + + + +

- - + + - -

- - - - + +

- - - + - +

Core histones

p300

ySir2

hSIRT1

NAD+

coomassie

Autoradiogram

1 2 3 4 5 6

[3H] Core Histones

Core Histones

1 2 3 4 5 6 7

α AcNPM1

α NPM1

1 2 3 4 5 6 71 2 3 4 5 6 7

α AcNPM1

α NPM1

NPM1

AcNPM1

ySir2

hSIRT1

NAD+ +-+-+--

++-----

--++---

++++++-

------+

+-+-+--

++-----

--++---

++++++-

------+

+------

-++++--

++++++-

+++++++

++++++-

----

+------

-++++--

++++++-

+++++++

++++++-

----NAD+

p300

[3H]-Acetyl CoA

Lysyl CoA

ySir2

HDAC1

1 2 3 4 5 6 70

2500

5000

7500

10000

12500

15000

17500

Histones

p300

[3H]-Acetyl CoA

Lysyl CoA

hSirT2

NAD+

HDAC1

+ + + + + + +

+ + + + + +

+ + + + + + +

+ + + + + +

+ + + +

+ + ++

-

-

-

--

-

- - -- - - - -

100 M

250 M

500 M

-

CP

M

p300

[3H]-Acetyl CoA

Lysyl CoA

hSirT2

NAD+

HDAC1

+ + + + + +

+ + + + + + +

+ + + + + +

+ + + +

+ + +

+

-

-

-

-

--

- - -

- - - - -

100 M

250 M

500 M

-

1 2 3 4 5 6 7

1 2 3 4 5 6 7 (Coomassie)

(Autoradiogram)

NPM1

[3H]Ac-NPM1

1 2 3 4 5 6 70

2500

5000

7500

10000

12500

15000

17500

Histones

p300

[3H]-Acetyl CoA

Lysyl CoA

hSirT2

NAD+

HDAC1

+ + + + + + +

+ + + + + +

+ + + + + + +

+ + + + + +

+ + + +

+ + ++

-

-

-

--

-

- - -- - - - -

100 M

250 M

500 M

-

CP

M

p300

[3H]-Acetyl CoA

Lysyl CoA

hSirT2

NAD+

HDAC1

+ + + + + +

+ + + + + + +

+ + + + + +

+ + + +

+ + +

+

-

-

-

-

--

- - -

- - - - -

100 M

250 M

500 M

-

1 2 3 4 5 6 7

1 2 3 4 5 6 7 (Coomassie)

(Autoradiogram)

NPM1

[3H]Ac-NPM1

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-11 2

Series1

sip300 siSIRT1

Fo

ld e

xp

res

sio

n o

ve

r c

on

tro

l

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-11 2

Series1

sip300 siSIRT1

Fo

ld e

xp

res

sio

n o

ve

r c

on

tro

l

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-11 2

Series1

sip300 siSIRT1

Fo

ld e

xp

res

sio

n o

ve

r c

on

tro

l

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-11 2

Series1

sip300 siSIRT1

Fo

ld e

xp

res

sio

n o

ve

r c

on

tro

l

Control

siRNA SIRT1 siRNA

1 2 3

α AcNPM1

α NPM1

Control

siRNA SIRT1 siRNA

1 2 3

α AcNPM1

α NPM1

SIRT1 deacetylates NPM1 both in vitro and in vivo

Acetylated NPM1 has Nucleoplasmic Distribution

AcNPM1 Hoechst Merge

NPM1 Hoechst Merge

I

II

III

PIS Hoechst Merge

AcNPM1 Hoechst Merge

NPM1 Hoechst Merge

I

II

III

PIS Hoechst Merge

Mitchell and Fraser,

Genes Dev. 2008

RNAPII

0.491

Weighted

Colocalization

coefficient

Ch2-T1

0.5127.7638343

0.884302

0.753801

Weighted

Colocalization

coefficient

Ch3-T3

Area

(µm X

µm)

Number

Pixels

Scatter

Region

0.491

Weighted

Colocalization

coefficient

Ch2-T1

0.5127.7638343

0.884302

0.753801

Weighted

Colocalization

coefficient

Ch3-T3

Area

(µm X

µm)

Number

Pixels

Scatter

Region

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0In te n s i ty Ch 2 -T1

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

In te n s i ty Ch 3 -T3

Absolute Frequency0 50 100 150 200 250

Scatter Region123

Number Pixels3734353834

Area [ µm x µm ]0.750.887.76

Relative Area [ %]0.00.00.4

Mean Intensity Ch2-T1261538

Mean Intensity Ch3-T3243852

Standard Deviation Ch2-T16312

Standard Deviation Ch3-T34815

Colocalization Coefficient Ch2-T1

0.911

Colocalization Coefficient Ch3-T3

0.898

Weighted Coloc. Coefficient Ch2-T1

0.957

Weighted Coloc. Coefficient Ch3-T3

0.958

Overlap Coefficient

1.0

Correlation R

0.55

Correlation R x R

0.31

Acetylated NPM1 co-localizes with RNA Polymerase II

Acetylated NPM1 associates with active transcription foci

Role of Acetylated NPM1 on cellular transcription

Flag- mutant

(7K-7R)NPM1

Flag-WT NPM1

α Flag Hoechst Merge

Flag- mutant

(7K-7R)NPM1

Flag-WT NPM1

α Flag Hoechst Merge

IP: M2 Agarose

IB: αAcH3

IB: αFlag

1 2 3

+ + +

+ - -

- + +

- - +

+ + +

+ - -

- + +

- - +

Gal4VP16

Vec

WT NPM1

SIRT1

Lu

cif

era

se

Ac

tivit

y

1 2 30.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

1 2 3

Series1

Flag

GAPDH

Flag Vec WT NPM1 WT NPM1+SIRT1

Flag

GAPDH

Flag Vec WT NPM1 WT NPM1+SIRT1

Acetylated NPM1 activates cellular transcription

Deacetylated NPM1 leads to reduction

in the cellular transcription

Repression

Activation

Cellular homeostasis

Acetylation Dynamics

Cancereg. Liver cancer, Leukemia,

Breast cancerDiabetes

Lung inflammatory

Diseases eg. Asthma

Cardiac hypertrophy

Neurodegenerationeg. Spinal and Bulbar Muscular Atrophy,

Huntington’s Disease

Genetic disorderseg. Rubinstein-Taybi syndrome

Dysfunction of HATs

Loss of acetylation homeostasis and

disease manifestation

Epigenetics and Cancer

ABERRANT ACETYLATION STATUS

Gene rearrangements and

mutations in cancers

Overexpression of NPM1

Ovary, Colon, Liver, Gastric, Prostate

Adapted from Nature Reviews Cancer 6, 493-505 (July 2006)

Increased

proliferation

inhibition of

apoptosis

NPM1 and Cancer

Role of NPM1 acetylation in cancer ??

Apoptosis

Cell growth

Proliferation

NPM

NPM

NPM NPM

NPM

NPM

NPM

Ribosome biogenesis

Protein synthesis

DNA Polα

DNA synthesis

Cell cycle progression

NPMNPM

NPM

Survival

Inhibition of DNA

fragmentation

Inhibition of apoptosis

IRF1

p53

CAD

Dr. K. S. Gopinath.

President, Indian Surgical Oncologists

Bangalore Institute of Oncology (BIO)

Indian Oral Cancer patients belonging to

different Grades (I-III) of OSCC.

History of Tobacco and Betelnut addiction.

Oral Cancer in India

OSCC originates in the tissues that line the mouth and lips or the tongue.

It may also occur on the floor of the mouth, cheek lining, gingiva (gums), or palate

(roof of the mouth).

It is the most prevalent among Indian men

Most cases are not detected in the early pre-cancerous stage

Although, NPM1 has been reported to be overexpressed in several cancers, no

information about its status in oral cancer.

Levels of Ac-NPM1 increase from premalignant to advanced

Grade of Oral tumors

Enhanced status of NPM1 acetylation in Grade II oral cancer

Adjacent Normal α Ac-NPM1 Malignant Tumor α Ac-NPM1

Malignant Tumor α NPM1Adjacent Normal α NPM1

I II

III IV

Adjacent Normal α Ac-NPM1 Malignant Tumor α Ac-NPM1

Malignant Tumor α NPM1Adjacent Normal α NPM1

Adjacent Normal α Ac-NPM1 Malignant Tumor α Ac-NPM1

Malignant Tumor α NPM1Adjacent Normal α NPM1

I II

III IV

Ramesh

NPM1 is Overexpressed and is

Predominantly Acetylated in Malignant TumorsFold increase in nucleoplasmic

localization of NPM1

% N

ucl

eop

lasm

loca

liza

tio

n

0

40

80

120

contr

ol

Tum

or

**

Control Tumor

% N

uc

leo

pla

sm

ic

Lo

ca

liza

tio

n o

f N

PM

1Fold increase in nucleoplasmic

localization of NPM1

% N

ucl

eop

lasm

loca

liza

tio

n

0

40

80

120

contr

ol

Tum

or

**

Control Tumor

% N

uc

leo

pla

sm

ic

Lo

ca

liza

tio

n o

f N

PM

1

Fold increase

in AcNPM1

% i

ncrea

se i

n

AcN

PM

1

0

40

80

120

contr

ol

Tum

or

% I

ncre

ase

In A

cN

PM

1

Control Tumor

**

Fold increase

in AcNPM1

% i

ncrea

se i

n

AcN

PM

1

0

40

80

120

contr

ol

Tum

or

% I

nc

rease

In A

cN

PM

1

Control Tumor

**

N T N T N T N T

NPM1

Actin

P. I

Fold

T/N1.45 2.3 2.7 29.1

# 2 # 8 # 5# 1

N T N T N T N T

NPM1

Actin

P. I

Fold

T/N1.45 2.3 2.7 29.1

# 2 # 8 # 5# 1

P.I: Patient Identification Number

Levels of acetylated NPM1 correlates with oral cancer malignancy

NPM1 Regulates Gene Expression Globally

Control siRNA

NPM1 siRNA #2

NPM1 Hoechst

α Actin

α NPM1

Contr

ol siR

NA

NP

M1 s

iRN

A#2

α Actin

α NPM1

Contr

ol siR

NA

NP

M1 s

iRN

A#2

+3

-2.5

Proliferation

Ribosome Biogenesis

Adipocytokine signaling

Oxidative phosphorylation

Insulin signaling

Adherens junction

Focal adhesion

-5

-4

-3

-2

-1

0

1

2

3

1 2 3 4

NPM1 TNFα IL6ST

CTNNB1

-5

-4

-3

-2

-1

0

1

2

3

1 2 3 4

-5

-4

-3

-2

-1

0

1

2

3

1 2 3 4

NPM1 TNFα IL6ST

CTNNB1

Fo

ld e

xp

res

sio

n o

ve

r c

on

tro

l s

iRN

A

NPM1 regulates its target gene expression directly or indirectly ??

Acetylated NPM1 associates with active RNAP II

TNFα Promoter

TNF α promoter

RNA

Pol II

GTFs

NPM1

Ac-NPM1

ChIP

RNA

Pol II

RNA Pol II

ChIP

NPM1

Shandilya et al, Mol. Cell. Biol., 29, 5115, (2009).

pS5

NPM1 AcNPM1 NPM1 IgG 1st IP

RNAPII RNAPII AcNPM1 2 nd IP

Data 1

np

acnp

nacn

igg

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

NPM1 AcNPM1 NPM1 IgG 1st IP

RNAPII RNAPII AcNPM1 2 nd IP

Data 1

np

acnp

nacn

igg

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Ch

IP:I

np

ut

Re-ChIP

RNA Pol II

NPM1

ReChIP

AcNPM1 RNA

Pol II

Flag-Vec Flag-WT Flag-(7K-7R)

NPM1 mut NPM1

Fo

ld E

xp

ress

ion

0

2

4

6

8

10

12

1 2 3

Series1

**

RT-PCR of TNFα expression

Acetylation of overexpressed NPM1 and Cancer

mRNA

Pol II

Increased Proliferation

and cell survival

Anti-apoptotic

Nu

cleo

lus

Nu

cleo

pla

sm

Enhanced protein translation

in proliferating cells

Inhibits DNA fragmentation

and apoptosis NPM1

NPM1

NPM1NPM1

AcNPM1

Jayasha Shandilya, Venkatesh Swaminathan, Shrikanth S. Gadad, Ramesh Choudhari,

Gopinath S. Kodaganur, and Tapas K. Kundu

Acetylation- Deacetylation

dynamics in Oral

Squamous Cell Carcinoma

p300 SIRT1

NPM1

Gene

expression

Ac

Genes associated

with cancer

manifestation

Shandilya J et al., Mol Cell Biol. 29, 5115-27 (2009)

Oral Cancer???

I. Adjacent Normal α p300 (C-20) II. Malignant Tumor α p300 (C-20)

III. Adjacent Normal α p300 (N-15) IV. Malignant Tumor α p300 (N-15)

Elevated levels of p300 in Grade II oral cancer

Normal Tumor

Ac-p300

p300 is hyperacetylated in oral cancer

SIRT1 expression is not altered in oral cancerI. Adjacent Normal α SIRT1 II. Malignant Tumor α SIRT1

Alterations in oral cancer

Normal

ac-p300

H3AcK14

H3 AcK9

Tumor

p300

GAPDH

NPM1

H2A AcK5

H4AcK16

NormalTumor

MAPK,CaMKIV,

Akt, PKCα, PKCδ,

IKKα

Coactivator function

of CARM1

Autoacetylation

Enhanced HAT activity

CARM1

Methylation

p53

Enhanced interaction

GAPDH

Protein-protein

interaction

SIRT2

Deacetylation

Phosphorylation

KinasesUbc9

sumoylation

Regulation of p300 Autoacetylation

Is this enhanced HAT activity responsible for its downstream activation?

GAPDH and NPM1 are overexpressed in oral cancer

GAPDH

Nuclear +ve Nuclear -ve

Tumor Normal

NPM1

Tumor Normal

GAPDH NPM1

i NOS

Nat Cell Biol. 2008

Jul;10(7):866-73.

IFN γ

p300

autoacetylation

p300

autoacetylation

?Overexpressed in

cancers

?

Positively regulate cell proliferation

GAPDH and NPM1 overexpression is positively

correlated to histone Hyperacetylation

Anti-NPM1

Anti-GAPDH

Anti-Tubulin

Anti-AcH3

Anti- H3

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

N T N T N T N T N T N T

N = Normal

T = Tumor

Anti-AcH2AK5

Anti-AcH4K16

Anti-NPM1

Anti-GAPDH

Anti-Tubulin

Anti-AcH3

Anti- H3

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

N T N T N T N T N T N T

N = Normal

T = Tumor

Anti-AcH2AK5

Anti-AcH4K16

AcH3 GAPDHNPM1

Normal

Tumor

Arb

itra

ry u

nit

s

0

5

10

15

20

25

P = 0.012

P = 0.023

P = 0.01

AcH2AK5 AcH4K16

P = 0.035 P = 0.045

AcH3 GAPDHNPM1

Normal

Tumor

Arb

itra

ry u

nit

s

0

5

10

15

20

25

P = 0.012

P = 0.023

P = 0.01

AcH2AK5 AcH4K16

P = 0.035 P = 0.045

IP: acetyl Lys

Input

GSNO

GSH +-

-+

GAPDH

IP: acetyl Lys

Input

GSNO

GSH +-

-+

NPM1

GAPDH and NPM1 is acetylated in Nitric oxide

mediated Interferon γ production

• GSNO - nitric oxide donor

• GSH - reduced glutathione

IP: acetyl Lys

Input

GAPDH

1400W

IFNγ -

-

+

-

+

+

-

+

1 2 3 4

IP: acetyl Lys

Input

NPM1

1400W

IFNγ -

-

+

-

+

+

-

+

1 2 3 4

• GAPDH and NPM1 get acetylated in response to IFNγ.

•1400W is a iNOS inhibitor.

•1400W has been shown to be an anti-cancer agent

Autoradiogram

Commassie

NPM1

p300

3H-Acetyl CoA

-+--

++++

+++-

GAPDH +---

NPM1 enhances the Autoacetylation

of p300 and hence it’s HAT activity

Autoradiogram

Commassie

NPM1

p300

3H-Acetyl CoA

+++-

++++

++++

1 2 3 4 1 2 3 4

• NPM1 is a protein activator of p300 HAT

NPM1 over-expression expression enhances H3 acetylation

Ac-H3

NPM1

DAPI

GAPDH

DAPI NPM1

Autoacetylation

Enhanced HAT activity

NPM1

Activation

GAPDH

Activation

NPM1

NPM1

NPM1

NPM1

GAPDH

GAPDH

GAPDH

GAPDHGAPDH

IFNγ

iNOS

NO

Epigenetic signaling in oral cancer

Hyperacetylated Histone

CTK7A

GAPDH

GAPDH

AcAc

NPM1

NPM1

Ac

Ac

Tumor

Implications of HAT inhibitors as the antineoplastic therapeutics

Upregulation of genes involve

In oral cancer manifestation

Arif

Histone acetyltransferase inhibitors

Lysyl CoA (p300)

H3 CoA20

(PCAF) Anacardic acid

(p300/PCAF)

Garcinol

(p300/PCAF)Curcumin (p300/CBP) γ- butyrolactones (CBP/GCN5)

Isothiazolones (p300/PCAF)

LTK14 (p300)

Lau and Kundu et al., Mol Cell, 2000 Lau and Kundu et al., Mol Cell, 2000 Balasubramanyam et al., J Biol Chem. 2003

OH

OH

O OH

CH2

CH3

CH3

CH3

CH3 CH3

OCH3

CH3CH3CH3

O

Balasubramanyam et al.,

J Biol Chem. 2004 Balasubramanyam et al.,J Biol Chem. 2004 Biel et al., Angew Chem Intl edn. 2004

Stimson et al.,Mol Cancer Ther. 2005

Mantelingu and

Reddy et al., Chem

Biol. 2005

O

O

O

OH

OH

OH

OH

OH

OH

OH

EGCG (p300)

Choi et al., Cancer Res. 2009

O

O

CH3

OH

Plumbagin (p300)

Ravindra K C and Selvi B R et

al., J Biol Chem, 2009

C646 (p300)

Bowers et al., Chem Biol, 2010

CTK7A, a novel water soluble HAT inhibitor

0

20

40

60

80

100

120

1 2 3 4 5 6

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

0

20

40

60

80

100

120

1 2 3 4 5 6

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

p300

CBP

G9a

CARM1

HDAC1

SirT2

Tip60

PCAF

0 10 25 50 75 100

Acti

vit

y (%

)CTK7A (µM)

0

20

40

60

80

100

120

1 2 3 4 5 6

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

0

20

40

60

80

100

120

1 2 3 4 5 6

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

p300

CBP

G9a

CARM1

HDAC1

SirT2

Tip60

PCAF

0 10 25 50 75 100

Acti

vit

y (%

)CTK7A (µM)

+ Serum - Serum

+ Serum + CTK7A

(Wound Healing Assay)

Untreated CTK7A 100µM

CTK7A 200µM

CTK7A inhibits KB cell

proliferation & causes

polyploidy

Untreated

CTK7A

CTK7A induces Senescence like growth arrest in

KB cells in HAT dependent manner

CTK7A induces high levels of SA-β-Gal

Anti-Cyclin E

Anti-Cyclin D1

Anti-Tubulin

1 2 3

UT 100 200

CTK7A (µM)

0

1

2

3

4

5

1 2 3 4 5 6 7

Series1

Series2

H3 AcH3 IgG

Bo

un

d /

In

pu

t (%

)

0

1

2

3

4

5

1 2 3 4 5 6 7

Series1

Series2

Control

CTK7A

2 x 106 KB cells

Tumor grown to 2-3mm3

Treatment started with CTK7A

Animals sacrificed

Tissue used for IHC and western

DST- National Nude Mice Facility,

MBGU,JNCASR

CTK7A Retards the Tumor growth

R L

UT

Treated

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Series1

Series2

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Series1

Series2

CTK7A = 100mg / Kg Body wt / twice a day

Route - IP

0

150

300

450

600

750

900

276 9 12 15 18 21 24

Control

CTK7A

Days after inoculation

Tu

mo

r v

olu

me (

mm

3)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Series1

Series2

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Series1

Series2

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Series1

Series2

CTK7A = 100mg / Kg Body wt / twice a day

Route - IP

0

150

300

450

600

750

900

276 9 12 15 18 21 24

Control

CTK7A

Days after inoculation

Tu

mo

r v

olu

me (

mm

3)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Series1

Series2

CTK7A inhibits p300 autoacetylation in mice tumorControl CTK7A treated

Ac-p300

Ki-67

Nitric oxide-mediated hyperacetylation in oral cancer: target

for a water soluble HAT inhibitor, CTK7AMohammed Arif, Bhusainahalli M. Vedamurthy, Ramesh Choudhari, Yogesh B. Ostwal,

Kampegowda Mantelingu, Gopinath S. Kodaganur, and Tapas K. Kundu Aug 27;17(8):903-13.

Pomegranate crude extract and cancer

Jurenka, Alt Med Rev.,

13, 128-144. (2008)

Is CARM1 a target of the pomegranate CE activity???

Inhibitor Screen

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3

CARM1

G9a

p300

PCAF

cp

m

The crude extract inhibits CARM1 and p300 activity

(2,3,7,8-tetrahydroxy[1] benzopyrano

[5,4,3-(di)] [1] benzopyran-5,10-dione)

(TBBD)

Identification of TBBD, an inhibitor from pomegranate

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

CARM1

G9a

p300

PCAF

cp

m

0

1000

2000

3000

4000

5000

6000

Coomassie

staining

H3

TBBD from natural

source: Pomegranate rind

TBBD inhibits CARM1 in a dose dependent manner

14 15 16 17 18

K A P R K

Yue W W etal., EMBO J 2007

Ac Me Ac

H3

AcH3 K18

AcH3 K14

H3R26(me)2

H3R17(me)2

1 2 3 4 5

Panel I

Panel II

Panel III

Panel IV

Panel V

DMSO

TBBD

- + + + +

- - 5 25 100

Significance of proline residue for TBBD mediated

inhibition

TBBD does not inhibit the flanking residue acetylation

ASP 166

HIS 415

TYR 262TYR 417

GLY 12

GLY 13

LYS 14ALA 15

PRO 16ARG 17

LYS 18

GLN 19

THR 22LYS 23

ALA 24

ALA 25

ARG 26

LYS 27

ALA 29

ALA 31GLY 33

GLY 34

Molecular docking of TBBD with KAPRK and KAARK

motif

KAPRK motif KAARK motif

TBBD interacts with the KAPRK motif

H3R17 (me)2

H3R26 (me)2

H3

1 2 3 4 5 6 7 8 9 10 11 12

+ + + + + + + + + + + +

- + + + - + + + - + + +

- + + + - + + + - + + +

- - 25 100 - - 25 100 - - 25 100

Histone H3

CARM1

DMSO

TBBD(µM)

Histone H3 wt Histone H3 A25P Histone H3 P16A

Significance of proline residue for TBBD-substrate

interaction and subsequent inhibition

TBBD inhibits A25P methylation at both H3R17 and R26, however, P16A methylation is unaffected by TBBD

H3R17

R26

P16

A25

CARM1H3 wildtype

H3

R17

R26

P16

P25

CARM1

H3

A25P mutant

R17

R26

A16

A25

CARM1

H3

P16A mutant

³H-

SAM

CARM1

H3P16

R17

R26 A new mechanism of enzyme

inhibition; substrate sequence

(proline residue), determines the

specificity in inhibiting the

enzyme activity.

Novel mode of enzyme inhibition

B. Ruthrotha Selvi‡1, Kiran Batta‡, A. Hari Kishore‡, Kempegowda Mantelingu‡, Radhika A. Varier‡,

Karanam Balasubramanyam‡, Suman Kalyan Pradhan§, Dipak Dasgupta§, Sokalingam Sriram¶, Shipra Agrawal¶,

and Tapas K. Kundu‡2

Selvi

Epigenetics and Oral Cancer…

- Histone chaperone NPM1 is hyperacetylated and causally

associated with oral cancer manifestation and progression due to

its transcription regulation ability, could be a potential marker…

- p300 acetyltransferase is highly active and is modulated by

GAPDH and NPM1.

- Nitric oxide signalling is linked to the hyperacetylation

- Histone hyperacetylation in oral cancer can be targeted by

HATi; CTK7A leading to tumor growth retardation

- Arginine methylation is also associated with oral cancer…

Therapeutic potential of CTK7A and TBBD???