Structural Damage Detection Using LS-‐SVM Based on a New Combinational Kernel Function

21
1 Structural Damage Detection Using LSSVM Based on a New Combinational Kernel Function Abstract Detecting the structural damages and extending the life of structures can be achieved by utilizing smart materials, intelligent systems and Structural Health Monitoring (SHM). In this study, structural damage detection is performed using Least Square Support Vector Machines (LSSMVs) based on a new combinational kernel. Thin Plate Spline LittlewoodPaley Wavelet (TPSLPW) kernel function introduced in this paper is a novel combinational kernel function, which combines Thin Plate Spline Radial Basis Function (RBF) kernel with local characteristics and a modified LittlewoodPaley Wavelet kernel function with global characteristics. During the process of structural damage detection, a Social Harmony Search (SHS) algorithm optimizes the parameters of LSSVM and the TPSLPW kernel. The results obtained by this method are compared with LSSVM based on the other combinational and conventional kernels. These results show that the accuracy of damage detection based on LSSVM with TPSLPW kernel is higher than the other methods based on the conventional kernels under the same conditions. In comparison with other combinational kernels, LSSVM with TPSLPW kernel possesses a better dissemination and learning ability by incorporating the advantages of RBF kernel and wavelet kernel functions. Keywords: damage detection; combinational kernel; least square support vector machine; thin plate spline LittlewoodPaley wavelet; social harmony search algorithm 1 Introduction Civil structures are inevitable to suffer the environmental corrosion, longterm fatigue effects, natural disasters, and the damage accumulates during long service periods. Therefore, intelligent health monitoring and damage detection for structures have become an important area of research with viable applications 1,2 . Detection and prediction of the structural damages are necessary for the monitoring of structural health and preventing the structural failures. The structural damages are usually detected by the dynamic characteristics of the structure, such as frequencies, mode shapes and frequencydomain transfer function is an important method for structural damage detection. Recently, numerous advanced techniques and intelligent methods, such as digital filter technology 3 , wavelet transform (WT) analysis 4,5 , artificial neural networks (ANNs) 6 , support vector machine (SVM) 7,8 and particle swarm optimization (PSO) 9,10 have been introduced to detect the structure’s global and local damage information, and to optimize the SHM system. Despite the fact that the neural networks have many advantages, the traditional neural network approaches have limitations for a boarder applications in SHM, which given rise to models that can overfit to the training data. This limitation is usually due to the optimization algorithms used in ANNs for the selection of parameters and the statistical measures used to select the model. Recently, Support Vector Machine (SVM) based on VapnikChervonenkis (VC) theory and Structural Risk Minimization Principle has been presented 11 . This method promises to overcome the conditional neural networks shortcomings such as the local minimizing and inadequate statistical capabilities. The SVM is especially

Transcript of Structural Damage Detection Using LS-‐SVM Based on a New Combinational Kernel Function

1    

Structural  Damage  Detection  Using  LS-­‐SVM  Based  on  a  New  Combinational    

Kernel  Function  

Abstract  

Detecting  the  structural  damages  and  extending  the  life  of  structures  can  be  achieved  by  utilizing  smart  materials,   intelligent  systems  and  Structural  Health  Monitoring  (SHM).  In  this  study,  structural  damage  detection   is   performed   using   Least   Square   Support   Vector   Machines   (LS-­‐SMVs)   based   on   a   new  combinational  kernel.  Thin  Plate  Spline  Littlewood-­‐Paley  Wavelet  (TPSLPW)  kernel   function   introduced  in   this   paper   is   a   novel   combinational   kernel   function,  which   combines   Thin   Plate   Spline   Radial   Basis  Function  (RBF)  kernel  with  local  characteristics  and  a  modified  Littlewood-­‐Paley  Wavelet  kernel  function  with  global  characteristics.  During  the  process  of  structural  damage  detection,  a  Social  Harmony  Search  (SHS)  algorithm  optimizes   the  parameters  of   LS-­‐SVM  and   the   TPSLPW  kernel.   The   results  obtained  by  this  method   are   compared  with   LS-­‐SVM  based   on   the   other   combinational   and   conventional   kernels.  These   results   show   that   the   accuracy   of   damage   detection   based   on   LS-­‐SVM   with   TPSLPW   kernel   is  higher   than   the   other   methods   based   on   the   conventional   kernels   under   the   same   conditions.   In  comparison   with   other   combinational   kernels,   LS-­‐SVM   with   TPSLPW   kernel   possesses   a   better  dissemination   and   learning   ability   by   incorporating   the   advantages   of   RBF   kernel   and  wavelet   kernel  functions.  

Keywords:   damage   detection;   combinational   kernel;   least   square   support   vector  machine;   thin   plate  spline  Littlewood-­‐Paley  wavelet;  social  harmony  search  algorithm  

 

1-­‐  Introduction

Civil   structures  are   inevitable   to   suffer   the  environmental   corrosion,   long-­‐term   fatigue  effects,  natural  disasters,   and   the   damage   accumulates   during   long   service   periods.   Therefore,   intelligent   health  monitoring  and  damage  detection  for  structures  have  become  an  important  area  of  research  with  viable  applications  1,2.  Detection  and  prediction  of  the  structural  damages  are    necessary  for  the  monitoring  of  structural  health  and  preventing  the  structural  failures.  The  structural  damages  are  usually  detected  by  the  dynamic  characteristics  of   the  structure,  such  as   frequencies,  mode  shapes  and  frequency-­‐domain  transfer  function  is  an  important  method  for  structural  damage  detection.    

Recently,   numerous   advanced   techniques   and   intelligent   methods,   such   as   digital   filter   technology3,  wavelet  transform  (WT)  analysis  4,5,  artificial  neural  networks  (ANNs)6,  support  vector  machine  (SVM)7,8  and  particle   swarm  optimization   (PSO)9,10   have   been   introduced   to   detect   the   structure’s   global   and  local  damage  information,  and  to  optimize  the  SHM  system.  

Despite   the   fact   that   the   neural   networks   have   many   advantages,   the   traditional   neural   network  approaches   have   limitations   for   a   boarder   applications   in   SHM,   which   given   rise   to   models   that   can  overfit  to  the  training  data.  This  limitation  is  usually  due  to  the  optimization  algorithms  used  in  ANNs  for  the   selection   of   parameters   and   the   statistical  measures   used   to   select   the  model.   Recently,   Support  Vector   Machine   (SVM)   based   on   Vapnik-­‐Chervonenkis   (VC)   theory   and   Structural   Risk   Minimization  Principle  has   been   presented11.   This  method   promises   to   overcome   the   conditional   neural   networks  shortcomings  such  as  the  local  minimizing  and  inadequate  statistical  capabilities.    The  SVM  is  especially  

2    

suited  in  the  case  of  small  size  samples11.  A  recent  thorough  review  of  literature  on  this  subject  indicates  that  the  research  on  damage  detection  based  on  SVM  has  become  a  rapidly  growing  area  in  structural  health   monitoring   7,8.   The   SVM   is   employed   to   enhance   the   speed   and   the   accuracy   of   damage  detection  and  realizing  the  smart  systems  for  damage  detection.  

So  far,  the  theoretical  studies  on  SVM  have  focused  on  the  following  three  aspects  12:  (1)  Improving  the  classical  algorithms  of  SVM  to  enhance  the  calculation  speed,    (2)  Studying  the  kernel  functions  of  SVM,  and  (3)  Predigesting  the  decision-­‐making  functions  of  SVM.  The  selection  and  the  construction  of  kernel  functions   greatly   influences   the   performance   of   SVM,   and   the   limited   theoretical   and   analytical  work  have  been  conducted  in  this  regard.    Therefore,  one  of  the  major  challenges  in  the  utilization  of  SVM  is  the  choice  of  proper  Kernel  Functions13.    

Song  et  al.  14  presented  a  ComKer  kernel  which  combines  the  Gaussian  RBF  kernel  with  the  linear  kernel  function.   Xie   15   utilized   a  mixed   kernel   that   combines   RBF   kernel   and   polynomial   kernel   for   damage  detection   of   smart   composite   laminated   plates   and   the   results   demonstrated   that   the   accuracy   of  damage  detection  based  on  LS-­‐SVM  with  a  mixed  kernel  is  higher  than  those  based  on  LS-­‐SVM  with  RBF  kernel  under  the  same  low-­‐velocity  impact  loading.

Wavelet  is  a  powerful  technique  in  the  applied  mathematics,  which  has  also  been  utilized  extensively  in  structural   health   monitoring   16.     When   SVM   is   combined   with   wavelets,   it   becomes   a   robust  classification   tool.   In   the   literature,   wavelets   are   used   either   for   feature   extraction   or   for   kernel  formation  of  SVM.  In  the  first  case,  wavelets  are  used  to  extract  the  features  and  the  extracted  features  are  used  for  classification17.  But  in  the  latter  case,  wavelets  are  incorporated  as  the  kernels  within  SVM  framework  18.  For  example,  Khatibinia  et  al.  18  employed  support  vector  machine  (SVM)  with  a  wavelet  kernel  for  seismic  reliability  assessment  of  existing  RC  structures  with  consideration  of  soil–structure  interaction  effects  in  accordance  with  Performance-­‐Based  Design.  

In  this  study,  we  construct  a  new  combinational  wavelet  kernel  using  the  multidimensional  orthogonal  modified  Littlewood-­‐Paley  wavelet  and  thin  plate  spline  radial  basis  function.  The  newly  devised  TPSLWP  combinational  kernel  is  employed  for  structural  damage  detection.  Various  levels  of  structural  damage  detection   including   the   occurrence,   location   and   severity   of   the   damages   are   studied   using  computational   analysis.   Furthermore,   Wavelet   packet   decomposition   is   applied   to   the   structural  response   signals   under   ambient   vibration   and   the   feature   vectors   are   obtained   by   feature   extraction  according   to   the   wavelet   energy   spectrum.   The   feature   vectors   are   employed   for   training   and  classification   as   the   inputs   of   LS-­‐SVM.   The   parameters   of   LS-­‐SVM  with   the   combinational   kernel   are  optimized  using  a    new    version    of    harmony    search    algorithm    that    has    been    recently  presented  by  Kaveh  and  Ahangaran  19    which  is  named  Social    Harmony    Search  (SHS)  algorithm.  Finally,  the  results  are  compared  by  applying  other  conventional  kernels  (single  kernel  function)  and  combinational  kernels  (mixed  kernel  functions)  to  the  same  system  that  were  proposed  by  other  researchers.  

The  present  paper  is  organized  as  follows:    

In  Section  2,  we  describe  the  LS-­‐SVM  and  the  procedure  of  constructing  a  new  kernel.  SHS  and  Wavelet  Packet  Transform  (WPT)  are  represented  in  Sections  3  and  4,  respectively.  Damage  detection  procedure  is  described  in  Section  5.  Examples  are  studied  in  Section  6  and  conclusions  are  presented  in  Section  7.  

2-­‐  Least  Square  Support  Vector  Machine  and  Constructing  a  New  Combinational  Kernel  

3    

As   a   new   learning   machine,   support   vector   machine   based   on   statistical   learning   theory   consists   of    various  types.  Among  these  different  versions,  LS-­‐SVM,  with  the  advantages  of  simpler  algorithm  and  faster   operation   speed,   is   widely   applied   in   pattern   recognition   and   nonlinear   regression   20.   The  regression  principle  of  LS-­‐SVM  can  be  explained  as  follows:  

Suppose  a  sample  set  { 𝑥, 𝑦 ,𝑋 ∈ 𝑅!×! ,𝑌 ∈ 𝑅}  and  input  sample  matrix  𝑋 = [𝑥!; 𝑥!;… ; 𝑥!]  in  which  𝑥!  is  𝑚  dimensional  and  𝑌 = [𝑦!; 𝑦!;… ; 𝑦!]  denotes  the  output  sample  column  vector.  For  the  regression  problem,  LS-­‐SVM  regression  model  in  the  primal  weight  space  can  be  considered  as  the  following  form:  

𝑦 𝑥 = 𝜔!𝜑 𝑥 + 𝑏   (1)  

The  optimization  problem  of  the  above  model  can  be  formulated  as  follows:

𝑀𝑖𝑛12𝜔 ! + 𝛾

12𝜉 !  

S.t.  𝜑 𝑥 𝜔 + 𝑒𝑏 + 𝜉 = 𝑌  

(2)  

where   𝜑 . :𝑅! → 𝑅!!   is   the   mapping   to   the   high   dimensional   and   potentially   infinite   dimensional  feature  space.  The  parameter  𝛾 > 0  denotes  a  real  constant  used  to  control  the  punishment  degree  for  misclassification  and  𝑒  denotes  a  column  vector  with  elements  equal  to  1.  Because  𝜔  becomes  infinite  dimensional,   this  primal  problem  cannot  directly  be   solved.   Therefore,   let  us  proceed  by   constructing  the  following  Lagrangian:  

𝐿 𝜔, 𝑏, 𝜉,𝛼 =12𝜔 ! + 𝛾

12𝜉 ! − 𝛼!(𝜑 𝑥 𝜔 + 𝑒𝑏 + ξ − 𝑌)   (3)  

where  𝛼  is  Lagrange  multiplier.  The  conditions  for  optimality  are  given  by:  

𝜕𝐿𝜕𝜔

= 0,𝜕𝐿𝜕𝑏

= 0,𝜕𝐿𝜕𝜉

= 0,𝜕𝐿𝜕𝛼

= 0   (4)  

After  elimination  of  the  variables  𝜔  and  𝜉,  a   linear  Karush-­‐Kuhn-­‐Tucher  (KKT)  system  with  a  set  of  n+1  dimensional  linear  equations  can  be  obtained:      

0 𝑒!𝑒 𝐾 + 𝐼/𝛾 = 𝑏

𝛼 = 0𝑌   (5)  

where   𝐼 ∈ 𝑅!×!   denotes   a   unit   matrix,  𝛼 = [𝛼!;𝛼!;… ;𝛼!]   and   𝐾 = 𝐾(𝑋,𝑋)  = 𝜑 𝑥 𝜑 x!   is   the  kernel  matrix.  

By  solving  the  Eq.  (5),  the  results  of  LS-­‐SVM  regression  model  becomes:  

𝑦 𝑥 = 𝐾 𝑋,𝑋 𝛼 + 𝑏   (6)  

Selection   and   construction   of   the   kernel   functions   is   a   key   issue,   which   greatly   influences   the  performance   of   LS-­‐SVM,   and   provides   an   important   approach   to   expand   LS-­‐SVM   from   linear   field   to  nonlinear   field.   The   kernel   functions   of   LS-­‐SVM   are  Mercer   functions   which   meet   Mercer   condition.  Some  widely  used  kernel  functions  used  in  LS-­‐SVM  are  listed  in  the  following:  

Linear  kernel:  𝐾 𝑥! , 𝑥! = 𝑥!!𝑥!  

4    

Polynomial  kernel:    𝐾 𝑥! , 𝑥! = 𝑥!!𝑥! + 1!  

Gaussian  function  kernel  (Radial  Basis  Function  (RBF)):      𝐾 𝑥! , 𝑥! = exp  (− 𝑥! − 𝑥!!/2𝜎!)  

Sigmoid  kernel:    K 𝑥! , 𝑥! = 𝑡𝑎𝑛ℎ 𝑥!!𝑥! + 𝑏  

Thin  Plate  Spline  (RBF):  𝐾 𝑥! , 𝑥! = 𝑥! − 𝑥!! ln 𝑥! − 𝑥!  

where  𝑏,  d,  𝜎  are  kernel  parameters  and  𝜎   is  the  width  parameter  of  Gaussian  function.    Additionally,  following  wavelet  kernels  have  been  presented  in  the  recent  literature:

Morlet  wavelet  function21:  𝐾 𝑥! , 𝑥! = !!cos 𝜔!

!!!!!!

exp  (−0.5 !!!!!!!

)!!!!  

Sinc  wavelet  function  22:  𝐾 𝑥! , 𝑥! =  !"#  (!

!!!!!! )

!(!!!!!! )

!!!!  

Shannon  wavelet  function23:  𝐾 𝑥! , 𝑥! = 2𝑠𝑖𝑛𝑐 2(!!!!!!) − 𝑠𝑖𝑛𝑐(!!!!!

!)!

!!!  

Littlewood-­‐Paley  wavelet  function  24:  𝐾 𝑥! , 𝑥! =!"#!!

!!!!!!!

!!"#!!!!!!!!

!!!!!!!!

!!!!  

where  𝑎  is  the  flexible  coefficient  of  wavelet.  The  above  kernel  functions  possess  their  respective  traits,  and  have  different  effects  on  LS-­‐SVM  performance.  Among  the  above  kernel  functions,  RBF  kernel  is  a  local  kernel  function  with  a  stronger  learning  ability  but  a  weaker  dissemination  ability.  Thin  plate  spline,  Gaussian,   Cubic,   Distance   and   Quadratic   functions   are   a   number   of   RBF   kernels   that   have   been  previously  proposed  in  the  literatures  25,26.    

In   this   study,  we   use   thin   plate   spline   function   as   the   RBF   part   of   combinational   kernel,   because   the  previous  analyses  had  shown  that  Thin  Plate  Spline  and  Gaussian  function  results  in  a  high  performance  for   scattered   approximations   27.   However,   the   accuracy   of   Gaussian   function   depends   on   the   width  parameter  and  yet  there  is  no  mathematical  formulation  to  demonstrate  the  best  strategy  for  choosing  its   optimal   value.   Hence,   most   applications   of   the   Gaussian   function   use   experimental   tuning  parameters  or  expensive  optimization   techniques   to  evaluate   the  optimum  width  parameter   28.  While  the   thin   plate   spline   function   demonstrates   a   good   agreement   without   requiring   such   additional  parameters  and  that  is  also  based  on  sound  mathematical  theories  29.  

The  wavelet  has  the  property  of  time-­‐frequency  localization  and  is  a  powerful  tool  for  arbitrary  function  approximation  in  𝐿!(𝑅)  space  (quadratic  continuous  integral  space),  and  hence  the  generalization  ability  of  LS-­‐SVM  can  be  improved  by  using  the  wavelet  as  a  kernel  function  30.  

Choosing   an   appropriate   wavelet   function   as   a   wavelet   kernel   is   a   critical   problem.   One   takes   into  account  not  only  the  wavelet  function  satisfying  the  Mercer's  condition,  but  also  the  properties  of  the  wavelet   function.   Littlewood-­‐Paley   (L-­‐P)  wavelet   is   the   equivalent   of   Harmonic  Wavelet   ,  when   the  basis  function  is  real  31.  The  modified  L-­‐P  wavelet  function  is  a  type  of  orthonormal  function  which  has  useful   practical   properties   in   time-­‐frequency   local   signal   analysis   and   is   well   suited   for   band-­‐scalar  adjusting  to  detect  the  parameters  with  desired  accuracy  31.  Therefore,  this  superior  wavelet  function  is  

5    

chosen  as  the  wavelet  part  of  combinational  kernel.  The  modified  L-­‐P  wavelet  kernel  function  based  on  Reference  32  is  defined  as:  

𝐾 𝑥! , 𝑥! =1

𝜋 𝑞 − 1

sin𝑞𝜋𝑥! − 𝑥!𝑎!

− sin𝜋𝑥! − 𝑥!𝑎!

𝜋𝑥! − 𝑥!𝑎!

!

!!!

(7)

where  𝑞 > 1  is  a  band-­‐scalar  and  𝑎!  is  the  flexible  coefficient  of  wavelet,    𝑎! > 0.  Therefore,  to  absorb  the  advantages  of  the  above  two  kernels,  a  novel  combinational  kernel  function,  namely  the  Thin  Plate  Spline  Littlewood-­‐Paley  Wavelet  (TPSLPW)  is  constructed  by  combining  the  above  two  kernel  functions,  as:  

𝐾!"#$"% 𝑥, 𝑥! = 𝜌𝐾!!!"  !"#$%  !"#$%& 𝑥, 𝑥! + 1 − 𝜌 𝐾!!!  !"#$%$& 𝑥, 𝑥,!     (8)  

𝐾!"#$"% 𝑥, 𝑥! = 𝜌 𝑥! − 𝑥!!ln 𝑥! − 𝑥! + 1 − 𝜌

1𝜋 𝑞 − 1

sin𝑞𝜋𝑥! − 𝑥!𝑎!

− sin𝜋𝑥! − 𝑥!𝑎!

𝜋𝑥! − 𝑥!𝑎!

!

!!!

 (9)  

 

According  to  the  above  linear  superposition  formula,   it  can  be  shown  that  the  TPSLPW  kernel   is  also  a  Mercer  kernel.  As  LS-­‐SVM  cannot  optimize  the  parameters  of  the  kernels,  it  is  difficult  to  determine  𝑛×𝑛  parameters   𝑎!.   For   the   sake   of   simplicity,   let   𝑎! = 𝑎  such   that   the   above   LS-­‐SVM   model   has   four  parameters,   namely,   punishment   coefficient   𝛾 > 0,   flexible   coefficient   of   wavelet   𝑎 > 0,  band-­‐scalar  𝑞 > 1   and   0 ≤ 𝜌 ≤ 1.   These   four   (𝛾, 𝑎, 𝑞, 𝜌)   parameters   can   be   optimized   by   social   harmony   search  (SHS)  algorithm.    

 

 3-­‐  Social  Harmony  Search  (SHS)  Algorithm  

Based   on   the   results   obtained   from   the   damage   detection   of   structures,   Harmony   Search   (HS)  Algorithms  can  be  applied  to  optimize  the  above  combinational  kernel  LS-­‐SVM  and   its  parameters.  HS  algorithm  is  based  on  natural  musical  performance  processes  that  occur    when  a  musician  searches  for  a  better  state  of  harmony,  for  instance,  during  jazz  improvisation.  The  engineers  seek  for  a  global  solution  which   is   determined   by   an   objective   function,   just   like     musicians   seeking   to   find  musically   pleasing  harmony  as  determined  by  an  aesthetic  33.  The  optimization  procedure  of  HS  algorithm  is  described  in  the  following  steps:  

Step  1:  Initialize  the  algorithm  parameters  and  optimization  operators.  HS  algorithm  includes  a  number  of   optimization   operators,   such   as   harmony   memory   (HM),   harmony   memory   size   (HMS),   harmony  memory  considering  rate  (HMCR)  and  pitch  adjusting  rate  (PAR).  HMCR    and    PAR    are  fixed    values    with    the    range    of    0.7–0.95    and    0.1–0.5,    respectively.  In  HS  algorithm,  HM  stores  the  feasible  vectors,  all  of  which   are   in   the   feasible   space.   The   harmony  memory   size   determines   the   number   of   vectors   to   be  stored.  

Step  2:  Improvise  a  new  harmony  from  HM.  A  new  harmony  vector  is  generated  from  the  HM,  based  on  memory   considerations,   pitch   adjustments   and   randomization.   Algorithm     with     a     probability   of   (1-­‐HMCR)  applies  random  selection  rule,  and  with  the  probability  of  HMCR  applies    harmony    consideration  rule,  and  with  probability  of    HMCR    ×    PAR    applies    pitch    adjusting  rule    to    improvise    a    new    harmony.    

6    

In    pitch  adjusting    section,  algorithm  adds  𝑏𝑤×𝜀  to    the    value    that  has    been    selected    using    memory  considerations  rule.  Herein,  𝜀  is    a    random    number    from    a  uniform    distribution    with    the    range    of    [−1,    1],    and  𝑏𝑤  is    a    fixed    arbitrary    distance  bandwidth.  

Step  3:  Update  HM.  If  new  harmony  vector  is  better  than  the  worst  harmony  in  the  HM,  judged  in  terms  of  the  objective  function  value,  the  new  harmony  is  included  in  the  HM  and  the  existing  worst  harmony  is  excluded  from  the  HM.  

Step  4:  Repeat   Steps  2  and  3  until   the   terminating   criterion   is   satisfied;  Otherwise,   Steps  2  and  3  are  repeated.    

Although   HS   has   proven   its   ability   in   finding   near   global   regions   within   a   reasonable   time,   it   is  comparatively   inefficient   in  performing   local   search,  because   it   uses  fixed  value   for  both  PAR  and  𝑏𝑤  and   these   parameters   cannot   be   changed   during   the   new   improvisation.   Hence,   to   eliminate   the  aforementioned   drawback   of   the   HS,   some   researchers   such   as   References   34,   35,   36,   19   have   recently  presented  new  variants  of  the  HS  and  the  latter  is  termed  social  harmony  search  algorithm.  The  serious  drawback   of   the   HS   algorithm   arising   from   pitch   adjustment   section   is   that   it   makes   the   algorithm  unable   to   make   a   good   balance   between   diversification   and   intensification   that   are   two   important  features   of   the   meta-­‐heuristics   algorithms.   Social   harmony   search   uses   the   principles   of   normal  distribution   to   increase   the  HS   operation.   This  method   applies   the   normal   distribution   to   update   the  position   of   each   design   variable   of   a   new   harmony   found   by   the   first   rule   of   the   HS   (memory  consideration)  in  every  stage,  to  attain  rapidly  the  feasible  solution  space.  Normal  distribution  works  as  a   global   search   in   early   iterations   and   as   a   local   search   in   final   iterations   to   improve   HS   to   quickly  converge   and   find   better   solutions.   It   makes   an   efficient   balance   between   diversification   and  intensification  during  the  entire  process  of  generating  the  algorithm  feasible.  The  social  HS  adjusts  the  new  harmony.  Additionally,  social  HS  simplifies  the  pitch  adjusting  rule  because   instead  of  using  𝑏𝑤   it  uses  the  standard  deviation  of  all  values  of  the  𝑖  decision  variables  in  the  harmony  memory  and  updates  them  in  each  generation.  This  advantage  makes  the  algorithm  to  find  the  new  harmony  with  more  social  influence  using  experiments  of  all  the  harmonies.  This  method  assures  that  the  HS  algorithm  achieves  a  good  balance  between  diversification  and  intensification  in  the  pitch  adjustment  rule.  

4-­‐  Wavelet  Packet  Transform  (WPT)  

The  WPT  of  a  time  domain  signal  𝑓 𝑡  can  be  calculated  by  using  a  recursive  filter-­‐decimation  operation  37.  After  𝑗-­‐levels  of  decomposition,  the  original  signal  𝑓 𝑡  can  be  expressed  as:

𝑓 𝑡 = 𝑓!! 𝑡!!

!!!

 (10)

 

𝑓!! 𝑡 = 𝐶!! 𝑡 𝜓!,!! (𝑡)!!

!!!

 (11)

 

Herein,   the   component   signal   𝑓!! 𝑡  can   be   expressed   by   a   linear   combination   of   wavelet   functions  𝜓!,!! (𝑡)  integers  𝑖, 𝑗  and  𝑘  are  the  modulation,  scale  and  translation  parameters,  respectively;  𝐶!! 𝑡  and  

7    

𝜓!,!! (𝑡)   are   defined   as   the   wavelet   packet   coefficient   and   the   wavelet   packet   function.   The   wavelet  packet  coefficients  can  be  obtained  from

𝐶!,!! = 𝑓 𝑡 𝜓!,!! 𝑡 𝑑𝑡!

!!  

(12)

For   the   purpose   of   structural   damage   detection,   frequency   domain   information   tends   to   be   more  important  and  thus  a  high  level  of  the  WPT  is  often  required  to  detect  the  minute  changes  in  the  signals.  After   WPT   implementation,   the   energies   of   these   decomposed   component   signals   can   be   used   for  structural  condition  assessment.  These  component  energies  are  defined  as:

𝐸!! = 𝑓!! 𝑡 !𝑑𝑡!

!!  

(13)

It  can  be  shown  that,  when  the  mother  wavelet  is  semi-­‐orthogonal  or  orthogonal,  the  signal  energy  𝐸!  is  the  summation  of  the  𝑗-­‐level  component  energies  as  follows 38:

𝐸! = 𝑓! 𝑡 𝑑𝑡 = 𝐸!!!!

!!!

!

!!  

(14)

Generally,  we  use  relative  energy  to   indicate  damage  feature,  so  the  relative  energy  𝐸!   in   𝑖-­‐frequency  band  can  be  expressed  as:

𝐸! =𝐸!!

𝐸!  

(15)

 

5-­‐Damage  Detection  Procedure  

5.1-­‐Extracting  Data  and  Creating  Input  Vector  

A  data  fusion  technique  can  combine  data  from  several  information  sources  as  well  as  information  from  relative   data-­‐bases   to   achieve   a   higher   accuracy   and   more   specific   inferences   than   what   could   be  achieved  by  a  single  source  alone  39.  Feature  fusion  is  one  kind  of  data  fusion  that  integrates  information  from   different   sensors   and   obtains   feature   vectors   40.   Since   the   LS-­‐SVM   is   very   suitable   for   feature  fusion,   a   damage  detection  method   is   proposed  herein  based  on   feature   fusion   and   LS-­‐SVM  model  using  the  new  combinational  kernel.  

1-­‐  Battle–Lemarie  is  symmetric,  the  wavelet  function  is  a  band  filter  in  the  frequency  domain,  while  the  scale   function   is   a   low-­‐pass   filter.   Therefore,   the   frequency   bands   of   the   above   two   functions   are  overlapped   in   certain   degree,   which   shows   a   favorable   orthogonal   characteristic   41.   In   order   to  decompose   analysis   signals   into   different   frequency   bands   and   make   each   frequency   band   energy  independent   and   irredundant,   Battle-­‐Lemarie   is   adopted   as   a   basis   wavelet   package   function   in   this  paper.  Several  optional  measuring  nodes  are  selected  and  vibrant  signals  from  these  nodes  are  analyzed  by  using  the  WPT  first.  

2-­‐  The  level  of  wavelet  packet  decomposition  is  determined  through  a  trial  and  error  sensitivity  analysis  using  both  the  healthy  and  the  damaged  structural  models.  The  frequency  band  energy  is  calculated  and  normalized.  The  wavelet  package  relative  energy  of  the  signals  from  sensor  𝑠  is:

8    

𝐸!! = {𝐸! ,𝑚 = 1,… ,𝑀}   (16)

where  𝑠 = 1,2,… , 𝑆and  𝑝  are  the  acquiring  numbers,  𝑝 = 1,2,3, . . . ,𝑃.  

3-­‐  The  wavelet  package  relative  energy  (WPRE)  𝐸!!  of  the  signals  from  the  sensor  𝑠  is  combined  to  obtain  the  fused  feature  vector:

𝐸! = 𝐸!!,𝐸!!,… ,𝐸!!   (17)

 

5.2-­‐Creating  Fitness  Function  

By  adopting  the  above  combinational  kernel,  the  tuning  parameters  (𝛾, 𝑎, 𝑞, 𝜌)  of  LS-­‐SVM  are  optimized  by  SHS.  In  this  study,  the  fitness  function  of  SHS  is  developed  based  on  LS-­‐SVM  training  accuracy.  The  LS-­‐SVM   accuracy   is   obtained   by   evaluation   of   the   test   data   classification   using   the   trained   model.   By  employing  this  fitness  function,  the  LS-­‐SVM  parameters  are  optimized.  SHS  chooses  the  vector  with  the  smallest  fitness  value  after  the  termination  conditions  are  satisfied.  The  fitness  function  of  SHS  is  formed  as  follows:

𝐹 = 𝑚𝑒𝑎𝑛  𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  𝑒𝑟𝑟𝑜𝑟(𝑀𝐴𝐸) = 1𝑝0

 𝑂𝑝 − 𝑂𝑝𝑝0𝑝=1     (18)

where  𝑂!  denotes  the  LS-­‐SVM  actual  outputs,  𝑂!  denotes  the  desired  outputs,  and  𝑝!  is  the  number  of  testing  samples.  

5.3-­‐  Obtaining  Optimal  Parameters  of  LS-­‐SVM    

Fig.   1   presents   the   flowchart   of   SHS   program   for   optimal   selection   of   LS-­‐SVM   parameters.   The   best  parameters  are  obtained  and  used  to  receive  the  required  information,  when  the  termination  condition  is  satisfied.  

9    

 

Fig.  1.  The  flow  chart  of  the  system  

5.4-­‐  Detecting  the  Location  and  the  Severity  of  Damages  

A   well   trained   LS-­‐SVM   with   the   structural   damage   fused   feature   proxy   𝑬𝒑   as   the   inputs   and   the  corresponding  damage  condition  as  the  outputs,  is  applied  to  classify  and  identify  the  samples  based  on  the  presented  principles  and  the  damages  assessment  results  are  obtained.    

 

6-­‐  Numerical  Results  of  Damage  Detection    

In   order   to   validate   the   classifying   ability   of   LS-­‐SVM  with   the   new   kernel   for   identifying   the  multiple  structural  damages,  two  illustrative  test  examples  are  considered.  The  first  example  is  the    benchmark  dataset   from   IASC-­‐ASCE  SHM  group  at   the  University  of  British  Columbia,  discussed   in  detail,   and   the  second   example   is   a   120-­‐bar   dome   truss.   The   results   of   the   novel   combinational   kernel   function   are  compared  with  the  other  conventional  kernels  such  as  RBF  kernel,  Thin  plate  spline,  Shannon  kernel  23,  Morlet   kernel   42,   Sinc  kernel   22   and  Littlewood-­‐Paley  kernel   24.   Furthermore,   the   results  are   compared  

10    

with  other  combinational  kernels  such  as  Gaussian  RBF  plus  Sinc  Wavelet  kernel   43,  Gaussian  RBF  plus  Linear  kernel  44  and  Gaussian  RBF  plus  Polynomial  kernel  15.  

 

6.1-­‐  Benchmark  Dataset  from  IASC-­‐ASCE  SHM  Group  

The  four-­‐story  steel  structure  shown  in  Fig.  2  has  12  degrees  of  freedom  (DOF).  This  structure  has  a  plan  of  2.5  m×2.5  m  and  a  height  of  3.6  m.  The  quarter-­‐scale  symmetrical  model  of  the  structure  was  studied  in  the  Earthquake  Engineering  Research  Laboratory  at  the  University  of  British  Columbia  (UBC)  45.  

The  members   are   hot   rolled   grade   300  W   steel  with   a   nominal   yield   stress   300  MPa   (42.6   kpsi).   The  excitation  is  low-­‐level  ambient  wind  loading  at  each  floor  in  y-­‐direction.  To  consider  the  uncertainty  of  environmental   loads,   the   wind   loading   is   modeled   as   filtered   Gaussian   white   noise   process   passed  through  a  sixth  order  low-­‐pass  Butterworth  filter  with  a  100  Hz  cutoff.  Sensors  are  installed  in  each  floor  on   the   middle   column   of   the     sides;   in   total   there   are   16   sensors.   Signals   to   be   analyzed   are   the  acceleration  response  gathered  from  each  floor  sensors  on    column  4  respectively,  which  are  on  nodes  13,  22,31  and  40  in  Fig2(b).  The  sampling  frequency  is  100  Hz  and  the  length  of  the  data  is  40000.    

 

(a)  

 

 

(b)  

Fig.  2:  Four-­‐story  structure  of  ASCE  health  monitoring  benchmark  studies:  (a)  Schematic  drawing  (b)  distribution  of  node  numbering  and  detection  node  in  finite  element  model45  

 

6.1.1-­‐  Extracted  Features  

Battle–Lemarie   as   a   basis   function   is   employed   to   decompose   the   acceleration   responses   with   7  decomposition  levels.    All  together,  128  frequency  bands  are  generated,  each  with  a  width  of  3.91  Hz.  These  component  energies  are   sorted  first  according   to   their  magnitudes,  95%  of   the  WPRE   is  mainly  distributed   below   100   Hz   frequency   bands   after   calculating,   which   are   both   significant   in   value   and  sensitive  to  the  damage  occurred   in  the  structure.  Therefore,  the  first  16  component  energies  of  WPT  are   selected   as   damage   indices.   Fig.   3   shows   the  measured   vibration   responses   for   different   damage  

11    

conditions.  The  distribution  maps  of   the  WPRE  about  different  damage  conditions  are  shown   in  Fig.  4  and  all  cases  are  simulated  in  the  y-­‐direction.    It  can  be  seen  from  Fig.  4  that  the  distributions  of  WPRE  are   obviously   different   when   detection   nodes   and   damage   conditions   are   different.   Therefore,   the  WPRE  is  capable  to  serve  as  a  feature  vector  to  describe  structural  damage  conditions.  

 (a)

 (b)

(c)

(d)

Fig.  3.  Measured  vibration  response:(a)    4  braces  removed  on  the  first  floor  (node  4),  (b)    3  braces  removed  on  the  first  and  second  floors  (node  6),  (c)  2  braces  removed  on  1,2,3  floors  (node  8),  (d)    1  

brace  removed  on  the  1,2,3,4  floors  (node  2).  

 (a)  

 (b)

(c)

(d)

Fig.  4.  Wavelet  package  relative  energies:  (a)  4  braces  removed  on  the  first  floor  (node  4),  (b)    3  braces  removed on  the  first  and  second  floors  (node  6),  (c)    2  braces  removed  on  1,2,3  floors  (node  8),  (d)  1  

brace  removed on  the  1,2,3,4  floors  (node  2)  

-­‐10  

0  

10  

0   0.5   1  

Amplitu

de  

Time(s)  

-­‐4  -­‐2  0  2  4  

0   0.5   1  

Amplitu

de  

Time(s)  

-­‐20  

0  

20  

0   0.5   1  Amplitu

de  

Time(s)  

-­‐5  

0  

5  

0   0.5   1  Amplitu

de  

Time(s)  

0  0.5  1  

1.5  

1   3   5   7   9   11   13   15   17  

Relaove  en

ergy  

Serial  number  of  wavelet  package  

0  0.5  1  

1.5  

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  

Relaove  en

ergy  

Serial  number  of  wavelet  package  

0  

1  

2  

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  

Relaove  en

ergy  

Serial  number  of  wavelet  package  

0  

1  

2  

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  

Relaove  en

ergy  

Serial  number  of  wavelet  package  

12    

6.1.2-­‐Damage  Occurrence  and  Damage  Location  

For  damage  detection  by  the  proposed  algorithm,  we  assume  that  the  damages  occurred  by  removing  braces   in   y-­‐direction.   Relative   calculation   indicates   that   the   damage   of   beams   and   the   braces   in   x-­‐direction   has   a   low   effect   on   the   vibrational   responses.   Therefore,   only   the   damage   of   braces   in   y-­‐direction   is   considered   in   this   study.  Damage   severity   is   described   by   removing   4   braces,   3   braces,   2  braces  and  1  brace,   respectively.   Furthermore,   it   is  assumed   that   the  damages  occurred  on  one,   two,  three  and   four   floors  of   the   structure.   For  example,  when  damage   is   restricted   to  one   floor,  we  have  four  damage  scenarios.  

Therefore,  all  damage  scenarios  are:  

(1)  Damages  in  One  floor:  4  ×4  =16  

(2)  Damages  in  two  floors:  4  ×6  =24  

(3)  Damages  in  three  floors:  4  ×4  =16  

(4)  Damages  in  four  floors:  4  ×1  =4  

With   the   above  damages,   in   addition   to   the   case   of   no   damage,   there   are   totally   61   damaged   cases.  Considering   the   effect   of   the   environmental   noise,   different   severity   random  Gaussian  white   noise   is  added   to   the   acceleration   responses  of   the   above  61  damage   cases.   The   ratios  of   the  maximum   root  mean  square   (RMS)  values  between  the  noise  and  the  signal   for   the  61  cases  are  10%,  20%  and  30%,  respectively.   They   are   named   as   the   samples   I   to   III  where   the   samples   I   and   II   are   used   for   training  samples  and  samples  III  are  employed  for  testing.  Therefore,  183  samples  are  used  in  simulation  of  the  damage  identification,  including  61  testing  samples  and  122  training  samples.  Signals  are  preprocessed  in   accordance   with   the   previous   section,   then,   the   feature   fusing   with   equation   17,   and   the   fused  feature  as  the  input  of  LS-­‐SVM.  The  output  numerical  value  is  the  damaged  case  as  mentioned  before.  We   have   61   damage   cases   in   this   example.   Tuning   parameters   of   LS-­‐SVM   for   each   kernels   are   also  optimized  by  SHS.    

The  SHS  parameters  are:  number  of   iterations=5000,  HMS=40,  HMCR=0.9  and  PAR=0.5.  The  results  of  damage   location   and   damage   severity   by   LS-­‐SVM   with   TPSLPW   kernel   are   compared   to   the   other  conventional   kernels   in  Table  1.  Ratio  of   correctly  detected  damage  cases   for   the  entire   test  data   (61  cases)  is  defined  as  the  damage  detection  accuracy  (DDA).  

Table  1:  Performance  of  the  proposed  TPSLWP  kernel  in  comparison  with  other  conventional  kernels  

LS-­‐SVM  Kernel   LS-­‐SVM  Parameters   System  error(MAE)   DDA  (%)  

Gaussian  RBF   𝛾 = 5.16,𝜎! = 18.28   10.12×10!!   90.16  %  

Thin  Plate  Spline  RBF  

𝛾 = 5.54   10.12×10!!   90.16  %  

Morlet  Wavelet   𝛾 = 5.2, 𝑎 = 17.38   2.8×10!!   98.36%  

Sinc  Wavelet   𝛾 = 5, 𝑎 = 16.41   5.37×10!!   95.08  %  

Shannon   𝛾 = 5, 𝑎 = 3.7   5.37×10!!   95.08  %  

13    

Wavelet  Littlewood-­‐

Paley  Wavelet   𝛾 = 5.21, 𝑎 = 0.33   2.8×10!!   98.36%  

TPSLPW   𝛾 = 5.15, 𝑎 = 0.33, 𝑞 = 2, 𝜌 = 0.52   0   100  %    

The  results  show  that  the  accuracy  of  damage  detection  based  on  LS-­‐SVM  with  TPSLWP  kernel  is  higher  than  those  based  on  LS-­‐SVM  with  the  other  conventional  kernel  functions  (single  kernel  function)  under  the   same  conditions.  Based  on  Table  1,   L-­‐P  wavelet  and  Morlet  wavelet   function  have   the  best   single  kernel  function  results,  but  the  accuracy  of  damage  detection  based  on  LS-­‐SVM  with  TPSLWP  kernel   is  1.64%   higher   than   those   based   on   LS-­‐SVM  with   L-­‐P   kernel   and  Morlet   Kernel.   Furthermore,   TPSLWP  kernel   predicts   all   the   instances   accurately.   Also,   the   results   show   the   effective   performance   of   the  combinational  kernel  function  with  a  better  learning  and  generalization  ability.  By  using  TPSLWP  kernel  function,  the  accuracy  rate  will  be  higher  than  the  accuracy  rate  by  employing  a  single  kernel  function  constructed  by  LS-­‐SVM.    

Table  2  shows  the  DDA  for  LS-­‐SVM  with  TPSLWP  kernel  in  comparison  with  other  combinational  kernels  proposed  by  other  researchers.  

Table  2.  Performance  of  the  proposed  TPSLWP  kernel  in  comparison  with  other  combinational  kernels  

LS-­‐SVM  Kernel   LS-­‐SVM  Parameters   System  error  (MAE)   DDA  (%)  

Gaussian  RBF+  Polynomial  

𝛾 = 5.21,𝜎! = 30.1,  𝑑 = 2   2.8×10!!   98.36  %  

Gaussian  RBF+  Linear  

𝛾 = 5.1,𝜎! = 30.38   4.17×10!!   96.72  %  

Gaussian  RBF+  Sinc  Wavelet  

𝛾 = 5.4,𝜎! = 30.38, 𝑎 = 1.5   2.8×10!!   98.36%  

TPSLWP   𝛾 = 5.15, 𝑎 = 0.33, 𝑞 = 2, 𝜌 = 0.52   0   100  %  

 

Based  on   Table   2,   Sinc-­‐RBF   kernel   has   the  best   combinational   (mixed)   kernel   function   results   but   the  accuracy  of  damage  detection  based  on  LS-­‐SVM  with  TPSLWP  kernel  is  1.64%  higher  than  those  based  on  LS-­‐SVM  with  Sinc-­‐RBF  kernel.  

RBF  kernel  is  a  local  kernel  function  with  a  stronger  learning  ability  but  a  weaker  dissemination  ability,  in  contrast,  modified   Littlewood-­‐Paley  wavelet   function   has   horizontal   floating   and   flexible   orthonormal  characteristics,  it  can  build  the  orthonormal  base  of  𝐿!(𝑅)  space,  and  by  using  this  kernel  function,  we  can  approach  almost  any  complicated  functions  in  𝐿!(𝑅)  space.  Thus,  this  combinational  kernel  function  enhances   the   generalization   ability   of   the   LS-­‐SVM.   Therefore,   in   comparing  with   other   combinational  kernels,   LS-­‐SVM   with   TPSLPW   kernel   possesses   a   better   dissemination   and   learning   ability   by  incorporating  the  advantages  of  RBF  kernel  and  wavelet  kernel  function.    

 

14    

6.2-­‐  120-­‐bar  Dome  Truss  

A  120-­‐bar  dome  truss,  shown  in  Fig.  5,  was  first  presented  in  Reference  46  to  obtain  the  optimal  sizing  and  configuration  variables.  

 

   

Fig.  5.  120-­‐bar  dome  truss  47    

The  diameter  and  the  height  of  the  dome  are  31.78  m  and  7  m,  respectively.  .  The  material  is  a  seamless  steel   pipe  with   a  modulus   of   elasticity   of   30,450   ksi   (210,000  MPa)   and   the  material   density   is   0.288  lb/in3  (7971.810  kg/m3).  The  external  diameter  of  the  pipes  is  0.2  m  and  the  thickness  is  0.006  m.  The  FE  program  OpenSees  48  is  used  for  structural  analysis  under  ambient  vibration.  The  vibration  is  simulated  by  a  discrete  white  noise   in   z-­‐direction.  The   sampling   interval   is  0.05   s  and   the  duration   is  300   s.  The  dome  is  divided  into  four  regions  by  its  symmetry,  which  is  shown  in  Fig.  5  with  dotted  lines  and  Roman  

I   II  

III   IV  

15    

letters.  Nine  vertical  acceleration  sensors  are  located  on  the  structure,  and  the  locations  are  shown  by  hollow  circles  in  Fig.  5.  

The   four   regions   are   considered   independent   in   the   damage   detection   scope,   i.e.   the   sensor   in   each  region  has   the  most  sensitivity   to   the  damage   in   its  own  region  and  one  LS-­‐SVM  could  be  established  only   considering   the   variances   of   the   corresponding   region.   Therefore,   only   self-­‐damage   should   be  considered   by   the   sensors   in   each   region.   The   damaged   elements   are   simulated   by   decreasing   the  Young’s  modulus.  The  damage   ratios  of  5%,  10%   and  15%  are  considered.  Only   region   I   is   considered  because  the  method  and  analysis  for  other  regions  are  similar.  

In   region   I  we   have   one   sensor   on   the  middle   joint   and   three   sensors   on   the   perimeter   region.     The  damages  are   simulated   for  major  elements,   these  amounts   to  18   types  of  damage   locations   including  two  types  of  damages  where  damage  occurs  in  two  elements  simultaneously.  Therefore,  all  the  training  vertical  acceleration  response  samples  amount  to  54.  The  model  is  subjected  to  ambient  vibration  and  the  vertical  acceleration  responses  at  the  joints  where  sensors  are  placed  are  obtained.  Considering  the  effect   of   the   environmental   noise,   different   types   of   random  Gaussian  white   noise   are   added   to   the  acceleration  responses  of  the  aforementioned  54  damage  cases,  the  ratios  of  the  maximum  root  mean  square   (RMS)   values   between   the   noise   and   the   signal   for   the   54   cases   are   10%,   20%   and   30%   ,  respectively.  These  are  labeled  as  samples  I–III.    Samples  I  and  II  are  employed  for  training  and  samples  III  is  used  for  testing.  That  is,  162  samples  are  used  in  the  simulation  of  damage  identification,  including  54  testing  samples  and  108  training  samples.    

All   acceleration   vibration   signals   are   decomposed   by   a   three-­‐level   wavelet   packet,   and   the   utilized  wavelet   type   is   the   Battle–Lemarie   basis   function.   Each   signal   is   transformed   into   a   set   of   eight-­‐dimension   feature   vectors   based   on   Section   5   and   the   fused   feature   vectors   are   created.   The   fused  feature  vectors  are  input  vectors  of  LS-­‐SVM.  The  output  numerical  value  is  the  damaged  case.    We  have  54  damaged  cases  in  this  example.  

Table   3   shows   the   results   for   the   detection   of   damage   occurrence,   damage   location   and   damage  severity   for   LS-­‐SVM   with   TPSLPW   kernel   in   comparison   with   other   conventional   kernels.   The   tuning  parameters  of  LS-­‐SVM  for  each  kernel  are  optimized  by  SHS.    

Table  3.  Performance  of  the  proposed  TPSLWP  kernel  in  comparison  with  the  other  conventional  kernels  

LS-­‐SVM  Kernel   LS-­‐SVM  Parameters   System  error(MAE)   DDA  (%)  

Gaussian  RBF   𝛾 = 4.36,𝜎! = 18.38   13.12×10!!   87.03  %  

Thin  Plate  Spline  RBF  

𝛾 = 4.54   12.07×10!!   88.88  %  

Morlet  Wavelet   𝛾 = 4.57, 𝑎 = 11.38   5.14×10!!   96.29%  

Sinc  Wavelet   𝛾 = 4, 𝑎 = 12.9   8.19×10!!   92.59%  

Shannon  Wavelet  

𝛾 = 4.8, 𝑎 = 4   8.19×10!!   92.59  %  

Littlewood-­‐Paley  Wavelet  

𝛾 = 4.1, 𝑎 = 0.53   5.14×10!!   96.29%  

16    

TPSLPW   𝛾 = 4.12, 𝑎 = 0.53, 𝑞 = 2, 𝜌 = 0.44   1.02×10!!   98.14  %    

Table  3  shows  that  the  accuracy  of  the  combinational  kernel  function  proposed  in  this  paper  is  higher  than  other  kernels  published  in  literature.  Morlet  kernel  and  L-­‐P  kernel  classifies  52  instances  perfectly,  out   of   54   testing   instances,   while   TPSLWP   kernel   classifies   53   instances   correctly.   The   combinational  kernel  exploits  the  advantages  of  both  wavelet  kernels  and  conventional  kernels.  However,  accuracy  is  less  than  100  %  This  may  be  due  to  the  fact  that  sensors  placement  was  not  completely  optimal,  and  this  configuration  decreased   the  sensitivity  of  acceleration  responses  to  the  various  damage  scenarios  and  hence,  it  is  not  possible  to  predict    all  the  test  instances  accurately  by  this  sensor  placement.  

Table   4   shows   the   DDA   for   LS-­‐SVM   with   TPSLWP   kernel   in   comparison   with   combinational   kernels  proposed  by  other  researchers.  

Table  4.  Performance  of  the  proposed  TPSLWP  kernel  in  comparison  with  other  combinational  kernels  

LS-­‐SVM  Kernel   LS-­‐SVM  Parameters   System  error(MAE)   DDA  (%)  

Gaussian  RBF+  Polynomial  

𝛾 = 4.31,𝜎! = 24.1,  𝑑 = 3   5.14×10!!   96.29  %  

Gaussian  RBF+  Linear  

𝛾 = 4.31,𝜎! = 23.38   5.14×10!!   96.29  %  

Gaussian  RBF+  Sinc  Wavelet  

𝛾 = 4.4,𝜎! = 20.38, 𝑎 = 1.43   1.02×10!!   98.14%  

TPSLWP   𝛾 = 4.12, 𝑎 = 0.53, 𝑞 = 2, 𝜌 = 0.44   1.02×10!!   98.14  %  

 

Based   on   Table   4,   Sinc-­‐RBF   and   TPSLWP   kernels   have   the   best   combinational   kernel   function   results.  Because  SHS  algorithm  is  essentially  a  stochastic  search  algorithm,  we  ran  the  optimization  algorithm  several  times  and  best  results  are  presented  in  Table  4.   In  most  of  these  runs,  TPSLWP  kernels  have  better   results   compared   with   Sinc-­‐RBF   kernel.   In   other   words,   the   average   results   of   several   runs  carried  out  by  the  proposed  kernel  are  superior  to  those  of  Sinc-­‐RBF  kernel.  

Moreover,  the  proposed  approach  can  be  used  for  multi-­‐field  data,  which  means  this  kernel  function  is  not  sensitive  to  the  specific  field  data.  TPSLWP  kernel  can  widely  combine  the  advantages  of  L-­‐P  wavelet  and  Thin  Plate  Spline  RBF  kernel,   therefore,   the  better  capability  of  generalization  and  predicting     the  best    results  can  be  achieved.  However,  as  the  number  of  kernel  parameters  is  increased  from  2  to  3,  the  TPSLWP  kernel   requires  more   searches   in   the  model   selection   stage   in   comparison  with   the   standard  RBF  and  wavelet  kernels.  

7-­‐  Conclusions  and  Discussion  

In   this   study,   in   order   to   enhance   the   speed   and   the   accuracy   of   LS-­‐SVM   for   structural   damage  detection,  a  new  combinational  kernel  using  the  multidimensional  orthogonal  modified  Littlewood-­‐Paley  wavelet  and  thin  plate  spline  radial  basis  function  is  proposed.  The  parameters  of  newly  devised  TPSLWP  combinational  kernel  and  LS-­‐SVM  are  optimized  by  utilizing  Social  Harmony  Search  (SHS)  algorithm.  

17    

In  order  to  assess  the  performance  of  LS-­‐SVM  with  the  new  kernel,  damage  detection  of  the  four-­‐story  structure   of   ASCE   health  monitoring   benchmark   and   a   120-­‐bar   dome   truss   is   studied   and   discussed.  Measured  acceleration  response  signals  of  structures  are  first  decomposed  into  the  component  signals  using  the  WPT,  then,  the  selected  component  energies  are  fused  and  used  as  the  inputs  to  the  LS-­‐SVM  models   for   various   levels   of   damage   assessment.   Based   on   the   numerical   results,   the   following  conclusions  are  resulted:  

1-­‐  The  accuracy  of  damage  detection  based  on  LS-­‐SVM  with  TPSLWP  kernel  is  higher  than  those  based  on  LS-­‐SVM  with  other  conventional  kernel  functions  (single  kernel  function)  under  the  same  conditions.    In  this  study,  Littlewood-­‐Paley  wavelet  function  demonstrated  the  best  single  kernel  function  result  and  the  accuracy  of  damage  detection  based  on  LS-­‐SVM  with  TPSLWP  kernel  is  higher  than  those  based  on  LS-­‐SVM  with  Littlewood-­‐Paley  kernel.  

2-­‐   The   accuracy   of   damage   detection   with   TPSLWP   kernel   is   higher   than   the   accuracy   of   other  combinational  kernel   functions   (mixed  kernel   function)  under   the  same  conditions.   In   this   study,  Sinc-­‐RBF  kernel  demonstrated  the  best  mixed  kernel  function  results  and  the  accuracy  of  damage  detection  based  on  LS-­‐SVM  with  TPSLWP  kernel  is  higher  than  those  based  on  LS-­‐SVM  with  Sinc-­‐RBF  kernel.  

3-­‐  LS-­‐SVM  with  TPSLPW  kernel  possesses  a  better  dissemination  and  learning  ability  by  integrating  the  advantages   of   RBF   kernel   and   wavelet   kernel   functions.   Because   of   horizontal   floating   and   flexible  orthonormal  character  of  the  modified  Littlewood-­‐Paley  wavelet  function,  it  can  build  the  orthonormal  base   of   𝐿!(𝑅)   space.   By   using   Littlewood-­‐Paley   kernel   function,   we   can   approach   almost   any  complicated  functions  in  𝐿!(𝑅)  space.  Thus,  the  proposed  combinational  kernel  function  enhances  the  generalization  ability  of  the  LS-­‐SVM.  

4-­‐  Wavelet  transform  has  emerged  as  a  powerful  mathematical  tool  for  capturing  changes  of  structural  characteristics/properties  induced  by  damage.  It  provides  an  effective  feature  extraction  procedure  for  compressing   the   data  measured   and   obtaining   useful   information   for   damage   assessment.   The  WPT-­‐based  component  energies  extracted  appears  to  be    good  indicator  that  can  reveal  the  health  condition  of  structures.  

5-­‐  Selecting  the  optimal  tuning  parameters  of  LS-­‐SVM  and  its  kernel  has  a  high  influence  on  the  system  performance.   The   results   show   that   the   application   of   SHS   algorithm   for   the   selection   of   these  parameters  in  damage  detection  procedure  leads  to  a  high  performance  and  accuracy  of  LS-­‐SVM  model.  Furthermore,  there  is  no  requirement  to  rely  on  the  domain  knowledge  in  order  to  fix  the  parameters.  Therefore,  by  using  SHS,  TPSLWP  kernel  function  can  be  applied  in  various  fields,  and  is  not  sensitive  to  the  data  domain.  

However,   there   are   still   some   important   details   that   need   to   be   studied   more   thoroughly.   Optimal  selection   of   wavelet   basis   for   different   structural   types   and   configurations   needs   to   be   addressed   in  order   to  assure   the  accuracy.   Some  problems  such  as  optimal  placement  of   sensors,  damage   location  between   the   two   symmetrical   elements   and   the   on-­‐line,   real-­‐time   damage  monitoring   for   in-­‐service  structures  based  on  the  new  kernel  also  need  to  be  further  studied.  

 

 

18    

 

 

References

1.     Housner   GW,   Bergman   LA,   Caughey   TK,   Chassiakos   AG,   Claus   RO,   Masri   SF,   et   al.   Structural  control:  past,  present,  and  future.  J  Eng  Mech.  1997;123(9):897–971.    

2.     Fan   W,   Qiao   P.   Vibration-­‐based   damage   identification   methods:   a   review   and   comparative  study.  Struct  Heal  Monit.  2011;10(1):83–111.    

3.     Messina   A.   Detecting   damage   in   beams   through   digital   differentiator   filters   and   continuous  wavelet  transforms.  J  Sound  Vib.  2004;272(1):385–412.    

4.     Lee   SG,   Yun   GJ,   Shang   S.   Reference-­‐free   damage   detection   for   truss   bridge   structures   by  continuous  relative  wavelet  entropy  method.  Struct  Heal  Monit.  2014;:1475921714522845.    

5.     Hou   Z,   Noori   M,   Amand   RS.   Wavelet-­‐based   approach   for   structural   damage   detection.   J   Eng  Mech.  2000;126(7):677–683.    

6.     Saadat  S,  Buckner  GD,  Noori  MN.  Structural  system  identification  and  damage  detection  using  the   intelligent   parameter   varying   technique:   an   experimental   study.   Struct   Heal   Monit.  2007;6(3):231–243.    

7.     Khoa  NLD,  Zhang  B,  Wang  Y,  Chen  F,  Mustapha  S.  Robust  dimensionality  reduction  and  damage  detection   approaches   in   structural   health   monitoring.   Struct   Heal   Monit.  2014;:1475921714532989.    

8.     Noori   MN,   Cao   Y,   Hou   Z,   Sharma   S.   Application   of   support   vector   machine   for   reliability  assessment   and   sturctural   health  monitoring.   Int   J   Eng  Under  Uncertain  Hazards,  Assess  Mitig.  2010;2:89–98.    

9.     Shirazi   MRN,   Mollamahmoudi   H,   Seyedpoor   SM.   Structural   damage   identification   using   an  adaptive   multi-­‐stage   optimization   method   based   on   a   modified   particle   swarm   algorithm.   J  Optim  Theory  Appl.  2013;:1–11.    

10.     Torkzadeh  P,  Goodarzi  Y,  Salajegheh  E.  A  two-­‐stage  damage  detection  method  for   large-­‐scale  structures  by  kinetic  and  modal  strain  energies  using  heuristic  particle  swarm  optimization.  Int  J  Optim  Civ  Eng.  2013;3(3):465–482.    

11.     Luts   J,  Molenberghs  G,   Verbeke  G,   Van  Huffel   S,   Suykens   JAK.  A  mixed   effects   least   squares  support  vector  machine  model   for  classification  of   longitudinal  data.  Comput  Stat  Data  Anal.  2012;56(3):611–628.    

12.     Shawe-­‐Taylor   J,   Cristianini  N.   Kernel  methods   for   pattern   analysis.   Cambridge   university   press;  2004.    

19    

13.     Yeh   C-­‐Y,   Huang   C-­‐W,   Lee   S-­‐J.   A   multiple-­‐kernel   support   vector   regression   approach   for   stock  market  price  forecasting.  Expert  Syst  Appl.  2011;38(3):2177–2186.    

14.     Song  H,  Ding  Z,  Guo  C,  Li  Z,  Xia  H.  Research  on  Combination  Kernel  Function  of  Support  Vector  Machine.  2008;:838–841.    

15.     Xie  J.  Kernel  optimization  of  LS-­‐SVM  based  on  damage  detection  for  smart  structures  [Internet].  In:   2009  2nd   IEEE   International   Conference  on  Computer   Science   and   Information   Technology.  IEEE;  2009  [cited  2012  Nov  7].  p.  406–409.  

16.     Hera,  A.,  Hou,  Z  ,Noori  MN.  Wavelet-­‐Based  Techniques  for  Structural  Health  Monitoring.  Health  Assessment  of  Engineered  Structures,  World  Scientific,  Ed.  Achintya  Haldar,  2013.  pp  179-­‐199  

17.     Khatam   H,   Golafshani   AA,   Beheshti-­‐Aval   SB,   Noori   M.   Harmonic   class   loading   for   damage  identification  in  beams  using  wavelet  analysis.  Struct  Heal  Monit.  2007;6(1):67–80.    

18.     Khatibinia  M,  Javad  Fadaee  M,  Salajegheh  J,  Salajegheh  E.  Seismic  reliability  assessment  of  RC  structures   including   soil–structure   interaction   using   wavelet   weighted   least   squares   support  vector  machine.  Reliab  Eng  Syst  Saf.  2013;110:22–33.    

19.     Kaveh  A,  Ahangaran  M.  Social  harmony  search  algorithm  for  continuous  optimization.   Iran  J  Sci  Technol.  2011;  

20.     Suykens  JAK,  Vandewalle  J.  Least  squares  support  vector  machine  classifiers.  Neural  Process  Lett.  1999;9(3):293–300.    

21.     Khatibinia  M,  Salajegheh  E,   Salajegheh   J,   Fadaee  MJ.  Reliability-­‐based  design  optimization  of  reinforced  concrete  structures  including  soil–structure  interaction  using  a  discrete  gravitational  search  algorithm  and  a  proposed  metamodel.  Eng  Optim.  2013;45(10):1147–1165.    

22.     George   J,   Kumaraswamy   R.   Sinc   wavelet   kernel   for   support   vector  machines.   In:   8th   National  Conference  on  Technological  Trends.  2007.  p.  74–78.  

23.     Chen   W-­‐S,   Yuen   PC,   Huang   J,   Lai   J.   Face   classification   based   on   shannon   wavelet   kernel   and  modified   fisher   criterion.   In:   Automatic   Face   and   Gesture   Recognition,   2006.   FGR   2006.   7th  International  Conference  on.  IEEE;  2006.  p.  467–474.  

24.     Wu   F,   Zhao   Y.   Least   Square   Littlewood-­‐Paley   Wavelet   Support   Vector   Machine.   Inf   Control.  2005;34(5):604.    

25.     Cao   Y,   University   NCS.   Bayesian   Based   Structural   Health   Management   and   Reliability   Analysis  Techniques  Utilizing  Support  Vector  Machine  [Internet].  North  Carolina  State  University;  2007.    

26.     Engelbrecht  AP.  Computational  intelligence:  an  introduction.  Wiley.  com;  2007.    

27.     Franke  R.  Scattered  data  interpolation:  tests  of  some  methods.  Math  Comput.  1982;38(157):181–200.    

20    

28.     Samanta  B,  Al-­‐Balushi  KR,  Al-­‐Araimi  S  a.  Artificial  neural  networks  and  support  vector  machines  with  genetic  algorithm  for  bearing  fault  detection.  Eng  Appl  Artif  Intell  [Internet].  2003  Oct  [cited  2012  Nov  5];16(7-­‐8):657–665.    

29.     Durmus  A,  Boztosun  I,  Yasuk  F.  Comparative  study  of  the  multiquadric  and  thin-­‐plate  spline  radial  basis   functions   for   the   transient-­‐convective   diffusion   problems.   Int   J   Mod   Phys   C.  2006;17(08):1151–1169.    

30.     Yu  Z,  Cai  Y.  Least  squares  wavelet  support  vector  machines  for  nonlinear  system  identification.  In:  Advances  in  Neural  Networks–ISNN  2005.  Springer;  2005.  p.  436–441.  

31.     Chakraborty   A,   Basu   B,   Mitra   M.   Identification   of   modal   parameters   of   a   mdof   system   by  modified  L–P  wavelet  packets.  J  Sound  Vib.  2006;295(3):827–837.    

32.     Xing   Y,  Wu  X,   Xu   Z.  Multiclass   least   squares  wavelet   support   vector  machines.   In:  Networking,  Sensing   and   Control,   2008.   ICNSC   2008.   IEEE   International   Conference   on.   IEEE;   2008.   p.   498–502.  

33.     Lee   KS,   Geem   ZW.   A   new   structural   optimization   method   based   on   the   harmony   search  algorithm.  Comput  Struct.  2004;82(9):781–798.    

34.     Mahdavi   M,   Fesanghary   M,   Damangir   E.   An   improved   harmony   search   algorithm   for   solving  optimization  problems.  Appl  Math  Comput.  2007;188(2):1567–1579.    

35.     Taherinejad   N.   Highly   reliable   harmony   search   algorithm.   In:   Circuit   Theory   and   Design,   2009.  ECCTD  2009.  European  Conference  on.  IEEE;  2009.  p.  818–822.  

36.     Geem   ZW,   Sim   K-­‐B.   Parameter-­‐setting-­‐free   harmony   search   algorithm.   Appl   Math   Comput.  2010;217(8):3881–3889.    

37.     Yan   R,   Gao   RX,   Chen   X.   Wavelets   for   fault   diagnosis   of   rotary   machines:   A   review   with  applications.  Signal  Processing  [Internet]. 2014;96:1–15.    

38.     Han  J-­‐G,  Ren  W-­‐X,  Sun  Z-­‐S.  Wavelet  packet  based  damage  identification  of  beam  structures.  Int  J  Solids  Struct.  2005;42(26):6610–6627.    

39.     Telmoudi   A,   Chakhar   S.   Data   fusion   application   from   evidential   databases   as   a   support   for  decision  making.  Inf  Softw  Technol.  2004;46(8):547–555.    

40.     Chen   S-­‐L,   Jen   YW.   Data   fusion   neural   network   for   tool   condition   monitoring   in   CNC   milling  machining.  Int  J  Mach  tools  Manuf.  2000;40(3):381–400.    

41.     Mallat   SG.   A   theory   for   multiresolution   signal   decomposition:   the   wavelet   representation.  Pattern  Anal  Mach  Intell  IEEE  Trans.  1989;11(7):674–693.    

42.     Zhang  L,  Zhou  W,  Jiao  L.  Wavelet  support  vector  machine.  Syst  Man,  Cybern  Part  B  Cybern  IEEE  Trans.  2004;34(1):34–39.    

21    

43.     George  J,  Kumaraswamy  R.  A  Hybrid  Wavelet  Kernel  Construction  for  Support  Vector  Machine  Classification.  In:  DMIN.  2008.  p.  96–101.  

44.     Song  H,  Ding   Z,  Guo  C,   Li   Z,   Xia  H.  Research  on   combination   kernel   function  of   support   vector  machine.   In:   Computer   Science   and   Software   Engineering,   2008   International   Conference   on.  IEEE;  2008.  p.  838–841.  

45.     Johnson   EA,   Lam   HF,   Katafygiotis   LS,   Beck   JL.   Phase   I   IASC-­‐ASCE   structural   health   monitoring  benchmark  problem  using  simulated  data.  J  Eng  Mech.  2003;130(1):3–15.    

46.     Soh  CK,  Yang   J.   Fuzzy  controlled  genetic  algorithm  search   for   shape  optimization.   J  Comput  Civ  Eng.  1996;10(2):143–150.    

47.     Kaveh  a.,  Talatahari  S.  Particle  swarm  optimizer,  ant  colony  strategy  and  harmony  search  scheme  hybridized   for  optimization  of   truss   structures.  Comput   Struct   [Internet].  2009  Mar   [cited  2013  Apr  3];87(5-­‐6):267–283.    

48.     Frank  M,  Christopher  M,  Pedro  A,  Allen  HJ.  OpenSees  Laboratory  [Internet].  2013  Apr;Available  from:  http://nees.org/resources/572.