Review of Linear Algebra II

31
18-819F: Introduction to Quantum Computing 47-779/47-785: Quantum Integer Programming & Quantum Machine Learning Review of Linear Algebra II Lecture 02 2021.09.07.

Transcript of Review of Linear Algebra II

18-819F: Introduction to Quantum Computing 47-779/47-785: Quantum Integer Programming

& Quantum Machine Learning

Review of Linear Algebra II

Lecture 02

2021.09.07.

โ€ข Dirac notation for complex linear algebra

โ€“ State vectors

โ€“ Linear operators โ€“ matrices

โ€“ Hermitian operators

โ€“ Unitary operators

โ€“ Projection operators and measurement

โ€ข Tensors

โ€“ Basis vectors for tensor product space

โ€“ Composite quantum systems

โ€“ Conception of tensor products as quantum entanglement

2

Agenda

Dirac Notation for Linear Algebra โ€ข We previously defined the inner (dot) product of two vectors ๐‘ข and ๐‘ฃ as

๐‘ข. ๐‘ฃ = (๐‘ข, ๐‘ฃ),

where it was understood that ๐‘ข is a row vector, which is better written as the transpose, ๐‘ข๐‘‡.

โ€ข This bracket notation was specialized by P.A.M Dirac, using angle brackets, to

๐‘ข. ๐‘ฃ = ๐‘ข๐‘‡ . ๐‘ฃ =< ๐‘ข| ๐‘ฃ > = < ๐‘ข ๐‘ฃ >;

โ€ข An ordinary row vector is now defined as: < ๐‘ข| = ๐‘ข1 ๐‘ข2 โ€ฆ ๐‘ข๐‘› , where < | is the

โ€œbraโ€ and an ordinary column vector is |๐‘ฃ > =

๐‘ฃ1๐‘ฃ2โ‹ฎ๐‘ฃ๐‘›

, where | > is the โ€œketโ€ so that the

inner (dot) product is formed by the โ€œbra-ketโ€ < ๐‘ข|๐‘ฃ >;

โ€ข The โ€œbraโ€ implicitly tells us to take the complex conjugate and the transpose of ๐‘ข.

3

Dirac Notation for Linear Algebra

โ€ข Having defined the notation, one can now use it to write most of ordinary vector and

matrix algebra;

โ€ข The outer product of two vectors, which we previously wrote as

๐‘ข๐‘ฃ๐‘‡ =

๐‘ข1๐‘ข2โ‹ฎ๐‘ข๐‘›

๐‘ฃ1 ๐‘ฃ2 โ€ฆ ๐‘ฃ๐‘› =

๐‘ข1๐‘ฃ1 โ€ฆ ๐‘ข1๐‘ฃ๐‘›โ‹ฎ โ€ฆ โ‹ฎ

๐‘ข๐‘›๐‘ฃ1 โ€ฆ ๐‘ข๐‘›๐‘ฃ๐‘›Eqn. (3.1), is a matrix that can be

written succinctly as ๐‘ข๐‘ฃ๐‘‡ = |๐‘ข >< ๐‘ฃ| (we prove this later) Eqn. (3.2);

โ€ข The outer product is often called a dyad and is a linear operator, i.e., a matrix.

4

โ€ข In 3D linear algebra, we said we can write a vector เดฑ๐‘ฃ as a linear combination of the basis

vectors ฦธ๐‘’1, ฦธ๐‘’2, ฦธ๐‘’3, where ๐‘ฃ1, ๐‘ฃ2, ๐‘ฃ3 are the scaling coefficients

แ‰‘

เดฑ๐‘ฃ = ๐‘ฃ1 ฦธ๐‘’1 + ๐‘ฃ2 ฦธ๐‘’2 + ๐‘ฃ3 ฦธ๐‘’3เดฑ๐‘ฃ = ฦธ๐‘’1 ฦธ๐‘’1

๐‘‡ . เดฑ๐‘ฃ + ฦธ๐‘’2 ๐‘’2๐‘‡ . เดฑ๐‘ฃ

เดฑ๐‘ฃ = ฦธ๐‘’1 ฦธ๐‘’1๐‘‡ + ฦธ๐‘’2 ฦธ๐‘’2

๐‘‡ + ฦธ๐‘’3 ฦธ๐‘’3๐‘‡ เดฑ๐‘ฃ

+ ฦธ๐‘’3 ๐‘’3๐‘‡ . เดฑ๐‘ฃ

โ€ข From the 2nd equation above we have: ๐‘ฃ1 = ฦธ๐‘’1๐‘‡ . เดฑ๐‘ฃ , ๐‘ฃ2 = ฦธ๐‘’2

๐‘‡ . เดฑ๐‘ฃ, ๐‘ฃ3 = ๐‘’3๐‘‡ . เดฑ๐‘ฃ;

โ€ข From the 3rd equation above we have 1 = ฦธ๐‘’1 ฦธ๐‘’1๐‘‡ + ฦธ๐‘’2 ฦธ๐‘’2

๐‘‡ + ฦธ๐‘’3 ฦธ๐‘’3๐‘‡ = ฯƒ๐‘–=1

3 ฦธ๐‘’๐‘– ฦธ๐‘’๐‘–๐‘‡;

โ€ข So ฯƒ๐‘–=13 ๐‘’๐‘–๐‘’๐‘–

๐‘‡ = 1 is the closure (completeness) relationship for the 3D vector space.

5

Dyad in 3D Vector Space

โ€ข In Hilbert space, a state vector |๐‘ฃ > can be written as a linear combination of the basis

vectors |1 >, |2 >,โ€ฆ |๐‘› > with complex coefficients ๐‘1, ๐‘2, โ€ฆ ๐‘๐‘›

แ‰‘

|๐‘ฃ > = ๐‘1 1 > +๐‘2 2 > +โ‹ฏ+ ๐‘๐‘›|๐‘› >

|๐‘ฃ > = |1 > < 1|๐‘ฃ > + |2 > < 2 ๐‘ฃ > +โ‹ฏ+ |๐‘› > (< ๐‘›|๐‘ฃ >

|๐‘ฃ > = 1 >< 1 + 2 >< 2 +โ‹ฏ ๐‘› >< ๐‘› |๐‘ฃ >

โ€ข As in ordinary vector space, the coefficients ๐‘๐‘– are โ€œhow muchโ€ of each basis vector is

in the state vector |๐‘ฃ >, which is given by the inner product (or the projection of the

state vector onto each basis vector);

โ€ข The left-hand side of the last equation is equal to the right-hand side if

1 = 1 >< 1 + 2 >< 2 +โ‹ฏ+ ๐‘› >< ๐‘› =

๐‘–=1

๐‘›

|๐‘– >< ๐‘–|

6

Relationship of Dyad Operator to ๐Ÿ

โ€ข We know that the closure relationship for a basis set of vectors |๐‘– > for a vector space is

๐‘–

๐‘– >< ๐‘– = 1

โ€ข Any operator แˆ˜๐ด in this vector space can therefore be written as

แˆ˜๐ด = 1 แˆ˜๐ด1 =

๐‘–

๐‘—

|๐‘– >< ๐‘– แˆ˜๐ด ๐‘— >< ๐‘—| =

๐‘–๐‘—

< ๐‘– แˆ˜๐ด ๐‘— > |๐‘– >< ๐‘—| =

๐‘–๐‘—

๐ด๐‘–๐‘—|๐‘– >< ๐‘—|

โ€ข Note that < ๐‘–| แˆ˜๐ด|๐‘— = ๐ด๐‘–๐‘—;

โ€ข Suppose the basis set is the standard basis: |1 > =

10โ‹ฎ0

, |2 > =

01โ‹ฎ0

|3 > =

001โ‹ฎ

โ€ฆ |๐‘› > =

00โ‹ฎ1

;

โ€ข It follows then that แˆ˜๐ด = ฯƒ๐‘–๐‘— ๐ด๐‘–๐‘— ๐‘– >< ๐‘— =

๐ด11 ๐ด12 โ€ฆ

๐ด21 ๐ด22โ‹ฎ โ‹ฑ

is a matrix (QED).

7

Operators as Matrices

โ€ข Every quantum system has a Hamiltonian operator, ๐ป, representing the total system energy.

โ€ข Suppose the state space of the system is spanned by the basis set |๐‘ข๐‘— >, then

๐ป ๐‘ข๐‘— >= ๐œ†๐‘— ๐‘ข๐‘— >, with ๐œ†๐‘— being the eigenvalues;

โ€ข We can therefore write

โ€ข

๐ป = 1๐ป1 = ฯƒ๐‘— |๐‘ข๐‘— >< ๐‘ข๐‘—| ๐ป ฯƒ๐‘˜ |๐‘ข๐‘˜ >< ๐‘ข๐‘˜|

= ฯƒ๐‘—๐‘˜ ๐‘ข๐‘— >< ๐‘ข๐‘— ๐‘ข๐‘˜ > ๐œ†๐‘˜ < ๐‘ข๐‘˜|

= ฯƒ๐‘—๐‘˜ |๐‘ข๐‘— > ๐›ฟ๐‘—๐‘˜๐œ†๐‘˜ < ๐‘ข๐‘˜|

โ€ข The last equation tells us that ๐ป = ฯƒ๐‘˜ ๐œ†๐‘˜|๐‘ข๐‘˜ >< ๐‘ข๐‘˜|, which is a matrix as we saw previously.

โ€ข Hence ๐ป =๐œ†1 0 โ€ฆ

0 ๐œ†2โ‹ฎ โ‹ฑ

; apparently an operator is diagonal in its own eigen basis.

8

Example of a Special Operator: the Hamiltonian

โ€ข Given the state vector |๐œ“ > = ฯƒ๐‘› ๐‘๐‘›|๐œ‘๐‘› >, where ๐œ‘๐‘› are basis vectors, one can use the

inner product to determine the length of the state vector state|๐œ“ > , thus

< ๐œ“|๐œ“ > = ฯƒ๐‘šฯƒ๐‘› ๐‘๐‘šโˆ— ๐‘๐‘› < ๐œ‘๐‘š|๐œ‘๐‘› >= ฯƒ๐‘› ๐‘๐‘›

2;

โ€ข The length of the state vector is therefore ๐œ“ = < ๐œ“|๐œ“ >;

โ€ข For two state vectors |๐‘ˆ > = ฯƒ๐‘š ๐‘Ž๐‘š|๐‘ข๐‘š > and |๐‘‰ > = ฯƒ๐‘› ๐‘๐‘›|๐‘ฃ๐‘› >, the inner product

is

< ๐‘ˆ|๐‘‰ > =

๐‘š

๐‘›

๐‘Ž๐‘šโˆ— ๐‘๐‘› < ๐‘ข๐‘š|๐‘ฃ๐‘› > =

๐‘›

๐‘Ž๐‘›โˆ—๐‘๐‘›

9

Inner Product and the Length of a Vector

Linear operators

โ€ข A linear operator ๐’ช can transform vectors (states) in the following manner

๐’ช ๐›ผ ๐œ“ > +๐›ฝ ๐œ‘ > = ๐›ผ ๐’ช ๐œ“ > +๐›ฝ ๐’ช ๐œ‘ > Eqn. (3.3);

โ€ข The expression above is simply following ordinary rules of linear algebra (for addition,

multiplication, and distributivity);

โ€ข Note that |๐œ“ > and |๐œ‘ > are โ€œstateโ€ vectors and ๐›ผ and ๐›ฝ are complex (scalars);

โ€ข Remember that the operator ๐’ช is simply a matrix that transforms one vector to another as

we discussed before.

10

Average (Expectation) Value

โ€ข Given an operator ๐ด and the state ๐œ‘ that is a linear combination of a set of basis vectors,

๐‘ข๐‘–, we can write

|๐œ‘ > =

๐‘1๐‘2โ‹ฎ๐‘๐‘›

โŸน |๐œ‘ >= ๐‘1|๐‘ข1 > +๐‘2|๐‘ข2 > +โ‹ฏ+ ๐‘๐‘›|๐‘ข๐‘› > Eqn. (3.4);

โ€ข We can compute the average (expectation) result of operating on the state as

๐ด = ๐œ‘ ๐ด ๐œ‘ = ฯƒ๐‘–ฯƒ๐‘— ๐‘๐‘–โˆ—๐‘๐‘— < ๐‘ข๐‘– ๐ด ๐‘ข๐‘— >;

โ€ข Define < ๐‘ข๐‘– แˆ˜๐ด ๐‘ข๐‘— >โ‰ก ๐‘Ž๐‘–๐‘— as matrix elements; since we must have ๐‘– = ๐‘—

แˆ˜๐ด = ๐œ‘ ๐ด ๐œ‘ =

๐‘–

๐‘๐‘–โˆ—๐‘Ž๐‘–๐‘–๐‘๐‘— =

๐‘–

๐‘Ž๐‘– ๐‘๐‘–2 =

๐‘–

๐‘Ž๐‘–๐‘ƒ๐‘– Eqn. (3.5).

11

Matrix Elementsโ€ข For the state vector |๐œ‘ >, which we said could be written as a linear combination of

basis vectors in a Hilbert space,

|๐œ‘ >= ๐‘1|๐‘ข1 > +๐‘2|๐‘ข2 > +โ‹ฏ+ ๐‘๐‘›|๐‘ข๐‘›> Eqn. (3.6),

โ€ข We can perform the operation แˆ˜๐ด|๐œ‘ >, to get another state vector; the inner product of

this resulting vector with another basis vector |๐‘ข๐‘— > is given by

< ๐‘ข๐‘—| แˆ˜๐ด| ฯƒ๐‘˜ ๐‘๐‘˜|๐‘ข๐‘˜ >= ฯƒ๐‘˜ < ๐‘ข๐‘— แˆ˜๐ด ๐‘ข๐‘˜ > ๐‘๐‘˜ Eqn. (3.7);

โ€ข The expression< ๐‘ข๐‘— แˆ˜๐ด ๐‘ข๐‘˜ >= ๐‘Ž๐‘—๐‘˜is a number called the matrix element that expresses

the coupling of state |๐‘ข๐‘˜ > to state |๐‘ข๐‘— >; (see previous slide on expectation);

โ€ข When ๐‘— = ๐‘˜, then < ๐‘ข๐‘— แˆ˜๐ด ๐‘ข๐‘˜ >= แˆ˜๐ด is just the expectation value of the operator แˆ˜๐ด.

12

Hermitian Operators โ€ข A Hermitian conjugate of an operator ๐ด is obtained by complex conjugating and then

taking the transpose of the operator

๐ดโ€  = ๐ดโˆ— ๐‘‡;

โ€ข Some properties of Hermitian conjugates

๐ด๐ต โ€  = ๐ตโ€ ๐ดโ€ 

|๐œ“ > โ€  = < ๐œ“|

๐ด|๐œ“ > โ€  = < ๐œ“|๐ดโ€ 

๐ด๐ต|๐œ“ > โ€  = < ๐œ“|๐ตโ€ ๐ดโ€ 

๐›ผ๐ด โ€  = ๐›ผโˆ—๐ดโ€ 

โ€ข An operator is Hermitian if ๐ด = ๐ดโ€ ; this is the complex analog of the symmetric matrix;

โ€ข The eigenvalues of a Hermitian operator are always real.

13

Unitary Operators

โ€ข Recall that we defined an inverse of an operator (matrix) ๐ด through ๐ด๐ดโˆ’1 = ๐ผ, where ๐ผis the identity matrix;

โ€ข An operator ๐ด is unitary if its adjoint (transpose) is equal to its inverse: ๐ดโ€  = ๐ดโˆ’1;

โ€ข Unitary operators are usually denoted by the symbol ๐‘ˆ; from the definition above we

get

๐‘ˆ๐‘ˆโ€  = ๐‘ˆโ€ ๐‘ˆ = ๐ผ Eqn. (3.8);

โ€ข An operator ๐ด is normal if ๐ด๐ดโ€  = ๐ดโ€ ๐ด Eqn. (3.9);

โ€ข Hermitian and unitary operators are normal.

14

Trace of an Operator

โ€ข Given an operator ๐ด as the matrix ๐ด =๐‘Ž11 ๐‘Ž12๐‘Ž21 ๐‘Ž22

,

we define the trace as the sum of the diagonal elements, ๐‘‡๐‘Ÿ ๐ด = ๐‘Ž11 + ๐‘Ž22;

โ€ข For a general operator ๐ด and a basis vectors ๐‘ข๐‘–, we can write

๐‘‡๐‘Ÿ ๐ด = ฯƒ๐‘– < ๐‘ข๐‘– ๐ด ๐‘ข๐‘– > = ฯƒ๐‘– ๐‘Ž๐‘–๐‘– Eqn. (3.10);

Some properties of the trace:

โ€ข Trace is cyclic, i.e., ๐‘‡๐‘Ÿ ๐ด๐ต๐ถ = ๐‘‡๐‘Ÿ ๐ถ๐ด๐ต = ๐‘‡๐‘Ÿ ๐ต๐ถ๐ด ;

โ€ข Trace is independent of basis vectors, ๐‘‡๐‘Ÿ ๐ด = ฯƒ๐‘– < ๐‘ข๐‘– ๐ด ๐‘ข๐‘– >= ฯƒ๐‘– < ๐‘ฃ๐‘– ๐ด ๐‘ฃ๐‘– >;

โ€ข If operator ๐ด has eigenvalues ๐œ†๐‘– , then ๐‘‡๐‘Ÿ ๐ด = ฯƒ๐‘– ๐œ†๐‘– ;

โ€ข Trace is linear, meaning that ๐‘‡๐‘Ÿ ๐›ผ๐ด = ๐›ผ๐‘‡๐‘Ÿ ๐ด ; and ๐‘‡๐‘Ÿ ๐ด + ๐ต = ๐‘‡๐‘Ÿ ๐ด + ๐‘‡๐‘Ÿ ๐ต ;

15

Projection Operators

โ€ข We defined earlier that the outer product of two vectors, |๐œ“ > and |๐œ‘ > , is an operator,

๐ด (matrix),

๐œ“ >< ๐œ‘ = ๐ด Eqn. (3.11);

โ€ข When the outer product is between a normalized vector with itself, for example, |๐œ’ >and |๐œ’ >, we get a special operator called the projection operator,

๐‘ƒ = |๐œ’ >< ๐œ’| Eqn. (3.12);

โ€ข The projection operator in the example above projects any vector it operates on to the

direction of |๐œ’ >;

16

Properties of Projection Operators

โ€ข For any normalized vector, |๐‘ข1 >, we have < ๐‘ข1|๐‘ข1 >= 1 โŸน ๐‘ƒ = |๐‘ข1 >< ๐‘ข1|;

โ€ข ๐‘ƒโ€  = ๐‘ข1 >< ๐‘ข1 = ๐‘ƒ;

โ€ข ๐‘ƒ is Hermitian since ๐‘ƒ|๐‘ข1 >= ๐‘ข1 >< ๐‘ข1 ๐‘ข1 >= |๐‘ข1 >;

โ€ข ๐‘ƒ2 = ๐‘ƒ since we can show that:

โ€ข ๐‘ƒ2 = ๐‘ƒ ๐‘ข1 >< ๐‘ข1 = ๐‘ข1 >< ๐‘ข1 ๐‘ข1 >< ๐‘ข1| = ๐‘ข1 >< ๐‘ข1 = ๐‘ƒ;

โ€ข The identity ๐ผ is a projection operator: ๐ผโ€  = ๐ผ, ๐ผ2 = ๐ผ;

โ€ข For ๐œ“ >= ฯƒ๐‘– ๐‘๐‘–๐‘ข๐‘– โŸนฯƒ๐‘– ๐‘ƒ๐‘– ๐œ“ >= ฯƒ๐‘– ๐‘ข๐‘– >< ๐‘ข๐‘– ๐œ“ >= ฯƒ๐‘– ๐‘๐‘–|๐‘ข๐‘– >= |๐œ“ >;

โ€ข If ๐œ†๐‘– are eigenvalues of ๐ด with eigenvectors, |๐‘Ž๐‘– >, then ๐ด ๐‘Ž๐‘– >= ๐œ†๐‘– ๐‘Ž๐‘– >;we can

therefore write the operator ๐ด = ฯƒ๐‘–๐ด ๐‘Ž๐‘– >< ๐‘Ž๐‘– = ฯƒ๐‘– ๐œ†๐‘–|๐‘Ž๐‘– >< ๐‘Ž๐‘–|, where we have

used the spectral decomposition theorem discussed earlier;

17

Measurement โ€ข Measurement is an important concept in quantum mechanics and is best understood through the

projection operator, ๐‘ƒ;

โ€ข Assume a quantum mechanical system is initially in the state described by the vector |ฮจ >;

โ€ข A measurement of the quantity ๐’œ for the system is represented by the operator แˆ˜๐ด whose

eigenvectors are given by

แˆ˜๐ด ๐œ“๐‘– >= ๐œ†๐‘– ๐œ“๐‘– > Eqn. (3.13);

โ€ข After a measurement, the system is projected onto the direction of the eigenvector |๐œ“๐‘– >,

๐‘ƒ๐‘– ฮจ >= ๐œ“๐‘– >< ๐œ“๐‘– ฮจ >=< ๐œ“๐‘– ฮจ > |๐œ“๐‘– > Eqn.( 3.14);

โ€ข The probability of the outcome of the measurement is given by < ๐œ“๐‘–|ฮจ > 2

18

โ€ข Imagine a quantum system is in state |๐œ‘ > = ฯƒ๐‘– ๐‘๐‘–|๐‘ข๐‘– > . If a measurement of an observable ๐’ช associated

with the system is made, what is the result of the measurement?

โ€ข An observable ๐’ช is represented by an (Hermitian) operator ๐’ช; therefore, a measurement of the system

could result in any one of the eigenvalues of the system, given by

๐’ช ๐‘ข๐‘– >= ๐œ†๐‘– ๐‘ข๐‘– >;

The question of interest is: which one? We need to compute the probability. Since the sum of all probabilities

of measuring any one of the eigenvalues is 1, we can write

1 = < ๐œ“ ๐œ“ > = < ๐œ“ 1 ๐œ“ > = < ๐œ“

๐‘–

๐‘ข๐‘– >< ๐‘ข๐‘– ๐œ“ > =

๐‘–

< ๐œ“ ๐‘ข๐‘– >< ๐‘ข๐‘– ๐œ“ >

โ€ข The last expression simply says that ฯƒ๐‘– < ๐œ“ ๐‘ข๐‘– >< ๐‘ข๐‘– ๐œ“ > = ฯƒ๐‘– ๐‘๐‘–2 = 1;

โ€ข The probability of the measurement yielding one of the ๐œ†๐‘– eigenvalues is therefore

๐‘ƒ๐‘– = < ๐‘ข๐‘–|๐œ“ > 2 = ๐‘๐‘–2.

19

Another Perspective on Quantum Measurement

Generalization of the Gram-Schmidt Process for Hilbert space

โ€ข The Gram-Schmidt orthogonalization process for 3๐ท space we discussed previously can

be generalized to ๐‘›๐ท space following the same steps as before;

โ€ข For a vector space ๐‘ˆ spanned by the basis vectors ๐‘ข1, ๐‘ข2, โ€ฆ ๐‘ข๐‘› with a defined inner

product, we can calculate an orthogonal basis ๐‘ฃ๐‘– by following the (algorithm) steps:

1. |๐‘ฃ1 >= |๐‘ข1 > Eqn. (3.15);

2. |๐‘ฃ2 > = ๐‘ข2 > โˆ’<๐‘ฃ1|๐‘ข2>

<๐‘ฃ1|๐‘ฃ1>๐‘ข1 > Eqn. (3.16);

โ‹ฎ

๐‘›. ๐‘ฃ๐‘› > = ๐‘ข๐‘› > โˆ’<๐‘ฃ1|๐‘ข๐‘›>

<๐‘ข1|๐‘ฃ1>๐‘ฃ1 > โˆ’

<๐‘ฃ2|๐‘ข๐‘›>

<๐‘ฃ2|๐‘ฃ2>๐‘ฃ2 > โˆ’โ‹ฏโˆ’

<๐‘ฃ๐‘›โˆ’1|๐‘ข๐‘›>

<๐‘ฃ๐‘›โˆ’1|๐‘ฃ๐‘›โˆ’1>| ๐‘ฃ๐‘›โˆ’1 > (3.17).

20

Generalized Vectors and Matrices: Tensors

โ€ข We can combine two vectors ๐‘ข in โ„๐‘š and ๐‘ฃ in โ„๐‘› to create another vector in the

combined โ„๐‘š๐‘› space by the operation of multiplication; the new vector is called a

tensor product;

โ€ข Supposed ๐‘ข =12

and ๐‘ฃ =345

โŸน ๐‘ขโจ‚๐‘ฃ =

1.31.41.52.32.42.5

=

3456810

;

โ€ข We have produced a new vector ๐‘ขโจ‚๐‘ฃ in ๐‘ˆโจ‚๐‘‰ in the space โ„2โจ‚โ„3;

โ€ข NB: only the tensor (Kronecker) product is of interest to us at this time.

21

Basis Vectors for Tensor Product Space

โ€ข Any vector in ๐‘‰โจ‚๐‘ˆ is a weighted sum of basis vectors;

note that ๐‘‰ is in โ„๐‘š and ๐‘ˆ is in โ„๐‘›;

โ€ข The basis for ๐‘‰โจ‚๐‘ˆ is the set of all vectors of the form

๐‘ฃ๐‘–โจ‚๐‘ข๐‘— for ๐‘– = 1 to ๐‘š and ๐‘— = 1 to ๐‘›;

โ€ข The basis set for ๐‘‰โจ‚๐‘ˆ is illustrated on the figure on the

right with 6 basis vectors;

โ€ข Observe that ๐‘ฃโจ‚๐‘ข is the outer product of ๐‘ฃ and ๐‘ข:

๐‘ฃโจ‚๐‘ข = ๐‘ฃ๐‘ข๐‘‡;

โ€ข We now learn apparently that any ๐‘š ร— ๐‘› matrix can be

reshaped into an ๐‘š๐‘› ร— 1 vector and vice versa!

22

Tensors and Matrix Reshaping

โ€ข Suppose we have the vectors ๐‘ฃ =123

and ๐‘ข =45, we can form the tensor product

๐‘ฃโจ‚๐‘ข = ๐‘ฃ๐‘ข๐‘‡ =123

4 5 =1.4 1.52.4 2.53.4 3.5

=4 58 1012 15

;

โ€ข We can reshape the matrix into a vector or the vector into a matrix as below

4 58 1012 15

โŸบ

458101215

.

23

Tensors and Composite States

โ€ข Suppose we have the two basis vectors: |0 > in ๐ป1and |1 > in ๐ป2, where ๐ป1 and ๐ป2are the respective Hilbert spaces. What is the basis for the combined Hilbert space

๐ป = ๐ป1โจ‚๐ป2?

โ€ข Using what we have learned so far, the basis for the combined Hilbert space can be

written as all the possible products of the basis states for ๐ป1 and ๐ป2, thus

|0 > โจ‚ |0 > = |00 >, |0 > โจ‚ |1 > = |01 >, |1 > โจ‚|0 > = |10 >, |1 > โจ‚|1 > = |11 >;

โ€ข In a more general example, given the state ๐œ“ = ๐‘Ž1 ๐‘ฅ > +๐‘Ž2 ๐‘ฆ > with basis vectors

|๐‘ฅ > and |๐‘ฆ > in ๐ป1 and the state ๐œ‘ > = ๐‘1 ๐‘ข > +๐‘2|๐‘ฃ > with the basis vectors |๐‘ข >and |๐‘ฃ > in ๐ป2 one can create the combined Hilbert space ๐ป1โจ‚๐ป2 where the new state

is described by

|๐œ’ > = ๐œ“โจ‚๐œ‘ = ๐‘Ž1 ๐‘ฅ > +๐‘Ž2 ๐‘ฆ > โจ‚ ๐‘1 ๐‘ข > +๐‘2 ๐‘ฃ >

โŸน ๐œ’ >= ๐‘Ž1๐‘1 ๐‘ฅ > โจ‚ ๐‘ข > +๐‘Ž1๐‘2 ๐‘ฅ > โจ‚ ๐‘ฃ > +๐‘Ž2๐‘1 ๐‘ฆ > โจ‚ ๐‘ข > +๐‘Ž2๐‘2 ๐‘ฆ > โจ‚๐‘ฃ >.

24

Tensors and Process-State Duality

โ€ข We learned that ๐‘ฃโจ‚๐‘ข can also be a matrix, which is a mathematical process (operator)

representing a linear transformation, but we also found that ๐‘ฃโจ‚๐‘ข is an abstract vector,

which represents a state of a system;

โ€ข Evidently matrices encode processes and vectors encode states;

โ€ข We can therefore view the tensor product ๐‘‰โจ‚๐‘ˆ as either a process or a state simply by

reshaping the numbers as a rectangle or a list;

โ€ข By generalizing the idea of processes to higher dimensional arrays, we get tensors that

can be constructed to create tensor networks;

25

Graphical Perspective of a Tensor Productโ€ข We previously created a tensor ๐‘ขโจ‚๐‘ฃ out of the two vectors ๐‘ข and ๐‘ฃ as illustrated below;

โ€ข Another way to look at this process is by examining the interactions between the โ€œnodesโ€ that

perform the multiplication or computation of the product; this perspective leads to the graphical

illustration alongside the vector tensor multiplication;

โ€ข The graphical perspective is reminiscent of artificial neural network interconnections; in fact,

this perspective illuminates a computational scheme known as โ€œtensor flowโ€.

26

Operators and Tensors

โ€ข Given and operator ๐ด that acts on |๐œ“ > in ๐ป1 and an operator ๐ต that acts on |๐œ‘ > in ๐ป2,

we can create an operator ๐ดโจ‚๐ต that acts on the vectors in the combined vector space

๐ป1โจ‚๐ป2, thus

(๐ดโจ‚๐ต)( ๐œ“ > โจ‚ ๐œ‘ >) = ๐ด ๐œ“ > โจ‚๐ต ๐œ‘ >;

โ€ข If the two operators ๐ด and ๐ต are given as the matrices

๐ด =๐‘Ž ๐‘๐‘ ๐‘‘

and ๐ต =๐‘’ ๐‘“๐‘” โ„Ž

, we calculate the tensor product as

๐ดโจ‚๐ต =๐‘Ž๐ต ๐‘๐ต๐‘๐ต ๐‘‘๐ต

=

๐‘Ž๐‘’ ๐‘Ž๐‘“ ๐‘๐‘’ ๐‘๐‘“๐‘Ž๐‘” ๐‘Žโ„Ž ๐‘๐‘” ๐‘โ„Ž๐‘๐‘’ ๐‘๐‘“ ๐‘‘๐‘’ ๐‘‘๐‘“๐‘๐‘” ๐‘โ„Ž ๐‘‘๐‘” ๐‘‘โ„Ž

Eqn. (3.18).

27

Describing Quantum Particle Interactions with Tensors

โ€ข Quantum particles, such as atoms, ions, electrons, and photons, can be manipulated to

perform some computing; the catch is that we must describe these particles interact with one

another;

โ€ข We may need to know what these particles are doing, what their status (state) is, in how

many ways they are interacting, or what the probability of their being in certain states is; the

state of a quantum particle can be described by a complex unit vector in ๐‚๐‘›;

โ€ข The combined state of two particles, one described by a basis vector ๐‘ฃ1, in ๐‚๐‘›and the other

by ๐‘ฃ2 in ๐‚๐‘› is a tensor product of their individual Hilbert spaces; thus

๐‚๐‘› โŠ—๐‚๐‘›;

โ€ข As we discussed previously, the resulting basis vectors of the combined Hilbert space can

be thought of as a matrix, called the density matrix, ๐œŒ;

โ€ข For N particles, density matrix ๐œŒ is on ๐ถ๐‘›โจ‚๐ถ๐‘›โจ‚๐ถ๐‘›โ€ฆโจ‚๐ถ๐‘› = ๐ถ๐‘› ๐‘ Eqn. (3.19).

28

SVD of a Complex Matrix : Schmidt Decomposition

โ€ข When matrix ๐‘€ is complex, as in quantum mechanical operators, then ๐‘€ = ๐‘ˆฮ›๐‘‰โ€ ;

โ€ข If we write the columns of ๐‘ˆ as ๐‘ข๐‘– and those of ๐‘‰ as ๐‘ฃ๐‘–, then

๐‘€ =. | .. ๐‘ข๐‘– .. | .

โ‹ฑ๐œŽ๐‘–

โ‹ฑ

โˆ’ โˆ’ ๐‘ฃ๐‘– โˆ’ โˆ’ = ๐œŽ1๐‘ข1๐‘ฃ1โ€  + ๐œŽ2๐‘ข2๐‘ฃ2

โ€  +โ‹ฏ+ ๐œŽ๐‘Ÿ๐‘ข๐‘Ÿ๐‘ฃ๐‘Ÿโ€ 

Eqn. (3.20);

โ€ข Recall that ๐‘ข๐‘ฃ๐‘‡ = ๐‘ขโจ‚๐‘ฃ = |๐‘ข >< ๐‘ฃ|; because of this, (3.20) above can be written as

(3.21) below;

โ€ข Matrix ๐‘€ can be written as state a |๐œ“ > = ๐œŽ1๐‘ข1โจ‚๐‘ฃ1 + ๐œŽ2๐‘ข2โจ‚๐‘ฃ2 +โ‹ฏ+ ๐œŽ๐‘Ÿ๐‘ข๐‘Ÿโจ‚๐‘ฃ๐‘ŸโŸน |๐œ“ >= ฯƒ๐‘–=1

๐‘Ÿ ๐œŽ๐‘–๐‘ข๐‘–โจ‚๐‘ฃ๐‘– Eqn. (3.21).

29

SVD of a Complex Matrix and Quantum Entanglement

โ€ข When we decompose a complex matrix ๐‘€ we can write it as state vector

|๐œ“ > = ฯƒ๐‘–=1๐‘Ÿ ๐œŽ๐‘–๐‘ข๐‘–โจ‚๐‘ฃ๐‘– Eqn. (3.21);

โ€ข The singular values ๐œŽ๐‘– are renamed the Schmidt coefficients, and the rank of the matrix

๐‘€ (which is the number of non-zero singular values) ๐‘Ÿ, is renamed the Schmidt rank;

โ€ข Quantum state vector |๐œ“ > now represents entanglement when the Schmidt rank ๐‘Ÿ > 1;however, the system is not entangled when the rank is not larger than 1;

โ€ข Quantum entanglement is a resource in quantum computing and communication.

30

โ€ข Reviewed complex linear algebra relevant for quantum mechanics (used in quantum

computing and communication applications);

โ€“ Complex vectors

โ€“ Complex matrices

โ€ข Introduced the notion of tensor product

โ€“ A way to interconvert between vectors and matrices and vice versa

โ€“ Briefly introduced (mathematically) the idea of entanglement

31

Summary