Reducing Highway Construction Fatalities Through Improved ...

75
8484 Georgia Avenue Suite 1000 Silver Spring, MD 20910 phone: 301.578.8500 fax: 301.578.8572 www.cpwr.com www.elcosh.org Reducing Highway Construction Fatalities Through Improved Adoption of Safety Technologies Chinweike Eseonu John Gambatese Chukwuma Nnaji Oregon State University March 2018

Transcript of Reducing Highway Construction Fatalities Through Improved ...

8484 Georgia Avenue

Suite 1000

Silver Spring, MD 20910

phone: 301.578.8500

fax: 301.578.8572

w w w. c p w r. c o m • w w w. e l c o s h . o rg

Reducing Highway Construction Fatalities Through Improved Adoption of Safety Technologies

Chinweike EseonuJohn GambateseChukwuma Nnaji

Oregon State University

March 2018

©2018, CPWR-The Center for Construction Research and Training. All rights reserved. CPWR is the research and training arm of NABTU. Production of this document was supported by cooperative agreement OH 009762 from the National Institute for Occupational Safety and Health (NIOSH). The contents are solely the responsibility of the authors and do not necessarily represent the official views of NIOSH.

REDUCINGHIGHWAYCONSTRUCTIONFATALITIES

THROUGHIMPROVEDADOPTIONOFSAFETY

TECHNOLOGIESWorkZoneIntrusionAlertTechnology

Submitted by: Chinweike Eseonu, Assistant Professor, School of Mechanical, Industrial

and Manufacturing Engineering John Gambatese, Professor, School of Civil and Construction

Engineering, Oregon State University Chukwuma Nnaji, PhD Candidate, School of Civil and Construction

Engineering, Oregon State University

Submittedto:TheCenterforConstructionResearchandTraining(CPWR)

(CPWRSmallStudyNo.17‐4‐PS)

i | P a g e   

TableofContents1.  Abstract ............................................................................................................................................... 1 

2.  KeyFindings ........................................................................................................................................ 2 

3.  Introduction ........................................................................................................................................ 3 

4.  StudyGoalandObjectives .................................................................................................................. 5 

5.  Methods ............................................................................................................................................... 5 

6.  Accomplishmentsandresults,includingtheirrelevanceandpracticalapplication ..................... 6 

7.  Changes/problemsthatresultedindeviationfromthemethods ................................................ 37 

8.  Listofpresentations/publications .................................................................................................. 38 

9.  Disseminationplan ........................................................................................................................... 38 

10.  Conclusions ................................................................................................................................... 38 

11.  FutureResearchOpportunities ................................................................................................... 39 

12.  References ..................................................................................................................................... 40 

13.  Appendix ....................................................................................................................................... 45 

1 | P a g e   

1. Abstract

Highwayconstructioniscommonlyassociatedwithhighratesofworkeraccidents.

Thesehighratesareoftenlinkedtotherequirementofworkincloseproximitytolive

trafficandheavydutyconstructionequipment.Existingtransportationresearchshows

thattechnologicalsolutions,likeWorkZoneIntrusionAlertTechnology(WZAIT)

improveworkzonesafety.However,feworganizationsinthehighwayconstruction

industryhaveadoptedthesesafetytechnologies.Industryactorsreportconcernsabout

technologyeffectiveness,costimplicationsadoptingnewtechnology,andlackof

technologyfeature‐synergy.Fewstudieshaveexploredstrategiesforimprovingwork

zonesafetytechnologyadoption,implementation,andeventualdiffusionacrossthe

highwayconstructionindustry.Tofillthisgapinresearchandpractice,thisstudy

attemptstodeveloptoolsandidentifyeffectiveprocessesthatcouldbeusedtoimprove

theadoptionofworkzonesafetytechnologiesusingworkzoneintrusiontechnologyas

acasestudy.

2 | P a g e   

2. KeyFindings

I. Technological,individual,organizational,andexternalfactorsdeterminethe

extenttowhichWZITadoptionissuccessfulandsustained.

II. WZIATfinancialbenefitsoutweighassociatedcostsifthetechnologiescanprevent

between12.6%and34%oftheintrusionaccidentsthatleadtoinjuriesand

fatalities.

III. Twenty‐onefactorsinfluenceWZIATadoption(Table4).Thesefactorsarelargely

technology‐relatedandwereidentifiedthroughliteraturereviewandinterviews

withsubjectmatterexpertsemployedatcontractorfirmsanddepartmentsof

transportation.

IV. Lackofsharedlanguage/meaning/criteriabetweenendusers(construction

companies)andtechnologymanufacturers/salespeople.Eachgroupprovided

differentsafetytechnologyfeatureimportanceratings.

V. LaborcostassociatedwithWZIATcontributesasignificantfractionoftotal

implementationcost.

VI. Themostimportanttechnology‐basedfactorswere

o workercomprehensionofwarningsignal,

o adequatecoveragedistance,and

o fewornofalsenegativeandfalsepositive.

VII. Easeofuseandsubjectivenormarestrongpredictorsofaworker’sintentionto

acceptandimplementaworkzoneintrusionalerttechnology

3 | P a g e   

3. Introduction

WorkZoneInjuriesandFatalities

TheconstructionindustryhasthehighestworkerfatalitylevelsintheUnitedStates.Within

construction,highwayconstructionaccountsfor16%ofthesefatalities(BLS2017).On

average,thistranslatesto121annualworkzonefatalitiesbetween2005and2014,with

onefatalityevery15hoursandoneworkzoneincident‐relatedinjuryoccurringevery16

minutes(FHWA2017).Factorssuchasdriverdistraction,weather,androadway

conditionshavebeenidentifiedasmajorcausesofworkzoneaccidents.Thevolumeof

highwayconstructionandmaintenanceprojectsisexpectedtoincreaseaseconomic

growthspurspublicandprivateinvestment.Thismeanstherearemoreworkzonesand

increasedprobabilityofharmtoworkersandmotorists.

Figure1.Basichighwayconstructionworkzonelayout(AdaptedfromITSI,2011)

Forthisreport,aworkzoneaccidentisanyincidentthatoccurswithinaworkzone.This

includesworkzoneapproachandexit.Existingresearchshowsthatmostcrashesoccur

withinthe“activityarea”(GarberandZhao,2002),whichiswheremostconstruction

workersarelocated.Activityareasinclude“work”,“traffic”,and“buffer”zones.Vehicle

intrusionpastthechannelizingdevices(pictureinsertsinFigure1)isaprimarycauseof

workerfatalities.

4 | P a g e   

Figure2showsthatworker“runover”byintrudingvehiclesorconstructionequipment

istheprimarycauseofworkzonefatalities.Othercausesincludecollisionbetween

vehiclesandmobileequipment,andincidentsinwhichworkersarecaughtbetweenor

struckbyconstructionequipment.

Figure2.Distributionbycauseoffatalitybetween2005and2014(n=1209)

(AdaptedfromFHWA2017)

HowdoesTechnologyaffectWorkZoneSafety?

Recently,theFederalHighwayAdministration(FHWA)andotheragenciesimpactedby

workzoneinjuriesandfatalitiesintroducedseveralprogramstohelpcurbworkzone

fatalityrates.ExamplesofsuchprogramsaretheNationalWorkZoneAwarenessWeekand

TurningPoint.Whilepost‐programassessmentsindicateworkzonefatalitieshave

decreased,annualmotorist‐induceddeathshaveremainedrelativelystagnant(Bello2009;

Sant2014).Inresponse,regulatory,industry,andotheragenciesacrosstheUnitedStates

haveencouragedhighwayconstructionstakeholderstoadoptworkzonesafety.This

approachisbolsteredbyresearchthatshowssynergybetweentechnologyuseand

improvedworkersafety.

5 | P a g e   

Inpreparingthisreport,theOregonStateUniversityteamundertookadetailedliterature

reviewofover132articles.Therewasamarkedincrease–byabout700%–inworkzone

safetytechnology(WZST)researchbetween2002and2012.Therehasalsobeenan

increaseinWZSTproduction.Asaresult,thereisaneedtoassesswhyadoptionis

significantlylowerthanWZSTresearchanddevelopment.

ExistingresearchhaslookedatWZSTperformanceasameansofassessingtheadoption

challenge.Thisincludesworktoassesseffectivenessofproximitywarningsystems(Parket

al.2015),truck‐mountedattenuators(UllmanandIragavarapu2014),andportable

changeablemessagesigns(GambateseandZhang2016).However,otherstudiesshowthat

WZSTadoptionispersistentlylowbecause1)itisdifficulttoquantifytheholisticbenefits

ofcertaintechnologiesusingadirectmeasureofeffectiveness(DMOE),2)returnon

investment(ROI)andbenefit‐costanalyses(BCA)areoftennegativeorinconclusive,and3)

thereareconflictingopinionsaboutWZSTusefulnessandeaseofuse(Fyhrie2016;Edera

etal.2013;Huebschmanetal.2003).WhileresponsestochallengeslikeROIarefocusedon

management,DMOEandopinionsabouteaseofuseandusefulnesscallfor

employee/workerfocusedstrategies.ThefollowingsectionisfocusedonaWZST–Work

Zoneintrusionalerttechnology(WZIAT)–thathasnotsuccessfullydiffusedacrossthe

highwayconstructionindustry.

WorkZoneIntrusionAlertTechnology

Workzoneintrusionalerttechnologies(WZIATs)arealert‐producingdevicesusedtowarn

workerswithinanactivityareaofanimpendingaccidentcausedbyavehicleintrudinginto

theworkzone.Theobjectiveistosecureadditionaltimeforworkerstoreactwhenan

intrusionoccurs.Firstintroducedtoworkzonesin1995,WZIATwastheproductofa

StrategicHighwayResearchProgram(SHRP)sponsoredstudy(AgentandHibbs1996).

SincetheSHRPprogram,severalWZIATshavebeendeveloped,evaluatedbydepartments

oftransportation(DOTs),andimplementedinworkzonesonanumberofhighway

projects.

6 | P a g e   

TherearecurrentlyfourcommerciallyavailableWZIATs.Table1isasummaryofthese

WZIATs,includingattributesextractedfrompastresearch(Wangetal.2011;ELWC2015;

HighwayResourceSolution2015;Gambateseetal.2017;Marksetal.2017).

InadditiontotheWZIATslistedinTable1,OldcastleMaterialsrecentlyintroducedanalert

technologynamedAdvancedWarningandRiskEvasion(AWARE).Thesystemrelieson

positionandorientationsensorsandradarstoconstantlymonitortheworkzone.While

initiallyintendedtoalertdriversoftheirintrusionintoaworkzone,thesystemisalso

beneficialforalertingworkersofintrudingvehicles.AWAREisundergoingtestingandis

notcurrentcommerciallyavailable(http://artisllc.com/highway‐safety/;

http://theasphaltpro.com/oldcastle‐aware‐system/).

DespitetheintroductionofWZIATover20yearsago,therehasbeenlimitedapplicationof

WZIATinworkzones(Wangetal.2011;Gambateseetal.2017).Thisphenomenoncould

beattributedtoseveralfactorssuchasreportedinaccuratealarms,difficultytoinstalland

retrievedevices,lackofevaluationprotocol,non‐existingbusinesscaseanalysis,andlow

productawareness(Fyhrie2016;Wangetal.2011).

4 | P a g e   

Table1:Commercially‐AvailableWorkZoneIntrusionAlertTechnologies

Intellicone Intellistrobe SonoBlaster WorkerAlertSystem

(WAS)

Manufacturer HighwayResourceSolution IntelliStrobeSafety

Systems

TranspoIndustries AstroOptics,LLC

Website www.intellicone.co.uk www.intellistrobe.com www.transpo.com www.astrooptics.com

Accessories Lamps,motiondetector,and

portablesitealarm

Flagger‐W1‐AGand

RemoteControlRadio‐

FC401‐1

Singlealarmunit Pneumatichose,flashing

alarmlight,personal

vibratingandaudioalert

Alert

Mechanisms

Impact‐tilt,wirelesssensor

activatedalarmsystem

Pressuredtrigger

pneumatictubealarm

system

Impact‐tiltactivated

alarmsystem

Pressuredtrigger

pneumatictubealarm

system

Suggested

Application

Longerthanoneday,tapper

shorterthan1,500ft.

Alongtapper Onedayorshorter,tapper

shorterthan1,500ft.

Priceestimate $2,000each $25,000 $100each $600each

TypeofAlarm Audioandvisual Audioandvisual Audio Audio,visual,andhaptic

Soundlevel 75dB@50feet 90dB@50feet* 90dB@50feet 80dB@50feet

Deployment Installdeviceonchannelizer

alongtaperandworkzone

Placetubeatthe

beginningoftaper.

Attachdeviceto

channelizeralong

taper

Placetubeatthebeginning

oftaper.

5 | P a g e   

4. StudyGoalandObjectives

Theprimarygoalofthisstudyistoreduceworkzoneincident(injuryandfatality)

occurrenceandseveritybyidentifyingfactorsthatdriveworkzonesafetytechnology

adoptioninthehighwayconstructionindustry.Previousresearchshowsthattechnology

utilizationincreasesworkersafety,soitisexpectedthatproactivesteps,likeeffective

worker‐centricsafetytechnologyadoption,willreduceworkzoneincidentoccurrenceand

severity.Objectivesestablishedforthestudyinordertomeettheprimarystudygoal

include:

I. Investigatehowsafetytechnologyaffectsworkersandhighwayconstructionwork

zones;

II. Developandevaluateamodelforworkzonesafetytechnologyacceptance;and

III. DevelopproposedframeworksfordeterminingfinancialimplicationsofWZIAT

adoption,andstandardizedprotocolsforevaluatingWZST‐includingWZIAT.

5. Methods

Amixed‐methodsapproachinvolvingacombinationofqualitativeandquantitative

methodswasadoptedtoinvestigatetheresearchobjectives.Specifically,anextensive

reviewofextantliteratureonWZSTwasconductedtoidentifyandassesstheeffectiveness

ofthetechnologiescurrentlyusedtoprotectworkersinconstructionworkzones.In

additiontoidentifyingtheWZSTs,theliteraturereviewprovidedanopportunitytoidentify

potentialbarriersanddriversofadoptingWZSTaswellaskeytechnologyattributesthat

influencetechnologyacceptance.Aconcurrenttriangulationprocesswhichreliedona

cross‐sectionalsurveyof,andin‐depthinterviewswith,highwayconstructionstakeholders

wasutilizedtoprovideadditionalcontextualinformationonfactorsthatinfluencethe

acceptanceofWZSTs.Lastly,acasestudyapproachwasadoptedtoprovideobservational

datarequiredtodevelopbenefit‐costanalysis(BCA)andreturnoninvestment(ROI)for

workzoneintrusionalerttechnologies.

6 | P a g e   

6. Accomplishmentsandresults,includingtheirrelevanceand

practicalapplication

Toensurethattheresearchobjectivesweresufficientlymet,thefollowingresearch

questionsweredevelopedtoguidethestudy:

I. Whatarethemajorcausesofworkerfatalitiesandhowoftendotheyoccur?

II. WhatistheusefrequencyandperceivedeffectivenessofexistingWZIT?

III. Areend‐usersreceptivetotheadoptionofnewworkzonesafetytechnology

(WZIATandothertechnologies)?

IV. Whatisthecurrentprocess/protocolusedforadoptingworkzonesafety

technology(WZIATandothertechnologies)?

V. Whatfactorsimpacttheacceptance,use,anddiffusionoftechnologyinhighway

construction?

VI. Doessafetyclimateimpactsafetybehavior(decisiontoadoptatechnology)

VII. Towhatextentdoesend‐user(consumer)andsafetytechnologymanufacturer

WZSTexpectationsconverge?

VIII. DoesinvestmentinWZIATrepresentvalueformoneyforcontractorsandDOT’s?

Answerstotheresearchquestionsweredistributedacrossfiveprimarytaskswhichwere

successfullyexecutedbytheresearchers.Eachofthetasksandcorrespondingresultsare

providedbelow.

Task1:Investigatetheimpactofsafetytechnologyonworkzoneconstruction

workers

Assessinganddocumentingtheimpactofsafetytechnologiesusedinhighwayworkzones

wastheprimaryobjectiveofTask1.Inaddition,identifyingthemajorcausesofworker

fatalitiesinworkzonesandtheenablersandbarrierstoadoptionofworkzonesafety

technologywasconductedwithinthissection.Toachievetheseobjectives,theresearchers

reliedonasystematicreviewprocessusingaprovenreviewframework(Hongetal.2012;

YiandChan2014),aretrospectiveanalysisofworkerfatalitieswithinFACEdatabase,and

interviewresultsfromaprecedingstudy(Gambateseetal.2017).Intotal,132articleson

7 | P a g e   

workzonesafetytechnologyassessmentwereidentifiedthroughthesystematicreview

processinvolvingfourdatabases.

PublicationtrendsshowthatthenumberofstudiesfocusedonWZSTevaluationshas

increasedsteadilyoverthepast25years.Atthesametime,thenumberoffatalitiesinwork

zoneshasreducedprogressively.Althoughdifficulttoassert,thetrend,depictedinFigure

3,suggeststhepossiblepresenceofarelationshipbetweenthelevelofinterestand

adoptionofsafetytechnologiesandthereductionofworkerfatalities.

Figure3:NumberofWorkZoneFatalitiesandWZSTEvaluationStudies

Whilethetrendinevaluationstudiesisabettermetricformeasuringthelevelofinterestin

WZST(comparedtotheactualadoptionofsuchtechnologies),anindicationofinterestis

expectedtotranslatetoactualtechnologyadoption(Davisetal.1989).

8 | P a g e   

Thetechnologiesevaluatedinthearticlesreviewedprimarilyfellwithinthreecategories

basedontheobjectiveoftheWZSTasfollows:

I. Speedreductionsystems(SRS):Thesetechnologiesareusedtoreducethe

travelingspeedofmotoristsatadvancedwarningareas,transitionareas,buffer

areas,andworkareas.Thetechnologiescouldhavedirectorindirectphysical

impactonthetravelingvehicle.

II. Intrusionpreventionandwarningsystems(IPWS):Technologiessetupto

preventerrantdriversfromintrudingintoaworkzoneand/orwarnworkersof

imminentdangerduetoanintrusionintotheworkzone.

III. Workerdetectionsystems(WDS):Thesearetechnologiesimplementedinsidea

workzonetoalertworkersandequipmentoperatorsofanimminentcollision

betweenaworkerandequipment.

AsseeninFigure4,theWZSTSmostfrequentlyevaluatedwerechangeablemessage

systems(CMS),speedenforcementsystems(SE),lanemergesystems(LMS),andwarning

lights.Thesetechnologiesfallwithinthespeedreductionsystemscategory.

Figure4:NumberofEvaluationStudiesforeachWZST

9 | P a g e   

Overall,theliteraturereviewindicatesthatthereisagrowinginterestintheevaluation

anduseofWZSTs.Nevertheless,findingsfromthepresentstudyindicatevarying

evaluationapproachesareexecutedforsimilarWZSTs.Thelackofminimumevaluation

requirementsforWZSTscreatesanavalancheofmethodologies,whichmakesitinherently

difficulttocomparefindingsamongstsimilarstudies.

Next,aretrospectiveanalysisofworkzoneincidentswasconductedtoassessthe

usefulnessofWZIAT.AcomprehensiveassessmentofNIOSHFatalityAssessmentand

ControlEvaluation(FACE)Programreportswasconductedbytheresearchersto

determineifWZIATcouldhaveplayedasignificantroleinpreventingthereported

fatalities.Intotal,25highwayworkzonerelatedfatalitycaseswerereportedandevaluated

byNIOSHbetween1984and2007.Although80%ofthedocumentedfatalitieswere

primarilycausedbyworkersbeingstruckbyequipment,threefatalitieswereinducedby

intrudingvehicles.Table2summarizesfactsabouteachintrusionfatality.AsseeninTable

2,usingadditionalworkzonesafetydevicessuchasworkzoneintrusionalerttechnologies

couldhaveimprovedthesurvivalrateoftheworkerskilled.

Table2:SummaryofFACEReportsofHighwayWorkZoneFatalities

CauseofFatality FACERecommendationsPossiblyPreventedby

WZIAT?

Sleepingdriverstruck

maintenanceworkerin

workzone

Periodicallymonitorandevaluate

employeeconformancewithsafe

operatingprocedures;adopt

policiesthatrequireworkersto

workonthemediansideofthe

guardrail;educatethepublic

regardingworkzonesafetyissues

YES

InstallWZIATequipped

withaudioandvibratory

alertsapproximately

400feetupstreamofthe

worker

10 | P a g e   

Driverlostcontrolof

vehicleandveeredinto

theworkzonestrikinga

DOTworker

Considertheuseofsupplemental

trafficcontroldevices;consider

installingrumblestripsalongthe

roadwaypavementedgestowarn

motorists

YES

Equipworkerswith

personalalertsystems.

InstallWZIATacross

potentialentrypoints

aroundtheworkzone

Flaggerstruckby

secondarycontactfrom

trucktravelingat55

milesperhour

Considertheuseofadditional

warningsignsandtrafficcontrol

devices;provideandrequireuse

ofhand‐heldorotherportable

radiocommunicationsequipment

byflaggersatalltimes

YES

ImplementWZIATwith

speeddetectorand

personalalertsystems

withatleast600feet

transmissiondistance

Task2:DevelopframeworkforWZSTassessment,adoption,IntrusionTechnology

AcceptanceModel(ITAM),andWZSTevaluationprotocol

HighwayWorkZoneTechnologyAssessmentProcess

Giventheimportantrolesafetytechnologiesplayinkeepingworkerssafeinaworkzone,it

isessentialtocaptureinformationthatcouldhelpimprovetheadoption,implementation,

andacceptanceofusefultechnologies.DOTsplayacentralroleintheadoptionofWZST.In

somestates,DOTsincludecertaintechnologiesintothetrafficcontrolplantherebymaking

theuseofthosetechnologiesmandatoryforcontractors.Adecisionprocessmap(shownin

Figure5)detailingaworkzonesafetytechnologyacceptanceprocesswasdevelopedbased

ontheresearchers’experienceconductingevaluationstudiesonworkzonesafety

technology.Interestinadoptingaspecificworkzonesafetytechnologyisgenerally

instigatedbypeerDOTs,researchers,ormanufacturers.

11 | P a g e   

ReferringtoFigure5,tobeconsideredforevaluation,thesafetytechnologyhastobe

capturedintheDOTqualifiedproductlist(QPL).AQPLisalistofproductsandsuppliers

whoseproductsareapprovedtouseonprojectswithoutadditionaldocumentationand

testing.IfthetechnologyisamongtheitemsintheQPL,theDOTevaluatesinternalinterest

intheproduct.Ifadequateinterestisachieved,theRequestforProposal(RFP)scopeis

expandedtoincludeacategorythataddressesthetechnology.Subsequently,researchers

willbeencouragedtosubmitproposalsforevaluatingtheworkzonesafetytechnology.Itis

importanttonotethattheprocessdescribedaboveisstrictlyforasituationwhereaDOTis

championingtheevaluationofaspecificworkzonesafetytechnology.Iftheideaemanates

fromaresearcher,theresearchersubmitsaResearchProblemStatement(RPS)(assuming

thereleasedRFPaccommodatestheevaluationtopic).IftheRPSissuccessful,the

researcherwillbeencouragedtosubmitafullproposal.Iftheproposalisacceptedbythe

DOT,thetechnologyisthentestedtodetermineitseffectiveness.Theassessmentusually

includesapilottestandlivetesting,andincertaincases,anextensivecosteffectiveness

analysis.Iftheproposalisrejected,theevaluationprocessisterminated.Subsequently,

followingtestingofthetechnology,areportisdevelopedtodisseminatethefindingsfrom

thestudy.Iftheworkzonesafetytechnologyisconsideredeffective,theDOTadoptsthe

technologyandmayrequirecontractorstousethetechnologyinfutureprojects.Ifthe

effectivenessofthetechnologyisnotconclusive,recommendationsthatcouldimprove

futureadoptionofthetechnologyaremadeavailable.

12 | P a g e   

Figure5:DOTDecisionMapforWorkZoneSafetyTechnologyAdoption

ItisimportanttonotethatalthoughDOTsprescribetheuseofcertainsafetytechnologies

aspartofacontractrequirement,contractorscouldchoosetoutilizeadditionalsafety

technologiesinconstructionworkzones.Currently,informationontheprocessutilizedby

contractorstoarriveatacongruentdecisionforadoptingsafetytechnologyisnonexistent.

Therefore,theresearchersproposedandvalidatedaframeworkthatdescribestheprocess

ofadoptingasafetytechnology.Also,thisframeworkcouldbeimplementedwithinthe

“AssessTechnology”stageoftheDOTtechnologyacceptanceprocess.

13 | P a g e   

SafetyTechnologyAdoptionFactors

Anintegrativereviewofliteratureindicatesthattechnologyadoptioncanbepredictedby

assessingseveralfactorsdistributedintofourprimarycategories:individual,

organizational,technological,andenvironmental.Atheoreticalframeworkdescribingthe

processleadingtotechnologyadoptioncanbefoundinFigure6.Projectmanagersfrom

eighthighwaycontractingorganizationswereinterviewedtovalidatetheaccuracyofthe

proposedadoptionprocess.ThesecompanieswereprimarilylocatedinthePacific

Northwestwithannualrevenuerangingbetween$10millionand$2billion.

Figure6.SafetyTechnologyAdoptionProcess

14 | P a g e   

Oneprimarydeficiencyinextantliteratureassociatedwithworkzonesafetyisthelackof

someconsensusontheprimaryphasesforconductinganevaluationstudy.Anevaluation

studyisakeycomponentinthetechnologycategoryofthesafetytechnologyadoption

process.Inthenextsection,theresearcherssummarizetheprimarystepsrequiredto

conductaneffectiveWZSTevaluationstudy.Theevaluationprotocolwasdevelopedaspart

ofastudyconductedbyGambateseetal.(2017).

WZSTEvaluationProtocol

Developingatestingprotocol,groundedinscientificrigor,playsapivotalroleinvalidating

thefindingsofanevaluation‐basedstudy.AccordingtoFyrie(2016),itisessentialto

developatestingprotocolforWZSTstoimproveperceptionofusefulnesswhichcould

impactuserintentiontoadopttechnologyalongsideencouragingtheproductionof

additionalWZSTs.Inordertodeveloparigorousprocess,theresearchersreliedon

StrategicHighwayResearchProgram(SHRP)reportsandpastworkzonetechnology

evaluationreports(AgentandHibbs1996;Brownetal.2015;Marksetal.2017;Marksand

Teizer2013;Novosel2014;Parketal.2017;Teizeretal.2010;ZhangandGambatese

2017).TosuccessfullyevaluateaWZST,thestepsdepictedinFigure7arerecommended

anddescribedindetailbelow.

Figure7:WZSTEvaluationProtocol

15 | P a g e   

Step1:DocumentationofTechnologies

Itisimperativetoaggregateandreviewliteratureoncurrentlyavailabletechnologiesthat

havehighpotentialforpreventinginjuriesinhighwayworkzones.Thisstepcanbe

achievedthroughacomprehensivesearchofarchivalpublicationsusingInternetsearch

engines.Theoutputofthissearchanddocumentationshouldincludetechnical

specificationsoftheWZST,associatedbenefitsofusingtheWZST,limitationstoitsuse,and

summariesoffindingsfrompriorresearchonthetechnology.

Step2:SurveyofCurrentPractice

Step2involvesconductingasurveyofhighwayconstructionandmaintenancekey

stakeholdersincludingstatedepartmentsoftransportation(DOTs),constructionand

trafficcontrolcontractors,equipmentvendors,etc.Theobjectiveofthesurveyisto

documentcurrentandrecommendedpractices,barriers,enablers,andimpactsassociated

withtheWZST.FindingsfromStep2resultintheidentificationofthestatusquoofthe

constructionindustryanditscurrentbestpracticeintermsofpreventingaccidentsthat

couldbepreventedbyimplementingtheWZST.

Step3:PilotTestingofTechnologies

BasedontheresultsofSteps1and2,asampleoffeasibletechnologiesshouldbeselected

forpilottesting.Selectionshouldconsidertechnologyavailability,cost,easeofuse,

potentialforimprovingsafety,andpotentialforincorporatingthetechnologyintypical

transportationcontrolplans.Pilottestingoftheselectedtechnologiesshouldbeconducted

undercontrolled,off‐roadwayconditions.Eachselectedtechnologyshouldbeassessedto

captureitscapabilities,andrecordhowitisimplemented.Theresultsofthepilottesting

providevitalinformationonfeasibilityofuse,capabilities,andlimitationsrelatedtoeach

technologyunderinvestigation.

Step4:SelectionofTechnologiesforLiveTesting

Followingcompletionofthepilottestingandanalysisoftheresults,Step4involves

conductingfocusgroupsessionswithkeystakeholderssuchasDOTpersonneland

constructioncontractorstoidentifyandselectspecifictechnologiestoimplementandtest

16 | P a g e   

inanactiveworkzone.Feedbackoneachofthetechnologiesshouldbesolicitedfromeach

targetedgroup.Thosetechnologiesthataredeemedpromisingbythefocusgroup

participantsshouldbeselectedforfurtherevaluation.Inaddition,potentialconstruction

and/ormaintenanceprojectsonwhichtoconductlivetestingofthetechnologiesshouldbe

discussedwiththeparticipatingDOTpersonnelandcontractorsandselectedforStep5.

Step5:ImplementationandEvaluationofSelectedTechnologies

Step5involvesimplementingtheselectedtechnologiesoneachselectedcasestudyproject.

Dependingonthecasestudyprojectsselected,eachtechnologyshouldbeappliedunder

differentworkzoneconditions(e.g.,short‐termandlong‐term,daytimeandnighttime,and

stationaryandmobile).Eachselectedtechnologyshouldbeimplementedduringactual

workoperationstypicallyexperiencedonprojects.Thetestingprotocolshouldaddressa

varietyofcriteriasuchas:easeofimplementationanduse,abilitytodetectpotential

hazard,abilitytowarnofimpendinghazard,sensitivitytofalsealarms,andimpactonrisk

toworkersafety,andimplementationcost.Uponcompletionoftesting,feedbackoneach

technologyshouldbecollecteddirectlyfromtheconstructionandmaintenanceworkers

involvedineachcasestudyproject.

Next,theresearchersproposeabasictheoreticalframework–ITAM‐forcapturing

informationthatinfluencestheacceptanceandutilizationofaWZST(WZIATascasestudy)

byendusers.

IntrusionAlertTechnologyAcceptanceModel(ITAM)Structure

Consumermarketingresearchhasbenefitedgreatlyfromapplyingpredictive(forecasting)

andassessmentmodelsthatdrawfromunderstandingkeyfactorsthatinfluenceintention

toacceptaproduct.Thepresentstudycombinesthepredictivestrengthoftwowell‐

foundedtechnologyacceptanceandbehavioraltheoriesasameanstounderstandfactors

thatinfluencetheadoptionofaWZST.Althoughdesignedmainlyusingconstructs

(parameters)associatedwithWZIAT,theproposedmodelcanbeappliedtoWZSTand

othertechnologyadoptionsituationswithsimilarcharacteristics.Thetwomodelstobe

combinedareTechnologyAcceptanceModel(TAM)andTheoryofPlannedBehavior(TPB)

(Mathieson1991;VenkatechandDavis1996;Mathiesonetal.2001;Chuttur2009).Figure

17 | P a g e   

8depictsthesimplifiedintrusionalerttechnologyacceptancemodel(ITAM)usedinthis

study.

Figure8:IntrusionAlertTechnologyAcceptanceModel

Theconstructsabovecanbedefinedas:

PerceivedEaseofUse(PEU):beliefthatusingatechnologywillrequirelittleeffort

SubjectiveNorm(SN):anindividual’sperceptionregardingagivenactionwhichis

significantlyinfluencedbythejudgementofsignificantothers

PerceivedUsefulness(PU):beliefthatusingatechnologywouldimprovejob

performance

BehavioralIntention(BI):anindicationofaperson’sintentiontoperformagiven

task

BIwaschoseninsteadofactualbehavior(observableresponsesuchasacceptingtousea

technology)sincetheuseoftechnologiessuchasWZIATisnotwidespread.Inaddition,

pastresearchindicatesthatinmostcases,behavioralintention,isagoodpredictorof

actualuse(Venkateshetal.2002).

Theresearcherskeptthemodelsimplegiventheexploratorynatureofthepresentstudy.

FuturestudiesshouldconsiderincludingotherTPBconstructssuchasattitudeand

perceivedbehavioralcontrol.

18 | P a g e   

Task3:Collectandanalyzedatafromhighwayconstructionstakeholders

TheresearchersconductedanonlinesurveyinordertoanswerresearchquestionsV,VI,

andVII.FollowingreviewofthesurveyinstrumentandprotocolbytheOSUInstitutional

ReviewBoard(seecopyofsurveyquestionnaireintheAppendix),theresearcherspre‐

testedthereliabilityandconsistencyofthesurveyquestionsusingdatareceivedfromcivil

andconstructionengineeringstudentsatOSU.Beforecollectingstudentfeedback,a

presentationwhichincludedvideosandpicturesofworkzoneintrusionaccidents,work

zonesafetytechnologies,andresultsfromaWZIATevaluationstudywasfacilitatedand

conductedbytheresearchersforthestudents.Thepresentationwasconductedtoensure

participatingstudentshadsufficientinformationtoprovideusefulfeedbackonfactorsthat

couldinfluencetheadoptionofWZIAT.Atotalof145responseswerereceivedfrom

participatingstudentsintwodifferentcoursesofwhich135responseswereanalyzed(10

responseswereincomplete).ReliabilitytestsincludingKaiser‐Myer‐Olkin,Cronbachalpha,

andBarletttestofsphericitywereconductedtoensurethattheresearchtoolscaptured

reliableinformation.

Followingevaluationofthesurveyinstrument,thesurveyquestionnairewasdistributedto

thetargetedhighwayconstructionstakeholders.Surveyresponseswerecollectedfrom181

individuals(316,includingstudents)withinthetargetpopulation.Specifically,owner

agencies,includingDOTsandresearchinstitutions,accountedfor38%(69)ofthereceived

responseswhilegeneralcontractors,workzonesafetyconsultants,andworkzone

technologymanufacturersandvendorsaccountedfor38%(53),11%(20),and21.5%(39)

oftheresponses,respectively.Furthermore,64respondents(35%)self‐identifiedas

projectmanagerswhile37trafficengineers(20%ofrespondents)responded.Responsesto

thequestion“Areyoufamiliarwithworkzoneintrusionalerttechnology”indicatethat

mostoftheparticipantsarefamiliarwithWZIAT(80%ofthe141responsesreceivedtothe

question,approximately62%ofallrespondents).

19 | P a g e   

WZIATfeature/attributeimportance(combinedandbyworkcategory)

Forsomequestions,therespondentswereaskedtoprovidetheiropinionaboutWZIAT

usingaLikert‐typescale(e.g.,1=notimportant,5=veryimportant).Whenasked“How

importantarethefollowingattributestoyourdecisiontoadoptWZIAT,”participants

indicatedthatworkercomprehensionofwarningsignal(meanresponse=4.44)and

adequatecoveragedistance(meanresponse=4.25)areconsideredthemostinfluential

attributesthatimpactthedecisiontouseaWZIAT.TheresultsaresummarizedinTable3.

Easeofstorageisconsideredtheleastimportantattribute(mean=2.94).Acomprehensive

tableoftheresultscanbefoundintheAppendix.

Table3:WZIATFeature/AttributeImportancetoAdoptionDecision

MeanResponseregardingImportanceof

Feature/Attribute

(1=notimportant,5=veryimportant)

WZIATFeatures/Attributes Contractor

(n=53)

DOT

(n=69)

Manuf.&

Vendors

(n=39)

Total

(n=316)

Workercomprehensionofwarning

signal

4.6 4.67 4.3 4.44

Adequatecoveragedistance 4.51 4.36 4.22 4.25

Driveradequatelycomprehendsvisual

andaudiowarning

4.25 4.39 3.62 4.21

Impactofwarningalertondriver 4.17 4.41 3.78 4.18

Fewornofalsealarms 4.38 4.33 4.03 4.17

Limitsworkerexposure 4.51 4.48 4.08 4.15

Multiplewarningalertsources 4.08 4.23 4.16 4.08

Reusable 4.19 3.79 4.10 4.04

Manuf.=technologymanufacturer

20 | P a g e   

Differenceinmeanratingbetweengroups

Itisessentialtoconductastatisticalanalysistoverifythepresenceofanalignment

betweenthesubgroups’‐especiallycontractorsandmanufacturers–perceptionsof

importantWZIATattributes.Thisverificationcanbeachievedbyeitheraparametricor

non‐parametricindependentsamplemeantest(t‐test).First,theresearchersassessedthe

databyworkgrouptoguidetheapplicationofparametricornon‐parametrictesting.Atest

fordatanormalitywasnotconductedgiventhatthesamplesizeforeachgroupwasatleast

30(GhasemiandZahediasl2012).Levene’sTestofEqualityofvariancewasconductedto

determineiftheassumptionofhomogeneityofvariancewasviolated.Thetestreturneda

mixedresultwithsixoutofthe21factorsviolatingtheequalvarianceassumption.Takinga

conservativeapproach,theresearcherelectedtoperformanon‐parametrictwo‐sample

test–theMann‐WhitneyUTest‐toreducetheTypeIerrorrate.Table4summarizesthe

resultsfromtheMann‐WhitneyUTestbetweenresponsesreceivedfrommanufacturers

andotherworkgroups.AsseeninTable4,thelevelofimportanceassignedtoeachWZIAT

attributedifferedsignificantlyforsevenoutof21attributeswhencomparingthe

manufacturers’responsestothosereceivedfromtheDOTemployees.Thisresultindicates

thepossibilityofamisalignmentbetweentheend‐users’andmanufacturers’perceptionsof

theimportanceofeachWZIATattribute.Thisresultsuggestsaneedforheightened

involvementofDOTsandcontractorsinthedevelopmentphaseofsimilartechnologies.

Thedevelopmentofstandardtoolsthathelpbridgetheknowledgegapbetween

manufacturersandend‐usersshouldbeencouraged.

18 | P a g e   

Table4:Non‐Parametrictestfordifferenceinmeanbetweengroups;Mann‐WhitneyUTest

WZIATAdoptionfactors Contractorvs.

Manufacturer

DOTvs.

Manufacturer

Contractorvs.DOT

UStatistic p‐value UStatistic p‐value UStatistic p‐value

Easeofdeployment/retrieval 973.5 0.602 1292.5 0.707 1652.5 0.317

Easytomovethetechnologyaround 728 0.032 1271 0.596 1588.5 0.176

Userfriendliness 849 0.105 1052.5 0.043 1700.5 0.45

Littleornoimpactontrafficflowandcontrolwithinworkzone 822 0.081 1332.5 0.929 1415 0.024

Limitsworkerexposure 778 0.026 1039.5 0.031 1797 0.852

Easytostore 857 0.139 1104 0.107 1771 0.755

Resistancetoenvironmentalandphysicalimpact 871.5 0.467 923.5 0.023 1482.5 0.057

Reusable 978 0.629 1019.5 0.029 1328.5 0.008

Easytomaintain 900 0.352 1185 0.53 1712.5 0.722

Extendedbatterylife 866.5 0.141 997.5 0.022 1586 0.221

Costoflaborandequipment 885.5 0.305 1167 0.385 1754 0.794

Availabilityofequipmentinthemarket 734.5 0.047 1254 0.792 1527.5 0.123

Costofreplacingparts/maintenance 956.5 0.668 1264 0.846 1755 0.796

Impactofwarningalertondriver 936 0.697 1102.5 0.207 1605.5 0.206

17 | P a g e   

Workercomprehensionofwarningsignal 824.5 0.142 1018 0.043 1750.5 0.621

Multiplewarningalertsources 860 0.283 1268 0.951 1591.5 0.183

Adequatecoveragedistance 874.5 0.327 1260.5 0.907 1627 0.243

Limitedphysicalimpactonvehicle 729 0.033 1208.5 0.638 1604 0.222

Driveradequatelycomprehendsvisualandaudiowarning 725.5 0.027 869.5 0.004 1737 0.604

Fewornofalsenegativeandpositivealarms 804 0.114 1063.5 0.122 1799 0.866

Lessdependenceonexistinginfrastructure 923.5 0.621 1218 0.683 1805 0.899

19 | P a g e   

Potentialimpactofsafetyclimate

Giventhatpastresearchindicatesapossiblecorrelationbetweensafetyclimateandsafety

behavior(SchwatkaandRosecrance2016),theresearchersexploredthepotential

relationshipbetweensafetyclimateandconstructionworkerdecisionstoadoptasafety

technology.Toachievethisobjective,theresearchersutilizedanadaptedversionofa

safetyclimatematurityassessmenttooldevelopedbyTheCenterforConstruction

ResearchandTraining(CPWR)alongsidethe“behavioralintention”constructoftheITAM.

Thesafetyclimatemeasuringscalehaseightleadingindicators:Demonstrating

ManagementCommitment;AligningandIntegratingSafetyasaValue;Ensuring

AccountabilityatAllLevels;ImprovingSupervisoryLeadership;EmpoweringandInvolving

Workers;ImprovingCommunication;TrainingatAllLevels;andEncouragingOwner/Client

Involvement(CPWR2015).Toutilizethescale,workersareaskedtoanswerquestions

(between3to6questions)withineachleadingindicator.Thequestionsaredesignedto

illicitresponsesregardingthecompany’scommitmentandattitudetowardssafetyusinga

scalethatrangesfrominattentivetoexemplary(seehttps://www.cpwr.com/whats‐

new/new‐safety‐climate‐assessment‐s‐cat‐websiteformoreinformationonthesafety

climatemeasuringscale).Duetothelengthofthesafetyclimatescale(36questions

requiringadecentamountofreading),theresearchersreducedthenumberofquestions

foreachleadingindicatortotwo(16intotal).Thereductionwasachievedthrough

evaluatingthestatisticalanalysisconductedbythedevelopersofthesafetyclimatescale–

selectingtheitemsineachcategorywiththehighestmeanscoreandtheleastvariance.

Atotalof53contractorscompletedthesurveysubstantially.However,onlyatotalof45of

therespondingcontractors(85%)providedsufficientinformationforexploringthe

connectionbetweensafetyclimateandadoptiondecision.

Toexplorethepotentiallinkbetweensafetyclimateandtechnologyadoption,the

researchersseparatedtherespondentsintotwogroups–“exemplary”and“below

exemplary”–usingtheaggregatemeanvalueofeachleadingindicator.Thatis,the

responsesreceivedfromeachsurveyparticipantweresummedandthendividedby16

(thetotalnumberofquestionsacrosstheeightleadingindicators).Theresearcherselected

20 | P a g e   

tosetacumulativemeanthresholdof4.0andaboveas“exemplarysafetyclimate”inline

withthedesignofthesafetyclimatemeasuringtool.Ameanvaluebelow4.0was

considerednotexemplary.Twenty‐fiveofthe45respondingcontractors(56%)self‐

reportedacumulativemeanaveragegreaterthan4.0.Next,linearregressionwaschosento

investigatethelevelofimpactsafetyclimatecouldhaveonthe“behavioralintention”

construct.Toconducttheanalysis,thesafetyclimaterating(SCR)meanvalueforthetwo

groups(exemplaryandnotexemplary)werechosenasindependentvariableswhilethe

meanvalueof“behavioralintention”(BI)‐whichispartoftheITAMconstruct‐was

selectedasthedependentvariable.Priortoconductingthelinearregression,the

researcherscheckedtoverifyifanyassumptionwasviolated.Althoughthesamplesize

requirementwasmet(atleast20casesperindependentvariable),theresearchers

observedthatthedatawasnotlinearandshowedevidenceofheteroscedasticity.Giventhe

concernsidentifiedwithinthedata,theresearcherselectedtoconductanonparametric

analysisfocusingondirectionality.Spearmancorrelationwasexecutedtoinvestigatethe

directionalrelationshipbetweenSRCandBI.Althoughnotstatisticallysignificant,the

results,highlightedinTable5,indicatethatSCRfortheexemplarygrouphasapositive

correlationwithBI(γ=0.374).Table6showstherelationshipbetweenSCRandBIforthe

“belowexemplary”groupwaslessthanthatoftheexemplarygroup(γ=0.021).

Table5.CorrelationbetweenBehavioralIntention(BI)andSafetyClimateRating

(SCR)of“Exemplary”Group

Spearman'srho SCR BI

SCR CorrelationCoefficient 1.000 0.374

Sig.(1‐tailed) . 0.052

N 25 25

BI CorrelationCoefficient 0.374 1.000

Sig.(1‐tailed) 0.052 .

N 25 25

21 | P a g e   

Table6.CorrelationbetweenBehavioralIntentionandSafetyClimateRating(SCR)of

“BelowExemplary”Group

Spearman'srho SCR BI

SCR CorrelationCoefficient 1.000 0.021

Sig.(1‐tailed) . 0.461

N 20 20

BI CorrelationCoefficient 0.021 1.000

Sig.(1‐tailed) 0.461 .

N 20 20

Task4:ConductfinancialanalysisforWZIAT

Onepossiblereasonfortherelativelylownumberofcommerciallyavailableintrusion

alarmtechnologiesisthelackofacost‐benefitanalysis(Fayrie2016).Furthermore,as

intrusionalarmtechnologiesrequiresomeinvestment,consumers(DOTsandcontractors)

needanempiricalframeworktodeterminethefinancialimplicationoftheintervention.To

developarobustframeworkthatprovidesparametersthatcanbeusedtojudgeifthe

investmentintheintrusionalarmisworthwhile,theresearchersreliedontheframeworks

describedbyAASHTO(2010),Theissetal.(2014),AricoandRavani(2008),andSunetal.

(2011).GiventhattheimplementationofWZIATrequiresatwo‐phaseadoptionprocess

(adoptionbystatedepartmentoftransportationandcontractor),itisimportantthat

financialmetricsspecifictotheend‐usersareconsidered.Hence,aframeworkforROI

(Contractor)andBCA(DOT)wasdeveloped.ThreeWZIATs–AWARE,Intellicone,andWAS

–wereevaluatedaspartofthefinancialanalysis.

22 | P a g e   

CostofImplementingWorkZoneIntrusionAlertTechnologies

AccordingtoBoardmanetal.(2001),nineprimarystepsarerequiredinothertoconducta

basicfinancialanalysisforgovernmentinterventions,regulations,policies,programs,etc.

Thestepsare:

I. Specifythesetofalternativeprojects

II. Decidewhosebenefitsandcostscount

III. Cataloguetheimpactsandselectmeasurementindicators,orunits

IV. Predicttheimpactsquantitativelyoverthelifeperiodoftheproject

V. Monetize(adddollarvaluesto)allimpacts

VI. Discountbenefitsandcoststoobtainpresentvalues

VII. Computethenetpresentvalueofeachalternative

VIII. Performsensitivityanalysis

IX. Makerecommendationbasedonfindings

Giventhescopeofthecurrentstudy,theresearchersfocusedonthestepsrequiredto

developafinancialimplicationanalysisframeworkforeachWZIAT(StepsIII,IV,V,VI,and

VII).

StepsIIItoVinvolvetheidentification,collection,andmonetizationofinputsandoutputs

(information)requiredtoperformafinancialanalysis.Tables7and8captureessential

informationrequiredtoestimatethecostofimplementingthetechnologies.The

informationpresentedinTables7and8wasacquiredthroughinterviewswithcontractors,

reviewingliteratureonWZIATsandotherworkzonesafetytechnologies,andassessing

manufacturer’swebsitesandmanuals.

23 | P a g e   

Table7.CostInputData

CostItem WorkzoneIntrusionAlert

Technology

AWARE Intellicone WAS

Capitalcost($/device) 50,000 2,000 $750

Costofrequiredaccessory/ies($) 35

Batterycost($/device) 20 15

Batterylife(weeks) 32 32

DeviceReplacementrate(%/year) 0.125 0.125 0.125

StrobeReplacementrate(%/year) 0.10 0.13

Maintenanceworkerwagerate($/h) 26 26 26

Maintenancetime(hr/week/mile) 2.1 4.2 4.2

Wageratemultiplier 1.5 1.5 1.5

Disposalcost 0 0 0

Costperday:

Maintenancecost($) 20.48 40.95 40.95

Devicecost($) 78.12 $3.13 $1.17

Sensorcost($) $0.05

Batterycost($) 0.16 0.12

Table8.CostofusingWorkZoneIntrusionAlertTechnologiesinWorkZones

CostItem WorkzoneIntrusionAlert

Technologies

AWARE Intellicone WAS

Numberofdevicespermile 1 1 8

Usedononesideofroadway 2 2 16

Usedonbothsidesofroadway 1 1 8

Numberofaccessoriespermile

24 | P a g e   

Usedononesideofroadway 12 5

Usedonbothsidesofroadway 24 10

Costperdeviceperday($/day) 78.13 3.13 1.17

Costpermileperday($/mile/day) 0.17 ‐

Laborcostperdeviceperday($/day) 20.48 40.95 40.95

Costpermileperday($/mile/day)

Usedononesideofroadway 98.60 46.14 50.33

Usedonbothsidesofroadway 197.20 92.28 100.65

Costpermileperyear($/mile/year)

Usedononesideofroadway 7,888.00 3,691.00 4,026.00

Usedonbothsidesofroadway 15,776.00 7,382.00 8,052.00

InformationinTable7indicatesthatAWARE,Intellicone,andWAScost(operationand

capitalcost)$98.60,$46.14,and$50.33perday,respectively.Withtheexceptionof

AWARE,operationcostistheprimarycostdriver,notthecapitalcost(Intellicone=88.5%

andWAS=81.5%oftotalcost).Theseestimatesdoesnotincludeadditionalcostfor

personalsafetydevices;justthecostsofbuyingandoperatingthebasictechnologyare

included.Aneighty‐dayworkyearwasassumedbasedonfivework‐monthsayearand

fourwork‐daysaweek.Theworkdaywasestimatedbasedonthedurationofatypical

pavingseasoninthePacificNorthwest.Thenumberofannualworkdayswillvary

dependingonthelocation.Thecostperdaycalculationincludedastraight‐linecapitalcost

deprecationofeachtechnology.Ashelflifeofeightyearswasassumedbasedonpast

research(Theissetal.2014).Table8summarizesthecostofimplementingWZIATon

projectsusingcostpermileperyear($/mile/year).TheanalysisshowninTable8includes

calculationforoneandbothsidesofaroadwaygiventhatconstructioncouldhappen

simultaneouslyonbothsidesoftheroadway(bothdirectionsoftraffic).Thetotalcostfor

applyingtheAWARE,Intellicone,andWASinaworkzoneis$15,776,$7,382,and$8,052

permileperyear,respectively.ThefactorsusedtoarriveatthevaluesinTable8are

includedintheAppendix.

25 | P a g e   

InjuryCostModel

Thefollowingstepswereundertakeninordertoestimatethecostassociatedwithwork

zoneaccidents:

I. Estimatetotalnumberofworkzoneintrusionaccidents

II. Estimateinjuryseverityofworkzoneintrusionaccidents(usingMAIS)

III. Usecomprehensivecostmethodtoassigncosttoinjuryseverity

IV. UseValueofaStatisticalLife(VSL)toestimatefractionforeachinjurycategory

V. Determineworkzoneintrusion‐inducedaccidentcost

VI. Useworkzonerequiredlengthandtypeofactivitytoseparateoutactivitiesthat

cannotimplementWZIAT

VII. Developtablethatshowstotalcostandavertedcost

Thenumberofworkzoneintrusionaccidentswasestimatedusinginformationfromthe

CaliforniaDepartmentofTransportation(Caltrans)andOregonDepartmentof

Transportation(ODOT).Theseveritylevelofworkzoneaccidentswasestimatedusingthe

MaximumAbbreviatedInjuryScale(MAIS)(AAAM2015).Thecoefficientforeachseverity

levelwasgeneratedusingtheValueofaStatisticalLife(VSL).TheVSListheadditionalcost

thatindividualsarewillingtobearforimprovingsafety(riskreduction)(Moran2016).

Table9highlightstheseveritylevelsandcostassociatedwhicheachlevel(Moran2016).

Table9.CostAssociatedwithDifferentLevelsofAccidentSeverity

MAISLevel Severity VSL(2016)

Fraction Cost(million$)

MAIS1 Minor 0.003 0.029

MAIS2 Moderate 0.047 0.45

MAIS3 Serious 0.105 1.01

MAIS4 Severe 0.266 2.55

MAIS5 Critical 0.593 5.69

MAIS6 Fatal 1.000 9.6

26 | P a g e   

IntrusioncrashdatafromODOTindicatesthat165intrusion‐inducedaccidentsoccurred

between2011and2015,anaverageof33workzoneintrusionaccidentsayear.According

toWong(2010),308workzoneintrusionaccidentswerereportedinCaliforniabetween

1998and2007,averaging31workzoneaccidentsayear.Inaddition,Wong(2010)

reportedthataccidentdistributionwhenclassifiedbyworkzonedurationvaried;mobile

operationsaccountedfor49%oftheaccidents,shortdurationoperationsaccountedfor

9%,andshort‐termstationaryoperationscontributed29%ofworkzoneaccidents.

Althoughnotcurrentdata,theresearcherselectedtousethedatafromCaltrans(Wonget

al.2010)duetothesegmentationofthedataintousefulseveritylevels.Sincetheaverage

crashratesaresimilar,theresearchersassumedthatthetrendisapplicableto2017as

well.

Theoutcomesofaworkzoneintrusionledtoaminorinjury91%ofthetime.Amoderate

andseriousinjuryoccurred7%and0.0034%ofthetime,respectively.Onaverage,a

fatalityoccurredapproximately2%ofthetimewhenanaccidentoccurred.

Inagreementwithapreviousstudy(Gambateseetal.2017),somecontractorswereofthe

opinionthatWZIATshouldnotbeusedonmobileprojectsgiventheinherentneedtomove

frequently.However,someDOTpersonnelindicatedthepossibilityofusingWZIATin

mobileoperationstoimproveworkersafety.Therefore,theresearchersdecidedtoinclude

mobileoperation‐relatedaccidentsinthecostanalysisfortheBCAbutnotfortheROI.

BenefitCostAnalysis

Table10liststheinjuryseverity,injurycost,totalcosts,andtheavertedcost.TheInjury

SeverityandInjuryCostareextractedfromTable9whiletotalcostisamultipleofthe

numberofworkersinjuredwithineachinjuryseveritycategoryandinjurycost.For

instance,theTotalCostofInjurySeverity1iscalculatedbymultiplyingtheinjurycost

(0.029)withthenumberofworkerswithaminorinjury(91%of308or281).Theaverted

costrepresentspotentialcostassociatedwithavoidinganinjuryorfatalitywithinthework

durationsusingacountermeasuresuchasWZIAT.

27 | P a g e   

Table10.ComparisonofWorkZoneInjuryCost(total)toPotentialAvertedCost‐

BCA

InjurySeverity

(MAIS)

InjuryCost

(million$)

TotalCost

(million$)

AvertedCosts

(million$)

1 0.029 8.128 8.128

2 0.45 9.702 9.702

3 1.01 1.041 1.041

4 2.55 0 0

5 5.69 0 0

6 9.6 59.14 59.14

Total 78.01 78.01

ExpectedYearly

Average

7.801 7.801

Theestimatedavertedcostisoptimisticsincetheunderlyingassumptionisthat

implementationofWZIATwouldpreventallinjuriesandfatalities.Duetoinsufficientdata,

itwasimpossibletoestimatetheactualfractionofpreventableworkzoneintrusion‐

inducedinjuriesandfatalitieswhenWZIATisapplied.Therefore,applyingareduction

factorwouldbeprudentinordertonotover‐estimatethepotentialofthetechnologies.

Table11highlightstheavertedcostwhenapplyingreductionfactorsrangingbetween10%

and90%.

Table11:ApplicationofConservativeFactors(BCA)

Injury

Severity

(MAIS)

Averted

Costs

(million$)

FractionofPreventableInjuriesandFatalities(million$)

10% 20% 30% 40% 50% 60% 70% 80% 90%

1 8.128 0.81 1.63 2.44 3.25 4.06 4.88 5.69 6.50 7.32

2 9.702 0.97 1.94 2.91 3.88 4.85 5.82 6.79 7.76 8.73

3 1.041 0.10 0.21 0.31 0.42 0.52 0.625 0.73 0.83 0.94

4 0 0 0 0 0 0 0 0 0 0

28 | P a g e   

5 0 0 0 0 0 0 0 0 0 0

6 59.14 5.91 11.81 17.74 23.66 29.57 35.48 41.40 47.31 53.22

Total 78.01 7.80 15.60 23.40 31.20 39.01 46.81 54.60 62.41 70.20

Expected

Yearly

Average

7.801 0.78 1.560 2.34 3.12 3.90 4.68 5.46 6.24 7.02

ResultsfromthedataanalysisindicatethatWZIATtechnologyisworthwhiledependenton

atechnology’spotentialtopreventbetween12.6%and34%ofintrusion‐inducedworker

accidents(AWARE=34%,Intellicone=16.1%,andWAS=17.6%).Thesepercentagesare

theinjuryandfatalitycostequivalentofthetotalcostofpurchasingandoperatingWZIATs.

ReturnonInvestment

Thepotentialcostofinjuriesandfatalitiesassociatedwithworkzoneintrusionandthe

monetaryvalueoftheinjuriesandfatalitiesthatcouldbesavedbyimplementingWZIAT

arepresentedinTable11.UnlikeAvertedCostvaluesinTable10,AvertedCostinTable12

suggestthatitisnotfeasibletoaccrueallthepotentialbenefits(costsavings)associated

withimplementingasafetycountermeasure.Althoughthetotalcostassociatedwithwork

zoneaccidentsis$7.8millionyearly,WZIAThasthepotentialtoimpactonlyapproximately

51%oftheassociatedcost.Thisrestrictedextentofimpactisbecausethecontractors

interviewedindicatedthattheyarenotwillingtoimplementWZIATinmobileoperations–

whichaccountforapproximately49%ofinjuriesandfatalities.Theresearchersmultiplied

thetotalnumberofaccident(308)by51%todeterminethepotentialavertedcost.Itis

importanttonotethatbyapplying49%,theresearchersassumedalinearrelationship

betweenseverityandfrequencyofinjury–thatis,injuriesreducedacrosstheseverity

levelsequally‐whichisnotalwaysthecase.

Table12.ComparisonofallWorkZoneInjuryCosts(total)toPotentialAvertedCost‐

ROI

InjurySeverity

(MAIS)

InjuryCost

(million$)

TotalCost

(million$)

AvertedCosts

(million$)

29 | P a g e   

1 0.029 8.128 4.145

2 0.45 9.702 4.948

3 1.01 1.041 0.531

4 2.55 0 0

5 5.69 0 0

6 9.6 59.14 30.159

Total 78.01 39.784

ExpectedYearly

Average

7.801 3.978

Inaddition,theresearchersappliedconservativefactorssimilartothoseappliedinTable

11toaccountfortheinjuriesandfatalitieswithinthe51%non‐mobileactivities.Table13

showsthataminimumavertedcostof$398,000peryearisobtainableifWZIATprevents

atleast10%ofworkzoneintrusioninjuriesandfatalities.

Table13:ApplicationofConservativeFactors(ROI)

Injury

Severity

(MAIS)

Averted

Costs

(million$)

FractionofPreventableInjuriesandFatalities(million$)

10% 20% 30% 40% 50% 60% 70% 80% 90%

1 4.15 0.42 0.83 1.24 1.66 2.07 2.487 2.90 3.32 3.73

2 4.95 0.5 0.99 1.49 1.98 2.47 2.969 3.46 3.96 4.45

3 0.53 0.05 0.11 0.16 0.21 0.27 0.319 0.37 0.42 0.48

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 30.16 3.02 6.03 9.05 12.06 15.08 18.10 21.1 24.13 27.14

Total 39.79 3.98 7.96 11.9 15.91 19.89 23.87 27.85 31.83 35.81

Expected

Yearly

Average

3.978 0.40 0.8 1.19 1.59 1.99 2.39 2.78 3.18 3.58

30 | P a g e   

Ideally,theinjurycostmodelforcalculatingtheROIshouldbebasedoneachcompany’s

safetyrecord,thatis,informationonworkerfatality,losttimeinjury,andinjurywithout

losttime.Thisinformationwasnotprovidedbythecontractorsinterviewedaspartofthis

study.Therefore,theresearchersutilizedthecomprehensiveCaltransaccidentdata.To

maintainunitconsistency,contractorsinterviewedwereaskedfortheapproximate

amountofmilespavedeveryyear.Theaverageresponsefromthreecontractorswas

approximately15milesperyear.Basedonthedataanalysis,WZIATwouldbeusefulto

contractorsifthetechnologiesprevent2%‐3%ofinjuriesandfatalitiescausedby

intrudingvehicles.

AlthoughtheROIcouldhaveasignificantimpactontheadoptionofaWZIAT,ifa

technologyispartofastate’sstipulatedtrafficcontrolplan,thecontractorisrequiredto

usethetechnologyregardlessofROI.

Task5:Evaluateproposedmodelsandprotocols

Toassessthefactorsthatinfluenceaworker’sintentiontoadoptWZIAT,arangeof2‐4

variableswereusedtomeasureeachconstruct(perceivedeaseofuse,socialnorm,etc.).

Thevariableswereselectedfrompastliteratureandadaptedtofittheresearchobjective.

Utilizingvariablesfrompreviousstudiesensuredthatfaceandinternalvaliditywere

maintained.Apathanalysis–asubsetofstructuralequationmodeling(SEM)‐usingAMOS

25Graphics(AMOS25.02017)wasconductedtoanalyzethecorrelationsbetweeneach

constructandaworker’sintentiontoadoptWZIAT.ToconductSEM,asampletoconstruct

variableratioofatleast10:1isrequired.Thatis,foreveryvariabletested,atleast10cases

orrespondentsarerequired.Intotal,142respondents’(contractor=53,DOT=69,

consultants=20)providedfeedbackusedforthisanalysisleadingtoa14:1ratio(10

variables).First,areliabilitytestwasconductedtoverifydataconsistency.Resultsfromthe

Cronbachalphatestshowedthatthesurveywasgenerallyreliable(minimumα=0.65).

Next,fourprimaryhypotheseswereproposedbasedonpastresearchandtheresearcher’s

experience:

31 | P a g e   

H1=Perceivedeaseofuse(PEU)ofWZIATwillpositivelyaffectbehavioral

intention(BI)toadoptWZIAT

H2=Perceivedusefulness(PU)ofWZIATwillpositivelyaffectbehavioralintention

toadoptWZIATadoptionintention

H3=Socialnorm(SN)willpositivelyaffectbehavioralintentiontoadoptWZIAT

H4=PerceivedeaseofuseofWZIATwillpositivelyaffectperceivedusefulness

AsseeninFigure9,allfourprimaryhypothesesweresupported.Thepathanalysisresults

suggestthatincreasedPUofWZIATincreaseswithanend‐user’sBItoacceptWZIAT(γ=

0.41).Inthiscase,PUcomprisesfactorssuchasthetechnology’sabilitytoprovide

adequatesafetycoverage,adequatealerts,etc.PEU‐whichrepresentsthelevelofease

associatedwithimplementingthetechnology‐alsoshowedapositiverelationshipwithBI

toacceptatechnology(γ=0.23).Thisrelationshipimpliesthatworkers’BItoaccept

WZIATisassociatedwithincreasedperceivedeaseofuse.Socialnormalsoshoweda

positivecorrelationwithbehavioralintentiontoadoptWZIAT(γ=0.34).ThePEUofWZIAT

alsocorrelatedpositivelywithPU,suggestingthatPEUplaysasignificantroleonhow

workersperceivetheusefulnessofWZIAT(γ=0.45).Thisresultisconsistentwiththe

relativelyhighratingoffactorsassociatedwithease(e.g.,easytomaintain,easeof

deployment/retrieval,andeasytomovearound)seeninAppendix.Together,PEU,PU,and

SNexplain54%ofthevarianceinanindividual’sBItoacceptWZIAT.PEUexplains21%of

thevarianceinPU.

32 | P a g e   

Figure9:ResultsofHypothesisTesting

Theimplicationsoftheresultsareasfollows:

WorkersmustperceivethatusingWZIATisnotcomplicatedandwillnotrequire

extensivelearning.WZIATsthatareeasytoinstall,retrieve,move,andmaintainwill

likelybeacceptedbeforeWZIATsthataremorecomplex.

GiventhattheprimarycostdriverofusingWZIATonprojectsisthelaborcost

associatedwithmoving,retrieve,andmaintainingWZIATs,technologiesthatare

easiertousewillsignificantlyimprovethePEUandincreasetheBCAthereby

increasingtheoddsofadoption.

Supervisorsandmanagersplayanimportantroleindrivingtheacceptanceof

WZIAT(throughSN).

InordertoachievehighbehavioralintentiontoacceptWZIAT,itisessentialthe

PEU,PU,andSNarehigh.

DevelopandtestABMmodel

Agent‐BasedModeling(ABM)isaheterogeneoussimulationmethodusedtopredicta

groupleveloutputbyaggregatingindividualagentreactionsandinteractions(Hamiltonet

al.2009;RandandRust2011).Givenitsbottom‐upapproachtopredictingtheoutcome,it

isconsideredagoodtheoreticaltoolforforecastingandunderstandingtheimpactof

individualdifferencesongroupleveloutcomesinsocialscienceandmarketingresearch.

33 | P a g e   

Oneobjectiveofthecurrentstudywastoinvestigatethepossibilityofcombininga

diffusionsimulationmethod‐agent‐basedmodelinthiscase‐andinformationobtained

fromatechnologyacceptancemodel.Responsesreceivedfromtheinterviewsandsurveys

wereusedtocreateconstraintsandboundariesforthesimulations.

TodeveloptheABM,itisessentialtodefinethephasesinadoption.Accordingto

InnovationDiffusiontheory,apopulationcanbedividedintothreegroupwhenassessing

technologyadoptionwithinapopulation:non‐adopters,potentialadopters,andadopters

(Leeetal.,2011).Individualswhodonotconsideranewtechnologyaretermednon‐

adopterswhilepotentialadoptersareindividualswhoconsidertheadoptionofanew

technology.Thepresentstudyfollowsasimilarpremise.Technologyadoptioncouldoccur

atanorganizationalleveland/orindividuallevel.Technologyadoptionintheconstruction

industryisconsideredmosteffectivewhenitoriginatesandexemplifiesatop‐down

dynamic(topmanagementinitiatestheadoptionprocedure)(MitropoulosandTatum

2000).Incontrast,successfultechnologyacceptance,thatis,theactualuseofthe

technology,isanemergentphenomenon–similartoabottom‐upapproach.

Forthepresentagent‐basedmodel,threeprimaryconstructs–SN,PU,andPEU–

determinetheintentionofanend‐usertomovefromanon‐adoptertoapotentialadopter.

Thisfactorscouldbeextendedtoincludeorganizationaldemographicinformationsuchas

companysize(employeesandrevenue),companytype(sub‐contractorvs.general

contractor),andindividualdemographicinformationsuchasage,experience,gender,etc.

Atransitionfromnon‐adoptertopotentialadopterisachievedwhenthepotential

constructvalueofanagentisgreaterthanorequaltoauser‐definedconstructthreshold.

Thisthreshold–thecoefficient‐indicatesameasureofsensitivity.Consistentwithfindings

inthepresentstudy,AffordabilityTheory,andpreviousstudies(Gambateseetal.2017;

Rasoulkhanietal.2017;Lynneetal.1995),costofimplementingthetechnologyis

computedastheprimaryfactorthatinfluencesanagent(andorganization)toadopta

workzonesafetytechnology(seeTable14).Affordabilityinthecontextofthepresent

studyisdefinedasthevalueofthetechnologyrelativetoitscost(ROIandBCA).Figure10

typifiesthisrelationshipbetweennon‐adopter,potentialadopter,andadopter.The

34 | P a g e   

adoptedmodelingprocessissimilartothoseappliedinpastresearch(Rasoulkhanietal.

2017).

Figure10:Simulationtheoreticalframework

Tables14and15listthefactorsrequiredtodevelopandoperationalizetheagent‐based

model.ThecoefficientslistedinTable14areextractedfromthestructuralequation

modelingconductedintheprevioussectionwhilethecostinformationinTable15is

extractedfromfindingsfromthefinancialanalysis.

Table14:Coefficientandvalueofsimulationconstructs

Construct Value Coefficients

Perceivedusefulness IfYes=1,ifNo=0 0.41

Perceivedeaseofuse IfYes=1,ifNo=0 0.23

Subjectivenorm IfYes=1,ifNo=0 0.34

Table15:WZIATCostSummary

Technology Costpermile Benefitcostanalysis* Returnoninvestment*

AWARE $5,776.00 0.58 136%

Intellicone $7,382.00 1.24 106%

WAS $8,052.00 1.14 98%

*assumingeachtechnologycanprevent20%ofinjuriesandfatalities

ItisimportanttonotethatalthoughTable15suggeststhatAWAREhasanegativeBCA,

AWAREwouldlikelypreventmorethan20%ofaccidentsandfatalitiescausedbywork

zoneintrusiongivenitsadvancedtechnologyandeaseofimplementation.Twentypercent

35 | P a g e   

wasselectedintheabsenceofempiricaldataandinordertocreatearangeofvaluesfor

thecomputationalmodel.

AnyLogic8.0wasutilizedtodevelopacomputationalmodelforsimulatingthechangein

worker’sbehavior.Inthismodel,onlyoneclassofagent–DOTlevel‐isincorporated.This

classofagentrepresentsthefirststepintheadoptionprocess(DOT‐>construction

company‐>constructionworkers).Ideally,themodelshouldreflectmultipleclassesof

agentstomimicthecomplexnatureoftechnologyadoptiononhighwayconstruction.

However,theapproachsufficesgiventheexploratorynatureofthepresentstudy.Future

studyshouldmodeltheinteractionsbetweenagentsusingmorecomplexconstraintsand

boundaries.

Intotal,50agents,representingeachstateDOTwereutilizedintheadoptionmodel.Astate

DOTwouldlikelyadoptaWZIATifthestateDOTbelievestheWZIATisuseful,easytouse,

orisusedbyotherstates.Todeterminethethresholdthattriggersachangeofstate(from

non‐adopter‐>potentialadopter‐>adopter),theregressioncoefficientsfromtheSEM

wereutilized.Theseconstructswereparameterizedusingstochasticcomputationandused

withinthesimulationasprobabilisticfactorsfordeterminingbehavior.Theformulabelow

showsthemathematicalexpressionofthemodel:

Br1=w1(PUr)+w2(PEUr)+w3(SNr)

Br2=w4(BCA)

WhereBr1andBr2referstothepotentialadoptionandadoptionbehaviorrespectively.Wn

representstheregressioncoefficientforeachconstruct.Thesumofthevaluesinequation

1couldrangefrom0to1withnumbersbelow0.5consideredlowandnumbersabove0.5

consideredhigh.Ifthesumoftheconstructexceeds0.5,theagentinquestionmovesinto

thenextstate(fromnon‐adoptertopotentialadopter).Aprobabilitythresholdof0.5was

selectedsimilartopreviousstudies(Scalcoetal,2017).Thesameprocessappliesto

transitioningfrompotentialadoptertoadopter.BCAwasselectedasthepreferredfinancial

metricsincetheclassofagentinquestionistheDOT.GiventhatinvestmentswithBCA

resultsabove1areconsideredpositiveinvestments,theresearcherssetatransition

thresholdof1andarangeof0.5to1.5.

36 | P a g e   

TheredareainFigure11representsnon‐adopterwhileyellowandgreenrepresents

potentialadoptersandadopters.ThesimulationstartdateisMay2018anditterminatesin

January2025–approximately7yearsintotal.Thesimulationbeginswithall50state

DOTsinanon‐adopterstate.ThenumberofDOTsinthenon‐adoptersstatereducedby

about78%bytheendofthesimulationin2025.Withinasimilartimeframe,19stateDOTs

adoptedWZIAT.

Figure11:WZIATdiffusionbetween2018‐2025withinStateDOTs

Figure12depictstherateofadoptionwhentheregressioncoefficientofPU,PEU,andSNof

thetechnologiesisincreasedby15%(cumulativecoefficient).Thisincreaseresultedtoa

higherrateofadoptionbyyear2025(approximately75%ofDOTsutilizingWZAIT).The

resultsindicatesthatmorestateDOTswilladoptWZIATiftheybelievethatWZIATismore

usefulintermofitseffectiveness,durability;andiseasiertoimplement,retrieve,and

maintain.Also,resultsfromthemodelindicatesthatsocialinfluencessuchcouldbeakey

factorfordiffusiontooccur.Forinstance,astateDOTwouldbeinfluencedbythedecision

ofanotherstateDOTwithincloseproximitytoadoptWZIAT.

37 | P a g e   

Figure12:IncreaseddiffusionofWZIAT.

7. Changes/problemsthatresultedindeviationfromthemethods

Whileexecutingthestudy,theresearchersencountereddifficultiesgeneratingresponses

fromworkzonesafetytechnologymanufacturersandhighwayconstructioncontractors

whichimpactsthegeneralizabilityofthestudyfindings.Althoughtheoreticallysound,the

developmentofanacceptancemodelusingABMrequiresadditionalparametersand

boundariestoensurethatallpotentialfactorsareaccountedfor.Itisimportanttonote

thatalthoughTPBandTAMwerecombinedtodevelopanacceptancemodelforWZIAT,

extendingthetheoriestoincludemodelssuchastask‐technologyfit(TTF)andtheoryof

reasonedaction(TRA)couldhelpidentifymoreconstructsthathaveanimpactonthe

acceptanceofworkzonetechnologiessuchasWZIAT.Developingthefinancialanalysis

involvedmakingsomeassumptionsforinformationthatwereunobtainable.These

38 | P a g e   

assumptionswereclearlystatedandshouldbeconsideredwhengeneralizingtheresultsof

thisstudy.

8. Listofpresentations/publications

Findingsfromthisstudywillbepublishedinacademicjournalsandpresentedin

conferences,workshops,and/orseminars.

1. Nnaji, C., Gambatese, J., and Eseonu, C. (2017). “Theoretical Framework for Improving

Adoption of Safety Technology in Construction Industry.” 2018 Construction Research

Congress(CRC2018),NewOrleans,LA.[AcceptedonOctober17,2017]

2. Nnaji,C.,Lee,H.,andGambatese,J.(2017).“Canworkzoneintrusion‐inducedinjuriesand

fatalitiesbereducedefficiently?”ProfessionalSafety,ASSE[Acceptance,Jan.20,2018]

3. Nnaji,C.,Gambatese, J., Lee,H.W., andZhang,F. (2017). “Assessing the ImpactofWork

Zone Safety Technology: A Systematic Review.” Accident and Analysis and Prevention

Journal.[SubmittedtothejournalonSeptember19,2017]

9. Disseminationplan

Theresearchershavesubmittedandpublishedsectionsofthisstudyinacademicjournals

andconferenceproceedings.Theresearchersalsoplantosubmitacomprehensivejournal

paperfromthestudytoatopacademicjournal.

10. Conclusions

Workerswithinhighwayworkzonesareanat‐riskpopulationgiventheinherentlyrisky

natureoftheirjobs.Thecurrentstudyassessedtheroletechnologyplaysinimproving

workersafetyandprovidesinformationthatshouldeasetheprocessofadoptingand

implementingtechnologyonhighwayprojects.

Currenttechnologiesusedinworkzonesafetymanagementplayanessentialrolein

improvingworkersafetythroughreducingmotoristspeed,alertingequipmentdriversof

potentialcollisionwithworkers,andinformingworkersofanintrudingvehicle.The

findingsfromthepresentstudyprovideessentialinformationsuchasthekeypredictorsof

safetytechnology,financialanalysis,andprimaryfactorsthataffectauser’sintentionto

39 | P a g e   

acceptaWZIATtoconstructionpractitionersinvolvedintechnologyadoptiondecision‐

making.Forinstance,thepresentstudyillustratesthesevereimpactthatlaborcosthason

theoveralldailycostofutilizingWZIAT.Reducingthetimeworkersareinvolvedin

managingaWZIATvastlyreducesthecostassociatedwithimplementingWZIAT.

Utilizingthisinformation,stakeholderscanarriveatacongruentdecisionregardingWZIAT

adoptionthatissupportedbyempiricaldataandwhichinturnimprovestheoutcome–in

thiscase,areductionininjuriesandfatalitiesinhighwayconstructionworkzones.

11. FutureResearchOpportunities

Providedbelowarerecommendationsforfutureresearchbasedonfindingsfromthe

currentstudy:

Thedevelopmentofadaptablestandardtoolsthathelpbridgetheknowledgegap

betweenmanufacturersandend‐usersshouldbeencouraged

Thereisaneedforthedevelopmentofarobustmodelforpredictingpotential

adoptionoftechnology

MonteCarlosimulationshouldbeappliedtothefinancialanalysistohelpnormalize

someassumptions

Workforcedevelopmenttrainingisneededforworkerstohelpimproveintegration

ofsafetytechnologywithinconstructionoperations

40 | P a g e   

12. References

AAM(2017).“ISS,NISSandMAISMappingwithAAAM’sICDISSMap.”Associationforthe

AdvancementofAutomotiveMedicine.<https://www.aaam.org/wp‐

content/uploads/2017/06/ICD‐ISS‐Map_Instructions_May_2017.pdf>(Jan.05,

2018)

AAAM(2015).“Overview.”AssociationfortheAdvancementofAutomotiveMedicine

<https://www.aaam.org/abbreviated‐injury‐scale‐ais/>

AASHTO(2010).“UserandNon‐UserBenefitAnalysisforHighways.”AmericanAssociation

ofStateHighwayandTransportationOfficials.

<https://trid.trb.org/view/1083520>(Jan.21,2017)

Arico,M.C.,andRavani,B.(2008).AdvancedHighwayMaintenanceandConstruction

TechnologyResearchCenter.

Agent,K.,andHibbs,J.(1996).“EvaluationofSHRPWorkZoneSafetyDevices”.Kentucky

TransportationCenterResearchReport.381.KTC‐96‐30

Bello,D.(2009).“StateofWorkZoneSafety.”

<http://www.safetyandhealthmagazine.com/articles/the‐state‐of‐work‐zone‐

safety‐2>(Aug.21,2017)

Boardman,A.Greenberg,D.,Vining,A.,andWeimer,D.(2001).“Cost‐BenefitAnalysis:

ConceptsandPractice.”seconded.PrenticeHall.

BLS(2017).“Fataloccupationalinjuriescountsandratesbyselectedindustries,2015‐16.”

<https://www.bls.gov/news.release/cfoi.t04.htm>(Nov.11,2017)

Brown,H.,Sun,C.,andCope,T.(2015).“Evaluationofmobileworkzonealarmsystems.”

TransportationResearchRecord:JournaloftheTransportationResearchBoard,

(2485),42‐50.

Chuttur,M.Y.(2009).“Overviewofthetechnologyacceptancemodel:Origins,

developmentsandfuturedirections.”WorkingPapersonInformationSystems,

9(37),9‐37.

41 | P a g e   

CPWR(2015).StrengtheningJobsiteSafetyClimatebyUsingandImprovingLeading

Indicators.TheCenterforConstructionResearchandTraining.

https://www.cpwr.com/safety‐culture/strengthening‐jobsite‐safety‐climate>(Jan.

12,2017)

Davis,F.D.(1989).“Perceivedusefulness,perceivedeaseofuse,anduseracceptanceof

informationtechnology.”MISquarterly,319‐340.

Edara,P.,Sun,C.,andRobertson,A.(2013).“EffectivenessofWorkZoneIntelligent

TransportationSystems.”ReportNo.InTransProject,06‐277.

ELWC(2015).“SonoBlaster–WorkZoneSafety.”<http://www.elwc.com.au/sonoblaster‐

work‐zone‐safety/>(Oct.14,2015).

FederalHighwayAdministration(2017).“FactsandStatistics–WorkZoneSafety.”

<https://ops.fhwa.dot.gov/wz/resources/facts_stats/safety.htm>.(Dec.17,2017).

Fyrie,P.(2016).“WorkZoneIntrusionAlarmsforHighwayWorkers.”AHMCTResearch

Center.

<http://www.dot.ca.gov/newtech/researchreports/preliminary_investigations/do

cs/work_zone_warning_preliminary_investigation.pdf.(April2017).

Gambatese,J.,Lee,H.,andNnaji,C.(2017).“WorkZoneIntrusionAlertTechnology:

AssessmentandPracticalGuidelines.”OregonDepartmentofTransportation

Gambatese,J.,andZhang,F.(2016).“ImpactofAdvisorySignsonVehicleSpeedsin

HighwayNighttimePavingProjectWorkZones.”TransportationResearchRecord:

JournaloftheTransportationResearchBoard,(2555),65‐71.

Garber,N.,andZhao,M.(2002).“Distributionandcharacteristicsofcrashesatdifferent

workzonelocationsinVirginia.”TransportationResearchRecord:Journalofthe

TransportationResearchBoard,(1794),19‐25.

Ghasemi,A.,andZahediasl,S.(2012).“Normalitytestsforstatisticalanalysis:aguidefor

non‐statisticians.”Internationaljournalofendocrinologyandmetabolism,10(2),

486.

42 | P a g e   

Hamilton,D.J.,Nuttall,W.J.,&Roques,F.A.(2009).Agentbasedsimulationoftechnology

adoption(No.0923).EPRGWorkingPaperSeries.

HighwayResourceSolution.(2015).“Intellicone.”<http://www.intellicone.co.uk/>(Sept.

02,2015).

Huebschman,C.R.,C.Garcia,D.M.Bullock,andD.M.Abraham.(2003).“ConstructionWork

ZoneSafety.”PublicationFHWA/IN/JTRP‐2002/34.JointTransportationResearch

Program,IndianaDepartmentofTransportationandPurdueUniversity,West

Lafayette,Indiana.https://doi.org/10.5703/1288284313166

Hong,Y.,Chan,D.W.,Chan,A.P.,andYeung,J.F.(2011).“Criticalanalysisofpartnering

researchtrendinconstructionjournals.”Journalofmanagementinengineering,

28(2),82‐95.

InfrastructureTrainingandSafetyInstitute(ITSI)(2011).“ReferenceGuidetoWorkZone

TrafficControl”< https://www.osha.gov/dte/grant_materials/fy10/sh‐21004‐

10/wztc_refguide.pdf>(March21,2018)

Lee,Y.,Hsieh,Y.andHsu,C(2011).“AddingInnovationDiffusionTheorytotheTechnology

AcceptanceModel :SupportingEmployees’IntentionstouseE‐LearningSystems.”

JournalofEducationalTechnologyandSociety,14(4)

Mathieson,K.(1991).“Predictinguserintentions:comparingthetechnologyacceptance

modelwiththetheoryofplannedbehavior.”Informationsystemsresearch,2(3),

173‐191.

Mathieson,K.,Peacock,E.,andChin,W.W.(2001).“Extendingthetechnologyacceptance

model:theinfluenceofperceiveduserresources.”ACMSIGMISDatabase:the

DATABASEforAdvancesinInformationSystems,32(3),86‐112.

Marks,E.,Vereen,S.,andAwolusi,I.(2017).“ActiveWorkZoneSafetyUsingEmerging

Technologies2017”(No.UTCAReportNumber15412).

43 | P a g e   

Marks,E.,andTeizer,J.(2013).“Methodfortestingproximitydetectionandalert

technologyforsafeconstructionequipmentoperation.”ConstructionManagement

andEconomics,31(6),636‐646.

Mitropoulos,P.,andTatum,C.(2000).“Forcesdrivingadoptionofnewinformation

technologies.”Journalofconstructionengineeringandmanagement,126(5),340‐

348.

Moren(2016).GuidanceonTreatmentofEconomicValueofaStatisticalLife(VSL)inU.S.

DepartmentofTransportationAnalysis–2016Adjustment.

<https://cms.dot.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of

%20a%20Statistical%20Life%20Guidance.pdf>(Nov15,2017)

Novosel,C.(2014).“EvaluationofAdvancedSafetyPerimeterSystemsforKansas

TemporaryWorkZones.”PhDdiss.,UniversityofKansas.

Park,J.,Yang,X.,Cho,Y.K.,andSeo,J.(2017).“Improvingdynamicproximitysensingand

processingforsmartwork‐zonesafety.”AutomationinConstruction,84,111‐120.

Pegula,S.(2013).“Ananalysisoffataloccupationalinjuriesatroadconstructionsites,

2003–2010.”TheBureauofLaborStatistics.Availableat

<http://www.bls.gov/opub/mlr/2013/article/an‐analysis‐of‐fatal‐occupational‐

injuries‐at‐road‐construction‐sites‐2003‐2010.htm>(Sept.16,2017)

Park,J.,Marks,E.,Cho,Y.K.,andSuryanto,W.(2015).“Performancetestofwireless

technologiesforpersonnelandequipmentproximitysensinginworkzones.”

JournalofConstructionEngineeringandManagement,142(1),04015049.

Park,J.,Yang,X.,Cho,Y.K.,andSeo,J.(2017).“Improvingdynamicproximitysensingand

processingforsmartwork‐zonesafety.”AutomationinConstruction,84,111‐120.

Rankin,J.H.,andLuther,R.(2006).“Theinnovationprocess:adoptionofinformationand

communicationtechnologyfortheconstructionindustry.”CanadianJournalofCivil

Engineering,33(12),1538‐1546.

44 | P a g e   

Rand,W.,andRust,R.T.(2011).“Agent‐basedmodelinginmarketing:Guidelinesforrigor”.

InternationalJournalofResearchinMarketing,28(3),181‐193.

Rasoulkhani,K.,Logasa,B.,Reyes,M.P.,andMostafavi,A.(2017).“Agent‐basedmodeling

frameworkforsimulationofcomplexadaptivemechanismsunderlyinghousehold

waterconservationtechnologyadoption.”InSimulationConference(WSC),2017

Winter(pp.1109‐1120).IEEE.

Sant(2014).“Work‐ZoneSafety:IntrusionAlert.”RoadandBridges

<http://www.roadsbridges.com/work‐zone‐safety‐intrusion‐alert>.(June09,

2016)

Schwatka,N.V.,andRosecrance,J.C.(2016).“Safetyclimateandsafetybehaviorsinthe

constructionindustry:Theimportanceofco‐workerscommitmenttosafety.”Work,

54(2),401‐413.

Sun,C.,Edara,P.P.,Hou,Y.,Robertson,A.,andSmith,D.(2011).“Cost‐BenefitAnalysisof

SequentialWarningLightsinNighttimeWorkZoneTapers.”UniversityofMissouri,

ReporttotheSmartWorkZoneDeploymentInitiative.

Teizer,J.,Allread,B.,Fullerton,C.,andHinze,J.(2010).“Autonomouspro‐activereal‐time

constructionworkerandequipmentoperatorproximitysafetyalertsystem.”

AutomationinConstruction,19(5),630‐640.

Theiss,L.,Miles,J.,Ullman,G.,andMaxwell,S.(2014).“PhotometricEvaluationofSteady‐

BurnWarningLightsinWorkZones”.TransportationResearchRecord:Journalof

theTransportationResearchBoard,(2458),88‐95.

Theiss,L.,Pratt,M.,Ullman,G.,andMaxwell,S.(2014).“EvaluationofCost‐Effectivenessof

Steady‐BurnWarningLightsinWorkZones.”TransportationResearchRecord:

JournaloftheTransportationResearchBoard,(2458),65‐73.

Ullman,G.,andIragavarapu,V.(2014).“AnalysisofExpectedCrashReductionBenefitsand

CostsofTruck‐MountedAttenuatorUseinWorkZones.”TransportationResearch

Record:JournaloftheTransportationResearchBoard,(2458),74‐77.

45 | P a g e   

Venkatesh,V.,Speier,C.,andMorris,M.G.(2002).“Useracceptanceenablersinindividual

decisionmakingabouttechnology:Towardanintegratedmodel.”Decision

sciences,33(2),297‐316.

Venkatesh,V.,andDavis,F.D.(1996).“Amodeloftheantecedentsofperceivedeaseofuse:

Developmentandtest.”Decisionsciences,27(3),451‐481.

Wang,M.,Schrock,S.,Bai,Y.,andRescot,R.(2011).“Evaluationofinnovativetrafficsafety

devicesatshort‐termworkzones.”ReportK‐TRAN:KU‐09‐5,TheUniversityof

Kansas.

Wong,J.M.,Arico,M.C.,andRavani,B.(2011).“Factorsinfluencinginjuryseverityto

highwayworkersinworkzoneintrusionaccidents.”Trafficinjuryprevention,

12(1),31‐38.

Yi,W.,andChan,A.P.(2013).“Criticalreviewoflaborproductivityresearchinconstruction

journals.”JournalofManagementinEngineering,30(2),214‐225.

Zhang,F.,andGambatese,J.(2017).“HighwayConstructionWork‐ZoneSafety:

EffectivenessofTraffic‐ControlDevices.”PracticePeriodicalonStructuralDesign

andConstruction,22(4),04017010.

13. Appendix

AppendixA:Survey

ReducingHighwayConstructionFatalitiesthroughImprovedAdoptionofSafety

Technologies

DearParticipant,

Wewouldliketothankyoufortakingthetimetoparticipateinthissurveyentitled“ReducingHighway

ConstructionFatalitiesthroughImprovedAdoptionofSafetyTechnologies."

46 | P a g e   

Thepurposeofthisstudyistodevelopatoolthatimprovestheadoptionanddiffusionofsafetyinnovations

intheconstructionindustry.Ifyouchoosetotakepartinthissurvey,youwillbeaskedtoprovidethe

followinginformation:

Perceptiononwhatfactorsinfluencestheacceptanceofworkzonesafetytechnologies·

Perceptionontheimpactofworkzonesafetytechnologies·

Personalattributessuchastitle,typeofcompany/organization,yearsofexperience,etc.

Thesurveyisexpectedtotakeapproximately15minutestocomplete.Yourresponsestothissurveyand

personalinformationprovidedwillbekeptconfidential,usedonlyforacademicpurposesrelatedtothe

study,andwillnotbedistributedtothepublic.Allidentifyinginformationconnectingrespondentstotheir

responseswillberemovedaspartofthedatacollectionprocess.Publicationsgeneratedfromtheresearch

studywillnotincludeanyinformationthatcanbeusedtoidentifyrespondents.

Ifyouhaveanyquestionsaboutthesurvey,pleasecontacttheresearcherslistedbelow.Ifyouhavequestions

aboutyourrightsorwelfareasasurveyparticipant,pleasecontacttheOregonStateUniversityInstitutional

ReviewBoard(IRB)Officeat541‐737‐8008,[email protected].

ResearchTeam:

Dr.ChinweikeEseonu(PrincipalInvestigator),Mechanical,IndustrialandManufacturingEngineering,Oregon

StateUniversity,204RogersHall,Corvallis,OR97331;Cell‐phone:541‐737‐0024;

E‐mail:[email protected]

JohnGambatese,CivilandConstructionEngineering,OregonStateUniversity,101KearneyHall,Corvallis,OR

97331;Cell‐phone:(541)737‐8913;E‐mail:[email protected]

ChukwumaNnaji,CivilandConstructionEngineering,OregonStateUniversity,101KearneyHall,Corvallis,

OR97331;Cell‐phone:(541)908‐0475;E‐mail:[email protected]

Acknowledgement:Bycontinuingthesurvey,Ihavereadtheabovedescriptionoftheresearch.IfIhadquestionsorwouldlikeadditional

information,Icontactedtheresearchersandhadallofmyquestionsansweredtomysatisfaction.Iagreetovoluntarily

47 | P a g e   

participateinthisresearch.Byansweringthesurveyquestionsandrespondingtothissurvey,IaffirmthatIhavereadtheabove

information,agreetoparticipateintheresearch,andamatleast18yearsofageorolder.

SurveyQuestions

DemographicInformation

Q1Pleaseselectyourrole

OwnerAgency(e.g.OregonDOT,etc.)(1)

GeneralContractor(2)

Sub‐Contractor(3)

Consultant(6)

EquipmentManufacturer(7)

EquipmentSupplier(4)

Student(8)

Other(5)____________________

Q2Whatindustrydoyou(orhaveyou)workedin?Selectallthatapply.

HeavyCivil(1)

MarineConstruction(2)

VerticalConstruction(ResidentialandCommercial)(3)

IndustrialConstruction(4)

Other(5)____________________

Q3Selectthejobtitlethatbestdescribeswhatyoudo.

ProjectManager(1)

ProjectEngineer(2)

TrafficControlDesigner(3)

SafetyOfficer(4)

SafetyEquipmentSupplier(5)

RoadMaintenanceCrew(6)

TrafficControlConsultant(9)

TrafficControlCrew(7)

Other(8)____________________

48 | P a g e   

Q4.Whatistheapproximateannualrevenueofyourcompany?

Q5.Whatisthesizeofyourcompany?(Approximatenumberofemployees)

Q6.Whichsectorwouldyoubestdescribemostofyourcompany'sprojects?(Selectallthatapply)

Residential(1)

Commercial(2)

HeavyCivil(3)

Energy(4)

Industrial(5)

Marine(6)

Q7Howmanyyearsofexperiencedoyouhaveintheconstructionindustry?

Lessthan1year(1)

1‐5years(2)

5‐10years(3)

10‐20years(4)

Morethan20years(5)

Thequestionsinthenextsectionfocusonfactorsthatcouldimpacttheuseofaworkzone

intrusionalerttechnology.Aworkzoneintrusionalerttechnology(WZIAT)isatypeofsafety

systemusedinaroadwayworkzonetoalertfieldworkersandsecuretimeforthemtoescape

whenerrantvehiclesintrudeintotheworkzone.Pleaseanswerthefollowingquestionswiththe

WZIATinmind.

Q8Areyoufamiliarwithworkzoneintrusionalerttechnology?

Definitelyyes(1)

Probablyyes(2)

Probablynot(3)

Definitelynot(4)

Q9HowimportantarethefollowingattributestoyourdecisiontoadoptWZIAT?

49 | P a g e   

Not

Important

(1)

Slightly

Important

(2)

Neutral(3) Important

(4)

Very

Important

(5)

EaseofDeployment/Retrieval(1)

Easytomovethetechnologyaround(2)

UserFriendliness(learningcurve)(3)

LittleornoImpactonTrafficFlowand

Controlwithinworkzone(4)

Limitsworkerexposure(during

deployment/retrievaloftechnology)(5)

Easytostore(6)

Resistancetoenvironmentaland

physicalimpact(7)

Reusable(8)

EasytoMaintain(9)

ExtendedbatteryLife(reliability)(10)

Costoflaborandequipment(11)

Availabilityofequipmentinthemarket

(12)

Costofreplacingparts/maintenance

(13)

Impactofwarningalertondriveror

Drivercomprehensionofvisualand

audiowarning(14)

50 | P a g e   

Workercomprehensionofwarning

signal(conspicuity,qualityofalarm)

(15)

Multiplewarningalertsources(audio,

visual,haptic/vibratory)(16)

Adequatecoveragedistance

(Sensor/light/sound/haptic)(17)

Limitedphysicalimpactonvehicle

(collisionwithtechnology)(18)

Driveradequatelycomprehendsvisual

andaudiowarning(19)

Fewornofalsenegativeandpositive

alarm(20)

Lessdependenceonexisting

infrastructure(21)

51 | P a g e   

Q10HowdoesWZIATimpactworkers?

Strongly

disagree/

unlikely

(1)

Somewhat

disagree/

unlikely

(2)

Neither

agree/likenor

disagree/

unlikely(3)

Somewhat

agree/

likely(4)

Strongly

agree/

likely(5)

ImplementingWZIATenablesworkers

tobemoreproductive(1)

UsingWZIATimprovesworkerssafety

(2)

UsingWZIATimprovesworkquality

(3)

WZIATiseasytouse(4)

WZIATwouldhaveasteeplearning

curve(5)

WorkerswillfindWZIATeasytouse

(6)

Peoplewhoareimportanttomewould

thinkIshoulduseWZIAT(7)

IwilluseWZIATbecausepeoplewho

influencemybehavior(manager,etc.)

wouldwantmetouseit(8)

IwillencouragetheuseofWZIAT(9)

IwilllikelyincorporateWZIATinto

yourworkoperations(ifitwasmy

decisiontomake)(10)

IwillrecommendtheuseofWZIATto

myboss(11)

52 | P a g e   

Thequestionsinthenextsectionfocusonsafetyclimateandculture.“Safetyclimate”isdefinedas

“thevalues,attitudes,motivations,andknowledgethataffecttheextenttowhichsafetyis

emphasizedovercompetinggoalsindecisionsandbehaviors.”(Barnes2009)Pleasekindly

indicatehowyouperceiveyourorganization'sattitudetowardsworkersafetymanagement.

Q11Inmycompany,management…

Doesnotparticipateinsafetyaudits.(1)

Onlyparticipateinsafetyauditsinresponsetoaworkerinjuryoradversesafetyevent.(2)

Participateinsafetyauditsonlywhenrequired.(3)

Initiateandactivelyparticipateininternalsafetyaudits.(4)

Activelyparticipateininternalsafetyauditsandusetheinformationformanagement

performanceevaluation.(5)

Q12Inmycompany,…

Thereisnoformalsafetymanagementsystem;safetytrendsarenotanalyzed.(1)

Thesafetymanagementsystemisreviewedandsafetytrendsareonlyanalyzedinresponseto

workerinjuryoranadversesafetyevent.(2)

Thesafetymanagementsystemisreviewedandsafetytrendsareanalyzedfromtimetotime.

(3)

Thesafetymanagementsystemisreviewedandsafetytrendsareanalyzedannuallytoensure

effectivenessandrelevance.(4)

Thesafetymanagementsystemisreviewedandsafetytrendsareanalyzedbi‐annuallyto

ensureeffectivenessandrelevance.(5)

53 | P a g e   

Q13Inmycompany,…

Theprimaryfocusisonincreasingproductivityandreducingcosts.Employeesarerewarded

fortakingshortcutstomeetproductiongoals.(1)

Whenaprojectfallsbehindschedule,productionbecomesvaluedmorethansafety.(2)

Aslongasminimumsafetyrequirementsarebeingmet,productionandcostreductionarethe

mainprioritiesofaproject.(3)

Forthemostpart,safetyisnotcompromisedforthesakeofproductivity.Projectsare

completedassafelyaspossible.(4)

Safetyisnevercompromisedforproductivity,schedule,orcost.Safetytrulycomesfirst.(5)

Q14Inmycompany,management…

Doesnotinvestinsafetyprogramdevelopmentorprovideadequateresourcestoconductwork

safely.(1)

Onlyinvestsinsafetyprogramdevelopmentanddevotesminimalresourcestosafetyactivities

afteranaccidentoranadverseeventhasoccurred.(2)

Participatesinsafetyprogramdevelopmentandallocatesresourcestotheextentthatitis

requiredbyregulatoryauthoritiesortheowner.(3)

Providesadequateresourcestoensureasafeworkingenvironment.Developsasafetyprogram

thatissharedwithallemployees.(4)

Provideson‐goingfinancialsupportforongoingdevelopmentofsafetypolicies,programs,and

processes.Investsinsystemsandprocessestocontinuallyimprovethejobsitesafetyclimate.

(5)

54 | P a g e   

Q15Inmycompany,…

Therearenosafetyrelatedmetricsincludedinmanagerorsupervisors’performance

evaluations.(1)

Theonlysafetymetricusedinmanagersandsupervisors’evaluationsisthenumberofworker

injuries,andoftenthatisignored.(2)

Managersandsupervisorsareheldaccountableformeetingtheminimumrequiredsafety

standards;but,poorprojectsafetyperformancecarriesfewrealconsequences.(3)

Managersandsupervisorsareprimarilyheldaccountableforlaggingsafetyindicators(e.g.,

RecordableInjuryRate),butsomeleadingindicators(e.g.,safetyclimatemetrics)havebeen

included.(4)

Managersandsupervisorsareheldaccountableforleading(e.g.,safetyclimatemetrics)and

laggingsafetyindicators.Proactivesafetyleadershipisacriticalcomponentoftheirevaluation

andpromotion.(5)

Q16Inmycompany,safetyexpectations,roles,andresponsibilities…

Arenotidentifiedorarticulatedtoindividualsworkingintheworkplace.(1)

Areonlyclarifiedafteranadversesafetyevent.(2)

AreonlysettomeetOSHArequirements.(3)

Arefrequently,clearly,andconsistentlycommunicatedtoemployees.(4)

Arediscussedwithemployeesacrosstheentirecompany,withsub‐contractors,and

owners;theyarereinforcedonadailybasis.(5)

55 | P a g e   

Q17Inmycompany,…

Supervisorshavenosupervisorytrainingandhavelittleunderstandingorknowledgeof

regulatoryrequirements.(1)

Afteranincidentoccursorregulatoryactionistaken,thereisadiscussionamonghigherlevel

managementabouttheimportanceofsupervisoryleadership.(2)

SupervisorstakeOSHA30‐hourtrainingandthusarefamiliarwithOSHAregulationsbutthey

havelittleornoleadershiptraining.(3)

Supervisorsaretrainedonregulatoryguidelinesandleadership.(4)

Supervisorsareprovidedwithandrequiredtotakeleadershiptrainingthatincludestopics

suchas:howtocommunicatewith,andmotivateteammembers;howtoconductpre‐planning

meetings;andhowtoinspirecrewmemberstoalsobeproactivesafetyleaders.(5)

Q18Inmycompany,supervisors…

Manageandpunishusingintimidationandfocusonlyonindividualbehaviorwithouttaking

whatmayhavebeenafaultyprocessintoaccount.(1)

Startcaringfortheircrewandactingassafetyleadersonlyafteranincidentoccursor

regulatoryactionistaken.Thebehaviordisplayedisshort‐lived.(2)

“Talkthesafetytalk”,butoftendonotfollowtheirownadviceandexpectations.(3)

Initiateandactivelyparticipateinsafetyprogramactivitiesthatarefocusedoncontinuous

improvement.(4)

Instillasenseofsafetyownershipatalllevels,serveaseffectivesafetycommunicators,

excellentrolemodelsforsafety,andareabletocoachandteach.Safetyisinfusedintoevery

meeting.(5)

Q19Inmycompany,employees…

Feelnosenseofresponsibilityfortheirco‐employees’ortheirownsafety.(1)

Aren’tengagedinpromotingsafetyuntilafteranaccidentoccurs.(2)

Areengagedinpromotingsafetytotheextentthatisrequired.(3)

Participateinallaspectsofensuringsafeworkingconditions,beginningattheplanningand

designstages.(4)

Areempoweredandrewardedforgoingaboveandbeyondtoensuresafeworkingconditions

wheretheyalwaysfeelresponsiblefortheirandtheirco‐employeessafety.(5)

56 | P a g e   

Q20Inmycompany,…

Workerfeedbackregardingsafetyconditionsandhazardreductionisnotsought.Theyjust

wantemployeesto“getthejobdone.”(1)

Employeesareaskedforsafetyadviceandfeedbackafteraninjuryoradversesafetyeventhas

occurred.(2)

Workerfeedbackregardingsafetyissoughtonlywheninitiatedbyemployeesorduring

mandatorysafetymeetings.(3)

Managementactivelyinvolvesemployeesinidentifyinghazardsandsolvingsafetyproblemsby

includingthemindailypre‐jobsafetyandcrewtask/hazardanalysis.(4)

Managementactivelyseeksworkerinputonsafety.Safetyandevennon‐safetymeetingsand

walk‐aroundsfocusonsolvingspecificproblemsidentifiedbyemployeesandothers.(5)

Q21Inmycompany,Injuryandillnessdata…

Arenotcollected,unlessthere’safatalitythatmustbereportedtoOSHAorotherentities.(1)

Arecollected,buttheyareonlyreviewedafteranadversesafetyeventhasoccurred.Issuesare

notformallytrackednorareresolutionscommunicatedacrosstheorganization.(2)

ArecollectedforthepurposeofbeingcompliantwithOSHArequirements.Supervisorspass

safetyinformationontotheircrewonlywhenrequiredbymanagement.(3)

Areregularlyandformallycollectedandsharedwithmanagersandsupervisors;supervisors

areencouragedbutnotrequiredtoshareinformationwiththeiremployees.(4)

Aregatheredthroughformalsystemsforregularlysharingandfollow‐upimprovementactions

withmanagers,supervisor,andemployees.(5)

Q22Inmycompany,…

Thereisnoadequatesafety‐relatedcommunicationeffort.(1)

Safety‐relatedcommunicationeffortsoccuronlyinresponsetoanadversesafetyevent.(2)

Safety‐relatedcommunicationeffortmeetsOSHArequirements.(3)

Safety‐relatedcommunicationeffortismadewhenthere’sanewstandardorpolicythatneeds

tobefollowed.(4)

Safetyrelatedcommunicationeffortisformalizedbothverticallyandhorizontallythroughout

thecompanyandintheworkplace.(5)

57 | P a g e   

Q23Inmycompany…

Thereisnotrainingverificationprocess.(1)

Trainingcardsorcertificatesareonlyinvestigatedafteranincidenthasoccurred.(2)

TrainingisverifiedonlytotheextentrequiredbyOSHAregulations.(3)

Trainingforallemployees,includingsub‐contractors,isverifiedregularly.(4)

Trainingforallemployees,includingallsub‐contractorsisverifiedbeforeworkisconductedon

everyproject.Knowledgeandskillcompetenceareregularlyassessed.(5)

Q24Inmycompany,…

Trainershavenoformalqualifications.(1)

Becauseofjob‐siteexperiencealone,seniorlevelemployees(e.g.,foreman)areaskedto

conductsafetytraining.(2)

AformalsafetycurriculumisdevelopedandadministeredbytrainerswhomeetminimalOSHA

qualifications.(3)

Safetycurriculumisdevelopedbyhighlyqualifiedtrainers.(4)

Safetycurriculumisdevelopedandadministeredbyhighlyqualifiedandexperiencedcontent

expertswithknowledgeofadultlearningprinciples.(5)

Q25Atmyjobsite,theowner/client…

Doesnotrequiresafetypre‐qualificationsfromgeneralcontractorsorsub‐contractors;

selectionsarebasedonthelowestbid.(1)

Onlyconsiderscontractorsafetyandhealthcomeswhenanadversesafetyeventoccurs.

(2)

Reliesonfederal,state,andlocalsafetylawsforpre‐qualificationcriteria.Bidsincludea

budgetforOSHAfines.(3)

Selectscontractorsbasedonpriorsafetyandhealthperformance–aswellasbid.(4)

Selectsgeneralandsub‐contractorsbasedonsafetyprogram,practicesandclimaterather

thanlowbid.Contractorswithpoorsafetyrecordsareexcludedfrombidding.(5)

58 | P a g e   

Q26Atmyjobsite,theowner/client…

Caresmostandsometimesonlyaboutlow‐costbidsandon‐timeprojectcompletion.(1)

Acknowledgesthatsafetymatters,butonlyifitdoesnotinterferewithproduction.(2)

AgreesthatsafetymattersandsupportsittothedegreethatmatchesOSHAregulations.(3)

Believessafetyisequivalenttoproductivityandcommunicatesthattoallcontractors,sub‐

contractors,supervisors,andemployees.(4)

Viewsthemselvesasultimatelyresponsibleforsafety.OftenusesanOwnerControlled

InsuranceProgrambecauseitrequiressupportingstringentsafetyandlosscontrolprocedures.

(5)

Q27Theinjuryrateinmyorganizationis...

Belowindustryaverage(1)

On‐parwithindustryaverages(2)

Aboveindustryaverage(3)

EndofSurvey

48 | P a g e   

AppendixB

Contractor(n=53) DOT(n=69) Manufacturer&Vend

or(n=39)

Consultants

(n=20)

Students(n=135) Total

(n=316)

Mea

n

S.D Skew Mea

n

S.D Skew Mea

n

S.D Skew Mea

n

S.D Skew Mea

n

S.D Skew Mea

n

S.D

Easeof

Deployment/Retrie

val

4.21 0.8

4

‐1.43 4.07 0.8

6

‐1.42 4.08 0.9

8

‐1.73 4.2 0.6

2

‐0.12 3.69 0.95

8

‐0.734 3.94 0.92

6

Easytomove

around

4.26 0.8

6

‐1.50 4.09 0.8

7

‐1.41 3.95 1.0

3

‐1.75 4.3 0.5

7

‐0.038 3.85 0.92

7

‐1.014 4.01 0.90

8

UserFriendliness 3.92 0.7

3

‐1.42 3.81 0.8

6

‐1.04 4.05 1.1

2

‐1.52 4 0.4

6

0 3.9 0.99

2

‐0.783 3.91 0.91

5

LittleornoImpact

ontrafficControl

3.68 1.0

7

‐0.59 4.07 0.9

9

‐1.27 4.03 1.0

9

‐1.22 4.1 0.6

4

‐0.08 3.79 1.00

8

‐0.547 3.88 1.01

2

Limitsworker

exposure

4.51 0.7

0

‐1.04 4.48 0.7

0

‐0.99 4.08 1.0

1

‐1.45 4.2 0.5

2

0.294 3.86 0.95

5

‐0.547 4.15 0.88

9

Easytostore 2.81 0.9

8

0.40 2.74 1.0

4

0.14 3.03 0.9

9

‐0.57 2.5 0.6

9

0 3.04 0.96

9

0.21 2.9 0.98

2

Resistanceto

environmental

impact

3.72 0.8

9

‐0.44 3.42 0.8

5

‐0.19 3.83 1.0

3

‐0.65 3.25 0.5

5

0.132 3.9 0.91

6

‐0.795 3.71 0.91

3

Reusable 4.19 0.9

4

‐1.40 3.79 0.9

2

‐0.63 4.1 1.0

2

‐2.09 3.85 0.7

5

‐0.591 4.12 0.97 ‐1.137 4.04 0.95

5

EasytoMaintain 4.04 0.8 ‐0.53 3.97 0.8 ‐0.51 3.82 0.9 ‐1.23 3.6 0.6 0.712 3.92 0.93 ‐0.824 3.92 0.89

48 | P a g e   

1 7 8 8 9 5

Extendedbattery

Life

3.91 0.7

4

‐0.44 3.71 0.8

8

‐0.32 4 1.0

8

‐1.74 3.8 0.7

7

‐0.403 4.02 0.91 ‐0.829 3.92 0.89

6

Costoflaborand

equipment

3.57 1.0

8

‐0.46 3.62 1.0

5

‐0.52 3.74 1.1

2

‐1.12 3.5 0.8

9

‐0.25 3.67 0.96

8

‐0.504 3.64 1.02

1

Availabilityof

equipmentinthe

market

3.85 0.8

4

‐1.11 3.59 1.0

0

‐0.39 3.53 1.0

3

‐0.77 3.35 0.8

1

0.541 3.56 0.90

3

‐0.23 3.6 0.92

8

Costofreplacing

partsmaintenance

3.6 1.0

1

‐0.53 3.59 0.9

3

‐0.21 3.5 1.0

8

‐0.74 3.3 0.8

0

0.055 3.67 0.88

9

‐0.388 3.6 0.93

8

Impactofwarning

alertondriver

4.17 0.8

9

‐1.19 4.41 0.6

3

‐0.56 3.78 1.5

3

‐1.04 4.8 0.4

1

‐1.624 4.07 0.96

7

‐0.854 4.18

0.97

8

Worker

comprehensionof

warningsignal

4.6 0.6

0

‐1.25 4.67 0.5

3

‐1.31 4.3 1.0

0

‐2.07 4.8 0.4

1

‐1.624 4.24 0.85

9

‐1.069 4.44 0.77

8

Multiplewarning

alertsources

4.08 0.7

6

‐0.41 4.23 0.7

9

‐1.00 4.16 0.9

9

‐1.81 4.2 0.6

2

‐0.12 3.96 1.05 ‐1.01 4.08 0.92

2

Adequatecoverage

distance

4.51 0.6

7

‐1.44 4.36 0.7

3

‐0.92 4.22 1.0

9

‐1.57 4.2 0.4

1

1.624 4.12 0.87

3

‐0.985 4.25 0.82

6

Limitedphysical

impactonvehicle

3.23 1.0

1

‐0.02 3.65 0.9

5

‐0.19 3.68 1.1

8

‐0.72 3.8 0.8

3

‐0.194 3.45 1.14

4

‐0.381 3.51 1.07

6

Driveradequately

comprehends

visualandaudio

warning

4.25 0.9

2

‐1.29 4.39 0.6

9

‐0.65 3.62 1.3

7

‐0.94 4.8 0.4

1

‐1.624 4.19 0.83 ‐0.677 4.21 0.90

9

Fewornofalse 4.38 0.7 ‐1.04 4.33 0.8 ‐1.33 4.03 1.0 ‐1.52 4.15 0.4 0.442 4.05 1.03 ‐0.767 4.17 0.93

48 | P a g e   

negativeand

positivealarm

7 3 7 9 2 3

Lessdependence

onexisting

infrastructure

3.43 1.0

3

‐0.31 3.41 1.0

2

‐0.30 3.35 0.9

2

‐0.33 3.15 0.5

9

‐0.004 3.56 0.96

7

0.092 3.45 0.96

6

50 | P a g e   

APPENDIXC

Component Description Estimation Source

Shelflife 8yearsfor

eachdevice

Theissetal.2014,assumption

Workweek/years 20

Boliwage 26 http://www.oregon.gov/boli/WHD/PWR/Pages/PWR‐Rate‐

Publications‐‐‐2018.aspx

#ofworkday/week 4

Strobecost $35 https://www.mad4tools.com/dorman‐conelite‐led‐traffic‐

lamp‐light‐with‐cone‐bracket#tab_description_tabbed

Batterycost 2AADuracell $15 https://www.bhphotovideo.com/c/product/567719‐

REG/Duracell_MN2400B2_AAA_1_5v_Alkaline_Coppertop.html

WASPSD $100 https://www.tapconet.com/store/product‐

detail/JYab/worker‐alert‐system‐personal‐safety‐device‐

vibration‐unit?sku=TG‐WAS‐PSD

Maintenance

time/day

0.5–1.05hrs Theissetal.2014,interviewdata

Wagerate

multiplier

1.5 Theissetal.2014

#ofworkersina

workzone

10 Interviewdata

50 | P a g e   

#ofmilespaved

annually(state)

170 ODOT2016reviewstatistics

#ofmilespaved

annually

(contractor)

15 Interviewdata

#ofdevicesand

accessoriespermile

Gambateseetal.2017

w w w. c p w r. c o m • w w w. e l c o s h . o rg