PAQUES - Anaerobic effluent treatment Pulp & Paper

53
13-2-2013 Anaerobic effluent treatment in the pulp and paper industry www.paques.nl

Transcript of PAQUES - Anaerobic effluent treatment Pulp & Paper

13-2-2013

Anaerobic effluent treatment in the pulp and paper industry

www.paques.nl

2

Who is Paques?

• Family owned business

• Founded in 1960

• Number of employees : ~400

• Operations in The Netherlands, China, Brazil, and sales office in Canada

• Worldwide presence through network of partners, partnering strategy

• Innovative biological applications for wastewater and gas

• 2011: SKion GmbH, the investment firm of German entrepreneur Susanne Klatten (BMW, ALTANA, SGL) purchases 20% shares

• 2011: JV with Shell for biological gas desulphurization

3

4

• Paques has around 1500 references worldwide

– Mainly anaerobic water treatment (energy from wastewater) and biogas desulphurization

– Market leader in pulp & paper, beer & beverage and food sector

– Strong portfolio in sulphur based biotechnology

• Growing and developing in:

– Metal and Mining

– Oil and Gas through Paqell

– Petrochemical

– Algeae

– Biobased chemicals

Who is Paques?

5

• Meet safe water discharge requirements

• Reduce water consumption (water footprint)

• Produce green gas (carbon footprint)

• Upgrade biogas

• Resource recovery from used water

By offering:

• Biological processes and engineering packages

• Integrated solutions • Reliable

• High uptime

• Energy efficient

• Best performance with attractive economics

Paques helps companies to:

6

• Process design

• Basic and detailed engineering

• Manufacturing

• Contracting

• Construction

• Research & Development

• Laboratory services

• Pilot testing

• Consultancy and services

Paques’ services

7

More than 1,500 reference plants in more

than 60 countries in the following industries:

• Pulp and Paper

• Beer and Beverages

• Food

• Distilleries

• Chemical industry

• Metal and Mining

• Oil and Gas

• Municipalities

8

Anaerobic Waste Water Treatment

Pulp & Paper

9

Purpose

• Removal of organic contaminants

• Biogas production

Paques

• The word leader in anaerobic treatment

• More than 875 references in more than 60 countries

Anaerobic COD removal

10

Smurfit Kappa Roermond Papier 1983

11

100st IC reactor in P&P

started up in 2008

DS Smith France

12

Sludge granulation is the most popular anaerobic technology to treat pulp & paper effluent

UASB/IC

75%

AF

2%CSTR

7%

FB

2%

EGSB

14%

13

No.1 in anaerobic treatment of wastewater for pulp & paper industry

PAQUES

59%

A

17%

B

8%

C

6%

D

6%E

4%

14

Traditional aerobic process

BOD + O2 H2O + CO2 + BIOMASS

CO2 + H20

45

45

10 100

Aerobic sludge

Effluent

Aerobic biomass (~4 g/l MLSS)

Aerobic sludge

• High growth rate

• High energy requirement

• High sludge production

• Flocculant sludge

15

Concerns of Aerobic Treatment

- Important Space needed - Energy Requirement for Aeration - Important Sludge Production - Sensitive to Loading Variation - Problems of Sludge Separation

16

Anaerobic process

COD CH4 + CO2 + BIOMASS

Anaerobic methanogenic biomass

• Low growth rate

• Production of reusable methane (green

energy)

• Low sludge production (& biomass is

asset rather than waste)

• Granular biomass

Anaerobic biomass

CO2 + H20

45

45

10

Effluent 100

Aerobic sludge

CH4 + CO2

75

20

100

5

Effluent

Anaerobic sludge

17

Why anaerobic pre-treatment ?

- reduced energy consumption

- reduced sludge production

- more stable operation

- energy production

- reduced green house effect

In aerobic

plant

Revenue

18

Secondary Clarifier before anaerobic system installed

19

Secondary Clarifier after anaerobic system installed

20

Improvement of aerobic sludge

Before anaerobic

system installed

After anaerobic

system installed

21

Lab testing: Oxitop

22

Pilot testing

23

24

• High rate (20-30 kg COD/m3/d)

• Small footprint

• Low hydraulic retention time

• Self regulating system

• Intensely mixed biomass at bottom reactor

• Optimal sludge retention at top reactor

BIOPAQ®IC reactor

25

26

Advantages BIOPAQ® IC reactor

• Proven technology, > 875 BIOPAQ references

• Closed system, corrosion free materials

• Minimal foot-print (space saving and odor emission

surface limited)

• Completely mixed reactor compartment due to Internal

Circulation principle

• Optimal sludge retention due to two-staged separation

• Maximal recovery of biological alkalinity, reduced

chemical costs

• Robust & more stable due to

- two-staged concept

- automatic internal dilution (IC)

27

Feasibility of anaerobic effluent treatment MILL PROCESS FEASIBILITY OF ANAEROBIC

TREATMENT

Mechanical Pulping

Debarking

RMP, Ground wood

TMP, BTMP (Peroxide)

CTMP, BCTMP (Peroxide)

APMP (Peroxide)

-

+

++

+/++

++

Semi Chemical Pulping

NSSC

Soda pulping

+

+

Chemical Pulping

Sulfite pulp condensate

Sulfite bleaching: E,O,P

Sulfite bleaching: C,H,D

++

+

-

Kraft pulp condensate

Kraft bleaching: E,O,P

Kraft bleaching: C,H,D

++

+

-

Dissolving pulp condensate

Bleaching: E,O,P

Bleaching: C,H,D

+

+

-

Secondary Fibres

Wastepaper, DIP ++

Non-wood (soda) Pulping

Straw, Bagasse, Cotton Linters

+

28

Raw material and COD removal

Raw material COD efficiency %

OCC 75 – 85

MWP 65 - 75

MOW 60 - 70

ONP 50 - 55

Mech. pulp / spruce 50 - 55

Mech. pulp / aspen 65 - 75

Condensates 75 - 95

29

General flow diagram

Sludge

dewatering

N,P

Effluent

Primary clarifier Aeration tanks

Sec. clarifier

sieve

Influent

Return sludge

Biogas

Gasholder Flare

IC reactor Conditioning

tank

30

Zero discharge concept at paper mill

Conditioning tank IC Reactor

Aereation

Water storage tank

Secondary clarifier

Aereation basins

31

SCA Newhythe - UK

IC diameter 9.5 m

Height 20 m

Volume 1,400 m3

Flow 6,000 m3/d

COD 5,000 mg/l

COD 30 tpd

32

COD-load (kg/d)

IC Reactor COD load

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1-1

-2004

15-1

-2004

29-1

-2004

12-2

-2004

26-2

-2004

11-3

-2004

25-3

-2004

8-4

-2004

22-4

-2004

6-5

-2004

20-5

-2004

3-6

-2004

17-6

-2004

1-7

-2004

15-7

-2004

29-7

-2004

12-8

-2004

26-8

-2004

9-9

-2004

23-9

-2004

7-1

0-2

004

21-1

0-2

004

4-1

1-2

004

18-1

1-2

004

2-1

2-2

004

16-1

2-2

004

30-1

2-2

004

kg

CO

D/d

33

Final effluent COD (mg/l)

Final Effluent COD

0

20

40

60

80

100

120

140

160

180

200

1-1

-2004

15-1

-2004

29-1

-2004

12-2

-2004

26-2

-2004

11-3

-2004

25-3

-2004

8-4

-2004

22-4

-2004

6-5

-2004

20-5

-2004

3-6

-2004

17-6

-2004

1-7

-2004

15-7

-2004

29-7

-2004

12-8

-2004

26-8

-2004

9-9

-2004

23-9

-2004

7-1

0-2

004

21-1

0-2

004

4-1

1-2

004

18-1

1-2

004

2-1

2-2

004

16-1

2-2

004

30-1

2-2

004

CO

D (

mg

/l)

34

COD removal (%)

IC Reactor COD removal efficiency (%)

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

1-1

-2004

15-1

-2004

29-1

-2004

12-2

-2004

26-2

-2004

11-3

-2004

25-3

-2004

8-4

-2004

22-4

-2004

6-5

-2004

20-5

-2004

3-6

-2004

17-6

-2004

1-7

-2004

15-7

-2004

29-7

-2004

12-8

-2004

26-8

-2004

9-9

-2004

23-9

-2004

7-1

0-2

004

21-1

0-2

004

4-1

1-2

004

18-1

1-2

004

2-1

2-2

004

16-1

2-2

004

30-1

2-2

004

Eff

icie

ncy (

%)

35

SAICA 3, Spain

Diameter 9.5 m Height 24 m Volume 1,680 m3

Flow 8,000 m3/d COD 5,800 mg/l COD 47 tpd

36

SAICA 3: Biogas production and VLR

15.000

15.500

16.000

16.500

17.000

17.500

18.000

18.500

JAN FEB MAR APR MAY JUN JUL AUG

Bio

gas p

rod

ucti

on

in

m3/h

22

23

24

25

26

27

28

29

30

VL

R i

n k

g C

OD

/ m

3.d

Biogas production Nm3/h VLR in kg COD / m3.d

Loading rate and biogas

37

VLR vs COD Efficiency

0

10

20

30

40

50

60

70

80

90

100

0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0 45,0

VLR kg/m3/d

CO

D e

ffic

ien

cy

Performance at high loading

Volumetric Loading Rate (VLR) in kg COD/m3.d Loading rate versus biogas

38

Palm Wörth, Germany

Diameter 9.5 m Height 24 m Volume 2 x 1,680 m3

Flow 9,000 m3/d COD 5,500 mg/l COD 50 tpd

39

Papierfabrik Palm, Germany TL, CM

BIOPAQ®IC

2 x 1680 m³, Gasbuffer 500 m³, Gasflare 1200 m³/h

THIOPAQ®60/1.2

40

Ruhrverband, Germany Tissue

BIOPAQ®IC

2 x 195 m³

THIOPAQ®ECO

2004

41

Emin-Leydier, France Diameter 9.5 m Height 24 m Volume 1,680 m3

Flow 6,500 m3/d COD 5,500 mg/l COD 36 tpd

42

Cartonneries de Gondardennes France TL, CM

Turn-key wwtp

Anaerbic + aerobic

BIOPAQ®IC 1190 m³

Gasbuffer 30 m³

Gasflare 900 m³/h

2006

43

Rock-Tenn Solvay Paperboard, USA

44

Smurfit Kappa, UK

IC 6 x 24 m Flow 3000 m3/d COD 6000 mg/l

45

Stora Enso, Germany

Hagen Kabel (LWC from spruce)

Diameter 2 x 8 m Flow 24,000 m3/d

Height 20 m COD 1,200 mg/l

Volume 2 x 1,000 m3 COD 30 ton/d

Eilenburg (DIP, Newsprint)

Diameter 4 x 5 m Flow 15,000 m3/d

Height 16 m COD 1,500 mg/l

Volume 4 x 310 m3 COD 22 ton/d

46

Mechanical Pulping Process: TMP by Sound Raw materials: Masson Pine Production: 200tpd WWTP biological start up in 2001

Nanping Paper, China

47

Mechanical Pulping Process: PRC-APMP by Andritz Raw materials: Aspen Production: 500tpd WWTP biological start up in 2002

Yueyang Paper, China

48

UPM Kymmene, Germany SC/LWC

49

Fujian Nanping Paper, China TMP/DIP

50

YueYang Paper, China

Mechanical Pulping: Aspen/Eucalyptus

51

Chen Loong, China

52

M-Real, Austria Sulphite Condensate