Optical modeling and simulation of thin-film Cu(In,Ga)Se2 solar cells

30
University of Ljubljana Faculty of Electrical Engineering Optical Optical modeling modeling and and simulation simulation of of thin thin - - film film Cu(In,Ga)Se Cu(In,Ga)Se 2 2 solar cells solar cells J. Krc 1 , A. Campa 1 , G. Cernivec 1 , J. Malmström 2 , M. Edoff 2 , F. Smole 1 and M. Topic 1 1 University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25 Si-1000 Ljubljana, Slovenia 2 Uppsala University, Ǻngström Solar Center, P.O. Box 534, SE-75120 Uppsala, Sweden

Transcript of Optical modeling and simulation of thin-film Cu(In,Ga)Se2 solar cells

University of LjubljanaFaculty of Electrical Engineering

Optical Optical modelingmodeling andand simulationsimulation ofofthinthin--film film Cu(In,Ga)SeCu(In,Ga)Se22 solar cellssolar cells

J. Krc1, A. Campa1, G. Cernivec1, J. Malmström2,M. Edoff2, F. Smole1 and M. Topic1

1University of Ljubljana, Faculty of Electrical Engineering,Tržaška 25 Si-1000 Ljubljana, Slovenia

2Uppsala University, Ǻngström Solar Center,P.O. Box 534, SE-75120 Uppsala, Sweden

2

University of LjubljanaFaculty of Electrical Engineering

Outline

• Introduction

• Optical modeling of thin-film solar cells

• Optical simulator SunShine

• ResultsOptical simulation of thin Cu(In,Ga)Se2 solar cells

• Conclusions

3

University of LjubljanaFaculty of Electrical Engineering

Introduction

Electrical energy

Solar energy Solar cell (PV modules)

> 30 % growth in module production per year

4

University of LjubljanaFaculty of Electrical Engineering

Introductionconventionalwafer-based solar cells thin-film (TF) solar cells

• lower material consumption• low temperature processes• possibility of being flexible

cell thickness:a few 100 um

cell thickness:a few um or less

5

University of LjubljanaFaculty of Electrical Engineering

Introduction

Mo

glasssubstrate

CIGSabsorber

ZnOCdS

ZnO:Al

incidentlight

n-typep-type

2 um

-

+

V

J

40 nm50 nm

400 nm

300 nm

Cu(In,Ga)Se2 (CIGS) thin-film solar cell:

Transparent ConductiveOxide (TCO) front contact

pn-junction

metal contact andsubstrate

6

University of LjubljanaFaculty of Electrical Engineering

Introduction

Mo

glasssubstrate

CIGSabsorber

ZnOCdS

ZnO:Al

incidentlight

back contact

n-typep-type

2 um

-

+

V

J

40 nm50 nm

400 nm

300 nm

Optical features:• multilayer structure

multiple R and T!

TF solar cell as an optical system:

7

University of LjubljanaFaculty of Electrical Engineering

Introduction

Mo

glasssubstrate

CIGSabsorber

ZnOCdS

ZnO:Al

incidentlight

back contact

n-typep-type

2 um

-

+

V

J

40 nm50 nm

400 nm

300 nm

• multilayer structure• layers in nm range

interferences!

TF solar cell as an optical system:

Optical features:

8

University of LjubljanaFaculty of Electrical Engineering

Introduction

• multilayer structure• layers in nm range• textured interfaces

Mo

glasssubstrate

CIGSabsorber

ZnOCdS

ZnO:Al

incidentlight

back contact

n-typep-type

2 um

-

+

V

J

40 nm50 nm

400 nm

300 nm

light scattering!

TF solar cell as an optical system:

Optical features:

9

University of LjubljanaFaculty of Electrical Engineering

Optical modeling of TF solar cells

10

University of LjubljanaFaculty of Electrical Engineering

Mo

glasssubstrate

CIGSabsorber

ZnOCdS

ZnO:Al

back contact

n-typep-type

-

+

V

J

nano-textured surface of CIGS layer

Optical modeling of light scattering

11

University of LjubljanaFaculty of Electrical Engineering

• Specular (non-scattered) light• Scattered (diffused) light

Light scattering at nano-textured interfaces:

Optical modeling of light scattering

12

University of LjubljanaFaculty of Electrical Engineering

Descriptive scattering parameters:

( )R scattADF ϕ

( )T scattADF ϕ

( ) ( )T dif T T dif totI ADF Iϕ ϕ= ⋅ϕ

T dif totI

1. Haze (scattering level)

2. Angular distribution functions (directions)

Optical modeling of light scattering

13

University of LjubljanaFaculty of Electrical Engineering

Optical simulator SunShine

14

University of LjubljanaFaculty of Electrical Engineering

Optical simulator SunShine

• 1-D semi-coherent optical model [J. Krc et al., Progress in Photovoltaics 11 (2003) 15.]

scatteredlight

specularlight

• specular light -electromagnetic waves (coherent)

• scattered light -light rays (incoherent)

15

University of LjubljanaFaculty of Electrical Engineering

Optical simulator SunShine

• 1-D semi-coherent optical model [J. Krc et al., Progress in Photovoltaics 11 (2003) 15.]

• Complex refractive indexes and thicknesses of layers

N(λ) = n(λ) – jk(λ)

Main input parameters (structure description):

d1

N5

N1

N2

N3

N4

N6

N0

N0

d2

d3

d4

d5

d6

16

University of LjubljanaFaculty of Electrical Engineering

Optical simulator SunShine

• 1-D semi-coherent optical model [J. Krc et al., Progress in Photovoltaics 11 (2003) 15.]

• Complex refractive indexes and thicknesses of layers

Main input parameters (structure description):

• Haze and ADF of textured interfacesand root-mean-square rougness, σrms, of interfaces

Calibrated equations of scalar scattering theory(for details refer to our NUSOD paper)

σrms, n, λ HR, HT for internal interfaces

17

University of LjubljanaFaculty of Electrical Engineering

Optical simulator SunShine

• 1-D semi-coherent optical model [J. Krc et al., Progress in Photovoltaics 11 (2003) 15.]

• Complex refractive indexes and thicknesses of layers

Main input parameters (structure description):

• H and ADF of textured substratesand measured root-mean square rougness of interfaces

Main ourput results:

• Optical reflectance from the structure

• Absorptances in individual layers

• Charge-carrier generation-rate profile

18

University of LjubljanaFaculty of Electrical Engineering

Simulations

Mo

glasssubstrate

CIGSabsorber

ZnOCdS

ZnO:Al

back contact

n-typep-type

360 nm

40 nm50 nm

390 nm

300 nm

(lower material consumption, shorther deposition times)

• To analyse and optimise optical and electrical propertiesNumerical modeling&simulation an important tool!

• Thinning down CIGS absorber below 1 um

Extremely thinCIGS absorber

Simulated structure:

19

University of LjubljanaFaculty of Electrical Engineering

SimulationsIncluded in simulations:

• Experimentally obtained complex refractive indexes of layers[ O. Lundberg, PhD. Thesis, Uppsala University, 2003]

n k

Wavelength, λ (nm)400 600 800 1000 1200

Ref

ract

ive

inde

x, n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CIGS

CdS

Wavelength, λ (nm)400 600 800 1000 1200

Ext

inct

ion

coef

ficie

nt, k

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

CIGS

CdS

20

University of LjubljanaFaculty of Electrical Engineering

SimulationsIncluded in simulations:

• Experimentally obtained complex refractive indexes of layers[ O. Lundberg, PhD. Thesis, Uppsala University, 2003]

• Measured H and ADF [ J. Krc et al., Proc. of E-PVSEC, Barcelona, 2005, p. 1831.]

Example of ADFT measurement:

21

University of LjubljanaFaculty of Electrical Engineering

Simulation results

22

University of LjubljanaFaculty of Electrical Engineering

Simulation results

Wavelength, λ (nm)400 600 800 1000 1200

A, Q

E, R

tot

0.0

0.2

0.4

0.6

0.8

1.0symbols - measurementlines - simulations

QE

Rtot

ACIGS ACIGS QE

if ideal extraction ofcharge carriers fromCIGS

Total reflectance and quantum efficiency

23

University of LjubljanaFaculty of Electrical Engineering

Simulation results

Wavelength, λ (nm)400 600 800 1000 1200

A, Q

E, R

tot

0.0

0.2

0.4

0.6

0.8

1.0symbols - measurementlines - simulations

AZnO:Al

AMo

determination of opticallosses in the structure

Absorptances in non-active layers

24

University of LjubljanaFaculty of Electrical Engineering

Simulation results

for further electricalanalysis of the structure

Position, x (nm)

0 100 200 300 400

Gen

erat

ion

Rat

e P

rofil

e, G

L (cm

-3s-1

)

1e+17

1e+18

1e+19

1e+20

1e+21

1e+22

1e+23C

dS

CIG

S

λ = 450 nm (1.52 mW/cm2)

λ = 900 nm (0.68 mW/cm2)

AM 1.5 (100 mW/cm2)

Charge-carrier generation-rate profile

25

University of LjubljanaFaculty of Electrical Engineering

Conclusions

• good agreement in sim. and meas. total reflectance of thin CIGS solar cell

• calibration of the simulator with realistic optical parameters (refractiveindexes, scattering and others) is important

• starting point for optical optimisation and electrical analysis of the structure

26

University of LjubljanaFaculty of Electrical Engineering

Further workcombined optical + electrical analysis of the structure

SunShine&Aspin simulators

External characteristics and parameters of the solar cell:

Voltage, V (V)0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Cur

rent

den

sity

, J (m

A/c

m2 )

-24

-20

-16

-12

-8

-4

0

JSC = 21.0 mA/cm2 21.1 mA/cm2

VOC = 592 mV 595 mV

FF = 0.68 0.65Eff. = 8.1 % 8.2 %

measurement(symbols)

simulation(line)

Wavelength, λ (nm)400 600 800 1000 1200

QE

0.0

0.2

0.4

0.6

0.8

1.0symbols - measurementline - opt. + el. simulation

QE

see extended NUSOD paper submitted to OQE

27

University of LjubljanaFaculty of Electrical Engineering

SimulationIncluded in simulations:

• Reduced reflectance of CIGS/Mo interface by 30 %

(formation of MoSe2 interfacial layer) [ J. Krc et al., Proc. of E-PVSEC, Barcelona, 2005, p. 1831.]

Wavelength, λ (nm)400 600 800 1000 1200

Sim

ulat

ed R

efle

ctan

ce, R

0.0

0.2

0.4

0.6

0.8

1.0

as calculated for idealCIGS/Mo interface

calibrated for realisticCIGS/Mo interface

28

University of LjubljanaFaculty of Electrical Engineering

Simulation

Haze of internal interfaces

1 2 2...34 cos cos( )

1rms inc outn n

TH eπσ ϕ ϕ

λ⋅ −

−= −

214 cos( )1

rms incn

RH eπσ ϕ

λ⋅

−= −

cR(σrms, λ)

cT(σrms, λ)

cR, cTcalibrationfunctions

J. Krc et al. J. Appl. Phys. 92/2 (2002) 749-755.J. Krc et al. Thin Solid Films 426/1-2 (2003) 296-304

M. Zeman et. al. JAP 88 (2000)basic theory

calibration introduced

Modified equations of scalar scattering theory:

C.K. Carniglia, Optical Engineering 18/2 (1979)P. Beckmann, A. Spizzichino, Pergamon Press (1963)

initial values:cR = 1cT = 0.5

29

University of LjubljanaFaculty of Electrical Engineering

Simulation

Wavelength, λ, (nm)400 500 600 700 800

Haz

e, H

T

0.0

0.2

0.4

0.6

0.8

1.0

n/Ag(σr=26 nm)

SnO2/air(σr=40 nm) i/n (σr=26 nm)

p/i(σr=40 nm)

SnO2/p(σr=40 nm)

Wavelength, λ, (nm)400 500 600 700 800

Haz

e, H

R

0.0

0.2

0.4

0.6

0.8

1.0

n/Ag(σr=26 nm)

SnO2/p(σr=40 nm)

i/n (σr=26 nm)

air/Ag(σr=37 nm)

p/i(σr=40 nm)

HR HT

Application of the calibrated theory to internal interfaces

30

University of LjubljanaFaculty of Electrical Engineering