Morphogenesis of the theory and design principles of riveted connections in historical iron and...

26
Morphogenesis of the theory and design principles of riveted connections in historical iron and steel structures Quentin COLLETTE, MSc Arch Eng, MBM Supervisor: Ine WOUTERS, MSc Arch Eng, Dr Arch Eng SAHC 2012, 16/10/2012 © Quentin Collette, Vrije Universiteit Brussel (Brussels, Belgium, EU) Dept. Architectural Engineering (ARCH) This presentation was given at the 2012 SAHC Conference. All rights reserved [email protected]

Transcript of Morphogenesis of the theory and design principles of riveted connections in historical iron and...

Morphogenesis of the theory and design

principles of riveted connections in historical

iron and steel structures

Quentin COLLETTE, MSc Arch Eng, MBM

Supervisor: Ine WOUTERS, MSc Arch Eng, Dr Arch Eng

SAHC 2012, 16/10/2012

© Quentin Collette, Vrije Universiteit Brussel (Brussels, Belgium, EU)

Dept. Architectural Engineering (ARCH)

This presentation was given at the 2012 SAHC Conference.

All rights reserved

[email protected]

TABLE OF CONTENTS

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

1 | INTRODUCTION

2 | RIVETED CONNECTIONS – BACKGROUND INFORMATION

3 | THEORY AND DESIGN PRINCIPLES

4 | CASE STUDY – BRUSSELS CINQUANTENAIRE HALLS

5 | CONCLUSIONS

TAG CLOUD

1/18

1 | INTRODUCTION

1 | INTRODUCTION

[Brussels Cinquantenaire

Halls (2011)]

‘A riveted joint is a statically highly indeterminate structure, the behavior of which has

baffled the investigators up to the present time, i.e., for more than one century.’

[R.A.E. de Jonge, 1945]

Complex riveting technique

1/ Hot vs. cold riveting

2/ Manual vs. mechanical riveting

→ INFLUENCE ON THE DESIGN

How to replace them?

→ LACK OF INFORMATION

Need to understand the original design

→ OVERSIZED, UNDERSIZED ?

BELGIAN AND FRENCH LITERATURE (1850-1980)

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012 2/18

2 | RIVETED CONNECTIONS –

BACKGROUND INFORMATION

Do you want more information?

Journal ‘Matériaux et Techniques’ (EDP Sciences)

Vol 100, issue 2, 2012, pp. 137-154

DOI: 10.1051/mattech/2012023

2 | RIVETED CONNECTIONS – BACKGROUND INFORMATION

HISTORICAL CONTEXT – Rivets, fields of use

1820 1940 1920 1900 1880 1860 1840

Shipbuilding industry

Boilerwork

Iron and steel constructions

Welding

Welding

Welding

Concrete structures

Applications

Civil engineering Public/private buildings

Motorway

bridges

Railway bridges

Etc.

Winter gardens

Industrial and exhibition

halls

Private houses

Department stores

Schools

Etc.

Principal functions

Connecting structural

elements

Manufacturing

built-up shapes

[COMBAZ 1897] [DESCHAMPS 1888]

3/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

2 | RIVETED CONNECTIONS – BACKGROUND INFORMATION

DEFINITION – What’s a rivet ?

RIVET =

(A) rivet shank (cylindrical cross-section)

(B) forged rivet head (upset + squeeze)

(C) original rivet head

GEOMETRICAL PARAMETERS

MATERIAL, A CRUCIAL ASPECT

- Strength(rivet) ≤ Strength(plates to be joined)

- (puddled) iron, later steel …

“e” : thickness of the plates

“d”: diameter of the rivet shank

“D” : diameter of the rivet head

“h”: head depth

Single riveted lap

[DECHAMPS 1888]

Example of a rivet and its original round

head [DECHAMPS 1888]

4/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

Double and triple riveted double strap butt joints

Double shear → two shear planes/rivet

Doubly symmetric geometry of double strap butt joints:

→ Higher stiffness and strength but extra labour cost

SPLICE JOINTS

2 | RIVETED CONNECTIONS – BACKGROUND INFORMATION

THE JOINING TYPOLOGY, a strategic choice

5/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

3 | THEORY AND DESIGN PRINCIPLES

3 | THEORY AND DESIGN PRINCIPLES

1/ Practical rules

(Rules of thumb)

Absence of theory

Based on experience

Peculiar to a shop

2/ Tables

Famous manufacturers

(e.g. Mr. Lemaître)

Based on experience

Publications

Not scientifically deduced

3/ Experiments

Carried out by engineers

Experimental tests

Two major opposite

schools of thought

4/ Formulas & norms

Mr. Reuleaux (1873)

Theory of the strength of materials

Overall strength = combined effect

(friction + shear)

1850 Construction of the Conway (1848) & Britannia (1850) tubular bridges (UK)

6/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

3 | THEORY AND DESIGN PRINCIPLES TWO SCHOOLS OF THOUGHT

Quarrel between the two designers of the bridges: W. Fairbairn & R. Stephenson

TWO SEPARATE BOOKS, TWO OPPOSITE THEORIES:

Fairbairn & Hodgkinson

Clark & Stephenson

Shear-type

Friction-type

the 1st who carried out experiments on riveted joints with E. Hodgkinson in 1838

7/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

3 | THEORY AND DESIGN PRINCIPLES SHEAR STRENGTH

But the residual tension in the rivet is extremely variable …

… only the shear strength was to be taken into account in practice.

= 1

• De Vos 1879

• Aerts 1886

≈ 0,75 - 0,8

• Combaz 1897

• Nachtergal 1937

≈ 0,7 - 0,86

• Vandepitte 1980

Overestimation … compensated by high safety factors

Value of the shear strength(joint) = ratio of the tensile strength(plate)

Value of the ratio (Belgian literature):

8/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

3 | THEORY AND DESIGN PRINCIPLES SHEAR STRENGTH

Design shear strength (safety factors ranging from 3 to 6):

De Vos 1879 Aerts 1886 Combaz 1897 Aerts 1911 Nachtergal 1937

(A.B.S. norm)

Material Iron Iron Iron Iron/mild steel (Fer très fin/acier

(extra) doux)

Mild steel

Design shear

strength [MPa] 40 60 64-80 90-100 110-130

Progressive reduction of the safety factor

More refined theory and relationships

New material steel (NB: late introduction)

9/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

3 | THEORY AND DESIGN PRINCIPLES EVOLUTION OF THE DESIGN

EM

PIR

ICA

L

ME

TH

OD

S

DE VOS 1879

AERTS 1886

- Practical rules

- ‘Mathematical translations’

- Predominant geometrical parameters

AN

ALY

TIC

AL

A

PP

RO

AC

H

DECHAMPS 1888

COMBAZ 1897

AERTS 1911

- Practical rules still present…(d/e)

- NEW =

calculation of ‘n’

1/ d= f(e)

2/ n= f(P;e;R)

3/ Rivets’ spacing

RE

GU

LA

TIO

NS

NACHTERGAL 1937

VANDEPITTE 1980

- NEW: diametrical compression (‘bearing resistance’ [EC])

- Allowable load = min(shear; bearing)

≈ Eurocode’s approach

10/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

4 | CASE STUDY –

BRUSSELS CINQUANTENAIRE HALLS

Do you want more information?

Journal ‘Engineering History and Heritage’ (ICE Publishing)

Vol 165, issue 3, 2012, pp. 145-155

DOI: 10.1680/ehah.11.00025

4 | CASE STUDY – BRUSSELS HALLS CONSTRUCTION

1888, Cinquantenaire Park

King Leopold II

Galerie des Machines’ typology

11/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

4 | CASE STUDY – BRUSSELS HALLS DESIGN AND RENOVATION

20 YEARS ADAPTIVE DESIGN

North’s hall principal roof spans some 46 m by 170 m

Renovation project in 2010-11:

Horizontal trussed beams

3.800 new rivets installed !

12/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

4 | CASE STUDY – BRUSSELS HALLS PRELIMINARY ANALYSES

TENSILE TESTS: - wrought-iron plates ≈ S235 steel grade

METALLOGRAPHIC ANALYSIS: - ferrite microstructure of the rivets

13/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

Belgian Welding Institute, 2006

4 | CASE STUDY – BRUSSELS HALLS STRUCTURAL ANALYSIS

Engineering office: Modern Stability Contractor (MSC)

Numerical modelling according to the EC3 (EN 1993-1-8) in SCIA Engineer software

MSC’s main conclusions:

@ the macro-level of the arch: sufficient safety → OK

@ the micro-level of the joints (rivets and cover plates): sufficient safety (oversized) → OK

Top- & bottom-chord members:

σULS,MAX = 82 MPa

Safety factor of rivets (CHORD & St. ANDREWS) = 11

Double shear

Single shear

14/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

4 | CASE STUDY – BRUSSELS HALLS RECALCULATIONS

Triple riveted double strap butt joint, staggered riveting

‘Convergent type’: diamond-shaped cover plates

Six rivets per force transmission (two shear planes/rivet)

8-mm-thick cover plates, 169-mm-wide plates, diameter of the rivet shank = 16 mm

15/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

4 | CASE STUDY – BRUSSELS HALLS RECALCULATIONS

Combaz

1897

Aerts 1911 Nachtergal

1937 (A.B.S. norm)

Vandepitte

1980

EC3 2005

Allowable load

[kN]

28.95 36.19 52.27 80.32 ≈ 61.59

→ Allowable load for a rivet in double shear (double strap butt joint):

min(shear; bearing)

= bearing resistance

shear strength min(shear; bearing)

= shear strength

Design criterion:

FORMER VERSUS PRESENT REGULATIONS

Internal axial tensile force of the plates (MSC) = 117.54 [kN] in SLS | 165.53 [kN] in ULS

→ six rivets/ force transmission → OK

16/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

4 | CASE STUDY – BRUSSELS HALLS RECALCULATIONS

Combaz

1897

Aerts 1911 Nachtergal

1937 (A.B.S. norm)

Vandepitte

1980

EC3 2005

Allowable load

[kN]

28.95 36.19 52.27 80.32 ≈ 61.59

FORMER VERSUS PRESENT REGULATIONS

Internal axial tensile force of the plates (MSC) = 117.54 [kN] in SLS | 165.53 [kN] in ULS

COMBAZ 1897: - Number of needed rivets (SLS, ‘in 2012’) = 4,06 ≈ 4

- Number of needed rivets (SLS, ‘in 1888’) = 6,76 ≈ 7 ≈ 6 rivets

EC3: - Number of needed rivets (ULS, ‘in 2012’) = 2,68 ≈ 3 < 6 rivets - Number of needed rivets (ULS, ‘in 1888’) = 4,48 ≈ 5

REALITY:

VS.

17/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

5 | CONCLUSIONS

5 | CONCLUSIONS

Experiments of W. Fairbairn in 1838 = starting point of the ‘riveting theory’

Rivets finally considered as shear-type fasteners

Use of strap butt joints was recommended

Predominant role of geometrical parameters (‘d/e’ ratio)

Progressive increasing values of the allowable load of a rivet over time

Introduction of standards (beginning 20th century) → ‘diametrical compression’

18/18

Riveted joints: theory and design principles | SAHC 2012

Mr. Quentin COLLETTE | 16/10/2012

REFERENCES

1) de Jonge R.A.E. (1945) Riveted joints, a Critical Review of the Literature Covering their Development. New York, ASME Research Publication

2) Rumpf J.L. (1964) Riveted and bolted connections. In Tall L., Beedle L., V. Galambos T. (eds) Structural Steel Design. The Ronald Press, New York

3) D’Aniello M., Fiorino L. (2008) Structural performance of riveted connections in historical metal structures. In: Proc. 6th Int. Conf. on Structural Analysis of Historic Construction Bath, University of Bath,

431-439

4) Newman A. (2001) Structural Renovation of Buildings. Methods, Details and Design Examples. New York, McGraw-Hill

5) Gasparini D., Simmons D. (1997) American Truss Bridge Connections in the 19th century: 1829-1850 (Part 1) and 1850-1900 (Part 2). Journal of Performance of Constructed Facilities 11(119 & 130): 119-

140

6) Collette Q., Wouters I., Lauriks L. (2011) Evolution of historical riveted connections: joining typologies, installation techniques and calculation methods. In: Proc. 12th Int. Conf. on Structural Studies,

Repairs and Maintenance of Heritage Architecture Chianciano Terme (Italy), 295-306

7) Gustafson K. (2007) Evaluation of Existing Structures. Modern Steel Construction February 2007: 41-43

8) Truijens P. (2001) Klinken: een historische verbindingswijze voor staalconstructies. Monumenten en landschappen 20(4): 45-64

9) Jacomy B. (1983) De l’objet à l’homme. Rivets et riveurs à travers la civilisation industrielle. PhD in social psychology (Université Louis Pasteur - Strasbourg 1), unpublished, Strasbourg

10) Collette Q., Wouters I., Lauriks L., Verswijver K. (2012) Riveted connections in historical iron and steel structures: one turbulent century of technological, structural and geometrical considerations (1840-

1940). Matériaux & Techniques 100(2): 137-154 (DOI 10.1051/mattech/2012023)

11) Novat J. (1900) Cours Pratique de Résistance des Matériaux. Paris, Librairie Polytechnique Ch. Bélanger

12) Combaz P. (1897) La construction, Principes et applications (Part 7) 3. Brussels, E. Lyon-Claesen

13) Aerts L. (1886) Éléments pratiques de la résistance des matériaux. Leuven, Aug. Fonteyn

14) Jullien C.E., Valerio O. (1846) Nouveau manuel complet du chaudronnier. Manuels-Roret. Paris, Librairie Encyclopédique de Roret

15) Clark E. (1850) The Britannia and Conway tubular bridges. London, Day & Son and John Weale

16) Reuleaux F. (1873) Le constructeur… (translated by A. Debize and E. Mérijot). Paris, F. Savy

17) Desarces H. (1913) Grande Encyclopédie pratique de mécanique et d’électricité: la technique et la pratique modernes. Paris, A. Quillet

18) De Vos N. (1879) Cours de construction donné de 1864 à 1874 à la section du génie de l’école d’application de Bruxelles 1. Brussels, Librairie Polytechnique De Decq & Duhent

19) Combaz P. (1897) La construction, Principes et applications (Part 3) 2. Brussels, E. Lyon-Claesen

20) Aerts L. (1911) Éléments pratiques de la résistance des matériaux. Paris and Liège (4th Ed.), Librairie polytechnique Ch. Bélanger

21) Nachtergal A. (1937) Charpentes métalliques. Calculs et construction. Brussels (5th Ed.), Editions Bieleveld

22) Vandepitte D. (1980) Berekening van constructies. Bouwkunde en civiele techniek (Part 2). Gent, E. Story - Scientia

23) Dechamps H. (1888) Les principes de la construction des charpentes métalliques et leurs applications aux ponts à poutres droites, combles, supports et chevalements. Liége, H. Vaillant-Carmanne

24) EN 1993-1-8:2005 (2005) Eurocode 3: Design of steel structures - Part 1-8: Design of joints

25) Collette Q., Wouters I., Lauriks L., Verswijver K. (2012) Brussels Cinquantenaire Halls: a structural (r)evolution? Engineering History and Heritage (Themed issue: Exhibitions) (in press)

26) Venetsanos A. (2011) De luchtvaarthal van het Koninklijk Museum van het Leger en de Krijgsgeschiedenis te Brussel, Master thesis in architectural engineering (Faculteit Ingenieurswetenschappen, Vrije

Universiteit Brussel), unpublished, Brussels

27) Asou E., Bertoux N. (1888) Journal illustré de l’Exposition. Grand Concours International des sciences et de l’industrie. Exposition universelle et internationale 1888. Brussels

28) Modern Stability Contractor ‘MSC’ (2010) Legermuseum - Stabiliteitsstudie. Ingelmunster

Thank you for your attention.

Any questions or comments?

Quentin Collette, MSc Arch Eng, MBM

Ph.D. fellowship of the Research Foundation –

Flanders (FWO)

Vrije Universiteit Brussel

Faculty of Engineering Sciences

Dept. of Architectural Engineering (ARCH)

Pleinlaan 2 – 1050 Brussels, Belgium

[email protected]