Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A...

25
AUTHOR QUERY FORM Journal: PALAEO Please e-mail or fax your responses and any corrections to: Krishnaveni Kunchala E-mail: [email protected] Fax: +1 619 699 6721 Article Number: 6688 Dear Author, Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF le) or compile them in a separate list. Note: if you opt to annotate the le with software other than Adobe Reader then please also highlight the appropriate place in the PDF le. To ensure fast publication of your paper please return your corrections within 48 hours. For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions. Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by ags in the proof. Click on the Qlink to go to the location in the proof. Location in article Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof Q1 Please conrm that given names and surnames have been identied correctly. Q2 , Q4 Citation Thibault et al. (2012)has not been found in the reference list. Please supply full details for this reference. Q3 Citation Thibault et al (2012)has not been found in the reference list. Please supply full details for this reference. Q5 Please check if the afliations of all authors have been incorporated correctly, and amend if necessary. Q6 Citation Sissingh (1977)has not been found in the reference list. Please supply full details for this reference. Q7 Citation Perch-Nielsen (1985)has not been found in the reference list. Please supply full details for this reference. Q8 Citation Burnett (1998)has not been found in the reference list. Please supply full details for this reference. Q9 Citation Laskar et al., 2004has not been found in the reference list. Please supply full details for this reference. Q10 Please check the sentence Uncertainties on durations presented here are estimated based on the number of cycle identied time the uncertainty on each cyclefor clarity, and correct if necessary. Q11 Citation Barrera and Savin, 1999has not been found in the reference list. Please supply full details for this reference. Q12 Please check if the Acknowledgment is captured correctly, and amend if necessary. Q13 The data "Calcareous nannofossil key species (no. of specimens/200 fov)" found at the last row of this table has been deleted. Please check, and correct if necessary. Q14 The decimal comma has been changed to a decimal point in Appendix B (e.g., 28.9 m, 27.05 m). Please check, and correct if necessary. Our reference: PALAEO 6688 P-authorquery-v11 Page 1 of 2

Transcript of Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A...

AUTHOR QUERY FORM

Journal: PALAEO Please e-mail or fax your responses and any corrections to:Krishnaveni KunchalaE-mail: [email protected]: +1 619 699 6721

Article Number: 6688

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotationin the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader thenplease also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your correctionswithin 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in theproof. Click on the ‘Q’ link to go to the location in the proof.

Location in article Query / Remark: click on the Q link to goPlease insert your reply or correction at the corresponding line in the proof

Q1 Please confirm that given names and surnames have been identified correctly.

Q2, Q4 Citation “Thibault et al. (2012)” has not been found in the reference list. Please supply full details forthis reference.

Q3 Citation “Thibault et al (2012)” has not been found in the reference list. Please supply full details forthis reference.

Q5 Please check if the affiliations of all authors have been incorporated correctly, and amend if necessary.

Q6 Citation “Sissingh (1977)” has not been found in the reference list. Please supply full details for thisreference.

Q7 Citation “Perch-Nielsen (1985)” has not been found in the reference list. Please supply full details forthis reference.

Q8 Citation “Burnett (1998)” has not been found in the reference list. Please supply full details for thisreference.

Q9 Citation “Laskar et al., 2004” has not been found in the reference list. Please supply full details for thisreference.

Q10 Please check the sentence “Uncertainties on durations presented here are estimated based on thenumber of cycle identified time the uncertainty on each cycle” for clarity, and correct if necessary.

Q11 Citation “Barrera and Savin, 1999” has not been found in the reference list. Please supply full detailsfor this reference.

Q12 Please check if the Acknowledgment is captured correctly, and amend if necessary.

Q13 The data "Calcareous nannofossil key species (no. of specimens/200 fov)" found at the last row of thistable has been deleted. Please check, and correct if necessary.

Q14 The decimal comma has been changed to a decimal point in Appendix B (e.g., 28.9 m, 27.05 m).Please check, and correct if necessary.

Our reference: PALAEO 6688 P-authorquery-v11

Page 1 of 2

Q15 Please provide an update for reference Batenburg et al., in press.

Please check this box if you have nocorrections to make to the PDF file. □

Thank you for your assistance.

Our reference: PALAEO 6688 P-authorquery-v11

Page 2 of 2

UNCO

RRECTED P

RO

OF

1 Highlights

2 Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

4

5 Lower Maastrichtian cyclostratigraphy of the Bidart section6 (Basque Country, SW France): A remarkable record of precessional forcing7

8 Dorothée Husson a,c,⁎, Nicolas Thibault b, Bruno Galbrun c, Silvia Gardin d, Fabrice Minoletti c, Brad Sageman a, Emilia Huret e

910

a Department of Earth and Planetary Sciences, Technological Institute, 2145 Sheridan Road, Evanston, IL 60208-3130, USA11

b Institute for Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Københavns K., Denmark12

c Institut des Sciences de la Terre-Paris, UMR 7193, Université Pierre et Marie Curie, 4, Place Jussieu, 75252 Paris Cedex 5, France13

d Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, UMR 7072, Université Pierre et Marie Curie Paris 06, 4, Place Jussieu, 75252 Paris Cedex 05, France14

e Agence Nationale pour la Gestion des Déchets Radioactifs, 1/7 rue Jean Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex, France

1516

17 • Cyclostratigraphic analysis of Bidart's Maastrichtian highlights orbital forcing.18 • Relative time scale created for MS and δ13C with 1.44 ± 0.22 Myr total duration19 • Correlation to ODP Hole 762C shows that the section extends from 71.5 to 70 Ma.20 • Identified nannofossil bio-horizon ages are estimated.21 • Oxygen isotope data suggest a 2 °C cooling of sea-surface temperatures.22

23

24

Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx

PALAEO-06688; No of Pages 1

0031-0182/$ – see front matter © 2013 Elsevier B.V. All rights reserved.http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Contents lists available at ScienceDirect

Palaeogeography, Palaeoclimatology, Palaeoecology

j ourna l homepage: www.e lsev ie r .com/ locate /pa laeo

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
"."
Original text:
Inserted Text
"’"
Original text:
Inserted Text
""
Original text:
Inserted Text
"horizons "

1

2

3Q1

4

5Q56789

10

11121314151617181920212223242526

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

PALAEO-06688; No of Pages 22

Contents lists available at ScienceDirect

Palaeogeography, Palaeoclimatology, Palaeoecology

j ourna l homepage: www.e lsev ie r .com/ locate /pa laeo

Lower Maastrichtian cyclostratigraphy of the Bidart section (BasqueCountry, SW France): A remarkable record of precessional forcing

OO

FDorothée Husson a,c,⁎, Nicolas Thibault b, Bruno Galbrun c, Silvia Gardin d, Fabrice Minoletti c,Brad Sageman a, Emilia Huret e

a Department of Earth and Planetary Sciences, Technological Institute, 2145 Sheridan Road, Evanston, IL 60208-3130, USAb Institute for Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Københavns K., Denmarkc Institut des Sciences de la Terre-Paris, UMR 7193, Université Pierre et Marie Curie, 4, Place Jussieu, 75252 Paris Cedex 5, Franced Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, UMR 7072, Université Pierre et Marie Curie Paris 06, 4, Place Jussieu, 75252 Paris Cedex 05, Francee Agence Nationale pour la Gestion des Déchets Radioactifs, 1/7 rue Jean Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex, France

⁎ Corresponding author at: Department of Earth and PlInstitute, 2145 Sheridan Road, Evanston, IL 60208-3130, U

E-mail address: [email protected] (D.

0031-0182/$ – see front matter © 2013 Elsevier B.V. All rihttp://dx.doi.org/10.1016/j.palaeo.2013.12.008

Please cite this article as: Husson, D., et al., Loable record of precessional forci..., Palaeogeo

R

a b s t r a c t

a r t i c l e i n f o

27

28

29

30

31

32

33

34

35

36

37

38

Article history:Received 19 April 2013Received in revised form 22 November 2013Accepted 9 December 2013Available online xxxx

Keywords:MaastrichtianMarl–limestone alternationsCyclostratigraphyMagnetic susceptibilityPrecessionCarbon-isotope stratigraphy

39

40

ECTED PCyclostratigraphic analysis of theMaastrichtian limestone–marl alternations of Bidart (SWFrance) allows thehy-

pothesis of orbital control on lithological cycles to be evaluated. Magnetic susceptibility (MS), oxygen and carbonisotopemeasurements, sampled at a high resolution, are analyzed using various cyclostratigraphic tools. A statis-tically significant orbital signal is detected, with a remarkable record of the precession corresponding to the lime-stone–marl couplets. This well expressed orbital forcing allows the building of a relative cyclostratigraphic timescale for the MS and δ13C records based on the 100 kyr eccentricity cycle. The total duration of the section is es-timated at 1.44 ± 0.22 Myr. Correlation based on calcareous nannofossil biostratigraphy and comparison of thescaled Bidart δ13C record to the astronomically calibrated δ13C signal of ODP Hole 762C shows that the studiedsection extends from−71.5 to−70 Ma, covering the upper part of Chron C32n.1n and 2/3 of Chron C31r. Oxy-gen isotope data suggest a 2 °C cooling of sea-surface temperatures during the studied interval. When placed onthe long-term δ18O trend of the Bidart section, this interval is here recognized as the onset of the earlyMaastrichtian cooling event. With its excellent record of the precessional forcing, the Bidart section, along withother sections of the Basque Country, is a useful tool for the refinement of the Maastrichtian timescale.

© 2013 Elsevier B.V. All rights reserved.

4142

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

UNCO

RR

1. Introduction

One of the most important foundations for the reconstruction ofEarth history is the development of high resolution time scales thatare reliable throughout the rock record. Cyclostratigraphic approaches,which allow duration estimations of unprecedented accuracy, have ledto significant refinements of the Cenozoic time scale (Pälike andHilgen, 2008;Westerhold et al., 2009). Unfortunately, the quantificationof Milankovitch orbital parameters is not always straightforward inolder (Mesozoic) sedimentary series, where the orbital signal tends tobe less well-preserved. In particular, precessional variations, possessinga short period (~20 kyr) can be difficult to resolve in sedimentarysuccessions that have experienced significant diagenesis.

Limestone–marl alternations, which are commonly related toastronomical control by the precession (Dinarès-Turell et al., 2003;Boulila et al., 2008; Locklair and Sageman, 2008), should be the mostsuitable lithology to highlight the evolution of orbital precession during

78

79

80

81

82

anetary Sciences, TechnologicalSA. Tel.: +1 847 467 0127.Husson).

ghts reserved.

wer Maastrichtian cyclostratgr. Palaeoclimatol. Palaeoecol

the Mesozoic. However, diagenesis has been shown to play an im-portant role in the creation of some rhythmic carbonate successions,distorting and mimicking primary signals (Böhm et al., 2003;Westphal et al., 2010). In the effort to determine a primary or secondaryorigin of limestone–marl alternations, confirmation of a statisticallysignificant orbital signal can provide useful information.

The Basque Arc Domain possesses very well exposed hemipelagicMaastrichtian sediments along the coast of the Bay of Biscay. Followingthe pioneering work of ten Kate and Sprenger (1993), an astronomicaltimescale has been proposed for the late Maastrichtian of this area byBatenburg et al. (2012) based on the analysis of marl alternations andadditional proxies at Zumaïa (Spain). A recent integrated study byDinarès-Turell et al. (2013) presents new cyclostratigraphic studiesand high resolution correlations of the late Maastrichtian of Zumaïa,Sopelana andHendaia sections (Basque Country). The Bidart section, sit-uated in the Frenchpart of the BasqueCountry, shows similar limestone–marl alternations, possesses a solid biostratigraphic framework (Manivitand Premoli-Silva in Clauser, 1994; Galbrun and Gardin, 2004), and hasalready been investigated for magnetostratigraphic purposes (Manivitin Clauser, 1994). However, the resolution of the previous studies wasrather low, and precise dating of geological events recorded in thelower Maastrichtian is still lacking.

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
"givenname"
Original text:
Inserted Text
"givenname"
Original text:
Inserted Text
"givenname"
Original text:
Inserted Text
"givenname"
Original text:
Inserted Text
"givenname"
Original text:
Inserted Text
"givenname"
Original text:
Inserted Text
"givenname"
Original text:
Inserted Text
"surname"
Original text:
Inserted Text
"surname"
Original text:
Inserted Text
"surname"
Original text:
Inserted Text
"surname"
Original text:
Inserted Text
"surname"
Original text:
Inserted Text
"surname"
Original text:
Inserted Text
"surname"
Original text:
Inserted Text
","
Original text:
Inserted Text
"("
Original text:
Inserted Text
")"
Original text:
Inserted Text
"("
Original text:
Inserted Text
")"
Original text:
Inserted Text
","
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
","
Original text:
Inserted Text
"Danmark"
Original text:
Inserted Text
"Danmark"
Original text:
Inserted Text
"("
Original text:
Inserted Text
"("
Original text:
Inserted Text
","
Original text:
Inserted Text
","
Original text:
Inserted Text
","
Original text:
Inserted Text
","
Original text:
Inserted Text
","
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
" -"
Original text:
Inserted Text
" -"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

2 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

The hypothesis of precessional control on limestone–marl coupletformation is thus tested in the lowerMaastrichtian of the Bidart sectionby applying a high resolution cyclostratigraphic analysis on magneticsusceptibility and on bulk carbon and oxygen stable isotopes. Addition-ally, carbon-isotope stratigraphy is compared and tentatively correlatedto the astronomically calibrated δ13C record of ODP Hole 762C (Thibaultet al., 2012a).

2. Geological setting

The Bidart section belongs to the Basque-Cantabric basin (southwestFrance) (Fig. 1), where a thick formation of hemipelagic carbonate-richfacies with some turbidites accumulated from the Albian to theEocene, encompassing a well-defined Cretaceous–Paleogene boundary(Delacotte, 1982; Rocchia et al., 1987; Gorostidi and Lamolda, 1995;Galbrun and Gardin, 2004; Minoletti et al., 2005; Gallala et al., 2009).According to Elorza and Garcı ́a-Garmilla (1998), weak diageneticoverprint in the Bidart section makes it a very suitable area to studypalaeoenvironmental evolution during the Maastrichtian, and thus therecord of orbitally driven climatic cycles. Nevertheless, a recent studyof 87Sr/86Sr ratios in inoceramids and carbonatematrix on Bidart sectionby Gómez-Alday et al. (2008) suggests that the diagenesis effect isdifferent on these two carbonate components, and that inoceramidsare too altered for 87Sr/86Sr chemostratigraphy. During the Maastricht-ian, an upper bathyal environment dominated the study area, whichwas situated near a submarine fan (Seyve, 1984) within an activetectonic setting linked to the Pyrenees orogen (Puigdefàbregas andSouquet, 1986). The section studied here is situated ~1 km southof the Cretaceous–Paleogene boundary section. It is tilted at 40–45°N–NW and covers ~30 m of well defined lower Maastrichtian lime-stone–marl alternations (Fig. 2). Disturbance due to faulting prevented

UNCO

RRECT 143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Fig. 1. Location of Bidart section (modified from Minoletti et al., 2005). This section out-crops in southwest France where a thick formation of carbonate-rich facies interbeddedwith some turbidites spans an interval from the Albian to the Eocene.

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

ED P

RO

OF

extension of a continuous sampling toward the north, and the sectiongives way in the South to fractured reddish marls (Clauser, 1994).

The studied sedimentary succession is subdivided in two sub-units(Figs. 2 and 3). The first sub-unit corresponds to decimeter to meterscale beds of gray-white marly limestone, in alternation with decimeterscale layers of dark gray argillaceous marl. The thickness of the calcare-ous layers decreases toward the top of this first sub-unit, whereas themarl layer thicknesses increase. The second sub-unit is characterizedby decimeter scale layers of reddish marl, in alternation with decimeterscale layers of green to purple argillaceous marl. The thickness of thealternation tends to increase toward the top of the section, and thetop of the calcareous layers often displays several inoceramids. Thetransition between these sub-units is characterized by a blue-green topurple argillaceous layer situated at 17.9 m, between the white calcare-ous layer 32, and the reddish calcareous layer 33 (Fig. 3). Small faultswith minor offsets are common in the section (Fig. 3), rooted in themarl layers and sometimes running through the calcareous layers. Thesmall offsets induced by these faults have been taken into accountduring sampling. Although some turbidites have been noted higher upin the Maastrichtian of Bidart (Clauser, 1994), no turbidites have beenfound in the studied interval.

Previous biostratigraphic studies (Clauser, 1994), dated the series tothe upper Campanian. Themagnetostratigraphic study of this section byClauser (1994) cannot be used due to the poor preservation of the dataand the low sampling resolution in the section studied here. Furthercalcareous nannofossil biostratigraphic study by Del Panta (1995)resulted in reassignment to an early Maastrichtian age, a conclusionthat is refined in this study. A geochemical analysis of one calcareousmarl couplet at the base of the section performed by Beltran et al.(2009) shows some contribution of allocthonous components incarbonate micro-particles.

3. Methods

3.1. Magnetic susceptibility

Magnetic susceptibility has been measured on 612 samples, using aKappa bridge KLY-2, with a sampling step of 5 cm (Appendix A).Magnetic susceptibility (MS) measures the capacity of a substance toacquire magnetization when submitted to an external magnetic field.It is common in many marine sedimentary records that high frequencyMS variations are directly related to relative terrigeneous supply, andtherefore provide a useful palaeoclimatic proxy (Ellwood et al., 2000).

A significant change in theMS record takes place at about 3 mbeforethe transition between the two sub-units, with the MS mean valueincreasing by about 10.10−8 m3/kg. (Fig. 3). The record obtained canthus be divided in two parts: (1) from 0 to 15 m MS values are low,with low frequency and low amplitude variations; (2) from 15 to31.15 mMS values are higher and show higher amplitude and frequen-cy variations. This could be due to a change in the clay mineralogy,possibly related to a shift in the source area of eroded material.

3.2. Oxygen and carbon isotopes

The oxygen and carbon isotopic compositions of bulk carbonateswere measured on a total of 221 samples, from marls and limestonelayers and in several cases from each member (marl or limestone)of a couplet (Appendix A). Isotopic analyses were performed on aSIRA9 mass spectrometer at the Laboratoire Biominéralisations etEnvironnements Sédimentaires (Université Pierre et Marie Curie, Paris6, France). The CO2 was extracted by reaction of 5 to 10 mg sampleswith anhydrous orthophosphoric acid at 50 °C. The analytical precisionwas 0.05‰ for carbon and 0.09‰ for oxygen, calculated by repeatedanalyses of an internal standard calibrated against internationalstandards NDS18 and NBS19. The oxygen and carbon isotope valuesare expressed in per mil relative to the V-PDB standard reference

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
"s"
Original text:
Inserted Text
"."
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"decimetre "
Original text:
Inserted Text
"metre "
Original text:
Inserted Text
"grey"
Original text:
Inserted Text
"decimetre "
Original text:
Inserted Text
"grey "
Original text:
Inserted Text
"characterised "
Original text:
Inserted Text
"decimetre "
Original text:
Inserted Text
"decimetre "
Original text:
Inserted Text
"display "
Original text:
Inserted Text
"characterised "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"composition "

CTED P

RO

OF

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Fig. 2. Photographs of the Bidart's limestone–marl couplets and of the color transition dividing the section into two sub units. E100 = 100 kyr eccentricity cycles.

3D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

UNCO

RRE(Appendix A). The absence of correlation between carbon and oxygen

stable isotopes, and the fact that measured δ18O values fall within therange of tropical–subtropical planktonic foraminifera for the lowerMaastrichtian (Grossman, 2012), argue for well-preserved isotopictrends. For comparing these results with previous low-resolutionisotopic data acquired by Clauser (1994) with different equipmentand standards, we used a best fit of the two datasets with a +0.1‰re-standardization of Clauser's carbon and oxygen data.

3.3. Nannofossil biostratigraphy

Calcareous nannofossil biostratigraphy has been investigated on 18samples (Fig. 4) following standard procedures of smear slide prepara-tion. Key calcareous nannofossil bio-horizons were quantified in 300fields of view in order to better highlight possible reworked com-ponents that can affect the last occurrence (LO) of key species. Thisdata acquisition is crucial for the studied time interval, which is punctu-ated by a succession of species disappearances. The identified bio-horizons, first occurrences (FOs) and LOs of key nannofossil species,allow the establishment of a biochronologic framework and correlationwith the Tethyan Bottaccione and Contessa reference sections (UmbriaMarche, Italy), which possess a sound magneto-biostratigraphicframework (Fig. 4).

3.4. Signal processing

The MS variations have been investigated using various signalprocessing tools. First, spectral analyses were performed using the

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

multi taper method (MTM, Thomson, 1982). This method allowspower leakage to be reduced by applying a small number of eigen tapersto the data, and performing a spectral analysis after each tapering. Themean of all the spectra obtained provides a periodogram with goodfrequency resolution. The frequency resolution is the ability of amethodto detect with accuracy the exact frequency of a cycle, and to differenti-ate cycleswith very close frequencies. A linear and a third-order polyno-mial detrending of the data has been applied prior to the analyses tosuppress low frequency variations that could be related to long-termpalaeoclimatic variations.

The method of frequency ratios (Mayer and Appel, 1999) wasapplied to test the link between the cycles highlighted by the spectralanalysis and the orbital parameter variations, using orbital frequenciesestimated for the Cretaceous (Berger and Loutre, 1994). Astronomicalcontrol of the sedimentation is inferred when the detected cyclefrequency ratios are close to the orbital parameter ratios.

Every signal can contain some amount of red noise, linked to theeffect known as persistence (i.e., correlation between the errors of thedata) (Wilks, 1995). The red noise hypothesis has been tested bycreating a new script especially designed for Matlab™. This script isbased on the work of Mudelsee (2002) and Schulz and Mudelsee(2002) and it evaluates the amount of red noise contained in the signalby using a simulation of red noise obtained through aMonte-Carlo loop.The new routine estimates the Monte-Carlo Markov Chains confidencelevels, along with confidence levels based on a Chi-square test ofthe spectra of modeled red noise, and confidence levels based on Chi-square performed on the theoretical spectra of red noise. Only this lasttype of confidence level is presented here.

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
"-"
Original text:
Inserted Text
"’"
Original text:
Inserted Text
"TM"

UNCO

RRECTED P

RO

OF

Fig. 3. Detailed log of the lower Maastrichtian Bidart section, with magnetic susceptibility variations and samples analyzed for nannofossil biostratigraphy. Bidart limestones–marl alter-nations consist in two sub-units: a gray-to dark gray series with thick limestone and thin marl layers, followed by reddish to purple alternations of limestone andmarl. The transition be-tween the two sub-units occurs at 17.9 m. Small faults with slight displacement are sometimes located within the marl layers.

4 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

ECTED P

RO

OF

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

Fig. 4.The correlation of nannofossil bio-events between Bidart and theGubbio sections allows dating of the sedimentary record to the lowerMaastrichtian. The record partly covers ChronC32n.1n and a large part of C31r.

5D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

UNCO

RR

Spectral analyses have been completed using two time-frequencytools: the amplitude spectrogram method and wavelet analysis. Thesetwo methods allow the visualization of cycles recorded through thesedimentary successions. They possess different properties of frequencyand stratigraphic resolution. In general, stratigraphic resolution isproportional to the length of the interval studied: an analysis performedon a thick interval offers lower stratigraphic resolution than severalthinner intervals.

The amplitude spectrogram method corresponds to a succession ofspectral analyses, performed within a window sliding with a constantstep along the record. The software used in this study employs theFast Fourier Transform method for spectral analysis (Maurer et al.,2004). Each spectral analysis performed is plotted according to theposition of the center of the window studied, and the power valuesare coded by a color scale (red for a high power, blue for a lowpower). This technique illustrates timewise shifts in frequencies thatresult from variations of the sedimentation rates (Meyers et al., 2001;Maurer et al., 2004). The choice of the window size is very importantas it influences the frequency resolution. A large window allowsaccurate detection of the high frequency cycles and the detection oflow frequency cycles, but has low stratigraphic resolution. The stepbetween each window affects the spatial resolution of the spectrogram.A compromise must therefore be found between frequency resolutionand stratigraphic resolution. The software used in this study is aMatlab™ script by Maurer et al. (2004).

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

Wavelet analysis (Hubbard, 1996; Torrence and Compo, 1998) is analternative approach based on the use of orthogonal functions calledwavelets, the oscillations of which reach 0 after a short interval. Theoriginal record can be analyzed using a family of wavelets, in the sameway the sine and cosine waves are used in spectral analysis and ampli-tude spectrograms. For each application, a single shape of wavelet, ormother wavelet, is chosen. During the wavelet transform, the motherwavelet is stretched or compressed, allowing good detection of lowand high frequency cycles, and it is shifted along the record. As for theamplitude spectrogram, the power of the cycles is represented by acolor scale. The software used here is the Matlab™ wavelet toolboxfrom Torrence and Compo (1998).

4. Results

4.1. Biostratigraphic analysis

The identified succession of calcareous nannofossil bio-horizons isreported in Fig. 4 and Appendix B. A single specimen of Uniplanariustrifidus is found in the first sample studied (0.8 m) and thus it is notconsidered to represent a reliable bio-horizon. It is highly probable, infact, that the LO of this taxon occurs lower in the section. The LO ofAspidolithus parcus constrictus is fixed around 10.65 m, whereas the LOof Tranolithus phacelosus and the FO of Arkhangelskiella cymbiformisvar. W are located at 19.10 m. Finally, the LO of Rheinardtites levis is

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
"."
Original text:
Inserted Text
"visualisation "
Original text:
Inserted Text
"colour "
Original text:
Inserted Text
"TM"
Original text:
Inserted Text
"analysed "
Original text:
Inserted Text
"colour "
Original text:
Inserted Text
"TM"

272Q6

273Q7

274Q8

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

6 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

fixed at 21.15 m (Fig. 4, Appendix B). The CC zonation of Sissingh(1977) modified by Perch-Nielsen (1985) and the UCTP zonation ofBurnett (1998) are applied (Figs. 3–10). The calcareous nannofossilbiohorizons identified at Bidart can be correlated with those of theGubbio reference sections that lie in the middle of Chron C31r (Fig. 4)(Gardin et al., 2012). According to this correlation, the sedimentarysuccession studied here should cover at least thefirst half of Chron C31r.

4.2. Cyclostratigraphic analysis

The initial cyclostratigraphic analysis is performed on the MS data,sampledwith the highest resolution, in order to detect a potential astro-nomical forcing of the sedimentation (Fig. 5). The sharp increase inmagnetic susceptibility values at 15 m affects the cyclostratigraphicanalyses and has been minimized by converting the data to a log scale.Spectral analysis performed on the entire record shows significantpower for wavelengths ranging from 0.44 to 8.55 m (Fig. 5A). Typicalhemipelagic sedimentation rates of 0.5 to 1.0 cm/kyr place these signalsin the orbital band. If an average sedimentation rate for the section isassumed such that the prominent peak at 0.44 m matches the shortestquasi-period of precession (e.g., 0.45 cm/kyr), then signals at 2.44 mand 8.55 m correspond to periods very similar to published Cretaceousexamples of short and long eccentricity, respectively (Sageman et al.,

UNCO

RRECT

Fig. 5.Cyclostratigraphic analysis of theMS variations fromBidart section.MS values are presentmethod highlights a powerful peak above the 99% confidence level corresponding to the precanalyses performed from 1.25 m to 15 m and 15 to 31.15 m confirm the interpretation of (A), atrograms (C) and wavelet analysis (D) show evolution of the precession similar to the theoretiBidart section. These plots also show a decrease in sedimentation rate at 13.5 m.

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

OO

F

1997). The strength of the three signals matching the predicted ratiosof orbital cycles is taken as a strong support for the proposed averagesedimentation rate. It is also possible, however, that the 8.55 m cyclemay be an artifact related to the step in MS values.

To isolate the intervals above and below this step, spectral analysesare performed on the first and second half of the MS record (Fig. 5B).Cycles with significant power at wavelengths of 0.59 and 0.46 m arehighlighted in the resulting periodograms. Based on the spectra forthe entire section, discussed above, these are hypothesized toreflect precession cycles. The 0.59 m cycle from the lower interval(1.25–15 m) shows a slight division into two peaks, consistent withthemultiple quasi-periods of precession that are commonly recognizedin power spectra (Fig. 5B). Peakswithwavelengths of 1.81 (lower inter-val) and 1.96 m (upper interval) are also observed in the spectra(Fig. 5B), and would be consistent with the 100 kyr eccentricity cycle(Fig. 5B).

Stratigraphically, the dominant recorded frequencies shift slightly inthe evolutive amplitude spectrograms of the lower and upper intervals(Fig. 5C), suggestingminor changes in sedimentation. This is confirmedby wavelet analysis performed on the same intervals (Fig. 5D). Thespectrograms and the wavelet analysis both detect cycles interpretedas precession and 100 kyr eccentricity, in agreementwith prior spectralanalyses. Precession cycles present a bundling on the wavelet analysis,

ED P

R

ed in a logarithmic scale. A) Spectral analysis of the entire record in log scalewith theMTMession. Eccentricity power is lower, but reaches the 85% confidence level. B) Two spectralnd a strong signal of the precession compared to the eccentricity. The two amplitude spec-cal evolution of this parameter, indicating the high quality of the precession record in the

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"interval "

CTED P

RO

OF

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

Fig. 6.Cyclostratigraphic analysis of δ18O and δ13C from the Bidart section. A) Spectral analysis of the entire δ18O highlights a powerful peak interpreted as precession forcing and less pow-erful 100 kyr eccentricity cycles. B) Two spectra on shorter intervals confirm the good record of precession, and indicate a better record of the 100 kyr eccentricity in the upper part of thesection. C) The amplitude spectrogram shows a powerful trend corresponding to the precession, the 100 kyr eccentricity being discontinuous. D) Spectral analysis of the entire δ13C signalshows that orbital forcing is weaker on this dataset, compared to δ18O and MS. No peaks are clearly visible, although small peaks above the 99% confidence level could correspond to theprecession. E) Two spectral analyses on shorter intervals indicate a rather poor record of the orbital parameters by the δ13C from0 to 15 m,whereas the upper part of the section presents avery good record of the precession (above 99% confidence level) and the eccentricity (reaching 95% confidence level). This discrepancy is confirmed by trends observed on the amplitudespectrogram (F).

7D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

UNCO

RRE

and a powerful trend is highlighted by the amplitude spectrogram(Fig. 5C). The amplitude spectrogram between 6 and 15 m shows twosuccessive bifurcations of the precession signal. Very similar variationsare observed in the theoretical evolution of the second mode of theprecession extracted from astronomical solutions (Appendix C). Never-theless, this division may not mirror the theoretical signal, but couldinstead be triggered by sedimentation rate variations. Although thisfeature of the precession is modulated by the 405 kyr eccentricity inthe astronomical solution, the bifurcations in the Bidart section covera length of about 100 kyr. The presence of minor hiatuses has beenshown to produce similar bifurcations in the obliquity signal in lateCenomanian evolutive amplitude spectra (Meyers and Sageman, 2004).

Cyclostratigraphic analysis of the δ18O signal allows detection ofcycles with wavelengths of 0.46 m to 0.59 m, with a very high power,in agreement with the cycles observed in the MS signal (Fig. 6A). Twospectra from shorter intervals confirm this result (Fig. 6B). Moreover,a cyclewith high power and awavelength of 2.13 m to 2.94 m is detect-ed. This cycle reachesmore than 90% confidence in the upper part of therecord. A division of the 0.46 m cycle into two peaks can be observedbetween 10 m and 18 m on the amplitude spectrogram, likely due toa perturbation of the sedimentation in this interval (Fig. 6C). Asshown by Meyers and Sageman (2004), small hiatuses and smallsedimentation rate variations can induce bifurcations of cyclesexpressed on evolutive amplitude spectrum. Although this cycle ispresent throughout most of the studied interval, the spectrogram inFig. 6C shows that the 2.13 m cycle that occurs with high power inthe upper half of the section is less persistent.

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

Spectral analysis of the entire δ13C signal shows that orbital forcinghas weaker expression in this dataset, compared to δ18O and MS. Onlysmall peaks with wavelengths of 0.44 to 0.47 m reaching the 99%confidence level (Fig. 6D) are detected. Analysis of the upper half ofthe section (Fig. 6E) shows a more significant response for the cyclewith wavelength of 0.46 m. The amplitude spectrogram performed onthe series confirms the strong expression of this cycle in the upperMaastrichtian (Fig. 6F). Periodograms for both the lower and upperintervals (Fig. 6E) show significant power for a cycle with wavelengthfrom 2.12 m to 2.84 m, as also observed in MS and δ18O analyses. Inthe periodogram for the upper half of the δ13C record (Fig. 6E) thiscycle, interpreted as the short eccentricity peak, reaches a 95%confidence level. The 100 kyr eccentricity is thus recorded by 3 differentproxies, with δ13C providing a response with a high confidence. Whencycles with wavelength of 0.47 m are interpreted as precession, the2.12 m to 2.84 m cycles correspond very well with a 100 kyr eccentric-ity signal. The relatively low power of the 100 kyr eccentricity peakcompared to the precession in MS and δ18O records could reflect adominance of precession forcing in these proxies, while δ13C may berelatively more sensitive to 100 kyr eccentricity forcing. The absenceof the eccentricity peak in the periodogram for the entire δ13C signalcould be due to power leakage toward the lower frequencies inducedby long term variations. These analyses provide strong evidence for anexcellent record of an astronomical control of the sedimentation bythe precession, visually expressed here in marl–limestone alternations(Fig. 2), whose thicknesses consistently match the 0.4 to 0.6 mwavelengths identified in δ18O and MS throughout the section.

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
"-"

T

PRO

OF

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408Q9

409

410

411

412

413

414Q10

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

Fig. 7. Cyclostratigraphic framework of the lower Maastrichtian in the Bidart section. The blue curve illustrates the 100 kyr eccentricity cycles filtered from the data using a Taner Filter(Taner, 2000). Sedimentation rate variations have been taken into account as much as possible during filtering. The duration represented by the section is estimated to 1.44 ± 0.22 Myr by counting precession and 100 kyr eccentricity cycles, which is consistent with the biostratigraphic correlation to Gubbio sections (Italy). Sedimentation rate variations are es-timated at the scale of the 100 kyr cycles, and plotted in gray. The sedimentation rate is considered constant during a 100 kyr cycle, and the length of the segments corresponds to thelength of the cycles. Gray dashed lines correspond to the boundaries of the cycles identified. (For interpretation of the references to color in this figure legend, the reader is referred tothe web version of this article.)

8 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

UNCO

RREC

Comparatively, a relatively weak influence of the 100 kyr eccentricity isrecorded in climate proxies but is hard to identify visually in the field,along with amplitude variations that could be related to the 405 kyreccentricity cycles (Fig. 2). The MS variations present a better recordof the 100 kyr eccentricity cycles than the lithology, emphasizing theimportance of performing physical measurements on lithologicallyalternating series.

4.3. Sedimentation rate variations

The Bidart record is characterized by a distinct shift of the precessionsignal toward higher frequency, as observed in the evolutive amplitudespectrum forMS (Fig. 5C). This shift indicates a decrease of the sedimen-tation rate fromabout 13 m to the top of the section, and this decrease isreflected in the decreased thickness of limestone–marl couplets. Thechange is abrupt, as indicated by the discontinuity of cycles at 13 mon the amplitude spectrogram (Fig. 5C). In addition, a slow shift of theprecession toward the lower frequencies is visible between 23 and29.5 m on the amplitude spectrogram and wavelet analysis, corre-sponding to a slight increase in sedimentation rate. Precession cyclesin the δ18O record also clearly express the decrease in the sedimentationrate on the amplitude spectrogram, with a shift toward the higherfrequencies at 12 m. The shift is not detected in the lower part of theδ13C signal, where the record of the precession is weaker.

5. Discussion

5.1. Construction of a relative timescale

A relative time scale can be constructed based the 100 kyr eccentric-ity cycles identified using the results of the cyclostratigraphic analysis(Fig. 7). A filter applied afterwards on the scaled data illustrates theidentified 100 kyr cycles. This time scale allows a test of the reliabilityof orbital cycle identifications (Appendix D), and an estimation of theduration represented by the section. Themore stable 405 kyr eccentric-ity cannot be used here, due to the short length of the section and

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

ED

resulting uncertainties in the identification of this cycle. Constructing atimescale based on 100 kyr eccentricity cycles results however inmore uncertainty than the 405 kyr eccentricity and obliquity cycles.Indeed, the short eccentricity cycle is a combination of several modes,with periods ranging today from 95 to 128 kyr (Hinnov, 2000). In theCretaceous, it is not yet possible to know whether an eccentricity cyclerecorded in a sedimentary series corresponds to a ~95 or a ~128 kyreccentricity cycle (Hinnov, 2000, Fig. 15, Laskar et al., 2004). Thus,each cycle identified here is interpreted to have an average period of111 kyr, the mean of the two main short eccentricity modes with anuncertainty of ±17 kyr equal to the difference from this mean periodto the two modes. Uncertainties on durations presented here are esti-mated based on the number of cycle identified time the uncertaintyon each cycle. The zero level of the relative time scale is situated at thetop of the section. Temporal values are attributed to the boundaries ofeach identified short eccentricity cycle, starting from 0 and increasingwith a 111 kyr step. The relative age of each point between the bound-aries is then interpolated. A new relative time-scale is thus built,allowing sedimentation rate variations to be corrected at the scale ofthe 100 kyr eccentricity.

Spectral analysis of the scaled record highlights a powerful spectralpeak with periods of 24 and 22 kyr that match very well with thefrequencies of the two modes of the precession, thus confirming theexceptional record of this parameter in the Bidart section (Appendix D).Cycles with a period of 416 kyr could correspond to the 405 kyr eccen-tricity cycles, the expression of which could be enhanced by the scaling.

An amplitude spectrogram performed on the scaled data indicatesthat the sedimentation rate variations have been successfully correctedat the 100 kyr eccentricity scale, since the precession signal is nownearly continuous and without significant changes in frequency(Appendix D). Sedimentation rate still varies at the precession scale,as this parameter has not been constrained by the scaling.

The duration represented by the section has been estimated at1.44 ± 0. 22 Myr by counting short eccentricity cycles. This durationis lower than the estimate of 2.09 ± 0.03 for the entire Chron C31r(Husson et al., 2012), which is coherent with the biostratigraphic data.

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
"kr "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"were "
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
" +/- "

ORRECTED P

RO

OF

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

Fig. 8.Q3Q4 Correlation of δ13C curves betweenBidart, Tercis les Bains and the astronomically calibrated ODPHole 762C. A) Correlation of the Clauser (1994) δ13C record fromBidart to ODPHole762C and Tercis les Bains allows identification ofmajor isotopic events. B) Correlation of Bidart and ODPHole 762C indicates that the base of Bidart signal can be dated to ~76.6 Ma, withinChron C33n. C) Correlation of Clauser (1994) data to the Tercis les Bains andHole 762C record shows that theCampanian–Maastrichtian boundarywould be situated at ~86 m in theBidartsection. (1) The updated astronomically calibrated δ13C curve of Hole 762C has been compiled from data of Thibault et al. (2012a) and Stoll and Schrag (2001) (Appendix E). Nannofossilbiostratigraphy is from Thibault et al. (2012), magnetostratigraphy from Thibault et al. (2012) and Galbrun (1992), planktonic foraminiferal (PF) zonation from Zepeda (1998). All strat-igraphic informations available for ODPHole 762C can be retrieved in Thibault et al. (2012a). (2)Magnetostratigraphy andnannofossil biostratigraphy fromBidart section are fromClauser(1994) and this study. Remagnetized data in the lowerMaastrichtian are represented by a gray interval. (3) Planktonic foraminiferal and nannofossil biostratigraphy of the Tercis les Bainssection is from Voigt et al. (2012).

9D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

UNCThe duration of the interval between two bio-events, the LOs of

U. trifidus and R. levis, can be estimated to be at least 0.91 ± 0.13 Myr(Fig. 7), which is similar to its temporal estimate in the Contessa section(Gardin et al., 2012; Husson et al., 2012). Therefore, the recorded LO ofU. trifidus, based on only one occurrence at the base of the section, mayactually be accurate.

To test the reliability of this new timescale, we compared thesedimentation rate implied by our relative time scale to the sedimenta-tion rate obtained through correlation to the Bottaccione and Contessasections (Fig. 4). Gardin et al. (2012) proposed synthetic Tethyanreference ages for the LOs of A. parcus constrictus and R. levis. Theduration separating these events has been estimated from 516 to1185 kyr (Gardin et al., 2012). In the Bidart section, the LOs ofA. parcus constrictus and R. levis are separated by 10.5 ± 3. 1 m. Assum-ing a duration similar to the durations obtained in the Gubbio referencesections, the sedimentation rate in Bidart between these two bioeventswould range between 0.6 and 2.6 cm/kyr. Themean sedimentation rateinferred using our cyclostratigraphic approach is 2.1 ± 0.6 cm/kyr

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

between the LOs of A. parcus constrictus and R. levis. Thus the relativetimescale built for Bidart is in agreement with observations from theTethyan reference sections. A relative time-scale has also beenconstructed for the δ18O and δ13C records based on the MS age model.The Bidart scaled carbon isotope record is correlated to the astronomi-cally calibrated δ13C record of ODP Hole 762C, allowing estimation ofthe age of the section.

5.2. Correlation to reference sections and age estimation

The new isotopic data from this study can be correlated with thelow-resolution carbon isotopic data published byClauser (1994). Valuesand trends match well between Clauser's restandardized data and thisnew dataset (Fig. 8B). Compilation of the two datasets allows correla-tion to the astronomically calibrated δ13C signal of ODP Hole 762C(Fig. 8A), and to the section of Tercis les Bains, Global StandardSection and Point (GSSP) of the Campanian–Maastrichtian boundary(Fig. 8C). A timescale for ODP Hole 762C δ13C has been constructed by

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
" "
Original text:
Inserted Text
"’"
Original text:
Inserted Text
"+/-"
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
"."
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
"section "
Original text:
Inserted Text
"+/-"
Original text:
Inserted Text
" +/- "

RRECTED P

RO

OF

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

Fig. 9. Correlation of δ13C and MS from Bidart to δ13C and gray level variations of the astronomically calibrated ODP Hole 762C and Gubbio sections. A) Correlation of the δ13C signal be-tween Bidart and ODP Hole 762C shows that the studied interval extends from 71.5 Ma to 70 Ma, and covers short eccentricity cycles E10042 to E10054. The studied interval covers ChronC32n.1n and about 2/3 of C31r. B) Major isotopic events M1+, M1− and M2+ can be recognized at Bidart, ODP Hole 762C and Gubbio sections. M1− event duration is estimated to~800 kyr both from Bidart and Hole 762C. C) Correlation of Bidart and ODP Hole 762C cyclostratigraphic results allows positioning of 405 kyr cycle boundaries at ~320, ~780 and~1220 kyr in the studied interval. References: (1) Premoli Silva and Sliter (1995), (2) Gardin et al. (2012), (3) Monechi and Thiersten (1985), (4) Arthur and Fischer (1977), (5) Lowrieand Alvarez (1977, 1981).

10 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

UNCO

Thibault et al. (2012a), based on the identification of 100 kyr cycles, andadapted from the second astronomical calibration option of Hussonet al. (2011).

The major isotopic events C1−, CMB, M1+, M1−, M2+ and M3+previously defined in the Stevns-1 borehole, Denmark (Thibault et al.,2012b) and identified in ODP Hole 762C δ13C curve (Thibault et al.,2012a) can also be recognized in Bidart and Gubbio sections (Fig. 8).Similar durations of ~800 kyr for theM1− event are estimated at Bidartand Hole 762C (Fig. 9). Correlation of carbon-isotope stratigraphybetween the two sections indicates that the studied interval coversChron C32n.1n and about 2/3 of C31r. This correlation is in agreementwith the correlation of nannofossil bio-events (Fig. 3) between Bidartand the Gubbio sections. Differences in nannofossil biostratigraphy ofthese two tropical sections and southern mid-latitude ODP Hole 762Chave been previously explained by plankton diachronism andmigrationpatterns between the Tethyan, Transitional and Austral realms causedby palaeoceanographic reorganizations, which were triggered by theprominent climatic changes of the Campanian–Maastrichtian (Thibaultet al., 2012a). According to the δ13C correlation of Bidart to ODP Hole

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

762C and Tercis les Bains, the Campanian–Maastrichtian boundarywould be situated in the Bidart section at ~86 m using Clauser's (1994)composite scale (Fig. 8C), i.e., about 7.5 m below the base of our studiedinterval.

A detailed correlation of Bidart δ13C and magnetic susceptibilityscaled records to δ13C record and gray level variations of Gubbio sec-tions and ODP Hole 762C can also be achieved as illustrated in Fig. 9.This correlation indicates that the studied interval of Bidart extendsfrom−71.5 Ma to−70 Ma (Fig. 9B and D). Correlations of the MS var-iations from Bidart (Fig. 9A) to the scaled gray level variations fromODPHole 762C (Fig. 9C) indicate that the studied interval covers 13 shorteccentricity cycles from cycle E10042 to E10054, with cycles on ODPHole 762C being numbered downhole from the Cretaceous–Paleogeneboundary (Husson et al., 2011; Thibault et al., 2012a). These resultsare in agreement with recent findings by Batenburg et al. (in press)obtained for the nearby Sopelana section (Spain). Recognition of the405 kyr cycles in the late Campanian–lower Maastrichtian of ODPHole 762C, and further correlation with Bidart, allows positioning ofthese cycle boundaries at ~320, ~780 and ~1220 kyr (Fig. 9A). It can

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"- "
Original text:
Inserted Text
"’"
Original text:
Inserted Text
"grey "
Original text:
Inserted Text
" -"
Original text:
Inserted Text
" -"
Original text:
Inserted Text
"grey "
Original text:
Inserted Text
"indicates "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"cycles "

UNCO

RRECT

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

Fig. 10. Upper Campanian to mid-Maastrichtian stratigraphy, carbon and oxygen isotopedata of Clauser (1994) and this study for the Bidart section.

Table 1t4:1

t4:2 Estimation of Bidart's bio-events ages based on the correlation of Bidart section to ODP Hole 76t4:3 position and the uncertainties linked to the correlation to the astronomically calibrated ODP Ht4:4 boundary from Renne et al. (2013).

t4:5 Bioevents Top depth(m)

Bottom depth(m)

Top depth(Ma)

Bottom(Ma)

t4:6 LO A. cymbiformis W 31.0 28.9 70.28 70.33t4:7 FO N. frequens 25.4 23.1 70.48 70.64t4:8 LO R. levis 23.1 21.15 70.64 70.75t4:9 LO T. phacelosus 21.15 19.1 70.75 70.8t4:10 FO A. cymbiformisW 19.1 17.4 70.8 70.88t4:11 LO E. eximius 17.4 15.2 70.88 70.99t4:12 LO C. obscurus 15.2 13.3 70.99 71.06t4:13 LO A. parcus constrictus 11.8 10.65 71.12 71.19t4:14 LO A. parcus parcus 11.8 10.65 71.12 71.19t4:15 LO R. anthophorus/levis 5.75 4.1 71.35 71.4t4:16 LO R. anthophorus 2.55 0.8 71.5 71.53t4:17 LO U. trifidus 2.55 0.8 71.5 71.53

11D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

F

be noted that the 405 kyr eccentricity cycle maxima could be reflectedby bundling of the precession cycles visible on the wavelet analysis atabout 9, 18 and 25 m. The 405 kyr eccentricity maxima in the lowerMaastrichtian of Bidart thus correspond to well defined limestone–marl couplets, which is in agreement with the modulation of theprecession amplitude by the eccentricity. The increase of the magneticsusceptibility at 15 m (~800 kyr) is also nearly concomitant with aminimum of the 405 kyr eccentricity (Fig. 9). This could indicate theinfluence of a long-term orbital control on the sedimentation that mayalso contribute to changes in sedimentation rate. Nevertheless,ascertaining this hypothesis would require the study of a longer recordcovering several 405 kyr cycles, and a detailed inventory of long termenvironmental changes taking place in the very active tectonic settingof the studied area. The positioning of the studied interval on theastronomical time scale of the late Campanian–Maastrichtian (Fig. 9)allows estimation of the ages of the recorded calcareous nannofossilbio-events in the Bidart section (Table 1).

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546Q11

547

548

549

550

551

ED P

RO

O

5.3. Records of palaeoenvironmental changes in the lower Maastrichtianof Bidart

Carbon-isotopic trends at Bidart follow the global trends alreadyhighlighted and discussed in Voigt et al. (2012) and Thibault et al.(2012a, 2012b), thus allowing for precise correlation and dating ofthe section (Figs. 8–9). Oxygen isotopes suggest a positive trend(suggesting cooling) from the base of the section to 22.5 m, with valuesranging from about−1.8‰ to−0.8 (Fig. 6). This is immediately follow-ed by a slight shift tomore negative values (suggestingwarming) in thefollowing2 mand stabilization around an average of−1.35‰ to the topof the section (Fig. 6). If these trends are due to temperature changesonly, and considering that bulk carbonates of the Bidart section weremainly dominated by nannofossils and nannofossil debris without anymajor change in dominant taxa, the long term +0.5‰ trend wouldsuggest a decrease in sea-surface waters of about 2 °C through theearly Maastrichtian (based on the equation of Arthur et al., 1983).When replaced along the overall δ18O trend of the late Campa-nian–early Maastrichtian of the Bidart section previously shownby Clauser (1994), it appears that this drop in sea-surface tempera-tures corresponds to the progressive decreasing trend of the earlyMaastrichtian cooling event (Fig. 10, Barrera and Savin, 1999;Friedrich et al., 2009). This 2 °C cooling estimate is in agreementwith the previously quoted references and with surface water coolingas expressed by the greater abundance of high-latitude species innannofossil assemblages of tropical latitude sites (Thibault and Gardin,2006). The comparison of δ13C and δ18O trends in the Bidart section

2C. Total uncertainty corresponds to the sum of the uncertainty inherent to the bio-eventole 762C, including the uncertainty on the radiogenic dating of the Cretaceous–Paleogene

depth Age(Ma)

Uncertainty on bioevents positions(Ma)

Total uncertainty(Ma)

70.305 0.025 0.09570.56 0.08 0.1570.695 0.055 0.12570.775 0.025 0.09570.84 0.04 0.1170.935 0.055 0.12571.025 0.035 0.10571.155 0.035 0.10571.155 0.035 0.10571.375 0.025 0.09571.515 0.015 0.08571.515 0.015 0.085

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
"corresponds "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
" -"
Original text:
Inserted Text
" -"
Original text:
Inserted Text
" -"

TED P

RO

OF

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596Q12

597

598

599

(continued)

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

0.25 4.81 0.75 2.09 0.75 −1.780.3 6.39 0.9 2.1 0.9 −1.870.35 11.41 1.05 2.07 1.05 −1.730.4 13.85 1.2 2.05 1.2 −1.910.45 12.27 1.35 2.04 1.35 −1.960.5 12.72 1.5 2.04 1.5 −1.80.55 11.33 1.65 2.04 1.65 −1.860.6 11.84 1.8 1.96 1.8 −1.960.65 15.73 1.9 2.04 1.9 −1.880.7 16.02 2.05 2.1 2.05 −1.730.75 14.69 2.2 2.19 2.2 −1.670.8 13.64 2.35 2.09 2.35 −1.770.85 12.51 2.5 2.14 2.5 −1.80.9 11.53 2.65 2.14 2.65 −1.920.95 11.44 2.8 2.16 2.8 −1.731 12.17 2.95 2.2 2.95 −1.761.05 12.12 3.1 2.16 3.1 −1.881.1 11.76 3.25 2.23 3.25 −1.711.15 10.46 3.4 2.21 3.4 −1.761.2 7.79 3.55 2.21 3.55 −1.851.25 3.56 3.7 2.17 3.7 −1.871.3 5.68 3.85 2.16 3.85 −1.821.35 6.35 4 2.2 4 −1.741.4 6.49 4.15 2.16 4.15 −1.721.45 3.83 4.3 2.17 4.3 −1.641.5 4.94 4.45 2.2 4.45 −1.661.55 4.6 4.6 2.15 4.6 −1.851.6 4.89 4.75 2.19 4.75 −1.811.65 4.63 4.9 2.14 4.9 −1.691.7 4.42 5.05 2.13 5.05 −1.581.75 3.85 5.2 2.11 5.2 −1.671.8 2.88 5.35 2.1 5.35 −1.841.85 3.55 5.5 2.09 5.5 −1.771.9 3.4 5.65 2.19 5.65 −1.92 4.27 5.8 2.09 5.8 −1.872.05 3.49 5.95 2.11 5.95 −1.552.1 3.32 6.1 2.04 6.1 −1.642.15 4.13 6.25 2.11 6.25 −1.782.2 4.81 6.4 2.03 6.4 −1.82.25 5.35 6.55 2.01 6.55 −1.542.3 5.31 6.7 2.01 6.7 −1.722.35 3.98 6.85 2.03 6.85 −1.732.4 3.91 7 2.04 7 −1.852.45 3.78 7.15 2.11 7.15 −1.652.5 3.55 7.3 2.11 7.3 −1.722.55 3.53 7.45 2.16 7.45 −1.652.6 3.63 7.6 2.03 7.6 −1.88

Appendix A (continued)

12 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

REC

shows that the progressive cooling of temperatures is decoupled fromthe large negative Campanian–Maastrichtian boundary carbon isotopeexcursion (CIE) (Fig. 10). This feature was already highlighted byFriedrich et al. (2009) in the Southern Ocean and South Atlantic. If δ18Ovalues of the late Campanian are not diagenetically altered, thenprogres-sive cooling actually occurred throughout the late Campanian in theBasque-Cantabric basin and was later abruptly enhanced at around71.9 Ma after the major negative shift of the CIE, giving rise to the so-called early Maastrichtian cooling event (Fig. 10).

6. Conclusions

Results presented in this study allow the following conclusions forthe Bidart section in SW France:

• Strong orbital control of sedimentation by the precession and 100 kyreccentricity cycles characterizes in the lower Maastrichtian of theBidart section. Precession cycles are particularly well-expressed inthe magnetic susceptibility and oxygen isotopes and correspondwell to marl–limestone couplets in the lithology.

• A relative time scale created on the basis of the identification of100 kyr eccentricity cycles further enhances the record of precessionand 405 kyr eccentricity cycles. Detection of these parameters thussupports a primary origin for the marl–limestone couplets, and re-flects a remarkable record of precessional variations.

• Estimation of the total duration for the studied section is 1.44 ±0. 22 Myr.

• Correlation with the astronomically calibrated δ13C record of ODPHole 762C allows dating of the Bidart's δ13C record. This correla-tion indicates that the studied section spans the upper part ofChron C32n.1n and about 2/3 of C31r, extending from ~71.5 to~70 Ma, and covering short eccentricity cycles E10042 to E10054.

• The duration separating the LOs of U. trifidus and R. levis is evalu-ated to be at least 0.91 ± 0.13 Myr, and is consistent with previ-ous estimates from the Tethyan reference sections of Gubbio,Italy (Gardin et al., 2012). The LOs of A. parcus constrictus andR. levis are separated by ca. 500 kyr in agreement with the lowerGubbio estimate of Gardin et al. (2012). Age estimates of thenannofossil bio-horizons identified in the studied interval ofBidart are hereby provided (Table 1).

• Bulk oxygen isotopes suggest a 2 °C cooling of sea-surface watersduring the studied interval and correspond to the onset and de-creasing trend of the early Maastrichtian cooling event.

R 2.65 4.14 7.75 2.07 7.75 −1.78

2.7 5.56 7.9 2 7.9 −1.692.75 5.23 8.05 2.02 8.05 −1.742.8 5.49 8.2 2.04 8.2 −1.842.85 5.08 8.4 2.01 8.4 −1.632.9 5.19 8.55 2 8.55 −1.722.95 4.16 8.85 2 8.85 −1.753 3.87 9 1.94 9 −1.293.05 4.19 9.15 1.94 9.15 −1.783.1 4.87 9.25 1.87 9.25 −1.783.15 3.45 9.3 1.93 9.3 −1.773.2 4.21 9.4 1.84 9.4 −1.633.25 5.9 9.45 1.98 9.45 −1.63.3 6.98 9.6 1.96 9.6 −1.553.35 6.11 9.75 2 9.75 −1.65

UNCOAcknowledgments

We thank Heather M. Stoll for providing her isotopic data of ODPHole 762C.We thank JaumeDinarès-Turell and an anonymous reviewerfor their helpful suggestions and comments. This study was supportedby the Agence Nationale de la Recherche grant ASTS-CM.

Appendix A. Magnetic susceptibility, δ13C and δ13O data ofBidart section

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

0 3.75 0 2.06 0 −1.850.05 3.61 0.15 2.06 0.15 −1.570.1 3.56 0.3 2.07 0.3 −1.80.15 12.7 0.45 2.1 0.45 −1.830.2 9.4 0.6 2.16 0.6 −1.86

3.4 4.62 9.9 1.96 9.9 −1.743.45 4.64 10 1.91 10 −1.643.5 8.42 10.05 1.97 10.05 −1.653.55 5.95 10.2 1.91 10.2 −1.523.6 8.69 10.35 1.92 10.35 −1.733.65 6.87 10.4 1.97 10.4 −1.533.7 5.54 10.5 1.93 10.5 −1.713.75 5.52 10.6 1.94 10.6 −1.533.8 7.26 10.65 2.04 10.65 −1.883.85 7.46 10.8 2.01 10.8 −1.413.9 7.56 10.95 2.08 10.95 −1.493.95 5.25 11 1.92 11 −1.62

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
"’"
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
" "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
"’"
Original text:
Inserted Text
" +/- "
Original text:
Inserted Text
"corresponds "

UNCO

RRECTED P

RO

OF

(continued)

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

4 6.67 11.1 1.91 11.1 −1.714.05 5.9 11.25 1.98 11.25 −1.564.1 5.09 11.4 1.96 11.4 −1.624.15 4.64 11.55 2.08 11.55 −1.614.2 4.46 11.7 1.91 11.7 −1.784.25 4.11 11.85 1.93 11.85 −1.74.3 3.62 12 1.96 12 −1.614.35 3.48 12.15 1.89 12.15 −1.684.4 4.84 12.3 1.98 12.3 −1.734.45 5.01 12.45 2.05 12.45 −1.684.5 4.04 12.6 2.03 12.6 −1.694.55 3.99 12.75 2.06 12.75 −1.764.6 4.09 12.9 2.01 12.9 −1.614.65 4.06 13.05 2.01 13.05 −1.634.7 4.95 13.2 2.09 13.2 −1.624.75 4.74 13.35 2.06 13.35 −1.64.8 4.38 13.5 1.96 13.5 −1.474.85 5.25 13.65 1.97 13.65 −1.624.9 5.38 13.8 1.93 13.8 −1.574.95 4.62 13.95 1.98 13.95 −1.625 5.51 14.1 1.98 14.1 −1.555.05 7.24 14.25 1.95 14.25 −1.455.1 6.93 14.4 1.96 14.4 −1.565.15 6.42 14.55 2.04 14.55 −1.55.2 4.91 14.7 1.97 14.7 −1.365.25 5.08 14.85 1.97 14.85 −1.455.3 5.04 15 1.93 15 −1.435.35 4.73 15.15 1.96 15.15 −1.455.4 6.18 15.3 1.88 15.3 −1.525.45 6.4 15.45 1.78 15.45 −1.515.5 6.02 15.6 1.95 15.6 −1.295.55 4.87 15.75 1.83 15.75 −1.565.6 4.6 15.9 1.92 15.9 −1.715.65 4.24 16.05 2 16.05 −1.575.7 3.99 16.2 2 16.2 −1.595.75 3.35 16.35 1.9 16.35 −1.475.8 3.96 16.5 2.18 16.5 −0.965.85 4.9 16.65 2.01 16.65 −1.455.9 4.96 16.8 1.93 16.8 −1.535.95 5.95 16.95 2.03 16.95 −1.486 6.19 17.1 1.89 17.1 −1.476.05 5.89 17.25 1.99 17.25 −1.66.1 5.04 17.4 1.89 17.4 −1.336.15 4.54 17.55 1.94 17.55 −1.266.2 4.46 17.7 1.88 17.7 −1.486.25 3.83 17.85 1.9 17.85 −1.456.3 3.36 18 1.86 18 −1.396.35 2.89 18.15 1.91 18.15 −1.666.4 4.16 18.3 1.92 18.3 −1.396.45 3.6 18.45 1.93 18.45 −1.446.5 4.7 18.6 1.91 18.6 −1.416.55 4.82 18.75 1.99 18.75 −1.496.6 5.53 18.9 1.9 18.9 −1.46.65 4.42 19.05 1.97 19.05 −1.546.7 4.38 19.2 1.97 19.2 −1.416.75 3.74 19.35 1.93 19.35 −1.356.8 3.54 19.5 2.14 19.5 −1.156.85 3.58 19.65 2.1 19.65 −1.386.9 3.76 19.8 2 19.8 −1.556.95 3.69 19.95 2.2 19.95 −1.457 2.73 20.1 2.23 20.1 −1.127.05 2.86 20.25 1.96 20.25 −1.437.1 2.9 20.4 2.06 20.4 −1.527.15 2.99 20.55 2.07 20.55 −1.447.2 3.87 20.7 2.03 20.7 −1.427.25 3.44 20.85 2.04 20.85 −1.457.3 3.48 21 2.09 21 −1.447.35 4.3 21.15 2.04 21.15 −1.357.4 4.62 21.3 1.92 21.3 −1.417.45 4.16 21.45 2.08 21.45 −1.47.5 3.85 21.6 2.14 21.6 −1.397.55 3.17 21.75 2.19 21.75 −1.237.6 3.1 21.9 2.2 21.9 −1.327.65 3.38 22 2.11 22 −1.15

(continued)

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

7.7 3.51 22.05 2.12 22.05 −1.497.75 4.34 22.2 2.17 22.2 −1.077.8 4.65 22.35 2.23 22.35 −1.057.85 5.86 22.4 2.06 22.4 −1.027.9 5.75 22.5 2.16 22.5 −1.27.95 5.83 22.6 2.09 22.6 −0.998 5.32 22.65 2.06 22.65 −1.28.05 4.11 22.8 2.06 22.8 −0.718.1 3.65 22.95 2.15 22.95 −1.38.15 3.75 23 2.08 23 −1.198.2 3.29 23.1 2.11 23.1 −1.248.25 3.43 23.2 2.05 23.2 −1.058.3 3.93 23.25 2.1 23.25 −1.278.4 4.96 23.4 2.17 23.4 −1.048.45 5.11 23.55 2.12 23.55 −1.358.5 5.15 23.6 2.1 23.6 −1.28.55 5.27 23.7 2.04 23.7 −1.398.6 5.44 23.8 2.1 23.8 −1.248.65 4.47 23.85 2.17 23.85 −1.388.7 3.34 24 2.11 24 −1.268.75 3.16 24.05 2.15 24.05 −1.118.8 3.38 24.2 2.09 24.2 −1.498.85 3.26 24.35 2.17 24.35 −1.198.9 5.32 24.5 2.1 24.5 −1.348.95 6.25 24.65 2.13 24.65 −1.359 6.42 24.8 2.18 24.8 −1.259.05 4.78 24.95 2.17 24.95 −1.149.1 4.06 25.1 2.22 25.1 −1.229.15 3.65 25.25 2.2 25.25 −1.239.2 3.14 25.4 2.24 25.4 −1.219.25 3.18 25.55 2.14 25.55 −1.399.3 3.82 25.7 2.19 25.7 −1.299.35 4.28 25.85 2.26 25.85 −1.339.4 4.62 26 2.28 26 −1.319.45 5.02 26.15 2.17 26.15 −1.539.5 5.65 26.3 2.33 26.3 −1.399.55 5.51 26.45 2.24 26.45 −1.369.6 5.09 26.6 2.22 26.6 −1.659.65 4.37 26.75 2.11 26.75 −1.619.7 4.35 26.9 2.21 26.9 −1.329.75 4.28 27.05 2.17 27.05 −1.349.8 3.7 27.2 2.21 27.2 −1.469.85 3.34 27.35 2.32 27.35 −1.269.9 3.62 27.5 2.2 27.5 −1.529.95 3.77 27.65 2.23 27.65 −1.5710 4.06 27.8 2.27 27.8 −1.4510.05 3.93 27.95 2.26 27.95 −1.4110.1 3.86 28.1 2.22 28.1 −1.4710.15 4.11 28.25 2.43 28.25 −1.3710.2 4.78 28.4 2.08 28.4 −1.4110.25 5.32 28.55 2.24 28.55 −1.4210.3 5.21 28.7 2.43 28.7 −1.1110.35 4.32 28.85 2.23 28.85 −1.4210.4 4.66 29 2.32 29 −1.4710.45 3.29 29.15 2.32 29.15 −1.4910.5 3.29 29.3 2.26 29.3 −1.2910.55 3.3 29.45 2.31 29.45 −1.3110.6 3.38 29.6 2.33 29.6 −1.4810.65 3.99 29.75 2.29 29.75 −1.2810.7 5.35 29.9 2.34 29.9 −1.1710.75 5.91 30.05 2.22 30.05 −1.510.8 6.03 30.2 2.2 30.2 −1.3510.85 6.48 30.35 2.28 30.35 −1.4710.9 6.57 30.5 2.4 30.5 −1.2110.95 6.57 30.65 2.25 30.65 −1.3411 4.46 30.8 2.23 30.8 −1.4911.05 3.93 30.95 2.26 30.95 −1.3611.1 3.79 31.1 2.24 31.1 −1.4411.15 3.9111.2 4.2311.25 5.5311.3 6.311.35 5.92

Appendix A (continued) Appendix A (continued)

(continued on next page)

13D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

UNCO

RRECTED P

RO

OF

(continued)

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

11.4 5.6711.45 5.1811.5 4.711.55 3.9311.6 3.5811.65 4.0611.7 3.8311.75 4.5811.8 4.5511.85 4.7911.9 6.1411.95 5.4712 4.7512.05 412.1 3.6412.15 3.5912.2 3.5312.25 3.5912.3 3.7312.35 4.8812.4 4.8212.45 4.7412.5 4.5812.55 4.6812.6 4.5212.65 4.6112.7 4.3212.8 4.5212.85 4.6912.9 4.6712.95 4.5113 4.5613.05 4.2513.1 3.8713.15 2.9513.2 4.0613.25 4.5313.3 4.9713.35 5.113.4 6.6413.45 7.1413.5 6.9313.55 6.5713.6 5.4613.65 5.0813.7 4.1613.75 4.1813.8 5.1113.85 5.1213.9 4.8213.95 5.214 5.3714.05 6.1514.1 5.7214.15 5.8614.2 6.214.25 5.8914.3 3.6414.35 3.5714.4 3.5214.45 3.2114.5 3.0514.55 3.6114.6 3.514.65 4.4214.7 4.5214.75 5.2514.8 5.1514.85 4.2714.9 4.1614.95 3.2315 3.2315.05 3.6715.1 9.95

(continued)

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

15.15 1015.2 12.2915.25 11.2115.3 9.8715.35 3.9215.4 3.7715.45 8.1815.5 8.7815.55 12.7715.6 13.1515.65 11.4815.7 4.5915.75 3.9915.8 4.0315.85 3.9515.9 7.9715.95 11.0916 12.6416.05 13.6116.1 14.5816.15 13.5716.2 12.5616.25 12.3416.3 9.3816.45 16.4816.5 14.1616.55 16.0216.6 14.1116.65 9.5416.7 5.7316.75 10.0516.8 12.3816.85 13.6716.9 13.6316.95 15.4617 14.4617.05 11.917.1 10.0117.15 7.8917.2 4.9317.25 3.6517.3 3.5717.35 13.5817.4 17.8317.45 18.217.5 16.7117.55 14.9517.6 12.3617.65 13.9817.7 11.8517.72 5.2217.75 5.3717.8 7.4917.85 9.5617.9 18.4717.95 15.9618 12.1918.05 15.4518.1 13.918.15 10.5418.2 14.3718.25 19.1218.3 24.218.35 26.7518.4 25.6118.45 22.8318.5 15.8318.55 16.1718.6 12.0218.65 12.3518.7 26.1918.75 28.0618.8 21.8418.85 20.44

Appendix A (continued) Appendix A (continued)

14 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

UNCO

RRECTED P

RO

OF

(continued)

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

18.9 13.6618.95 14.1119 12.5619.05 5.6719.1 20.4519.15 16.1719.2 13.6519.25 12.8619.3 7.7219.35 10.0919.4 13.4919.45 13.2319.5 16.9119.55 22.3819.6 17.3819.65 16.6719.7 13.319.75 12.419.8 12.9619.85 14.1519.9 15.1119.95 13.9220 22.2520.05 14.3720.1 15.3520.15 16.1220.2 17.3420.25 5.9720.3 4.8220.35 4.3220.4 13.1420.45 22.0120.5 20.8620.55 18.3320.6 19.3320.65 19.8220.7 14.4320.75 10.3220.8 12.0820.85 17.0220.9 22.3120.95 15.121 17.7621.05 19.8621.1 17.7721.15 14.2921.2 12.421.25 15.3621.3 14.0921.35 14.8721.4 16.1621.45 17.3521.5 15.7321.55 9.1621.6 13.0621.65 12.6321.7 8.3321.75 10.8921.8 10.5521.85 8.4821.9 13.2121.95 16.7222 16.722.05 13.3622.1 10.122.15 10.8722.2 10.8422.25 12.5822.3 14.1722.35 14.5722.4 14.5622.45 14.7322.5 14.7422.55 11.93

(continued)

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

22.6 14.4522.65 11.9522.7 6.8622.75 16.6822.8 13.3722.85 14.8822.9 15.3622.95 15.2323 16.7323.05 14.1123.1 12.8423.15 11.7623.2 9.323.25 9.9323.3 10.123.35 13.1423.4 18.8523.45 20.5723.5 18.2323.55 14.8423.6 13.2323.65 11.7723.7 9.2123.75 7.9323.8 1023.9 23.4523.95 23.0824 11.9724.05 20.0424.1 13.1524.15 4.0124.2 8.2524.25 6.5824.3 25.8124.35 24.9124.4 21.0124.45 26.1624.5 16.2324.55 9.1724.6 8.5824.65 7.1324.7 9.7224.75 16.1724.8 20.4524.85 22.5524.9 20.9324.95 14.5325 14.4925.05 11.525.15 10.8225.2 10.5125.25 11.7325.3 14.3525.35 21.3325.4 9.9325.45 13.1325.5 12.6925.55 10.5225.65 6.3925.7 6.0225.75 5.7725.8 11.9525.85 11.1925.9 10.4825.95 13.4626 12.0226.05 11.5626.1 11.7226.15 9.3926.2 6.5226.25 3.1526.3 3.5726.35 21.83

Appendix A (continued) Appendix A (continued)

(continued on next page)

15D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

CO

RRECTED P

RO

OF

Q13Q14

(continued)

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

26.4 24.3526.45 17.426.5 15.0326.55 10.4726.6 13.2826.65 11.0226.7 13.8526.75 18.2926.8 25.9426.85 25.1726.9 25.426.95 25.5127 22.7727.05 21.3627.1 12.4927.15 17.4127.2 20.3727.25 27.0127.3 26.9727.35 24.6327.4 23.0127.45 21.3627.5 20.8527.55 16.4827.6 17.9527.65 15.4427.7 14.6427.75 17.6227.8 16.8327.85 16.2727.9 19.5327.95 18.9928 16.6628.05 17.3628.1 17.0328.15 15.7128.2 15.5828.25 8.7528.3 8.8628.35 9.2928.4 12.128.45 13.3128.5 16.4828.55 17.5228.6 21.5128.7 16.59

(continued)

Bidart section (lower Maastrichtian)

Depth(m)

MS(10 −8 m3/kg)

Depth(m)

δ13C(‰ V-PDB)

Depth(m)

δ18C(‰ V-PDB)

28.75 18.6628.8 13.5128.85 9.128.9 10.7728.95 13.2729 10.1429.05 15.1629.1 13.5129.15 17.229.2 18.7629.25 19.9929.3 15.1829.35 13.3129.4 18.2129.45 11.8129.5 9.8729.55 9.6129.7 10.9229.75 13.3829.8 14.5729.85 13.729.9 21.4129.95 14.7330 11.9330.05 10.9530.1 8.9830.15 9.3730.2 10.2230.25 15.6130.3 20.7730.35 21.9230.4 18.0530.45 14.2830.5 18.2530.55 10.7230.6 9.1630.65 9.5930.7 14.0630.8 15.4230.9 8.2930.95 13.731 8.431.05 8.1231.1 6.8731.15 7.77

Appendix A (continued) Appendix A (continued)

16 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

NAppendix B. Range chart of calcareous nannofossil key species (no. of specimens/200 fov)

U

Depth U. trifidus R. anthophorus R. anthophorus/levis

A. parcusparcus

A. parcusconstrictus

C. obscurus E. eximius T. phacelosus R. levis A. cymbiformisW

N. frequens Cribrocoronacf C. gallica

31 m 1 128.9 m 1 3 127.05 m 1 125.4 m 1 2 123.1 m 1 121.15 m 1 1 3 119.1 m 3 3 317.4 m 2 415.2 m 1 1 313.3 m 9 8 2 3

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
"n "

(continued)

Depth U. trifidus R. anthophorus R. anthophorus/levis

A. parcusparcus

A. parcusconstrictus

C. obscurus E. eximius T. phacelosus R. levis A. cymbiformisW

N. frequens Cribrocoronacf C. gallica

11.8 m 1 22 2 410.65 m 1 3 20 2 39 m 5 18 3 47.65 m 1 23 3 55.75 m 26 2 34.1 m 2 2 18 4 62.55 m 2 14 11 2 3 10.8 m 1 2 1 7 26 14 2 2 4

calcareous nannofossil key species (n° of specimens/200 fov)

Appendix B (continued)

17D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

OFAppendix C. Analysis of the variations in eccentricity–tilt–precession (ETP) for the last 2 Myr. The 405 kyr eccentricity inducesmodulations of

the two sub-modes of precession 23 kyr modes, leading to division and amalgamation of these sub-modes

UNCO

RRECTED P

RO

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"

Q2

18 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

Appendix D. Analysis of the MS variations scaled using a relative time scale based on the 100 kyr eccentricity. A) Spectral analysis highlightsthe reliability of the relative time scale, as cycles corresponding to the precession and the 100 and 405 kyr eccentricity are detected. B) Am-plitude spectrogram confirms the good correction of sedimentation rate variations, the precession trend being now continuous

NCO

RRECTED P

RO

OF

(continued)

Compiled Hole 762C δ13Cv data from Thibault et al. (2012) and Stoll and Schrag(2001)

Depth(mbsf)

Depth(ambsf)

13C(per mil)

Appendix E (continued)

UAppendix E. Compiled late Campanian–Maastrichtian δ13C dataof ODP Hole 762C from Thibault et al. (2012a) and Stoll andSchrag (2001)

Compiled Hole 762C δ13Cv data from Thibault et al. (2012) and Stoll and Schrag(2001)

Depth(mbsf)

Depth(ambsf)

13C(per mil)

551.95 552.98 1.40554.50 555.73 1.43554.83 556.06 2.55554.85 556.08 2.65555.01 556.24 2.56

555.51 556.74 2.61556.33 557.56 2.49556.83 558.06 2.61557.04 558.27 2.64557.54 558.77 2.44558.16 559.39 2.50558.98 560.21 2.46559.08 560.31 2.38560.46 561.69 2.49560.98 562.21 2.47

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
" "

UNCO

RRECTED P

RO

OF

(continued)

Compiled Hole 762C δ13Cv data from Thibault et al. (2012) and Stoll and Schrag(2001)

Depth(mbsf)

Depth(ambsf)

13C(per mil)

561.40 562.63 2.48564.14 565.37 2.56564.42 565.65 2.60564.48 565.71 2.64565.75 566.98 2.80566.45 567.68 2.75566.48 567.71 2.77566.98 568.21 2.67567.09 568.32 2.68568.08 569.31 2.79568.48 569.71 2.78568.55 569.78 2.76569.60 570.83 2.82570.08 571.31 2.85570.45 571.68 2.85571.19 572.42 2.72572.45 573.68 2.74572.78 574.01 2.71573.14 574.37 2.80573.60 575.15 2.87573.97 575.52 2.78574.00 575.55 2.78574.95 576.50 2.55575.25 576.80 2.65576.13 577.68 2.66576.99 578.54 2.67577.01 578.56 2.82577.38 578.93 2.69577.81 579.36 2.84577.99 579.54 2.97578.05 579.60 2.80578.74 580.29 2.73579.54 581.09 2.94579.95 581.50 2.87580.30 581.85 3.01580.93 582.48 3.09581.41 582.96 3.03583.20 584.75 2.74583.45 585.00 2.74583.89 585.44 2.70584.58 586.13 2.66585.50 587.05 2.76585.59 587.14 2.67586.10 587.65 2.66587.21 588.76 2.69587.48 589.03 2.70587.55 589.10 2.71588.15 589.70 2.59588.75 590.30 2.80589.30 590.85 2.83592.52 594.07 2.74592.59 594.14 2.69592.74 594.29 2.66592.99 594.54 2.71593.35 594.90 2.81593.51 595.06 2.82594.00 595.55 2.82594.46 596.01 2.67594.81 596.36 2.65595.00 596.55 2.86595.28 596.83 2.70595.40 596.95 2.68595.50 597.05 2.76595.65 597.20 2.74595.90 597.45 2.71596.04 597.59 2.68596.50 598.05 2.83596.62 598.17 2.66597.00 598.55 2.69597.40 598.95 2.69597.48 599.03 2.63598.00 599.55 2.79598.06 599.61 2.77

(continued)

Compiled Hole 762C δ13Cv data from Thibault et al. (2012) and Stoll and Schrag(2001)

Depth(mbsf)

Depth(ambsf)

13C(per mil)

598.48 600.03 2.72598.50 600.05 2.81598.73 600.28 2.77599.00 600.55 2.92599.09 600.64 2.85599.50 601.05 2.87600.00 601.55 2.78600.23 601.78 2.60600.57 602.12 2.66600.83 602.38 2.55600.89 602.44 2.63601.00 602.55 2.67601.48 603.03 2.48602.00 603.61 2.29602.04 603.65 2.37602.05 603.66 2.54602.11 603.72 2.44602.40 604.01 2.57602.45 604.06 2.63603.00 604.61 2.54603.00 604.61 2.45603.51 605.12 2.66603.69 605.30 2.59603.99 605.60 2.44604.11 605.72 2.50604.20 605.81 2.46604.43 606.04 2.49604.48 606.09 2.57604.82 606.43 2.41605.01 606.62 2.57605.46 607.07 2.51605.74 607.35 2.50605.97 607.58 2.55606.26 607.87 2.46606.29 607.90 2.39606.54 608.15 2.41606.80 608.41 2.48607.03 608.64 2.47607.23 608.84 2.50607.49 609.10 2.50607.70 609.31 2.38608.00 609.61 2.51608.27 609.88 2.52608.48 610.09 2.46608.78 610.39 2.51608.96 610.57 2.63609.45 611.06 2.54609.50 611.11 2.59609.99 611.60 2.60610.18 611.79 2.59610.22 611.83 2.59610.37 611.98 2.61610.48 612.09 2.63610.67 612.28 2.66610.97 612.58 2.56610.99 612.60 2.46611.59 613.56 2.50611.62 613.59 2.43611.75 613.72 2.60612.00 613.97 2.57612.11 614.08 2.43612.49 614.46 2.39612.66 614.63 2.45613.01 614.98 2.39613.12 615.09 2.44613.20 615.17 2.44613.50 615.47 2.28613.84 615.81 2.42614.07 616.04 2.43614.12 616.09 2.34614.50 616.47 2.31614.61 616.58 2.42

Appendix E (continued) Appendix E (continued)

(continued on next page)

19D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

UNCO

RRECTED P

RO

OF

(continued)

Compiled Hole 762C δ13Cv data from Thibault et al. (2012) and Stoll and Schrag(2001)

Depth(mbsf)

Depth(ambsf)

13C(per mil)

614.70 616.67 2.40614.98 616.95 2.46615.15 617.12 2.39615.46 617.43 2.56615.55 617.52 2.34615.66 617.63 2.54616.01 617.98 2.56616.12 618.09 2.48616.19 618.16 2.59616.48 618.45 2.55616.93 618.90 2.44616.99 618.96 2.52617.02 618.99 2.45617.54 619.51 2.52617.62 619.59 2.38617.70 619.67 2.37617.98 619.95 2.38618.30 620.27 2.45618.56 620.53 2.65618.57 620.54 2.62618.85 620.82 2.49618.99 620.96 2.73619.11 621.08 2.49619.50 621.47 2.44621.05 623.02 2.54621.11 623.08 2.42621.46 623.43 2.59621.94 623.91 2.47621.95 623.92 2.60622.57 624.54 2.61622.62 624.59 2.55623.00 624.97 2.49623.48 625.45 2.63623.53 625.50 2.52624.05 626.02 2.58624.11 626.08 2.59624.50 626.47 2.59625.06 627.03 2.64625.11 627.08 2.71625.54 627.51 2.65625.62 627.59 2.62625.99 627.96 2.63626.49 628.46 2.53626.52 628.49 2.57627.01 628.98 2.69627.12 629.09 2.63627.51 629.48 2.61628.00 629.97 2.59628.01 629.98 2.59628.50 630.47 2.54628.67 630.64 2.62628.94 630.91 2.58629.45 631.42 2.39629.61 631.58 2.48630.03 632.00 2.65630.12 632.09 2.58630.39 632.36 2.64630.50 632.85 2.60630.55 632.90 2.61630.62 632.97 2.53631.01 633.36 2.63631.50 633.85 2.68631.53 633.88 2.71632.01 634.36 2.79632.11 634.46 2.73632.49 634.84 2.68632.81 635.16 2.70632.99 635.34 2.72633.51 635.86 2.63633.61 635.96 2.80633.98 636.33 2.73634.48 636.83 2.75634.73 637.08 2.71

(continued)

Compiled Hole 762C δ13Cv data from Thibault et al. (2012) and Stoll and Schrag(2001)

Depth(mbsf)

Depth(ambsf)

13C(per mil)

635.04 637.39 2.65635.12 637.47 2.64635.50 637.85 2.79636.00 638.35 2.79636.02 638.37 2.76636.51 638.86 2.80636.60 638.95 2.77636.96 639.31 2.61637.35 639.70 2.69637.52 639.87 2.59638.07 640.42 2.79638.36 640.71 2.66638.50 640.85 2.65638.96 641.31 2.62639.31 641.66 2.72639.33 641.68 2.63640.04 642.39 2.62640.11 642.46 2.68640.45 642.80 2.64640.67 643.02 2.63640.98 643.33 2.74641.50 643.85 2.76641.55 643.90 2.62641.98 644.33 2.78642.50 644.85 2.64642.63 644.98 2.76643.03 645.38 2.75643.12 645.47 2.66643.50 645.85 2.69643.78 646.13 2.67643.90 646.25 2.70644.57 646.92 2.65644.62 646.97 2.67644.97 647.32 2.67645.56 647.91 2.67645.61 647.96 2.55646.01 648.36 2.69646.12 648.47 2.66646.50 648.85 2.76646.99 649.34 2.58647.01 649.36 2.72647.51 649.86 2.71647.59 649.94 2.57648.06 650.41 2.72648.35 650.70 2.56648.50 650.85 2.56649.02 651.37 2.65649.12 651.47 2.56649.26 651.61 2.71649.38 651.73 2.58649.56 652.18 2.80649.63 652.25 2.64649.96 652.58 2.64650.49 653.11 2.72650.52 653.14 2.67651.02 653.64 2.57651.05 653.67 2.73651.52 654.14 2.75651.90 654.52 2.65651.95 654.57 2.66652.52 655.14 2.69652.60 655.22 2.52652.92 655.54 2.73653.50 656.12 2.58653.52 656.14 2.54654.02 656.64 2.59654.16 656.78 2.65654.46 657.08 2.60655.03 657.65 2.65655.09 657.71 2.58655.57 658.19 2.64655.91 658.53 2.51655.95 658.57 2.61

Appendix E (continued) Appendix E (continued)

20 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratigraphy of the Bidart section (Basque Country, SW France): A remark-able record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

UNCO

RRECT

600

601602603604605606

607608609610611Q15612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692

(continued)

Compiled Hole 762C δ13Cv data from Thibault et al. (2012) and Stoll and Schrag(2001)

Depth(mbsf)

Depth(ambsf)

13C(per mil)

656.47 659.09 2.71656.99 659.61 2.62657.02 659.64 2.68657.19 659.81 2.51657.55 660.17 2.70658.00 660.62 2.75658.02 660.64 2.66658.49 661.11 2.83658.52 661.14 2.88658.75 661.37 2.71659.02 661.64 2.70659.57 662.19 2.74659.77 662.39 2.76659.98 662.60 2.75660.39 663.01 2.74660.52 663.14 2.63660.98 663.60 2.72661.09 663.71 2.62661.50 664.12 2.63661.72 664.34 2.64662.02 664.64 2.62662.16 664.78 2.66662.49 665.11 2.88662.99 665.61 2.88663.12 665.74 2.80663.51 666.13 2.87663.97 666.59 2.69663.99 666.61 2.80664.51 667.13 2.81664.71 667.33 2.71665.01 667.63 2.84665.55 668.17 2.88665.96 668.58 2.89665.99 668.61 3.02666.51 669.13 2.94666.99 669.61 2.91667.12 669.74 2.87667.51 670.13 2.89667.79 670.41 2.80668.05 670.67 2.76668.21 670.83 2.57668.50 671.12 2.69668.51 671.92 2.84668.62 672.03 2.84669.17 672.58 2.84669.49 672.90 2.75670.07 673.48 2.74670.54 673.95 2.83670.99 674.40 2.85671.52 674.93 2.97672.00 675.41 2.91672.46 675.87 2.95678.00 681.41 2.81678.52 681.93 2.80678.98 682.39 2.80679.51 682.92 2.81679.94 683.35 2.89680.51 683.92 2.94681.05 684.46 2.87681.43 684.84 2.84682.06 685.47 2.82682.43 685.84 2.74

Appendix E (continued)

21D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

References

Arthur, M.A., Fischer, A.G., 1977. Upper Cretaceous–Paleogene magnetic stratigraphy atGubbio, Italy. I. Lithostratigraphy and sedimentology. Geol. Soc. Am. Bull. 88,367–371.

Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S., 1983. Stable isotopes in sed-imentary geology. Society of Economic Paleontologists and Mineralogists of TulsaShort Course No. 10. (430 pp.).

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

ED P

RO

OF

Batenburg, S.J., Sprovieri, M., Gale, A.S., Hilgen, F.J., Hüsing, S., Laskar, J., Liebrand, D., Lirer,F., Orue-Etxebarria, X., Pelosi, N., Smit, J., 2012. Cyclostratigraphy and astronomicaltuning of the Late Maastrichtian at Zumaia (Basque Country, Northern Spain). EarthPlanet. Sci. Lett. 359–360, 264–278.

Batenburg, S.J., Gale, A.S., Sprovieri, M., Hilgen, F.J., Thibault, N., Boussaha, M., Orue-Etxebarria, X., 2013. An astronomical time scale for the Maastrichtian based on theZumaia and Sopelana sections (Basque Country, northern Spain). J. Geol. Soc. Lond.(in press).

Beltran, C., de Rafélis, M., Person, A., Stalport, F., Renard, M., 2009. Multiproxy approachfor determination of nature and origin of carbonate micro-particles so-called“micarb” in pelagic sediments. Sediment. Geol. 213, 64–76.

Berger, A., Loutre, M.-F., 1994. Astronomical forcing through geological time. In: de Boer,P.L., Smith, D.G. (Eds.), Orbital Forcing and Cyclic Sequences. International Associationof Sedimentologists Special Publication, 19, pp. 15–24.

Böhm, F., Westphal, H., Bornholdt, S., 2003. Required but disguised: environmental signalsin limestone–marl alternations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 189,161–178.

Boulila, S., Galbrun, B., Hinnov, L.A., Collin, P.-Y., 2008. High-resolution cyclostratigraphicanalysis from magnetic susceptibility in a Lower Kimmeridgian (Upper Jurassic)marl–limestone succession (la Méouge, Vocontian Basin, France). Sediment. Geol.203, 54–63.

Clauser, S., 1994. Etudes stratigraphiques du Campanien et du Maastrichtien de l'Europeoccidentale (cote Basque, Charentes (France), Limbourg (Pays-Bas)). Phd ThesisUniversité Pierre et Marie Curie.

Del Panta, F., 1995. Biostratigrafia e Paleoecologia a Nannofossili calcarei dellintervalloSantoniano–Maastrichtiano nel dominio tetideo (Paesi Baschi, Spagna-Umbria, Ita-lia). Correlazione con eventi a Foraminiferi. PhD Thesis Universita degli studi diFirenze.

Delacotte, O., 1982. Étude magnétostratigraphique et géochimique de la limite Crétacé-Tertiaire de la coupe de Bidart (Pyrénées Atlantiques). PhD Thesis Université Pierreet Marie Curie.

Dinarès-Turell, J., Baceta, J.I., Pujalte, V., Orue-Etxebarria, X., Bernaola, G., Lorito, S., 2003.Untangling the Palaeocene climatic rhythm: an astronomically calibrated earlyPalaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin,northern Spain). Earth Planet. Sci. Lett. 216, 483–500.

Dinarès-Turell, J., Pujalte, V., Stoykova, K., Elorza, J., 2013. Detailed correlation and astro-nomical forcing across the Upper Maastrichtian succession from the Basque Basin.Bol. Geol. Min. 124 (2), 253–282.

Ellwood, B.B., Chrzanowski, T.H., Hrouda, F., Long, G.J., Buhl, M.L., 2000. Siderite formationin anoxic deep-sea sediments: a synergetic bacteria controlled process with impor-tant implications in paleomagnetism. Geology 28, 1135–1138.

Elorza, J., Garcı́a-Garmilla, F., 1998. Palaeoenvironmental implications and diagenesis ofinoceramid shells (Bivalvia) in the mid-Maastrichtian beds of the Sopelana, Zumayaand Bidart sections (coast of the Bay of Biscay, Basque Country). Palaeogeogr.Palaeoclimatol. Palaeoecol. 141 (1–4), 303–328.

Friedrich, O., Herrle, J.O., Wilson, P.A., Cooper, M.J., Erbacher, J., Hemleben, C., 2009. EarlyMaastrichtian carbon cycle perturbation and cooling event: implications from theSouth Atlantic Ocean. Paleoceanography 24, PA2211.

Galbrun, B., 1992. Magnetostratigraphy of Upper Cretaceous and Lower Tertiary sedi-ments, sites 761 and 762, Exmouth Plateau, northwest Australia. Proc. Ocean Drill.Program Sci. Results 122, 699–716.

Galbrun, B., Gardin, S., 2004. New chronostratigraphy of the Cretaceous–Paleogeneboundary interval at Bidart (France). Earth Planet. Sci. Lett. 224, 19–32.

Gallala, N., Zaghbib-Turki, D., Arenillas, I., Arz, J.A., Molina, E., 2009. Catastrophic mass ex-tinction and assemblage evolution in planktic foraminifera across the Cretaceous/Pa-leogene (K/Pg) boundary at Bidart (SW France). Mar. Micropaleontol. 72, 196–209.

Gardin, S., Galbrun, B., Thibault, N., Coccioni, R., Premoli Silva, I., 2012. Bio-magnetochronology for the upper Campanian–Maastrichtian from the Gubbio area,Italy: new results from the Contessa Highway and Bottaccione sections. Newsl.Stratigr. 45, 75–103.

Gómez-Alday, J.J., Zuluaga, M.C., Elorza, J., 2008. 87Sr/86Sr ratios in inoceramids (Bivalvia)and carbonate matrix as indicators of differential diagenesis during burial. EarlyMaastrichtian Bay of Biscay sections (Spain and France). Potential use forchemostratigraphy? Cretac. Res. 29, 563–576.

Gorostidi, A., Lamolda, M.A., 1995. La nanoflora calcarea y el transito KT de la seccion deBidart (SW de Francia). Revista Espanola de Paleontologia, n° homenaje al Dr.Guillermo Colom. 153–168.

Grossman, E.L., 2012. Oxygen isotope stratigraphy. In: Gradstein, F., et al. (Eds.), The Geo-logic Time Scale 2012. Elsevier, pp. 181–206.

Hinnov, L.A., 2000. New perspectives on orbitally forced stratigraphy. Annu. Rev. EarthPlanet. Sci. 28, 419–475.

Hubbard, B.B., 1996. The world according to wavelets. The Story of a Mathematical Tech-nique in the Making.Universities Press.

Husson, D., Galbrun, B., Laskar, J., Hinnov, L.A., Thibault, N., Gardin, S., Locklair, R.E., 2011.Astronomical calibration of the Maastrichtian (Late Cretaceous). Earth Planet. Sci.Lett. 305, 328–340.

Husson, D., Galbrun, B., Thibault, N., Gardin, S., Huret, E., Coccioni, R., 2012. Astronomicalduration of polarity Chron C31r (Lower Maastrichtian): cyclostratigraphy of ODP site762 (Indian Ocean) and the Contessa Highway section (Gubbio, Italy). Geol. Mag. 149(2), 345–351.

Locklair, R.E., Sageman, B.B., 2008. Cyclostratigraphy of the upper cretaceous Niobrara for-mation, western interior, USA: a Coniacian–Santonian orbital timescale. Earth Planet.Sci. Lett. 269, 540–553.

Lowrie, W., Alvarez, W., 1977. Upper Cretaceous–Paleocene magnetic stratigraphy atGubbio, Italy. 3. Upper Cretaceous magnetic stratigraphy. Geol. Soc. Am. Bull. 88,374–377.

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
" "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"T. F."
Original text:
Inserted Text
"S.J"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"’"
Original text:
Inserted Text
"- "
Original text:
Inserted Text
"J"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
" - "
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"

693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732

733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772

774

22 D. Husson et al. / Palaeogeography, Palaeoclimatology, Palaeoecology xxx (2013) xxx–xxx

Lowrie, W., Alvarez, W., 1981. 100 Million years of geomagnetic polarity history. Geology9, 392–397.

Maurer, F., Hinnov, L.A., Schlager, W., 2004. Statistical Time-Series Analysis and Sedimen-tological Tuning of Bedding Rhythms in a Triassic Basinal Succession (Southern Alps,Italy). In: D'Argenio, B., et al. (Eds.), Cyclostratigraphy: Approaches and Case Histo-ries, SEPM special publication, 81, pp. 83–99.

Mayer, H., Appel, E., 1999. Milankovitch cyclicity and rock-magnetic signatures ofpalaeoclimatic change in the early Cretaceous Biancone formation of the SouthernAlps, Italy. Cretac. Res. 20, 189–214.

Meyers, S.R., Sageman, B.B., 2004. Detection, quantification, and significance of hiatuses inpelagic and hemipelagic strata. Earth Planet. Sci. Lett. 224, 55–72.

Meyers, S.R., Sageman, B.B., Hinnov, L.A., 2001. Integrated quantitative stratigraphy of theCenomanian–Turonian bridge creek limestone member using evolutive harmonicanalysis and stratigraphic modeling. J. Sediment. Res. 71, 628–644.

Minoletti, F., de Rafelis, M., Renard, M., Gardin, S., Young, J., 2005. Changes in the pelagicfine fraction carbonate sedimentation during the Cretaceous–Paleocene transition:contribution of the separation technique to the study of Bidart section. Palaeogeogr.Palaeoclimatol. Palaeoecol. 216, 119–137.

Monechi, S., Thiersten, H.R., 1985. Late Cretaceous Eocene nannofossil and magnet-ostratigraphic correlations near Gubbio, Italy. Mar. Micropaleontol. 9, 419–440.

Mudelsee, M., 2002. TAUEST: a computer program for estimating persistence in unevenlyspaced weather/climate time series. Comput. Geosci. 28, 69–72.

Pälike, H., Hilgen, F., 2008. Rock clock synchronization. Nat. Geosci. 1, 282.Premoli Silva, I., Sliter, W.V., 1995. Cretaceous planktonic foraminiferal stratigraphy and

evolutionary trends from the Bottaccione section, Gubbio, Italy. Paleontogr. Ital. 82,1–89.

Puigdefàbregas, C., Souquet, P., 1986. Tecto-sedimentary cycles and depositionalsequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129,173–203.

Renne, P.R., Deino, A.L., Hilgen, F.J., Kuiper, K.F., Mark, D.F., Mitchell, W.S., Morgan, L.E.,Mundil, R., Smit, J., 2013. Time scales of critical events around the Cretaceous–Paleo-gene boundary. Science 339, 684–687.

Rocchia, R., Boclet, D., Bonté, Ph., Devineau, J., Jéhanno, C., Renard, M., 1987. Comparaisondes distributions de l'Iridium observées à la limite Crétacé-Tertiaire dans divers siteseuropéens. Mem. Soc. Géol. Fr. 150, 95–103.

Sageman, B.B., Rich, J., Arthur, M.A., Dean, W.E., Birchfield, E.G., 1997. Evidence forMilankovitch periodicities in Cenomanian–Turonian lithologic and geochemicalcycles, Western Interior U.S. J. Sediment. Res. B67, 286–302.

Schulz, M., Mudelsee, M., 2002. REDFIT: estimating red-noise spectra directly fromunevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426.

UNCO

RRECT

773

Please cite this article as: Husson, D., et al., Lower Maastrichtian cyclostratable record of precessional forci..., Palaeogeogr. Palaeoclimatol. Palaeoecol

D P

RO

OF

Seyve, C., 1984. Le passage Crétacé-Tertiaire à Pont-Labau (Pyrénées-Atlantiques, France).Bull. Cent. Rech. Explor. Prod. Elf-Aquitaine 8, 385–423.

Stoll, H.M., Schrag, D.P., 2001. Sr/Ca variations in Cretaceous carbonates: relation to produc-tivity and sea level changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 168, 311–336.

Taner, M.T., 2000. Attributes Revisited. Technical Publication, Rock Solid Images, Inc.,Houston, Texas (http://www.rocksolidimages.com/pdf/attrib_revisited.htm).

ten Kate, W.G.H.Z., Sprenger, A., 1993. Orbital cyclicities above and below the Cretaceous/Paleogene boundary at Zumaya (N Spain), Agost and Relleu (SE Spain). Sediment.Geol. 87, 69–101.

Thibault, N., Gardin, S., 2006. Maastrichtian calcareous nannofossil biostratigraphy andpaleoecology in the Equatorial Atlantic (Demerara Rise, ODP Leg 207 Hole 1258A).Rev. Micropaleontol. 49, 199–214.

Thibault, N., Husson, D., Harlou, R., Gardin, S., Galbrun, B., Huret, E., Minoletti, F., 2012a.Astronomical calibration of upper Campanian–Maastrichtian carbon isotopeevents and calcareous plankton biostratigraphy in the Indian Ocean (ODP Hole762C): implication for the age of the Campanian–Maastrichtian boundary.Palaeogeogr. Palaeoclimatol. Palaeoecol. 337–338, 52–71.

Thibault, N., Harlou, R., Schovsbo, N., Schiøler, P., Minoletti, F., Galbrun, B., Lauridsen, B.W.,Sheldon, E., Stemmerik, L., Surlyk, F., 2012b. Upper Campanian–Maastrichtiannannofossil biostratigraphy and high-resolution carbon-isotope stratigraphy of theDanish Basin: towards a standard δ13C curve for the Boreal Realm. Cretac. Res. 33,72–90.

Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. IEEE Proc. 70,10551096.

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Am. Meteorol.Soc. 79, 61–78.

Voigt, S., Gale, A.S., Jung, C., Jenkyns, H.C., 2012. Global correlation of Upper CampanianMaastrichtian successions using carbon-isotope stratigraphy: development of anew Maastrichtian timescale. Newsl. Stratigr. 45, 25–53.

Westerhold, T., Röhl, U., McCarren, H.K., Zachos, J.C., 2009. Latest on the absolute age ofthe Paleocene–Eocene thermal maximum (PETM): new insights from exact strati-graphic position of key ash layers+19 and−17. Earth Planet. Sci. Lett. 287, 412–419.

Westphal, H., Hilgen, F., Munnecke, A., 2010. An assessment of the suitability of individualrhythmic carbonate successions for astrochronological application. Earth Sci. Rev. 99,19–30.

Wilks, D.S., 1995. Statistical Methods in the Atmospheric Sciences. Academic Press, SanDiego (467 pp.).

Zepeda, M.A., 1998. Planktonic foraminiferal diversity, equitability and biostratigraphy ofthe uppermost Campanian–Maastrichtian, ODP Leg 122, Hole 762C, Exmouth Plateau,NW Australia, eastern Indian Ocean. Cretac. Res. 19, 117–152.

E

igraphy of the Bidart section (Basque Country, SW France): A remark-. (2013), http://dx.doi.org/10.1016/j.palaeo.2013.12.008

Original text:
Inserted Text
" "
Original text:
Inserted Text
"’"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"’"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
"-"
Original text:
Inserted Text
" - "
Original text:
Inserted Text
"-"