Layered animation of captured data

29
Layered Animation of Captured Data Wei Sun, Adrian Hilton, Raymond Smith and John Illingworth Centre for Vision, Speech and Signal Processing University of Surrey, Guildford GU2 5XH, UK [email protected] http://www.ee.surrey.ac.uk/Research/VSSP/3Dvision Abstract This paper proposes a novel technique for building layer animation models of real articulated objects from 3D surface measurement data. Objects are scanned using a hand-held 3D sensor to acquire 3D surface measurements. A novel geometric fusion algorithm is presented which enables reconstruction of a single surface model from the captured data. This algorithm overcomes the limitations of previous approaches which cannot be used for hand-held sensor data as they assume that measurements are on a structured planar grid. The geometric fusion introduces the normal-volume representation of a triangle to convert individual triangles to a volumetric implicit surface. A layered model is constructed to animate the reconstructed high-resolution surface. The model consists of 3 layers: skeleton for animation from key-frame or motion capture; low-resolution-control- model for real-time mesh deformation; and high-resolution model to represent the captured surface detail. Initially the skeleton model is manually placed inside the low-resolution control model and high-resolution scanned data. Automatic techniques are introduced to map both the control model and captured data into a single layered model. The high-resolution captured data is mapped onto the low- resolution control model using the normal-volume representation. The resulting model enables efficient, seamless animation by manipulation of the skeleton whilst maintaining the captured high-resolution surface detail. The animation of high-resolution captured data based on a low-resolution generic model of the object opens up the possibility of rapid capture and animation of new objects based on libraries of generic models. Supported by EPSRC Advanced Fellowship AF/97/2531 and EPSRC Grant GR/89518 ‘Building Realistic Models for Virtual Reality and Animation’ 1

Transcript of Layered animation of captured data

LayeredAnimationof CapturedData

Wei Sun,AdrianHilton, RaymondSmithandJohnIllingworth

Centrefor Vision,SpeechandSignalProcessing

Universityof Surrey, GuildfordGU25XH, UK

[email protected] http://www.ee.surrey.ac.uk/Research/VSSP/3Dvision

Abstract

Thispaperproposesanovel techniquefor building layeranimationmodelsof realarticulatedobjects

from 3D surfacemeasurementdata. Objectsarescannedusinga hand-held3D sensorto acquire3D

surfacemeasurements.A novel geometricfusionalgorithmis presentedwhich enablesreconstruction

of a singlesurfacemodelfrom thecaptureddata.This algorithmovercomesthelimitationsof previous

approacheswhich cannotbeusedfor hand-heldsensordataasthey assumethatmeasurementsareon a

structuredplanargrid. Thegeometricfusion introducesthenormal-volumerepresentationof a triangle

to convert individual trianglesto avolumetricimplicit surface.

A layeredmodel is constructedto animatethe reconstructedhigh-resolutionsurface. The model

consistsof 3 layers:skeletonfor animationfrom key-frameor motioncapture;low-resolution-control-

model for real-timemeshdeformation;and high-resolutionmodel to representthe capturedsurface

detail. Initially the skeletonmodel is manuallyplacedinside the low-resolutioncontrol model and

high-resolutionscanneddata.Automatictechniquesareintroducedto mapboth thecontrolmodeland

captureddatainto a singlelayeredmodel. Thehigh-resolutioncaptureddatais mappedonto the low-

resolutioncontrolmodelusingthenormal-volumerepresentation.Theresultingmodelenablesefficient,

seamlessanimationby manipulationof the skeletonwhilst maintainingthe capturedhigh-resolution

surfacedetail. Theanimationof high-resolutioncaptureddatabasedon a low-resolutiongenericmodel

of theobjectopensupthepossibilityof rapidcaptureandanimationof new objectsbasedon librariesof

genericmodels.

SupportedbyEPSRCAdvancedFellowshipAF/97/2531andEPSRCGrantGR/89518‘Building RealisticModelsfor Virtual

RealityandAnimation’

1

Low−resolution Control Model Layer

Point−to−line Mapping

Low−resolution Control Model Animation

High−resolution Model Capture & Construction

3D Data Capture (hand−held sensor)

Geometric Fusion & Optimisation

Skeleton Layer

Skeleton Fitting

Motion Control Design

High−resolution Model Layer

Point−to−surface Mapping

High−resolution Model Animation

Model Construction

Layered Animation

Figure1: Systemoverview

1 Intr oduction

Onefundamentaldifficulty in 3D-computeranimationis building 3D modelsthatarefrequentlyrequired

to havenot only high-detailandrealisticsurfacesbut alsobelievabledeformations.Advancesin 3D sensor

technologyhave suppliedanefficient way to capturephoto-realistic3D modelsof realobjects.However,

how to animatesuchkind of capturedmodelsis rarelystudied.Reconstructedsurfacemodelsareusually

composedof adenseunstructuredpolygonalmeshrepresentingthesurfacedetailof theobjectat theresolu-

tion andaccuracy of thesensor. “Suchmeshesarenotoriouslyexpensive to store,transmit,render, andare

awkwardto animate”[Thalmannetal., 1996]. Thegoalof this researchis to enablerapidreconstructionof

modelssuitablefor animationfrom captureddata.

Figure 1 shows an overview of our system. The systemconsistsof two parts: model construction

and layeredanimation. The function of the first part is to obtaina single triangulated3D surfacemesh

with high surfacedetail from real objects. A hand-heldsensorsystemis usedfor dataacquisitionfrom

3D models(section3.1). Thenormal-volumerepresentationconceptis usedfor thefusionof overlapping

surfacemeasurementsinto asinglemeshsurfacemodel(section3.2).A high-resolutiontriangulatedsurface

representationis generatedusinga local implicit surfacebasedgeometricfusionalgorithm(section3.3).

To animatereconstructedsurfacemodelsfrom captureddatarealisticallyandefficiently, alayeredmodel

is built in which eachlayerperformsdifferentanimationtasks.The layeredmodelallows ananimatorto

manipulatethe low-resolutionmodelin real-timeandrenderthe full surfacedetail off line to achieve full

realism.This paperis anextensionof previously reportedwork in progress[Sunet al., 1999] to presentin

detail thecompletechainfrom captureddatato ananimatedmodel. This framework addresseslimitations

2

of ourpreviouswork in building andrealisticallyanimatingthelayeredmodel.

The lowest layer hereis the skeletonlayer. A hierarchicalskeletonstructureis fitted interactively to

the high and low resolutionmeshmodels,as introducedin section4.1. The fitted skeletonmodelgives

thejoint positioninformationandcanbeanimatedusingcommonanimationtechniquessuchaskey-frame,

inversekinematics,physics-basedmodelsor motioncapturetechniques.Thisgreatlysimplifiestheprocess

of animatingthecapturedmodel.Theskeletonmotionprovidesinput for all otherlayers.

Themiddlelayeris a low-resolutioncontrolmodel.Althoughtheskeletonaloneis sufficient for motion

controlpurposes,it is often too simpleto beusedasa representationof anobject. On theotherhandthe

high-resolutionmodel is prohibitively expensive to work with. Thereforeit is desirableto introducean

intermediatelayer. Thecontrolmodelis a genericrepresentationof theobjectwith thesamebasicshape

andtopologyasthe captureddatabut a low polygoncount. It could be a box-like modelasin Kinetix’s

Biped for 3D Studio MAX or more complicatedmodelssuchas thoseavailable from Viewpoint Data

Labs[Datalabs,1996]. Suchmodelsarestructuredto achievesmoothandefficient animationof theobject

surface.Firstly, in thecontrolmodellayer, askeletonis manuallylocatedinsidethemodel.A point-to-line

mappingis thenusedto automaticallymapthelow-resolutionmodelontotheskeleton(section4.2). In this

paperwealsointroduceanew point-to-linemappingalgorithmwhichenablesfull geometricdeformationof

thesphereincludingtwist basedon theskeletonmotion.This overcomeslimitationsof our previouspoint-

to-line mapping[Sunet al., 1999]which did not allow control modeldeformationbasedon twist motion.

A seamlessdeformationschemeis developedto animatethecontrolmodelbasedon theparameterisation

obtainedfrom the point-to-linemapping.For greaterrealismthe layeredmodelcouldbe animatedusing

alternativedeformationschemesuchasFFD or physical-basedmodellingasdiscussedin section2.

Thehigh-resolutioncaptureddatamodelis automaticallymappedontothelow-resolutioncontrolmodel

using the point-to-surfacemapping(section4.3). This mappingallows the high-resolutiondata to be

mappedto an control modelof arbitraryshapeand topology. Normally the control model is structured

to achieve smoothandefficient animationof the objectsurface. The high-resolutionmodelcan thenbe

animatedefficiently basedonthecontrolmodelanimationusingacontinuousdeformationscheme(section

5.2). The result is that thehigh-resolutioncapturedmodelis introducedat the renderingstageto achieve

bothrealisticmodellingandanimationof thecapturedobject.

Thisapproachprovidesanovel techniquefor building animatedmodelsfrom capturedsurfacemeasure-

ments.Theprocessis considerablymoreefficient andlesstime consumingthancurrentmanualschemes

usedby animationcompanies.An importantcontribution of this researchis to enablecaptureddatato be

3

mappedontoa pre-definedgenericobjectmodelswhich have beenoptimisedfor realisticandefficient an-

imation. The resultinglayeredmodelgivesanefficient realisticanimationof thefine surfacedetailwhile

providing a low-resolutioncontrolstructurefor real-timeanimationcontrolandvisualisation.

2 Background

Therehasbeenextensivecommercialinterestin developingtechniquesfor measurementof surfaceshapein

many fieldsfor 3D modelgeneration.Commercial3D sensorshavebecomewidely availablein recentyears

for capturingsurfacemeasurementdataof objects,includingobjectsascomplex asthehumanbody. This

sectionreviewspreviouswork onmodelbuilding from captureddataandtechniquesfor modelanimation.

2.1 Model Building

Manual techniqueshave beenusedextensively to captureobjectshapeusinga touchprobesensor. This

approachto digitising 3D shapehasbeenusedto generatemodel libraries [Datalabs,1996]. Therehas

alsobeenextensive interestin usingactive optical 3D surfacemeasurementtechnologieswhich projecta

structuredlight onto the objectsurfaceandusetriangulationmeasurethe distance.Suchsystemsenable

high-accuracy non-contactdigitisationof theobjectsurface.

Themajority of sensorscapture3D measurementswith respectto a 2D planaror cylindrical grid. This

approachrequiresmultiple scansto be taken in order to digitise the entireobjectsurface. Researchhas

addressedtheproblemof reconstructingasinglesurfacemodelfrom thecaptured3D surfacemeasurements

[CurlessandLevoy, 1996, Hilton etal., 1996, Hoppeetal., 1992, Rutishauseretal., 1994, Turk andLevoy, 1994,

Soucy andLaurendeau,1995]. Recentlyreconstructiontechniquesbasedon fusionof overlappingdataus-

ing a volumetric implicit surfacerepresentationhave enabledrapid and reliable reconstructionof high-

resolutionmodelsof complex objectswith anarbitrarytopologyandgeometry[CurlessandLevoy, 1996,

Hilton et al., 1998]. Thegeneralproblemof surfacereconstructionof unknown objectsfrom unstructured

3D point remainsanopen-problem[Bittar et al., 1995, EdelsbrunnerandMucke,1994, Hoppeet al., 1992,

Mencl,1995, Mencl andMuller, 1998].

We usea hand-held3D sensorwhich doesnot constrainthe3D measurementsto lie on a 2D planaror

cylindrical grid. Thissensorhastheadvantagethatit canbefreelymovedaroundtheobjectto positionthe

sensorfor captureof complex geometricfeaturessuchasa charactersmouth. As theresulting3D surface

measurementdatais not structuredon a regulargrid previoussurfacereconstructionalgorithmscannotbe

4

applied.Fusionof measurementsfrom a hand-heldsensorpresentsanadditionalchallengethatthesensor

accuracy is currentlyanorderof magnitudelowerthanconventionalrangeimagesensors.This is dueto the

requirementfor a low costsix degree-of-freedomdevice to measurethespatialpositionof thesensor.

In this paperwe introducean extensionto previous implicit surfacebasedreconstructionapproaches

[Hilton etal., 1996, Hilton et al., 1998] which enablesfusion of hand-heldsensordata. This is the first

geometricfusion algorithmcapableof integratingsurfacemeasurementsfrom a hand-heldrangesensor.

This approachcan be usedto integratemeasurementsfrom either a conventional2.5D rangeimageor

hand-held3D sensor. The advantageof this approachis that it overcomesthe assumptionof previous

volumetricintegrationalgorithms[CurlessandLevoy, 1996] thatsurfacemeasurementsarestructuredon a

regular2D planargrid with a singleviewpoint. Overlappingmeasurementsareintegratedusingoperations

in 3D spaceonly. Thisenablesintegrationof complex geometryandtopologywhich wasnotpossiblewith

previous techniquesfor conventionalrangeimagesensorswhich arebasedon a 2D projectionof thedata

[Rutishauseret al., 1994, Soucy andLaurendeau,1995, Turk andLevoy, 1994].

2.2 Mesh Optimisation and SurfaceFitting

Surfacereconstructionresultsin an unstructuredpolygonalmeshrepresentationof the surface. This is a

highly inefficient representationasfinedetail is modelledat thesameresolutionassmoothsurfaceregions.

A numberof meshoptimisationalgorithmshave beenproposedto post-processtheredundantmeshesob-

tainedfromsurfacereconstruction[Schroederet al., 1992, Hoppe,1996, Kalvin andTaylor, 1996, Soucy andLaurendeau,1996].

Theobjectiveof thesealgorithmsis to automaticallyreducethenumberof polygonswhile maintainingan

accurateand/orrealisticrepresentation.Thesealgorithmsreducethe triangle/vertex countof the triangu-

lation andimprove uniformity of triangleshape.Someoptimisationalgorithms[Kalvin andTaylor, 1996]

enablethe geometricaccuracy to be maintainedwithin a toleranceof the original mesh. Recentmesh

optimisationalgorithms[Hoppe,1996] have achieved continuouslevel-of-detailrepresentationof objects

which preserve boththegeometryof thehigh-resolutionmeshandits overall appearancebasedon surface

colour, surfacetopology, discontinuities,normalsandtexture.

Although polygonalmeshesprovide a sufficient representationfor realisticmodellingandanimation

high-ordersurfacerepresentationsare widely used. High-ordersurfacesprovide a more efficient repre-

sentationof smoothsurfaceregions. Polygonalmeshesor displacementmapsmay also be requiredto

modelthefine-surfacedetail [KrishnamurthyandLevoy, 1996]. Automaticreconstructionof B-splineand

sub-division surfacerepresentationsfrom reconstructedpolygonalsurfacemodelshasbeeninvestigated

5

[Eck et al., 1995,Eck andHoppe,1996,Hoppeet al., 1994]. However, theresultingmodelsfrom eitherau-

tomaticmesh-optimisationor high-ordersurfacefitting arenotdirectlysuitablefor animation.Theresulting

meshverticesarenotpositionedto coincidewith theobjectarticulation.

As thecaptureprocessis performedon a staticobjectin a singleposethereis no capturedinformation

on theunderlyingarticulationstructure.Thereforea manualprocessis requiredto positiona subsetof the

meshverticesto coincidewith therequiredarticulationstructure.In thispaperthis is achievedby manually

registeringa low-resolutioncontrol model containingthe articulationstructurewith the high-resolution

capturedmodel. Automaticregistrationof all pointson thehigh-resolutionmodelwith the low-resolution

model is thenusedto enablea seamlessdeformableanimationof the capturedmodel. Perhapsthe most

closelyrelatedwork to our approachis [KrishnamurthyandLevoy, 1996] wheretheboundariesof a low-

resolutionB-splinepatchmodelaremanuallyidentifiedon thehigh-resolutioncapturedmodel.Automatic

mappingis thenperformedto obtaina B-splinerepresentationof smoothsurfaceregionsanddisplacement

mapsto representfinedetail.Thisgeneratesamodelsuitablefor efficientanimationalthoughnoanimation

resultswerepresented.The principal advantageof our approachis the constructionof a low-resolution

control model for real-timeanimationand the automaticmappingand animationof the high-resolution

capturedsurfacedetail.

2.3 Model Animation

Realisticanimationof 3D articulatedcharactersis a very challengingtaskinvolving two mainaspects:re-

alistic motionanddeformationof thebody. Becauseof thedifficulties involved in eachaspect,thesetwo

problemsareusuallyinvestigatedseparately. Modelsusedin themajorityof themotioncontrolresearchare

skeletonbased.A varietyof approacheshavebeenproposedfor deformableanimationof articulatedcharac-

ters,suchasmetaballs[ShenandThalmann,1995], free-formdeformations(FFD)[ChadwickandParent,1989],

DFFD [MocozzetandMangnenatThalmann,1997], implicit surfaces[BloomenthalandWyvill, 1990], hi-

erarchicalB-splines[Forsey, 1991] andphysics-baseddeformablemodels[TurnerandGobbetti,1998]. All

of thosetechniquesare aimedat creatingand animatingsyntheticcomputergeneratedcharacters.The

methodproposedin this paperenableshigh-resolutioncaptureddatato be mappedto an arbitrary low-

resolutioncontrolmodelwhich canbeanimatedusingany of thetechniquesoutlinedabove. Both realistic

motionanddeformationaspectsof characteranimationareaddressedin ourapproach.Todesignandcontrol

themotionsof characters,a skeletonstructureis fitted insidecharactersinteractively andtherebyexisting

motioncontrolalgorithmscanbeapplied.

6

The questionof efficient andrealisticdeformationof a polygonalmodelwith internalskeletonis ad-

dressedin many CG andGamepackages[Lander, 1998, Maestri,1996]. But theusersareusuallyrequired

to getdown to thevertex level to mapthemto thebonesmanually. After mappingtheremaystill besome

strayverticesor bulging andcrimping whenthe body segmentsaremoved. To fix the problemthe users

mayhave to adjusttheinfluenceof thesegmentsandreassignsomeerrantverticesto themodel.

In our methodfor eachsegment,the influenceof its adjacentsegmentsto its mappedverticesarede-

cided by joint anglesand the distanceof the vertex to its adjacentjoints. Oncejoint anglesand posi-

tions of the skeletonare known, mappingand deformationare carriedout automatically. Recentwork

[BabskiandThalmann,1999a,Kalra andMagnenatThalmann,1998]demonstratedreal-timeseamlessan-

imation of polygonalmodels. In this paperwe demonstratethat this type of seamlessanimationof the

low-resolutionmodelcanbeusedto achieve realisticanimationof high-resolutioncaptureddata.

FFD[ChadwickandParent,1989] is awidely usedtechniquefor meshdeformationwhichhasbeenex-

tended[ChangandRockwood,1994, CoquillartandJancene,1991, Hsuet al., 1992, LamousinandWaggenspack,1994,

MacCrackenandJoy, 1996] to give improvedperformance.An objectis embeddedwithin a latticeof con-

trol pointswhich definesa mappingfrom thelatticeto theobject.Theobjectis deformedby manipulating

the control lattice. To overcomethe difficulty in defining arbitrarily shapedlatticesand to deform the

underlyinggeometrydirectly, axial [LazarusandCoquillart,1994]andwires[SinghandFiume,1998] de-

formationtechniqueshavebeenproposed.Thegoalof thesedeformationapproachesis to developamethod

for sculpturinga geometricmodelat will. Thedeformationalgorithmof thelow-resolutioncontrolmodel

proposedin this paperis specificto a classof deformations:how a geometricmeshmodeldeformsreal-

istically with its underneathrigid skeletonstructuremoves?This is anessentialproblemwhenanimating

articulatedcharacters.Thedeformationof thehigh-resolutiondatamodelin this paperis basedon thede-

formationof low-resolutioncontrolmodel,similar to that thedeformationof thegeometricmodelin FFD

basedon thedeformationof thecontrollatticein FFD.Thelow-resolutioncontrolmodelcanbedefinedas

a control lattice. In practiceit is oftenmoreconvenientto chooseanexisting genericmodelwith thesame

basicshapeasthecapturedmodelfrom a3D modellibrary thanconstructingacontrol lattice.

Using a layeredconstructionapproachto building animatedsyntheticmodelshasbeenaddressedby

many researchers[ChadwickandParent,1989,Kalra andMagnenatThalmann,1998,Thalmannet al., 1996,

TurnerandGobbetti,1998]. A layeredmodeldecomposesthecomplicatedtaskof realisticanimationinto

threeindependentsub-tasks:skeletonanimationbasedon motion captureor key-frame;interactive ani-

mationvisualisationandrefinementusingthe real-timecontrol model;andfinal off-line renderingof the

7

full-resolutiondetailedsurface. This allows animatorsto work on eachsubtaskseparately. Subtaskssuch

asmotioncontrolanddeformationof thelow-resolutionmodelcanbeperformedusingexisting animation

techniques.

In this work a layeredmodelis constructedfrom captureddata. The layeredrepresentationprovides:

skeletonbasedanimationcontrol; real-timevisualisationusing the control model; efficient animationof

thehigh-resolutionsurfacedetailbasedonthecontrolmodel;andrealisticanimationof thehigh-resolution

databasedoncontrolmodeldeformationusinggeometric,FFDor physicsbasedtechniques.Theprincipal

advantageof our approachis the useof a low-resolutioncontrol model for real-timeanimationand the

automaticmappingandanimationof thehigh-resolutioncapturedsurfacedetail. This framework enables

rapidreconstructionof animatedmodelsfrom captureddata.

3 Model captureand construction

The hand-heldrangesensorsystemusedfor capturingobjectsis briefly describedin section3.1. The

normal-volumerepresentationof a triangleis introducedin section3.2 to transformfrom a surface-based

meshrepresentationto an implicit volumerepresentation.In section3.3, a normal-volumebasedalgo-

rithm for fusionof 3D surfacemeasurementsfrom ahand-heldsensorinto asinglehigh-resolutionmeshis

presented.Thenormal-volumerepresentationis alsousedfor point-to-surfacemappingin section4.3 and

high-resolutionmodelanimationsection5.2.

3.1 Model capture usinga hand-held3D sensor

Hand-held3D sensorsfor objectsurfacemeasurementarea recentdevelopment.This technologyconsists

of a laserstripebasedrangesensorcombinedwith a six degree-of-freedompositionsensor. It allows the

userto move freely aroundan object to position the sensorto capturecomplex geometricshapes.The

3DScannersModelMakerhand-heldsensorsystem(www.3dscanners.com)(in Figure2(a))is usedfor data

acquisitionfor modelspresentedin this paper.

Surfacemeasurementsareon a seriesof consecutive stripeswhich do not form a regulargrid pattern.

Thestripeorientationandmeasurementdirectionchangeastheusersweepsthesensoracrossthesurface

of the object. The actionof dataacquisitionis similar to that of sprayingthe surfaceof the objectwith

paint. Surfacedatacanberapidly acquiredfor theentireobjectsurfacein a few minutesusingtheusers’

knowledgeof visibility to positionthe sensorin order to accesscomplex regions. Alternative automatic

8

(a)ModelMakersystem (b) Raw data (c)Meshpatches(partial)d) Fusedmodel

Figure2: Model reconstructionfrom hand-heldsensordata

acquisitionsystemstake severalhoursto obtaindatafor complex concave surface.Initially measurements

from the hand-heldsensorare triangulatedto form a seriesof overlappingsurfacemeshes,���������������

.

A distancethresholdbetweenadjacentpoints on consecutive strips is usedto ensurethat they are only

connectedif their distanceis lessthan threetimes the samplingresolution. This ensurethat the trian-

gulationapproximatesthe local surfacetopologyanddoesnot connectacrossholesor occludedregions

[Hilton etal., 1998]. Theprimaryproblemin staticmodelreconstructionis thento combinetheseoverlap-

ping meshesinto a singlesurfacerepresentation.A solutionto this problemfor hand-heldsensordatais

introducedin section3.3

3.2 Normal-volumerepresentation

Thenormal-volumeis usedto definea transformationbetweena two-dimensional(2D) triangularsurface

patchand the three-dimensional(3D) spacein which it is embedded.This transformationenablesboth

conversionof 2D trianglemeshsurfacesto a 3D volumetric representationandconverselya continuous

mappingof 3D pointsto the2D trianglesurface.

Theconceptof thenormal-volumeor fundamentalprismhaspreviouslybeenused[Cohenet al., 1996]

to implementmeshsimplificationwith boundedapproximationerror. Thissectionextendsthebasicdefini-

tion of thenormal-volumeto show how it canbeusedfor surface-to-volumetransformation.

3.2.1 MeshRepresentation

An arbitrarytopologybounded2-manifoldsurface � embeddedin Euclidean3-space �� canbeapproxi-

matedby a triangulatedmeshrepresentation�

. A 2-manifoldis a surfacesuchthateachoneof its points

hasa neighbourhoodwhich canbecontinuouslydeformedinto anopendisk [TaubinandRonfard,1996].

9

A triangulatedmesh� �����������

is composedof a setof vertices��� ���� ����������� ���! ��������� �� #"%$%&(' anda set

of triangles�)�*�,+-������������+�./����������+(#01$%&('

where���! �3254 ! �76 ! �98 !5: is a point in � andtriangle

+�.;�<����/= � ��?> � ���@ 'is composedof threevertices. We assumethat

�is a simply connectedmanifold triangulationwith no

self-intersections.For eachvertex,���! , of

�, we definea singlevertex normalvector,

�AB! . Vertex normals

aredefinedby aweightedaverageof theadjacenttrianglenormals:

�ADCFE �HG .9I�J ELK .%�AD@NMG .9I�J E K . (1)

Where O = is thesetof indicesfor trianglesadjacentto the P @RQ vertex. Theweights K . aretheanglesof

theadjacenttriangles+�.

at the P @RQ vertex. Throughoutthis paperall triangleandvertex normalsareof unit

length.

3.2.2 Surface-to-volume transformation

We begin by defining a volumetric-envelopewhich enclosesthe region of 3-spacearoundthe mesh�

(Figure3(a))andenablestransformationof the2-manifoldsurfaceto avolumetricrepresentation.An offset

surface�TS

for mesh�

is given by displacingeachmeshvertex by a distanceU = in the vertex normal

directionsuchthat��WV= �<���=YX U = �AD= . If we let U = to bea constantoffsetdistanceUWZ\[-] thenthedistanceof

all pointson theoffsetsurface� S

is lessthanor equalto theoffsetdistanceUWZ^[(] from theoriginal mesh�. Theoffsetsurfaceis acontinuousmeshbut maynot bea simplemanifolddueto self-intersection.The

offset-surfacefor across-sectionthroughameshis illustratedin Figure3(b).

A volumetric-envelopearound�

canbe definedby two offset meshes�`_

and� $

suchthat each

vertex is displacedby a distanceUWZ\[-] and abU Z^[-] in thenormaldirectionrespectively. Thespaceenclosed

by� _

and� $

is a closedvolumetric-envelopesuchthatevery point insidethis region is lessthan UWZ\[-]from themesh

�. Thevolumetric-envelopefor across-sectionthroughameshis illustratedin Figure3(c).

The volumetric-envelopeenclosesa continuousregionsof space.The useof trianglevertex normals

to obtainthe offset-surfacesensuresthat thereareno gapsbetweenadjacenttriangles. For eachtriangle+�.c�d�e��/= � ��?> � ���@ ' in mesh�

theoffsetmeshes� _

and� $

defineaclosednormal-volume, f 25+�. : , between+ _. �d���� _= � �� _> � �� _@ ' and

+ $. �d���� $= � �� $> � �� $@ ' , asillustratedin Figure4(a).

Eachsideof thenormalvolumeis a surface � =-> constrainedby threeVectors- thetriangleedge��/=-> �

��?> a ���= and the correspondingvertex normals�AD= and

�Ag> (normalised). If the vertex normalsare equal�AB= �h�Ag> thenthesurface � =-> is a plane.Generallythenormalsarenot equal.Thereforethesurface � =-> is

10

M(a)Meshandvertex normals

M

M’

(b) Offsetsurface

M

M-

M+

(c) Volumetricenvelope

Figure3: Volumetricsurfacerepresentation

n

n

n

v

v

v

v

v

v

v

v

v

s

+ +

+

-

-

r

t

-

r

s

r

t

t

t

r

s

s

(a)Trianglenormal-volume

n

nr

s

p

v

x

rs

rs

v

v

v

v

v

v

r-

s-

s

r

s

r+

+

dn(p )rs

(b Bilinearsideof normal-volume

Figure4: Normal-volumetrianglerepresentation

notaplane.In thiscasewecansatisfytheconstraintsby definingthesurface� =-> asabilinearpatch.Figure

4(b) illustratesthe surfacepatchformedby onesideof the normal-volume. A point on the triangleedge��/=-> is given by�ij=-> �lk����=mX 2-n a k : ��?> where oqp k p n

the normal is givenby linear interpolationas�AB=-> �`kr�AD=^X 2-n a k : �As> . Therefore,apoint�4

on thesurface � =-> is givenby:

�4 � �i%=->tX U �AB=->� ku���=^X 2(n a k : ��?>tX U 2ekr�AD=^X 2(n a k : �As>�: (2)

This equationdefinesa continuousbilinearsurfacepatchwhere U is thedistancealongtheinterpolated

normal�AD=-> . For constantU and o;p k p n

equation2 definesa straightline on thesurfacepatch.It should

benotedthat U is notaEuclideandistanceastheinterpolatednormaldoesnotnecessarilyhaveunit length.

11

The volumetric-envelopefor mesh�

betweenoffset meshes� _

and� $

is equivalentto the union

of the normalvolumesfor all triangles v .xwj�xy L0 f 25+�. : where f

25+�. : is the normalvolumefor triangle+�.. Therefore,transformingthemesh

�to anapproximatevolumetricrepresentationcanbereducedto a

incrementalprocessof transformingeachtriangle+�.

into its normal-volume f 2z+�. : representation.

3.3 GeometricFusion into a SingleModel

Surfacemeasurementusingeithera conventionalor hand-heldrangesensorproducesa setsof overlap-

pingmeshes,���������������

, whichdonotexactly intersectdueto measurementnoise[Turk andLevoy, 1994,

Soucy andLaurendeau,1995]. Direct interpolationof the surfacemeasurementsbasedon Euclideandis-

tance[Hoppeet al., 1992]fails to accuratelyreconstructthelocal surfacedetail[CurlessandLevoy, 1996].

Fusionof overlappingsurfacemeasurementsbasedon the local surfacetopologyis necessaryfor reliable

reconstruction.Previousfusionschemeshave assumedthatmeasurementsarestructuredon a regulargrid

[CurlessandLevoy, 1996, Soucy andLaurendeau,1995] asis the casefor conventionalrangesensors.In

this sectionwe introducea volumetricfusionalgorithmbasedon thesurface-to-volumetransformationof

section3.2 which doesnot make this assumption.This approachenablesfusionof datafrom a hand-held

rangesensorovercomingthe limitations of previous volumetric [CurlessandLevoy, 1996] and surface-

based[Soucy andLaurendeau,1995] approaches.

Fusionof multiple overlappingmeshes,�������������9��

, canbe achieved by integratingthe discreteim-

plicit surfacerepresentationsgeneratedby thenormal-volumetransformationfor eachmesh.An arbitrary

topologyclosedmanifoldsurface � canberepresentedin implicit form asaniso-surfaceof a spatialfield

function, { 2��4 : , where�4|�}�,4~�x6D�98�'

is any point in Euclideanspace,� � . Thuswecanrepresenta surfaceby

definingthefield function { 2��4 : asthesigneddistancefrom a point,�4, to thenearestpoint on thesurface

giving the iso-surface { 2��4 : � o for all pointson � and { 2��4 :��� o elsewhere. Integrationof the implicit

surfacesin overlappingvolumetricregionsresultsin a singleimplicit surfacerepresentation.This canthen

bepolygonizedto obtainasingletriangulatedsurfacemodel.

For eachmesh� ! we candefinea closedoffset envelopebetween

� _! and� $! with offset distance

UWZ^[(] . Thusfor eachtriangle+�.

we candefinea normal-volume f 2z+�. : andincrementallytransformthe

mesh� ! to a volumetricrepresentationusingthesurface-to-volumetransformationintroducedin thepre-

vioussection.In overlappingregionsof surfacemeasurementsfrom differentmeshesthenormalvolumes

will intersectprovidedthemaximummeasurementerror ��Z^[-]�p`UWZ\[-] . If this conditionis satisfiedwe can

combinethefield functionsfrom differentmeshesto obtainasinglevolumetricrepresentation.

12

Fusionof multiplemeshesrequiresan‘overlap’testto determineif surfacemeasurementsfrom different

meshesin closespatialproximity correspondto thesameor differentregionsof themeasuredobjectsurface.

Definitionof arobustoverlaptestis critical for reliablesurfacereconstructionasdiscussedin previouswork

[Hilton etal., 1996, Hilton et al., 1998]. As in previouswork geometricconstraintsareusedto estimateif

overlappingmeasurementscorrespondto thesamesurfaceregionbasedon:

1. Spatialproximity: distancebetweenoverlappingmeshesis lessthanthemaximumdistance� Z\[-] .2. Surfaceorientation:overlappingmesheshave surfacenormalswith thesameorientation� =�� � @~��� .3. Measurementuncertainty:likelihoodof measurementoverlapbasedon estimatesof measurementuncertainty.

Spatialproximity providesa coarsetestof measurementoverlapwhichhasbeenusedin previouswork

onstructuredrangeimageswith asingleviewpoint [CurlessandLevoy, 1996].However, this testis unreli-

ablefor sharpedgesandfor surfacesin closeproximity. Surfaceorientationenablesreliablereconstruction

of creaseedgesandthin surfacesectionsfor continuousimplicit surfacerepresentation[Hilton et al., 1996].

Thethird constraintdependson our ability to reliably estimatemeasurementuncertainty. For conventional

rangeimagesthis canbe estimatedfrom the relative orientationof the surfacenormalandsensorview-

point [Turk andLevoy, 1994, Soucy andLaurendeau,1995]. However, for a hand-heldrangesensorthe

viewpoint is continuallychanginganddoesnot provide a reliableestimateof measurementuncertainty.

Therefore,measurementuncertaintycannot bereliably estimatedfor eachmeasurementpoint with hand-

heldsensordata.An estimateof thermsmeasurementerrorfor thesensoris obtainedby capturingasphere

of known radius.Thisestimatecanbeusedto evaluatethelikelihoodof overlappingsurfacemeasurements

correspondingto thesamesurface.

Theoverlaptestsareappliedtodetermineif theintersectingvolumetricenvelopesfor meshes,�������������9��

,

correspondto measurementsof thesamesurfaceregion. Thefield functions, { ! 2��4 :-�1A U({ .�2��4 : , for measure-

mentscorrespondingto thesamesurfaceregionarecombinedaccordingto aweightedaverage[CurlessandLevoy, 1996,

Hilton et al., 1996] to obtainasingleimplicit surfacerepresentation,{ ! 2��4 : � o . Having constructedafused

implicit surfacean explicit meshis obtainedusinga standardimplicit surfacepolygonizationalgorithm

suchasMarchingCubes[Bloomenthal,1994]

To achieve computationallyefficient performanceof the geometricfusion algorithma discretevolu-

metric grid is used[CurlessandLevoy, 1996, Hilton et al., 1998]. This enablesreconstructionof a high-

resolutionmodelof complex objectsconsistingof hundredsof thousandsof polygonsin a few minutes.

Figure2(b) shows the raw 3D stripedatacapturedusinga hand-held3D sensor. Figure2(c) illustratesa

13

Figure5: Skeletonfitting

setof overlappingconstrainedtriangularpatchesdrawn from hand-held3D sensordata.A renderingof the

high-resolutionmodelobtainedis shown in Figure2(d).

4 LayeredModel Reconstruction

Typically capturedmodelsarecomposedof millions of polygonsandthearticulationstructureof theobject

is unknown. To animatecapturedmodelsdirectly is expensiveandit is difficult to achieveasatisfactoryre-

sult. Therearemany differenttaskssuchasmotioncontrolandrealisticdeformationof themodelinvolved

in designinganimation. To enablerealisticanimation,a layeredmodel is built in our approach.In this

sectionwe introducea semi-automaticmethodfor rapidly constructingan animatedlayeredmodel from

captureddata. Initially, a skeletonis manuallyplacedinsidethe model. Automaticmappingis thenper-

formedto attachpointson thelow-resolutioncontrolmodelto theskeletonandhigh-resolutiondatato the

low-resolutioncontrolmodel.Thedifferentanimationtasksinvolvedaredecomposedinto sub-taskslying

in differentlayers.Thisprocessachievesreconstructionof a layeredanimationmodelin a few minutes.

4.1 Skeletonfitting

Usingskeletonmodelsin motioncontroldesignis acommonpracticefor characteranimation.Theskeleton

is composedof a hierarchyof joints with linearsegmentsattachingparentandchild joints. It reflectsthe

structureof anarticulatedfigureandenablesreal-timemanipulationof thearticulationstructureto define

believableanimations.

To fit the skeletonto the capturedmodel requiresjoint positionsto be identified. In our systema

14

manualprocessis usedto positiontheskeletoninsideboththecaptureddataandthelow-resolutioncontrol

model. An algorithmthatallows the userto identify the joint positionson the screenusingthe mouseis

developed.This is achievedby manipulatingtheskeletonjoint positionsin two orthogonalviewsfollowing

the hierarchicalorderof the skeletonstructure,as illustratedin Figure5. This allows the skeletonjoint

locationsto be movedso that the joints arein approximatelythe correctpositionsandthe segmentlinks

betweenjoints run alongtheprincipalaxesof thedata.This manualskeletonpositingis usedasthebasis

for automaticmappingto form a layeredanimationmodel.

4.2 Low-resolutionmodel to skeletonmapping

After fitting apredefinedskeletonto themeshmodel,weneedanapproachthatcanattach3D pointson the

controlmodelto theskeleton.To producearealisticanimationandenableefficientconstruction,werequire

that this 3D point-to-linemappingis automatic,complete(no point are left unattached)andcontinuous

(theneighbourhoodof apoint on themeshis mappedontotheneighbourhoodof thepoint’scorresponding

point on the skeleton). The mappingis basedon a singleposeof the object. To enableanimationof the

controlmodelfrom theskeletonanimation,themappingof a point to a skeletonsegmentis parameterised

in termsof the joint anglesfor bothendsof thesegment. In our previouswork [Sunet al., 1999]we used

a mappingwhich which could not copewith twist motion of the segment. In this paperwe introducea

new point-to-linemappingwhich producesfull deformation(twist, shear,stretchandcompression)of the

segmentgeometrybasedon thejoint angles.

The low-resolutionmodelmappingand animationis basedon the definition of joint planewhich is

definedfrom theadjacentjoint positions.For the � @RQ skeletonjoint with position���! we definea joint plane

with normal�AB! suchthatfor any point

�4in theplane:

�AD!%� 2��4 a ��/!5: � o (3)

The joint planeis definedby a local coordinatesystembasedon the postionsof adjacentparentand

child joints,��/! $%& and

���! _ & , sothatit bisectsthejoint. Figure6 illustratesthejoint planesfor asectionof the

skeleton.Thelocal coordinatesystem���4 ! �j�6 ! ���8 ! ' wherethey-axisis alignedwith theplanenormal,

�6 ! ���AB!is givenby:

�4 ! � ���! y ! _ &��T��/! y ! $%&� � ��� ��! y ! _ &c�����! y ! $%& ��6 ! � �8 ! ���4 !�8 ! � �4 ! ����/! y ! _ & X ��/! y ! $%&c���4 !� �4 ! ����/! y ! _ & X ��/! y ! $%&c���4 ! � (4)

15

O O

O

Y

X

Z

i i

i

i

i+1

i−1

Joint Plane i

Figure6: Jointplanesandlocal coordinates

where�/! y .c�}2��� . a ���!z: is thevectorbetweenthe � @RQ and� @RQ jointsand�

representsthevectorcross-product.

In equation4 the z-axis bisectsthe anglebetweenthe joints in the planedefinedby the joint positions2���/! � ��/! _ &�� ���! $%& : . If thejoint is anend-effectorhaving nochild-joint thex-axisis equalto theparentjoint axis

aredefinedas:���4 ! ���4 ! $%&��j�6 ! �H���! y ! $%&��%�8 ! ���4 ! �`�6 ! ' .

Theproblemof calculatingwhich segmenta vertex�i . shallbemappedto is convertedto theproblem

of determiningthe two joint planesthat thevertex lies in between[Sunet al., 1999]. After finding which

segmenta vertex shallbeattached,wewantto registerit in local coordinatesystemin its attachedsegment

andthesegment’stwo joint planes.Thepointcanthenmeanimatedaccordingto themovementof thejoint

planefrom skeletalanimationresultingin acorrespondingdeformationof thecontrolmesh.Let � and � X nbe the indicesof joint planesfor a segment,asillustratedin Figure7. Considera line � which intersects

point�i . andis parallel to segmentvector

���! y ! _ & . The points�i . � and

�i . ! _ & arethe intersectionsof line �with thejoint planesat � and � X n

. Thennormalisedvectors�� . � �H2 � ��� i . ! a � ��� ��!z:x�#� � ��� i . ! a � ��� �/!�� and�� . ! _ &��<2 � ��� i . ! _ & a � ��� �/! _ & :x�B� � ��� i . ! _ & a � ��� ��! _ & � canbe expressedin termsof the correspondingjoint

planecoordinatesystemas:

���! � � ���� �! �8 !%X¡� � As �! �4 ! (5)���! _ &3� � ���� �! _ &1�8 ! _ & X¡� � As �! _ &��4 ! _ &

where  �! is theanglebetween���! and

�8 ! . Themappingfor vertex�i . to segment

2 � � � X n : is givenby:

�i . � k����!1X 2-n a k : ���! _ & X U 2ekr�AD!�X 2(n a k : �AD! _ & : (6)

� ¢£iB¤j� � � 2 i . a i . !5: � � � 2 i . ! _ & a i � : � . Thismappingrepresentsapoint i . attachedto segment2 � � � X n :

16

O O

P PP

X

Z

X

Z

O

θθ

i

i

iii

i+1

i+1i+1

i+1

i+1

j

j

Figure7: Point-to-linemapping

with four parameters2ek¥� U �  �! �  �! _ & : . Using this local parameterisationa point attachedto the skeletonis

moved accordingto the movementof the joint planeat eachend of the point. Thus as the skeletonis

animatedthepoint is subjectedto stretch,shearandtwist movements.

Thelow-resolutioncontrolmodelis mappedto theskeletonusingthepoint-to-linemappingdefinedby

equation6 to obtainfour parametersfor eachvertex. Eachvertex is attachedto the nearestsegmentfor

which it lies inbetweenthecorrespondingsegmentjoint planes.For simple3D modelsandskeletalstruc-

turessuchasthearmandleg thisenablesautomaticmappingof thecontrolmodelto theskeleton.For more

complicatedgeometrysuchastheshoulderit is necessaryto manuallyimposeadditionalconstraintson the

pointattachmentsto ensurethatpointsfrom otherpartsof themeshsuchasthetorsoarenotmappedto the

arm. Having defineda mappingfor all verticeson thecontrolmodelmeshto theskeletontheparameter-

isationenablesreal-timeseamlessdeformationof themeshfor realisticanimationasdiscussedin section

5.1.

4.3 High-r esolutionto low-resolutionmodelmapping

In this sectionwe introducean automaticprocedurefor mappingthe high-resolutioncaptureddataonto

thelow-resolutioncontrolmodel.A generalpoint-to-surfacemappingalgorithmis introducedbasedon the

normal-volumerepresentationpresentedin section3.2.2.This mappingis continuousin thesensethat the

neighbourhoodof any point�4

in 3-spaceis mappedto the neighbourhoodnormalvolumeof the mapped

point�i . on the planarsurfaceof triangle

+�.on a genericcontrol model. For any triangle

+�., its vertex

normalsform aprismwhich is referredto normalvolume, f 2z+�. : , asdiscussedin section3.2.2.

To obtain a continuousmappingwe project points in 3-spacealong the correspondinginterpolated

trianglenormal.A point�i . on thesurfaceof triangle

+�.u�¦�����= � ��?> � ��/@ ' andits unit normal�A . canbedefined

17

§§¨¨© ©© ©ªª««¬¬

n

n

n

v

v

v

v

v

v

v

v

v

r

r

r

s

s

s

t

t

t

t

s

r

+ +

+

-

-

-

p j

x

dn

dn

r

s

p

p

p1

2

dnt

3

dnj

Figure8: Point-to-surfacemappingfor a triangleusingthenormal-volume

by bi-linearinterpolationusingbarycentriccoordinatesas:

�i .­� k���/=^X¯® ��?>tX 2-n a k a ®°: ���@�A . � kr�AB=^X¯® �As>tX 2(n a k a ®\: �AB@ (7)

wherefor a point insidethetrianglethebarycentriccoordinatesk

, ® and ± �¦2-n a k a ®\: areall positive

scalarvariables.By definitioncoefficientsk

, ® and ± arein therange� o ��n�' for points

�i . insidethetriangle.

Bilinear interpolationof thenormalgivesacontinuousvariationin thetrianglenormal,�A . , acrosstheplanar

surfaceandbetweenadjacenttriangles.Figure8 illustratesthenormalpassingthroughapoint�4. Thusany

point�4

insidethenormalvolume f 25+�. : canbeexpressedas:

�4 � �i . X U �A .� k���/=^X¯® ��?>tX ± ��/@LX U 2�kr�AB=²X¯® �As>sX ± �AD@e:� k³2����=^X U �AB=:tXq® 2����>sX U �As>(:tX ± 2����@jX U �AD@e: (8)

where U is the Euclideandistanceof the points�4

alongthe normal�A . from

�4, asillustratedin Figure8.

Having definedthe above equationthe problemof mappinga point�4

from 3-spaceonto the triangle+�.

becomestheproblemof solving for theunknown coefficients2ek¥� ® � U : . Note if the point

4is outsidethe

normalvolumethenthesolutionwill givek

or ® not in therange �´ � o ��n�' . As thepoint�4, trianglevertices2����= � ���> � ��/@e: andnormals

2��AB= �1�Ag> �1�AD@�: areknown three-dimensionalvectors,we have threeequationsin three

unknown variables. However, the variablesarenon-linearlyrelatedand thereforecannot be solved for

directly. A two stepalgorithmis developedto solve this problem.

Firstly, U is definedbasedon thefactthat�4

is on theplaneformedby�i &m�µ2���/=~X U �AD=9: , �iL¶ �d2����>DX U �Ag>x:

18

(a) (b) (c)

Figure9: Mappinghigh-resolutionleg modelto low-resolutionleg model

and�i �

�µ2���/@LX U �AB@e: . Theplaneequationcanbewrittenas:

�A·� �4¸���A·� �i & (9)

where�A ���� & ¶ �¹�� & � and

���! .;� �i . a �ij! . This formulationis usedto solve for U . Figure8 illustratesthe

planethroughthe point�4

definedby equation9. The planeis definedby threepoints2��i &��L�iL¶ �L�i � : which

aredisplacementsby a distanceU alongthevertex normals.It shouldbenotedthateachvalueof U defines

a uniqueplane. The union of theseplanesis a continuousvolumewhich enclosesall points in 3-space.

Having obtainedasolutionfor thevariableU , thecoefficientsk

and ® canbeevaluatedfrom equation8.

Figure 9 illustratesthe mappingof the high-resolutioncaptureddatamodel (Figure 9(a)) to a low-

resolutioncontrolmodel(Figure9(b)). Theresultsof themappingprocessareshown in Figure9(c). Each

triangleon the high-resolutionmodel is colouredaccordingto the low-resolutiontriangle to which it is

mapped. Triangleswith verticesmappingto more than one low-resolutiontriangle are colouredblack

for visualisationpurpose.It shouldbe notedthat all meshverticesaremappedcorrectly including those

belongingto triangleswhich crosslow-resolutiontriangleborders.This resultclearlyillustratesthatpoint-

to-surfacemappingpartitionsthe 3D spaceto map3D verticeson the high-resolutionmeshto the low-

resolutioncontrol mesh. This mappingcan be performedfor arbitrary geometryof the high-resolution

surfaceto obtaina localparameterisationof measurementdata.

The mappingdoesnot require that the low-resolutionmodel is a good approximationto the high-

resolutiondataas the normal-volumesfill the entire3D spacearoundthe low-resolutionmodel. Figure

10 illustratesthecontinuousmappingof a detailedheadshapeto a simplecubecomposedof twelve trian-

19

(a) High-resolutionModel (b) Low-ResolutionControlModel (c) Normal-VolumeMapping

Figure10: Mappinghigh-resolutionheadto asimplelow-resolutioncubemodel

gles.To achieverealisticanimationof thehigh-resolutionmodelbasedondeformationof thelow-resolution

modelit is necessaryto structurethelow-resolutionmodelto giveasmoothchangein shapeduringanima-

tion.

5 LayeredModel Animation

Themappingsof thelow-resolutionmodeltrianglesto theskeletonandhigh-resolutioncapturedmodelto

thelow-resolutionmodelenableusto animatethelow-resolutionandhigh-resolutionmodels.This section

will discusshow thesemodelsareanimated.

5.1 Seamlessdeformation of control mesh

In section4.2,we have introducedtheapproachusedfor mappingpointsto lines. Givena genericmodel,

afterfitting a skeletonto it, themappingalgorithmattachesthemeshof thegenericmodelto theskeleton

automatically. Thismappingis performedonly for asingleposeof thegenericmodel.How doesthemodel

deformwhentheskeletonmoves?Theobjectivehereis to achieve a seamlessandrealisticdeformationof

thegenericmodelduringanimation.Geometricmeshdeformationhaspreviously beenusedfor seamless

animation[BabskiandThalmann,1999b, Kalraet al., 1998]. In thissectionweshow how thepoint-to-line

mappingandparameterisationpresentedin section4.2 canbe usedto animatean arbitrarygeometryand

topologylow-resolutionmodel.

For eachposeof theskeletonduringthemovement,wefirst calculatetheorientationsof joint planesas

discussedin section4.2. Thenfor eachvertex in thegenericmodelwe usethemappingresultsandjoint

20

Figure11: Animationof low-resolutioncontrolmodel

local coordinatesystemsin two joint planesto calculate��/º�»e¼ & and

��/º�»e¼%¶ . Finally usingtheparametersk

and U from equation6 we haveanew vertex position:

�ijº�»e¼ ��k����º�»e¼ & X 2-n a k : ���º�»�¼j¶²X U 2�k���/º�»�¼ & X 2-n a k : ��/º�»�¼j¶7: (10)

Noticethatin theaboveformulak

andd areknown from themappingprocess;���º�»�¼ & and

���º�»�¼j¶ arenew

joint positions,known from joint animation;andtheonly computationsinvolvedarethecalculationof���º�»e¼ &

and��/º�»�¼j¶ . Therefore,thewholecalculationof new vertex positionsduringanimationis highly efficient.

Equation10 givesacontinuousdeformableanimationof thelow-resolutioncontrolmodelbasedon the

skeleton.However, thisdeformationmayresultin anapparentthinningalongthesegmentandsharpcreases

nearjoints. To compensatefor this we introducea simplecorrectiontermto thedistanceU in equation10

whichensuresthat�ijº � K maintainsaconstantEuclideandistancefrom theneareston theskeletonsegment,2���/º�»e¼ &� ���º�»e¼%¶9: is constant. This simple modificationeliminatesthinning and resultsin smoothrounded

meshdeformationnearjoints resultingin a realisticmeshanimation.Figure11 andFigure12 show some

examplesof animationof low-resolutioncontrolmodelsusingtheapproachesproposedin thepaper. The

resultsarerealisticandtheanimationsarereal-time.

5.2 Seamlessdeformation of high-resolutionmesh

Thenormal-volumebasedpoint-to-surfacemappingpresentedin section4.3canbeusedto mapall vertices

in a high-resolutionmeshonto a low-resolutionanimationcontrol model. This givesa high-detailobject

representationwhichcanbeanimatedefficiently usingthecontrolmodel.Theproblemthenis to achievea

seamlesssmoothanimationof thehigh-resolutionmodelbasedondisplacementof thecontrolmodel.

21

Figure12: Animationof wholebody: low-resolutioncontrolmodel

Figure13: Layeredanimationof high-resolutioncaptureddatamodelfor leg

22

Figure14: Wholebody’sarmanimationof high-resolutionmodel

Givenahigh-resolutionmodel� �½���c�x�¾�

wepre-computefor eachmeshvertex�4

thenearestmapping

insidethenormal-volumeof a low-resolutiontriangle+�.

with mappingcoefficients2�k¿� ® � U : asdiscussedin

section4.3.Thishasbeenshown in Figure8(b). If thelow-resolutionmodelgeometryis modifiedsuchthat

verticesof triangle+�.

arechangedto new positions2����º�»e¼%= � ��/º�»�¼L> � ��/º�»e¼�@z: andvertex normalsaremodifiedto2��ADº�»�¼%= �1�ADº�»e¼j> �1�ADº�»�¼%@5: . Usingequation7 andequation8 we canevaluatethenew positionof vertex

�4,�4 º�»e¼ ,

on thehigh-resolutionmodelas:

�i%º�»e¼ .­� ku���º�»e¼�=²X¯® ��/º�»e¼j>sX 2(n a k a ®\: ��/º�»�¼%@�ABº�»�¼ .�� kr�ADº�»e¼%=~X¯® �ADº�»e¼L>gX 2-n a k a ®°: �ADº�»e¼%@�4 º�»e¼ � �i%º�»e¼ . X U �ABº�»�¼ . (11)

As the new vertex position�4 º�»e¼ is only dependenton the triangle vertex positionsandnormalsof the

underlyinglow-resolutionmodel,thehigh resolutionmodelwill deformefficiently andseamlesslyasthe

low-resolutionstructureis manipulated. Figure 13, Figure 14 and Figure 15 show someresultsof our

layeredanimationof high-resolutioncaptureddatamodels.The leg model(Figure13) has5102vertices

and10200trianglesand the genericmodelusedonly has210 verticesand416 triangles(Figure11(a)).

Figure14consistsof 13202verticesand26243trianglesandthecontrolmodelhas1010verticesand2014

triangles.Thedinosaurin Figure15 has17334verticesand36276triangles(texturemappedmodelfrom

[Fitzgibbonetal., 1998]). The resultsdemonstratethat usingour layeredanimationmodel,efficient and

realisticanimationof capturedhigh-resolutiondatacanbeachieved.

23

Figure15: Dinosaur’s tail animationof high-resolutionmodelwith texture

6 Discussion

Theframework introducedin thispaperenablesseamlessdeformableanimationof high-resolutioncaptured

measurements.However, thereareseverallimitationsof thecurrentimplementationof this framework.

Firstly, theautomaticmappingof a meshmodelusingthepoint-to-linemappingintroducedin section

4.2 is limited to simple surfacewherethe closest-pointcriteria togetherwith the joint planescorrectly

identifieswhichsegmentof askeletonapointshouldmapto. Thiscriteriafails for complex segmentssuch

asthe shoulderwhereadditionalconstraintsarerequiredto prevent pointsfrom the torsobeingattached

to the arm. Animation of the shoulderhasbeenachieved by placing an additionalplaneconstraintat

the shoulderjoint to separatethe arm from the body. Currentlythe useof additionalconstraintsrequires

manualinteraction.Furtherwork is requiredto addressautomaticmodelto skeletonmappingfor complex

segments.

Thelow-resolutionmodelanimationbasedon geometricdeformation5.1overcomeslimitationsof our

previous method[Sunet al., 1999] to allow deformationdue to twist as well asstretchandshear. This

producessmoothseamlessdeformationof themodelbasedon skeletalanimation.However, this animation

is currentlylimited to simplechainsof jointssuchasthearmor leg andcannotanimatemorecomplex joints

with multiple branchessuchasthepelvis. Additional researchis requiredto addresstheanimationof the

low-resolutionmodelfor joints with multiplebranches.

Animationof thehigh-resolutionmodelbasedon thedeformationof the low-resolutionmodelresults

in asmoothseamlessdeformation.Thisprovidesanefficient mechanismfor animatingthehigh-resolution

surfacedetail.Thequalityandrealismof thehigh-resolutionsurfaceanimationis directlydependentonthe

24

qualityof thelow-resolutionmodelanimation.Greaterrealismcouldbeachievedusingalternativemethods

suchas FFD or physics-basedtechniquesto animatethe low-resolutionmodel. The layeredanimation

framework providestheflexibility to useotheranimationmethodsbut this hasnotyet beentested.

7 Conclusions

In this paperwe have proposeda techniquefor building layer animationmodelsof real objectsfrom 3D

surfacemeasurementdataof realobjectsto achieve realisticanimationwhilst maintainingdetail. A hand-

heldrangesensorsystemis usedto captureobjects.Thecapturedmodelshavehighly detailedandrealistic

surfacesbut arecomposedof millions of polygonsandtheirarticulationstructuresareunknown. A layered

animationsystemis built to animatecapturedmodelsrealisticallyandefficiently. Initially askeletonmodel

is placedinsidethecaptureddata.Automaticmappingproceduresareintroducedto constructamappingof

thehigh-resolutionmodelto alow-resolutionmodelandlow-resolutionmodelto askeleton.Thisprocedure

is quickandefficient resultingin a layeredanimationmodelwhichallowsreal-timemanipulationandhigh-

resolutionrendering.

Theprincipalcontributionsof thispaperare:

� Geometricfusionof measurementsfrom a hand-heldrangesensorinto a singlemeshsurfaceusinga

new volumetricintegrationalgorithmbasedon thenormal-volume.

� Introductionof a new point-to-surfacemappingalgorithm basedon the normal-volume. This ap-

proachenablesthecorrespondencebetweenthehigh-resolutioncapturedmodelanda low-resolution

controlmodelto beautomaticallyestablished.

� Presentationof a layeredanimationframework which achievesseamlessdeformableanimationof

high-resolutioncapturedmodelsbasedon skeletonanimationanddeformationof a low-resolution

controlmodel.

Theanimationof high-resolutioncaptureddatabasedon a low-resolutiongenericmodelof theobject

opensupthepossibilityof beingableto rapidlycaptureandanimatenew objectsbasedonexisting libraries

of genericmodels.

25

References

[BabskiandThalmann,1999a] Babski,C. andThalmann,D. (1999a). A seamlessshapefor hanimcom-

pliantbodies.In Proc. IEEEVRMLConference, pages21—28.

[BabskiandThalmann,1999b] Babski,C. andThalmann,D. (1999b). A seamlessshapefor hanimcom-

pliantbodies.In Proc.VRML’99, pages21—28.

[Bittar et al., 1995] Bittar, E.,Tsingos,N., andGascuel,M.-P. (1995).Automaticreconstructionof unstruc-

tured3d data:Combininga medialaxisandimplicit surface. ComputerGraphicsForum, 14(3):458—

468.

[Bloomenthal,1994] Bloomenthal,J. (1994). An implicit surfacepolygonizer. GraphicsGemsed.Heck-

bert,P.S., 4:324—350.

[BloomenthalandWyvill, 1990] Bloomenthal,J.andWyvill, B. (1990).Interactivetechniquesfor implicit

modelling.ACM ComputerGraphics, 24(2):109—116.

[ChadwickandParent,1989] Chadwick,J.Haumann,D. R.andParent,R.E. (1989).Layeredconstruction

for deformableanimatedcharacters.ACM ComputerGraphics, 23(3):234—243.

[ChangandRockwood,1994] Chang,Y. andRockwood,A. (1994). A generalizeddecasteljauapproach

to 3d free-formdeformation.ACM ComputerGraphics, 24(4):257—260.

[Cohenet al., 1996] Cohen,J.,Varshney, A., Manocha,D., Turk, G., Weber, H., Agarwal, P., Brooks,F.,

andWright, W. (1996). Simplification Envelopes. In ACM ComputerGraphicsProc., SIGGRAPH,

NewOrleans,USA, pages119—128.

[Coquillart andJancene,1991] Coquillart, S. andJancene,P. (1991). Animatedfree-formdeformations:

An interactiveanimationtechniques.In ACM SIGGRAPH, pages23—26.

[CurlessandLevoy, 1996] Curless,B. andLevoy, M. (1996).A VolumetricMethodfor Building Complex

Modelsfrom RangeImages.In ACM ComputerGraphicsProceedings,SIGGRAPH,NewOrleans,USA,

pages303–312.

[Datalabs,1996] Datalabs,V. (1996).ViewpointCatalog. (http://www.viewpoint.com).

26

[Eck et al., 1995] Eck,M., DeRose,T., Duchamp,T., Hoppe,H., Lounsbery, M., andStuetzle,W. (1995).

Multiresolutionanalysisof arbitarymeshes.In SIGGRAPH, pages173—182.

[Eck andHoppe,1996] Eck, M. andHoppe,H. (1996). Automaticreconstructionof b-splinesurfacesof

arbitrarytopologicaltype. In Proc.ACM SIGGRAPH, pages325—334.

[EdelsbrunnerandMucke,1994] Edelsbrunner, H. andMucke, E. (1994). Weightedalphashapes.ACM

Transactionson graphics, 13(1):43—72.

[Fitzgibbonetal., 1998] Fitzgibbon,A. W., Cross,G., andZisserman,A. (1998). Automatic3D model

constructionfor turn-tablesequences.In Koch,R. andVanGool,L., editors,3D StructurefromMultiple

Imagesof Large-ScaleEnvironments,LNCS1506, pages155–170.Springer-Verlag.

[Forsey, 1991] Forsey, D. R. (1991). A surface model for skeleton-basedcharacteranimation. In

Proc.SecondEurographicsWorkshopon AnimationandSimulation, pages55—74.

[Hilton etal., 1996] Hilton, A., Stoddart,A., Illingworth, J., andWindeatt,T. (1996). Reliablesurface

reconstructionfrom multiple rangeimages. In 4th EuropeanConferenceon ComputerVision, pages

117—126.Springer.

[Hilton etal., 1998] Hilton, A., Stoddart,A., Illingworth, J., and Windeatt,T. (March 1998). Implicit

surfacebasedgeometricfusion. InternationalJournal of ComputerVision and Image Understanding,

SpecialIssueonCADBasedVision, 69(3):273—291.

[Hoppe,1996] Hoppe,H. (1996).Progressivemeshes.In Proc.ACM SIGGRAPH, pages99—108.

[Hoppeet al., 1994] Hoppe,H., DeRose,T., Duchamp,T., Halstead,M., Hin, H. McDonald,J.,Schweitzer,

J.,andStuetzle,W. (1994). Piecewisesmoothsurfacereconstruction.In ComputerGraphicsProceed-

ings,SIGGRAPH, pages295—302.

[Hoppeet al., 1992] Hoppe,H., DeRose,T., Duchamp,T., McDonald,J.,andStuetzle,W. (1992).Surface

reconstructionfrom unorganisedpoints.ComputerGraphics, 26(2):71—77.

[Hsuet al., 1992] Hsu,W., Hughes,J.,andKaufman,H. (1992). Direct manipulationof free-formdefor-

mations.ACM ComputerGraphics, 26(2):177–184.

27

[Kalra et al., 1998] Kalra, N., Magnenat-Thalmann,N., Moccozet,L., Sannier, G., Aubel, A., andThal-

mann,D. (1998). Real-timeanimationof virtual humans.IEEE ComputerGraphicsandApplications,

18(5):42—56.

[Kalra andMagnenatThalmann,1998] Kalra,P. andMagnenatThalmann,N. (1998).Real-timeanimation

of realisticvirtual human.IEEE ComputerGraphicsandApplications, 18(5):42—56.

[Kalvin andTaylor, 1996] Kalvin, A. andTaylor, R. (1996). Superfaces:polygonalmeshsimplification

with boundederror. IEEE ComputerGraphicsandApplications, 16(3):64—77.

[KrishnamurthyandLevoy, 1996] Krishnamurthy, V. andLevoy, M. (1996). Fitting smoothsurfacesto

densepolygonmeshes.In In ACM ComputerGraphicsProc.SIGGRAPH,NewOrleans,USA.

[LamousinandWaggenspack,1994] Lamousin,H. J.andWaggenspack,W. N. (1994). Nurbs-basedfree-

form deformations.IEEE CcmputerGraphicsandApplications, 14(16):59—65.

[Lander, 1998] Lander, J. (1998). Skin thembones:Gameprogrammingfor the web generation.Game

DeveloperMagazine, May.

[LazarusandCoquillart,1994] Lazarus,F. andCoquillart,S.adnJancene,P. (1994). Axial deformations:

An intuitivedeformationtechnique.Computer-AidedDesign, 26(8):607—613.

[MacCrackenandJoy, 1996] MacCracken,R. andJoy, K. (1996).Free-formdeformationswith latticesof

arbitrarytopology. In ACM SIGGRAPH, pages181—188.

[Maestri,1996] Maestri,G. (1996).Digital CharacterAnimation. New RidersPublishing,Indiana,USA.

[Mencl, 1995] Mencl,R. (1995).A graph-basedapproachto surfacereconstruction.In EUROGRAPHICS

14(3), pages446—456.

[Mencl andMuller, 1998] Mencl, R. and Muller, H. (1998). Graph-basedsurfacereconstructionusing

structuresin scatteredpointsets.In ComputerGraphicsInternational, pages298—311.

[MocozzetandMangnenatThalmann,1997] Mocozzet,L. andMangnenatThalmann,N. (1997). Dirich-

let free-formdeformationsandtheir applicationsto handsimulation. In IEEE Int.Conf. on Computer

Animation.

28

[Rutishauseret al., 1994] Rutishauser, M., Stricker, M., andTrobina,M. (1994). Merging rangeimages

of arbitrarily shapedobjects. In Proceedingsof IEEE Conferenceon ComputerVision and Pattern

Recognition, pages573—580.

[Schroederet al., 1992] Schroeder, W., Zarge, J., and Lorensen,W. (1992). Decimationof triangular

meshes.In SIGGRAPH26(2), pages65—70.

[ShenandThalmann,1995] Shen,J. andThalmann,D. (1995). Interactive shapedesignusingmetaballs

andsplines.In Proc. IEEE Implicit SurfacesConference, pages187—196.

[SinghandFiume,1998] Singh,K. andFiume,E. (1998). Wires: A geometricdeformationtechnique.In

ACM SIGGRAPH, pages405—414.

[Soucy andLaurendeau,1995] Soucy, M. andLaurendeau,D. (1995). A generalsurfaceapproachto the

integrationof a setof rangeviews. IEEE Trans.PatternAnalysisandMachineIntelligence, 14(4):344–

358.

[Soucy andLaurendeau,1996] Soucy, M. andLaurendeau,D. (1996). Multiresolutionsurfacemodeling

basedonhierarchicaltriangulation.ComputerVisionandImageUnderstanding, 63(1):1—14.

[Sunet al., 1999] Sun,W., Hilton, A., Smith,R., andIllingworth, J. (September1999). Building layered

animationmodelsfrom captureddata.In EurographicsWorkshoponComputerAnimation, pages145—

154.

[TaubinandRonfard,1996] Taubin, G. andRonfard, R. (1996). Implicit simplical modelsfor adaptive

curve reconstruction.IEEE Trans.PatternAnalysisandMachineIntelligence, 18(3):321—325.

[Thalmannet al., 1996] Thalmann,D., Shen,J., andChauvineau,E. (1996). Fast realistichumanbody

deformationsfor animationandvr applications.In Proc.ComputerGraphicsInternationalConference,

pages166–174.

[Turk andLevoy, 1994] Turk, G. andLevoy, M. (1994).ZipperedPolygonMeshesfrom RangeImages.In

ACM ComputerGraphicsProceedings,SIGGRAPH,Orlando,Florida, pages311–318.

[TurnerandGobbetti,1998] Turner, R. andGobbetti,E. (1998). Interactiveconstructionandanimationof

layeredelasticallydeformablecharacters,.ComputerGraphicsForum, 17(2):135—152.

29