Javier,Pagaduan,Punsalang ECOMETV26

69
Estimating the Demand for Philippine Exports of Top Trading Partners per Region : An Iterative Seemingly Unrelated Regression and Panel Data Analysis A Research Paper Presented to the Economics Department De La Salle University In partial fulfillment of the requirements in ECOMET2 Submitted by: JAVIER, Katrina Joy PAGADUAN, Jesson PUNSALANG, Gio V26 Submitted to: Dr. Cesar Rufino

Transcript of Javier,Pagaduan,Punsalang ECOMETV26

     

     

Estimating  the  Demand  for  Philippine  Exports  of  Top  Trading  Partners  per  Region  :  An  Iterative  Seemingly  Unrelated  

Regression  and  Panel  Data  Analysis          

A  Research  Paper  Presented  to  the  Economics  Department  

De  La  Salle  University      

In  partial  fulfillment  of  the  requirements  in  ECOMET2  

     

Submitted  by:  JAVIER,  Katrina  Joy  PAGADUAN,  Jesson  PUNSALANG,  Gio  

V26    

   

Submitted  to:    Dr.  Cesar  Rufino  

2  

TABLE  OF  CONTENTS    

I.  Introduction     A.  Background  of  the  Study     B.  Statement  of  the  Problem     C.  Statement  of  the  Objectives     D.  Scope  and  Limitations    II.  Review  of  Related  Literature    III.  Theoretical  Framework     A.  Theory  of  Consumer  Demand     B.  Income  and  Substitution  Effects     C.  The  Mundell-­‐Flemming  Model     D.  Gravity  Model  of  World  Trade     E.  Marshall-­‐Lerner  Condition    IV.  OPERATIONAL  FRAMEWORK    

A.  Data  B.  Variables  and  A-­‐Priori  Expectations  

 V.  PER  COUNTRY  DEMAND  ESTIMATION    

A.  Time  Series  OLS  estimation  vs.  Seemingly  Unrelated  Regression  B.  Model  Specification  C.  Iterated  Seemingly  Unrelated  Regression  (ISUR)  D.  The  Breusch-­‐Pagan  Test  E.  Regression  Analyses  

E.1.  Statistical  Tests  E.2.  Time  series  OLS  estimation  E.3.  Iterative  Seemingly  Unrelated  Regression  (ISUR)  regression  E.4.  Individual  OLS  estimation  vs.  ISUR  regression  

F.  Interpretations  F.1.USA  F.2.  Japan  F.3.  Australia  F.4.  Germany  F.5.  Singapore  

 VI.  Aggregate  Export  Demand  Estimation  

A.   Fixed   Effects   Models   (FEM)   vs.   Random   Effects   Model   (REM)   vs.   Naïve   Model              vs.  Within-­‐Group  (WG)  Model  

  B.  Definition  of  Panel  Data  Models  B.1.  Naive  Model  B.2.  Fixed  Effects  Models  (FEM)  B.3.  Within-­‐Group  (WG)  Model  

3  

B.4.  Random  Effects  Model  (REM)  C.  Tests  

C.1.  Wald’s  Test:  Naïve  vs.  LSDV1  C.2.  Wald’s  Test:  Naïve  vs.  LSDV2  C.3.  Wald’s  Test:  Naïve  vs.  LSDV3  C.4.  Wald’s  Test:  LSDV1  vs.  LSDV3  C.5.  Wald’s  Test:  LSDV2  vs.  LSDV3  C.6.  Breusch-­‐Pagan  Test:  Naïve  vs.  REM  C.7.  Hausman  Test:  REM  vs.  FEM  

D.  Regression  Analyses  &  Statistical  Testing  D.1.  General  Comments  D.2.  Interpretations  of  REM  Results  D.3.  Interpretations  of  LSDV3  Results  

 VII.  Policy  Recommendations  And  Conclusion      VIII.  References    IX.  Appendix  

                                             

   

   

4  

I.  INTRODUCTION    A.  Background  of  the  Study    

In  the  recent  years,  the  Philippines  has  been  considered  a  newly  industrialized  and  an  emerging-­‐market  economy.  According  to  the  World  Bank,  the  Philippines’  almost  P200-­‐billion  GDP  in  2010,  the  fourth  largest  in  Southeast  Asia,  is  predominantly  accounted  for  by  the  service  sector  with  a  whopping  50%  share,  followed  by  the  industry  sector  with  33%  and  the  agricultural  sector  with  17%  industry-­‐to-­‐GDP  share.  The  increasing  productivity  of  these  sectors  translate  to  greater  prospects  for  the  Philippine  export  industry  as  one  of  its  key  drivers  of  growth.    

 Despite   numerous   severe   economic   fluctuations   in   the   recent   decades,   the  

Philippine  export  industry  showed  signs  of  resiliency  –  as  evidenced  by  the  surge  in  trade  volumes   in   light  of   the  crises.  The  US  and   Japan  have  remained  the  country's   two   largest  export  markets  together  with     fast-­‐growing  China  and  ASEAN  countries.  Other  top  export  markets   also   include   Hong   Kong,   Germany,   Netherlands,   South   Korea,   France   and   India.  Nevertheless,  the  Philippines  has  continuously  been  trading  with  countries  from  all  the  six  inhabitable  continents  of  the  world.    

     According  to  Economy  Watch,  Philippine  exports  totaled  US$50.72  billion  during  the  

year   2010,   with   the   primary   export   commodities   being   semiconductors   and   electronic  products,   transport   equipment,   garments,   copper   products,   petroleum  products,   coconut  oil   and   fruits.   The   industry   contributed   up   to   around   35%   of   the   country’s   total   GDP   –  making  it  one  of  the  biggest  earning  sectors  for  the  country  (The  World  Bank,  2012).    

 The  trade  statistics  presented  earlier  reveal  the  relative   importance  of   the  exports  

industry  for  the  Philippines’  economic  performance.  In  lieu  with  this,  vital  questions  have  been   raised   in   order   to   safeguard   the   industry   and   prevent  massive   disruptions   as   they  may  pose  to  be  major  risks  for  the  country’s  aggregate  output.  Among  these  are  as  follows:  

    “What  characterizes  trade  between  the  Philippines  and  its  trading  partners?”  

“What   factors   determine   the   volume   of   trade   between   the   Philippines   and   its      international  export  markets?”  “What   policies   should   the   government   employ   in   order   to   sustain   the   growth   of   the  Philippine  exports  industry?”  

 Although  these  questions  may  appear   to  be  very  much  pronounced   in   the  country  

today,  a  comprehensive  empirical  analysis  has  yet  to  be  conducted  in  answering  these.  This  research  aims  to  answer  these  three  key  questions  associated  with  the  Philippine  exports  industry  via  estimating  two  sets  of  demand  functions  of  the  Philippines’  top  export  markets  per   region   –   an   aggregated   estimation   and   a   per-­‐country   analysis   –   using   various  econometric  modeling   techniques.  Moreover,  a   comprehensive  analysis  will  be   facilitated  using  International  Trade  and  Macroeconomic  Theories.    

   

5  

B.  Statement  of  the  Problem       In  order  to  characterize  the  demand  for  Philippine  goods,  how  do  we  estimate  using  available   data   the   export   demand   equations   of   the   top   five   trading   partners   of   the  Philippines   which   are   US,   Japan,   China,   Singapore,   and   Hong   Kong?   Also,   what   are   the  factors  that  influence  demand  for  Philippine  goods?  Finally,  how  responsive  are  consumers  to  changes  in  these  factors?    C.  Statement  of  the  Objectives       The  objectives  of  the  study  are  as  follows:  

1. To   estimate   the   Philippine   export   demand   equations   of   USA,   Australia,   Germany,  Japan   and   Singapore,   all   of   which   represent   the   top   trading   partners   of   the  Philippines  per  region.  

2. To   estimate   an   aggregated   export   demand   equation   for   the   five   countries  aforementioned.  

3. To   identify   significant   factors   that   influence   demand   for   Philippine   goods   and  services  

4. To  determine  the  responsive  of  foreign  consumers  to  these  factors.    D.  Scope  and  Limitations       This   paper   studies   the   demand   for   Philippine   goods,   capturing   exports   as   the  dependent  variable.  However,  this  study  has  several  limitations.  First,  we  limited  our  study  to   the   top   five   major   trading   partners   of   the   Philippines   which   are   US,   Japan,   China,  Singapore,   and  Hong  Kong.   Second,  we   limited   the   factors   affecting  Philippine  exports   to  only   the   real   exchange   rate,   Gross   Domestic   Product   (GDP),   and   distance   of   these   five  countries.   Next,   our   data   is   limited   to   information   gathered   annually   from   1980-­‐2011.  Lastly,  we  used  Iterative  Seemingly  Unrelated  Regressions  (ISUR)  to  estimate  the  demand  for  Philippine  goods.                                    

6  

II.  REVIEW  OF  RELATED  LITERATURE    

During   the   1960s   and   1970s,   many   economists   believed   that   participation   in  international   trade   and   improvement   in   export   performance   could   provide   the   much  needed  motivation  for  economic  growth  in  the  developing  economies.    

 There  are  many  arguments  which  favor  the  export-­‐led  development  strategy.  First,  

trade  expansion  will  bring  improved  productivity  through  increased  economies  of  scale  in  the   export   sector,   positive   externalities   on   non-­‐exports   and   through   increased   capacity  utilization.  Second,  exports  may  affect  productivity   through  encouraging  better  allocation  of   resources   driven   by   specialization   and   increased   in   efficiency,  which   in   turn   generate  dynamic  comparative  advantage  via  reduction  in  costs  for  a  country  that  facilitates  exports  (Mahadevan,   2007).   Third,   through   encounters   with   international   markets,   trade   will  facilitate  more  diffusion   of   knowledge   and  more   efficient  management   techniques  which  will   have   a   net   positive   effect   on   the   rest   of   economy   and   enhance   overall   economic  productivity.  Fourth,  export  growth  also  promotes  capital  accumulation  and  accumulation  of   foreign   exchange   and   thus   enables   the   importation   of   capital   and   intermediate   inputs  necessary   in   the   production   of   goods   exports.   Thus,   growth   has   been   analyzed   as   the  engine   of   economic   growth   (Bhagwati   and   Srinivasan,   1978;   Krueger,1978;   Kavoussi,  1984).  

 In  the  empirical  literature  on  export  demand,  the  most  influential  work  is  Senhadji  

and  Montenegro  (1999).  They  used  Phillips  Hansen's  method   to  estimate  export  demand  equations  for  developing  and  developed  countries.  They  found  that  African  countries  face  the   lowest   income   elasticities   for   their   exports,   while   Asian   countries   have   the   highest  income  and  price  elasticities.  However,  Senhadji  and  Montenegro  did  not  include  exchange  rate   in   the   relative   price   variable.   Following   Rao   and   Singh   (2007),   this   could   result   in  obtaining  bias  income  and  price  elasticities.    

 Arize   (2001)   finds   that   for   Singapore   economy,   there   is   a   long   run   and   stable  

equilibrium  relationship  among  exports  and   its  determinants.  Guisan  and  Cancelo  (2002)  estimated   the   export   demand   function   considering   the   supply   side  determinants   such   as  domestic   gross   domestic   product,   domestic   private   consumption   and   human   capital   in  addition  to  foreign  income  and  relative  export  price.  Lately,  Kumar  (2009a)  finds  that  there  is  a  structural  break  in  the  export  demand  function  of  the  Philippines  and  assert  that  there  is   a   cointegrating   relationship   between   real   exports,   real   income   and   relative   prices.   In  another   study,   Kumar   (2009b)   estimated   export   demand   function   for   China   and   find  significant  long-­‐run  income  and  relative  price  elasticities.  

 The  export-­‐led  growth  policies  have  played  an  important  role  in  promoting  exports  

and  hence  the  output  growth  in  the  Asian  countries.  Many  studies  have  tested  the  export-­‐led  growth  hypothesis   for   various   countries  using  alternative   estimation   techniques,   and  results   vary   considerably   from   country   to   country   with   some   supportive   and   some  opposing  evidence.    

 

7  

This   paper   is   organized   as   follows.   The   next   section   discusses   the   theoretical  framework,  followed  by  the  model  specification  and  results  of  the  empirical  study.  The  final  section  concludes.      III.  THEORETICAL  FRAMEWORK    A.  Theory  of  Consumer  Demand    

The  theory  of  demand   is  about   the  behavior  of  consumers   in   the  market  place.   Its  purpose   is   to   explain   the   process   by   which   consumers   make   choices   from   among   the  alternative  commodities  available  to  them  at  any  point  in  time.  The  consumer  in  this  theory  is   an   individual   whose   objective   is   to   maximize   the   satisfaction   from   selecting   the   best  possible   combination   of   commodities   he   can   afford.  With   the   presence   of   a   principle   of  diminishing  marginal  utility,   it   is  possible  to   identify  the  particular  group  of  commodities  that  would  yield  the  highest  utility.  Hence,  it  shows  that  for  any  given  consumer  there  is  a  unique   collection   of   commodities  which  maximized   his/her   satisfaction   or   utility.   A   rise  (fall)  in  the  price  of  a  good  would  decrease  (increase)  the  amount  purchased,  other  things  being  held  constant.    

      The  Neoclassical  theory  of  consumer  demand  states  there  is  a  negative  relationship  between  the  quantity  demanded  for  a  product  and  that  product's  price.  As  prices  for  goods  decline,  consumers  purchase  more  of  those  goods  and  purchase  less  as  the  prices  increase.  The   level   to  which   consumers   vary   their   demand   for   a   particular   good   in   response   to   a  price  change  reflects  elasticity  of  demand.  If  consumer  demand  for  a  good  drops  sharply  in  response   to   a   price   increase,   then   demand   for   that   good   is   said   to   be   highly   elastic.   If  consumer  demand  changes   little  or  not  at  all,  even   in  response   to  a  sharp  price   increase,  then  demand  is  said  to  be  inelastic.        B.  Income  and  Substitution  Effects    

Income  effect  is  the  impact  that  a  change  in  the  price  of  a  good  has  on  the  quantity  demanded  of   that   good  due   strictly   to   the   resulting   change   in   real   income  or  purchasing  power  while  substitution  effect  is  the  impact  that  a  change  in  the  price  of  a  good  has  on  the  quantity   demanded   of   that   good,  which   is   due   to   the   resulting   change   in   relative   prices  (Px/Py).  

 There   are   two   definitions   of   Substitution   effects   given   by   Eugene   Slutsky   and   Sir  

John  R.  Hicks.  The  Slutsky  Substitution  effect  is  the  effect  on  consumer  choice  of  changing  the  price  ratio,  leaving  his/her  initial  utility  unchanged  while  the  Hicks  Substitution  effect  is  the  effect  on  consumer  choice  of  changing  the  price  ratio,  leaving  the  consumer  just  able  to   afford   his/her   initial   bundle.    

Indifference   curve   analysis   is   used   to   illustrate   the   two   effects.     An   indifference  curve  represents  the  preferences  of  a  consumer  between  two  goods.    Its  slope,  the  marginal  rate  of  substitution,  shows  how  willing  the  consumer  is  to  switch  between  the  goods.    The  

8  

budget   constraint   shows   the   line  of   available  opportunities  when   the  consumer  allocates  her  entire  budget  between  the  two  goods.    Its  slope  is  the  relative  price  of  the  two  goods.    The   consumer   is   assumed   to   maximize   overall   satisfaction   (utility)   while   spending   her  entire   budget   on   the   two   goods  where   the   indifference   curve   and   budget   constraint   are  tangent  to  one  another.  

 Income  and   substitution  effects   change  demand  differently  with  different   types  of  

goods.  Total  effect  is  composed  of  both  Income  and  substitution  effects.  When  X  is  a  normal  good,  with  a  decrease   in   the  price  of  good  X,   the  quantity  of  X  demanded  decrease   (total  effect).  The  income  effect  increases  and  so  is  the  substitution  effect,  so  the  decrease  in  the  price  of  good  X  leads  to  an  increase  in  the  quantity  demanded.  When  X  is  an  inferior  good,  with  a  decrease  in  the  price  of  good  X,  the  quantity  of  X  demanded  increases  (total  effect).  The   substitution   effect   exceeds   the   income   effect,   so   the   decrease   in   the   price   of   good  X  leads  to  an  increase  in  the  quantity  demanded.  When  X  is  a  giffen  good,  with  a  decrease  in  the  price  of  good  X,  the  quantity  of  X  demanded  decrease  (total  effect).  The  income  effect  exceeds  the  substitution  effect,  so  the  decrease  in  the  price  of  good  X  leads  to  a  decrease  in  the  quantity  demanded.    C.  The  Mundell-­‐Flemming  Model    

The  Mundell-­‐Flemming  Model,   also   known   as   the   IS-­‐LM-­‐BoP  model,   is   one   of   the  most  common  macroeconomic  frameworks  utilized  today.  The  model  is  an  extension  of  the  classical   Keynesian   IS-­‐LM   relationship  whose   crucial   assumptions   refer   to   that   of   closed  economies.   Specifically,   the   model   complemented   the   IS   relation   by   introducing   two  variables  indicative  of  foreign  trade,  namely  :  imports  and  exports.  In  other  texts,  these  two  indicators  are  summarized  in  to  a  single  variable  called  Net  Exports  (Mankiw,  2002).  The  Mundell-­‐Flemming  Model  takes  the  following  form:    

IS  relation  :    

LM  relation  :    

where   Y   is   Output/income,   C   is   Consumption,   I   is   Investment,   G   is   Government  Expenditure,   X   is   Exports,   IM   is   Imports,   r   is   Real   interest,   T   is   Tax,   Y*   is   Foreign  output/income,  ε  is  the  Exchange  rate,  M/P  is  real  money  stock,  and  i   is  Nominal  Interest  Rate.       Since   this   research   involves   the   estimation   of   demand   functions   for   Philippine  exports,  focus  will  be  given  to  the  exports  function  under  the  Mundell-­‐Fleming  model.  It  is  defined  by  the  following  general  equation:                                                                                𝑋! = 𝑓(𝑌∗,𝐸 !

!∗)  

                           +                -­‐    

( ) ( , ) ( *, ) ( , )/Y C Y T I Y r G X Y IM Yε ε ε= − + + + −

( )M YL iP=

9  

where   Xd   is   foreign   demand   for   a   country’s   goods,   Y*   is   foreign   output,   P   is   local   price  index,  P*  is  foreign  price  index,  and  E  is  the  nominal  exchange  rate.         Exports   represent   the   demand   for   local   goods   of   foreign   countries.   One   of   the  determinants   of   exports   suggested   by   the   Mundell-­‐Flemming   Model   is   foreign   income.  Higher   foreign   income   leads   to   higher   demand   for   local   goods,   thus   inducing   additional  volume   on   the   part   of   exporters.   Another   determinant   of   exports   in   the   model   is   real  exchange  rate,  which  is  computed  by  multiplying  the  nominal  exchange  rate  to  the  relative  price   of   local   goods   to   foreign   goods.   If   local   prices   are  higher   relative   to   that   of   foreign  prices,   foreign  countries  are  more  likely  to  opt  for  goods  from  another  country.  Hence,   in  the  case  of  a  currency  appreciation  (or  valuation),  exports  decrease.  (Blanchard,  2011)      D.  Gravity  Model  of  World  Trade    

The   Gravity   Model   of   World   Trade   is   an   important   tool   used   in   analyzing  international  trade  relations.  Its  basic  foundations  refer  to  that  of  Newton’s  Law  of  Gravity.  According   to  Krugman,  Obstfeld    &  Melitz   (2012),   the   international   economics  variant  of  the  Gravity  Theory  takes  the  form  of:    

𝑇!,! = 𝐴 ∗  𝑌!! ∗ 𝑌!!/𝐷!"!    where  𝑇!,!  is  the  value  of  trade  between  country  i  and  j,  A  is  a  constant  term,  𝑌!!  is  the  GDP  of  country  i  ,  𝑌!!  is  the  GDP  of  country  j  and  𝐷!"!  is  the  distance  between  country  i  and  j.       In  this  model,  the  total  value  of  trade  (value  of  imports  plus  exports)  between  two  countries  is  determined  by  three  things,  namely:  the  two  GDPs  of  trading  countries  and  the  distance   between   them.   Both   the   GDPs   of   trading   countries   have   a   positive   effect   on  bilateral  trade  flows  because  of  the  higher  incomes  of  large  economies  and  their  tendency  to   spend   more   on   imported   goods.   In   addition,   these   larger   economies   have   a   more  diversified   product   line,   hence   drawing   more   transactions   to   supply   foreign   need.   The  distance   on   the   other   hand   has   a   negative   relationship   due   to   logistical   costs.   Distance  greatly  affects  both  time  and  transportation  costs.  Although  typically  the  product  of  the  two  GDPs   and   the   distance   between   them   are   proportional   and   inversely   proportional  respectively,   economists   estimate   the   elasticity   of   each   of   these   variables   in  correspondence  to  the  data  at  hand  (Krugman,  Obstfeld  ,  &  Melitz,  2012).  These  elasticities  are  represented  by  the  a,  b  and  c  superscripts.        E.  Marshall-­‐Lerner  Condition         The  Marshall-­‐Lerner  Condition  (also  called  the  Marshall-­‐Lerner-­‐Robinson)  is  at  the  heart  of  the  elasticities  approach  to  the  balance  of  payments.  This  condition  answers  when  a   real   devaluation   in   fixed   exchange   rates   or   in   floating   exchange   rates   of   the   currency  improve  the  current-­‐account  balance  of  a  country.      

10  

This  condition  states  that  a  real  devaluation  or  real  depreciation  of  the  currency  will  improve  the  trade  balance  if  the  sum  of  elasticities  (in  absolute  values)  of  the  demand  for  imports  and  exports  with  respect  to  the  real  exchange  rate  is  greater  than  one,  (ɛ+ɛ*=1).      

For   the   trade   balance   to   improve   following   depreciation,   exports   must   increase  enough  and  imports  must  decrease  enough  to  compensate  for  the  increase  in  the  price  of  imports  (Blanchard,  2011).      IV.  OPERATIONAL  FRAMEWORK      A.  Data    

In  estimating  the  demand  for  Philippine  goods  and  services,  this  research  will  make  use  of  quarterly  data  from  1985Q1-­‐2011Q4.  The  sources  of  data  are  as  follows:    Data  Source   Indicator  Direction  of  Trade  Statistics,  IMF   Philippine  Exports  per  country  International  Finance  Statistics,  IMF   Real  Effective  Exchange  Rate  (Consumer  

Price  Index)  International  Finance  Statistics,  IMF   Real  Gross  Domestic  Product  TimeandDate.Com   Distance    

 B.  Variables  and  A-­‐Priori  Expectations        The  theories  mentioned  in  the  preceding  section  provide  key  variables  that  may  be  considered  as  factors  of  exports  demand  in  an  economy.  This  research  will  make  use  of  the  determinants   supported   by   the   Gravity   Model   and   the   Mundell-­‐Flemming   Model   as  independent   variables.   On   the   other   hand,   the   value   of   Philippine   exports   to   selected  countries  will  be  the  dependent  variable  of  the  study.       Exports   represent   the   total   value   of   the   outflow   of   goods   from   the   domestic  economy   to   the   international   market.   Since   this   research   aims   to   estimate   demand   for  Philippine  goods  both  on  a  per  country  and  aggregated  basis,  data  on  the  direction  of  trade  of  Philippine  goods  and  services  (as  of  2011)  will  be  utilized.  According  to  the  Department  of  Trade  and  Industry,  these  top  trading  partners  are  as  follows:    Region   Top  Trading  Partner  ASEAN   Singapore  Oceania   Australia  Europe   Germany  Americas   USA  Asia   Japan    

11  

 Note   that   the   value   of   exports   is   originally   expressed   in   terms   of   PHP   but   was   later  converted  by  the  IMF  to  USD  using  period  average  exchange  rates.       The   Real   Effective   Exchange   Rate   (REER)   is   defined   by   The   World   Bank   as   “the  nominal  effective  exchange  rate  divided  by  a  price  deflator  or   index  of  costs”  (The  World  Bank,  2012).  The  nominal  effective  exchange  rate  used  in  the  computation  of  this  dataset  contains   the   value   of   Philippine   Peso   against   a   weighted   average   of   different   foreign  currencies.   The   base   year   used   by   The  World   Bank   is   2005   (2005=100).   In   essence,   the  Real  Effective  Exchange  Rate  represents  the  relative  price  of  domestic  goods  in  comparison  to  the  weighted  average  prices  of  foreign  goods.  It  is  considered  as  a  proxy  variable  for  the  variable  Price  typically  found  in  demand  equations.       This  study  will  make  use  of  three  REER  indices.  First,    the  Philippines’  REER  is  used  to  measure   the   response  of   the   importing  nation   to  price   changes   in   the   local  Philippine  market   and   currency   appreciation   (depreciation)   of   the   Philippine   Peso.   Second,   China’s  REER  will  be  used  as  a  proxy  for  the  competitor’s  REER.  The  theory  of  consumer  demand  postulates  that  price  changes  of  a  competitor  influences  the  demand  for  a  firm’s  goods  .  The  same   principles   applies   in   the   case   of   Philippine   exports   –   wherein   China,   an   export  powerhouse   in   the   East   Asian   Region,   may   be   considered   as   the   biggest   competitor   of  Philippine   goods   and   services.   Lastly,   the  REER  of   the   importing   country  will   be  used   in  order  to  evaluate  the  impact  of  price  changes  in  their  respective  economies.       The  Gross  Domestic  Product  (GDP)  represents  the  total  income  of  an  economy  and  the   total  expenditure  on   the  production  of  goods  and  services  both   from   the  private  and  public  sector  (Mankiw,  2002).  The  Real  GDP  data  of  Australia,  Germany,   Japan,  Singapore  and   the   US   employed   in   this   research   was   sourced   from   the   International   Financial  Statistics  of   the   IMF.  Real  stands   for   the  adjustment  of   the  nominal  GDP  to  price  changes  brought  about  by  inflation.  For  consistency  purposes,  Real  GDP  figures  have  the  same  base  year  at  2005.  It  is  considered  as  a  proxy  variable  for  the  variable  Income  normally  found  in  demand  equations.    

The  data  on  distance  used  in  this  paper  is  defined  by  the  source  TimeandDate.Com  as  “the  theoretical  air  distance  (great  circle  distance)”.  Theoretical  air  distance  is  different  from   that   of   airport-­‐to-­‐airport   distance   due   to   the   varying   routes   chosen   by   air   carriers  (Time  and  Date  AS,  2012).  For   the  sake  of  uniformity,   the  distance  between  capital  cities  will   be   measured   –   Manila-­‐Washington   DC,   Manila-­‐Tokyo,   Manila-­‐Canberra,   Manila-­‐Singapore   and   Manila-­‐Berlin.   All   figures   are   expressed   in   terms   of   kilometers.   Note  however   that   variable   distance   will   only   be   used   in   the   aggregated   export   demand  estimation  and  not  in  the  per-­‐country  demand  estimation.  Distance  is  time  invariant,  hence,  it   would   not   make   sense   to   include   it   as   a   variable   in   the   individual   export   demand  equation  estimation.       The   table   below   summarizes   the   A-­‐Priori   expectations   on   the   aforementioned  variables.    

12  

Variable     Code   A-­‐Priori     Explanation  Real  Effective  Exchange  Rate  (Consumer  Price  Index)  -­‐  Philippines  

lnPHLREERCPIi   -­‐   As  supported  by  the  Mundell-­‐Flemming  Model  and  the  Marshall  Lerner  Condition,  an  appreciation  will  decrease  foreign  demand  on  local  goods,  hence  lower  exports.  

Real  Effective  Exchange  Rate  (Consumer  Price  Index)  –  China  

lnCHIREERCPIi   +   As  supported  by  the  Mundell-­‐Flemming  Model  and  the  Theory  of  Consumer  Demand,  an  appreciation  (revaluation)  will  decrease  foreign  demand  on  local  goods,  hence  lower  exports.  Since  China  is  considered  an  export-­‐industry  competitor,  an  appreciation  of  the  Chinese  currency  will  lead  to  an  increase  in  the  demand  for  Philippine  goods  and  services.  

Real  Effective  Exchange  Rate  (Consumer  Price  Index)  –  Importing  Country  

lnCCDREERCPIi   +   As  supported  by  the  Mundell-­‐Flemming  Model  and  the  Marshall  Lerner  Condition,  an  appreciation  of  the  importing  country’s  currency  will  lead  to  an  increase  in  exports.  This  is  due  to  Philippine  goods  and  services  being  cheaper  in  comparison  to  the  importing  country’s.    

Gross  Domestic  Product  (foreign)  

lnCCDGDPi   +   As  supported  by  the  Mundell-­‐Flemming  and  Gravity  Model  of  Trade,  an  increase  in  GDP    of  foreign  economies  will  lead  to  higher  demand  for  local  goods,  hence  higher  exports.  

Gross  Domestic  Product  (local)  

lnCCDGDPj   +   As  supported  by  the  Gravity  Model  of  Trade,  an  increase  in  GDP  of  the  local  economy  will  lead  to  an  increase  in  the  volume  of  trade  between  two  nations.  

Distance   lnDISTCCDi   -­‐   As   supported   by   the   Gravity   Model,  the  bigger  the  distance  between  two  countries   (capital),   the   higher   the  logistical  costs.  

Exports  to  country  i  

lnEXPCCDi   Dependent  Variable  

*CCD  stands  for  the  three-­‐letter  country  codes  (AUS,GER,JPN,SGP,USA,PHL)      

13  

IV.  PER  COUNTRY  DEMAND  ESTIMATION      A.  Time  Series  OLS  estimation  vs.  Seemingly  Unrelated  Regression       In   facilitating   the   demand   estimation   on   a   per   country   basis,   we   will   run   two  econometric  models   -­‐   the   simple   Time-­‐series   Classical   Linear   Regression  Model   (CLRM)  estimated  using   the  Ordinary  Least  Squares  (OLS)  procedure  and  the   Iterative  Seemingly  Unrelated  Regression  (ISUR)  using  the  Feasible  Generalized  Least  Squares  (FGLS)  method.  In   return,   the   results   of   these   two   regression   analyses   will   be   compared   and   the   more  appropriate   modeling   technique   will   be   determined   thereafter.   The   estimates   of   both  models  will  be  presented  in  the  succeeding  sections.        B.  Model  Specification       This  study  will  employ  the  basic  specification  in  estimating  export  equations  by  Rao  and   Singh   (2005).   In   their   model,   exports   is   estimated   using   the   two   determinants  suggested  by  the  Mundell-­‐Flemming  Model  –  Foreign  Income  (GDP)  and  the  Real  Exchange  Rate.  Having  said,   the  researchers  would   further  complement   this  by  adding   the  variable  local   GDP   which   was   derived   from   the   Gravity   Theory   Model.   The   variable   distance   is  omitted   in   this   per-­‐country  demand  estimation  because   it   is   time-­‐invariant.   This  may  be  considered  as  a   fixed   influence   importers   from  each  of   the   five  countries   to  be  estimated  have  to  deal  with  in  their  trading  activities.       Since   this   study   involves   the   estimation   of   demand   for   Philippine   exports   of  Australia,  Germany,  Japan,  Singapore,  and  USA,  there  will  be  five  equations  in  the  analysis.  The  general  form  of  each  equation  will  be  as  follows:    

𝑙𝑛𝐸𝑋𝑃𝐶𝐶𝐷! = 𝛽! + 𝛽!𝑙𝑛𝐶𝐶𝐷𝐺𝐷𝑃! + 𝛽!𝑙𝑛𝑃𝐻𝐿𝐺𝐷𝑃! +  𝛽!𝑙𝑛𝑃𝐻𝐿𝑅𝐸𝐸𝑅𝐶𝑃𝐼!  +  𝛽!𝑙𝑛𝐶𝐻𝐼𝑅𝐸𝐸𝑅𝐶𝑃𝐼! +  𝛽!𝑙𝑛𝐶𝐶𝐷𝑅𝐸𝐸𝑅𝐶𝑃𝐼! + 𝑢!  

 where   CCD   is   the   three   letter   country   code   (AUS,   GER,   JPN,   SGP,   USA)   of   the   importing  country   and   𝑢!   is   the   stochastic   disturbance   term   (which   may   be   contemporaneously  correlated  between  the  five  equations).    C.  Iterated  Seemingly  Unrelated  Regression  (ISUR)       The   primary   objective   of   this   research   is   to   estimate   the   per   country   demand  functions  for  Philippine  Exports.  In  doing  so,  problem  arises  if  it  is  to  be  found  out  that  the  error   terms   of   each   equation   are   contemporaneously   correlated  with   each   other.   In   the  context  of  the  research  topic  of  this  study,  it  is  very  likely  that  the  five  demand  functions  to  be  estimated  have  correlated  errors.  The  Error  Term/  Residual  Term  is  also  known  as  the  variable  which  captures  all  of  the  factors  not  specified  as  under  one  of  the  regressors  of  the  model.  Since  the  research  talks  about  exports  demand  in  the  Philippines  on  a  per  country  basis,   certain   common   influences   affecting   the   demand   of   each   of   the   five   countries   to  Philippine   goods   is   very   much   apparent.   Among   these   are   ease   of   transacting   business  proceedings,   export   incentives,   political   stability,   overall   perception   of   Philippine-­‐

14  

manufacturing  quality  and  etc.    

In   such   case,   Zellner’s   Iterated   Seemingly   Unrelated   Regression   (ISUR)   will   yield  more  efficient  estimates  over  separate  ordinary  least  squares  estimation  for  each  equation  (Salman,   2011).     According   to   Salman   (2011),   the   ISUR   technique   “provides   parameter  estimates  that  converge  to  unique  maximum  likelihood  parameter  estimates  and  take  into  account  any  possible  contemporaneous  correlation  between  the  equations”.    

Generally,   the  Seemingly  Unrelated  Regression  Model  (SUR)   is  used   in  a  system  of  equations  wherein  all  variables  in  the  right  hand  side  are  exogenous  and  that  their  errors  are  contemporaneously  correlated.  The  estimates  gain  efficiency  by  taking  into  account  this  relationship  between  the  errors.  The  Breusch  –  Pagan  test  is  employed  in  order  to  test  for  the   contemporaneous   correlation   of   residuals.   The   Null   Hypothesis   of   the   said   test  indicates   that   𝐸 𝑢!𝑢� = 0   (no   contemporaneous   correlation   –   not   SUR)   and   the  Alternative  Hypothesis  states  that  𝐸 𝑢!𝑢! ≠ 0  (there  exists  contemporaneous  correlation  –  use  SUR).    

 SUR   models   jointly   estimate   a   system   of   equations.   Hence,   the   first   step   in   SUR  

estimation  is  the  “stacking”  of  the  equations  together.  It  takes  the  following  form  in  matrix  format:  

𝑌 = 𝑋𝛽 + 𝑢  

where  Y   is   an  mx1  vector  of   the  dependent  variables,  X   is   an  mxk  matrix  of   indepentent  variables,  𝛽  is  a  kx1  vector  of  coefficients  and  𝑢  is  an  mx1  vector  of  residuals.       Before  the  SUR  procedure  is  laid  out,  it  is  first  important  to  note  that  in  the  case  of  contemporaneous  correlation  in  the  error  terms,  where  𝐸 𝑢!𝑢! = 𝜎!" ≠ 0,   the  covariance  matrix  of  the  stacked  error  term  is  non-­‐scalar.  Hence,  the    general  SUR  follows  a  three-­‐step  approach:  

Step  1.   Individually  estimate  each  equation  using  OLS.  The  residuals  must   then  be  computed.  

Step  2.  Using  the  generated  residuals   in  Step  1,  estimate  𝜎!".  The  estimated  𝜎!"  are  the  covariances  in  the  variance-­‐covariance  matrix.      

Step  3.  Use  Feasible  Generalized  Least  Squares  (FGLS)  in  estimating  𝛽.  

  This   procedure   may   be   iterated   due   to   the   fact   that   the   matrix   of   coefficients  estimated  using  the  FGLS  procedure  is  more  efficient  than  that  which  is  estimated  through  OLS.   With   this   in   mind,   the   main   difference   between   using   the   conventional   Seemingly  Unrelated  Regression  Model  (SUR)  and  the  Iterated  version  (ISUR)  is  that  ISUR  repetitively  estimates  𝜎!"  based  on  the  coefficient  matrix  estimated  using  FGLS.  Steps  2  and  3  are  then  repeated  until  the  elements  of  the  variance-­‐covariance  matrix  no  longer  changes  from  one  iteration  to  another.  

15  

D.  The  Breusch-­‐Pagan  Test  

The   Breusch-­‐Pagan   test   for   contemporaneous   correlation   will   be   used   in  determining  whether  or  not  the  equations  to  be  estimated  are  apt  for  the  SUR  method.  One  of   the   focuses   of   this   research   is   to   conduct   an   exposition   of   the   Seemingly   Unrelated  Regression   analysis.  Hence,   the   result   of   the  Breusch-­‐Pagan   test  will   be   vital   in   ensuring  that  the  data  and  equations  at  hand  are  appropriate  for  the  desired  econometric  technique  to  be  carried  out.  The  Null  and  Alternative  Hypothesis  of  the  test  are  as  follows:  

Ho  :  E(UiUj)  =  0  

HA  :  E(UiUj)  ≠0  

  Acceptance  of  the  null  hypothesis  will  affirm  that  the  proper  econometric  model  is  NOT  SUR.  It  indicates  that  the  error  terms  Ui  and  Uj  are  not  statically  correlated.  Therefore,  individual  estimation  of  each  of  the  equations  should  be  carried  out.  Joint  estimation  using  the   SUR   approach   will   be   appropriate   if   the   alternative   hypothesis   is   accepted.   Such   a  scenario   denotes   cross-­‐sectional   correlation   between   the   residual   terms   Ui   and   Uj.   The  result  of  the  Breusch-­‐Pagan  Test  is  shown  in  the  initial  regression  portion  in  the  succeeding  section  of  the  research.  

E.  Regression  Analyses  

After   establishing   the   a-­‐priori   expectations   and   definitions   of   the   variables   in   our  model   specification,  we   now   run   two   regressions   in   estimating   the   per-­‐country   demand  functions   of   Philippine   exports.   First,   each   of   the   five   equations   will   be   estimated  individually   using   the   simple   time   series   OLS   estimation   procedure.   Second,   the   five  equations  aforementioned  will  be  jointly  estimated  using  the  ISUR  approach.    

E.1.  Statistical  Tests  

Statistical  Tests  were  conducted  to  check  for  key  CLRM  violations  and  to  determine  the   most   appropriate   regression   model   in   line   with   our   research   goal.   The   tests   to  conducted  in  this  research  follows  that  of  Dycaico,  Gamboa,  Surbano  &  Tan  (2012).  Their  study   involved   a   similar   per-­‐country   estimation   of   the   demand   for   Philippine   tourism   –  hence,  making  their  tests  applicable   for  the  purposes  of   this  research.  The  authors  tested  for  multicollinearity,   autocorrelation   and   the   existence   of   a   unit   root.   Also,   the   Breusch-­‐Pagan  test  was  used  to  prove  which  estimation  procedure  is  more  appropriate  for  our  data.  The   software   Stata   was   used   for   all   testing   procedures.   All   of   the   computer-­‐generated  results  are  in  the  Appendix  section  of  this  research.      

It  is  important  to  note  that  despite  the  non-­‐stationarity  of  the  variables  in  Dycaico  et  al.,   (2012),   the  authors  still  proceeded  with  the  ISUR  estimation  of   their   tourism  demand  equations.   In   line  with   this,  we   followed   the   same   procedure   in   our   regression   analysis.  This   was   further   supplemented   by   conducting   Augmented   Dickey-­‐Fuller   Tests   (for   Unit  Root  Testing)  and  Johansen’s  Cointegration  Test.  The  results  from  the  two  tests  show  that  despite   the   non-­‐stationarity   of   the   variables,   cointegrating   parameters   were   present   in  

16  

each  equation.    

The  Variance  Inflation  Factors  (VIF)  test  was  used  to  test  for  multicollinearity.  The  results  show  that  the  GDP  of  the  Philippines  and  its  trading  partners  are  slightly  collinear  above  normal  levels.  This  may  be  an  indicator  of  the  interdependence  of  economies  in  the  international   arena.  Although   this  may  be   the   case,   omitting   one  of   the  GDP  variables   to  solve  the  multicollinearity  issue  will  violate  the  stipulations  of  the  Gravity  Theory  of  World  Trade.  It  will  neglect  the  importance  of  the  size  of  the  trading  countries’  economies.  Hence,  this   research   moves   forward   with   the   same   set   of   theoretically-­‐backed   variables   in   the  estimation  procedure.    

Heteroscedasticity,   or   the   scenario   of   a   non-­‐constant   variance   of   the   residuals,   is  rampant   in   cross-­‐sectional   data.   Since   each   of   the   equations   involve   time-­‐series   data,  testing   for   heteroscedasticity  was   no   longer   carried   out.   Instead,   autocorrelation   testing  was  facilitated  using  the  Breusch-­‐Pagan-­‐Godfrey  test.  Autocorrelation   is  endemic   in  time-­‐series   data.   It   basically   states   that   the   error   terms   are   correlated   overtime.   The   results  show   that   the   data   is   indeed   suffering   from   autocorrelation.   To   rectify   this,   the   Prais-­‐Winsten   estimation   procedure   was   carried   out   on   each   of   the   five   equations.   This  procedure   takes   into   account   the   correlation   structure   of   the   residuals   by   improving  Cochrane-­‐Orcutt   algorithm   (Gujarati,   2004).   On   the   other   hand,   FGLS   estimation,   which  was  used   for   the   ISUR  model,   already   takes   into   account   the   correlation   structure  of   the  error  terms.  This  sidelines  the  need  for  any  corrective  measures.  

Ramsey’s   RESET   was   used   to   estimate   for   model   specification   bias.   Due   to   the  nature  of  this  research,  it  is  expected  that  the  models  may  be  subject  to  specification  errors.  Although   GDP   and   Exchange   Rate   variables   may   well   represent   income   and   prices   in   a  typical  demand  function,  other   influences  that  are  not  readily  observable  using  statistical  data   also   affect   volume   of   trade   between   countries.   These   influences   include   free   trade  agreements,  political  ties,  historical  relationship,  natural  calamities  and  etc.  Note  however  that   the   specification   of   the   equations   used   in   this   study   were   derived   from   related  literature  such  as  that  of  Singh  &  Rao  (2005).    

E.2.  Time  series  OLS  estimation  

   As  mentioned  earlier,  the  Prais-­‐Winsten  estimation  procedure  was  used  to  correct  for  autocorrelation  in  each  of  the  five  equations.  The  individual  estimation  of  each  equation  yielded  the  following  coefficients:  

Dependent  Variable  :  lnEXPCCD        Variable  /  Country   USA   Japan   Australia   Germany   Singapore  lnCCDGDP   2.092  ***   3.291  ***   1.3153  ***   3.930***   2.201  ***  lnPHLGDP   -­‐0.046   0.206  **   0.711  ***   0.156   -­‐0.327  lnPHLREERCPI   -­‐0.154   -­‐0.411   -­‐0.595  *   -­‐0.200   0.271  lnCHIREERCPI   0.487  **   0.159   -­‐0.029   0.169   -­‐0.163  lnCCDREERCPI   -­‐0.745   0.113   -­‐0.013   0.407   1.077  constant   0.003    -­‐8.192  **   -­‐1.859   -­‐14.659  ***   -­‐7.665  

17  

           ***  -­‐  significant  at  1%   **  -­‐  significant  at  5%   *  -­‐  significant  at  10%  CCD  =  Country  Code  of  Importing  Country  (AUS,JPN,SGP,GER,USA)    

E.3.  Iterative  Seemingly  Unrelated  Regression  (ISUR)  regression  

  The  ISUR  regression  is  our  second  approach  in  estimating  the  per  country  demand  for  Philippine   exports.  The   joint   estimation  of   the   five   equations  using   the   iterated  FGLS  procedure  of  the  ISUR  approach  yielded  the  following  coefficients:  

Dependent  Variable  :  lnEXPCCD        Variable  /  Country   USA   Japan   Australia   Germany   Singapore  lnCCDGDP   3.737  ***   4.016  ***   0.908  **   3.614  ***   1.883  ***  lnPHLGDP   -­‐1.185  ***   0.979  ***   0.987  ***   0.564  ***   0.339  lnPHLREERCPI   0.757  ***   -­‐0.200   -­‐0.665  ***   -­‐0.203   -­‐0.177  lnCHIREERCPI   -­‐0.761  ***   0.661  ***   -­‐0.128   0.472  *   0.142  lnCCDREERCPI   -­‐0.221   0.244  **   0.225   1.316  **   1.149  **  constant   -­‐2.967  *   -­‐18.906  ***   -­‐1.568   -­‐20.638  ***   -­‐8.931  ***              

***  -­‐  significant  at  1%   **  -­‐  significant  at  5%   *  -­‐  significant  at  10%  CCD  =  Country  Code  of  Importing  Country  (AUS,JPN,SGP,GER,USA)  

 

E.4.  Individual  OLS  estimation  vs.  ISUR  regression  

In  assessing  which  model  is  more  feasible,  recall  that  the  Breusch-­‐Pagan  Test  is  used  to  determine  contemporaneous  correlation  among  the  residuals,  whose  existence  validates  the  employment  of  the  ISUR  approach.  The  result  of  the  Breusch-­‐Pagan  test  is  as  follows:  

Correlation  matrix  of  residuals:       lnexpusa   lnexpjpn   lnexpaus   lnexpger   lnexpsgp  lnexpusa   1          lnexpjpn   0.2712   1        lnexpaus   0.2988   0.3605   1      lnexpger   0.1118   0.1945   -­‐0.0112   1    lnexpsgp   0.4182   0.7604   0.4227   0.269   1              Breusch-­‐Pagan  test  of  independence:  chi2(10)  =      142.814,  Pr  =  0.0000    

The  non-­‐diagonal  elements  of  the  correlation  matrix  are  supposed  to  have  non-­‐zero  values.  This  shows  that  there  exists  contemporaneous  correlation  among  the  error  terms  of  each  of  the  equations.  Moreover,  the  chi-­‐square  statistic  of  the  Breusch-­‐Pagan  test  is  shown  

18  

to  be  significant  up  to  the  99%  confidence  interval.  Ergo,  the  null  hypothesis  indicating  Ho  :  E(UiUj)   =   0   is   rejected.   The   errors   are   statically   correlated.   The   ISUR   is   the   more  appropriate  modeling  technique  in  the  estimation  of  the  per-­‐country  demand  functions  for  Philippine  exports.  

The  ISUR  approach  is  also  known  to  yield  more  efficient  coefficients  (Salman,  2011).  This  means   that   its  standard  errors  must  be  smaller   in  comparison  to   the   individual  OLS  estimation  procedure.  The  table  below  shows  the  standard  errors  of  the  coefficients  from  each  of  the  estimation  procedures:  

Variable   Std.  Err.  ISUR  

Std.  Err.  OLS  

Variable   Std.  Err.  ISUR  

Std.  Err.    OLS  

Dependent  Variable  :  lnexpusa       Dependent  Variable  :  lnexpger      lnusagdp   0.431   0.747     lngergdp   0.388   0.418    lnphlgdp   0.291   0.121     lnphlgdp   0.168   0.146    lnphlreercpi   0.184   0.302     lnphlreercpi   0.202   0.288    lnchireercpi   0.170   0.228     lnchireercpi   0.243   0.262    lnusareercpi   0.287   0.481     lngerreercpi   0.619   0.825    constant   1.606   4.212     constant   4.118   5.456                    Dependent  Variable  :  lnexpjpn       Dependent  Variable  :  lnexpsgp      lnjpngdp   0.317   0.678     lnsgpgdp   0.266   0.276    lnphlgdp   0.108   0.100     lnphlgdp   0.410   0.229    lnphlreercpi   0.146   0.274     lnphlreercpi   0.390   0.542    lnchireercpi   0.148   0.178     lnchireercpi   0.243   0.340    lnjpnreercpi   0.114   0.211     lnsgpreercpi   0.544   1.123    constant   1.971   3.917     constant   2.654   4.798                    Dependent  Variable  :  lnexpaus              lnausgdp   0.383   0.342     lnchireercpi   0.145   0.226            lnphlgdp   0.336   0.255     lnausreercpi   0.232   0.341    lnphlreercpi   0.196   0.314     constant   1.333   2.035      

  As  shown  above,  majority  of  the  standard  errors  of  the  coefficients  jointly  estimated  using   ISUR  had   smaller   values   compared   to   those   individually   estimated  using  OLS.  This  further  affirms  that  there  is  an  efficiency-­‐gain  from  employing  the  ISUR  procedure.  This  is  attributable   to   the   ability   of   the   ISUR  model   to   take   into   account   the   contemporaneous  correlation  of  the  error  terms  in  the  estimation  procedure.    

  It   is   also   important   to   note   that   the   ISUR   approach   yielded   more   significant  estimates.   Initally,  almost  all  estimates   for   the  Real  Exchange  Rate  coefficients  of  derived  from  the   individual  OLS  estimation  were   insignificant.  After  using  the  ISUR  approach,   the  Real  Exchange  Rate  variables  became  significant  –  signifying  that  the  price  distortions     in  individual  economies  only  become  meaningful  for  trade  volume  if  the  influences  affecting  

19  

trade   with   other   partners   are   also   taken   into   account.   It   also   confirms   the   multi-­‐dimensional,   highly   competitive   mechanism   of   the   international   market   wherein   the  decision  of   firms  and  individuals  are  not  solely  based  on  the  economic   fundamentals  of  a  single  trading  partner  but  also  to  that  of   itself  and  the  other  countries  which  may  also  be  able  to  provide  them  with  their  needs.    

  The   result   of   the   Breusch-­‐Pagan   test,   the   smaller   standard   errors,   and   the   more  significant   coefficients   are   all   in   favor   of   the   joint   estimation   of   each   of   the   demand  equations.  Having  this  in  mind,  this  study  will  conduct  analyses  and  interpretations  using  the  estimates  of  the  ISUR  approach.    

F.  Interpretations  

  Note  that  since  this  study  involves  a  multivariate  regression  model  such  as  the  ISUR,  it  is  assumed  that  all  other  factors  besides  the  one  being  interpreted  are  held  constant.  The  ISUR  coefficient  estimates  presented  earlier  are  again  as  follows:  

Dependent  Variable  :  lnEXPCCD        Variable  /  Country   USA   Japan   Australia   Germany   Singapore  lnCCDGDP   3.737  ***   4.016  ***   0.908  **   3.614  ***   1.883  ***  lnPHLGDP   -­‐1.185  ***   0.979  ***   0.987  ***   0.564  ***   0.339  lnPHLREERCPI   0.757  ***   -­‐0.200   -­‐0.665  ***   -­‐0.203   -­‐0.177  lnCHIREERCPI   -­‐0.761  ***   0.661  ***   -­‐0.128   0.472  *   0.142  lnCCDREERCPI   -­‐0.221   0.244  **   0.225   1.316  **   1.149  **  constant   -­‐2.967  *   -­‐18.906  ***   -­‐1.568   -­‐20.638  ***   -­‐8.931  ***              

***  -­‐  significant  at  1%   **  -­‐  significant  at  5%   *  -­‐  significant  at  10%  CCD  =  Country  Code  of  Importing  Country  (AUS,JPN,SGP,GER,USA)  

 F.1.USA  

   The   United   States   has   been   one   of   the   top  markets   for   Philippine   exports   in   the  

recent   decades.   It   is   a   well-­‐known   fact   that   its   large   economy   is   consumption-­‐driven   –  meaning  to  say,  consumers  in  the  United  States  tend  to  demand  more  due  to  their  very  high  per   capita   incomes.   In   fact,   according   to  The  World  Bank   (2012),     the  US  has   one  of   the  highest   per   capita   income   among   developed   nations   at   $48,442   (PPP   at   current   US$)   in  2011.  This  massive  consumer  demand  of  the  US  is  clearly  evident  in  the  ISUR  estimates.    

 In  the  analysis,  it  was  shown  that  a  one  percent  increase  in  the  Real  GDP  index  of  the  

USA  will   cause  a  3.737%  percent   increase   in   the  volume  of  Philippine  exports   to   the  US.  This  finding  is  statistically  significant  up  to  the  99%  confidence  interval  and  shows  that  the  demand   of   the   US   is   very   elastic   in   correspondence   to   fluctuations   in   prevailing   income  levels   (GDP).   On   the   other   hand,   a   one   percent   increase   in   the   Real   GDP   index   of   the  Philippines  will  cause  a  decrease  in  Philippine  Exports  to  the  US  by  1.185%  -­‐-­‐  suggesting  a  negative   relationship   between   the   Philippine   Economy   and   its   exports   to   the   US.   This  

20  

result,   although   seemingly   atypical,   is   also   significant  up   to   the  99%  confidence   interval.  The   constant   term,   although   statistically   significant,   will   be   disregarded   as   it   may   be  considered  a  nuisance  parameter  due  to  its  negative  intercept  value.    

 As  per  the  real  exchange  rate  of  the  Philippines,  an  appreciation  of  the  peso  index  by  one  percent  will  cause  an  increase  in  the  exports  to  the  US  by  0.757%  and  is  significant  at   the  99%  confidence   interval.  On   the  other  hand,   the  a  one  percent   increase   in  China’s  real  exchange  rate  causes  a  reduction  in  Philippine  exports  volume  by  0.761%.  These  two  findings   may   be   considered   peculiar   as   the   Marshall-­‐Lerner   Condition   dictates   that   a  currency  appreciation   leads   to  a  decrease   in  net  exports.  This  may  be  attributable   to   the  ability  of  the  US  to  import  more  expensive  goods  in  exchange  for  quality  improvement.  The  Price  level  increases  in  the  economy  stem  from  increasing  input  costs  such  as  wages,  raw  materials  and  investment  in  new  technology.  Heavy  spending  on  these  inputs  causes  firms  to   increase   their  prices.  More  often   than  not,   the   spill-­‐over   effect  of   this   is   the   improved  quality   of   goods   being   produced.   Hence,   for   the   considerably   highly   educated   American  population,  cheaper  may  not  necessarily  be  better.  

 F.2.  Japan  

  Japan  has  also  been  one  of  the  largest  trading  partner  of  the  Philippines.  Currently,  it  is  the   largest  export  market  of  the  Philippines   in  the  Asian  continent.  This  may  be  due  to  the  strong  governmental  linkages  between  the  two  countries  and  the  relative  proximity  of  the  Philippines.  

  As  shown  in  the  table  above,  a  one  percent   increase   in  the  GDP  of   Japan   increases  their  demand  for  Philippine  goods  and  services  by  4.016%.  This  finding,  significant  at  the  99%   confidence   interval,   emphasizes   that   the   Japanese   display   high   income   elasticity   in  their  importation  from  the  Philippines.    Likewise  ,  an  increase  in  the  Philippine  GDP  by  one  percent   increases   the   importation  of   the   Japanese  of  Philippine  products  and  services  by  0.979%  which  is  also  significant  at  the  99%  confidence  interval.  This  idea  is  supported  by  the   theretical  underpinning  of   the  Gravity  Model  of  World  Trade  wherein   the   size  of   the  trading  partners  have  positive  effects  in  the  volume  of  trade  between  them.  

  A  one  percent  increase  in  the  Real  Exchange  Rate  of  China  will  increase  the  demand  for   Philippine   exports   by   0.661%   and   is   significant   at   the   99%   confidence   interval.   This  affirms  the  negative  relationship  between  the  price  of  a  competitor  and  demand  for   local  exports.  An  increase  in  the  Real  Exchange  Rate  of  Japan  will  also  cause  a  positive  effect  of  0.244%  and  is  significant  at  the  95%  confidence  interval.  This  evidences  that  an  increase  in  price  of  Japanese  goods  and  services  will  cause  them  to  outsource  more  of  their  needs  from  foreign   countries   such   as   the   Philippines.   The   constant   term   is   also   considered   as   a  nuisance  parameter  due  to  its  negative  intercept  value.  

F.3.  Australia  

  Australia   has   been   the   biggest   export   market   of   the   Philippines   in   the   Oceania.  Although  data  suggests  that  the  volume  of  exports  in  this  region  is  not  that  high  compared  

21  

to  others,  Australia  has  had  a  substantial  share  in  the  Philippine  exports  across  time.  

  A  one  percent  increase  in  the  GDP  of  Australia  increases  their  demand  for  Philippine  exports  by  0.908%  and  is  significant  at  the  95%  confidence  interval.  Likewise,  an  increase  in   the   GDP   of   the   Philippines   by   one   percent   increases   exports   to   Australia   by   0.987.  Meanwhile,   if   the   real   exchange   rate   index   of   the   Philippines   increases   by   one   percent,  exports  to  Australia  decreases  by  0.665%  -­‐-­‐  indicating  that  the  increase  in  the  relative  price  of  Philippine  commodities  and  services  puts  off  Australians  to  import    from  the  Philippines.  These  findings  are  both  significant  at  the  99%  confidence  interval.  

F.4.  Germany  

  Germany   is   known   as   one   of   the   export   powerhouses   in   the  world.   They   are   also  known  to  import  large  amounts  of  raw  materials.  With  this  in  mind,  Germany  has  been  the  largest  of  the  two  large  European  export  market  of  the  Philippines,  the  other  one  being  the  Netherlands.  This  indicates  the  reliance  of  these  highly  developed  nations  on  intermediate  goods  from  the  country.    

  A  one  percent  increase  in  the  GDP  of  Germany  increases  their  demand  for  Philippine  exports   by   3.614%.   This   positive   relationship   exhibits   the   importance   of   income  fluctuations   in   the   demand   of   Germans   to   import   from   the   Philippines.   Similarly,   a   one  percent   increase   in   Philippine  GDP   increases   exports   to  Germany  by   0.564%.  These   two  elasticities  are  both  significant  at  the  99%  confidence  interval.    

  In   case   of   a   one  percent   real   currency   appreciation   in   China,   German  demand   for  Philippine  exports  increases  by  0.472.  This  is,  however,  weakly  significant  as  the  p-­‐value  is  only  within  the  90%  confidence  interval.  On  the  other  hand,  a  one  percent  increase  in  the  real   exchange   rate   of     Germany   increases   their   demand   for   exports   by   1.316%,  which   is  significant   at   the  95%  confidence   interval.   Similar   to   the   findings   for  USA  and   Japan,   the  constant  term  is  considered  a  nuisance  parameter  despite  its  significance.    

F.5.  Singapore  

  Singapore,   together   with   the   Philippines,   is   a   member   of   the   Association   of   the  Southeast   Asian   Nations.   Throughout   the   recent   years,   the   ASEAN   leaders   have   been  working   on   policies   towards   regional   integration.   Part   of   this   is   the   ASEAN   Free   Trade  Agreement  –  a   trade  bloc   intended   to  make  ASEAN  a   competitive  production  base   in   the  international  market   through   the   elimination   of   tariffs   and   trade   barriers   (International  Enterprise   Singapore,   2012).   In   addition,   Singapore’s   economy   is   heavily   reliant   in  international  trade.  Its  small  geographical  size  limits  it  from  producing  its  own  agricultural  produce.  In  fact,  Blanchard  (2011)  states  that  exports  make  up  around  243%  of  Singapore’s  GDP.  The  ASEAN  free  trade  agreement  and  the  structure  of  the  Singaporean  economy  may  be  able  to  explain  the  massive  volume  of  Philippine  exports  to  their  country.  

  A   one   percent   increase   in   the   GDP   of   Singapore   increases   their   demand   for  Philippine  goods  and  services  by  1.883%  and  is  significant  at  the  99%  confidence  interval.  In   comparison   to   the   US,   Japan,   and   Germany,   the   income   elasticity   of   Singapore   is  

22  

relatively   lower  because  no  matter   the  current   state  of   their  economy,   the  existence  of  a  Free   Trade   Agreement   allows   for   some   degree   of   trade   resiliency   in   cases   of   economic  distortions  and  business  cycle  fluctuations.  Furthermore,  a  one  percent  increase  in  the  real  exchange  rate   index  of  Singapore  will   cause  a  1.149%   increase   in   their  Philippine  export  demand.   The   constant   term   is   also   considered   a   nuisance   parameter   in   the   case   of  Singapore.      

23  

VI.  AGGREGATE  EXPORT  DEMAND  ESTIMATION    A.   Fixed  Effects  Models   (FEM)   vs.  Random  Effects  Model   (REM)   vs.  Naïve  Model   vs.  Within-­‐Group  (WG)  Model       In  estimating  the  aggregate  export  demand  function  of   the  Philippines,  we  employ  different   econometric   models   –   FEM,   REM,   Naïve,   and   Within-­‐Group,   and   see   which  provides   better   and  more   efficient   results.  We   then   perform   statistical   tests   in   order   to  further  extract  the  desired  results.      B.  Definition  of  Panel  Data  Models       Panel   data  models   are   appropriate   in   this   study   because   panel   data   have   certain  advantages   over   cross-­‐section   or   time-­‐series   data.   First,   they   take   into   account   the  unobserved  heterogeneity  of  cross  section  and  time-­‐series  nature  of  observations.  Second,  they   provide   more   information   in   the   estimation   procedure   which   facilitates   better  modeling.   They   are   also   used   to   study   the   dynamics   of   change   such   as   unemployment  behavior,  turnovers,  and  labor  mobility.  Lastly,  panel  data  mitigates  the  risk  of  committing  aggregation  bias  (Gujarati  &  Porter,  2009).  Hence,  in  this  section  we  differentiate  each  type  of  panel  data  models  to  have  a  better  grasp  of  how  each  model  generates  results.    B.1.  Naive  Model       Also   called   as   the   Pooled  OLS   regression,   this  model   is   the  most   basic   among   the  panel   data   models.   It   assumes   that   all   parameters   are   time   and   space   invariant.   Naïve  model   is   estimated   through   OLS.   By   pooling   together   all   the   observations,   it   does   not  consider  the  unobserved  heterogeneity  of  the  cross-­‐sectional  entities.  It   is  highly  possible  that   the   error   term   is   correlated  with   some   of   the   regressors,   thus   running   the   risks   of  producing  biased  and  inconsistent  estimates.      B.2.  Fixed  Effects  Models  (FEM)       Unlike   the   Naïve   model   which   posits   that   all   parameters   are   time   and   space  invariant,  FEM  assumes  that  parameters  are  unknown  fixed  values.  Under  FEM,  there  are  four  sub-­‐models.  However,  for  the  purposes  of  this  study,  we  limit  the  scope  to  three.  These  are   the  Least-­‐Squares  Dummy  Variable  (LSDV)  models  1   to  3.  LSDV-­‐M1,   the  default  FEM,  assumes   that   intercepts   are   time   invariant   and   slope   coefficients   fixed.   The   unobserved  heterogeneity  among  cross-­‐sectional  entities  is  estimated  using  dummy  variables.  As  OLS  is  the  best   linear,  unbiased  estimator   (BLUE)  under   this  model,   this   solves   the  problems  of  micronumerousity  and  heterogeneity.         LSDV-­‐M2,  on  the  other  hand,  assumes  that  slope  coefficients  are  fixed  and  intercepts  are   space-­‐invariant.   This  model   explicitly   takes   into   account   the   dynamics   of   change   by  considering  the  unobserved  heterogeneity  of  time.  This  is  estimated  using  an  instrument  or  proxy.  Using  OLS  as  its  estimation  procedure,  LSDV-­‐M2  prevents  omitted  variable  bias  and  the  problem  of  micronumerousity.    

24  

      The   last  model  under  FEM  is  LSDV-­‐M3,  which  posits   that   intercepts  are  both   time  and  space  varying.  It  takes  into  account  the  unobserved  heterogeneity  of  spatial  entities,  as  well  as  the  dynamics  of  change  or  the  uniqueness  of  time  period.  OLS  is  BLUE  under  this  model.      B.3.  Within-­‐Group  (WG)  Model       The   WG   estimator   eliminates   the   fixed   effect   of   the   intercept   by   expressing   the  values   of   the   dependent   and   independent   variables   for   each   cross-­‐sectional   entity   as  deviations   from  their  respective  means  (Gujarati  &  Porter,  2009).  This   is  done   for  all   the  cross-­‐sectional   units,   then   all   the  mean-­‐corrected   values   are  pooled   and   estimated  using  OLS.  This  model  takes  into  account  the  unobserved  heterogeneity  by  eliminating  it  through  differencing  sample  observations  around  their  sample  means.        B.4.  Random  Effects  Model  (REM)       Also  called  as  the  Error  Components  Model,  REM  assumes  that  the  intercept,  unlike  FEM  which  treats   it  as  fixed,   is  a  random  variable  which  represents  the  mean  value  of  all  the  intercepts  of  the  cross-­‐sectional  units.  The  individual  differences  in  the  intercept  values  of   spatial   units   are   captured   by   the   error   term.   The   composite   error   term   captures   the  random  effect  of   each  cross-­‐sectional   entity  and   the   individual   error  which  varies  across  time  and  space,  i.e.,  the  idiosyncratic  term.      C.  Tests       We  use  various  tests  in  order  to  identify  the  best  model  for  our  study.  First,  we  use  Wald’s  test  to  know  whether  to  pool  observations  or  not,  that  is,  whether  to  use  the  Naïve  or   FEM   (LSDV-­‐M1   to   M3).   Under   the   Wald’s   test,   the   null   hypothesis   states   that   the  restricted   model   is   better   while   it   is   the   unrestricted   model   under   the   alternative  hypothesis.  Hence,  for  a  95%  confidence,  we  reject  the  null  hypothesis  if  the  p-­‐value  is  less  than  0.05;  we  accept  it  otherwise.      C.1.  Wald’s  Test:  Naïve  vs.  LSDV1       The  result  is  as  follows:    . quietly xi: reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdree > rcpi lndistccd i.country . test _Icountry_2 _Icountry_3 _Icountry_4 _Icountry_5 ( 1) _Icountry_2 = 0 ( 2) _Icountry_3 = 0 ( 3) _Icountry_4 = 0 ( 4) _Icountry_5 = 0 Constraint 3 dropped F( 3, 528) = 1863.09

25  

Prob > F = 0.0000

    Since  the  p-­‐value  is  less  than  0.05,  we  reject  the  null  hypothesis  that  the  restricted  model,  Naïve,  is  better  than  the  unrestricted,  LSDV1.  Therefore,  LSDV1  is  better  than  Naïve.      C.2.  Wald’s  Test:  Naïve  vs.  LSDV2       The  result  is  as  follows:  

 F(104, 427) = 0.16

Prob > F = 1.0000    

Since  the  p-­‐value  is  more  than  0.05,  we  accept  the  null  hypothesis  that  the  restricted  model,  Naïve,  is  better  than  the  unrestricted,  LSDV2.  Therefore,  Naïve  is  better  than  LSDV2.      C.3.  Wald’s  Test:  Naïve  vs.  LSDV3       The  result  is  as  follows:                     F(107, 424) = 73.01 Prob > F = 0.0000

    Since  the  p-­‐value  is  less  than  0.05,  we  reject  the  null  hypothesis  that  the  restricted  model,  Naïve,  is  better  than  the  unrestricted,  LSDV3.  Therefore,  LSDV3  is  better  than  Naive.      C.4.  Wald’s  Test:  LSDV1  vs.  LSDV3       The  result  is  as  follows:     F(104, 424) = 2.76 Prob > F = 0.0000

    Since  the  p-­‐value  is  less  than  0.05,  we  reject  the  null  hypothesis  that  the  restricted  model,   LSDV1,   is   better   than   the   unrestricted,   LSDV3.   Therefore,   LSDV3   is   better   than  LSDV1.      C.5.  Wald’s  Test:  LSDV2  vs.  LSDV3       The  result  is  as  follows:     F( 3, 424) = 2501.12 Prob > F = 0.0000

    Since  the  p-­‐value  is  less  than  0.05,  we  reject  the  null  hypothesis  that  the  restricted  model,   LSDV2,   is   better   than   the   unrestricted,   LSDV3.   Therefore,   LSDV3   is   better   than  LSDV2.      

26  

  Therefore,  since  LSDV3  >  Naïve,  LSDV1,  &  LSDV2,  then  it  follows  that  the  best  model  among  Naïve  and  FEM  is  LSDV3.      C.6.  Breusch-­‐Pagan  Test:  Naïve  vs.  REM       To  determine  which   is  better  between  Naïve  and  REM,  we  use   the  Breusch-­‐Pagan  Lagrange   Multiplier   Test.   Under   this   test,   the   null   hypothesis   states   that   there   are   no  random   effects,  meaning,   Naïve   is   better.   The   alternative   hypothesis,   on   the   other   hand,  posits  that  there  are  random  effects,  hence  REM  is  better  than  Naïve.  Therefore,    for  a  95%  confidence,   we   reject   the   null   hypothesis   if   the   p-­‐value   is   less   than   0.05;   we   accept   it  otherwise.         The  result  is  as  follows:    . xttest0 Breusch and Pagan Lagrangian multiplier test for random effects lnexpccd[country,t] = Xb + u[country] + e[country,t] Estimated results: | Var sd = sqrt(Var) ---------+----------------------------- lnexpccd | 2.010476 1.417913 e | .1088459 .3299181 u | 0 0 Test: Var(u) = 0 chi2(1) = 19147.89 Prob > chi2 = 0.0000

    Since   the  p-­‐value   is   less   than  0.05,  we  reject   the  null  hypothesis   that   there  are  no  random  effects.  Hence,  REM  is  better  than  Naïve.         As  shown  in  the  previous  subsection,  LSDV3  is  better  than  Naïve.  It  is  also  the  best  model  among  FEM.  In  this  subsection,  it   is  shown  that  REM  is  also  better  than  Naïve.  The  question  now  boils  down  to  which  is  better  between  LSDV3  and  REM.  This  is  answered  by  the  Hausman  test.    C.7.  Hausman  Test:  REM  vs.  FEM       Another  test  that  allows  us  whether  to  use  REM  or  not  is  the  Hausman  test.  Under  the  Hausman  test,  the  null  hypothesis  states  that  the  random  effects  are  not  correlated  with  one   or   more   regressors.   Hence,   REM   is   better.   However,   as   the   alternative   hypothesis  asserts,   when   there   is   a   correlation   between   the   random   effects   and   one   or   more  regressors,   FEM   is   better   than  REM.   Therefore,   for   a   95%   confidence,  we   reject   the   null  hypothesis  if  the  p-­‐value  is  less  than  0.05;  we  accept  it  otherwise.         The  result  is  as  follows:    

27  

. hausman fixed random ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | fixed random Difference S.E. -------------+---------------------------------------------------------------- lnccdgdp | 1.092438 1.230835 -.1383968 . lnphlgdp | .6311058 1.191862 -.5607566 . lnphlreercpi | -1.39517 -.2893485 -1.105822 .2495744 lnchireercpi | .1771066 -.341649 .5187556 . lnccdreercpi | .0869852 3.731582 -3.644597 . lndistccd | -1.929546 .2713164 -2.200863 . ------------------------------------------------------------------------------ b = consistent under Ho and Ha; obtained from regress B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(6) = (b-B)'[(V_b-V_B)^(-1)](b-B) = -1458.20 chi2<0 ==> model fitted on these data fails to meet the asymptotic assumptions of the Hausman test; see suest for a generalized test

    This   result   may   seem   trivial   as   the   Hausman   test   is   supposed   to   identify   which  model  is  better  between  REM  and  LSDV3.  This  may  also  justify  the  need  to  employ  the  SUR  estimation  procedure  as  the  result  suggests.       For  the  purposes  of  this  study,  we  consider  the  results  generated  by  LSDV3  and  REM  since  they  appear  to  be  the  best  models  among  the  set  of  panel  data  models.        D.  Regression  Analyses  &  Statistical  Testing    

Dependent  Variable  :  lnEXPCCD          Variable  /  Model   Naïve   LSDV-­‐M1   LSDV-­‐M2   LSDV-­‐M3   REM   WG  lnCCDGDP   1.230835***         1.499196***         .9432642***         1.092438***         1.230835***         1.230835        lnPHLGDP   1.191862***   .9730339***         .7268734         .6311058***         1.191862***         1.191862***  lnPHLREERCPI   -­‐.2893485   .1354118         -­‐1.736064         -­‐1.39517***         -­‐.2893485           -­‐.2893485  lnCHIREERCPI   -­‐.341649   -­‐.3881461***         .1641852         .1771066         -­‐.341649         -­‐.341649  lnCCDREERCPI   3.731582***         .0170378         3.920288***         .0869852         3.731582***         3.731582***        lnDISTCCD   .2713164***       -­‐2.014405***         .2975777***         -­‐1.929546***         .2713164***         .2713164***      constant   -­‐21.40541***          11.86913***   .9432642         18.66535***         -­‐21.40541***         -­‐.0031217        ***  -­‐  significant  at  1%   **  -­‐  significant  at  5%   *  -­‐  significant  at  10%    CCD  =  Country  Code  of  Importing  Country  (AUS,JPN,SGP,GER,USA)    

 D.1.  General  Comments       As  the  results  generated  vary  across  each  type  of  panel  data  model.  Some  variables  are   highly   significant   in   some   models,   while   some   are   not.   Most   of   the   variables   are  significant   at   1%   confidence.   A-­‐priori   expectations   are   met   most   of   the   explanatory  

28  

variables.  Naïve  and  WG  produce  virtually  similar  results.  This  is  because  the  two  models  are   identical  mathematically   (Gujarati  &  Porter,   2009).  Only,   the  WG  estimator  produces  consistent   slope   coefficients   vis-­‐à-­‐vis   Naïve.   Albeit   consistent,   WG   coefficients   are  inefficient  compared  to  Naïve.         As  noted  in  the  previous  sub-­‐section,  we  consider  both  REM  and  LSDV3  as  the  best  models  in  this  study.  Hence,  in  interpreting  the  results  of  the  regression  analysis,  we  focus  only  on  the  results  under  the  two  models.    D.2.  Interpretations  of  REM  Results       The  export  demand  function  therefore  is  as  follows:    𝑙𝑛𝐸𝑋𝑃𝐶𝐶𝐷!" = −21.41+ 1.23𝑙𝑛𝐶𝐶𝐷𝐺𝐷𝑃!" + 1.19𝑙𝑛𝑃𝐻𝐿𝐺𝐷𝑃!" −  0.29𝑙𝑛𝑃𝐻𝐿𝑅𝐸𝐸𝑅𝐶𝑃𝐼!"

− 0.34𝑙𝑛𝐶𝐻𝐼𝑅𝐸𝐸𝑅𝐶𝑃𝐼!" +  3.73𝑙𝑛𝐶𝐶𝐷𝑅𝐸𝐸𝑅𝐶𝑃𝐼!" + 0.27𝑙𝑛𝐷𝐼𝑆𝑇𝐶𝐶𝐷!" +  𝑤!"       The  average  intercept  value  of  the  five  countries  is  -­‐21.41.  Since  this  is  a  double  log  model,  the  slope  coefficients  represent  demand  elasticities.  Ceteris  paribus,  a  1%-­‐increase  in   the   GDP   of   the   foreign   country   leads   to   a   1.23%-­‐increase   in   Philippine   exports.   This  analysis   is   sound   and   valid   because   as   foreign   GDP   increases,   holding   all   else   equal,  demand  for  goods  increases  and  so  exports  rise.  A  1%-­‐increase  in  Philippine  GDP  yields  a  1.19%  increase  in  Philippine  exports,  holding  other  factors  equal.  As  the  Gravity  Model  of  Trade  posits,  local  GDP  increases  result  to  larger  volume  of  trade  with  other  economies.  Al  though   insignificant,   real   effective   exchange   rate   of   the   Philippines   meets   the   a-­‐priori  expectation.   It   is   negative   because   as   supported   by   the  Mundell-­‐Fleming  model   and   the  Marshall-­‐Lerner  condition,  appreciation  decreases  foreign  demand  on  local  goods,  thereby  decreasing  exports.  When  appreciation  takes  place,  local  goods  are  more  expensive  relative  to  competitors’  goods.  A  1%  appreciation  of  Philippine  peso  decreases  exports  by  0.29%,  ceteris  paribus.         Real  effective  exchange  rate  of  China  appears   to  be  statistically   insignificant.  More  so,   it   fails  to  meet  the  a-­‐priori  expectation.  It   is  supposed  to  be  positive  because  being  an  export   powerhouse   in   the   world,   an   appreciation   of   Chinese   currency   makes   Chinese  exports   more   expensive   relative   to   Philippine   goods,   hence   the   increase   in   demand   for  Philippine   exports.   This   claim   is   supported   by   the   Mundell-­‐Fleming   model   and   the  Marshall-­‐Lerner  condition.       Real  effective  exchange  rate  of  importing  country  asserts  that  a  1%  increase  in  the  importing  country’s  exchange  rate  increases  Philippine  exports  by  3.73%.  This  is  because  as  Mundell-­‐Fleming  model  &  Marshall-­‐Lerner  condition  suggest,  appreciation  of  importing  country’s   currency   leads   to   increases   in   imports.   Philippine   goods   are   cheaper   after   the  appreciation,  hence  the  increase  in  exports.  However,  albeit  statistically  significant,  result  for  the  distance  variable  suggests  that  a  1%  increase  in  distance  between  Philippines  and  trading   partner   results   to   a   0.27%   rise   in   Philippine   exports.   This   is   counterintuitive  because   as   distance   between   two   countries   gets   bigger,  more   costs   are   incurred   such   as  

29  

logistical   and   transactional   costs,   hence   lower   exports.   This   claim   is   supported   by   the  Gravity  Model  of  Trade.       The  parameter  sigma_u  represents  the  standard  deviation  of  the  idiosyncratic  term,  which  is  the  combined  time-­‐series  and  cross-­‐section  error  component.  Parameter  sigma_e,  on   the   other   hand,   is   the   standard   deviation   of   the   cross-­‐section   error   component.   Rho  represents  the  correlation  between  the  two  parameters.  Since  rho  equals  0,  it  indicates  that  the  usual  assumption  of  REM  that  the  individual  error  components  are  not  correlated  with  each  other  and  that  they  are  not  autocorrelated  across  both  cross-­‐section  and  time-­‐series  units  is  met.        D.3.  Interpretations  of  LSDV3  Results    lnexpccd   Coef.   Std.  Err.   t   P>t   [95%  Conf.   Interval]                lnccdgdp   1.092438   0.0894028   12.22   0   0.91671   1.268166  lnphlgdp   0.6311058   0.1995966   3.16   0.002   0.2387837   1.023428  lnphlreercpi   -­‐1.39517   0.4938742   -­‐2.82   0.005   -­‐2.365917   -­‐0.4244235  lnchireercpi   0.1771066   0.2394166   0.74   0.46   -­‐0.2934847   0.6476979  lnccdreercpi   0.0869852   0.1356696   0.64   0.522   -­‐0.1796835   0.3536539  lndistccd   -­‐1.929546   0.0505063   -­‐38.2   0   -­‐2.02882   -­‐1.830273  _Icountry_2   2.187057   0.054638   40.03   0   2.079662   2.294452  _Icountry_3   1.225323   0.0434708   28.19   0   1.139877   1.310768  _Icountry_4   (dropped)            _Icountry_5   4.80188   0.0688752   69.72   0   4.666501   4.93726  _Idate_101   -­‐0.0827771   0.1778875   -­‐0.47   0.642   -­‐0.4324283   0.2668741  _Idate_102   0.0074338   0.1812164   0.04   0.967   -­‐0.3487605   0.3636281  _Idate_103   -­‐0.2880011   0.1637112   -­‐1.76   0.079   -­‐0.6097877   0.0337855  _Idate_104   -­‐0.4317798   0.1780583   -­‐2.42   0.016   -­‐0.7817668   -­‐0.0817929  _Idate_105   -­‐0.4794739   0.1802614   -­‐2.66   0.008   -­‐0.8337911   -­‐0.1251567  _Idate_106   -­‐0.4795251   0.1852641   -­‐2.59   0.01   -­‐0.8436755   -­‐0.1153747  _Idate_107   -­‐0.5268312   0.1702456   -­‐3.09   0.002   -­‐0.8614617   -­‐0.1922007  _Idate_108   -­‐0.5263516   0.1872323   -­‐2.81   0.005   -­‐0.8943708   -­‐0.1583325  _Idate_109   -­‐0.4384971   0.1800552   -­‐2.44   0.015   -­‐0.792409   -­‐0.0845852  _Idate_110   -­‐0.356788   0.1811875   -­‐1.97   0.05   -­‐0.7129256   -­‐0.0006505  _Idate_111   -­‐0.4528926   0.179876   -­‐2.52   0.012   -­‐0.8064523   -­‐0.0993329  _Idate_112   -­‐0.4633241   0.1927452   -­‐2.4   0.017   -­‐0.8421792   -­‐0.084469  _Idate_113   -­‐0.4029907   0.1880808   -­‐2.14   0.033   -­‐0.7726775   -­‐0.0333039  _Idate_114   -­‐0.2953184   0.1923149   -­‐1.54   0.125   -­‐0.6733277   0.0826909  _Idate_115   -­‐0.5125602   0.1890651   -­‐2.71   0.007   -­‐0.8841818   -­‐0.1409387  _Idate_116   -­‐0.4096025   0.2000043   -­‐2.05   0.041   -­‐0.8027259   -­‐0.016479  _Idate_117   -­‐0.3040247   0.1917315   -­‐1.59   0.114   -­‐0.6808872   0.0728378  _Idate_118   -­‐0.2686231   0.1875223   -­‐1.43   0.153   -­‐0.6372123   0.099966  _Idate_119   -­‐0.4668688   0.163206   -­‐2.86   0.004   -­‐0.7876624   -­‐0.1460752  _Idate_120   -­‐0.3717031   0.1604046   -­‐2.32   0.021   -­‐0.6869903   -­‐0.0564158  _Idate_121   -­‐0.349676   0.1576698   -­‐2.22   0.027   -­‐0.6595879   -­‐0.0397642  _Idate_122   -­‐0.3668136   0.1732097   -­‐2.12   0.035   -­‐0.7072702   -­‐0.0263571  _Idate_123   -­‐0.6223289   0.1821876   -­‐3.42   0.001   -­‐0.9804322   -­‐0.2642257  _Idate_124   -­‐0.5036988   0.1834937   -­‐2.75   0.006   -­‐0.8643694   -­‐0.1430283  

30  

_Idate_125   -­‐0.3833121   0.1667978   -­‐2.3   0.022   -­‐0.7111656   -­‐0.0554587  _Idate_126   -­‐0.2913863   0.1628741   -­‐1.79   0.074   -­‐0.6115276   0.0287549  _Idate_127   -­‐0.3459289   0.151445   -­‐2.28   0.023   -­‐0.6436054   -­‐0.0482525  _Idate_128   -­‐0.2888037   0.1592973   -­‐1.81   0.071   -­‐0.6019145   0.0243071  _Idate_129   -­‐0.2307336   0.1583511   -­‐1.46   0.146   -­‐0.5419845   0.0805173  _Idate_130   -­‐0.0531197   0.1605311   -­‐0.33   0.741   -­‐0.3686556   0.2624162  _Idate_131   -­‐0.1440095   0.1548465   -­‐0.93   0.353   -­‐0.4483718   0.1603528  _Idate_132   -­‐0.1275677   0.1569173   -­‐0.81   0.417   -­‐0.4360004   0.180865  _Idate_133   -­‐0.0926396   0.1557152   -­‐0.59   0.552   -­‐0.3987095   0.2134302  _Idate_134   -­‐0.0572849   0.1576217   -­‐0.36   0.716   -­‐0.3671022   0.2525324  _Idate_135   -­‐0.2369226   0.1466987   -­‐1.62   0.107   -­‐0.5252699   0.0514248  _Idate_136   (dropped)            _Idate_137   0.0907526   0.1773526   0.51   0.609   -­‐0.2578472   0.4393524  _Idate_138   0.2541768   0.1746725   1.46   0.146   -­‐0.089155   0.5975086  _Idate_139   0.3057696   0.1799929   1.7   0.09   -­‐0.04802   0.6595592  _Idate_140   0.269248   0.1714082   1.57   0.117   -­‐0.0676676   0.6061637  _Idate_141   0.239548   0.1641308   1.46   0.145   -­‐0.0830633   0.5621593  _Idate_142   0.3742542   0.1674914   2.23   0.026   0.0450373   0.7034712  _Idate_143   0.3242676   0.1701595   1.91   0.057   -­‐0.0101936   0.6587287  _Idate_144   0.4402913   0.1723598   2.55   0.011   0.1015053   0.7790773  _Idate_145   0.5550385   0.1734889   3.2   0.001   0.2140331   0.896044  _Idate_146   0.5440756   0.1737649   3.13   0.002   0.2025278   0.8856235  _Idate_147   0.476557   0.1797322   2.65   0.008   0.1232799   0.829834  _Idate_148   0.6471358   0.1816946   3.56   0   0.2900015   1.00427  _Idate_149   0.7291515   0.1857473   3.93   0   0.3640512   1.094252  _Idate_150   0.6777282   0.1601487   4.23   0   0.3629439   0.9925125  _Idate_151   0.4234714   0.1446011   2.93   0.004   0.1392471   0.7076957  _Idate_152   0.3598038   0.1471388   2.45   0.015   0.0705915   0.6490162  _Idate_153   0.4336218   0.1437616   3.02   0.003   0.1510477   0.7161959  _Idate_154   0.3717057   0.146762   2.53   0.012   0.083234   0.6601773  _Idate_155   0.3009804   0.1431975   2.1   0.036   0.0195151   0.5824457  _Idate_156   0.4940188   0.146465   3.37   0.001   0.206131   0.7819066  _Idate_157   0.6318511   0.1495551   4.22   0   0.3378894   0.9258128  _Idate_158   0.6470661   0.1460947   4.43   0   0.3599061   0.9342261  _Idate_159   0.5142671   0.1447633   3.55   0   0.229724   0.7988103  _Idate_160   0.5138136   0.1454404   3.53   0   0.2279397   0.7996875  _Idate_161   0.4508826   0.1585199   2.84   0.005   0.1392999   0.7624654  _Idate_162   0.4328898   0.1643254   2.63   0.009   0.109896   0.7558836  _Idate_163   0.4056743   0.1584365   2.56   0.011   0.0942555   0.7170932  _Idate_164   0.2243693   0.1518757   1.48   0.14   -­‐0.0741537   0.5228923  _Idate_165   0.3210937   0.1590949   2.02   0.044   0.0083809   0.6338066  _Idate_166   0.1630714   0.1571412   1.04   0.3   -­‐0.1458015   0.4719443  _Idate_167   0.1255417   0.1624958   0.77   0.44   -­‐0.1938559   0.4449392  _Idate_168   0.0899119   0.155414   0.58   0.563   -­‐0.2155658   0.3953896  _Idate_169   0.2651778   0.1507665   1.76   0.079   -­‐0.0311651   0.5615206  _Idate_170   0.3185734   0.1583167   2.01   0.045   0.00739   0.6297567  _Idate_171   0.2206063   0.1587188   1.39   0.165   -­‐0.0913674   0.53258  _Idate_172   0.130401   0.1666824   0.78   0.434   -­‐0.1972258   0.4580277  _Idate_173   0.0404307   0.1596496   0.25   0.8   -­‐0.2733725   0.3542338  _Idate_174   0.0135447   0.1668039   0.08   0.935   -­‐0.3143208   0.3414103  _Idate_175   -­‐0.0838941   0.1718025   -­‐0.49   0.626   -­‐0.4215848   0.2537966  _Idate_176   (dropped)            

31  

_Idate_177   0.0604585   0.1736064   0.35   0.728   -­‐0.2807779   0.4016948  _Idate_178   0.1154491   0.1697217   0.68   0.497   -­‐0.2181516   0.4490499  _Idate_179   -­‐0.0614072   0.1705514   -­‐0.36   0.719   -­‐0.3966387   0.2738243  _Idate_180   -­‐0.1129987   0.162877   -­‐0.69   0.488   -­‐0.4331456   0.2071481  _Idate_181   -­‐0.0004861   0.1613225   0   0.998   -­‐0.3175775   0.3166053  _Idate_182   0.0279364   0.1634859   0.17   0.864   -­‐0.2934075   0.3492802  _Idate_183   0.0963058   0.1587699   0.61   0.544   -­‐0.2157683   0.4083799  _Idate_184   0.205833   0.1511459   1.36   0.174   -­‐0.0912555   0.5029215  _Idate_185   0.1909913   0.1537574   1.24   0.215   -­‐0.1112303   0.4932129  _Idate_186   0.2868993   0.152076   1.89   0.06   -­‐0.0120174   0.5858161  _Idate_187   0.208086   0.1614202   1.29   0.198   -­‐0.1091974   0.5253694  _Idate_188   0.1559579   0.1541569   1.01   0.312   -­‐0.1470491   0.4589649  _Idate_189   0.2533142   0.1612736   1.57   0.117   -­‐0.063681   0.5703095  _Idate_190   0.2951541   0.159025   1.86   0.064   -­‐0.0174214   0.6077296  _Idate_191   0.3389975   0.177246   1.91   0.056   -­‐0.0093926   0.6873877  _Idate_192   0.378768   0.1592354   2.38   0.018   0.0657789   0.6917571  _Idate_193   0.3805616   0.158232   2.41   0.017   0.0695449   0.6915784  _Idate_194   0.3642746   0.1540897   2.36   0.019   0.0613998   0.6671494  _Idate_195   0.0036886   0.1612919   0.02   0.982   -­‐0.3133428   0.3207199  _Idate_196   -­‐0.0916577   0.1521694   -­‐0.6   0.547   -­‐0.390758   0.2074425  _Idate_197   0.2092177   0.1570087   1.33   0.183   -­‐0.0993946   0.5178301  _Idate_198   0.1423034   0.1531268   0.93   0.353   -­‐0.1586787   0.4432855  _Idate_199   0.2079116   0.1631342   1.27   0.203   -­‐0.1127407   0.528564  _Idate_200   0.3412617   0.1588744   2.15   0.032   0.0289823   0.6535412  _Idate_201   0.3585178   0.1702546   2.11   0.036   0.0238697   0.6931659  _Idate_202   0.4924102   0.1638253   3.01   0.003   0.1703994   0.814421  _Idate_203   0.2865127   0.1761123   1.63   0.105   -­‐0.0596492   0.6326746  _Idate_204   0.296034   0.1657394   1.79   0.075   -­‐0.0297393   0.6218072  _Idate_205   0.2099692   0.1727097   1.22   0.225   -­‐0.1295047   0.5494431  _Idate_206   0.203075   0.1673548   1.21   0.226   -­‐0.1258734   0.5320235  _Idate_207   (dropped)            _cons   18.66535   2.592947   7.2   0   13.56872   23.76199    

Since  individual  heterogeneity  and  time  variety  are  captured  by  dummy  variables  in  the   LSDV3  model,   each   trading   partner   has   its   own   corresponding   intercept   every   year.  This  may  be  interpreted  as  the  autonomous  demand  for  Philippine  exports  of  each  trading  partner   on   a   year-­‐to-­‐year   basis.   The   base   category   for   this   analysis   is   Australia’s   export  demand  at  1985Q1.  In  addition,  since  the  software  Stata  dropped  the  variable  representing  Singapore,  analysis  will  be  centered  on  the  differences  of  autonomous  demand  of  Japan,  US,  and  Germany  against  that  of  the  base  category.  

 The   LSDV3   model   employed   is   of   the   log-­‐log   specification.   Therefore,   the   slope  

coefficients  represent  the  elasticities  of  Philippine  exports  in  response  to  certain  changes  in  the   independent  variables.  Note,  however,   that   these  coefficients  measure  the  aggregated  responsiveness  of  the  five  trading  partners  across  the  observation  period  in  our  study.  As  stated   earlier,   individual   heterogeneity   and   the   dynamics   of   change   are   both   already  captured   by   the   dummy   variables   of   the   LSDV3   model.   Additionally,   interpretations   on  each   of   the   estimated   coefficients   assume   that   all   other   factors   besides   the   country   and  quarter  being  observed  are  held  constant.  

 

32  

A   one   percent   increase   in   the   GDP   of   the   importing   nation   triggers   a   1.092%  increase   in   Philippine   exports   to   its   regional   principal   markets   and   is   statistically  significant  at  the  99%  confidence  interval.  Meanwhile,  a  0.631%  increase  is  caused  by  a  one  percent  increase  in  the  GDP  of  the  Philippines.  These  claims  are  supported  by  the  Mundell-­‐Flemming  Model  and  the  Gravity  Theory  of  World  Trade  wherein  foreign  GDP  upturns  lead  to  positive  growth   in  exports  and   that   local  GDP   improvements   lead   to   increase   in   trade  volume.  

   In  case  of  a  one  percent  increase  in  the  real  exchange  rate  index  of  the  Philippines,  a  

-­‐1.396%  change  is  likely  for  the  volume  of  Philippine  exports  to  Australia,  Germany,  Japan,  Singapore   and   the   US.   This   finding   is   strongly   significant   at   1%   confidence   and   is   also  backed   by   economic   theory.   The  Marshall   Lerner   Condition   dictates   that   a   real   currency  appreciation  will  lead  to  negative  changes  in  net  exports  –  which  is  clearly  the  case  in  the  regression  analysis.  

 Distance  variability   is  also  strongly  significant  at  1%  confidence.  Trading  partners  

who   are   farther   by   one   percent   of   the   average   will   lead   to   a   1.930%   reduction   in   the  volume   of   Philippine   exports.   The   Gravity   Model   may   also   be   accountable   for   such  phenomena.  

 In   general,   Germany   (ICountry_2)   has   a   higher   average   aggregate   export   of   2.187  

million   USD   primarily   because   of   their   need   to   export   the   intermediate   goods   of   the  Philippines.  Japan  (ICountry_3),  on  the  other  hand,  has  a  higher  average  aggregate  export  of   1.225  million  USD  because   Japan  has,   throughout   the   recent   decades,   been  one  of   the  largest   markets   for   Philippine   exports.   This   may   also   be   because   of   the   strong   political  linkages  between  them.  Like  Japan,  USA’s  (ICountry_5)  sheer  economic  size  and  consumer  demand  lead  to  a  higher  average  aggregate  export  of  4.802  million  USD.    

 In   1985Q2   (Idate_101),   autonomous   demand   of   Germany   was   20.76963   million  

USD.   Japan  and   the  US  had  19.8079  million  USD  and  23.38445  million  USD,   respectively.  During   2011Q3   (Idate_206),   average   autonomous   demand   of   the   importing   nations  increased  by  0.203075  million  USD.  In  the  long  run,  from  1985Q1-­‐2011Q3,  the  autonomous  demand  for  Philippine  exports  of  Germany,  Japan  and  USA  is  increasing.  

 The  European  Union   (EU)  was   formally  assembled   in  1993Q4   (Idate_135).  During  

that  time,  the  aggregate  export  demand  of  Germany  was  20.62235  million  USD.  Aggregate  demand  of  Japan  was  19.65375  million  USD  and  the  aggregate  export  demand  of  USA  was  23.23031   million   USA.   Because   there   is   a   single   market   in   EU,   regulatory   policies   are  responsible   for   antitrust   issues,   approving   mergers,   breaking   up   cartels,   working   for  economic  liberalization  and  preventing  state  aid  to  protect  its  competitiveness.  

 It   was   during   1990s   when   high   income   countries   like   USA,   Japan   and   Germany,  

institutions,   companies   and   organizations   were   prosperous   and   experienced   steady  economic  growth.  On  1990Q1  (Idate_120),  autonomous  demand  of  Germany,  Japan  and  US  have   amounted   to  20.480,   19.51897  and  23.09553  million  USD   respectively.   The   growth  persisted  until  1999Q4   (Idate_159),  wherein   the  average  aggregate  demand  of   importing  

33  

countries   increased   by   0.5142671   million   USD.   The   90s   was   considered   a   time   of  prosperity   in   the   United   States   under   the   administration   of   former   US   President   Bill  Clinton.  The  U.S  economy  experienced  its  longest  period  of  peace  time  economic  expansion  wherein  personal  incomes  increased  sharply.  It  also  marked  the  reunification  of  the  once-­‐split  West  and  East  Germany.  

 During  the  fourth  quarter  of  1985(Idate_103),  the  average  autonomous  demand  of  

the  importing  nations  decreased  by  .288  million  USD.  This  disruption  may  be  attributed  to  the  political  instabilities  of  the  Marcos  administration.  According  to  World  Bank,  there  was  a  sharp  contraction  in  the  production  of  the  manufacturing  sector  by  a  massive  7.9  percent  in  1985  and  the  incentive  system  was  not  conducive  to  a  broad-­‐based  export  expansion.    

 Before  1997,  exports  were  the  growth  engines  for  Asian  countries.  A  combination  of  

inexpensive  and  well-­‐educated  labor,  export  orientated  economies,  and  falling  barriers  to  international   trade  turned  the  region   into  an  export  powerhouse.   In  1997Q1  (Idate_148),  the   average   autonomous   demand   of   the   importing   nations   increased   by   0.6471358.   The  investments   grew  which   lead   to   higher   imports   thus,   increasing   the   deficit   of   balance   of  payments.   Exports   started   to   decline   during   the   Asian   Financial   Crisis   which   started   in  1997Q3  (Idate_151)  which  not  only  affected  Asia  but  also  the  America  and  some  European  Countries.  With  this,   the  autonomous  demand  of  Germany  decreased  to  21.27588  million  USD.  Japan  and  USA  had  20.31414  million  USD  and  23.8907  million  USD  respectively.  

 The   9/11   attack   happened   in   the   USA   on   September   11,   2001.   At   2001Q2  

(Idate_166),  the  average  autonomous  demand  of  these  3  countries  were  21.01548  million  USD,  20.05374  million  USD  and  23.6303  million  USD,  respectively.  911  attack  increased  the  average  aggregate  demand  of  importing  nations  by  0.0899119  million  USD  during  2001Q4  (Idate_168).    

 The  world  food  crisis,  which  lasted  from  2007Q1  (Idate_188)  to  2008Q2  (Idate_193)  

caused  a  high  rise  in  the  cost  of  food  especially  staple  commodities  such  as  rice,  wheat,  and  corn.   Hunger   prevailed   in   many   developing   countries   during   this   time.   During   2007Q1  (Idate_188),   average   autonomous   demand   of   the   importing   nations   increased   by  0.1559579  million   USD.   And   the   average   autonomous   demand   of   the   importing   nations  during  2008Q2  is  higher  by  0.3805616.  Albeit  the  unfortunate  circumstance,  this  crisis  did  not  affect  the  export  demand  behavior  of  Germany,  Japan  and  USA  primarily  because  these  are  developed  countries.  

 The  Global  Financial  Crisis  of  2008/09  shocked   the  US  economy  with  world   stock  

market  collapses  and  financial  institution  breakdowns.  Its  economic  impacts  started  during  the   2007Q3   (Idate_190).   Global   financial   meltdown  may   affect   the   livelihoods   of   almost  everyone  in  an  increasingly  inter-­‐connected  world.  It  brought  an  effect  to  exports  because  exports  declined  sharply.  Germany  had  an  autonomous  demand  of  21.14756  million  USD,  Japan  had  20.18583  million  USD  and  USA  had  23.76238  million  USD.    

 European   debt   crisis   started   because   the   global   financial   crisis   brought   the  

unsustainable  fiscal  policies  of  countries  in  Europe.  When  growth  slows,  so  do  tax  revenues  

34  

making   unsustainable   high   budget   deficits.   This   crises   started   during   the   2009Q4  (Idate_199).   The   average   autonomous   demand   of   the   importing   nations   increased   by  0.2079116  million  USD.  The   crisis  didn’t  have  a  negative   effect   to   exports  because  many  countries  still  think  that  it  is  Greece  who  suffered  much  from  this  said  crisis.    

 The  Japanese  earthquake  crisis,  which  created  a  nuclear  damage  during  the  2011Q1  

(Idate_204),   also   created   an   impact   on   Japan’s   import.   Before   the   earthquake,   Japan’s  aggregate  export  demand  was  20.18671.  But  after  the  earthquake,  Japan’s  aggregate  export  demand   in  2011Q2-­‐Q3   (Idate_205-­‐206)  was  20.10064  million  USD  and  20.09375  million  USD   respectively.   This   is   because   Japan   gave   priority   to   their   domestic   goods   in   parts  struck  by  the  calamity.    

 It  was  also  during  2011Q1  ((Idate_204)were  crisis  and  uprisings  in  the  Middle  East  

and  North  Africa  started  and  these  countries  possess  large  crude  oil  reserves.  The  average  aggregate  demand  of  the  importing  nations  increased  by  0.203075  million  USD  on  2011Q3  (Idate_206)  because  Germany,  Japan  and  USA  were  not  affected  by  the  said  crisis.    

Another  crisis  which  transpired  during  2011  was  known  as  the  United  States  debt-­‐ceiling  crisis.  It  started  as  a  debate  in  the  United  States  Congress  about  increasing  the  debt  ceiling.  The  US  Congress  must  approve  the  expenditure  for  the  federal  government  to  pay  for   it.   The   only   way   to   pay   for   the   budget   deficit   is   by   borrowing   the   shortfall   amount  through  debt   instruments  and   the  amount   that   the  government  can  borrow   is   limited  by  the   debt   ceiling.   The   aggregate   demand   of   US  was   23.76326  million   USD.   The   failure   to  raise   the  debt   ceiling  would   lead   to   a  decrease   in   government   spending,   thus   to   a   fall   in  aggregate  demand.  

                                         

35  

 VII.  POLICY  RECOMMENDATIONS  AND  CONCLUSION      

As  a  developing  country,  the  growth  of  the  export  industry  in  the  Philippines  will  be  instrumental   towards  achieving  a   full-­‐fledged  economic  take-­‐off.  The  expansion  of  export  industries   in   the  recent  decades  had  been  considered  a  key  driver   towards  development.  The  cases  of  Japan,  China  and  Germany  are  perfect  examples  to  attest  to  this.  Moreover,  an  increasing  share  of  exports  in  the  GDP  of  an  economy  is  an  indicator  of  productivity  gains  through   investments   in   technology,   human   capital   and   physical   capital.   It   reflects   the  competitiveness  of   local  products   in  the  international  arena.  It  may  also  be  considered  as  an   indicator  of   trade  openness,  which  according   to   international  economic   theory,  brings  forth  mutual  gains  in  each  of  the  trading  partners.  (Krugman,  Obstfeld,  &  Melitz,  2012).    

       As  evidenced  by  the  regression  analyses  presented  in  the  preceding  sections,   the  

economic  circumstances  of  the  importing  country,  which  is  reflected  by  its  GDP,  has  been  shown  to  be  a  significant  factor  in  determining  the  volume  of  Philippine  exports.  In  fact,  in  the   per   country   demand   estimation,   the   variable   representing   foreign   GDP   has   been  consistently   significant   across   all   observations.   Furthermore,   the   GDP   of   the   Philippines  has   been   shown   to   have   a   significant   positive   effect   in   exports   in  most   of   the   observed  countries.    

 It  can  be  inferred  from  these  results  that  international  cooperation  is  beneficial  for  

the  Philippines.  It  also  mirrors  increasingly  interdependence  of  economies  worldwide.  By  improving  economic  ties  with  other  countries,  GDP  growth  and  export  industry  expansion  will   be   realized.   The   Japan-­‐Philippines   Economic   Partnership   Agreement   (JPEPA)   is   an  example   of   a   well-­‐established   linkage   with   another   nation.   Active   participation   in   such  kinds  of  agreements  should  be  upheld  by  policymakers  in  the  country.  

 Furthermore,   the   significant   negative   relationship   between   distance   and   export  

volume  highlights  the  importance  of  regional  cooperation  towards  the  development  of  the  export   industry.   Since   there   is   more   incentive   for   nearby   countries   to   trade   with   the  Philippines,  potential  benefits  must  be  harnessed.  Strengthening  connections  with  ASEAN  countries  through  bilateral  trade  agreements,  open  skies  policy,  enhancement  of  free  trade  initiatives  and  etcetera  will  greatly  develop  the  trade  sector  of  the  country.    

 Meanwhile,   the   statistically   significant   estimates   of   real   exchange   rates   in   the  

regression  analyses  reveal  the  relative  importance  of  monetary  and  exchange  rate  policy  in  determining   the  volume  of  Philippine  exports.  The  classical  macroeconomic  goal  of  price  stability   may   also   lead   to   the   stabilization   of   trade   volumes.   Price   distortions,   more  specifically  a  currency  appreciation  in  the  domestic  market,  deters  trade  relations  between  trading   partners.   In   such   case,   the   need   for   sound   fiscal   and   monetary   policies   is  accentuated.  Effective  usage  of  policy  tools  such  as  taxation,  government  expenditure  and  the   Bangko   Sentral’s   Open   Market   Operations   (OMO)   will   lead   to   a   more   conducive  environment  for  international  trade  relations.      

 

36  

This  research  has   tackled  key  determinants  of   the  volume  of  Philippine  exports   to  its  major  trading  partners  across  different  regions.  Economic  theories  such  as  the  Mundell-­‐Flemming  Model,   the  Marshall-­‐Lerner  Condition,   the  Gravity  Theory  of  World  Trade   and  the  Theory  of  Consumer  Demand  were  used  to  back  the  selection  of  variables  used  in  the  study.  A  review  of  related  literature  was  also  conducted  to  help  facilitate  the  flow  of  ideas  in  this  research.  Subsequently,  demand  estimation  for  Philippine  exports  was  conducted  in  a   per   country   and   aggregated   basis   using   different   econometric   techniques.   The   results  revealed  the  significant  impacts  of  real  exchange  rates  and  the  size  of  the  trading  partners  in  the  volume  of  Philippine  exports.  Moreover,  the  distance  between  the  Philippines  and  its  trading   partner   was   also   seen   to   be   a   determinant   of   trade   volumes   in   the   panel   data  regressions.  

 Overall,  although   this  study  was  able   to  estimate  demand  equations   for  Philippine  

exports,   a  more  detailed  and  comprehensive  analysis   involving  all  of   its   trading  partners  may  provide  additional  room  for  research  in  the  future.  Other  estimation  techniques  may  also  be  utilized  thereafter.                                                                  

37  

   VIII.  REFERENCES    Arize,   A.C.   (2001).   Traditional   export   demand   relation   and   parameter   instability:   an  empirical  investigation.    Journal  of  Economic  Studies,  Vol.  28  No.6,  pp.378-­‐98.    Bhagwati,  J.N.  and  Srinivasan,  T.N.  (1978).  Trade  policy  and  development.  In  R.    

Dornbusch  and  F.A.  Frenkel  (eds.)  International  Economic  Policy:  Theory  and    Evidence.  Baltimore,  MD:  Johns  Hopkins  University  Press.  

 Blanchard,  O.  (2011).  Macroeconomics.  Singapore:  Pearson  Education  Inc.    Clarkson,  G.    (1962).  The  Theory  of  Consumer  Demand:  A  Critical  Appraisal.  Massachusetts           Institute  of  Technology.    Dycaico,  A.,  Gamboa,  J.,  Surbano,  E.,  &  Tan,  F.  (2012).  Estimating  the  International  Demand  

for  Philippine  Tourism  of  China,  Japan,  Korea,  and  United  States  of  America  .  Manila:  De  La  Salle  University.  

 Department  of  Trade  and  Industry.  (2011).  Department  of  Trade  and  Industry  -­‐  

International  Trade  -­‐  Statistics.  Retrieved  November  5,  2012,  from  Department  of  Trade  and  Industry  Website:  http://www.dti.gov.ph/dti/index.php?p=697  

 Guisan,  M.C.,  Cancelo,  M.T.  (2002).  Econometric  models  of  foreign  trade  in  OECD  countries.  

Applied  Econometrics  and  International  Development,  Vol.  2  pp.65-­‐81.    Gujarati,  D.  (2004).  Basic  Econometrics  (Fourth  ed.).  New  York:  The  McGraw-­‐Hill  

Companies.    International  Enterprise  Singapore.  (2012,  April  26).  Welcome  to  Singapore  FTA  Network.  

Retrieved  December  9,  2012,  from  International  Enterpise  Singapore  Website:  http://www.fta.gov.sg/fta_afta.asp?hl=1  

 Kavoussi,  R.M.  (1984).  Export  expansion  and  economic  growth:  Further  empirical  evidence.  Journal  of  Development  Economics,  14,  241-­‐50.    Krueger,  A.  O.  (1978).  Foreign  Trade  Regimes  and  Economic  Development:  Liberalization    

Attempts  and  Consequences.  Cambridge,  MA:  Ballinger.    Krugman,  P.  R.,  Obstfeld,  M.,  &  Melitz,  M.  J.  (2012).  International  Economics  Theory  and  

Policy  (Ninth  ed.).  Boston  :  Pearson  Education  Inc.    Kumar,  S.  (2009a).  An  empirical  evaluation  of  export  demand  in  China.    Journal  of  Chinese  

Economic  and  Foreign  Trade  Studies,  Vol.  2  pp.100-­‐9.  

38  

Kumar,  S.  (2009b).  A  re-­‐examination  of  private  consumption  in  Fiji.    Pacific  Economic  Bulletin,  Vol.  24  pp.70-­‐81.  

 Mahadevan,  R.  (2007).  New  Evidence  on    the  Export-­‐led  Growth  Nexus:  A  Case  Study  of    

Malaysia.  World  Economy,  30  (7),  1069-­‐1083.    Mankiw,  N.  G.  (2002).  Macroeconomics.  New  York:  Worth  Publishers;.    Rao,  B.  Bhaskara  &  Singh,  Rup,  2007.  Effects  of  Trade  Openness  on  the  Steady  State  Growth  

Rates  of  Selected  Asian  Countries  with  an  Extended  Exogenous  Growth  Model.  MPRA  Paper  5851,  University  Library  of  Munich,  Germany.  

 Salman,  A.  K.  (2011).  Using  the  SUR  Model  of  Tourism  Demand  for  Neighbouring  Regions  in  

Sweden  and  Norway.  Advances  in  Econometrics-­‐Theory  and  Applications  ,  97-­‐115.    Senhadji,  A.  and  C.  Montenegro,  1999.  Time  series  analysis  of  structural  export  demand  

equations:  A  cross  country  analysis.  IMF  Staff  Papers,  46:  259-­‐273.    Singh,  R.,  &  Rao,  B.  (2005).  ESTIMATING  EXPORT  EQUATIONS.  Fiji:  University  of  the  South  

Pacific,  Suva  .    Time  and  Date  AS.  (2012).  Distance  .  Retrieved  November  5,  2012,  from  TimeandDate.Com:  

http://www.timeanddate.com/worldclock/distance.html    The  World  Bank.  (2012).  Exports  of  goods  and  services  (%  of  GDP).  Retrieved  December  12,  

2012,  from  The  World  Bank  :  http://data.worldbank.org/indicator/NE.EXP.GNFS.ZS    The  World  Bank.  (2012).  GDP  per  capita  (current  US$).  Retrieved  November  28,  2012,  from  

The  World  Bank:  http://data.worldbank.org/indicator/NY.GDP.PCAP.CD?order=wbapi_data_value_2011+wbapi_data_value+wbapi_data_value-­‐last&sort=desc  

 The  World  Bank.  (2012).  GDP  per  Capita,  PPP  (at  Current  US$).  Retrieved  December  9,  

2012,  from  The  World  Bank  Data:  http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?order=wbapi_data_value_2011+wbapi_data_value+wbapi_data_value-­‐last&sort=desc  

 The  World  Bank.  (2012).  Real  effective  exchange  rate  index  (2005  =  100).  Retrieved  

November  5,  2012,  from  The  World  Bank  Data:  http://data.worldbank.org/indicator/PX.REX.REER  

 Velasco,    M.S.  (2011).  Microeconomics:  Income  and  Substitution  Effects.  Retrieved  from  

http://www.slideshare.net/salasvelasco/microeconomics-­‐income-­‐andsubstitution-­‐effects.    

   

39  

IX.  APPENDIX    A.  Per  Country  Demand  Estimation  and  Statistical  Testing    A.1  Individual  OLS  estimation    . reg lnexpusa lnusagdp lnphlgdp lnphlreercpi lnchireercpi lnusareercpi Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 5, 102) = 139.98 Model | 31.2400282 5 6.24800564 Prob > F = 0.0000 Residual | 4.55288811 102 .044636158 R-squared = 0.8728 -------------+------------------------------ Adj R-squared = 0.8666 Total | 35.7929163 107 .334513237 Root MSE = .21127 ------------------------------------------------------------------------------ lnexpusa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnusagdp | 4.440781 .4331461 10.25 0.000 3.581638 5.299925 lnphlgdp | -1.589062 .293221 -5.42 0.000 -2.170665 -1.00746 lnphlreercpi | .8551294 .183018 4.67 0.000 .492114 1.218145 lnchireercpi | -.8425798 .1741067 -4.84 0.000 -1.18792 -.4972399 lnusareercpi | .3204752 .311509 1.03 0.306 -.2974015 .9383518 _cons | -6.855061 1.647331 -4.16 0.000 -10.12253 -3.587587 ------------------------------------------------------------------------------ . vif Variable | VIF 1/VIF -------------+---------------------- lnusagdp | 21.70 0.046089 lnphlgdp | 21.39 0.046742 lnchireercpi | 2.35 0.426292 lnusareercpi | 2.18 0.458669 lnphlreercpi | 1.30 0.770828 -------------+---------------------- Mean VIF | 9.78 . bgodfrey Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 25.200 1 0.0000 --------------------------------------------------------------------------- H0: no serial correlation . ovtest Ramsey RESET test using powers of the fitted values of lnexpusa Ho: model has no omitted variables F(3, 99) = 4.81 Prob > F = 0.0036 . prais lnexpusa lnusagdp lnphlgdp lnphlreercpi lnchireercpi lnusareercpi Iteration 0: rho = 0.0000 Iteration 1: rho = 0.4543 Iteration 2: rho = 0.7925 Iteration 3: rho = 0.9298

40  

Iteration 4: rho = 0.9542 Iteration 5: rho = 0.9578 Iteration 6: rho = 0.9585 Iteration 7: rho = 0.9586 Iteration 8: rho = 0.9587 Iteration 9: rho = 0.9587 Iteration 10: rho = 0.9587 Iteration 11: rho = 0.9587 Prais-Winsten AR(1) regression -- iterated estimates Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 5, 102) = 30.51 Model | 1.997574 5 .399514799 Prob > F = 0.0000 Residual | 1.33546937 102 .013092837 R-squared = 0.5993 -------------+------------------------------ Adj R-squared = 0.5797 Total | 3.33304336 107 .031149938 Root MSE = .11442 ------------------------------------------------------------------------------ lnexpusa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnusagdp | 2.092176 .7469667 2.80 0.006 .6105712 3.573781 lnphlgdp | -.0463162 .1209038 -0.38 0.702 -.2861284 .193496 lnphlreercpi | -.1541915 .3017848 -0.51 0.611 -.7527801 .4443972 lnchireercpi | .487205 .228077 2.14 0.035 .0348154 .9395945 lnusareercpi | -.7452043 .481192 -1.55 0.125 -1.699646 .2092378 _cons | .0025649 4.21182 0.00 1.000 -8.35156 8.35669 -------------+---------------------------------------------------------------- rho | .9586881 ------------------------------------------------------------------------------ Durbin-Watson statistic (original) 1.086324 Durbin-Watson statistic (transformed) 2.232868 dfuller lnexpusa Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -2.116 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.2381 . dfuller lnusagdp Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -2.656 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.0820 . dfuller lnphlgdp Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical

41  

Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -1.436 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.5651 . dfuller lnphlreercpi Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -2.773 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.0622 . dfuller lnchireercpi Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -3.669 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.0046 . dfuller lnusareercpi Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -3.811 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.0028 . vecrank lnexpusa lnusagdp lnphlgdp lnphlreercpi lnchireercpi lnusareercpi Johansen tests for cointegration Trend: constant Number of obs = 106 Sample: 102 - 207 Lags = 2 ------------------------------------------------------------------------------- 5% maximum trace critical rank parms LL eigenvalue statistic value 0 42 1266.8027 . 148.1696 94.15 1 53 1299.9256 0.46472 81.9239 68.52 2 62 1319.9169 0.31422 41.9412* 47.21 3 69 1330.6985 0.18407 20.3780 29.68 4 74 1334.7923 0.07433 12.1905 15.41 5 77 1338.5921 0.06919 4.5907 3.76 6 78 1340.8875 0.04238 ------------------------------------------------------------------------------- . reg lnexpjpn lnjpngdp lnphlgdp lnphlreercpi lnchireercpi lnjpnreercpi Source | SS df MS Number of obs = 108

42  

-------------+------------------------------ F( 5, 102) = 372.14 Model | 58.0865896 5 11.6173179 Prob > F = 0.0000 Residual | 3.18420595 102 .031217705 R-squared = 0.9480 -------------+------------------------------ Adj R-squared = 0.9455 Total | 61.2707955 107 .572624257 Root MSE = .17669 ------------------------------------------------------------------------------ lnexpjpn | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnjpngdp | 4.347422 .4320063 10.06 0.000 3.490539 5.204304 lnphlgdp | .9309317 .1415678 6.58 0.000 .6501327 1.211731 lnphlreercpi | -.2255432 .150485 -1.50 0.137 -.5240296 .0729431 lnchireercpi | .8440003 .1774347 4.76 0.000 .4920593 1.195941 lnjpnreercpi | .481435 .1727204 2.79 0.006 .1388449 .8240251 _cons | -22.03884 2.521285 -8.74 0.000 -27.03979 -17.03788 ------------------------------------------------------------------------------ . vif Variable | VIF 1/VIF -------------+---------------------- lnjpngdp | 9.93 0.100668 lnphlgdp | 7.13 0.140245 lnchireercpi | 3.48 0.287062 lnjpnreercpi | 1.66 0.601858 lnphlreercpi | 1.25 0.797394 -------------+---------------------- Mean VIF | 4.69 . bgodfrey Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 54.359 1 0.0000 --------------------------------------------------------------------------- H0: no serial correlation . prais lnexpjpn lnjpngdp lnphlgdp lnphlreercpi lnchireercpi lnjpnreercpi Iteration 0: rho = 0.0000 Iteration 1: rho = 0.7013 Iteration 2: rho = 0.8537 Iteration 3: rho = 0.9156 Iteration 4: rho = 0.9464 Iteration 5: rho = 0.9598 Iteration 6: rho = 0.9645 Iteration 7: rho = 0.9659 Iteration 8: rho = 0.9663 Iteration 9: rho = 0.9664 Iteration 10: rho = 0.9664 Iteration 11: rho = 0.9665 Iteration 12: rho = 0.9665 Iteration 13: rho = 0.9665 Prais-Winsten AR(1) regression -- iterated estimates Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 5, 102) = 33.03 Model | 1.54632185 5 .309264371 Prob > F = 0.0000 Residual | .955033879 102 .009363077 R-squared = 0.6182 -------------+------------------------------ Adj R-squared = 0.5995

43  

Total | 2.50135573 107 .023377156 Root MSE = .09676 ------------------------------------------------------------------------------ lnexpjpn | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnjpngdp | 3.291441 .6775613 4.86 0.000 1.947502 4.635381 lnphlgdp | .2056949 .0996229 2.06 0.041 .0080933 .4032965 lnphlreercpi | -.4115695 .2737127 -1.50 0.136 -.9544774 .1313384 lnchireercpi | .1589114 .1776699 0.89 0.373 -.193496 .5113187 lnjpnreercpi | .1134338 .21128 0.54 0.593 -.3056391 .5325068 _cons | -8.192268 3.917299 -2.09 0.039 -15.96221 -.4223251 -------------+---------------------------------------------------------------- rho | .9664559 ------------------------------------------------------------------------------ Durbin-Watson statistic (original) 0.564195 Durbin-Watson statistic (transformed) 2.386512 . dfuller lnexpjpn Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -1.156 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.6920 . dfuller lnjpngdp Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -4.004 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.0014 . dfuller lnjpnreercpi Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -2.776 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.0617 . vecrank lnexpjpn lnjpngdp lnphlgdp lnphlreercpi lnchireercpi lnjpnreercpi Johansen tests for cointegration Trend: constant Number of obs = 106 Sample: 102 - 207 Lags = 2 ------------------------------------------------------------------------------- 5% maximum trace critical rank parms LL eigenvalue statistic value 0 42 1109.0846 . 97.2993 94.15

44  

1 53 1127.2127 0.28968 61.0430* 68.52 2 62 1138.6788 0.19454 38.1109 47.21 3 69 1147.066 0.14636 21.3363 29.68 4 74 1153.7072 0.11777 8.0540 15.41 5 77 1157.1413 0.06274 1.1858 3.76 6 78 1157.7342 0.01112 ------------------------------------------------------------------------------- reg lnexpaus lnausgdp lnphlgdp lnphlreercpi lnchireercpi lnausreercpi Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 5, 102) = 154.14 Model | 40.9687022 5 8.19374045 Prob > F = 0.0000 Residual | 5.42196102 102 .053156481 R-squared = 0.8831 -------------+------------------------------ Adj R-squared = 0.8774 Total | 46.3906633 107 .4335576 Root MSE = .23056 ------------------------------------------------------------------------------ lnexpaus | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnausgdp | 1.341272 .413319 3.25 0.002 .5214558 2.161088 lnphlgdp | .7745117 .3649037 2.12 0.036 .050727 1.498296 lnphlreercpi | -.5995187 .2001081 -3.00 0.003 -.9964321 -.2026053 lnchireercpi | .0305902 .1498386 0.20 0.839 -.2666141 .3277944 lnausreercpi | -.3211978 .2628706 -1.22 0.225 -.8426004 .2002047 _cons | -1.114773 1.38302 -0.81 0.422 -3.857986 1.628439 ------------------------------------------------------------------------------ . vif Variable | VIF 1/VIF -------------+---------------------- lnphlgdp | 27.82 0.035943 lnausgdp | 24.20 0.041318 lnausreercpi | 1.97 0.508638 lnchireercpi | 1.46 0.685426 lnphlreercpi | 1.30 0.767866 -------------+---------------------- Mean VIF | 11.35 . bgodfrey Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 28.153 1 0.0000 --------------------------------------------------------------------------- H0: no serial correlation . ovtest Ramsey RESET test using powers of the fitted values of lnexpaus Ho: model has no omitted variables F(3, 99) = 6.95 Prob > F = 0.0003 . prais lnexpaus lnausgdp lnphlgdp lnphlreercpi lnchireercpi lnausreercpi Iteration 0: rho = 0.0000 Iteration 1: rho = 0.4893 Iteration 2: rho = 0.5086

45  

Iteration 3: rho = 0.5108 Iteration 4: rho = 0.5110 Iteration 5: rho = 0.5111 Iteration 6: rho = 0.5111 Iteration 7: rho = 0.5111 Prais-Winsten AR(1) regression -- iterated estimates Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 5, 102) = 48.61 Model | 9.77321267 5 1.95464253 Prob > F = 0.0000 Residual | 4.10128449 102 .040208672 R-squared = 0.7044 -------------+------------------------------ Adj R-squared = 0.6899 Total | 13.8744972 107 .129668198 Root MSE = .20052 ------------------------------------------------------------------------------ lnexpaus | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnausgdp | 1.314853 .341956 3.85 0.000 .6365849 1.993121 lnphlgdp | .7113366 .254693 2.79 0.006 .2061542 1.216519 lnphlreercpi | -.5950249 .3136 -1.90 0.061 -1.217049 .0269991 lnchireercpi | -.0291428 .2256739 -0.13 0.898 -.4767659 .4184802 lnausreercpi | -.0134474 .3410127 -0.04 0.969 -.6898445 .6629498 _cons | -1.859263 2.034991 -0.91 0.363 -5.895657 2.177131 -------------+---------------------------------------------------------------- rho | .5110701 ------------------------------------------------------------------------------ Durbin-Watson statistic (original) 1.016248 Durbin-Watson statistic (transformed) 2.035768 . dfuller lnexpaus Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -2.127 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.2337 . dfuller lnausgdp Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -0.849 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.8044 . dfuller lnausreercpi Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -1.501 -3.508 -2.890 -2.580

46  

------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.5332 . vecrank lnexpaus lnausgdp lnphlgdp lnphlreercpi lnchireercpi lnausreercpi Johansen tests for cointegration Trend: constant Number of obs = 106 Sample: 102 - 207 Lags = 2 ------------------------------------------------------------------------------- 5% maximum trace critical rank parms LL eigenvalue statistic value 0 42 1077.7161 . 134.4420 94.15 1 53 1108.9732 0.44554 71.9279 68.52 2 62 1125.2833 0.26489 39.3077* 47.21 3 69 1136.813 0.19551 16.2482 29.68 4 74 1140.3929 0.06531 9.0885 15.41 5 77 1143.774 0.06180 2.3263 3.76 6 78 1144.9371 0.02171 ------------------------------------------------------------------------------- . reg lnexpger lngergdp lnphlgdp lnphlreercpi lnchireercpi lngerreercpi Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 5, 102) = 349.57 Model | 59.9999701 5 11.999994 Prob > F = 0.0000 Residual | 3.50146203 102 .034328059 R-squared = 0.9449 -------------+------------------------------ Adj R-squared = 0.9422 Total | 63.5014321 107 .593471328 Root MSE = .18528 ------------------------------------------------------------------------------ lnexpger | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lngergdp | 3.733187 .4062575 9.19 0.000 2.927378 4.538997 lnphlgdp | .4774458 .1735043 2.75 0.007 .1333009 .8215907 lnphlreercpi | -.1402453 .2085831 -0.67 0.503 -.5539688 .2734783 lnchireercpi | .3981397 .2540646 1.57 0.120 -.1057963 .9020757 lngerreercpi | .779026 .6383623 1.22 0.225 -.4871624 2.045215 _cons | -18.25515 4.287978 -4.26 0.000 -26.76034 -9.749968 ------------------------------------------------------------------------------ . vif Variable | VIF 1/VIF -------------+---------------------- lngergdp | 15.46 0.064677 lnphlgdp | 9.74 0.102670 lnchireercpi | 6.50 0.153962 lngerreercpi | 3.31 0.302079 lnphlreercpi | 2.19 0.456404 -------------+---------------------- Mean VIF | 7.44 . bgodfrey Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 46.295 1 0.0000 --------------------------------------------------------------------------- H0: no serial correlation

47  

. ovtest Ramsey RESET test using powers of the fitted values of lnexpger Ho: model has no omitted variables F(3, 99) = 15.24 Prob > F = 0.0000 . prais lnexpger lngergdp lnphlgdp lnphlreercpi lnchireercpi lngerreercpi Iteration 0: rho = 0.0000 Iteration 1: rho = 0.6729 Iteration 2: rho = 0.7270 Iteration 3: rho = 0.7362 Iteration 4: rho = 0.7381 Iteration 5: rho = 0.7384 Iteration 6: rho = 0.7385 Iteration 7: rho = 0.7385 Iteration 8: rho = 0.7385 Iteration 9: rho = 0.7385 Prais-Winsten AR(1) regression -- iterated estimates Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 5, 102) = 45.75 Model | 4.15093052 5 .830186104 Prob > F = 0.0000 Residual | 1.85082896 102 .018145382 R-squared = 0.6916 -------------+------------------------------ Adj R-squared = 0.6765 Total | 6.00175948 107 .05609121 Root MSE = .1347 ------------------------------------------------------------------------------ lnexpger | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lngergdp | 3.930186 .4179565 9.40 0.000 3.101171 4.7592 lnphlgdp | .1559933 .1459956 1.07 0.288 -.1335884 .445575 lnphlreercpi | -.2002994 .2884751 -0.69 0.489 -.7724883 .3718896 lnchireercpi | .1693972 .2623594 0.65 0.520 -.3509914 .6897859 lngerreercpi | .4068769 .8248277 0.49 0.623 -1.229165 2.042919 _cons | -14.65888 5.455675 -2.69 0.008 -25.48019 -3.837576 -------------+---------------------------------------------------------------- rho | .7385487 ------------------------------------------------------------------------------ Durbin-Watson statistic (original) 0.653092 Durbin-Watson statistic (transformed) 2.070282 . dfuller lnexpger Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -2.253 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.1875 . dfuller lngergdp Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value

48  

------------------------------------------------------------------------------ Z(t) -2.298 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.1725 . dfuller lngerreercpi Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -1.621 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.4725 . vecrank lnexpger lngergdp lnphlgdp lnphlreercpi lnchireercpi lngerreercpi Johansen tests for cointegration Trend: constant Number of obs = 106 Sample: 102 - 207 Lags = 2 ------------------------------------------------------------------------------- 5% maximum trace critical rank parms LL eigenvalue statistic value 0 42 1186.6934 . 95.7303 94.15 1 53 1203.504 0.27180 62.1091* 68.52 2 62 1217.696 0.23492 33.7251 47.21 3 69 1227.2986 0.16572 14.5200 29.68 4 74 1231.0485 0.06831 7.0200 15.41 5 77 1233.9321 0.05295 1.2529 3.76 6 78 1234.5585 0.01175 ------------------------------------------------------------------------------- . reg lnexpsgp lnsgpgdp lnphlgdp lnphlreercpi lnchireercpi lnsgpreercpi Source | SS df MS Number of obs = 106 -------------+------------------------------ F( 5, 100) = 229.10 Model | 137.269231 5 27.4538462 Prob > F = 0.0000 Residual | 11.9834599 100 .119834599 R-squared = 0.9197 -------------+------------------------------ Adj R-squared = 0.9157 Total | 149.252691 105 1.4214542 Root MSE = .34617 ------------------------------------------------------------------------------ lnexpsgp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnsgpgdp | 3.162931 .3507633 9.02 0.000 2.467027 3.858835 lnphlgdp | -1.647687 .5209874 -3.16 0.002 -2.681311 -.6140625 lnphlreercpi | -1.009721 .4556371 -2.22 0.029 -1.913692 -.1057504 lnchireercpi | .7813671 .2461618 3.17 0.002 .292989 1.269745 lnsgpreercpi | 1.710129 .8528928 2.01 0.048 .0180136 3.402243 _cons | -7.246746 3.321707 -2.18 0.031 -13.83692 -.6565746 ------------------------------------------------------------------------------ . vif Variable | VIF 1/VIF -------------+---------------------- lnsgpgdp | 29.08 0.034382 lnphlgdp | 25.16 0.039750 lnsgpreercpi | 3.20 0.312554 lnphlreercpi | 2.98 0.335215

49  

lnchireercpi | 1.74 0.573460 -------------+---------------------- Mean VIF | 12.43 . bgodfrey Number of gaps in sample: 1 Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 60.294 1 0.0000 --------------------------------------------------------------------------- H0: no serial correlation . ovtest Ramsey RESET test using powers of the fitted values of lnexpsgp Ho: model has no omitted variables F(3, 97) = 20.73 Prob > F = 0.0000 . prais lnexpsgp lnsgpgdp lnphlgdp lnphlreercpi lnchireercpi lnsgpreercpi Number of gaps in sample: 1 (note: computations for rho restarted at each gap) Iteration 0: rho = 0.0000 Iteration 1: rho = 0.7483 Iteration 2: rho = 0.8472 Iteration 3: rho = 0.8588 Iteration 4: rho = 0.8606 Iteration 5: rho = 0.8609 Iteration 6: rho = 0.8610 Iteration 7: rho = 0.8610 Iteration 8: rho = 0.8610 Iteration 9: rho = 0.8610 Prais-Winsten AR(1) regression -- iterated estimates Source | SS df MS Number of obs = 106 -------------+------------------------------ F( 5, 100) = 61.37 Model | 12.0703962 5 2.41407924 Prob > F = 0.0000 Residual | 3.93393455 100 .039339345 R-squared = 0.7542 -------------+------------------------------ Adj R-squared = 0.7419 Total | 16.0043308 105 .152422198 Root MSE = .19834 ------------------------------------------------------------------------------ lnexpsgp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnsgpgdp | 2.20139 .2758917 7.98 0.000 1.654029 2.748751 lnphlgdp | -.3273763 .2290017 -1.43 0.156 -.781709 .1269565 lnphlreercpi | .2708753 .541996 0.50 0.618 -.8044293 1.34618 lnchireercpi | -.1629528 .3401852 -0.48 0.633 -.8378706 .5119649 lnsgpreercpi | 1.07676 1.122981 0.96 0.340 -1.151202 3.304723 _cons | -7.665134 4.797791 -1.60 0.113 -17.18381 1.853547 -------------+---------------------------------------------------------------- rho | .860967 ------------------------------------------------------------------------------ Durbin-Watson statistic (original) 0.492724 Durbin-Watson statistic (transformed) 2.078993

50  

. dfuller lnexpsgp Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -0.986 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.7585 . dfuller lnsgpgdp Dickey-Fuller test for unit root Number of obs = 104 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -0.927 -3.509 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.7791 . dfuller lnsgpreercpi Dickey-Fuller test for unit root Number of obs = 107 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(t) -1.742 -3.508 -2.890 -2.580 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.4094

A.2  Iterative  Seemingly  Unrelated  Regression  Estimation   . sureg ( lnexpusa lnusagdp lnphlgdp lnphlreercpi lnchireercpi lnusareercpi ) ( > lnexpjpn lnjpngdp lnphlgdp lnphlreercpi lnchireercpi lnjpnreercpi ) ( lnexpau > s lnausgdp lnphlgdp lnphlreercpi lnchireercpi lnausreercpi ) ( lnexpger lnger > gdp lnphlgdp lnphlreercpi lnchireercpi lngerreercpi) (lnexpsgp lnsgpgdp lnphl > gdp lnphlreercpi lnchireercpi lnsgpreercpi), isure corr Iteration 1: tolerance = .4970968 Iteration 2: tolerance = .2611744 Iteration 3: tolerance = .132951 Iteration 4: tolerance = .06860112 Iteration 5: tolerance = .0484983 Iteration 6: tolerance = .03394877 Iteration 7: tolerance = .02355572 Iteration 8: tolerance = .01623574 Iteration 9: tolerance = .01113815 Iteration 10: tolerance = .00761691 Iteration 11: tolerance = .00519801 Iteration 12: tolerance = .00354245 Iteration 13: tolerance = .00241207 Iteration 14: tolerance = .00164148 Iteration 15: tolerance = .00111667 Iteration 16: tolerance = .00075949

51  

Iteration 17: tolerance = .00051648 Iteration 18: tolerance = .0003512 Iteration 19: tolerance = .0002388 Iteration 20: tolerance = .00016237 Iteration 21: tolerance = .0001104 Iteration 22: tolerance = .00007506 Iteration 23: tolerance = .00005104 Iteration 24: tolerance = .0000347 Iteration 25: tolerance = .00002359 Iteration 26: tolerance = .00001604 Iteration 27: tolerance = .00001091 Iteration 28: tolerance = 7.416e-06 Iteration 29: tolerance = 5.042e-06 Iteration 30: tolerance = 3.428e-06 Iteration 31: tolerance = 2.331e-06 Iteration 32: tolerance = 1.585e-06 Iteration 33: tolerance = 1.078e-06 Iteration 34: tolerance = 7.327e-07 Seemingly unrelated regression, iterated ---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" chi2 P ---------------------------------------------------------------------- lnexpusa 106 5 .2137442 0.8604 619.06 0.0000 lnexpjpn 106 5 .1722317 0.9483 2004.03 0.0000 lnexpaus 106 5 .2266519 0.8812 784.28 0.0000 lnexpger 106 5 .1817142 0.9446 1802.50 0.0000 lnexpsgp 106 5 .3696638 0.9029 966.37 0.0000 ---------------------------------------------------------------------- ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnexpusa | lnusagdp | 3.737308 .4305005 8.68 0.000 2.893542 4.581073 lnphlgdp | -1.184815 .2910271 -4.07 0.000 -1.755218 -.6144125 lnphlreercpi | .756933 .1844686 4.10 0.000 .3953812 1.118485 lnchireercpi | -.7607292 .1700094 -4.47 0.000 -1.093941 -.4275169 lnusareercpi | -.2214597 .2873938 -0.77 0.441 -.7847412 .3418218 _cons | -2.966956 1.605988 -1.85 0.065 -6.114634 .1807227 -------------+---------------------------------------------------------------- lnexpjpn | lnjpngdp | 4.015987 .3171508 12.66 0.000 3.394383 4.637591 lnphlgdp | .9789134 .1075803 9.10 0.000 .7680599 1.189767 lnphlreercpi | -.1997339 .1463203 -1.37 0.172 -.4865165 .0870486 lnchireercpi | .6605603 .1477798 4.47 0.000 .3709172 .9502035 lnjpnreercpi | .243806 .1143679 2.13 0.033 .0196491 .467963 _cons | -18.9063 1.970579 -9.59 0.000 -22.76856 -15.04404 -------------+---------------------------------------------------------------- lnexpaus | lnausgdp | .9077916 .3829845 2.37 0.018 .1571558 1.658427 lnphlgdp | .986719 .3357314 2.94 0.003 .3286976 1.64474 lnphlreercpi | -.6654825 .1957897 -3.40 0.001 -1.049223 -.2817416 lnchireercpi | -.1279328 .144682 -0.88 0.377 -.4115042 .1556387 lnausreercpi | .2246224 .2318863 0.97 0.333 -.2298664 .6791111 _cons | -1.567565 1.333435 -1.18 0.240 -4.181048 1.045919 -------------+---------------------------------------------------------------- lnexpger | lngergdp | 3.614423 .3880253 9.31 0.000 2.853907 4.374938 lnphlgdp | .5640603 .1678519 3.36 0.001 .2350766 .893044 lnphlreercpi | -.2026392 .2015727 -1.01 0.315 -.5977143 .192436 lnchireercpi | .4722141 .2431931 1.94 0.052 -.0044357 .9488639 lngerreercpi | 1.316129 .619298 2.13 0.034 .1023269 2.529931

52  

_cons | -20.63824 4.117675 -5.01 0.000 -28.70874 -12.56775 -------------+---------------------------------------------------------------- lnexpsgp | lnsgpgdp | 1.882597 .2657358 7.08 0.000 1.361764 2.403429 lnphlgdp | .3390013 .4101702 0.83 0.409 -.4649174 1.14292 lnphlreercpi | -.1773434 .3895274 -0.46 0.649 -.940803 .5861162 lnchireercpi | .141651 .2429522 0.58 0.560 -.3345266 .6178286 lnsgpreercpi | 1.148796 .5443499 2.11 0.035 .0818896 2.215702 _cons | -8.930588 2.654142 -3.36 0.001 -14.13261 -3.728566 ------------------------------------------------------------------------------ Correlation matrix of residuals: lnexpusa lnexpjpn lnexpaus lnexpger lnexpsgp lnexpusa 1.0000 lnexpjpn 0.2712 1.0000 lnexpaus 0.2988 0.3605 1.0000 lnexpger 0.1118 0.1945 -0.0112 1.0000 lnexpsgp 0.4182 0.7604 0.4227 0.2690 1.0000 Breusch-Pagan test of independence: chi2(10) = 142.814, Pr = 0.0000

B.  Aggregated  Export  Demand  Estimation    B.1.  Naïve  Model    . reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdreercpi lndistc > cd Source | SS df MS Number of obs = 538 -------------+------------------------------ F( 6, 531) = 55.00 Model | 413.785259 6 68.9642098 Prob > F = 0.0000 Residual | 665.840309 531 1.25393655 R-squared = 0.3833 -------------+------------------------------ Adj R-squared = 0.3763 Total | 1079.62557 537 2.01047592 Root MSE = 1.1198 ------------------------------------------------------------------------------ lnexpccd | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnccdgdp | 1.230835 .2621193 4.70 0.000 .7159167 1.745753 lnphlgdp | 1.191862 .2564039 4.65 0.000 .6881719 1.695553 lnphlreercpi | -.2893485 .426174 -0.68 0.497 -1.126542 .5478454 lnchireercpi | -.341649 .2994596 -1.14 0.254 -.9299199 .2466218 lnccdreercpi | 3.731582 .4709234 7.92 0.000 2.806481 4.656684 lndistccd | .2713164 .0782548 3.47 0.001 .1175895 .4250433 _cons | -21.40541 3.432038 -6.24 0.000 -28.14745 -14.66337 ------------------------------------------------------------------------------

 B.2.  LSDV  Models  1,2,3    . xi: reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdreercpi lnd > istccd i.country i.country _Icountry_1-5 (naturally coded; _Icountry_1 omitted) Source | SS df MS Number of obs = 538 -------------+------------------------------ F( 9, 528) = 1043.43 Model | 1022.15491 9 113.572768 Prob > F = 0.0000 Residual | 57.4706551 528 .108845938 R-squared = 0.9468 -------------+------------------------------ Adj R-squared = 0.9459

53  

Total | 1079.62557 537 2.01047592 Root MSE = .32992 ------------------------------------------------------------------------------ lnexpccd | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnccdgdp | 1.499196 .0958929 15.63 0.000 1.310818 1.687575 lnphlgdp | .9730339 .0863864 11.26 0.000 .8033306 1.142737 lnphlreercpi | .1354118 .1258592 1.08 0.282 -.1118344 .382658 lnchireercpi | -.3881461 .0892599 -4.35 0.000 -.5634941 -.212798 lnccdreercpi | .0170378 .1531657 0.11 0.911 -.2838512 .3179267 lndistccd | -2.014405 .0574819 -35.04 0.000 -2.127326 -1.901483 _Icountry_2 | 2.179898 .063166 34.51 0.000 2.055811 2.303986 _Icountry_3 | 1.113805 .049231 22.62 0.000 1.017092 1.210517 _Icountry_4 | (dropped) _Icountry_5 | 4.865774 .079207 61.43 0.000 4.710174 5.021373 _cons | 11.86913 1.200006 9.89 0.000 9.511755 14.2265 ------------------------------------------------------------------------------ . xi: reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdreercpi lnd > istccd i.date i.date _Idate_100-207 (naturally coded; _Idate_100 omitted) Source | SS df MS Number of obs = 538 -------------+------------------------------ F(110, 427) = 2.66 Model | 438.777328 110 3.9888848 Prob > F = 0.0000 Residual | 640.84824 427 1.50081555 R-squared = 0.4064 -------------+------------------------------ Adj R-squared = 0.2535 Total | 1079.62557 537 2.01047592 Root MSE = 1.2251 ------------------------------------------------------------------------------ lnexpccd | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnccdgdp | .9432642 .3018962 3.12 0.002 .3498765 1.536652 lnphlgdp | .7268734 .8447132 0.86 0.390 -.93344 2.387187 lnphlreercpi | -1.736064 2.127745 -0.82 0.415 -5.918221 2.446093 lnchireercpi | .1641852 1.030702 0.16 0.874 -1.861695 2.190066 lnccdreercpi | 3.920288 .5263513 7.45 0.000 2.885726 4.95485 lndistccd | .2975777 .0861375 3.45 0.001 .1282715 .4668839 _Idate_101 | .0420419 .7664253 0.05 0.956 -1.464394 1.548478 _Idate_102 | .1518583 .7805629 0.19 0.846 -1.382365 1.686082 _Idate_103 | -.1722209 .7051624 -0.24 0.807 -1.558242 1.213801 _Idate_104 | -.3320811 .7671509 -0.43 0.665 -1.839943 1.175781 _Idate_105 | -.3786894 .7764222 -0.49 0.626 -1.904775 1.147396 _Idate_106 | -.3011038 .7981047 -0.38 0.706 -1.869807 1.267599 _Idate_107 | -.3766627 .7329111 -0.51 0.608 -1.817225 1.0639 _Idate_108 | -.3511651 .8064869 -0.44 0.663 -1.936344 1.234013 _Idate_109 | -.2900829 .7753355 -0.37 0.708 -1.814032 1.233866 _Idate_110 | -.1965008 .7805426 -0.25 0.801 -1.730685 1.337683 _Idate_111 | -.2625654 .7745773 -0.34 0.735 -1.785024 1.259894 _Idate_112 | -.2716682 .8303325 -0.33 0.744 -1.903716 1.360379 _Idate_113 | -.252221 .8102149 -0.31 0.756 -1.844727 1.340285 _Idate_114 | -.1869719 .8286044 -0.23 0.822 -1.815623 1.441679 _Idate_115 | -.4405204 .814207 -0.54 0.589 -2.040873 1.159832 _Idate_116 | -.3344947 .8617543 -0.39 0.698 -2.028303 1.359314 _Idate_117 | -.1819319 .8260856 -0.22 0.826 -1.805632 1.441768 _Idate_118 | -.1048308 .8078819 -0.13 0.897 -1.692751 1.48309 _Idate_119 | -.3165343 .7028049 -0.45 0.653 -1.697922 1.064853 _Idate_120 | -.1838197 .6910144 -0.27 0.790 -1.542033 1.174393 _Idate_121 | -.1253346 .6792036 -0.18 0.854 -1.460333 1.209664 _Idate_122 | -.1702761 .7462105 -0.23 0.820 -1.636979 1.296427 _Idate_123 | -.4838189 .7843244 -0.62 0.538 -2.025436 1.057798 _Idate_124 | -.3250029 .7905421 -0.41 0.681 -1.878841 1.228835 _Idate_125 | -.2328848 .7186255 -0.32 0.746 -1.645368 1.179599

54  

_Idate_126 | -.1547717 .7017169 -0.22 0.826 -1.534021 1.224477 _Idate_127 | -.2195707 .6520411 -0.34 0.736 -1.50118 1.062039 _Idate_128 | -.1151969 .6862833 -0.17 0.867 -1.464111 1.233717 _Idate_129 | -.030492 .6821493 -0.04 0.964 -1.37128 1.310296 _Idate_130 | .2299123 .691346 0.33 0.740 -1.128953 1.588777 _Idate_131 | .0439589 .66697 0.07 0.947 -1.266994 1.354912 _Idate_132 | .0089859 .6760145 0.01 0.989 -1.319744 1.337716 _Idate_133 | .0112943 .6708277 0.02 0.987 -1.307241 1.32983 _Idate_134 | .0077564 .6789919 0.01 0.991 -1.326826 1.342339 _Idate_135 | -.1912146 .6320452 -0.30 0.762 -1.433522 1.051093 _Idate_136 | (dropped) _Idate_137 | .0655177 .7641651 0.09 0.932 -1.436476 1.567511 _Idate_138 | .2453235 .7525744 0.33 0.745 -1.233888 1.724535 _Idate_139 | .2928382 .7754442 0.38 0.706 -1.231325 1.817001 _Idate_140 | .2309173 .7385229 0.31 0.755 -1.220675 1.68251 _Idate_141 | .198978 .7071656 0.28 0.779 -1.190981 1.588937 _Idate_142 | .3827228 .7215515 0.53 0.596 -1.035512 1.800958 _Idate_143 | .343659 .7331518 0.47 0.639 -1.097377 1.784695 _Idate_144 | .4840619 .7425077 0.65 0.515 -.9753631 1.943487 _Idate_145 | .5973873 .7473859 0.80 0.425 -.8716259 2.066401 _Idate_146 | .6167665 .7484954 0.82 0.410 -.8544275 2.08796 _Idate_147 | .5678608 .7743975 0.73 0.464 -.9542446 2.089966 _Idate_148 | .7849061 .7825296 1.00 0.316 -.7531832 2.322995 _Idate_149 | .8641966 .8000006 1.08 0.281 -.7082326 2.436626 _Idate_150 | .789197 .6896184 1.14 0.253 -.5662722 2.144666 _Idate_151 | .4952911 .6230247 0.79 0.427 -.7292858 1.719868 _Idate_152 | .3500207 .6335642 0.55 0.581 -.895272 1.595313 _Idate_153 | .5475384 .6188562 0.88 0.377 -.6688451 1.763922 _Idate_154 | .5367955 .6316159 0.85 0.396 -.7046678 1.778259 _Idate_155 | .4128315 .6168887 0.67 0.504 -.7996849 1.625348 _Idate_156 | .6396871 .6304336 1.01 0.311 -.5994522 1.878826 _Idate_157 | .7827721 .6437314 1.22 0.225 -.4825046 2.048049 _Idate_158 | .7525643 .6288339 1.20 0.232 -.4834308 1.988559 _Idate_159 | .58086 .6236756 0.93 0.352 -.6449963 1.806716 _Idate_160 | .6156538 .6259739 0.98 0.326 -.61472 1.846028 _Idate_161 | .5508352 .6829603 0.81 0.420 -.7915472 1.893218 _Idate_162 | .5084432 .70799 0.72 0.473 -.883136 1.900022 _Idate_163 | .4864596 .6825463 0.71 0.476 -.8551091 1.828028 _Idate_164 | .4404059 .6536122 0.67 0.501 -.8442918 1.725104 _Idate_165 | .4499122 .6847473 0.66 0.512 -.8959827 1.795807 _Idate_166 | .3188638 .6765895 0.47 0.638 -1.010997 1.648724 _Idate_167 | .273335 .6997253 0.39 0.696 -1.102 1.64867 _Idate_168 | .257322 .6695266 0.38 0.701 -1.058656 1.5733 _Idate_169 | .449948 .6490582 0.69 0.489 -.8257987 1.725695 _Idate_170 | .4931494 .6816481 0.72 0.470 -.8466539 1.832953 _Idate_171 | .3756226 .6838066 0.55 0.583 -.9684234 1.719669 _Idate_172 | .2543693 .7181079 0.35 0.723 -1.157097 1.665836 _Idate_173 | .1597013 .6878479 0.23 0.817 -1.192288 1.511691 _Idate_174 | .1090546 .7186821 0.15 0.879 -1.30354 1.52165 _Idate_175 | -.0614989 .7400951 -0.08 0.934 -1.516182 1.393184 _Idate_176 | (dropped) _Idate_177 | .1020261 .7480122 0.14 0.892 -1.368218 1.57227 _Idate_178 | .1978402 .7312674 0.27 0.787 -1.239492 1.635172 _Idate_179 | -.0149046 .7346153 -0.02 0.984 -1.458817 1.429008 _Idate_180 | -.0210035 .7017709 -0.03 0.976 -1.400359 1.358352 _Idate_181 | .1037343 .695051 0.15 0.881 -1.262413 1.469881 _Idate_182 | .1586079 .7043597 0.23 0.822 -1.225836 1.543052 _Idate_183 | .2738894 .6838745 0.40 0.689 -1.07029 1.618069 _Idate_184 | .4366807 .6510387 0.67 0.503 -.8429587 1.71632 _Idate_185 | .4128512 .6623528 0.62 0.533 -.8890266 1.714729 _Idate_186 | .5246698 .655037 0.80 0.424 -.7628285 1.812168 _Idate_187 | .4685905 .6952464 0.67 0.501 -.8979408 1.835122 _Idate_188 | .4498077 .6638831 0.68 0.498 -.8550779 1.754693

55  

_Idate_189 | .5603188 .6946143 0.81 0.420 -.80497 1.925608 _Idate_190 | .6157967 .6848094 0.90 0.369 -.7302203 1.961814 _Idate_191 | .6394588 .7634246 0.84 0.403 -.861079 2.139997 _Idate_192 | .6835821 .685042 1.00 0.319 -.662892 2.030056 _Idate_193 | .6421532 .6813218 0.94 0.346 -.6970088 1.981315 _Idate_194 | .6517843 .6632381 0.98 0.326 -.6518334 1.955402 _Idate_195 | .2243136 .6948217 0.32 0.747 -1.141383 1.59001 _Idate_196 | .0852431 .6552732 0.13 0.897 -1.202719 1.373206 _Idate_197 | .3864095 .6763609 0.57 0.568 -.9430016 1.715821 _Idate_198 | .278139 .6595455 0.42 0.673 -1.018221 1.574499 _Idate_199 | .2990944 .702873 0.43 0.671 -1.082427 1.680616 _Idate_200 | .4584937 .6843344 0.67 0.503 -.8865897 1.803577 _Idate_201 | .4746061 .7334875 0.65 0.518 -.9670893 1.916301 _Idate_202 | .574136 .7056668 0.81 0.416 -.8128769 1.961149 _Idate_203 | .3265809 .7588185 0.43 0.667 -1.164904 1.818065 _Idate_204 | .3481893 .7139471 0.49 0.626 -1.055099 1.751477 _Idate_205 | .2487755 .7441422 0.33 0.738 -1.213862 1.711413 _Idate_206 | .2207875 .7208907 0.31 0.760 -1.196148 1.637723 _Idate_207 | (dropped) _cons | -14.87173 10.91169 -1.36 0.174 -36.31904 6.575579 ------------------------------------------------------------------------------   . xi: reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdreercpi lnd > istccd i.country i.date i.country _Icountry_1-5 (naturally coded; _Icountry_1 omitted) i.date _Idate_100-207 (naturally coded; _Idate_100 omitted) Source | SS df MS Number of obs = 538 -------------+------------------------------ F(113, 424) = 114.43 Model | 1045.34943 113 9.25087989 Prob > F = 0.0000 Residual | 34.2761399 424 .080839953 R-squared = 0.9683 -------------+------------------------------ Adj R-squared = 0.9598 Total | 1079.62557 537 2.01047592 Root MSE = .28432 ------------------------------------------------------------------------------ lnexpccd | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnccdgdp | 1.092438 .0894028 12.22 0.000 .91671 1.268166 lnphlgdp | .6311058 .1995966 3.16 0.002 .2387837 1.023428 lnphlreercpi | -1.39517 .4938742 -2.82 0.005 -2.365917 -.4244235 lnchireercpi | .1771066 .2394166 0.74 0.460 -.2934847 .6476979 lnccdreercpi | .0869852 .1356696 0.64 0.522 -.1796835 .3536539 lndistccd | -1.929546 .0505063 -38.20 0.000 -2.02882 -1.830273 _Icountry_2 | 2.187057 .054638 40.03 0.000 2.079662 2.294452 _Icountry_3 | 1.225323 .0434708 28.19 0.000 1.139877 1.310768 _Icountry_4 | (dropped) _Icountry_5 | 4.80188 .0688752 69.72 0.000 4.666501 4.93726 _Idate_101 | -.0827771 .1778875 -0.47 0.642 -.4324283 .2668741 _Idate_102 | .0074338 .1812164 0.04 0.967 -.3487605 .3636281 _Idate_103 | -.2880011 .1637112 -1.76 0.079 -.6097877 .0337855 _Idate_104 | -.4317798 .1780583 -2.42 0.016 -.7817668 -.0817929 _Idate_105 | -.4794739 .1802614 -2.66 0.008 -.8337911 -.1251567 _Idate_106 | -.4795251 .1852641 -2.59 0.010 -.8436755 -.1153747 _Idate_107 | -.5268312 .1702456 -3.09 0.002 -.8614617 -.1922007 _Idate_108 | -.5263516 .1872323 -2.81 0.005 -.8943708 -.1583325 _Idate_109 | -.4384971 .1800552 -2.44 0.015 -.792409 -.0845852 _Idate_110 | -.356788 .1811875 -1.97 0.050 -.7129256 -.0006505 _Idate_111 | -.4528926 .179876 -2.52 0.012 -.8064523 -.0993329 _Idate_112 | -.4633241 .1927452 -2.40 0.017 -.8421792 -.084469 _Idate_113 | -.4029907 .1880808 -2.14 0.033 -.7726775 -.0333039 _Idate_114 | -.2953184 .1923149 -1.54 0.125 -.6733277 .0826909 _Idate_115 | -.5125602 .1890651 -2.71 0.007 -.8841818 -.1409387 _Idate_116 | -.4096025 .2000043 -2.05 0.041 -.8027259 -.016479

56  

_Idate_117 | -.3040247 .1917315 -1.59 0.114 -.6808872 .0728378 _Idate_118 | -.2686231 .1875223 -1.43 0.153 -.6372123 .099966 _Idate_119 | -.4668688 .163206 -2.86 0.004 -.7876624 -.1460752 _Idate_120 | -.3717031 .1604046 -2.32 0.021 -.6869903 -.0564158 _Idate_121 | -.349676 .1576698 -2.22 0.027 -.6595879 -.0397642 _Idate_122 | -.3668136 .1732097 -2.12 0.035 -.7072702 -.0263571 _Idate_123 | -.6223289 .1821876 -3.42 0.001 -.9804322 -.2642257 _Idate_124 | -.5036988 .1834937 -2.75 0.006 -.8643694 -.1430283 _Idate_125 | -.3833121 .1667978 -2.30 0.022 -.7111656 -.0554587 _Idate_126 | -.2913863 .1628741 -1.79 0.074 -.6115276 .0287549 _Idate_127 | -.3459289 .151445 -2.28 0.023 -.6436054 -.0482525 _Idate_128 | -.2888037 .1592973 -1.81 0.071 -.6019145 .0243071 _Idate_129 | -.2307336 .1583511 -1.46 0.146 -.5419845 .0805173 _Idate_130 | -.0531197 .1605311 -0.33 0.741 -.3686556 .2624162 _Idate_131 | -.1440095 .1548465 -0.93 0.353 -.4483718 .1603528 _Idate_132 | -.1275677 .1569173 -0.81 0.417 -.4360004 .180865 _Idate_133 | -.0926396 .1557152 -0.59 0.552 -.3987095 .2134302 _Idate_134 | -.0572849 .1576217 -0.36 0.716 -.3671022 .2525324 _Idate_135 | -.2369226 .1466987 -1.62 0.107 -.5252699 .0514248 _Idate_136 | (dropped) _Idate_137 | .0907526 .1773526 0.51 0.609 -.2578472 .4393524 _Idate_138 | .2541768 .1746725 1.46 0.146 -.089155 .5975086 _Idate_139 | .3057696 .1799929 1.70 0.090 -.04802 .6595592 _Idate_140 | .269248 .1714082 1.57 0.117 -.0676676 .6061637 _Idate_141 | .239548 .1641308 1.46 0.145 -.0830633 .5621593 _Idate_142 | .3742542 .1674914 2.23 0.026 .0450373 .7034712 _Idate_143 | .3242676 .1701595 1.91 0.057 -.0101936 .6587287 _Idate_144 | .4402913 .1723598 2.55 0.011 .1015053 .7790773 _Idate_145 | .5550385 .1734889 3.20 0.001 .2140331 .896044 _Idate_146 | .5440756 .1737649 3.13 0.002 .2025278 .8856235 _Idate_147 | .476557 .1797322 2.65 0.008 .1232799 .829834 _Idate_148 | .6471358 .1816946 3.56 0.000 .2900015 1.00427 _Idate_149 | .7291515 .1857473 3.93 0.000 .3640512 1.094252 _Idate_150 | .6777282 .1601487 4.23 0.000 .3629439 .9925125 _Idate_151 | .4234714 .1446011 2.93 0.004 .1392471 .7076957 _Idate_152 | .3598038 .1471388 2.45 0.015 .0705915 .6490162 _Idate_153 | .4336218 .1437616 3.02 0.003 .1510477 .7161959 _Idate_154 | .3717057 .146762 2.53 0.012 .083234 .6601773 _Idate_155 | .3009804 .1431975 2.10 0.036 .0195151 .5824457 _Idate_156 | .4940188 .146465 3.37 0.001 .206131 .7819066 _Idate_157 | .6318511 .1495551 4.22 0.000 .3378894 .9258128 _Idate_158 | .6470661 .1460947 4.43 0.000 .3599061 .9342261 _Idate_159 | .5142671 .1447633 3.55 0.000 .229724 .7988103 _Idate_160 | .5138136 .1454404 3.53 0.000 .2279397 .7996875 _Idate_161 | .4508826 .1585199 2.84 0.005 .1392999 .7624654 _Idate_162 | .4328898 .1643254 2.63 0.009 .109896 .7558836 _Idate_163 | .4056743 .1584365 2.56 0.011 .0942555 .7170932 _Idate_164 | .2243693 .1518757 1.48 0.140 -.0741537 .5228923 _Idate_165 | .3210937 .1590949 2.02 0.044 .0083809 .6338066 _Idate_166 | .1630714 .1571412 1.04 0.300 -.1458015 .4719443 _Idate_167 | .1255417 .1624958 0.77 0.440 -.1938559 .4449392 _Idate_168 | .0899119 .155414 0.58 0.563 -.2155658 .3953896 _Idate_169 | .2651778 .1507665 1.76 0.079 -.0311651 .5615206 _Idate_170 | .3185734 .1583167 2.01 0.045 .00739 .6297567 _Idate_171 | .2206063 .1587188 1.39 0.165 -.0913674 .53258 _Idate_172 | .130401 .1666824 0.78 0.434 -.1972258 .4580277 _Idate_173 | .0404307 .1596496 0.25 0.800 -.2733725 .3542338 _Idate_174 | .0135447 .1668039 0.08 0.935 -.3143208 .3414103 _Idate_175 | -.0838941 .1718025 -0.49 0.626 -.4215848 .2537966 _Idate_176 | (dropped) _Idate_177 | .0604585 .1736064 0.35 0.728 -.2807779 .4016948 _Idate_178 | .1154491 .1697217 0.68 0.497 -.2181516 .4490499 _Idate_179 | -.0614072 .1705514 -0.36 0.719 -.3966387 .2738243

57  

_Idate_180 | -.1129987 .162877 -0.69 0.488 -.4331456 .2071481 _Idate_181 | -.0004861 .1613225 -0.00 0.998 -.3175775 .3166053 _Idate_182 | .0279364 .1634859 0.17 0.864 -.2934075 .3492802 _Idate_183 | .0963058 .1587699 0.61 0.544 -.2157683 .4083799 _Idate_184 | .205833 .1511459 1.36 0.174 -.0912555 .5029215 _Idate_185 | .1909913 .1537574 1.24 0.215 -.1112303 .4932129 _Idate_186 | .2868993 .152076 1.89 0.060 -.0120174 .5858161 _Idate_187 | .208086 .1614202 1.29 0.198 -.1091974 .5253694 _Idate_188 | .1559579 .1541569 1.01 0.312 -.1470491 .4589649 _Idate_189 | .2533142 .1612736 1.57 0.117 -.063681 .5703095 _Idate_190 | .2951541 .159025 1.86 0.064 -.0174214 .6077296 _Idate_191 | .3389975 .177246 1.91 0.056 -.0093926 .6873877 _Idate_192 | .378768 .1592354 2.38 0.018 .0657789 .6917571 _Idate_193 | .3805616 .158232 2.41 0.017 .0695449 .6915784 _Idate_194 | .3642746 .1540897 2.36 0.019 .0613998 .6671494 _Idate_195 | .0036886 .1612919 0.02 0.982 -.3133428 .3207199 _Idate_196 | -.0916577 .1521694 -0.60 0.547 -.390758 .2074425 _Idate_197 | .2092177 .1570087 1.33 0.183 -.0993946 .5178301 _Idate_198 | .1423034 .1531268 0.93 0.353 -.1586787 .4432855 _Idate_199 | .2079116 .1631342 1.27 0.203 -.1127407 .528564 _Idate_200 | .3412617 .1588744 2.15 0.032 .0289823 .6535412 _Idate_201 | .3585178 .1702546 2.11 0.036 .0238697 .6931659 _Idate_202 | .4924102 .1638253 3.01 0.003 .1703994 .814421 _Idate_203 | .2865127 .1761123 1.63 0.105 -.0596492 .6326746 _Idate_204 | .296034 .1657394 1.79 0.075 -.0297393 .6218072 _Idate_205 | .2099692 .1727097 1.22 0.225 -.1295047 .5494431 _Idate_206 | .203075 .1673548 1.21 0.226 -.1258734 .5320235 _Idate_207 | (dropped) _cons | 18.66535 2.592947 7.20 0.000 13.56872 23.76199 ------------------------------------------------------------------------------

B.3.  Wald’s  Tests  . quietly xi: reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdree > rcpi lndistccd i.country . test _Icountry_2 _Icountry_3 _Icountry_4 _Icountry_5 ( 1) _Icountry_2 = 0 ( 2) _Icountry_3 = 0 ( 3) _Icountry_4 = 0 ( 4) _Icountry_5 = 0 Constraint 3 dropped F( 3, 528) = 1863.09 Prob > F = 0.0000 quietly xi: reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdree > rcpi lndistccd i.date . . test _Idate_101 _Idate_101 _Idate_102 _Idate_103 _Idate_104 _Idate_105 _Idate > _106 _Idate_107 _Idate_108 _Idate_109 _Idate_110 _Idate_111 _Idate_112 _Idate > _113 _Idate_114 _Idate_115 _Idate_116 _Idate_117 _Idate_118 _Idate_119 _Idate > _120 _Idate_121 _Idate_122 _Idate_123 _Idate_124 _Idate_125 _Idate_126 _Idate > _127 _Idate_128 _Idate_129 _Idate_130 _Idate_131 _Idate_132 _Idate_133 _Idate > _134 _Idate_135 _Idate_136 _Idate_137 _Idate_138 _Idate_139 _Idate_140 _Idate > _141 _Idate_142 _Idate_143 _Idate_144 _Idate_145 _Idate_146 _Idate_147 _Idate > _148 _Idate_149 _Idate_150 _Idate_151 _Idate_152 _Idate_153 _Idate_154 _Idate > _155 _Idate_156 _Idate_157 _Idate_158 _Idate_159 _Idate_160 _Idate_161 _Idate > _162 _Idate_163 _Idate_164 _Idate_165 _Idate_166 _Idate_167 _Idate_168 _Idate > _169 _Idate_170 _Idate_171 _Idate_172 _Idate_173 _Idate_174 _Idate_175 _Idate > _176 _Idate_177 _Idate_178 _Idate_179 _Idate_180 _Idate_181 _Idate_182 _Idate > _183 _Idate_184 _Idate_185 _Idate_186 _Idate_187 _Idate_188 _Idate_189 _Idate

58  

> _190 _Idate_191 _Idate_192 _Idate_193 _Idate_194 _Idate_195 _Idate_196 _Idate > _197 _Idate_198 _Idate_199 _Idate_200 _Idate_201 _Idate_202 _Idate_203 _Idate > _204 _Idate_205 _Idate_206 _Idate_207 ( 1) _Idate_101 = 0 ( 2) _Idate_101 = 0 ( 3) _Idate_102 = 0 ( 4) _Idate_103 = 0 ( 5) _Idate_104 = 0 ( 6) _Idate_105 = 0 ( 7) _Idate_106 = 0 ( 8) _Idate_107 = 0 ( 9) _Idate_108 = 0 (10) _Idate_109 = 0 (11) _Idate_110 = 0 (12) _Idate_111 = 0 (13) _Idate_112 = 0 (14) _Idate_113 = 0 (15) _Idate_114 = 0 (16) _Idate_115 = 0 (17) _Idate_116 = 0 (18) _Idate_117 = 0 (19) _Idate_118 = 0 (20) _Idate_119 = 0 (21) _Idate_120 = 0 (22) _Idate_121 = 0 (23) _Idate_122 = 0 (24) _Idate_123 = 0 (25) _Idate_124 = 0 (26) _Idate_125 = 0 (27) _Idate_126 = 0 (28) _Idate_127 = 0 (29) _Idate_128 = 0 (30) _Idate_129 = 0 (31) _Idate_130 = 0 (32) _Idate_131 = 0 (33) _Idate_132 = 0 (34) _Idate_133 = 0 (35) _Idate_134 = 0 (36) _Idate_135 = 0 (37) _Idate_136 = 0 (38) _Idate_137 = 0 (39) _Idate_138 = 0 (40) _Idate_139 = 0 (41) _Idate_140 = 0 (42) _Idate_141 = 0 (43) _Idate_142 = 0 (44) _Idate_143 = 0 (45) _Idate_144 = 0 (46) _Idate_145 = 0 (47) _Idate_146 = 0 (48) _Idate_147 = 0 (49) _Idate_148 = 0 (50) _Idate_149 = 0 (51) _Idate_150 = 0 (52) _Idate_151 = 0 (53) _Idate_152 = 0 (54) _Idate_153 = 0 (55) _Idate_154 = 0 (56) _Idate_155 = 0 (57) _Idate_156 = 0 (58) _Idate_157 = 0 (59) _Idate_158 = 0

59  

(60) _Idate_159 = 0 (61) _Idate_160 = 0 (62) _Idate_161 = 0 (63) _Idate_162 = 0 (64) _Idate_163 = 0 (65) _Idate_164 = 0 (66) _Idate_165 = 0 (67) _Idate_166 = 0 (68) _Idate_167 = 0 (69) _Idate_168 = 0 (70) _Idate_169 = 0 (71) _Idate_170 = 0 (72) _Idate_171 = 0 (73) _Idate_172 = 0 (74) _Idate_173 = 0 (75) _Idate_174 = 0 (76) _Idate_175 = 0 (77) _Idate_176 = 0 (78) _Idate_177 = 0 (79) _Idate_178 = 0 (80) _Idate_179 = 0 (81) _Idate_180 = 0 (82) _Idate_181 = 0 (83) _Idate_182 = 0 (84) _Idate_183 = 0 (85) _Idate_184 = 0 (86) _Idate_185 = 0 (87) _Idate_186 = 0 (88) _Idate_187 = 0 (89) _Idate_188 = 0 (90) _Idate_189 = 0 (91) _Idate_190 = 0 (92) _Idate_191 = 0 (93) _Idate_192 = 0 (94) _Idate_193 = 0 (95) _Idate_194 = 0 (96) _Idate_195 = 0 (97) _Idate_196 = 0 (98) _Idate_197 = 0 (99) _Idate_198 = 0 (100) _Idate_199 = 0 (101) _Idate_200 = 0 (102) _Idate_201 = 0 (103) _Idate_202 = 0 (104) _Idate_203 = 0 (105) _Idate_204 = 0 (106) _Idate_205 = 0 (107) _Idate_206 = 0 (108) _Idate_207 = 0 Constraint 2 dropped Constraint 37 dropped Constraint 77 dropped Constraint 108 dropped F(104, 427) = 0.16 Prob > F = 1.0000 . quietly xi: reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdree > rcpi lndistccd i.country i.date . test _Icountry_2 _Icountry_3 _Icountry_4 _Icountry_5 _Idate_101 _Idate_102 _I > date_103 _Idate_104 _Idate_105 _Idate_106 _Idate_107 _Idate_108 _Idate_109 _I > date_110 _Idate_110 _Idate_111 _Idate_112 _Idate_113 _Idate_114 _Idate_115 _I

60  

> date_116 _Idate_117 _Idate_118 _Idate_119 _Idate_120 _Idate_121 _Idate_122 _I > date_123 _Idate_124 _Idate_125 _Idate_126 _Idate_127 _Idate_128 _Idate_129 _I > date_130 _Idate_131 _Idate_132 _Idate_133 _Idate_134 _Idate_135 _Idate_136 _I > date_137 _Idate_138 _Idate_139 _Idate_140 _Idate_141 _Idate_142 _Idate_143 _I > date_144 _Idate_145 _Idate_146 _Idate_147 _Idate_148 _Idate_149 _Idate_150 _I > date_151 _Idate_152 _Idate_153 _Idate_154 _Idate_155 _Idate_156 _Idate_157 _I > date_158 _Idate_159 _Idate_160 _Idate_161 _Idate_162 _Idate_163 _Idate_164 _I > date_165 _Idate_166 _Idate_167 _Idate_168 _Idate_169 _Idate_170 _Idate_171 _I > date_172 _Idate_173 _Idate_174 _Idate_175 _Idate_176 _Idate_177 _Idate_178 _I > date_179 _Idate_180 _Idate_181 _Idate_182 _Idate_183 _Idate_184 _Idate_185 _I > date_186 _Idate_187 _Idate_188 _Idate_189 _Idate_190 _Idate_191 _Idate_192 _I > date_193 _Idate_194 _Idate_195 _Idate_196 _Idate_197 _Idate_198 _Idate_199 _I > date_200 _Idate_201 _Idate_202 _Idate_203 _Idate_204 _Idate_205 _Idate_206 _I > date_207 ( 1) _Icountry_2 = 0 ( 2) _Icountry_3 = 0 ( 3) _Icountry_4 = 0 ( 4) _Icountry_5 = 0 ( 5) _Idate_101 = 0 ( 6) _Idate_102 = 0 ( 7) _Idate_103 = 0 ( 8) _Idate_104 = 0 ( 9) _Idate_105 = 0 (10) _Idate_106 = 0 (11) _Idate_107 = 0 (12) _Idate_108 = 0 (13) _Idate_109 = 0 (14) _Idate_110 = 0 (15) _Idate_110 = 0 (16) _Idate_111 = 0 (17) _Idate_112 = 0 (18) _Idate_113 = 0 (19) _Idate_114 = 0 (20) _Idate_115 = 0 (21) _Idate_116 = 0 (22) _Idate_117 = 0 (23) _Idate_118 = 0 (24) _Idate_119 = 0 (25) _Idate_120 = 0 (26) _Idate_121 = 0 (27) _Idate_122 = 0 (28) _Idate_123 = 0 (29) _Idate_124 = 0 (30) _Idate_125 = 0 (31) _Idate_126 = 0 (32) _Idate_127 = 0 (33) _Idate_128 = 0 (34) _Idate_129 = 0 (35) _Idate_130 = 0 (36) _Idate_131 = 0 (37) _Idate_132 = 0 (38) _Idate_133 = 0 (39) _Idate_134 = 0 (40) _Idate_135 = 0 (41) _Idate_136 = 0 (42) _Idate_137 = 0 (43) _Idate_138 = 0 (44) _Idate_139 = 0 (45) _Idate_140 = 0 (46) _Idate_141 = 0 (47) _Idate_142 = 0 (48) _Idate_143 = 0

61  

(49) _Idate_144 = 0 (50) _Idate_145 = 0 (51) _Idate_146 = 0 (52) _Idate_147 = 0 (53) _Idate_148 = 0 (54) _Idate_149 = 0 (55) _Idate_150 = 0 (56) _Idate_151 = 0 (57) _Idate_152 = 0 (58) _Idate_153 = 0 (59) _Idate_154 = 0 (60) _Idate_155 = 0 (61) _Idate_156 = 0 (62) _Idate_157 = 0 (63) _Idate_158 = 0 (64) _Idate_159 = 0 (65) _Idate_160 = 0 (66) _Idate_161 = 0 (67) _Idate_162 = 0 (68) _Idate_163 = 0 (69) _Idate_164 = 0 (70) _Idate_165 = 0 (71) _Idate_166 = 0 (72) _Idate_167 = 0 (73) _Idate_168 = 0 (74) _Idate_169 = 0 (75) _Idate_170 = 0 (76) _Idate_171 = 0 (77) _Idate_172 = 0 (78) _Idate_173 = 0 (79) _Idate_174 = 0 (80) _Idate_175 = 0 (81) _Idate_176 = 0 (82) _Idate_177 = 0 (83) _Idate_178 = 0 (84) _Idate_179 = 0 (85) _Idate_180 = 0 (86) _Idate_181 = 0 (87) _Idate_182 = 0 (88) _Idate_183 = 0 (89) _Idate_184 = 0 (90) _Idate_185 = 0 (91) _Idate_186 = 0 (92) _Idate_187 = 0 (93) _Idate_188 = 0 (94) _Idate_189 = 0 (95) _Idate_190 = 0 (96) _Idate_191 = 0 (97) _Idate_192 = 0 (98) _Idate_193 = 0 (99) _Idate_194 = 0 (100) _Idate_195 = 0 (101) _Idate_196 = 0 (102) _Idate_197 = 0 (103) _Idate_198 = 0 (104) _Idate_199 = 0 (105) _Idate_200 = 0 (106) _Idate_201 = 0 (107) _Idate_202 = 0 (108) _Idate_203 = 0 (109) _Idate_204 = 0 (110) _Idate_205 = 0 (111) _Idate_206 = 0

62  

(112) _Idate_207 = 0 Constraint 3 dropped Constraint 15 dropped Constraint 41 dropped Constraint 81 dropped Constraint 112 dropped F(107, 424) = 73.01 Prob > F = 0.0000 . quietly xi: reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdree > rcpi lndistccd i.country i.date . . test _Idate_101 _Idate_101 _Idate_102 _Idate_103 _Idate_104 _Idate_105 _Idate > _106 _Idate_107 _Idate_108 _Idate_109 _Idate_110 _Idate_111 _Idate_112 _Idate > _113 _Idate_114 _Idate_115 _Idate_116 _Idate_117 _Idate_118 _Idate_119 _Idate > _120 _Idate_121 _Idate_122 _Idate_123 _Idate_124 _Idate_125 _Idate_126 _Idate > _127 _Idate_128 _Idate_129 _Idate_130 _Idate_131 _Idate_132 _Idate_133 _Idate > _134 _Idate_135 _Idate_136 _Idate_137 _Idate_138 _Idate_139 _Idate_140 _Idate > _141 _Idate_142 _Idate_143 _Idate_144 _Idate_145 _Idate_146 _Idate_147 _Idate > _148 _Idate_149 _Idate_150 _Idate_151 _Idate_152 _Idate_153 _Idate_154 _Idate > _155 _Idate_156 _Idate_157 _Idate_158 _Idate_159 _Idate_160 _Idate_161 _Idate > _162 _Idate_163 _Idate_164 _Idate_165 _Idate_166 _Idate_167 _Idate_168 _Idate > _169 _Idate_170 _Idate_171 _Idate_172 _Idate_173 _Idate_174 _Idate_175 _Idate > _176 _Idate_177 _Idate_178 _Idate_179 _Idate_180 _Idate_181 _Idate_182 _Idate > _183 _Idate_184 _Idate_185 _Idate_186 _Idate_187 _Idate_188 _Idate_189 _Idate > _190 _Idate_191 _Idate_192 _Idate_193 _Idate_194 _Idate_195 _Idate_196 _Idate > _197 _Idate_198 _Idate_199 _Idate_200 _Idate_201 _Idate_202 _Idate_203 _Idate > _204 _Idate_205 _Idate_206 _Idate_207 ( 1) _Idate_101 = 0 ( 2) _Idate_101 = 0 ( 3) _Idate_102 = 0 ( 4) _Idate_103 = 0 ( 5) _Idate_104 = 0 ( 6) _Idate_105 = 0 ( 7) _Idate_106 = 0 ( 8) _Idate_107 = 0 ( 9) _Idate_108 = 0 (10) _Idate_109 = 0 (11) _Idate_110 = 0 (12) _Idate_111 = 0 (13) _Idate_112 = 0 (14) _Idate_113 = 0 (15) _Idate_114 = 0 (16) _Idate_115 = 0 (17) _Idate_116 = 0 (18) _Idate_117 = 0 (19) _Idate_118 = 0 (20) _Idate_119 = 0 (21) _Idate_120 = 0 (22) _Idate_121 = 0 (23) _Idate_122 = 0 (24) _Idate_123 = 0 (25) _Idate_124 = 0 (26) _Idate_125 = 0 (27) _Idate_126 = 0 (28) _Idate_127 = 0 (29) _Idate_128 = 0 (30) _Idate_129 = 0 (31) _Idate_130 = 0 (32) _Idate_131 = 0

63  

(33) _Idate_132 = 0 (34) _Idate_133 = 0 (35) _Idate_134 = 0 (36) _Idate_135 = 0 (37) _Idate_136 = 0 (38) _Idate_137 = 0 (39) _Idate_138 = 0 (40) _Idate_139 = 0 (41) _Idate_140 = 0 (42) _Idate_141 = 0 (43) _Idate_142 = 0 (44) _Idate_143 = 0 (45) _Idate_144 = 0 (46) _Idate_145 = 0 (47) _Idate_146 = 0 (48) _Idate_147 = 0 (49) _Idate_148 = 0 (50) _Idate_149 = 0 (51) _Idate_150 = 0 (52) _Idate_151 = 0 (53) _Idate_152 = 0 (54) _Idate_153 = 0 (55) _Idate_154 = 0 (56) _Idate_155 = 0 (57) _Idate_156 = 0 (58) _Idate_157 = 0 (59) _Idate_158 = 0 (60) _Idate_159 = 0 (61) _Idate_160 = 0 (62) _Idate_161 = 0 (63) _Idate_162 = 0 (64) _Idate_163 = 0 (65) _Idate_164 = 0 (66) _Idate_165 = 0 (67) _Idate_166 = 0 (68) _Idate_167 = 0 (69) _Idate_168 = 0 (70) _Idate_169 = 0 (71) _Idate_170 = 0 (72) _Idate_171 = 0 (73) _Idate_172 = 0 (74) _Idate_173 = 0 (75) _Idate_174 = 0 (76) _Idate_175 = 0 (77) _Idate_176 = 0 (78) _Idate_177 = 0 (79) _Idate_178 = 0 (80) _Idate_179 = 0 (81) _Idate_180 = 0 (82) _Idate_181 = 0 (83) _Idate_182 = 0 (84) _Idate_183 = 0 (85) _Idate_184 = 0 (86) _Idate_185 = 0 (87) _Idate_186 = 0 (88) _Idate_187 = 0 (89) _Idate_188 = 0 (90) _Idate_189 = 0 (91) _Idate_190 = 0 (92) _Idate_191 = 0 (93) _Idate_192 = 0 (94) _Idate_193 = 0 (95) _Idate_194 = 0

64  

(96) _Idate_195 = 0 (97) _Idate_196 = 0 (98) _Idate_197 = 0 (99) _Idate_198 = 0 (100) _Idate_199 = 0 (101) _Idate_200 = 0 (102) _Idate_201 = 0 (103) _Idate_202 = 0 (104) _Idate_203 = 0 (105) _Idate_204 = 0 (106) _Idate_205 = 0 (107) _Idate_206 = 0 (108) _Idate_207 = 0 Constraint 2 dropped Constraint 37 dropped Constraint 77 dropped Constraint 108 dropped F(104, 424) = 2.76 Prob > F = 0.0000 . test _Icountry_2 _Icountry_3 _Icountry_4 _Icountry_5 _Icountry_5 ( 1) _Icountry_2 = 0 ( 2) _Icountry_3 = 0 ( 3) _Icountry_4 = 0 ( 4) _Icountry_5 = 0 ( 5) _Icountry_5 = 0 Constraint 3 dropped Constraint 5 dropped F( 3, 424) = 2501.12 Prob > F = 0.0000

   B.4.  Random  Effects  Model  . xtreg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdreercpi lndis > tccd, re Random-effects GLS regression Number of obs = 538 Group variable: country Number of groups = 5 R-sq: within = 0.6935 Obs per group: min = 106 between = 0.4306 avg = 107.6 overall = 0.3833 max = 108 Random effects u_i ~ Gaussian Wald chi2(6) = 329.99 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ lnexpccd | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnccdgdp | 1.230835 .2621193 4.70 0.000 .7170904 1.744579 lnphlgdp | 1.191862 .2564039 4.65 0.000 .68932 1.694405 lnphlreercpi | -.2893485 .426174 -0.68 0.497 -1.124634 .5459372 lnchireercpi | -.341649 .2994596 -1.14 0.254 -.9285791 .245281 lnccdreercpi | 3.731582 .4709234 7.92 0.000 2.808589 4.654575 lndistccd | .2713164 .0782548 3.47 0.001 .1179399 .4246929 _cons | -21.40541 3.432038 -6.24 0.000 -28.13208 -14.67874 -------------+---------------------------------------------------------------- sigma_u | 0 sigma_e | .32991808

65  

rho | 0 (fraction of variance due to u_i) ------------------------------------------------------------------------------    B.5.  Breusch  Pagan  Test  for  Random  Effects   . xttest0 Breusch and Pagan Lagrangian multiplier test for random effects lnexpccd[country,t] = Xb + u[country] + e[country,t] Estimated results: | Var sd = sqrt(Var) ---------+----------------------------- lnexpccd | 2.010476 1.417913 e | .1088459 .3299181 u | 0 0 Test: Var(u) = 0 chi2(1) = 19147.89 Prob > chi2 = 0.0000

 B.6.  Hausman  Test    . quietly xi: reg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdree > rcpi lndistccd i.country i.date . . est store fixed . quietly xtreg lnexpccd lnccdgdp lnphlgdp lnphlreercpi lnchireercpi lnccdreerc > pi lndistccd ,re . . est store random . hausman fixed random ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | fixed random Difference S.E. -------------+---------------------------------------------------------------- lnccdgdp | 1.092438 1.230835 -.1383968 . lnphlgdp | .6311058 1.191862 -.5607566 . lnphlreercpi | -1.39517 -.2893485 -1.105822 .2495744 lnchireercpi | .1771066 -.341649 .5187556 . lnccdreercpi | .0869852 3.731582 -3.644597 . lndistccd | -1.929546 .2713164 -2.200863 . ------------------------------------------------------------------------------ b = consistent under Ho and Ha; obtained from regress B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(6) = (b-B)'[(V_b-V_B)^(-1)](b-B) = -1458.20 chi2<0 ==> model fitted on these data fails to meet the asymptotic assumptions of the Hausman test; see suest for a generalized test

 

66  

B.7.  Within-­‐Group  Model  (WG)    . summarize Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- countrycode | 0 country | 540 3 1.415525 1 5 year | 540 1997.991 7.791932 1985 2011 quarter | 540 2.5 1.119071 1 4 date | 540 153.5 31.20448 100 207 -------------+-------------------------------------------------------- lnccdgdp | 538 4.374611 .3165174 3.216513 4.980891 lnexpccd | 540 5.770838 1.416291 2.658159 8.058546 lnphlgdp | 540 4.363044 .3209843 3.773726 4.959419 lnphlreercpi | 540 4.796716 .1266372 4.528257 5.135604 lnchireercpi | 540 4.734487 .1790048 4.363345 5.365547 -------------+-------------------------------------------------------- lndistccd | 540 8.651345 .6732409 7.780721 9.531844 lnccdreercpi | 540 4.621836 .1103558 4.337121 5.009722 _Icountry_2 | 540 .2 .4003709 0 1 _Icountry_3 | 540 .2 .4003709 0 1 _Icountry_4 | 540 .2 .4003709 0 1 -------------+-------------------------------------------------------- _Icountry_5 | 540 .2 .4003709 0 1 _Idate_101 | 540 .0092593 .0958673 0 1 _Idate_102 | 540 .0092593 .0958673 0 1 _Idate_103 | 540 .0092593 .0958673 0 1 _Idate_104 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_105 | 540 .0092593 .0958673 0 1 _Idate_106 | 540 .0092593 .0958673 0 1 _Idate_107 | 540 .0092593 .0958673 0 1 _Idate_108 | 540 .0092593 .0958673 0 1 _Idate_109 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_110 | 540 .0092593 .0958673 0 1 _Idate_111 | 540 .0092593 .0958673 0 1 _Idate_112 | 540 .0092593 .0958673 0 1 _Idate_113 | 540 .0092593 .0958673 0 1 _Idate_114 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_115 | 540 .0092593 .0958673 0 1 _Idate_116 | 540 .0092593 .0958673 0 1 _Idate_117 | 540 .0092593 .0958673 0 1 _Idate_118 | 540 .0092593 .0958673 0 1 _Idate_119 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_120 | 540 .0092593 .0958673 0 1 _Idate_121 | 540 .0092593 .0958673 0 1 _Idate_122 | 540 .0092593 .0958673 0 1 _Idate_123 | 540 .0092593 .0958673 0 1 _Idate_124 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_125 | 540 .0092593 .0958673 0 1 _Idate_126 | 540 .0092593 .0958673 0 1 _Idate_127 | 540 .0092593 .0958673 0 1 _Idate_128 | 540 .0092593 .0958673 0 1 _Idate_129 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_130 | 540 .0092593 .0958673 0 1 _Idate_131 | 540 .0092593 .0958673 0 1

67  

_Idate_132 | 540 .0092593 .0958673 0 1 _Idate_133 | 540 .0092593 .0958673 0 1 _Idate_134 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_135 | 540 .0092593 .0958673 0 1 _Idate_136 | 540 .0092593 .0958673 0 1 _Idate_137 | 540 .0092593 .0958673 0 1 _Idate_138 | 540 .0092593 .0958673 0 1 _Idate_139 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_140 | 540 .0092593 .0958673 0 1 _Idate_141 | 540 .0092593 .0958673 0 1 _Idate_142 | 540 .0092593 .0958673 0 1 _Idate_143 | 540 .0092593 .0958673 0 1 _Idate_144 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_145 | 540 .0092593 .0958673 0 1 _Idate_146 | 540 .0092593 .0958673 0 1 _Idate_147 | 540 .0092593 .0958673 0 1 _Idate_148 | 540 .0092593 .0958673 0 1 _Idate_149 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_150 | 540 .0092593 .0958673 0 1 _Idate_151 | 540 .0092593 .0958673 0 1 _Idate_152 | 540 .0092593 .0958673 0 1 _Idate_153 | 540 .0092593 .0958673 0 1 _Idate_154 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_155 | 540 .0092593 .0958673 0 1 _Idate_156 | 540 .0092593 .0958673 0 1 _Idate_157 | 540 .0092593 .0958673 0 1 _Idate_158 | 540 .0092593 .0958673 0 1 _Idate_159 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_160 | 540 .0092593 .0958673 0 1 _Idate_161 | 540 .0092593 .0958673 0 1 _Idate_162 | 540 .0092593 .0958673 0 1 _Idate_163 | 540 .0092593 .0958673 0 1 _Idate_164 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_165 | 540 .0092593 .0958673 0 1 _Idate_166 | 540 .0092593 .0958673 0 1 _Idate_167 | 540 .0092593 .0958673 0 1 _Idate_168 | 540 .0092593 .0958673 0 1 _Idate_169 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_170 | 540 .0092593 .0958673 0 1 _Idate_171 | 540 .0092593 .0958673 0 1 _Idate_172 | 540 .0092593 .0958673 0 1 _Idate_173 | 540 .0092593 .0958673 0 1 _Idate_174 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_175 | 540 .0092593 .0958673 0 1 _Idate_176 | 540 .0092593 .0958673 0 1 _Idate_177 | 540 .0092593 .0958673 0 1 _Idate_178 | 540 .0092593 .0958673 0 1 _Idate_179 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_180 | 540 .0092593 .0958673 0 1 _Idate_181 | 540 .0092593 .0958673 0 1 _Idate_182 | 540 .0092593 .0958673 0 1 _Idate_183 | 540 .0092593 .0958673 0 1 _Idate_184 | 540 .0092593 .0958673 0 1

68  

-------------+-------------------------------------------------------- _Idate_185 | 540 .0092593 .0958673 0 1 _Idate_186 | 540 .0092593 .0958673 0 1 _Idate_187 | 540 .0092593 .0958673 0 1 _Idate_188 | 540 .0092593 .0958673 0 1 _Idate_189 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_190 | 540 .0092593 .0958673 0 1 _Idate_191 | 540 .0092593 .0958673 0 1 _Idate_192 | 540 .0092593 .0958673 0 1 _Idate_193 | 540 .0092593 .0958673 0 1 _Idate_194 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_195 | 540 .0092593 .0958673 0 1 _Idate_196 | 540 .0092593 .0958673 0 1 _Idate_197 | 540 .0092593 .0958673 0 1 _Idate_198 | 540 .0092593 .0958673 0 1 _Idate_199 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_200 | 540 .0092593 .0958673 0 1 _Idate_201 | 540 .0092593 .0958673 0 1 _Idate_202 | 540 .0092593 .0958673 0 1 _Idate_203 | 540 .0092593 .0958673 0 1 _Idate_204 | 540 .0092593 .0958673 0 1 -------------+-------------------------------------------------------- _Idate_205 | 540 .0092593 .0958673 0 1 _Idate_206 | 540 .0092593 .0958673 0 1 _Idate_207 | 540 .0092593 .0958673 0 1 _est_fixed | 540 .9962963 .0608016 0 1 _est_random | 540 .9962963 .0608016 0 1 . gen lnccdgdpwg = lnccdgdp - 4.374611 (2 missing values generated) . gen lndistccdwg = lndistccd - 8.651345 . gen lnccdreercpiwg = lnccdreercpi - 4.621836 . gen lnphlgdpwg = lnphlgdp - 4.363044 . gen lnphlreercpiwg = lnphlreercpi - 4.796716 . gen lnchireercpiwg = lnchireercpi - 4.734487 . edit - preserve . gen lnexpccdwg = lnexpccd - 5.770838 . reg lnexpccdwg lnccdgdpwg lnphlgdpwg lnphlreercpiwg lnchireercpiwg lnccdreerc > piwg lndistccdwg Source | SS df MS Number of obs = 538 -------------+------------------------------ F( 6, 531) = 55.00 Model | 413.785257 6 68.9642096 Prob > F = 0.0000 Residual | 665.84031 531 1.25393655 R-squared = 0.3833 -------------+------------------------------ Adj R-squared = 0.3763 Total | 1079.62557 537 2.01047592 Root MSE = 1.1198 ------------------------------------------------------------------------------ lnexpccdwg | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lnccdgdpwg | 1.230835 .2621193 4.70 0.000 .7159167 1.745753

69  

lnphlgdpwg | 1.191862 .2564039 4.65 0.000 .688172 1.695553 lnphlreerc~g | -.2893485 .426174 -0.68 0.497 -1.126542 .5478455 lnchireerc~g | -.341649 .2994596 -1.14 0.254 -.9299199 .2466218 lnccdreerc~g | 3.731582 .4709234 7.92 0.000 2.806481 4.656684 lndistccdwg | .2713164 .0782548 3.47 0.001 .1175895 .4250433 _cons | -.0031217 .0482784 -0.06 0.948 -.0979618 .0917184 ------------------------------------------------------------------------------