Indian Institute of Technology Guwahati

14
Indian Institute of Technology Guwahati ME 101: Engineering Mechanics (2016-2017, Sem II) Quiz-1 (30.01.2017) Time: 8:00 AM โ€“ 8:55 AM Full Marks: 60 Q1. A piece of sheet metal is bent into the shape shown (Fig.1) and is acted upon by three forces. If the forces have the same magnitude P, replace them with an equivalent wrench. Determine the following: (a) Magnitude and the direction of the resultant force [4 marks] (b) Magnitude and the direction of moment of the wrench [8 marks] (c) Locate the point where the axis of the wrench intersects the xy plane [8 marks] Model Answer for Q1: First reduce the given forces to an equivalent force-couple system (R , M O R ) at the origin. (a) We have R =โˆ‘F =F 1 +F 2 +F 3 = โˆ’ฬ‡ + + ฬ‡ = (b) M O R =โˆ‘M o =โˆ‘r ร—F (using Varignonโ€™s Theorem) =r 1 ร— F 1 +r 2 ร—F 2 +r 3 ร—F 3 = ฬ‡ ร— (โˆ’ฬ‡ ) + (ฬ‡ + ) ร— ( )+( 5 2 ฬ‡ + ) ร— (ฬ‡ ) = โˆ’()ฬ‡ โˆ’ ()ฬ‡ +( 5 2 ) M O R = (โˆ’ฬ‡ โˆ’ ฬ‡ + 5 2 ) R = P Direction of resultant force is along +ve z axis

Transcript of Indian Institute of Technology Guwahati

Indian Institute of Technology Guwahati ME 101: Engineering Mechanics (2016-2017, Sem II)

Quiz-1 (30.01.2017)

Time: 8:00 AM โ€“ 8:55 AM Full Marks: 60 Q1. A piece of sheet metal is bent into the shape shown (Fig.1) and is acted upon by three forces. If the

forces have the same magnitude P, replace them with an equivalent wrench. Determine the following:

(a) Magnitude and the direction of the resultant force [4 marks]

(b) Magnitude and the direction of moment of the wrench [8 marks]

(c) Locate the point where the axis of the wrench intersects the xy plane [8 marks]

Model Answer for Q1:

First reduce the given forces to an equivalent force-couple system (R, MOR) at the origin.

(a) We have

R = โˆ‘ F = F1 + F2 + F3

= โˆ’๐‘ƒ๐‘—ฬ‡ฬ‚ + ๐‘ƒ๏ฟฝฬ‚๏ฟฝ + ๐‘ƒ๐‘—ฬ‡ฬ‚ = ๐‘ƒ๏ฟฝฬ‚๏ฟฝ

(b)

MOR = โˆ‘ Mo = โˆ‘ r ร— F (using Varignonโ€™s Theorem)

= r1 ร— F1 + r2 ร— F2 + r3 ร— F3

= ๐‘Ž๐‘—ฬ‡ฬ‚ ร— (โˆ’๐‘ƒ๐‘—ฬ‡ฬ‚) + (๐‘Ž๐‘–ฬ‡ฬ‚ + ๐‘Ž๏ฟฝฬ‚๏ฟฝ) ร— (๐‘ƒ๏ฟฝฬ‚๏ฟฝ) + (5

2๐‘Ž๐‘–ฬ‡ฬ‚ + ๐‘Ž๏ฟฝฬ‚๏ฟฝ) ร— (๐‘ƒ๐‘—ฬ‡ฬ‚)

= โˆ’(๐‘Ž๐‘ƒ)๐‘–ฬ‡ฬ‚ โˆ’ (๐‘Ž๐‘ƒ)๐‘—ฬ‡ฬ‚ + (5

2๐‘Ž๐‘ƒ) ๏ฟฝฬ‚๏ฟฝ

MOR = ๐‘Ž๐‘ƒ(โˆ’๐‘–ฬ‡ฬ‚ โˆ’ ๐‘—ฬ‡ฬ‚ +

5

2๏ฟฝฬ‚๏ฟฝ)

R = P

Direction of resultant force is

along +ve z axis

Then for the wrench,

and

cos ๐œƒ๐‘ฅ = 0 cos ๐œƒ๐‘ฆ = 0 cos ๐œƒ๐‘ง = 1

or ๐œƒ๐‘ฅ = 90ยฐ ๐œƒ๐‘ฆ = 90ยฐ ๐œƒ๐‘ง = 0ยฐ

Now,

M1 = ๏ฟฝฬ‚๏ฟฝ๐‘Ž๐‘ฅ๐‘–๐‘  โˆ™ MOR

= ๏ฟฝฬ‚๏ฟฝ โˆ™ ๐‘Ž๐‘ƒ (โˆ’๐‘–ฬ‡ฬ‚ โˆ’ ๐‘—ฬ‡ฬ‚ +5

2๏ฟฝฬ‚๏ฟฝ) =

5

2๐‘Ž๐‘ƒ

(c) The components of the wrench are (R, M1) , where M1 = M1๏ฟฝฬ‚๏ฟฝ๐‘Ž๐‘ฅ๐‘–๐‘  , and the axis of the wrench is assumed to

intersect the xy-plane at point Q, whose coordinates are (๐‘ฅ, ๐‘ฆ, 0). Thus, we require

M2 = rQ ร— R

Where M2 = MOR โˆ’ M1

Then

rQ ร— R = MOR โˆ’ M1

(๐‘ฅ๐‘–ฬ‡ฬ‚ + ๐‘ฆ๐‘—ฬ‡ฬ‚) ร— ๐‘ƒ๏ฟฝฬ‚๏ฟฝ = ๐‘Ž๐‘ƒ (โˆ’๐‘–ฬ‡ฬ‚ โˆ’ ๐‘—ฬ‡ฬ‚ +5

2๏ฟฝฬ‚๏ฟฝ) โˆ’

5

2๐‘Ž๐‘ƒ๏ฟฝฬ‚๏ฟฝ

โˆ’๐‘ฅ๐‘ƒ ๐‘—ฬ‡ฬ‚ + ๐‘ฆ๐‘ƒ ๐‘–ฬ‡ฬ‚ = ๐‘Ž๐‘ƒ (โˆ’๐‘–ฬ‡ฬ‚ โˆ’ ๐‘—ฬ‡ฬ‚)

Equating coefficients:

๐‘–ฬ‡ฬ‚: ๐‘ฆ๐‘ƒ = โˆ’๐‘Ž๐‘ƒ or ๐‘ฆ = โˆ’๐‘Ž

๐‘—ฬ‡ฬ‚ : โˆ’ ๐‘ฅ๐‘ƒ = โˆ’๐‘Ž๐‘ƒ or ๐‘ฅ = ๐‘Ž

The axis of the wrench is parallel to the z-axis and intersects the xy-plane at

Alternate Model Answer for Q1:

First reduce the given forces to an equivalent force-

couple system (R, MOR) at the origin.

(a) We have

R = โˆ‘ F = F1 + F2 + F3

= โˆ’๐‘ƒ๐‘—ฬ‡ฬ‚ + ๐‘ƒ๏ฟฝฬ‚๏ฟฝ + ๐‘ƒ๐‘—ฬ‡ฬ‚ = ๐‘ƒ๏ฟฝฬ‚๏ฟฝ

or ,

๐‘ฅ = ๐‘Ž, ๐‘ฆ = โˆ’๐‘Ž

๏ฟฝฬ‚๏ฟฝ๐‘Ž๐‘ฅ๐‘–๐‘  = (R

Rโ„ ) = ๏ฟฝฬ‚๏ฟฝ

M1 =5

2๐‘Ž๐‘ƒ

Direction of moment of the wrench is along +ve z axis

R = P

Direction of resultant force is along

+ve z axis

M1 =5

2 ๐‘Ž๐‘ƒ, Direction of

moment of the wrench is

along +ve z axis

(b), (c)

Let Q (๐‘ฅ, ๐‘ฆ, 0) be the point of intersection of the line of action of the moment of the wrench and xy-plane. The

components of the wrench are (R, M1) and rQ is the position vector of point Q.

Now, MOR = M1 + rQ ร— ๐‘…, for moment about O

MQR = MO

R โˆ’ rQ ร— ๐‘…, for moment about Q

So, M1 = MQR

The direction of the moment of the wrench i.e. M1 and resultant force R should be same.

So, M1 = M1 ๏ฟฝฬ‚๏ฟฝ

MQR = โˆ‘ MQ = โˆ‘ r ร— F (using Varignonโ€™s Theorem)

= r1 ร— F1 + r2 ร— F2 + r3 ร— F3

Here, r1 = [โˆ’๐‘ฅ๐‘–ฬ‡ฬ‚ + (๐‘Ž โˆ’ ๐‘ฆ)๐‘—ฬ‡ฬ‚] , r2 = [(๐‘Ž โˆ’ ๐‘ฅ)๐‘–ฬ‡ฬ‚ โˆ’ ๐‘ฆ๐‘—ฬ‡ฬ‚ + ๐‘Ž๏ฟฝฬ‚๏ฟฝ] , r3 = [(5

2๐‘Ž โˆ’ ๐‘ฅ) ๐‘–ฬ‡ฬ‚ โˆ’ ๐‘ฆ๐‘—ฬ‡ฬ‚ + ๐‘Ž๏ฟฝฬ‚๏ฟฝ]

Hence,

MQR = [โˆ’๐‘ฅ๐‘–ฬ‡ฬ‚ + (๐‘Ž โˆ’ ๐‘ฆ)๐‘—ฬ‡ฬ‚] ร— (โˆ’๐‘ƒ๐‘—ฬ‡ฬ‚) + [(๐‘Ž โˆ’ ๐‘ฅ)๐‘–ฬ‡ฬ‚ โˆ’ ๐‘ฆ๐‘—ฬ‡ฬ‚ + ๐‘Ž๏ฟฝฬ‚๏ฟฝ] ร— (๐‘ƒ๏ฟฝฬ‚๏ฟฝ) + [(

5

2๐‘Ž โˆ’ ๐‘ฅ) ๐‘–ฬ‡ฬ‚ โˆ’ ๐‘ฆ๐‘—ฬ‡ฬ‚ + ๐‘Ž๏ฟฝฬ‚๏ฟฝ] ร— (๐‘ƒ๐‘—ฬ‡ฬ‚)

= โˆ’๐‘ƒ (๐‘ฆ + ๐‘Ž)๐‘–ฬ‡ฬ‚ โˆ’ ๐‘ƒ(๐‘Ž โˆ’ ๐‘ฅ)๐‘—ฬ‡ฬ‚ + [๐‘ƒ๐‘ฅ + ๐‘ƒ (5

2๐‘Ž โˆ’ ๐‘ฅ)] ๏ฟฝฬ‚๏ฟฝ

M1๏ฟฝฬ‚๏ฟฝ = โˆ’๐‘ƒ(๐‘ฆ + ๐‘Ž)๐‘–ฬ‡ฬ‚ โˆ’ ๐‘ƒ(๐‘Ž โˆ’ ๐‘ฅ)๐‘—ฬ‡ฬ‚ + [๐‘ƒ๐‘ฅ + ๐‘ƒ (5

2๐‘Ž โˆ’ ๐‘ฅ)] ๏ฟฝฬ‚๏ฟฝ

Equating coefficients:

Hence, ๐‘–ฬ‡ฬ‚ : โˆ’ ๐‘ฆ๐‘ƒ โˆ’ ๐‘Ž๐‘ƒ = 0 โ‡’ ๐‘ฆ = โˆ’๐‘Ž

๐‘—ฬ‡ฬ‚ : โˆ’ ๐‘ƒ ร— (๐‘Ž โˆ’ ๐‘ฅ) = 0 โ‡’ ๐‘ฅ = ๐‘Ž

๏ฟฝฬ‚๏ฟฝ: M1 = ๐‘ƒ ๐‘ฅ + ๐‘ƒ (5

2๐‘Ž โˆ’ ๐‘ฅ) = ๐‘ƒ๐‘Ž +

3

2 ๐‘ƒ๐‘Ž =

5

2 ๐‘Ž๐‘ƒ

Answer (b):

Answer (c):

๐‘ฅ = ๐‘Ž, ๐‘ฆ = โˆ’๐‘Ž

Q2. A weight of 1200 N is supported by a rope through a frictionless pulley in conjunction with a system of

beam and bent member as shown in Fig. 2. Please note that joints A, B and D are pinned joints.

(a) Draw the free body diagrams for members AB and BCD. [8 marks]

(b) Find the support reaction at A [12 marks]

Alternate Model Answer for Q2:

Q3. Analyze the truss as shown in Fig. 3 using the method of joints. Determine the following:

(a) Find out the support reactions [3 marks]

(b) Identify the zero force members [4 marks]

(c) Calculate force in the each member with clearly identifying whether the member is

in tension (T) or compression (C). [13 marks]

Solution: (METHOD-1)

Part-a)

Total vertical force acting on Joint D = 40 sin 45 = 28.28 ๐‘˜๐‘

Total horizontal force acting on Joint D = 40 cos 45 = 28.28 ๐‘˜๐‘

+โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐ด๐‘ฅ + 28.28 ๐‘˜๐‘ = 0

โˆด ๐‘จ๐’™ = ๐Ÿ๐Ÿ–. ๐Ÿ๐Ÿ– ๐’Œ๐‘ต (โ†)

Due to symmetry w.r.t the vertical load,

๐‘จ๐’š = ๐‘ฎ๐’š =๐Ÿ๐Ÿ–.๐Ÿ๐Ÿ–

๐Ÿ= ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’Œ๐‘ต (โ†‘)

Part-b) Using the principles of zero force member identification, referring to lecture-5 slides 8, 9 and 10,

we have:

Stepwise with correct sequence:

LB and HF are zero force members

LC and HE are zero force members

KC and IE are zero force members

KD and ID are zero force members

Part-c)

Now that the zero force members have been identified, the truss to be solved, effectively, is (The zero force

members have been grayed out) โ€“

Applying force equilibrium at joints, we get,

Joint A: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐ด๐ต + ๐น๐ด๐ฟ cos 45 โˆ’ 28.28 = 0

โˆด ๐‘ญ๐‘จ๐‘ฉ = ๐Ÿ’๐Ÿ. ๐Ÿ’๐Ÿ ๐’Œ๐‘ต (๐‘ป)

โ†‘ + ๐šบ๐‘ญ๐’š = ๐ŸŽ ๐น๐ด๐ฟ sin 45 + 14.14 = 0

โˆด ๐‘ญ๐‘จ๐‘ณ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช)

Joint L:

Only members AL and LK are joined here and they are connected in a straight line (LB and LC are zero

force members). Thus,

+โ†’ ๐šบ๐… = ๐ŸŽ ๐‘ญ๐‘ณ๐‘ฒ = ๐‘ญ๐‘จ๐‘ณ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช)

Joint K: Similar to Joint L,

+โ†’ ๐šบ๐‘ญ = ๐ŸŽ ๐‘ญ๐‘ฒ๐‘ฑ = ๐‘ญ๐‘ณ๐‘ฒ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช)

Joint B: Similar to Joint L,

+โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐‘ญ๐‘ฉ๐‘ช = ๐‘ญ๐‘ฉ๐‘จ = ๐Ÿ’๐Ÿ. ๐Ÿ’๐Ÿ ๐’Œ๐‘ต (๐‘ป)

Joint C: Similar to Joint L,

+โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐‘ญ๐‘ช๐‘ซ = ๐‘ญ๐‘ฉ๐‘ช = ๐Ÿ’๐Ÿ. ๐Ÿ’๐Ÿ ๐’Œ๐‘ต (๐‘ป)

Joint J:

+โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐ฝ๐ผ๐‘๐‘œ๐‘  45 = ๐น๐ฝ๐พ cos 45

โˆด ๐‘ญ๐‘ฑ๐‘ฐ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช)

โ†‘ + ๐šบ๐‘ญ๐’š = ๐ŸŽ โˆ’๐น๐ฝ๐ผ๐‘ ๐‘–๐‘› 45 โˆ’ ๐น๐ฝ๐พ sin 45 โˆ’ ๐น๐ฝ๐ท = 0

โˆด ๐‘ญ๐‘ฑ๐‘ซ = ๐Ÿ๐Ÿ–. ๐Ÿ๐Ÿ– ๐’Œ๐‘ต (๐‘ป)

Joint D:

+โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐ท๐ธ + 28.28 โˆ’ ๐น๐ท๐ถ = 0

โˆด ๐‘ญ๐‘ซ๐‘ฌ = ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’Œ๐‘ต(๐‘ป)

Due to geometrical symmetry and vertical load symmetry, the forces in the following members are equal,

given as:

๐‘ญ๐‘ฏ๐‘ฎ = ๐‘ญ๐‘จ๐‘ณ = ๐‘ญ๐‘ณ๐‘ฒ = ๐‘ญ๐‘ฏ๐‘ฐ = ๐‘ญ๐‘ฒ๐‘ฑ = ๐‘ญ๐‘ฐ๐‘ฑ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช)

Due to asymmetry w.r.t. horizontal load, the forces in the following members are obtained as given below:

Joint E: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐‘ญ๐‘ฌ๐‘ญ = ๐‘ญ๐‘ซ๐‘ฌ = ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’Œ๐‘ต (๐‘ป)

Joint F: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐‘ญ๐‘ญ๐‘ฎ = ๐‘ญ๐‘ฌ๐‘ญ = ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’Œ๐‘ต (๐‘ป)

The summary of all the member forces is provided in the next page.

๐‘ญ๐‘ฏ๐‘ฎ = ๐‘ญ๐‘จ๐‘ณ = ๐‘ญ๐‘ณ๐‘ฒ = ๐‘ญ๐‘ฏ๐‘ฐ = ๐‘ญ๐‘ฒ๐‘ฑ = ๐‘ญ๐‘ฐ๐‘ฑ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช)

๐‘ญ๐‘ฉ๐‘ณ = ๐‘ญ๐‘ญ๐‘ฏ = ๐‘ญ๐‘ช๐‘ณ = ๐‘ญ๐‘ฌ๐‘ฏ = ๐‘ญ๐‘ช๐‘ฒ = ๐‘ญ๐‘ฌ๐‘ฐ = ๐‘ญ๐‘ซ๐‘ฒ = ๐‘ญ๐‘ซ๐‘ฐ = ๐ŸŽ (i.e., zero force members)

๐‘ญ๐‘ฌ๐‘ญ = ๐‘ญ๐‘ซ๐‘ฌ = ๐‘ญ๐‘ญ๐‘ฎ = ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’Œ๐‘ต (๐‘ป)

๐‘ญ๐‘ฑ๐‘ซ = ๐Ÿ๐Ÿ–. ๐Ÿ๐Ÿ– ๐’Œ๐‘ต (๐‘ป)

๐‘ญ๐‘ฉ๐‘ช = ๐‘ญ๐‘ฉ๐‘จ = ๐‘ญ๐‘ช๐‘ซ = ๐Ÿ’๐Ÿ. ๐Ÿ’๐Ÿ ๐’Œ๐‘ต (๐‘ป)

Solution: (METHOD-2) (Not preferable)

Part-a)

Total vertical force acting on Joint D = 40 sin 45 = 28.28 ๐‘˜๐‘

Total horizontal force acting on Joint D = 40 cos 45 = 28.28 ๐‘˜๐‘

+โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐ด๐‘ฅ + 28.28 ๐‘˜๐‘ = 0

โˆด ๐‘จ๐’™ = ๐Ÿ๐Ÿ–. ๐Ÿ๐Ÿ– ๐’Œ๐‘ต (โ†)

Due to symmetry w.r.t the vertical load,

๐‘จ๐’š = ๐‘ฎ๐’š =๐Ÿ๐Ÿ–.๐Ÿ๐Ÿ–

๐Ÿ= ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’Œ๐‘ต (โ†‘)

Part-b) Using the principles of zero force member identification, referring to lecture-5 slides 8, 9 and 10,

we have:

Stepwise with correct sequence:

LB and HF are zero force members

LC and HE are zero force members

KC and IE are zero force members

KD and ID are zero force members

Part c)

Joint A: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐ด๐ต + ๐น๐ด๐ฟ cos 45 โˆ’ 28.28 = 0

โˆด ๐‘ญ๐‘จ๐‘ฉ = ๐Ÿ’๐Ÿ. ๐Ÿ’๐Ÿ ๐’Œ๐‘ต (๐‘ป)

โ†‘ + ๐šบ๐‘ญ๐’š = ๐ŸŽ ๐น๐ด๐ฟ sin 45 + 14.14 = 0

โˆด ๐‘ญ๐‘จ๐‘ณ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช)

Joint L: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐ฟ๐พ cos 45 + ๐น๐ฟ๐ถ cos 45 โˆ’ ๐น๐ด๐ฟ cos 45 = 0

๐น๐ฟ๐พ + ๐น๐ฟ๐ถ = โˆ’20

โ†‘ + ๐šบ๐‘ญ๐’š = ๐ŸŽ ๐น๐ฟ๐พ sin 45 โˆ’ ๐น๐ฟ๐ถ sin 45 โˆ’ ๐น๐ด๐ฟ sin 45 = 0

๐น๐ฟ๐พ โˆ’ ๐น๐ฟ๐ถ = โˆ’20

โˆด ๐‘ญ๐‘ณ๐‘ฒ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช) , ๐‘ญ๐‘ณ๐‘ช = ๐ŸŽ

Joint B: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐‘ญ๐‘ฉ๐‘ช = ๐‘ญ๐‘ฉ๐‘จ = ๐Ÿ’๐Ÿ. ๐Ÿ’๐Ÿ ๐’Œ๐‘ต (๐‘ป)

Joint C: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐ถ๐ท โˆ’ ๐น๐ถ๐ต โˆ’ ๐น๐ถ๐ฟ๐‘๐‘œ๐‘  45 = 0

โˆด ๐‘ญ๐‘ช๐‘ซ = ๐Ÿ’๐Ÿ. ๐Ÿ’๐Ÿ ๐’Œ๐‘ต (๐‘ป)

โ†‘ + ๐šบ๐‘ญ๐’š = ๐ŸŽ ๐น๐ถ๐พ + ๐น๐ถ๐ฟ๐‘ ๐‘–๐‘› 45 = 0

โˆด ๐‘ญ๐‘ช๐‘ฒ = ๐ŸŽ ๐’Œ๐‘ต

Joint K: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐พ๐ฝ๐‘๐‘œ๐‘  45 + ๐น๐พ๐ท cos 45 โˆ’ ๐น๐พ๐ฟ cos 45 = 0

๐น๐พ๐ฝ + ๐น๐พ๐ท = โˆ’20

โ†‘ + ๐šบ๐‘ญ๐’š = ๐ŸŽ ๐น๐พ๐ฝ๐‘ ๐‘–๐‘› 45 โˆ’ ๐น๐พ๐ท sin 45 โˆ’ ๐น๐พ๐ฟ sin 45 = 0

๐น๐พ๐ฝ โˆ’ ๐น๐พ๐ท = โˆ’20

โˆด ๐‘ญ๐‘ฒ๐‘ฑ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช) , ๐‘ญ๐‘ฒ๐‘ซ = ๐ŸŽ

Joint J: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐ฝ๐ผ๐‘๐‘œ๐‘  45 = ๐น๐ฝ๐พ cos 45

โˆด ๐‘ญ๐‘ฑ๐‘ฐ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช)

โ†‘ + ๐šบ๐‘ญ๐’š = ๐ŸŽ โˆ’๐น๐ฝ๐ผ๐‘ ๐‘–๐‘› 45 โˆ’ ๐น๐ฝ๐พ sin 45 โˆ’ ๐น๐ฝ๐ท = 0

โˆด ๐‘ญ๐‘ฑ๐‘ซ = ๐Ÿ๐Ÿ–. ๐Ÿ๐Ÿ– ๐’Œ๐‘ต (๐‘ป)

Joint D: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐ท๐ธ + 28.28 โˆ’ ๐น๐ท๐ถ + ๐น๐ท๐ผ cos 63.43 โˆ’ ๐น๐ท๐พ cos 63.43 = 0

โˆด ๐น๐ท๐ธ + 0.447 ๐น๐ท๐ผ = 14.14

โ†‘ + ๐šบ๐‘ญ๐’š = ๐ŸŽ ๐น๐ท๐ฝ โˆ’ 28.28 + ๐น๐ท๐ผ sin 63.43 + ๐น๐ท๐พ sin 63.43 = 0

โˆด ๐‘ญ๐‘ซ๐‘ฐ = ๐ŸŽ

On substituting, ๐‘ญ๐‘ซ๐‘ฌ = ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’Œ๐‘ต (๐‘ป)

Due to geometrical symmetry and vertical load symmetry, the forces in the following members are equal,

given as:

๐‘ญ๐‘ฏ๐‘ฎ = ๐‘ญ๐‘จ๐‘ณ = ๐‘ญ๐‘ณ๐‘ฒ = ๐‘ญ๐‘ฏ๐‘ฐ = ๐‘ญ๐‘ฒ๐‘ฑ = ๐‘ญ๐‘ฐ๐‘ฑ = โˆ’๐Ÿ๐ŸŽ ๐’Œ๐‘ต (๐‘ช)

๐‘ญ๐‘ฉ๐‘ณ = ๐‘ญ๐‘ญ๐‘ฏ = ๐‘ญ๐‘ช๐‘ณ = ๐‘ญ๐‘ฌ๐‘ฏ = ๐‘ญ๐‘ช๐‘ฒ = ๐‘ญ๐‘ฌ๐‘ฐ = ๐‘ญ๐‘ซ๐‘ฒ = ๐‘ญ๐‘ซ๐‘ฐ = ๐ŸŽ (i.e., zero force members)

Due to asymmetry w.r.t. horizontal load, the forces in the following members are obtained as given below:

Joint E: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐ธ๐น โˆ’ ๐น๐ธ๐ท + ๐น๐ธ๐ป cos 45 = 0

โˆด ๐‘ญ๐‘ฌ๐‘ญ = ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’Œ๐‘ต(๐‘ป)

Joint F: +โ†’ ๐šบ๐‘ญ๐’™ = ๐ŸŽ ๐น๐น๐บ โˆ’ ๐น๐น๐ธ = 0

โˆด ๐‘ญ๐‘ญ๐‘ฎ = ๐Ÿ๐Ÿ’. ๐Ÿ๐Ÿ’ ๐’Œ๐‘ต (๐‘ป)