Identification of cancer-related genes by KRAS phylogenetics

16
Identification of cancerrelated genes by KRAS phylogenetics Joshua Elkington 1 1 Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138 double spaced The hundreds of eukaryotic genomes now sequenced allow the tracking of the evolution of human genes, and the analysis of patterns of their conservation across eukaryotic clades. Phylogenetic profiling describes the relative sequence conservation or divergence of orthologous proteins across a set of reference genomes. Proteins that functionally interact in common pathways or in protein complexes can show similar patterns of relaxation of conservation in phylogenetic clades that no longer require that complex, pathway, or function, or conversely show similar levels of relative conservation in organisms that continue to utilize those functions. Phylogenetic profiling has been used to predict gene functions (Eisen and Wu, 2002; Enault et al, 2004; Jiang, 2008), protein–protein interactions (Sun et al, 2005; Kim and Subramaniam, 2006), protein subcellular location (Marcotte et al, 2000; Pagliarini et al, 2008), cellular organelle location (AvidorReiss et al, 2004; Hodges et al, 2012), and gene annotation (Merchant et al, 2007). A number of improvements to phylogenetic profiling have increased its sensitivity and selectivity (RuanoRubio et al, 2009; Pellegrini, 2012). A modified phylogenetic profiling method that uses a continuous measure of relative conservation in each species revealed many new components of the Caenorhabditis elegans RNAi machinery (Tabach et al, 2013). Proteins with similar patterns of conservation or divergence across different organisms are more likely to act in the same pathways5. To identify proteins that share an evolutionary history with validated small RNA pathway proteins, we determined the phylogenetic profiles of approximately 20,000 C. elegans proteins in 85 genomes, representing diverse taxa of the eukaryotic tree of life: 33 animals, 6 land plants, 1 alga, 31 Ascomycota fungi, 3 Basidiomycota fungi and 12 protists. Of the ~20,000 C. elegans proteins, 10,054 show homologues in nonnematode

Transcript of Identification of cancer-related genes by KRAS phylogenetics

Identification  of  cancer-­‐related  genes  by  KRAS  phylogenetics    

Joshua  Elkington1  1Department  of  Molecular  and  Cellular  Biology,  Harvard  University  Cambridge,  MA  02138    double  spaced  

 

 

The  hundreds  of  eukaryotic  genomes  now  sequenced  allow  the  tracking  of  the  evolution  of  human  genes,  and  the  analysis  of  patterns  of  their  conservation  across  eukaryotic  clades.    

Phylogenetic  profiling  describes  the  relative  sequence  conservation  or  divergence  of  orthologous  proteins  across  a  set  of  reference  genomes.    

Proteins  that  functionally  interact  in  common  pathways  or  in  protein  complexes  can  show  similar  patterns  of  relaxation  of  conservation  in  phylogenetic  clades  that  no  longer  require  that  complex,  pathway,  or  function,  or  conversely  show  similar  levels  of  relative  conservation  in  organisms  that  continue  to  utilize  those  functions.  Phylogenetic  profiling  has  been  used  to  predict  gene  functions  (Eisen  and  Wu,  2002;  Enault  et  al,  2004;  Jiang,  2008),  protein–protein  interactions  (Sun  et  al,  2005;  Kim  and  Subramaniam,  2006),  protein  subcellular  location  (Marcotte  et  al,  2000;  Pagliarini  et  al,  2008),  cellular  organelle  location  (Avidor-­‐Reiss  et  al,  2004;  Hodges  et  al,  2012),  and  gene  annotation  (Merchant  et  al,  2007).  

A  number  of  improvements  to  phylogenetic  profiling  have  increased  its  sensitivity  and  selectivity  (Ruano-­‐Rubio  et  al,  2009;  Pellegrini,  2012).    

A  modified  phylogenetic  profiling  method  that  uses  a  continuous  measure  of  relative  conservation  in  each  species  revealed  many  new  components  of  the  Caenorhabditis  elegans  RNAi  machinery  (Tabach  et  al,  2013).  

Proteins  with  similar  patterns  of  conservation  or  divergence  across  different  organisms  are  more  likely  to  act  in  the  same  pathways5.  To  identify  proteins  that  share  an  evolutionary  history  with  validated  small  RNA  pathway  proteins,  we  determined  the  phylogenetic  profiles  of  approximately  20,000  C.  elegans  proteins  in  85  genomes,  representing  diverse  taxa  of  the  eukaryotic  tree  of  life:  33  animals,  6  land  plants,  1  alga,  31  Ascomycota  fungi,  3  Basidiomycota  fungi  and  12  protists.  Of  the  ~20,000  C.  elegans  proteins,  10,054  show  homologues  in  non-­‐nematode  

eukaryotic  genomes  (Supplementary  Table  1).  Following  correlation  and  clustering,  this  analysis  sorts  genes  into  clades  of  conservation  and  relative  divergence  or  loss  in  the  various  organisms  as  suites  of  genes  are  maintained  from  common  ancestors  or  diverge  in  particular  lineages6.  Protein  divergence  or  loss  in  particular  taxonomic  clades  is  not  random;  entire  suites  of  proteins  can  diverge  or  be  lost  as  particular  taxa  specialize  and  no  longer  require  ancestral  functions.  The  correlated  loss  of  proteins  has  been  used  to  assign  roles  for  nuclear-­‐encoded  mitochondrial  proteins7  and  eukaryotic  cilia-­‐associated  proteins8.  

We  developed  a  non-­‐binary  method  of  phylogenetic  profiling  to  cluster  all  protein  sequences  encoded  by  C.  elegans  genes.  BLAST  scores  were  normalized  to  the  length  of  the  query  sequence  and  for  relative  phylogenetic  distance  between  C.  elegans  and  the  queried  organism9.  The  matrix  of  864,644  conservation  scores  for  the  10,054 C.  elegans  proteins  in  the  86 genomes  was  queried  either  with  a  single  protein  to  generate  a  ranking  of  other  C.  elegans  proteins  with  the  most  similar  pattern  of  conservation  values  or  using  a  more  global  hierarchical  clustering  method  (Fig.  1a).  Proteins  of  the  same  families  exhibit  similar  patterns  of  phylogenetic  conservation  and  therefore  tend  to  group  together  in  the  hierarchical  clustering.  However,  many  phylogenetic  clusters  include  proteins  with  no  sequence  similarity;  only  their  conservation  or  divergence  in  genomes  is  correlated.  The  ability  of  this  non-­‐binary  method  of  phylogenetic  profiling  to  cluster  proteins  based  on  function  is  exemplified  by  the  clustering  of  proteins  known  to  act  as  members  of  complexes.  For  example,  the  known  protein  components  of  the  sensory  cilium  have  highly  correlated  phylogenetic  profiles  characterized  by  loss  in  particular  vertebrates  and  all  fungi  and  plants  and  retention  in  particular  protists,  whereas  the  extraordinarily  high  and  universal  conservation  of  ribosomal  and  translation  factor  proteins  clusters  many  of  these  translation  components  (Supplementary  Fig.  1a,  b).  

GTPase  KRas  also  known  as  V-­‐Ki-­‐ras2  Kirsten  rat  sarcoma  viral  oncogene  homolog  and  KRAS,  is  a  protein  that  in  humans  is  encoded  by  the  KRAS  gene.[1][2]  

The  protein  product  of  the  normal  KRAS  gene  performs  an  essential  function  in  normal  tissue  signaling,  and  the  mutation  of  a  KRAS  gene  is  an  essential  step  in  the  development  of  many  cancers.[3]  Like  other  members  of  the  Ras  family,  the  KRAS  protein  is  a  GTPase  and  is  an  early  player  in  many  signal  transduction  pathways.  KRAS  is  usually  tethered  to  cell  membranes  because  of  the  presence  of  an  isoprenyl  group  on  its  C-­‐terminus.  

1. McGrath  JP,  Capon  DJ,  Smith  DH,  Chen  EY,  Seeburg  PH,  Goeddel  DV,  Levinson  AD  (1983).  "Structure  and  organization  of  the  human  Ki-­‐ras  proto-­‐oncogene  and  a  related  processed  pseudogene".  Nature  304  (5926):  501–6.  doi:10.1038/304501a0.  PMID  6308466.  

2. Jump  up    ^  Popescu  NC,  Amsbaugh  SC,  DiPaolo  JA,  Tronick  SR,  Aaronson  SA,  Swan  DC  (March  1985).  "Chromosomal  localization  of  three  human  ras  genes  by  in  situ  molecular  hybridization".  Somat.  Cell  Mol.  Genet.  11  (2):  149–55.  

doi:10.1007/BF01534703.  PMID  3856955.  3. Kranenburg  O  (November  2005).  "The  KRAS  oncogene:  past,  present,  and  

future".  Biochim.  Biophys.  Acta  1756  (2):  81–2.  doi:10.1016/j.bbcan.2005.10.001.  PMID  16269215.  

Although  activating  KRAS  mutations  occur  frequently  in  cancer,  targeting  this  oncogene  has  proved  difficult.  Three  groups  have  now  identified  pathways  that  have  not  been  previously  linked  to  KRAS  —  all  of  which  may  provide  pharmacologically  tractable  anticancer  targets  —  and  that  are  crucial  in  cancer  cells  dependent  on  activated  KRAS.  

 

Steve  Elledge  and  colleagues  conducted  a  genome-­‐wide  RNA  interference  (RNAi)  screen  in  an  isogenic  pair  of  DLD-­‐1  colorectal  cancer  cell  lines:  one  that  carried  an  endogenous  activated  KRAS  allele  (KRASWT/G13D  cells)  and  one  in  which  this  allele  was  disrupted  (KRASWT/−  cells).  By  finding  short  hairpin  RNAs  (shRNAs)  that  were  selectively  depleted  over  time  in  KRASWT/G13D  cells  compared  with  KRASWT/−  cells,  and  refining  their  initial  list  using  a  second  isogenic  pair  of  HCT116  colorectal  cancer  cells,  they  identified  a  functionally  diverse  list  of  50  genes  that  might  have  synthetic  lethal  interactions  with  activated  KRAS.  This  list  included  many  genes  involved  in  mitotic  regulation,  such  as  Polo-­‐like  kinase  1  (PLK1)  and  genes  that  encode  anaphase-­‐promoting  complex/cyclosome  (APC/C)  subunits.  Cells  expressing  KRASG13D  were  sensitive  to  PLK1  inhibition  in  vitro  and  in  mouse  xenograft  models.  The  cells  were  also  sensitive  to  inhibition  of  the  ubiquitin  ligase  APC/C  in  vitro.  As  APC/C  ultimately  requires  proteasome  activity,  the  authors  showed  that  the  proteasome  inhibitors  MG132  and  bortezomib  were  synthetic  lethal  with  activated  KRAS.  Furthermore,  non-­‐small-­‐cell  lung  cancer  (NSCLC)  cell  lines  were  more  sensitive  to  APC/C  subunit  knockdown  if  they  harboured  Ras  mutations.  Is  this  pathway  relevant  in  vivo?  Analysis  of  Ras-­‐associated  gene  signatures  in  human  lung  tumour  samples  indicated  that  those  tumours  with  a  positive  Ras  signature  that  also  had  a  signature  suggestive  of  decreased  APC/C  activity  correlated  with  increased  patient  survival.  

Gary  Gilliland,  Bill  Hahn  and  colleagues  performed  a  similar  RNAi  screen  across  eight  cancer  cell  lines  (four  that  expressed  a  KRAS  mutant  and  four  that  were  KRAS  wild  type)  and  found  that  shRNAs  targeting  the  kinase  STK3  3  impaired  cell  viability  and  proliferation  only  in  cells  that  were  dependent  on  mutant  KRAS.  This  was  confirmed  in  several  other  cell  types  (25  in  total),  including  both  haematopoietic  and  epithelial  cancer  cell  lines,  and  STK33  shRNA  reduced  tumour  formation  by  4  different  KRAS-­‐dependent  epithelial  cancer  cell  lines  in  immunocompromised  mice.  Interestingly,  DLD-­‐1  cells,  as  used  in  the  studies  above,  were  also  sensitive  to  STK33  knockdown.  Forcing  KRAS  dependence  by  expressing  KRASG13D  in  two  KRAS-­‐independent  acute  myeloid  leukaemia  cell  lines  also  led  to  sensitivity  to  STK33.  What  does  STK33  do?  The  authors  examined  the  activation  of  several  signalling  

pathways  in  cells  with  STK33  suppression.  Loss  of  STK33  decreased  phosphorylation  and  activity  of  the  S6K1  kinase  and  downstream  phosphorylation  of  the  proapoptotic  BH3-­‐only  protein  BAD,  leading  to  apoptosis.  

Jeff  Settleman  and  colleagues  examined  the  effect  of  KRAS  depletion  in  several  lung  and  pancreatic  cancer  cell  lines.  By  comparing  KRAS-­‐dependent  cells  (in  which  KRAS  knockdown  induced  apoptosis)  with  KRAS-­‐independent  cells,  they  noted  that  KRAS-­‐dependent  cells  tended  to  have  an  epithelial  morphology,  whereas  KRAS-­‐independent  cells  appeared  to  be  more  mesenchymal.  Induction  of  an  epithelial–mesenchymal  transition  (EMT)  in  KRAS-­‐dependent  H358  NSCLC  cells  allowed  these  cells  to  become  KRAS  independent,  and  conversely,  reversal  of  EMT  in  KRAS-­‐independent  cells  rendered  these  cells  KRAS  dependent.  The  authors  then  derived  a  gene  expression  signature  of  KRAS  dependency,  which  was  also  associated  with  well-­‐differentiated  primary  lung  tumours.  From  this  signature,  they  found  three  pharmacologically  tractable  targets  that  were  upregulated  in  KRAS-­‐dependent  cells:  the  kinase  SYK,  the  RON  receptor  tyrosine  kinase  (encoded  by  MST1R)  and  β6  integrin  (encoded  by  ITGB6).  shRNAs  against  SYK  and  ITGB6  led  to  EMT  and  apoptosis  in  two  KRAS-­‐dependent  cell  lines,  but  not  two  KRAS-­‐independent  cell  lines,  whereas  MST1R  knockdown  was  context  specific,  inducing  apoptosis  in  only  one  KRAS-­‐dependent  cell  line.  KRAS-­‐dependent  cells  were  also  more  sensitive  to  a  pharmacological  SYK  inhibitor.  

References  and  links  

ORIGINAL  RESEARCH  PAPER  Luo,  J.  et  al.  A  genome-­‐wide  RNAi  screen  identifies  multiple  synthetic  lethal  interactions  with  the  Ras  oncogene.  Cell  137,  835–848  (2009)       Article       PubMed  

Scholl,  C.  et  al.  Synthetic  lethal  interaction  between  oncogenic  KRAS  dependency  and  STK33  suppression  in  human  cancer  cells.  Cell  137,  821–833  (2009)  

    Article       PubMed  

Singh,  A.  et  al.  A  gene  expression  signature  associated  with  "K-­‐Ras  addiction"  reveals  regulators  of  EMT  and  tumor  cell  survival.  Cancer  Cell  15,  489–500  (2009)  

    Article       PubMed    

The  RAS  (rat  sarcoma)  protein  family  members  are  all  low-­‐molecular-­‐weight  GTP-­‐binding  proteins  that  play  a  role  in  regulating  cell  differentiation,  proliferation,  and  survival.(1,  2)  There  are  three  main  members  of  the  RAS  family:  HRAS,  NRAS,  and  KRAS,  all  of  which  have  been  found  to  drive  cancer  formation  and  progression.(1-­‐3)  Mutations  in  RAS  are  found  in  approximately  30%  of  human  cancers.(2)  In  the  

absence  of  a  RAS  mutation,  increased  RAS  activity  in  human  tumors  has  been  shown  to  be  the  result  of  gene  amplification,  overexpression,  or  increased  upstream  activation.(4)  Single  point  mutations  of  the  RAS  gene,  affecting  residues  G12  and  G13,  abolish  GAP-­‐induced  GTP  hydrolysis  through  steric  hindrance,  while  mutations  of  residue  Q61  interfere  with  the  coordination  of  a  water  molecule  necessary  for  GTP  hydrolysis.(5)  These  mutations  render  the  protein  constitutively  active,  and  the  persistence  of  active  GTP-­‐bound  RAS  leads  to  the  constant  activation  of  its  downstream  effector  pathways.  KRAS  is  the  most  frequently  mutated  RAS  isoform,  having  been  shown  to  be  mutated  in  90%  of  pancreatic  adenocarcinomas,  45%  of  colorectal  cancers,  and  35%  of  lung  adenocarcinomas.(2,  6)  KRAS  mutations  have  been  associated  with  increased  tumorigenicity  and  poor  prognosis.(4)  Additionally,  the  inhibition  of  activated  RAS  has  been  shown  to  revert  malignant  cells  to  a  nonmalignant  phenotype  and  cause  tumor  regression  both  in  vitro  and  in  vivo.(4,  7,  8)  Thus,  KRAS  is  an  attractive  therapeutic  target  for  a  number  of  cancers.  While  the  development  of  a  small  molecule  inhibitor  of  the  constitutively  active  KRAS  protein  would  be  ideal  as  a  cancer  therapeutic,  25  years  of  work  on  drugs  targeting  the  GTP  binding  pocket  of  mutant  KRAS  have  thus  far  proven  to  be  unsuccessful.  To  date,  no  effective  therapy  that  specifically  targets  mutant  KRAS  is  available.  Targeting  the  constitutively  active  molecular  switch  of  KRAS  is  quite  difficult  because  the  role  of  GDP  or  GTP  is  to  stabilize  inactive  or  active  states  of  the  RAS  protein.(9)  This  is  in  contrast  to  protein  kinases  in  which  phosphoryl  transfer  from  ATP  to  a  substrate  is  a  rapid,  catalytic  process.(9)  Additionally,  because  of  picomolar  affinity  between  KRAS  and  GTP,  as  well  as  the  micromolar  concentration  of  GTP  in  the  cell,  a  competitive  inhibitor  is  not  particularly  feasible.(9)  Furthermore,  KRAS  activation  and  signaling  are  accomplished  through  protein–protein  interactions  (PPIs)  with  guanine  nucleotide  exchange  factors  (GEFs),  GTPase  activating  proteins  (GAPs),  and  the  various  KRAS  effector  proteins.(10)  PPIs  are  challenging  to  target  because  of  the  relatively  featureless  topologies  of  the  surfaces  involved.(11)  In  spite  of  these  issues,  a  number  of  attempts  have  been  made  to  target  aberrant  KRAS  signaling  at  different  levels.  

This  article  references  120  other  publications.  

1.    Wennerberg,  K.;  Rossman,  K.  L.;  Der,  C.  J.The  Ras  superfamily  at  a  glance  J.  Cell  Sci.  2005,  118,  843–  846[CrossRef],  [PubMed],  [CAS]  

4. 2.    Adjei,  A.  A.Blocking  oncogenic  Ras  signaling  for  cancer  therapy  J.  Natl.  Cancer.  Inst.  2001,  93,  1062–  1074[CrossRef],  [PubMed],  [CAS]  

5. 3.    Karnoub,  A.  E.;  Weinberg,  R.  A.Ras  oncogenes:  split  personalities  Nat.  Rev.  Mol.  Cell  Biol.  2008,  9,  517–  531[CrossRef],  [PubMed],  [CAS]  

6. 4.    Friday,  B.  B.;  Adjei,  A.  A.K-­‐ras  as  a  target  for  cancer  therapy  Biochim.  Biophys.  Acta  2005,  1756,  127–  144[CrossRef],  [PubMed],  [CAS]  

7. 5.    Pylayeva-­‐Gupta,  Y.;  Grabocka,  E.;  Bar-­‐Sagi,  D.RAS  oncogenes:  weaving  a  tumorigenic  web  Nat.  Rev.,  Cancer  2011,  11,  761–  774[CrossRef],  [PubMed],  

[CAS]  8. 6.    Downward,  J.Targeting  RAS  signalling  pathways  in  cancer  therapy  Nat.  Rev.  

Cancer  2003,  3,  11–  22[CrossRef],  [PubMed],  [CAS]  9. 7.    Podsypanina,  K.;  Politi,  K.;  Beverly,  L.  J.;  Varmus,  H.  E.Oncogene  cooperation  in  

tumor  maintenance  and  tumor  recurrence  in  mouse  mammary  tumors  induced  by  Myc  and  mutant  Kras  Proc.  Natl.  Acad.  Sci.  U.S.A.  2008,  105,  5242–  

5247[CrossRef],  [PubMed],  [CAS]  10. 8.    Chin,  L.;  Tam,  A.;  Pomerantz,  J.;  Wong,  M.;  Holash,  J.;  Bardeesy,  N.;  Shen,  Q.;  

O’Hagan,  R.;  Pantginis,  J.;  Zhou,  H.;  Horner,  J.  W.,  2nd.;  Cordon-­‐Cardo,  C.;  Yancopoulos,  G.  D.;  DePinho,  R.  A.Essential  role  for  oncogenic  Ras  in  tumour  

maintenance  Nature  1999,  400,  468–  472[CrossRef],  [PubMed],  [CAS]  11. 9.    Gysin,  S.;  Salt,  M.;  Young,  A.;  McCormick,  F.Therapeutic  strategies  for  

targeting  ras  proteins  Genes  Cancer  2011,  2,  359–  372[CrossRef],  [CAS]  12. 10.    Sun,  Q.;  Burke,  J.  P.;  Phan,  J.;  Burns,  M.  C.;  Olejniczak,  E.  T.;  Waterson,  A.  

G.;  Lee,  T.;  Rossanese,  O.  W.;  Fesik,  S.  W.Discovery  of  small  molecules  that  bind  to  K-­‐Ras  and  inhibit  Sos-­‐mediated  activation  Angew.  Chem.,  Int.  Ed.  

2012,  51,  6140–  6143[CrossRef],  [CAS]  11.    Fletcher,  S.;  Hamilton,  A.  D.Targeting  protein–protein  interactions  by  rational  design:  mimicry  of  protein  surfaces  J.  R.  Soc.  Interface  2006,  3,  215–  233[CrossRef],  [PubMed],  [CAS]  

 

 

Abstract  

250  words    why  the  research  was  conducted  how  it  was  conducted  the  major  results  and  conclusions  it  should  contain  an  overview  of  the  hypothesis,  methods,  results  and  conclusions    Introduction  

present  the  problem  his  or  her  research  addresses  why  this  problem  is  significant  how  it  applies  to  the  larger  field  of  research  if  the  manuscript  is  novel  or  creative  in  some  way,  it  should  be  clearly  stated.  The  author  should  address  relevant  studies  by  other  researchers;  however,  a  full  history  of  the  topic  is  not  needed  Finally,  the  author  must  clearly  state  the  hypothesis  and  briefly  summarize  the  methods  used  to  investigate  that  hypothesis.  The  Introduction  should  contain  all  the  background  information  a  reader  needs  to  

understand  the  rest  of  the  author’s  paper.  This  means  that  all  important  concepts  should  be  defined    Methods  and  Materials  

The  author  should  thoroughly  describe  the  methods  used  to  investigate  the  problem  and  should  briefly  describe  why  these  methods  were  used    There  should  be  enough  information  provided  to  replicate  the  study.    Results  

In  this  section,  the  author  should  thoroughly  detail  the  results  of  the  experiments,  models,  or  theories  developed  in  the  research    The  results  should  be  supplemented  by  figures  and  tables,  which  should  be  briefly  explained.      Discussion  and  Conclusions  

 The  design  of  a  successful  cancer  therapeutic  relies  on  an  understanding  of  the  biology  underlying  the  disease.  The  idea  that  cells  signal  in  a  linear  fashion  is  quickly  becoming  antiquated  and  is  being  replaced  with  circuit-­‐type  models.  Likewise,  cancer  treatments  need  to  be  designed  under  the  notion  of  circuit  signaling.  We  expect  that  employing  this  rationale  will  lead  to  better  treatments,  more  effective  drug  combinations,  and  better  outcomes  for  patients.      In  this  section,  the  author  should  restate  the  problem  he  or  she  was  attempting  to  address  and  summarize  how  the  results  have  addressed  it    The  author  should  discuss  the  significance  of  all  the  results  and  interpret  their  meaning    Potential  sources  of  error  should  be  discussed    Finally,  the  author  should  tie  his  or  her  conclusions  into  the  “big  picture”  by  suggesting  the  implications  and  applications  this  research  might  have    The  author  should  discuss  how  this  research  affects  the  field,  what  it  adds  to  existing  research    what  future  experiments  could  be  carried  out.    

 Citations  and  References    

 All  Original  Research  and  Review  article  submissions  must  contain  in-­‐text  citations  and  references  in  APA,  6th  edition.      Figures  and  Tables  

All  figures  and  equations  must  submitted  as  individual  JPEG  images    All  tables  must  be  submitted  in  Word  or  Excel  format.      Do  not  include  figures  or  tables  in  the  body  of  the  submitted  article.  All  captions  should  be  submitted  together  as  a  single  Word  document.  Figures  should  be  of  high  resolution.      

   The  RAS  proteins  play  a  role  in  cell  differentiation,  proliferation,  and  survival.  Aberrant  RAS  signaling  has  been  found  to  play  a  role  in  30%  of  all  cancers.  KRAS,  a  key  member  of  the  RAS  protein  family,  is  an  attractive  cancer  target,  as  frequent  point  mutations  in  the  KRAS  gene  render  the  protein  constitutively  active.  A  number  of  attempts  have  been  made  to  target  aberrant  KRAS  signaling  by  identifying  small  molecule  compounds  that  (1)  are  synthetic  lethal  to  mutant  KRAS,  (2)  block  KRAS/GEF  interactions,  (3)  inhibit  downstream  KRAS  effectors,  or  (4)  inhibit  the  post-­‐translational  processing  of  RAS  proteins.  In  addition,  inhibition  of  novel  targets  outside  the  main  KRAS  signaling  pathway,  specifically  the  cell  cycle  related  kinase  

PLK1,  has  been  shown  have  an  effect  in  cells  that  harbor  mutant  KRAS.  Herein  we  review  the  use  of  various  high-­‐throughput  screening  assays  utilized  to  identify  new  small-­‐molecule  compounds  capable  of  targeting  mutant  KRAS-­‐driven  cancers.    

         Figure  3.  Downstream  signaling  of  RAS.  Ras  interacts  with  a  number  of  downstream  effectors.  The  main  ones  include  RAF  protein  kinases,  phosphoinositide  3-­‐kinases  (PI3Ks),  guanine  nucleotide  exchange  factors  for  the  RAS-­‐related  protein  Ral  (RalGDS),  and  phospholipase  Cε  (PLCε).  

   

 gene  orienteer  

 

   Symbol   Description   Description2  

KRAS  

v-­‐Ki-­‐ras2  Kirsten  rat  sarcoma  viral  oncogene  homolog  [Source:HGNC  Symbol;Acc:6407]   RAS  PRECURSOR  

NRAS  

neuroblastoma  RAS  viral  (v-­‐ras)  oncogene  homolog  [Source:HGNC  Symbol;Acc:7989]   RAS  PRECURSOR  

HRAS  

v-­‐Ha-­‐ras  Harvey  rat  sarcoma  viral  oncogene  homolog  [Source:HGNC  Symbol;Acc:5173]   RAS  PRECURSOR  

RAP2A  

RAP2A,  member  of  RAS  oncogene  family  [Source:HGNC  Symbol;Acc:9861]   RAS  RELATED  RAP  PRECURSOR  

RAP1A   RAP1A,  member  of  RAS   RAS  RELATED  RAP  PRECURSOR  

oncogene  family  [Source:HGNC  Symbol;Acc:9855]  

RAP1B  

RAP1B,  member  of  RAS  oncogene  family  [Source:HGNC  Symbol;Acc:9857]   RAS  RELATED  RAP  PRECURSOR  

RRAS  

related  RAS  viral  (r-­‐ras)  oncogene  homolog  [Source:HGNC  Symbol;Acc:10447]   RAS  PRECURSOR  

RAP2B  

RAP2B,  member  of  RAS  oncogene  family  [Source:HGNC  Symbol;Acc:9862]   RAS  RELATED  RAP  PRECURSOR  

RAP2C  

RAP2C,  member  of  RAS  oncogene  family  [Source:HGNC  Symbol;Acc:21165]   RAS  RELATED  RAP  PRECURSOR  

RRAS2  

related  RAS  viral  (r-­‐ras)  oncogene  homolog  2  [Source:HGNC  Symbol;Acc:17271]   RAS  PRECURSOR  

MAP2K6  

mitogen-­‐activated  protein  kinase  kinase  6  [Source:HGNC  Symbol;Acc:6846]  

DUAL  SPECIFICITY  MITOGEN  ACTIVATED  KINASE  KINASE  MAP  KINASE  KINASE  MAPKK  EC_2.7.12.2  MAPK/ERK  KINASE  MEK  

RALA  

v-­‐ral  simian  leukemia  viral  oncogene  homolog  A  (ras  related)  [Source:HGNC  Symbol;Acc:9839]   RAS  RELATED  PRECURSOR  

DDX19A  

DEAD  (Asp-­‐Glu-­‐Ala-­‐As)  box  polypeptide  19A  [Source:HGNC  Symbol;Acc:25628]  

ATP  DEPENDENT  RNA  HELICASE  EC_3.6.4.13  

MRAS  

muscle  RAS  oncogene  homolog  [Source:HGNC  Symbol;Acc:7227]  

RAS  RELATED  M  RAS  PRECURSOR  RAS  RELATED  R  RAS3  

DDX19B  

DEAD  (Asp-­‐Glu-­‐Ala-­‐As)  box  polypeptide  19B  [Source:HGNC  Symbol;Acc:2742]  

ATP  DEPENDENT  RNA  HELICASE  EC_3.6.4.13  

RIT2  

Ras-­‐like  without  CAAX  2  [Source:HGNC  Symbol;Acc:10017]  

GTP  BINDING  RIT1  RAS  EXPRESSED  IN  MANY  TISSUES  RAS  WITHOUT  CAAX  1  

RHOD  

ras  homolog  gene  family,  member  D  [Source:HGNC  Symbol;Acc:670]   RHO  RELATED  GTP  BINDING  PRECURSOR  

DDX25  

DEAD  (Asp-­‐Glu-­‐Ala-­‐Asp)  box  polypeptide  25  [Source:HGNC  Symbol;Acc:18698]  

ATP  DEPENDENT  RNA  HELICASE  EC_3.6.4.13  

RND2  

Rho  family  GTPase  2  [Source:HGNC  Symbol;Acc:18315]  

RHO  RELATED  GTP  BINDING  PRECURSOR  RHO  FAMILY  GTPASE  

SGK2  

serum/glucocorticoid  regulated  kinase  2  [Source:HGNC  Symbol;Acc:13900]  

SERINE/THREONINE  KINASE  EC_2.7.11.1  SERUM/GLUCOCORTICOID  REGULATED  KINASE  

PKN3  

protein  kinase  N3  [Source:HGNC  Symbol;Acc:17999]  

SERINE/THREONINE  KINASE  EC_2.7.11.13  KINASE  C  KINASE  C  RELATED  KINASE  

ACTR2  

ARP2  actin-­‐related  protein  2  homolog  (yeast)  [Source:HGNC  Symbol;Acc:169]   ACTIN  RELATED  2  ACTIN  2  

YWHAH  

tyrosine  3-­‐monooxygenase/tryptophan  5-­‐monooxygenase  activation  protein,  eta  polypeptide  [Source:HGNC  Symbol;Acc:12853]   UNKNOWN  

RALB  

v-­‐ral  simian  leukemia  viral  oncogene  homolog  B  (ras  related;  GTP  binding  protein)  [Source:HGNC  Symbol;Acc:9840]   RAS  RELATED  PRECURSOR  

MAP2K3  

mitogen-­‐activated  protein  kinase  kinase  3  [Source:HGNC  Symbol;Acc:6843]  

DUAL  SPECIFICITY  MITOGEN  ACTIVATED  KINASE  KINASE  MAP  KINASE  KINASE  MAPKK  EC_2.7.12.2  MAPK/ERK  KINASE  MEK  

SGK1  

serum/glucocorticoid  regulated  kinase  1  [Source:HGNC  Symbol;Acc:10810]  

SERINE/THREONINE  KINASE  EC_2.7.11.1  SERUM/GLUCOCORTICOID  REGULATED  KINASE  

VPS4B  

vacuolar  protein  sorting  4  homolog  B  (S.  cerevisiae)   VACUOLAR  SORTING  ASSOCIATED  

[Source:HGNC  Symbol;Acc:10895]  

YWHAZ  

tyrosine  3-­‐monooxygenase/tryptophan  5-­‐monooxygenase  activation  protein,  zeta  polypeptide  [Source:HGNC  Symbol;Acc:12855]   UNKNOWN  

PRKCQ  

protein  kinase  C,  theta  [Source:HGNC  Symbol;Acc:9410]   KINASE  C  TYPE  EC_2.7.11.13  NPKC  

YWHAG  

tyrosine  3-­‐monooxygenase/tryptophan  5-­‐monooxygenase  activation  protein,  gamma  polypeptide  [Source:HGNC  Symbol;Acc:12852]   UNKNOWN  

MAPK14  

mitogen-­‐activated  protein  kinase  14  [Source:HGNC  Symbol;Acc:6876]  

MITOGEN  ACTIVATED  KINASE  MAP  KINASE  EC_2.7.11.24  

RHOA  

ras  homolog  gene  family,  member  A  [Source:HGNC  Symbol;Acc:667]   GTP  BINDING  PRECURSOR  

RIT1  

Ras-­‐like  without  CAAX  1  [Source:HGNC  Symbol;Acc:10023]  

GTP  BINDING  RIT1  RAS  EXPRESSED  IN  MANY  TISSUES  RAS  WITHOUT  CAAX  1  

AC034102.1  

 RAS  RELATED  RAB  

DIRAS1  

DIRAS  family,  GTP-­‐binding  RAS-­‐like  1  [Source:HGNC  Symbol;Acc:19127]  

GTP  BINDING  DI  DISTINCT  SUBGROUP  OF  THE  RAS  FAMILY  MEMBER  

ARF3  

ADP-­‐ribosylation  factor  3  [Source:HGNC  Symbol;Acc:654]   ADP  RIBOSYLATION  FACTOR  

YWHAB  

tyrosine  3-­‐monooxygenase/tryptophan  5-­‐monooxygenase  activation  protein,  beta  polypeptide  [Source:HGNC  Symbol;Acc:12849]   UNKNOWN  

ARF5  

ADP-­‐ribosylation  factor  5  [Source:HGNC  Symbol;Acc:658]   ADP  RIBOSYLATION  FACTOR  

CTDSP1  

CTD  (carboxy-­‐terminal  domain,  RNA  polymerase  II,  polypeptide  A)  small  phosphatase  1  [Source:HGNC  Symbol;Acc:21614]  

CARBOXY  TERMINAL  DOMAIN  RNA  POLYMERASE  II  POLYPEPTIDE  A  SMALL  PHOSPHATASE  SMALL  C  TERMINAL  DOMAIN  PHOSPHATASE  SMALL  CTD  PHOSPHATASE  NUCLEAR  LIM  INTERACTOR  INTERACTING  FACTOR  NLI  INTERACTING  FACTOR  

PAK1  

p21  protein  (Cdc42/Rac)-­‐activated  kinase  1  [Source:HGNC  Symbol;Acc:8590]  

SERINE/THREONINE  KINASE  PAK  EC_2.7.11.1  P21  ACTIVATED  KINASE  PAK  PAK  PAK  

ARF4  

ADP-­‐ribosylation  factor  4  [Source:HGNC  Symbol;Acc:655]   ADP  RIBOSYLATION  FACTOR  

ARF1  

ADP-­‐ribosylation  factor  1  [Source:HGNC  Symbol;Acc:652]   ADP  RIBOSYLATION  FACTOR  

RHEBL1  

Ras  homolog  enriched  in  brain  like  1  [Source:HGNC  Symbol;Acc:21166]  

GTPASE  RHEBL1  PRECURSOR  RAS  HOMOLOG  ENRICHED  IN  BRAIN  1  RHEB  1  

PPP3CB  

protein  phosphatase  3,  catalytic  subunit,  beta  isozyme  [Source:HGNC  Symbol;Acc:9315]  

SERINE/THREONINE  PHOSPHATASE  2B  CATALYTIC  SUBUNIT  EC_3.1.3.16  CALMODULIN  DEPENDENT  CALCINEURIN  A  SUBUNIT  CAM  PRP  CATALYTIC  SUBUNIT  

VPS4A  

vacuolar  protein  sorting  4  homolog  A  (S.  cerevisiae)  [Source:HGNC  Symbol;Acc:13488]   VACUOLAR  SORTING  ASSOCIATED  

RAB8B  

RAB8B,  member  RAS  oncogene  family  [Source:HGNC  Symbol;Acc:30273]   RAS  RELATED  RAB  

STK38L  

serine/threonine  kinase  38  like  [Source:HGNC  Symbol;Acc:17848]   SERINE/THREONINE  KINASE  EC_2.7.11.1  

RAB8A  

RAB8A,  member  RAS  oncogene  family  [Source:HGNC  Symbol;Acc:7007]   RAS  RELATED  RAB  

MAPK13  mitogen-­‐activated  protein  kinase  13  

MITOGEN  ACTIVATED  KINASE  MAP  KINASE  EC_2.7.11.24  

[Source:HGNC  Symbol;Acc:6875]  

MAPK3  

mitogen-­‐activated  protein  kinase  3  [Source:HGNC  Symbol;Acc:6877]  

MITOGEN  ACTIVATED  KINASE  MAP  KINASE  MAPK  EC_2.7.11.24  EXTRACELLULAR  SIGNAL  REGULATED  KINASE  ERK