Holocene sedimentary infilling of a tide-dominated estuarine mouth. The example of the macrotidal...

12
Holocene sedimentary infilling of a tide-dominated estuarine mouth. The example of the macrotidal Seine estuary (NW France) BERNADETTE TESSIER 1 ,NICOLAS DELSINNE 1, 2 and PHILIPPE SORREL 1, 3 Key-words. – Incised-valley infilling, Tide-dominated estuary, Holocene, Very high resolution seismic, Cores, Seine Abstract. – The results of a seismo-stratigraphic study performed to study the Holocene sedimentary infilling at the mouth of the Seine River are presented. Combined data comprise very high resolution seismic reflection profiles, vibrocores, up to 4.5 m long, radiocarbon dating and old bathymetric charts. The infill is divided into two main stages: the transgressive systems tract, relative to the early Holocene high rate of sea-level rise, from 9000 to 7000cal B.P., made of fine-grained, organic-rich, tidal flat to swamp deposits; the highstand systems tract, relative to the middle to late Holocene low rate of sea-level rise, from 7000 to 3000cal B.P., characterized by the development of the high en- ergy estuarine body above the main axis of the incised valley. Simultaneously, on the southern edge of the valley, a coastal barrier constructed above a bedrock plateau under the dominant action of waves. At 3000 cal B.P., probably in relation to a major climatic deterioration, the destruction of the barrier occurred and the tidal estuarine body expanded finally over the whole incised valley area. The rate of sea-level rise and the bedrock morphology appear to be the two main key-factors that control the sedimentary infilling architecture of this macrotidal, tide-dominated estuarine setting at the pluri-millenium Holocene time scale. Also, rapid climate changes determine part of the infill pattern, especially during the late Holocene sea-level highstand context. Remplissage sédimentaire holocène d'une embouchure estuarienne à dominance tidale. L'exemple de l'estuaire macrotidal de la Seine (NW France) Mots-clés. – Remplissage de vallée incisée, Estuaire dominé par la marée, Holocène, Sismique très haute résolution, Carottes, Seine. Résumé. – Les résultats d'une étude sismo-stratigraphique réalisée dans le but d'étudier le remplissage sédimentaire ho- locène à l'embouchure de la Seine sont présentés. Les données disponibles comprennent des profils sismiques très haute résolution, des carottes atteignant 4,5 m de long, des datations 14 C, et des cartes bathymétriques anciennes. Le remplis- sage est subdivisé en deux phases principales: le cortège de dépôt transgressif, relatif à la remontée rapide du niveau marin du début de l'Holocène, entre 9 000 et 7 000 ans B.P., constitué de sédiments fins, riches en matière organique, déposés dans un environnement de replat de marée ou marais tidal ; le cortège de dépôt de haut niveau, relatif à la re- montée plus lente du niveau marin au cours de l'Holocène moyen à récent, de 7 000 à 3 000 ans B.P., caractérisé par le développement du système tidal estuarien de haute énergie au-dessus de l'axe principal de la vallée incisée de la Seine. A la même époque, sur les marges de l'estuaire, en particulier au Sud, là où le bedrock forme un plateau surélevé, une barrière littorale se construit sous l'action dominante des vagues. Autour de 3 000 ans B.P., probablement à cause d'une crise climatique majeure, la barrière est détruite, et le système tidal estuarien s'étend finalement à tout le domaine de la vallée incisée de la Seine. La vitesse de remonté du niveau marin et la morphologie du toit du bedrock apparaissent comme les deux facteurs principaux qui contrôlent, à l'échelle de temps holocène plurimillénaire, l'architecture du rem- plissage sédimentaire de cet environnement macrotidal. Les changements climatiques rapides influencent également le mode de remplissage, particulièrement au cours des conditions de haut niveau marin de l'Holocène récent. INTRODUCTION Plio-Quaternary sediment infillings of incised valleys have been the topic of many studies for the last 20 years. Most are focused particularly on sequence stratigraphic attributes of the facies and geometrical models of these transgressive sediment sinks with high reservoir potential [see for exam- ple the review in Dalrymple et al., 1994 and Dalrymple et al., 2006]. More recently, many efforts have been paid to understand the biological, sedimentological and morpho- logical changes that occurred in relation to human activities during the last centuries and decades in most estuaries around the world [e.g. Thomas et al., 2002; van der Wal et al. , 2002; Bertin et al., 2005]. Modelling these changes is critical to preserve the economical and ecological interests of estuaries. Most studies performed in the Seine estuary since the mid 1990's have been conducted in this general re- search framework. Investigations focussing on the long-term evolution of the estuary are relatively rare in this context. The main studies have concentrated on the fluvial Bull. Soc. géol. Fr., 2010, n o 2 Bull. Soc. géol. Fr., 2010, t. 181, n o 2, pp. 87-94 1. Morphodynamique Continentale et Côtière, Université de Caen, UMR CNRS 6143, 2-4 rue des Tilleuls, 14000 Caen, France, [email protected] 2. Present address: CEMEX, 101 rue grande, BP 611, 27106 Val de reuil 3. Present address: PEPS, Université Claude Bernard Lyon 1, UMR CNRS 5125, 27-43 Bld du 11 novembre, 69622 Villeurbanne cedex, France Manuscrit déposé le 1 er mai 2009; accepté après révision le 20 juillet 2009.

Transcript of Holocene sedimentary infilling of a tide-dominated estuarine mouth. The example of the macrotidal...

Holocene sedimentary infilling of a tide-dominated estuarine mouth. Theexample of the macrotidal Seine estuary (NW France)

BERNADETTE TESSIER1, NICOLAS DELSINNE1, 2 and PHILIPPE SORREL1, 3

Key-words. – Incised-valley infilling, Tide-dominated estuary, Holocene, Very high resolution seismic, Cores, Seine

Abstract. – The results of a seismo-stratigraphic study performed to study the Holocene sedimentary infilling at themouth of the Seine River are presented. Combined data comprise very high resolution seismic reflection profiles,vibrocores, up to 4.5 m long, radiocarbon dating and old bathymetric charts. The infill is divided into two main stages:the transgressive systems tract, relative to the early Holocene high rate of sea-level rise, from 9000 to 7000 cal B.P.,made of fine-grained, organic-rich, tidal flat to swamp deposits; the highstand systems tract, relative to the middle tolate Holocene low rate of sea-level rise, from 7000 to 3000 cal B.P., characterized by the development of the high en-ergy estuarine body above the main axis of the incised valley. Simultaneously, on the southern edge of the valley, acoastal barrier constructed above a bedrock plateau under the dominant action of waves. At 3000 cal B.P., probably inrelation to a major climatic deterioration, the destruction of the barrier occurred and the tidal estuarine body expandedfinally over the whole incised valley area. The rate of sea-level rise and the bedrock morphology appear to be the twomain key-factors that control the sedimentary infilling architecture of this macrotidal, tide-dominated estuarine settingat the pluri-millenium Holocene time scale. Also, rapid climate changes determine part of the infill pattern, especiallyduring the late Holocene sea-level highstand context.

Remplissage sédimentaire holocène d'une embouchure estuarienne à dominance tidale.L'exemple de l'estuaire macrotidal de la Seine (NW France)

Mots-clés. – Remplissage de vallée incisée, Estuaire dominé par la marée, Holocène, Sismique très haute résolution, Carottes, Seine.

Résumé. – Les résultats d'une étude sismo-stratigraphique réalisée dans le but d'étudier le remplissage sédimentaire ho-locène à l'embouchure de la Seine sont présentés. Les données disponibles comprennent des profils sismiques très hauterésolution, des carottes atteignant 4,5 m de long, des datations 14C, et des cartes bathymétriques anciennes. Le remplis-sage est subdivisé en deux phases principales: le cortège de dépôt transgressif, relatif à la remontée rapide du niveaumarin du début de l'Holocène, entre 9 000 et 7 000 ans B.P., constitué de sédiments fins, riches en matière organique,déposés dans un environnement de replat de marée ou marais tidal ; le cortège de dépôt de haut niveau, relatif à la re-montée plus lente du niveau marin au cours de l'Holocène moyen à récent, de 7 000 à 3 000 ans B.P., caractérisé par ledéveloppement du système tidal estuarien de haute énergie au-dessus de l'axe principal de la vallée incisée de la Seine.A la même époque, sur les marges de l'estuaire, en particulier au Sud, là où le bedrock forme un plateau surélevé, unebarrière littorale se construit sous l'action dominante des vagues. Autour de 3 000 ans B.P., probablement à cause d'unecrise climatique majeure, la barrière est détruite, et le système tidal estuarien s'étend finalement à tout le domaine de lavallée incisée de la Seine. La vitesse de remonté du niveau marin et la morphologie du toit du bedrock apparaissentcomme les deux facteurs principaux qui contrôlent, à l'échelle de temps holocène plurimillénaire, l'architecture du rem-plissage sédimentaire de cet environnement macrotidal. Les changements climatiques rapides influencent également lemode de remplissage, particulièrement au cours des conditions de haut niveau marin de l'Holocène récent.

INTRODUCTION

Plio-Quaternary sediment infillings of incised valleys havebeen the topic of many studies for the last 20 years. Mostare focused particularly on sequence stratigraphic attributesof the facies and geometrical models of these transgressivesediment sinks with high reservoir potential [see for exam-ple the review in Dalrymple et al., 1994 and Dalrymple etal., 2006]. More recently, many efforts have been paid tounderstand the biological, sedimentological and morpho-

logical changes that occurred in relation to human activitiesduring the last centuries and decades in most estuariesaround the world [e.g. Thomas et al., 2002; van der Wal etal., 2002; Bertin et al., 2005]. Modelling these changes iscritical to preserve the economical and ecological interestsof estuaries. Most studies performed in the Seine estuarysince the mid 1990's have been conducted in this general re-search framework. Investigations focussing on thelong-term evolution of the estuary are relatively rare in thiscontext. The main studies have concentrated on the fluvial

Bull. Soc. géol. Fr., 2010, no 2

Bull. Soc. géol. Fr., 2010, t. 181, no 2, pp. 87-94

1. Morphodynamique Continentale et Côtière, Université de Caen, UMR CNRS 6143, 2-4 rue des Tilleuls, 14000 Caen, France, [email protected]. Present address: CEMEX, 101 rue grande, BP 611, 27106 Val de reuil3. Present address: PEPS, Université Claude Bernard Lyon 1, UMR CNRS 5125, 27-43 Bld du 11 novembre, 69622 Villeurbanne cedex, FranceManuscrit déposé le 1er mai 2009; accepté après révision le 20 juillet 2009.

terrace organization and Holocene infill in the inner do-main, and on the very general Pleistocene to Holocenestratigraphic organization recorded in the seaward part ofthe system [Lefebvre et al., 1974; Alduc et al., 1979;Lautridou et al., 1999; Lesueur et al., 2003; Frouin et al.,2007]. Very few studies have finally concentrated on theHolocene sedimentary infilling of the estuarine mouth lo-cated at the transition between the open marine outermostdomain, and the inner estuary. The purpose of this paper isprecisely to present the results of a recent very high resolu-tion seismo-stratigraphic study performed at the Seineestuarine entrance, characterized by one of the thickest andlargest sediment wedge preserved along the French coastsof the English Channel. The present study focuses exclu-sively on the outer estuary, corresponding to the transitionbetween segment 1 and segment 2 according to Dalrympleet al. [1992] and Zaitlin et al. [1994] classification.

As core data could not provide much detail on the finechronology of depositional stages, the purpose of this paperis rather to propose an architectural and sedimentologicalfacies model based on available seismic and core data, aim-ing to contribute to a more general assessment of factorscontrolling sediment wedge construction preserved inmacrotidal and tide-dominated estuarine entrances (i.e. sealevel rise, bedrock morphology, hydrodynamics and sedi-ment supply).

THE SEINE ESTUARY ENVIRONMENTAL SETTING

The Seine River is the major river discharging into the Eng-lish Channel. Its estuarine mouth is a funnel-shaped systemthat opens towards the west on the Bay of Seine (fig. 1). Asmost modern estuaries [in Dalrymple et al., 1994; inPerillo, 1995], the Seine estuary originates during the lastpost-glacial sea-level rise, i.e. the Holocene, from the ma-rine flooding of a valley incised during the former Pleisto-cene sea-level drops. In the case of the Seine valley, theincised bedrock is made of carbonates and marls of Meso-zoic age [Lefebvre et al., 1974]. According to its meandepth and width (25 m x 5-10 km), the Seine incised valleyshould be defined as a large valley following the classifica-tion of Ashley and Sheridan [1994].

The Seine estuary is a semi-diurnal macrotidal settingwith a maximum spring tide range of 7.5 m (mean range:6 m; mean spring range: 6.5-7 m) at Le Havre (see fig. 1 forlocation). Because of convergence in the funnel shaped es-tuary, the tidal wave is amplified as it propagates upstreamand tidal range reaches 8 m at Honfleur [Le Floch, 1961].The Seine estuary is thus a typical hypersynchronous estu-ary [Salomon and Allen, 1983]. As it propagates further up-stream, the tidal wave is progressively deformed resultingin a shorter (4-5 hours) and generally faster flood, com-pared with longer (7-8 hours) and slower ebb. Maximum ve-locities reach 1.8 - 2.5 m/s in the channels during springtides.

Two well-developed longitudinal bars, up to 7 m inheight, 10 km in length, 1-2 km in width characterize thepresent-day funnel-shaped morphology of the outer estuary.These tidal bars constitute a typical morpho-sedimentary el-ement to classify the Seine estuary as a tide-dominated estu-ary according to the definition of Dalrymple et al. [1992].Two marginal channels separate the bars from the northern

and southern borders of the estuary, and a central channelfrom each other. The central channel is used for navigationand is regularly dredged for this purpose.

The mean annual fluvial discharge is about 450 m3/s,but extreme daily values could range from 200 m3/s duringlow river flows in summer, to 2300 m3/s during winter andspring river floods. Sediment supply from the Seine river isestimated to about 0.5 106 t/year of suspended silts andclays that reach the outer estuary where the turbidity maxi-mum develops, the position of which is controlled mostlyby tidal currents and river flows [Avoine, 1986; Lesourd etal., 2003].

Wave regime in the Seine estuary is characteristic ofsheltered coastlines with low amplitudes (< 3 m) and shortperiods (3-5 s). Swells propagate dominantly from west tonorthwest. Local winds, generating wave agitation, blowdominantly from west to southwest [in Lesueur et al.,2003]. Near Le Havre, the significant wave height exceeds2.2 m for only 4-5% of the year [Le Hir et al., 2001].

THE HOLOCENE AND MODERN EVOLUTION OFTHE SEINE ESTUARY: BACKGROUND

During the last two centuries, the Seine estuary has beenheavily altered by human activities, mainly achieved fornavigation purposes [Lafite and Romana, 2001; Delsinneand Tessier, 2002; Delsinne, 2005]. Comparison of recentand old bathymetric charts allowed demonstrating that deepmorphological changes, especially in the outer estuary, haveoccurred since the 1800's (fig. 2). The Seine estuaryhas evolved from a natural system to a present-dayanthropogenically-controlled estuary with among otherconsequences an acceleration of the estuary infill by

Bull. Soc. géol. Fr., 2010, no 2

88 TESSIER B. et al.

Trouville

Honfleur

Le Havre

0

2

5

10

430000 440000 450000

190000

200000

Geos64

5 km

Geos7

5

Geos4

4

Geos34

Geos31

Geos3

0

Geos0

8

Vk43Vk52

Vk61

Vk62

Vk68

Vk37

Vk31

Geos4

7

*

Seismic linesSeismic lines shown on Fig.4Vibro-CoresVibro-Cores described on Fig.6Wells described on Fig.4a

*

*

49°30'N

Ouistreham

Rouen

English Channel

30 km

Le Havre

N

Bay ofSeine

49°30’N

France

Paris

10

20

FIG. 1. – Bathymetric map of the Seine mouth with position of the seismiclines and vibrocores. Bathymetric lines are indicated as metres below lo-west low tide level (LLTL; 0 m LLTL � - 4 m IGN). Coordinate system onthe bathymetric map is in metres (French Lambert 2 “étendu” system).FIG. 1. – Carte bathymétrique de l’embouchure de la Seine avec la positiondes profils sismiques et des carottes. Les contours bathymétriques sont in-diqués en mètres sous le zéro Cote Marine (0 m CM 4 m IGN). Le sys-tème de coordonnées pour la carte bathymétrique est en Lambert 2 étendu.

fine-grained sediments along its rims, and by a spectacularseaward shift of the tidal bars [Le Floch, 1961; Delsinne,2005]. Therefore, this present study aims partly to get abetter understanding of the context of these dramaticchanges on a longer time scale. Original works on the Holo-cene evolution of the Seine estuary were performed duringthe 1970's and 1980's. Thanks to long wells, the main sedi-mentary units into the incised valley were recognized.Above the Weichselian (Würmian) gravels and pebbly ter-races overlying the Mesozoic bedrock [Lefebvre et al.,1974; in Lautridou et al., 1999; in Lesueur et al., 2003],early Holocene brackish sediments made of organics silts,peats and terrigenous sandy clays deposited between 9000and 7500 yr B.P. [Huault et al., 1975]. After 7500 yr B.P.onwards, the valley was fully drowned and filled by openmarine sediments [Lefebvre et al., 1974] with dominantlysands, silts and carbonate biogenic material [Lesueur et al.,2003]. More recently, studies were conducted on sedimentcores collected in tidal salt marshes from the inner estuary[Frouin et al., 2007] and from the outermost part of theestuarine mouth [Garnaud et al., 2003], reporting paleo-environmental changes in relation to the early to middle Ho-locene transgression.

Earlier seismic investigations did not allow to prospectthe sedimentary infilling of the Seine estuary in the shallowwaters of the mouth sector. However, high-resolution seis-mic surveys, using sparker source, were conducted in theBay of Seine reaching almost the Seine mouth [Alduc et al.,1979; Auffret et al., 1980]. Collected data were used tostudy Pleistocene terraces, the Holocene sediment wedgethickness and the bedrock morphology. The map on figure3A has been reconstructed from these data [Auffret andd'Ozouville, 1985; Delsinne, 2005]. This map shows that

the main incision of the Seine valley, some 30 m deep (be-low lowest low tide level, LLTL), is located below thenorthern rim and present-day axis of the estuary. Below thesouthern rim, the bedrock is much higher and forms an ex-tended plateau, the elevation of which is at about 15 to 10 mbelow the lowest low tide level (LLTL).

Until now little attention had been devoted to the Holo-cene history of the outer Seine estuary, i.e. the Seine mouth.This lack of research mostly results from the difficulty toobtain seismic and core data in such shallow water estuarineenvironments. Recently, however, a detailed sedimentologicalanalysis conducted on vibrocores collected in the mouth,demonstrates that millennial-scale climatic changes havecontrolled the Seine entrance infill during the last 4 000years [Sorrel et al., 2009].

METHODS

The present work is based on the results of a very high reso-lution seismic reflection survey (GeoSeine Survey, July 2002,R/V "Côtes d'Aquitaine CNRS-INSU) "ground-truthed" withvibrocores collected during the CaroSeine Survey (June 2003,R/V Thalia, Ifremer-Genavir).

The seismic survey was performed using a boomerIKB-Seistec, characterized by a line-in-cone receiver thatallows investigation of very shallow water settings[Simpkin and Davis, 1993]. The central frequency of theBoomer IKB Seistec is about 5 kHz. During the survey, theshooting rate was 2 Hz, and the power supply energy was200 J. Data were recorded and processed using theDelph-Seismic system. Seismic Unix software, including aswell filter developed by La Rochelle University [inChaumillon et al ., 2008a] was used for additional

Bull. Soc. géol. Fr., 2010, no 2

HOLOCENE SEDIMENTARY INFILLING OF A TIDE-DOMINATED ESTUARINE MOUTH 89

Trouville

Le Havre

02

Vk33

Vk37

Vk41

Vk52

Vk61

Vk62

Vk63

Vk66

Vk68

71

Vk72

430000 440000

P1 P2

5

10

Ratier bar

Amfard bar

190000192000194000196000198000200000

North South

Profile P1

Ratier bar

Vk61

Vk41

Vk71

Vk68

Vk52

Vk37

1834

191319601980

2003

Profile P2

Amfard barRatier bar

1960 18342003

1980

1913 Vk72

Vk33

Vk63Vk62Vk66

0 m

-16

-14

-12

-10

-8

-6

-4

-2

-10

-8

-6

-4

-2

0

+2

Honfleur

5 km

450000

190000

200000

FIG. 2. – Morphological changes of the outer estuary since 1834 AD highlighted along two bathymetric profiles (P1 and P2) reconstructed and comparedfrom old bathymetric charts and core data [Delsinne, 2005]. Cores indicated with dark line are those described in figure 6. Depth and bathymetric lines areindicated as metres below lowest low tide level (LLTL). Coordinates in metres (French Lambert 2 “étendu” system).FIG. 2. – Changements morphologiques de l’estuaire externe depuis 1834 mis en évidence le long de deux profils bathymétriques (P1 et P2) reconstitués etcomparés à partir de cartes anciennes et données de carottage [Delsinne, 2005]. Les carottes marquées d’un trait noir sont celles décrites dans la figure6. Profondeurs en mètres sous zéro CM Coordonnées en mètres (Lambert 2 étendu).

processing. Positioning was insured by a DGPS, and simul-taneously recorded by the Delph-Seismic system. 85 seis-mic profiles representing a total of about 130 km have beenshot across the estuarine mouth, according a north-south gridmainly, i.e. perpendicular to the estuary axis (fig. 1B, 3B).

43 vibrocores, 0.70 to 4.30 m long, have been collectedalong the seismic lines. Each core has been split lengthwisefor sedimentary facies visual description and sampling.Grain-size and carbonate content analyses were not con-ducted systematically on all cores. AMS radiocarbon datingwas carried out on intact juvenile shells, peat fragments andbulk sediment. Measurements were conducted at the PoznanRadiocarbon Laboratory (Poland). Absolute dating was cor-rected by applying a reservoir correction (R) of 400 yearswith an applied regional deviation (�R) for the EnglishChannel of 56 years [Stuiver et al., 2005]. Absolute datingwas then calibrated using the calibration programmeCALIB 5.01 [Stuiver and Reimer, 1993] and the Marine04age calibration data from Hughen et al. [2004]. They indi-cate values with 2 standard deviations (2�; 95 % of confi-dence).

RESULTS

Sedimentary infill architecture

It should be mentioned that in spite of processing, seismicdata collected in the Seine mouth are generally of relativelypoor quality. Gas and probably sand compaction at the sur-face, gave rise to acoustically turbid profiles in many occa-sions, especially above the tidal bars in the estuarine axis(cf. fig. 4B). Nevertheless, by combining the informationcontained in all profiles, it was possible to distinguish sixmain seismic units, named from the base to the top U1 toU6, in the sediment infilling above the bedrock (named U0).All the characteristics of these seismic units are summa-rized in table I, including seismic facies, internal configura-tion, basal and top surface nature, thickness and location.

All these units are illustrated on some selected seismic pro-files (fig. 4A, 4B, 4C).

According to their properties, each unit can be inter-preted in terms of sub-environment and/or sedimentary bod-ies.

U1: this basal unit fills and smoothes the incised-valleytopographic irregularities. It shows a transparent to chaoticfacies (e.g. fig. 4C). It is interpreted as remnants of thecoarse-grained terraces, probably of fluvial origin, usuallydescribed in the bottom of the Seine incised valley [Alducet al., 1979].

U2: this unit is mainly developed in the bottom of theincised valley. It is characterized by the presence of gas andprobably corresponds to the brackish organic-rich sedi-ments identified by Lefebvre et al. [1974] and interpreted asthe first stage of the Holocene infilling of the incised valley.According to the visible internal configuration (parallel tosub-parallel), we assumed that U2 is mainly aggradational(fig. 4B, seismic profile Geos64).

U3: this unit is located principally above the bedrockplateau on the southern edge of the estuary. According tothe preserved geometry characterized by low amplitudelandward downlaping reflectors that evolve upstream to flatreflectors (fig. 4C, seismic profile Geos31), this unit is in-terpreted as the remnant of a transgressive barrier/back-bar-rier system. The presence of extensive gas masks in U3 onthe profile Geos30 (fig. 4C) indicates that this unit rests lo-cally on organic rich facies. Although seismic data do notallow identifying these deposits, they could belong to U2assuming that part of this unit is preserved on the plateau inthe outermost areas.

U4: This unit is almost transparent in the valley axis,eroding probably the top of U2. It shows channelized reflec-tor geometries at the southern valley margin, eroding U3(fig. 4C, seismic profiles Geos30, Geos31). U4 is inter-preted as the main tidal estuarine body, the development ofwhich is maximal below the present-day active bars. In thesouth, U4 is much thinner, and includes flat channelized ge-ometries similar to the channels that develop in the

Bull. Soc. géol. Fr., 2010, no 2

90 TESSIER B. et al.

Seismicunits

Main acoustic facies.

continuity (c), amplitude (a),

frequency (f)

Internal configuration Basal (B) and top (T)

surfaces

Thickness Location

U6 c: high, a: high to medium, f: high Parallel to subparallel T: concordantB: concordant

0 to 1 m Bar foot and estuarinemarginal rims

(e.g. Geos08, fig.4C)

U5 Acoustically transparent to chaotic(gas ? superficial sand compaction

?)

Probably sigmoidal tooblique parallel to

divergent ?

T: toplap/truncation/concordant

B: ?

0 to 6 m Active estuarine axis (tidalbars)

(fig.4B)

U4 In the south: c: medium to low, a:medium to high, f: medium to

highIn the estuarine axis (centre,

north): transparent

Sigmoidal to obliqueparallel to divergent

T: ?B: downlap/onlap

0 to 4 m(south), base

never reachedin the north

(transparent)

Widespread over theestuarine axis and the

southern rim (fig.4B, 4C)

U3 c: medium to low, a: high to low,

f: medium to low

Oblique divergent to

parallel/subparallel

T: truncation/toplap

B: downlap, onlap,concordant

0 to 5 m Above the southern plateau

(fig.4C)

U2 c: high to low, a: medium to low,

f: medium to lowPartly transparent/chaotic because

of gas.

Parallel to subparallel

mainly, locally obliqueparallel

T: truncation/toplap

B: onlap/concordant

0 to 7 m (base

rarelyimaged)

Incised-valley bottom

(fig.4A, 4B)

U1 transparent T: toplap

B: concordant/onlap

0 to 2 m Patchy in the valley bottom

and valley walls (fig.4C)

U0 transparent T: truncation Base not

reached

Widespread

(Mesozoic bedrock)

(fig.4A, 4C)

TABLE I. – Characteristics of the different seismic units recognized in the sedimentary infill of the Seine outer estuary (U1 to U6) above the Mesozoic be-drock (U0).TABL. I. – Caractéristiques des différentes unités sismiques reconnues dans le remplissage sédimentaire de l’estuaire externe de la Seine (U1 à U6)au-dessus du socle mésozoïque (U0).

marginal tidal domain. At the seaward termination, U4 israther aggradational with planar reflectors (fig. 4B, Seismicprofile Geos61).

U5: this last main unit represents the present-day tidalbars, i.e. the positive morphological relief in the estuarineaxis. No internal geometry is visible into U5, which isacoustically totally turbid (fig. 4B). We assume that thisphenomenon is more probably due to the superficial com-paction of sands rather than to the presence of gas.

U6: this thin draping unit, mostly occurring along thebar feet and on the estuarine rims, characterizes the pres-ent-day estuarine dynamics outside of the bar area (e.g. fig.4C, seismic profile Geos08).

A schematic representation of the architectural ele-ments visible in the outer estuary infilling is proposed onfigure 5, in order to summarize the available informationprovided by the seismic data.

Sedimentary infilling lithology and age

Thanks to the vibrocores collected along the seismic lines,it is possible to define the sedimentological nature of eachseismic unit, and to provide information about their age.Seven cores (Vk31, Vk37, Vk43, Vk52, Vk61, Vk62, Vk68,see fig. 1 for location) illustrating the different seismicunits, and on which dates are available (except Vk61), havebeen selected (fig. 6). Vk52 was collected on the northernrim and "ground-truths" overall U2. Although Vk61 doesnot provide any age information, it allows illustrating the

sedimentary succession that characterizes the transition be-tween U2 and U4 above the valley axis. U4 and U5 presentin the estuarine axis are illustrated by Vk43 and Vk62,whereas, U3 and U4 that characterize the southern rim aredescribed in Vk31, Vk37 and Vk68. Wells performed in the1970's in the vicinity of Le Havre harbour [Guyader, 1977]provide additional information about the deepest units.Most cores show sand to clay-dominated successions withlocally shelly, more rarely pebbly, beds. Except tidal bed-dings such as flaser- to wavy- and lenticular beddings, fewprimary sedimentary structures have been observed.

Vk52 (northern rim, outermost estuary). It is locatedalong the seismic line Geos47. The succession is marked1 m below the top by a very coarse-grained interval withshell fragments and pebbles and an erosive basal surface.Below this interval, the succession is made of a bioturbatedclayey and silty facies, including locally tidal deposits andorganic-rich beds (plant debris and peaty layers). The upperpart of the core consists in a clayey succession with interca-lated sandy, locally shelly, beds. Radiocarbon dating indi-cates that the basal part is dated back to the early Holocene,whereas an age of 6983 +/- 317 cal yr B.P. is obtained fromthe coarse interval. According to the seismic data, the lowerfine-grained succession in this core corresponds to the seis-mic unit U2 frequently characterized by gas masks. This isconsistent with the organic-rich facies reported in the lithol-ogy. The upper part of the core represents the most recentdraping unit, U6, being preserved along the bar feet anddeepest sectors. The coarse interval indicates erosion and

Bull. Soc. géol. Fr., 2010, no 2

HOLOCENE SEDIMENTARY INFILLING OF A TIDE-DOMINATED ESTUARINE MOUTH 91

Honfleur

Le Havre

Trouville

5 km

Honfleur

Le Havre

430000

190000

180000

200000

210000

1414

14

Trouville

Cabourg

Villers--sur-mer

5 km

Ouistreham

10

Palaeo-Seine

30

30

20

20

20

10

14

14

10

Touques

Dives

Orn

e

410000

Profile A

450000

-25

-20

-15

-10

-5

0 mLLTL

180000185000190000195000200000205000

North SouthProfile A

Palaeo-Seine

Present-day water depth

Bedrock depth

Bedrock depth

B

A

FIG. 3. – A) Morphology of the Mesozoic bedrock in the eastern Bay of Seine and close to the estuary entrance. Contour lines each 2 m (in metres belowlowest low tide level, LLTL) [after Auffret and d’Ozouville, 1985; Delsinne, 2005]; B) location of the available seismic lines compared to the morphologyof the bedrock. Coordinates in metres (French Lambert 2 “étendu” system).FIG. 3. – A) Morphologie au toit du bedrock en Baie de Seine orientale et près de l’embouchure de la Seine. Contours bathymétriques tous les 2 m (en CM)[d’après Auffret and d’Ozouville, 1985; Delsinne, 2005]; B) Position des données sismiques disponibles par rapport à la morphologie du toit du bedrock.Coordonnées en mètres (Lambert 2 étendu).

sediment by-passing, and is assumed to condense mostlyU4, as reflected by seismic data (Fig.?).

Vk43 (northern rim, middle outer estuary). This core il-lustrates the sedimentary successions preserved in thenorthern marginal tidal channel system. It is located on theseismic line Geos34. The whole succession is predomi-nantly sandy. Some shelly layers are well developed be-tween 50 and 100 cm below the surface. Clays and siltsdominate the top of the succession (uppermost 50 cm) andrepresent U6. Below this fine-grained unit, the sandy

succession corresponds to U4 that is interpreted from seis-mic data as tidal channel and shoal facies. The presence ofshells indicates that the environment, as it is infilling, isprogressively subjected to higher energy conditions, proba-bly in relation to wave action. The date of 404 – 525 cal. yrB.P. demonstrates that this unit is of very late Holocene age.

Vk61 (north-central sector, outermost estuary). It is lo-cated on the seismic line Geos64. This core is mainly char-acterized by a sand-dominated succession with regularlyintercalated clayey to silty layers. A very coarse shelly and

Bull. Soc. géol. Fr., 2010, no 2

92 TESSIER B. et al.

pebbly interval is present 1 m above the base. Below thiscoarse layer, the succession is clayey-dominated with someintercalated sandy to shelly-pebbly beds. The upper metre isclayey dominated, representing U6. The main sandy succes-sion corresponds to U4 (tidal estuarine body). The lowerclayey facies represent U2. The passage from U2 to U4 ismarked by the coarse, probably erosive, interval.

Vk62 (north-central sector, Amfard tidal bar). Thiscore, collected at the top of the northern longitudinal bar, islocated along the seismic line Geos75. It shows a coarsen-ing-up succession with a typical tidal heterolitic facies atthe base evolving progressively to a sandy-dominated fa-cies. This succession, representing U5, and which has beendated thanks to old bathymetric charts to the last decades[Delsinne, 2005], is interpreted to be the result of the sea-ward tidal bar migration over its subtidal bottomset termi-nation.

Vk37 and Vk68 (southern sector, outermost estuary).Both cores are located on the seismic line Geos30 and illus-trate the sedimentary successions preserved above the bed-rock plateau, i.e. U3 and U4. Vk68 is mainly characterizedby a sedimentary succession with alternating clayey to siltyfacies and sandy (locally shelly) layers. This successionrepresents U4. It rests on a basal coarser, dominantly sandyfacies corresponding to U3. Both units are bounded by ashelly bed, the top of which provided an age of 2770 +/- calyr B.P. Vk37 displays an overall coarsening upward succes-sion, dominantly sandy with thick shelly beds in the uppermetre. At 1 m below the surface, a shelly interval is dated to2880 +/- cal yr B.P. The sole of the core, very close to thebedrock, is characterized by a decimetric layer of verycoarse-grained pebbly and shelly facies from which is pro-vided an age of 3090 +/- 35 cal yr B.P. The succession cor-responds mainly to U4, with possible remnants of U3 at thebase.

Bull. Soc. géol. Fr., 2010, no 2

HOLOCENE SEDIMENTARY INFILLING OF A TIDE-DOMINATED ESTUARINE MOUTH 93

� FIG. 4. – Selected seismic lines shot in the Seine outer estuary. Vertical scale: on the left in milliseconds two way travel time (ms TWTT); on the right inmetres (below lowest low tide, LLTL). A P-wave velocity of 1600 m/s in soft sediments was chosen for time-to-depth conversion. Horizontal scale in shots(200 shots ~ 200 m). Cores collected along the lines are positioned and schematized (see figure 6 for detailed description). A) Seismic lines Geos47, 34,44 shot in the northern area of the outer estuary (above the northern rim of the incised valley). B) Seismic lines Geos75, 64 shot in the central area of theouter estuary (above the main incised-valley axis). Seismic lines in this area, shot across the tidal bars are almost entirely “turbid” acoustically. C) Seismiclines Geos08, 30, 31 shot in the southern area of the outer estuary (above the southern bedrock plateau).FIG. 4. – Sélection de Profils sismiques acquis dans l’estuaire externe de la Seine. Echelle verticale : à gauche, en millisecondes temps double (msTWTT) ; à droite en mètres (sous le zéro cote marine). Une vitesse de propagation des ondes acoustiques dans les sédiments meubles de 1600 m/s a étéchoisie pour la conversion temps/profondeur. Echelle horizontale en tirs (200 tirs � 200 m). Les carottes récoltées le long des profils sont positionnées etschématisées (cf. fig. 6 pour leur description lithologique). A) Profils sismiques Geos47, 34, 44 acquis dans le secteur nord (au-dessus de la rive nord dela vallée incisée) ; B) Profils sismiques Geos75, 64 acquis dans la partie centrale (au-dessus de l’axe principal de la vallée incisée). Les profils tirés dansce secteur, au travers des barres tidales d’embouchures sont presque tous et entièrement acoustiquement « turbides » ; C) Profils sismiques Geos08, 30, 31acquis dans le secteur sud, au-dessus du plateau formé par une remontée du socle rocheux.

The core Vk31 (southern sector, middle outer estuary) islocated along the seismic line Geos12. However, on figure 4C,Vk31 has been projected on Geos08, the latter being veryclose and of much better quality. Vk31 mainly consists in typi-cal heterolithic tidal facies organized in a general coarseningupward succession. This succession corresponds mainly to theseismic unit U4, confirming the dominantly tidal origin of thelatter. The base of the core is dated to 1754 +/- 73 cal yr B.P.

In addition, two wells (F1076, F1073) located alongGeos44 (fig. 1, fig. 4A) in the northern margin of the inci-sion, provided some information about the position of thetop of the bedrock and the sedimentological nature of thedeepest unit U1 (pebbly facies), which has never beenreached by vibrocoring, as well as of U2 (fine-grained or-ganic rich facies). These wells are not detailed herein. Theyare only schematized on figure 4A.

Bull. Soc. géol. Fr., 2010, no 2

94 TESSIER B. et al.

FIG. 5. –Organization of the seismic units of the sedimentary infilling of the Seine outer estuary according to the available seismic data. Profiles P1 and P2correspond approximately to the bathymetric profiles shown in figure 2.FIG. 5. – Organisation des unités sismiques du remplissage sédimentaire de l’estuaire externe de la Seine en fonction des données sismiques disponibles.Les profils P1 et P2 correspondent approximativement aux profils bathymétriques de la figure 2.

FIG. 6. – Lithological description of selected vibro-cores collected in the outer estuary (cf. figure 1 for location). Ages are indicated in bold characters onthe right side of the log (in calibrated years B.P.). Along Vk61, ages AD have been established by comparison with old bathymetric charts (cf. fig. 2) [Del-sinne, 1985(. On the left side of each log is indicated the depth in metres below lowest low tide level (mbLLTL). Correspondence with seismic units is in-dicated on the left side of the mbLLTL scale. Grain-size: C-clay; S-silt; fS, mS, cS-fine, medium, and coarse sand; g-gravels.FIG. 6. – Description lithologique de quelques carottes récoltées dans l’estuaire externe (cf. figure 2 pour la position). Ages indiqués en gras à droite(âges calibrés B.P.). Le long de la carotte Vk61 les âges AD ont été établis à partir de la comparaison de cartes bathymétriques (cf. fig. 2) [Delsinne,2005). A gauche, une échelle en mètres sous le zéro CM est proposée. La correspondance avec les unités sismiques est indiquée à gauche de cette échelle.Granulométrie : C-vase ; S-silt ; fS, mS, cS-sable fin, moyen, grossier ; g-graviers.

To summarize, seismic data allow distinguishing sixmain units in the sedimentary infilling of the incised valley,above the bedrock. These units, thanks to core lithology,can be interpreted in terms of depositional environment(U1: pebbly fluvial terraces; U2: fine-grained tidal flats,may be tidal swamps; U3: sandy barrier/muddy back bar-rier; U4: estuarine body; U5: tidal bars; U6: present-daydraping, dominantly clayey, locally shelly). Dating per-formed along the cores, as well as old bathymetric charts,provide key ages: about 9500 cal yr B.P. at the base of U2;about 7000 cal yr B.P. at the base of U3 and U4; about3000 cal yr B.P. at the base of U4 on the southern estuarymargin; decennial to centennial time-scale of evolution forU4, U5 and U 6 in the estuarine axis.

DISCUSSION

These results allows us 1) to reconstruct for the first time,within a chronological frame, the architecture and thesedimentological nature of the sediment wedge that depos-ited in this part of the Seine incised valley; 2) to highlightthe main factors that controlled the sedimentary infilling.

According to the ages provided from juvenile marineshells along the different cores, the oldest date obtainedfrom radiocarbon dating is 9300-9500 cal yr B.P. (Vk52).However, no ages are available from the deepest unit U1.According to well data, this unit corresponds to remnants ofthe early to late Würmian fluvial terraces described byAlduc et al. [1977], Lefebvre et al. [1977] and Auffret et al.[1980]. Hence we assume that, above the bedrock and lo-cally above the late Pleistocene terraces, the sedimentaryinfilling of the incised valley is mainly marine in origin andexclusively Holocene in age.

The sediment infilling can be divided into two mainstages (fig. 7).

– The first infilling stage is represented by theaggradational unit U2 deposited in the axis of the valley.Because of the presence of gas, this unit is poorly imagedby the seismic data. Core and well data (Vk52, F1073),however, points out that U2 is predominantly made offine-grained and organic-rich facies, explaining thus thegeneration of shallow gas as it is usually described in com-parable estuarine settings [e.g. Garcia-Gil et al., 2002; Ber-tin and Chaumillon, 2005; Baltzer et al., 2005]. Thedepositional environment of this unit is interpreted as tidalflats and tidal swamps that developed during the early Holo-cene, according to the dates provided by Vk52, i.e.9300-9500 and 8700-9000 cal yr B.P., when the sea-levelrise was the most rapid (10 to 6 mm/year; Lambeck, 1997].This unit is similar in terms of geometry andsedimentological nature to the aggradational units describedas the transgressive infill of the eastern Marennes-OléronBay [Allard et al., 2008].

– The second stage of the sedimentary infilling ismarked by the development of the tidal estuarine systemmade of bars and channels (U4, U5). This development oc-curred mainly above the main axis of the incised valley.Laterally, on the margin of the valley, and more especiallyabove the southern bedrock plateau, this second infillingstage starts with the construction of a landward migratingbody interpreted as a coastal barrier (U3). The base of U4corresponds to an erosive coarse-grained shelly to pebbly

interval (Vk52, Vk61). An age of 6500-7300 cal B.P. hasbeen provided for this layer (Vk52). This age matches wellwith the beginning of the late Holocene, when sea-level riseslowed down significantly (3 to 1 mm/year, Lambeck[1997]). This deceleration and resulting slow transgressioninduced the construction of a migrating and aggradingestuarine body above the valley and, on the margin of thevalley, the edification of a coastal barrier that slowly mi-grates landward and aggrades as well. All along the late Ho-locene until nowadays, the estuarine body has constructedand has remained active, as a consequence of deep tidalchannel migration above the main incision. The data clearlydemonstrate that the estuarine tidal system finally also ex-panded above the bedrock plateau. This lateral expansion ofU4 in the southern margin caused partial erosion (tidalravinement) and the complete overlapping of U3 (barrier).According to the available dates, this expansion and barriererosion took place around 3000 cal yr B.P. Shallow chan-nels, much less active than those present in the valley axis,characterize the tidal system that develops in this marginalsector until present days. The area filled progressively andbecame less and less dynamic, being considered as aban-doned nowadays.

It appears from this reconstruction that two main factorshave controlled the sediment wedge development at theSeine river mouth, in terms of architecture and sedimentarybody preservation. The first key-factor is the rate ofsea-level rise that basically controls the accommodation.Since the transgression is rapid before 7000 yr B.P., anaggradational depositional unit made of gas-charged sedi-ments characterizes the main architectural infilling patternin the incised valley. Onlap terminations on the valley wallsshould exist as well, but the seismic data do not allow imag-ing such features. Aggrading fine-grained organic-rich de-posits are a common feature of transgressive systems tract(TST) of Holocene incised valley fill [Dalrymple et al.,1992; Long et al., 1996; Proust et al., 2001; Menier et al.,2006, Allard et al., 2008; in Chaumillon et al., 2008b]. As aresult of the context of high accommodation, sediment sup-ply is relatively low, favouring salt marshes and tidal flatsdevelopment and organic-rich deposition, typical of innerestuarine settings. However, the presence in the TST ofhigher energy estuarine bodies, such as tidal channels andsand bars, is also probable. Nevertheless, the present studydoes not provide any evidence of the preservation of suchsedimentary bodies. Only some wells demonstrated thepresence of sand-dominated successions in the bottom ofthe incised valley axis [Guyader, 1977]. On the other hand,the aggradational unit (U2) characterized by gas-chargedsediments could also be interpreted as part of a central basininfilling, assuming that a coastal barrier would have beenconstructed off the present-day estuary mouth at the begin-ning of the transgression. In this hypothesis, the Seine estu-ary would have been a wave-dominated estuary during thefirst stages of the incised-valley flooding. No remnant ofcoastal barrier has been depicted on the available seismiclines but coastal retreat should have induced deep rework-ing. Such evolution from wave- to tide-dominated estuarieshas already been reported, for example in the case of theCobequid Bay -Salmon River Estuary, Bay of Fundy [Dal-rymple and Zaitlin, 1994]. As soon as the transgression rateslowed down after 7500 yr B.P. onwards, the architecturalpattern and environmental context changed drastically. The

Bull. Soc. géol. Fr., 2010, no 2

HOLOCENE SEDIMENTARY INFILLING OF A TIDE-DOMINATED ESTUARINE MOUTH 95

estuarine mouth with deep tidal channels and high ampli-tude bars starts to grow. The development of such a high-en-ergy tidal system, characterized by high marine sedimentsupply, necessarily requires space. As a consequence, thisdevelopment occurs above the main valley axis and will re-main very active above this sector all along the sedimentaryinfilling of the system. Conversely, on the edges of the sys-tem, in shallower water settings, where tidal energy is sig-nificantly lower and associated marine sediment supply lessimportant, wave-dominated retrograding barriers preferen-tially develop (U3). This feature clearly demonstrates thatthe incised valley morphology is the second key-factor gov-erning the infilling pattern. The importance of the bedrockmorphology has already been demonstrated in many othercase studies [e.g. Heap and Nichol, 1997; Proust et al.,2001; Lobo et al., 2003; Menier et al., 2006; Bertin et al.,2004; Billeaud et al., 2007; Chaumillon et al., 2008b]. Inthe case of the Seine estuary, the bedrock plateau, the alti-tude of which coincides with the sea-level elevation at7000-6500 yr B.P., constitutes a critical element for the de-velopment of a wave-dominated environment on the marginof the valley, whereas the most active tidal entrance (i.e. thetide-dominated environment) develops only above the deep-est incision. Nevertheless, our data demonstrate that thetidal system has finally expanded over the whole incisedvalley area. This points out, therefore, that a significant en-vironmental change occurred around 3000 yr B.P. Thischange is marked by the destruction of the wave-dominatedbarrier, thus allowing the tidal system to establish on thesouthern marginal area. We suggest that an increase in tidalrange, and thus in tidal energy, could be responsible for theonset of this major environmental change, assuming that thesize of the estuarine entrance since this period could besuch that tidal amplification can occur. On the other hand,the period 3500-2500 yr B.P. is known all along the coastsof northern Europe as a period of climatic deteriorationwith severe coastal retreats and barrier destructions [Longet al., 1996; Régnault et al., 1996; Spencer et al., 1998;Clavé et al., 2001; Baeteman et al., 2002; Meurisse et al.,2005; Billeaud et al., 2010]. This hypothesis of a climaticcrisis to explain the major environmental change recordedin the sedimentary infilling of the Seine mouth is preferred

here, since the impact of this crisis on coastal areas hasbeen widely documented, including already in the outerSeine Estuary [Sorrel et al., 2009]. Indeed, the occurrenceof thick shelly beds preserved in the infill and correlated inthe southern outermost estuary, has been interpreted by Sor-rel et al. [2009] as the result of enhanced storminess in rela-tion to the global climatic crisis at ca. 3000 yr B.P.[Mayewski et al., 2004]. We thus strongly believe that thisperiod of climatic deterioration is also responsible for thedestruction of the coastal barrier that established on thebedrock plateau at the beginning of the late Holocene. Onmillennial timescales, this change pointed out above thesouthern plateau constitutes the only indication that Holo-cene climatic crises also played a key-role in controlling thesedimentary infill geometry of the Seine estuary. The result-ing smoothed coastal wedge geometry would have triggeredthe passage to fully tidal conditions throughout the wholeestuarine realm.

GENERAL CONCLUSIONS

This study, combining vibrocore and VHR seismic data col-lected at the Seine mouth, documents the evolution of a sed-imentary coastal wedge that developed in a macrotidalsetting. Several concluding remarks can be emphasized:

– the estuarine body in such settings is the most devel-oped depositional unit of the sedimentary infilling and be-longs to the HST. The most active domain of this estuarinesystem, with deep tidal channels and high amplitude tidalbars, develops above the main axis of the incised valley, andremains active all along the sedimentary infilling in thisarea;

– in spite of the tide-dominated character of the Seineestuary, wave-dominated sediment bodies can develop, andbe preserved, on the margin of the valley, where a bedrockplateau protrudes in the valley;

– rates in sea-level rise and bedrock morphology appearto be the two key-factors that govern the general organiza-tion of the infilling in term of architecture and preservedsedimentary bodies.

Bull. Soc. géol. Fr., 2010, no 2

96 TESSIER B. et al.

FIG. 7. – Schematic representation of the sedimentary infilling of the Seine outer estuary displaying the main architectural features and stratigraphickey-surfaces and boundaries (incised valley strike-oriented cross-section). The 7000 yr B.P. surface reflects the main inflexion point of the Holocenetransgression and corresponds to the main architectural change observed in this study (HSLR: Holocene sea-level rise). TRS: tidal ravinement surface;WRS: wave ravinement surface (probably not preserved, reworked by the TRS); MFS: maximum flooding surface; TST: transgressive systems tract; HST:highstand systems tract.FIG. 7. – Représentation schématique du remplissage sédimentaire de l’estuaire externe de la Seine montrant les principaux éléments architecturaux, sur-faces et limites stratigraphiques (coupe perpendiculaire à l’axe de la vallée incisée). La surface à 7 000 ans B.P. reflète le point d’inflexion de la trans-gression holocène et correspond au changement architectural majeur observé dans le remplissage (HSLR : remontée du niveau marin holocène). TRS :surface de ravinement tidal ; WRS : surface de ravinement par la houle (probablement pas préservée, remaniée par la TRS) ; MFS : surface d’inondationmaximum ; TST : cortège de dépôt transgressif ; HST : cortège de dépôt de haut niveau).

Consequently, to understand the sedimentary infilling ofmacrotidal estuarine mouths, the following conclusionsshould be considered:

– in the axis of the incised valley, characterized by highenergy tidal dynamics with associated deep tidal ravinementand high sediment input (of marine origin), long time-scalesedimentary successions cannot be preserved, because re-working due to tidal channel migration is the main processin this area. Preservation of sedimentary bodies is mainlycontrolled by tidal accommodation, i.e. by the depth of theactive channel belt;

– on the valley margins, reworking due to deep tidalchannel migration is not the dominant process as tidal en-ergy is lower, resulting in low sediment supply and shallow

tidal ravinement base. Sedimentation rate is rather in equi-librium with eustatic accommodation in this part of thesystem. Therefore, sedimentary successions would be pref-erentially preserved in these marginal areas of the valley onmillennial timescales, allowing the impact of other factorssuch as climatic changes or tidal range evolution to be re-corded.

Acknowledgments. - This work is part of the PhD dissertation of N. Del-sinne, funded by the Regional council of Basse Normandie and the re-search program Seine-Aval. P. Sorrel benefited a CNRS post-doctoralgrant. We are grateful to the officer and crew of R/V Côte d'Aquitaine(CNRS/INSU) for the seismic survey, and of the R/V Thalia (Ifremer/Ge-navir) for the vibrocoring survey.

References

ALDUC D., AUFFRET J.-P, CARPENTIER G., LAUTRIDOU J.-P., LEFEBVRE D. &PORCHER M. (1979). – Nouvelles données sur le Pléistocène dela basse vallée de la Seine et son prolongement sous-marin enManche Orientale. – Bull. inform. Géol. Bassin Paris, 16, 27-34.

ALDUC et al 1979 p 6 ? ? ? ? ? ? ? ? ? ? ?

ALLARD J., CHAUMILLON E., POIRIER C., SAURIAU P.G. & WEBER O.(2008). – Evidence of former Holocene sea level in the Maren-nes-Oleron Bay (French Atlantic coast). – C. R. Geosciences,340, 306-314.

ASHLEY G.M. & SHERIDAN R.E. (1994). – Depositional model for valleyfills on a passive continental margin. In : R.W. DALRYMPLE, R.BOYD & B.A. ZAITLIN, Eds, Incised valley systems : origin andsedimentary sequences. – SEPM, Spec. Publ., 51, 285-301.

AUFFRET J.-P., ALDUC D., LARSONNEUR C. & SMITH A.J. (1980). – Carto-graphie du réseau des paléovallées et de l’épaisseur des forma-tions superficielles meubles de la Manche Orientale. – Ann. Inst.Océano., 56, 21-34.

AUFFRET J.-P. & D’OZOUVILLE L. (1985). – Cartographie du prisme sédi-mentaire holocène en baie de Seine orientale par sismique ré-flexion à haute définition : " La Baie de Seine ". – Actes decolloques no4 Greco-Manche. – Ed. Ifremer, Caen, 53-57.

AVOINE J. (1986). – Sediment exchanges between the Seine estuary and itsadjacent shelf. – J. Geol. Soc., London. 144, 135-148.

BAETEMAN C., SCOTT D.B. & VAN STRYDONCK M. (2002). – Changes incoastal zone processes at a high sea-level stand : a late Holo-cene example from Belgium. – J. Quat. Sc., 17, 547-559.

BALTZER A., TESSIER B., NOUZÉ H., BATES R., MOORE C. & MENIER D.(2005). – Seistec seismic profiles : a tool to differentiate gas si-gnatures. – Mar Geophys. Res., 26, 235-245.

BERTIN X., CHAUMILLON E., WEBER N. & TESSON M. (2004). – Morpholo-gical evolution and coupling with bedrock within a mixed ener-gy tidal inlet : the Maumusson Inlet, France. – Mar. Geol., 204,187-202.

BERTIN X. & CHAUMILLON E. (2005). – New insights in shallow gas genera-tion from very high resolution seismic and bathymetric surveysin the Marennes-Oleron Bay, France. – Mar Geophys. Res., 26,225-233.

BERTIN X., CHAUMILLON E., SOTTOLICHIO A. & PEDREROS A. (2005). – Ti-dal inlet response to sediment infilling of the associated bay andpossible implications of human activities : The Marennes-Olé-ron Bay and Maumusson Inlet, France. – Continent. Shelf Res.,25, 1115-1131.

BILLEAUD I., TESSIER B., LESUEUR P. & CALINE B. (2007). – Preservationpotential of highstand coastal sedimentary bodies in a macroti-dal basin : Example from the Bay of Mont-Saint-Michel, NWFrance. – Sedim. Geol., 202, 754-775

BILLEAUD I., TESSIER B. & LESUEUR P. (2010). – Impacts of Late Holocenerapid climate changes as recorded in a macrotidal coastal setting(Mont-Saint-Michel Bay, France). – Geology (in press).

CHAUMILLON E., BERTIN X., FALCHETTO H., ALLARD J., WEBER N., WALKER

P., POUVREAU N. & WOPPELMANN G. (2008a). – Multi time-scaleevolution of a wide estuary linear sandbank, the Longe deBoyard, on the French Atlantic coast. – Mar. Geol., 251,209-223.

CHAUMILLON E., PROUST J.-N., MENIER D. & WEBER N. (2008b). – Inci-sed-valley morphologies and sedimentary-fills within the innershelf of the Bay of Biscay (France): a synthesis. – J. Mar. Syst.,72, 383-396.

CLAVÉ B., MASSÉ L., CARBONEL P. & TASTET J.-P. (2001). – Holocene coas-tal changes and infilling of the La Perroche marsh (FrenchAtlantic coast). – Oceanol. Acta, 24, 377-389.

DALRYMPLE R.W. & ZAITLIN B.A. (1994). – High-resolution sequence stra-tigraphy of a complex, incised valley succession, Cobequid Bay –Salmon River estuary, Bay of Fundy (Canada). – Sedimentology,41, 1069 – 1091.

DALRYMPLE R.W., ZAITLIN B.A. & BOYD R. (1992). – Estuarine facies mo-dels: conceptual basis and stratigraphic implication. – J. Sedim.Petrol., 62, 1130-1146.

DALRYMPLE R.W., BOYD R. & ZAITLIN B. A. (1994). – History of research,valley types and internal organization of incised-valley systems.In : R.W. DALRYMPLE, R. BOYD & B.A. ZAITLIN, Eds, Incisedvalley systems: origin and sedimentary sequences. – SEPM,Spec. Publ., 51, 3-10.

DALRYMPLE R.W., LECKIE D.A. & TILLMAN R.W. (2006). – Incised valleysin time and space. – SEPM Spec. Publ., 85.

DELSINNE N. (2005). – Évolution plurimillénaire à pluriannuelle du prismesédimentaire d’embouchure de la Seine. Facteurs de contrôle na-turels et d’origine anthropique. – Ph.D. Thesis, University ofCaen-Basse Normandie. 179 p. Pdf manuscript available on:http://tel.archives-ouvertes.fr/index.php?langue=en&halsid=ckbbgl68qjjd5uar10jbkarql1

DELSINNE N. & TESSIER B. (2002). – Human-induced impacts on the decen-nial-scale morphological evolution of a macrotidal estuary. Thecase of the Seine estuary, NW France. – Int. Workshop on Sedi-ment Transport in European Estuaries, Ferrara Italie. Abstractbook, 10-11.

FROUIN M., SEBAG D., DURAND A., LAIGNEL B., SALIEGE J.-F., MAHLER B.J.& FAUCHARD C. (2007). – Influence of paleotopography, base le-vel and sedimentation rate on estuarine system response to theHolocene sea-level rise : The example of the Marais Vernier,Seine estuary, France. – Sed. Geol., 200, 15-29.

GARCIA-GIL S., VILAS F. & GARCIA-GARCIA A. (2002). – Shallow gas featuresin incised-valley fills (Ría de Vigo, NW Spain): a case study. –Cont. Shelf Res., 22, 2303-2315.

Bull. Soc. géol. Fr., 2010, no 2

HOLOCENE SEDIMENTARY INFILLING OF A TIDE-DOMINATED ESTUARINE MOUTH 97

GARNAUD S., LESUEUR P., CLET M., LESOURD S., GARLAN T., LAFITE R. &BRUN-COTTAN J.-C., (2003). – Holocene to modern fine-grainedsedimentation on a macrotidal shoreface-to-inner-shelf setting(eastern Bay of the Seine, France). – Mar. Geol., 202, 33-54.

GUYADER J. (1977). – Le Quaternaire de la zone portuaire du Havre. – Bull.Soc. géol. Normandie, LXIV(4), 39-63.

HEAP A.D. & NICHOL S.L. (1997). – The influence of limited accommoda-tion space on the stratigraphy of an incised-valley succession :Weiti river estuary, New Zealand. – Mar. Geol., 144, 229-252.

HUAULT M.-F., LEFEBVRE D., GUYADER J., GIRESSE P., HOMMERIL P. & LAR-

SONNEUR C. (1975). – Evolution of the estuary of the Seine sincethe last glaciation. – Phil. Trans. R. Soc. A, 279, 229-231.

HUGHEN K.A., BAILLIE M.G.L., BARD E., BECK J.W., BERTRAND C.J.H.,BLACKWELL P.G., BUCK C.E., BURR G.S., CUTLER K.B., DAMON

P.E., EDWARDS R.L., FAIRBANKS R.G., FRIEDRICH M., GUILDER-

SON T.P., KROMER B., MCCORMAC G., MANNING S., RAMSEY

C.B., REIMER P.J., REIMER R.W., REMMELE S., SOUTHON J.R.,STUIVER M., TALAMO S., TAYLOR F.W., VAN DER PLICHT J. &WEYHENMEYER C.E. (2004). – Marine04 marine radiocarbon agecalibration, 0-26 cal kyr B.P. – Radiocarbon, 46, 1059-1086.

LAFITE R. & ROMAÑA L.-A. (2001). – A man-altered macrotidal estuary :the Seine estuary (France) : introduction to the special issue. –Estuaries, 35, 939.

LAMBECK K. (1997). – Sea-level change along the French Atlantic andChannel coasts since the time of the Last Glacial Maxi-mum. – Palaeogeogr. Palaeoclimatol. Palaeoecol., 129, 1-22.

LAUTRIDOU J.-P., AUFFRET J.-P., BALTZER A., CLET M., LÉCOLLE F., LE-

FEBVRE D., LERICOLAIS G., ROBLIN-JOUVE A., BALESCU S., CAR-

PENTIER G., DESCOMBES J.-C., OCCHIETTI S. & ROUSSEAU D.-D.(1999). – Le fleuve Seine, le fleuve Manche. – Bull. Soc. géol.Fr., 170, 545-558.

LEFEBVRE D., HUAULT M.-F., GUYADER J., GIRESSE P., HOMMERIL P. & LAR-

SONNEUR C. (1974). – Le prisme alluvial de l’estuaire de laSeine : Synthèse sédimentologique, stratigraphique et paléo-géographique. – Bull. inform. Géol. Bassin Paris, 39, 27-36.

LEFEBVRE ET AL 1977 P6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

LE FLOCH J.F. (1961). – Propagation de la marée dynamique dans l’estuairede la Seine et de la Seine maritime. – Unpublished PhD disserta-tion, University of Paris, France.

LE HIR P., FICHT A., SILVA JACINTO R., LESUEUR P., DUPONT J.P., LAFITE R.,BRENON I., THOUVENIN B. & CUGIER P. (2001). – Fine sedimenttransport and accumulations at the mouth of the previous term-Seinenext term estuary (France). – Estuaries, 24, 950-963

LESOURD S., LESUEUR P., BRUN-COTTAN J.C., GARNAUD S. & POUPINET N.(2003). – Seasonal variations in the characteristics of superficialsediments in a macrotidal estuary (the Seine inlet,France). – Estuarine, Coastal Shelf Sc., 58, 3-16.

LESUEUR P., LESOURD S., LEFEBVRE D., GARNAUD S. & BRUN-COTTAN J.C.(2003). – Holocene and modern sediments in the Seine estuary(France) : a synthesis. – J. Quatern. Sci., 18, 1-11.

LOBO F.J., DIAS J.M.A., GONZÀLEZ R., HERNANDEZ-MOLINA F.J., MORALES

J.A. & DÌAZ DEL RÌO V. (2003). – High-resolution seismic strati-graphy of a narrow, bedrock-controlled estuary : the GuadianaEstuarine System, SW Iberia. – J. Sed. Petrol., 73, 973-986.

LONG A.J., PLATER A.J., WALLER M.P. & INNES J.B. (1996). – Holocenecoastal sedimentation in the eastern English Channel : Newdata from the Romney Marsh region, United Kingdom. – Mar.Geol, 136, 97-120

MAYEWSKI P.A., ROHLING E.E., STAGER J.C., KARLÈN W., MAASCH K.A.,MEEKER L.D., MEYERSON E.A., GASSE F., VAN KREVELD S.,HOLMGREN K., LEE-THORP J., ROSQVIST G., RACK F., STAUBWAS-

SER M., SCHNEIDER R.R. & STEIG E.J. (2004). – Holocene cli-mate variability. – Quatern. Res., 62, 243-255.

MENIER D., REYNAUD J.-Y., PROUST J.-N., GUILLOCHEAU F., GUENNOC P.,TESSIER B., BONNET S. & GOUBERT E. (2006). – Inherited faultcontrol on the drainage pattern and infilling sequences of lateglacial incised valleys, SE coast of Brittany, France. In : R.W.DALRYMPLE, D.A. LECKIE and R. TILLMAN, Eds., Incised valleysin time and space. – SEPM Spec. Publ., 85, 37-55.

MEURISSE M., VAN VLIET-LANOË B., TALON B. & RECOURT P.(2005). – Complexes dunaires et tourbeux holocènes du littoraldu Nord de la France. – C. R. Geoscience, 337, 675-684.

PERILLO G.M.E. (1995). – Geomorphology and sedimentology of estua-ries. – Dev. Sediment., 53, Elsevier, Amsterdam, 471 p.

PROUST J.-N., MENIER D., GUILLOCHEAU F., GUENNOC P. & BONNET S.(2001). – Les vallées fossiles de la Baie de la Vilaine : Nature etévolution du prisme transgressif du Pléistocène armori-cain. – Bull. Soc. géol. Fr., ? ? ? ? ? ? ? ? ?6, 737-749

REGNAULT H., JENNINGS S., DELANAY C. & LEMASSON L. (1996). – Holo-cene sea-level variations and geomorphological response : anexample from northern Brittany (France). – Quatern. Sci. Rev.,15, 781-787.

SALOMON J.C. & ALLEN G.P. (1983). – Rôle sédimentologique de la maréedans les estuaires à fort marnage. – Compagnie Française desPétroles, Notes et Mémoires, 18, 35-44

SIMPKIN P.G. & DAVIS A. (1993). – For seismic profiling in very shallowwater, a novel receiver. – Sea Technology, 9, 21-28.

SORREL P., TESSIER B., DEMORY F., DELSINNE N. & MOUAZÉ D.(2009). – Evidence for millennial-scale climatic events in thesedimentary infilling of a macrotidal estuarine system, the SeineEstuary (NW France). – Quatern. Sci. Rev., 28, 499-516.

SPENCER C.D., PLATER A.J. & LONG A.J. (1998). – Rapid coastal changeduring the Mid– to Late Holocene : The record of barrier estua-ry sedimentation in the Romney Marsh region, SoutheastEngland. – The Holocene, 8, 143-163.

STUIVER M. & REIMER P.J. (1993). – Extended 14C database and revisedCALIB radiocarbon calibration program. – Radiocarbon, 35,215-230.

STUIVER M., REIMER P.J. & REIMER R. (2005). – CALIB 5.0.1 html.http://www.calib.org

THOMAS C.G., SPEARMAN J.R. & TURNBULL M.J. (2002). – Historicalchange in the Mersey estuary. – Cont. Shelf Res., 22, 1775-1794.

VAN DER WAL D., PYE K. & NEAL A. (2002). – Long-term morphologicalchange in the Ribble Estuary, northwest England. – Mar. Geol.,189, 249-266.

ZAITLIN B.A., DALRYMPLE R.W. & BOYD R. (1994). – The stratigraphic or-ganisation of incised valley systems associated with relativesea-level change. In : R.W. DALRYMPLE, R. BOYD & B.A. ZAI-

TLIN, Eds, Incised valley systems : origin and sedimentary se-quences. – SEPM, Spec. Publ., 51, 45-60.

Bull. Soc. géol. Fr., 2010, no 2

98 TESSIER B. et al.