Genetic combining ability estimates in the F 1 and F 2 generations for yield, its component traits...

10
Euphytica (2009) 168:23–32 DOI 10.1007/s10681-008-9872-5 123 Genetic combining ability estimates in the F 1 and F 2 generations for yield, its component traits and alkaloid content in opium poppy (Papaver somniferum L.) H. K. Yadav · Sudhir Shukla · S. P. Singh Received: 8 June 2007 / Accepted: 22 December 2008 / Published online: 8 January 2009 © Springer Science+Business Media B.V. 2009 Abstract The F 1 and F 2 generations of a twenty parent fractional diallel cross of opium poppy (P. somniferum L.) were analyzed for combining abil- ity for ten quantitative and Wve quality (alkaloids) traits. The results indicated signiWcant diVerences among the parents for combining ability for all the traits. The GCA and SCA components of variances were signiWcant for all the characters. However, the SCA component of variance ( 2 s) was predominant indicating the preponderance of non-additive gene eVect for all the traits except for leaves/plant and papaverine in F 1 hybrids. The average degree of dom- inance ( 2 s/ 2 g) was more than unity indicating over dominance and also conWrming non-additive mode of gene action. Among the parents IS-16, IS-13 and NBRI-1 for early Xowering, BR226 and BR241 for branches/plant, capsule weight/plant, seed yield/plant and husk yield/plant, BR227 for leaves/plant, UO1285 for capsule size and opium yield/plant, NBRI-5 for husk yield/plant, morphine, codeine, and thebaine and ‘Papline’ for plant height and papaver- ine content were found good general combiners. Parent ND1001 was good combiner for codeine and narcotine content. Inclusion of good general combiners in a multiple crossing program or an intermating population involving all the possible crosses among them subjected to bi-parental mating may be expected to oVer maximum promise in breeding for higher opium, seed yield and alkaloid contents. Keywords Alkaloids · Combining ability · Non- additive · Over dominance · Papaver somniferum Introduction The opium poppy (Papaver somniferum L.) is an important medicinal plant of diverse pharmaceutical uses. India is world’s largest producer of opium. Besides meeting domestic demand, India exports opium and its derivatives of worth Rs. 13 million worldwide (Singh et al. 1995; Shukla and Singh 2004). Extensive researches on basic and applied aspects have been carried at National Botanical Research Institute, Lucknow of national and international recognition for its genetic improvement. Consequently some improved varieties have been developed (Singh et al. 1999). In recent years, global demand for speciWc alkaloids espe- cially for thebaine, codeine and morphine is increasing drastically which require an urgent need to develop high latex yielding varieties rich in speciWc alkaloids to maintain India’s position in world market. Such varie- ties can be conveniently developed through breeding approaches. The successful breeding program depends mainly on a judicious selection of promising parents from gene pool, a clear cut understanding of genetic H. K. Yadav (&) · S. Shukla · S. P. Singh Division of Genetics and Plant Breeding, National Botanical Research Institute, Lucknow 226001, India e-mail: yadav_hk@rediVmail.com

Transcript of Genetic combining ability estimates in the F 1 and F 2 generations for yield, its component traits...

Euphytica (2009) 168:23–32

DOI 10.1007/s10681-008-9872-5

Genetic combining ability estimates in the F1 and F2 generations for yield, its component traits and alkaloid content in opium poppy (Papaver somniferum L.)

H. K. Yadav · Sudhir Shukla · S. P. Singh

Received: 8 June 2007 / Accepted: 22 December 2008 / Published online: 8 January 2009© Springer Science+Business Media B.V. 2009

Abstract The F1 and F2 generations of a twentyparent fractional diallel cross of opium poppy(P. somniferum L.) were analyzed for combining abil-ity for ten quantitative and Wve quality (alkaloids)traits. The results indicated signiWcant diVerencesamong the parents for combining ability for all thetraits. The GCA and SCA components of varianceswere signiWcant for all the characters. However, theSCA component of variance (�2s) was predominantindicating the preponderance of non-additive geneeVect for all the traits except for leaves/plant andpapaverine in F1 hybrids. The average degree of dom-inance (�2s/�2g) was more than unity indicating overdominance and also conWrming non-additive mode ofgene action. Among the parents IS-16, IS-13 andNBRI-1 for early Xowering, BR226 and BR241 forbranches/plant, capsule weight/plant, seed yield/plantand husk yield/plant, BR227 for leaves/plant,UO1285 for capsule size and opium yield/plant,NBRI-5 for husk yield/plant, morphine, codeine, andthebaine and ‘Papline’ for plant height and papaver-ine content were found good general combiners.Parent ND1001 was good combiner for codeine andnarcotine content. Inclusion of good general combinersin a multiple crossing program or an intermating

population involving all the possible crosses amongthem subjected to bi-parental mating may be expectedto oVer maximum promise in breeding for higheropium, seed yield and alkaloid contents.

Keywords Alkaloids · Combining ability · Non-additive · Over dominance · Papaver somniferum

Introduction

The opium poppy (Papaver somniferum L.) is animportant medicinal plant of diverse pharmaceuticaluses. India is world’s largest producer of opium.Besides meeting domestic demand, India exportsopium and its derivatives of worth Rs. 13 millionworldwide (Singh et al. 1995; Shukla and Singh 2004).Extensive researches on basic and applied aspects havebeen carried at National Botanical Research Institute,Lucknow of national and international recognition forits genetic improvement. Consequently some improvedvarieties have been developed (Singh et al. 1999). Inrecent years, global demand for speciWc alkaloids espe-cially for thebaine, codeine and morphine is increasingdrastically which require an urgent need to develophigh latex yielding varieties rich in speciWc alkaloids tomaintain India’s position in world market. Such varie-ties can be conveniently developed through breedingapproaches. The successful breeding program dependsmainly on a judicious selection of promising parentsfrom gene pool, a clear cut understanding of genetic

H. K. Yadav (&) · S. Shukla · S. P. SinghDivision of Genetics and Plant Breeding, National Botanical Research Institute, Lucknow 226001, Indiae-mail: [email protected]

123

24 Euphytica (2009) 168:23–32

mechanism involved in the inheritance of characters,which help the breeders in deciding the most appropri-ate breeding procedure to enhance the genetic potenti-alities. It is also desirable that selection of suitableparents for hybridization should be based on the com-bining ability of a particular line to nick well with otherlines and produce superior promises. So, to identifypotentially superior parents and hybrids, informationon the combining ability is needed which would also behelpful to deWne the pattern of gene eVects in theexpression of quantitative traits.

The general combining ability (GCA) of each par-ent should be examined with the objective to developsuperior genotypes while speciWc combining ability(SCA) provides information about the performance ofhybrids (Cruz and Regai 1994). The diVerences in theGCA are mainly due to the additive genetic eVectsand higher order additive interactions, while thediVerences in SCA are attributed to the non-additivedominance and other types of epistasis (Falconer1989). This analysis allows broad inferences on thenature of gene eVects for a trait under selection. Basedon this information, breeder can make suitable strat-egy to select desirable parents or can also determinewhich breeding procedure will eYciently improve theperformance of the traits of interest (Dudley and Moll1969). Several mating designs namely diallel, partialdiallel, line £ tester, biparental mating and triple testcross have been used in diVerent crops by diVerentworkers. The diallel, biparental mating and triple testcross designs have their limitations in that their useare limited to fewer number of parents and leavingmany superior parents untested. The line £ testeranalysis though uses more parents in breeding pro-gram, is generally adopted for preliminary testing oflarge number of general combiners (Singh and Singh1987). Under these circumstances the fractional dial-lel cross, which makes use of a large number ofparents and involves limited crosses was suggested tokeep out all these diYculties (Kempthorne andCurnow 1961). This mating design provides usefulinformation to the breeders for making an appropriatebreeding strategy for genetic improvement of yieldand its component characters. Previous studiesshowed that the variation in opium latex, seed yieldand its component traits and major alkaloids contentwas controlled by genes acting additively and non-additively. Singh et al. (2001) reported non-additivegene action for plant height, capsule length, days to

maturity, husk yield/plant, seed yield/plant and mor-phine content. Lal and Sharma (1991) reported addi-tive component for morphine and codeine content.Shukla and Khanna (1997) reported additive geneaction for plant height and capsule/plant and non-additive for days to maturity, opium yield/plant, seedyield/plant and dry weight of plant while both additiveand non-additive genetic variances were important forstem diameter, days to Xower, capsule size and mor-phine content. The study carried out by Shukla andSingh (1999) showed that additive £ dominance anddominance £ dominance gene action played animportant role in the inheritance of papaverine con-tent. The information already available on variousgenetic parameters from one set of material could notbe applied to other. It was therefore essential to evalu-ate some more lines for their breeding value andunderstanding other genetic parameters related toyield and is component traits and alkaloid contents.With these considerations, the present investigation inopium poppy was under taken to study the generalcombining ability and mode of gene action for vari-ous important traits.

Material and methods

The experimental material in the present study con-sisted of 20 pure and diverse genotypes selected fromgermplasm lines maintained at the National BotanicalResearch Institute (NBRI), Lucknow, India (Singhet al. 2004). These genotypes were crossed in a frac-tional diallel design (Kempthorne and Curnow 1961)to obtain 90 F1 seeds during 2000–2001. The hybridseeds obtained were sown to get F1 population during2001–2002. The F1 plants were selfed to get F2 seeds.Simultaneously, fresh crosses among the parents werealso made to produce F1 seed. The Wnal trial compris-ing 90 F1 s, 90 F2 s and 20 parents was conductedduring crop year 2002–2003 at the experimental Weldof National Botanical Research Institute, Lucknowlocated at 26°4�N latitude and 80°45�E longitude andaltitude of 129 m above sea level. All the entries wereevaluated in a randomized block design with threereplications. Two rows of each entry were grown ineach replication with a plant-to-plant spacing 10 cmand row to row 30 cm. The experiment was borderedby planting two rows around it to minimize bordereVects. Standard cultural practices were followed

123

Euphytica (2009) 168:23–32 25

throughout the crop season which included pre-sow-ing addition of farmyard manure (FYM) at the rate of10 t/ha, 5–6 t/ha neem cake and 50, 50, 40 kg/ha ofnitrogen, phosphorous and potassium, respectively asbasal dressing. An additional dose of nitrogen 50 kg/hawas top dressed in tow equal splits at 40 and 60 daysafter sowing. Ten competitive plants in each test entryper replication were tagged before Xowering andobservations were recorded on days to 50% Xower-ing, plant height (cm), leaves/plant, branches/plant,capsules/plant, capsule size (cm2), capsule weight/plant (g), seed yield/plant (g) husk yield/plant (g) andopium yield/plant (mg).

HPLC analysis

Five major alkaloids viz. morphine, codeine, thebaine,narcotine and papaverine in opium latex were quanti-Wed through HPLC following the method suggested byKhanna and Shukla (1986). The chromatographic anal-ysis was done by using Waters (Milford, USA). Highpressure liquid chromatography consisting of M6000Asolvent delivery system, 717 plus autosampler, � Bond-apak C18 column (4 mm i.d. £ 25 cm), 996 PDA detec-tor and Millenium32 software. The opium samples wereprepared by dissolving 75 mg opium powder in 10 mlDMSO followed by Millipore Wltration. The mobilephase consisted of methanol, glacial acetic acid and tri-ple distilled water (40:1:59) per liter to which 1.1 gheptanes sulphonic acid were added to get 0.005 M and3.5 pH. Injection volume was 5 �l. Standard curveswere made by using synthetic opium alkaloids, i.e.,morphine, codeine, thebaine, narcotine and papaverine.Response of both peak height and peak area was usedto obtain calibration curve.

Statistical analysis

The mean data were subjected to statistical analysisfollowing the method suggested by Kempthorne andCurnow (1961) to obtain the Combining ability vari-ances and gene actions using the software Windostat,Hyderabad, India.

Results and discussion

The study of the nature and magnitude of the geneaction governing various characters is essential for

formulating eYcient breeding program for increasingproductivity. In the present study, analysis of varianceshowed signiWcant diVerences among parents andhybrids suggesting the presence of genetic diversityamong them. Parent versus hybrids component of var-iance showed signiWcant heterosis (average) by all thecharacters (data not shown).

Combining ability variances and gene actions

Combining ability variances were estimated to ascer-tain the nature and magnitude of generations involvedin the inheritance of diVerent characters for F1

hybrids and F2 families. These estimates were trans-lated into genetic variances due to additive and non-additive components. The additive gene action islargely due to the results of additive genetic variancewhile non-additive is due to dominance and epistatictype of gene action. The analysis of variance for GCAand SCA were highly signiWcant for all the charactersindicated that parents and crosses diVer signiWcantlyin both the generations (Table 1). The signiWcantdiVerences of GCA and SCA variances exhibitedequal importance of additive and non-additive geneactions for all the characters. The estimates of compo-nent of variance (Table 1) due to �2g and �2s alsoindicated both additive and non-additive gene actionsfor the expression of all the characters under study.However, the higher magnitude of �2s than �2g indi-cated preponderance of non-additive gene action fordays to 50% Xowering, plant height, peduncle length,branches/plant, capsules/plant, stem diameter, capsulesize, capsule weight/plant, seed yield/plant, huskyield/plant, opium yield/plant, morphine, codeine,thebaine and narcotine in both the generations andleaves/plant and papaverine in F2 generation. Theratio of mean square component associated with vari-ance of GCA and SCA (�2g/�2s) was much less thanthe theoretical maximum of unity for all the traitsexcept leaves/plant and papaverine content in F1.These results tend to suggest that genetic variationamong crosses was primarily of non-additive type.The average degree of dominance more than unityshowed over dominance, which conWrmed the aboveWndings. Kandalkar et al. (1992) and Singh et al.(1996, 2001) have also reported non-additive geneticvariance for capsules/plant, capsule weight/plant,leaves/plant, opium yield/plant and seed yield/plant.However, additive genetic variance for days to 50%

123

26 Euphytica (2009) 168:23–32

Xowering, plant height, leaves/plant, capsule diame-ter, capsules/plant, capsule weight/plant, latex yield,seed yield/plant, husk yield/plant, morphine, codeine,narcotine and straw morphine, was reported by vari-ous workers (Khanna and Shukla 1989; Lal andSharma 1991; Shukla 1992; Kandalkar et al. 1992;Kandalkar and Nigam 1993; Shukla et al. 1993; Singhet al. 1999, 2002, 2003). The discrepancies in thenature of gene action reported by diVerent workersmight be due to diVerences in parental diversity in thematerial, size of the population, design adopted and

environmental conditions in which the experimentwas conducted.

Changes in the estimates of genetic variances in F2 over F1

The proportion of �2g to total variance in F2 waslower than F1 except for morphine and thebaine. Forleaves/plant and papaverine content, most of thegenetic variation appeared to be associated with addi-tive gene action in F1 and non-additive in F2. These

Table 1 Analysis of variance showing mean square for combing ability in opium poppy (Papaver somniferum L.) in F1 and F2 gen-erations (MSS)

** SigniWcance at 1%

Source Hybrid GCA SCA Error GCA/SCA �2g �2s �2g/�2s (�2s/�2g)1/2 �2A �2D

df 89 19 70 178

Days to 50% Xowering

F1 21.99** 69.87** 8.99** 0.50 7.77 2.38 2.83 0.84 1.09 4.76 2.83

F2 21.91** 50.69** 14.09** 1.12 3.59 1.43 4.32 0.33 1.74 2.86 4.32

Plant height F1 150.38** 427.97** 75.04** 12.73 5.70 13.79 20.77 0.66 1.23 27.59 20.77

F2 97.86** 145.45** 84.94** 17.16 1.71 2.36 22.59 0.10 3.09 4.73 22.59

Leaves/plant F1 10.61** 35.38** 3.88** 0.81 9.11 1.23 1.024 1.20 0.91 2.46 1.02

F2 6.48** 18.47** 3.22** 0.81 5.73 0.59 0.80 0.74 1.16 1.19 0.80

Branches/plant F1 0.83** 1.548** 0.63** 0.17 2.45 0.03 0.15 0.24 2.05 0.07 0.15

F2 1.07** 1.69** 0.90** 0.27 1.88 0.03 0.21 0.15 2.59 0.06 0.21

Capsules/plant F1 0.62** 1.45** 0.39** 0.15 3.72 0.04 0.08 0.52 1.39 0.08 0.08

F2 0.78** 0.89** 0.75** 0.12 1.18 0.01 0.21 0.03 6.46 0.01 0.21

Capsule size F1 4.03** 12.27** 1.79** 0.44 6.85 0.40 0.45 0.91 1.05 0.82 0.45

F2 2.96** 4.18** 2.62** 0.32 1.59 0.06 0.77 0.08 3.55 0.12 0.77

Capsule weight/plant

F1 13.83** 29.14** 9.67** 1.08 3.01 0.76 2.86 0.27 1.94 1.52 2.86

F2 6.95** 14.78** 4.82** 1.16 3.06 0.38 1.22 0.32 1.77 0.78 1.22

Seed yield/plant

F1 5.93** 9.98** 4.83** 0.59 2.06 0.20 1.42 0.14 2.65 0.40 1.41

F2 2.79** 4.38** 2.36** 0.70 1.85 0.07 0.55 0.14 2.64 0.16 0.55

Husk yield/plant

F1 2.94** 7.38** 1.73** 0.40 4.26 0.22 0.44 0.50 1.41 0.44 0.44

F2 1.53** 3.58** 0.97** 0.46 3.67 0.10 0.17 0.59 1.29 0.20 0.17

Opium yield/plant

F1 6093** 15187** 3624** 263 4.18 452.0 1120.0 0.40 1.57 904.1 1120.3

F2 3284** 7203** 2220** 204 3.24 194.8 672.0 0.28 1.86 389.6 672.2

Morphine F1 9.84** 25.29** 5.64** 0.59 4.48 0.76 1.68 0.45 1.48 1.53 1.68

F2 10.26** 26.98** 5.72** 0.48 4.72 0.83 1.74 0.47 1.45 1.66 1.75

Codeine F1 1.59** 5.23** 0.60** 0.05 8.7 0.18 0.18 0.99 1.02 0.36 0.18

F2 1.88** 4.02** 1.29** 0.09 3.09 0.11 0.40 0.26 14.0 0.21 0.40

Thebaine F1 0.40** 1.16** 0.19** 0.03 5.82 0.04 0.06 0.65 2.46 0.07 0.06

F2 1.32** 3.54** 0.72** 0.02 4.90 0.11 0.23 0.47 4.48 0.22 0.23

Narcotine F1 4.29** 5.42** 2.42** 0.28 4.61 0.34 0.71 0.48 1.45 0.68 0.71

F2 11.18** 11.53** 3.77** 0.27 3.06 0.30 1.16 0.26 1.96 0.61 1.16

Papaverine F1 4.52** 17.32** 1.04** 0.01 16.62 0.64 0.34 1.85 0.73 1.27 0.34

F2 5.67** 18.04** 2.31** 0.03 7.79 0.61 0.76 0.81 1.11 1.23 0.76

123

Euphytica (2009) 168:23–32 27

diVerences in estimates obtained in F1 and F2 popula-tions grown in the same season might largely be attrib-uted to the small sample size of F2 progenies or due tolinkage. Derck (1968) emphasized that errors wouldbe high in estimates of gene frequency when samplingand selection applied in small populations. However,such problem can be somewhat overcome by selectingmore individuals to carry forward in next generation.The cause of such diVerences could also be due tobiasness in estimates where the equilibrium of genefrequency of the random mating population is notcompletely deWned (Kuehl et al. 1968). The additivegenetic variance is expected to result mostly fromadditive gene action which is Wxable, whereas non-additive genetic variance is made up of dominance andepistasis. The dominance variance diminishes by halfwith each generation of selWng. The decrease orincrease in estimate of variances due to non-additivegene action in F2 depends primarily on its nature insegregating population. For instance, if additive £additive type of gene action responsible to contributemore to the non-additive variance, variance due to spe-ciWc combining ability will not decrease in F2. How-ever, if the contribution of dominance and non-Wxableepistasis gene interaction is more due to larger contri-bution of dominance £ dominance type gene action,the magnitude is likely to decrease in F2. Robinsonet al. (1960) stated that if there was predominance ofrepulsion phase linkage, additive genetic variancecould increase as the degenerations were advancedand if the linkage phase was predominantly coupling,additive genetic variance would decrease. The segre-gating generation is naturally more susceptible togenotype £ environment interaction due to presenceof heterozygosity in the population than F1 generationwhich is genetically more uniform. It indicates that theestimates in F2 are likely to be biased than those of F1.The estimates of variance in F1 are more reliablebecause in segregating generations the genic interac-tion also contributes towards dominance, thus causinginXation of estimates.

In addition to other genetic parameters, the degreeof dominance is also of interest to plant breeders(Gardner 1963). In the present investigation, all thetraits showed over-dominance except leaves/plant andpapaverine content in F1 generation, where partialdominance was operating. This observed over domi-nance at gene level may be spurious since particularcombination of positive and negative alleles or a com-

plementary type of gene action or simply correlatedgene distribution, may seriously inXate the meandegree of dominance and convert partial dominanceinto apparent over-dominance (Hayman 1954). Theopium poppy is self-pollinated crop with varieddegree of out crossing (Bhandari 1990), which neitherfollowed model of complete random mating nor thoseof complete inbreeding, instead the mating systems ofthe instant population is partial inbreeding (Patraet al. 1992). Thus breeding systems of both self andcross-pollinated crops are utilized in poppy (Singhet al. 1995; Shukla and Singh 1999). The higher por-tion of non-additive genetic variance for most of thetraits indicated that it is desirable and important tomaintain heterozygosity in the population for theimprovement purposes. Since non-additive geneticvariability is not Wxable, the breeding methods suchas bi-parental mating followed by recurrent selectionmay play a greater role in genetic improvement of acrop (Singh and Singh 1987).

General combining ability eVects

A basic requirement in any eVective hybridizationprogram is to identify superior genotypes which couldexcel in their combining ability. General combiningability eVects plays a major role in making choice ofparents and also isolation of germplasm base for utili-zation in hybridization program for further improve-ment. In the present study, none of parent was foundas good general combiner for all the traits (Table 2). Itwas noticed that out of 20 parents; Wve for days to50% Xowering, branches/plant, capsule size, huskyield/plant, narcotine content, six for capsules weight/plant, seed yield/plant, opium yield/plant, thebainecontent, seven for plant height, three for capsules/plant, morphine content, four for papaverine and 8 forcodeine content were found good general combinersin desirable direction. Among the parents the bestgeneral combiners in both the generations were IS-16for days to 50% Xowering (early Xowering consideredto be desirable), branches/plant, capsules/plant;papline for plant height and papaverine content;BR234 for capsule size, BR 226 for capsule weight/plant, seed yield/plant, husk yield/plant and opiumyield/plant; NBRI-5 for morphine content; NBRI-1for thebaine content; ND1001 for codeine and IS-13for narcotine content. The GCA eVects include addi-tive and additive £ additive components of gene

123

28 Euphytica (2009) 168:23–32

Tab

le2

Est

imat

es o

f G

CA

eV

ects

for

20

pare

nts

of p

artia

l dia

llel c

ross

in r

espe

ct o

f yi

eld,

its

com

pone

nt tr

aits

and

alk

aloi

d co

nten

t in

opiu

m p

oppy

(P

apav

er s

omni

feru

m L

.)

Pare

nts

Day

s to

50%

Xow

erin

gPl

ant h

eigh

t (cm

)L

eave

s/pl

ant

Bra

nche

s/pl

ant

Cap

sule

s/pl

ant

Cap

sule

Siz

e (c

m2 )

Cap

sule

wt./

Plan

t (gm

)

F1

F2

F1

F2

F1

F2

F 1F

2F

1F

2F

1F

2F

1F

2

GZ

¡1.

460.

58¡

4.69

¡0.

23¡

2.41

**¡

0.82

¡0.

36¡

0.43

¡0.

14¡

0.18

0.27

¡0.

230.

07¡

0.38

NB

RI

-1¡

0.99

¡0.

79¡

8.82

**¡

4.60

¡2.

58¡

2.29

**0.

08¡

0.51

0.48

0.29

0.27

¡0.

340.

75¡

0.24

NB

RI

-50.

730.

28¡

4.06

2.17

¡0.

970.

680.

09¡

0.53

0.48

0.43

¡0.

380.

160.

011.

07

MO

P541

¡0.

078

2.33

*2.

040.

29¡

0.94

0.28

0.38

¡0.

280.

37*

¡0.

41¡

0.03

¡0.

44¡

0.77

¡0.

10

UO

601

¡0.

380.

753.

09¡

0.39

1.83

**0.

310.

09¡

0.08

0.01

¡0.

130.

66¡

0.14

¡0.

350.

29

UO

602

0.39

¡1.

27¡

1.87

¡3.

09¡

0.01

¡0.

90¡

0.08

¡0.

24¡

0.09

¡0.

16¡

0.59

¡0.

93¡

2.48

1.86

**

ND

100

2.76

**¡

0.09

¡2.

16¡

4.39

¡0.

35¡

0.47

¡0.

090.

360.

000.

150.

67¡

0.31

¡0.

55¡

0.22

BR

246

¡1.

461.

91¡

0.54

0.92

1.15

¡0.

52¡

0.39

¡0.

35¡

0.44

0.31

¡0.

26¡

0.13

¡1.

35¡

0.09

ND

1002

¡0.

011.

33¡

1.56

2.77

0.47

1.27

¡0.

250.

08¡

0.33

¡0.

020.

430.

680.

880.

28

BR

226

1.06

¡1.

122.

822.

430.

960.

690.

190.

16¡

0.05

0.14

¡0.

680.

371.

471.

43*

BR

227

1.73

0.23

2.60

¡0.

301.

390.

94¡

0.13

¡0.

03¡

0.29

0.03

¡0.

870.

28¡

0.35

0.06

BR

230

1.29

¡0.

62¡

0.67

¡0.

151.

590.

69¡

0.05

0.29

¡0.

220.

27¡

0.09

0.10

1.17

0.62

BR

231

0.85

2.07

1.11

1.95

¡0.

11¡

0.11

0.16

0.25

¡0.

010.

310.

070.

32¡

0.33

0.89

BR

234

0.63

¡0.

715.

58*

0.07

0.47

¡0.

140.

010.

190.

070.

241.

430.

441.

570.

06

BR

241

0.85

¡0.

155.

83*

0.48

1.47

0.31

0.16

0.39

¡0.

030.

340.

430.

781.

440.

89

NB

RI-

111.

321.

223.

450.

190.

180.

34¡

0.08

0.09

¡0.

100.

050.

52¡

0.09

1.51

0.04

IS-1

0.72

¡2.

72*

0.51

1.86

¡0.

38¡

0.06

¡0.

15¡

0.07

¡0.

250.

03¡

0.67

0.18

¡0.

74¡

0.36

Papl

ine

1.99

0.39

6.87

**2.

441.

39*

0.61

0.04

0.17

0.04

0.05

¡0.

34¡

0.49

¡0.

47¡

078

UO

1285

1.87

0.28

¡0.

192.

420.

910.

61¡

0.26

0.22

0.01

0.10

0.56

0.44

¡0.

34¡

0.32

IS-1

4.86

**¡

3.11

**¡

9.34

**¡

4.83

¡2.

07**

¡1.

41**

0.62

0.29

0.50

**0.

21¡

1.39

¡0.

65¡

1.27

¡1.

27

SE

(g

i¡g

j)0.

911.

142.

642.

810.

590.

550.

240.

290.

190.

260.

410.

490.

950.

67

CD

5%

1.79

2.14

5.17

5.49

1.17

1.07

0.47

0.57

0.37

0.51

0.79

0.97

1.86

1.31

CD

1%

2.35

2.94

6.78

7.21

1.54

1.40

0.62

0.74

0.49

0.67

1.05

1.26

2.43

1.72

Pare

nts

See

d yi

eld/

plan

t (gm

)H

usk

yiel

d/pl

ant (

gm)

Opi

um y

ield

/pl

ant (

mg)

Mor

phin

e %

Cod

eine

%T

heba

ine

%N

arco

tine

%Pa

pave

rine

%

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

GZ

0.30

¡0.

360.

37¡

0.03

¡50

.73*

34.2

9*1.

84*

¡1.

52*

0.46

¡0.

18¡

0.29

*0.

53*

1.66

**0.

70¡

0.88

**¡

1.23

**

NB

RI-

10.

23¡

0.45

0.51

0.23

¡21

.69

¡8.

021.

42¡

0.26

0.53

*0.

010.

40**

0.52

*0.

350.

58¡

0.92

**¡

1.16

*

NB

RI-

0.44

0.51

0.59

0.55

7.10

13.8

41.

040.

390.

55*

0.42

0.26

0.66

0.28

0.82

¡0.

87**

¡0.

89

MO

P541

¡0.

59¡

0.13

¡0.

170.

06¡

19.5

86.

001.

02¡

0.44

0.30

0.19

0.09

0.58

1.05

1.08

¡0.

030.

01

123

Euphytica (2009) 168:23–32 29

Tab

le2

cont

inue

d

*,**

Sig

niW

canc

e at

5 a

nd 1

% r

espe

ctiv

ely

Pare

nts

See

d yi

eld/

plan

t (gm

)H

usk

yiel

d/pl

ant (

gm)

Opi

um y

ield

/pl

ant (

mg)

Mor

phin

e %

Cod

eine

%T

heba

ine

%N

arco

tine

%Pa

pave

rine

%

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

UO

601

¡0.

120.

15¡

0.23

0.14

8.58

21.7

40.

33¡

0.46

¡0.

20¡

0.43

0.23

0.41

0.14

1.02

1.53

**0.

80

UO

602

¡1.

34*

¡1.

05*

¡1.

15**

¡0.

78**

¡47

.67*

31.0

60.

383.

12**

¡0.

11¡

0.47

0.27

0.13

¡0.

621.

36*

¡0.

010.

22

ND

1001

0.04

¡0.

06¡

0.59

¡0.

12¡

16.4

022

.38

¡0.

67¡

0.80

0.59

*0.

53¡

0.25

¡0.

360.

600.

76¡

0.22

¡0.

27

BR

246

¡0.

73¡

0.16

¡0.

620.

10¡

12.9

512

.15

¡1.

48*

¡0.

110.

47*

0.73

0.23

0.53

¡0.

30¡

0.16

2.34

**1.

55**

ND

1002

1.08

0.36

¡0.

19¡

0.07

¡7.

774.

44¡

1.34

¡0.

610.

67**

0.79

0.06

¡0.

160.

07¡

0.45

¡0.

16¡

0.40

BR

226

0.54

0.68

0.93

*0.

76*

40.6

2*9.

50¡

0.49

¡0.

650.

53¡

0.13

0.11

¡0.

500.

47¡

0.86

¡0.

22¡

0.47

BR

227

¡0.

010.

17¡

0.34

¡0.

100.

85¡

0.89

0.75

¡0.

06¡

0.36

¡0.

31¡

0.01

¡0.

340.

30¡

0.16

¡0.

35¡

0.51

BR

230

0.83

0.45

0.34

0.18

3.06

12.1

20.

33¡

0.55

0.07

0.15

0.11

¡0.

230.

13¡

1.14

¡0.

060.

16

BR

231

¡0.

170.

47¡

0.16

0.26

6.37

¡3.

80¡

0.64

¡0.

77¡

0.51

¡0.

19¡

0.08

¡0.

35¡

0.01

¡0.

07¡

0.01

0.25

BR

234

0.97

0.09

0.60

¡0.

0319

.08

¡2.

54¡

0.74

¡0.

03¡

0.30

¡0.

24¡

0.09

¡0.

67*

0.05

¡0.

670.

01¡

0.08

BR

241

0.75

0.56

0.69

0.33

38.9

3*15

.86

0.54

¡0.

220.

010.

350.

13¡

0.08

¡0.

12¡

0.61

¡0.

37¡

0.28

NB

RI-

111.

160.

240.

35¡

0.20

31.9

1.04

¡0.

16¡

0.37

¡0.

340.

20¡

0.25

¡0.

47¡

0.39

¡0.

26¡

0.38

¡0.

49

IS-1

0.45

¡0.

33¡

0.29

¡0.

045.

19¡

1.36

¡0.

000.

98¡

0.66

**¡

0.47

¡0.

20¡

0.16

0.91

0.81

0.31

0.59

Papl

ine

¡0.

38¡

0.31

¡0.

09¡

0.48

30.7

14.9

0.53

1.09

¡0.

67¡

0.35

0.01

0.54

0.08

0.19

1.08

**1.

78**

UO

1285

¡0.

32¡

0.19

¡0.

03¡

0.15

25.1

714

.52

¡2.

16**

0.24

¡0.

04¡

0.19

0.07

0.17

¡0.

78¡

0.35

¡0.

230.

69

IS-1

0.76

¡0.

64¡

0.52

¡0.

61*

¡40

.84*

¡34

.64*

0.58

1.03

¡1.

00¡

0.43

¡0.

33*

¡0.

46¡

1.06

0.43

¡0.

57¡

0.27

SE

(g

i¡g

j)0.

670.

470.

400.

3018

.33

14.3

40.

720.

730.

240.

350.

140.

260.

470.

590.

31¡

0.46

CD

5%

1.31

0.91

0.78

0.58

35.9

228

.12

1.42

1.43

0.46

0.68

0.27

1.50

0.93

1.16

0.61

0.91

CD

1%

1.72

1.20

1.03

0.77

47.1

036

.87

1.86

1.87

0.61

0.89

0.35

0.66

1.22

1.58

0.79

1.19

123

30 Euphytica (2009) 168:23–32

Tab

le3

Ten

bes

t het

erot

ic c

ross

es f

or s

eed

yiel

d an

d op

ium

yie

ld o

ver

bette

r pa

rent

alo

ngw

ith

the

hete

rosi

s of

thei

r co

mpo

nent

trai

ts

*,**

Sig

niW

canc

e at

5 a

nd 1

% r

espe

ctiv

ely

Cro

sses

Het

eros

is

(%)

F1

per

seG

CA

eV

ect

Het

eros

is (

%)

in c

ompo

nent

trai

ts

Pare

nt 1

Par

ent 2

Day

s to

50%

X

ower

ing

Plan

t he

ight

Lea

ves/

plan

tB

ranc

hes/

plan

tC

apsu

les/

plan

tS

tem

di

amet

erC

apsu

le

size

Cap

sule

w

t/pla

nt

Seed

yie

ld

ND

1002

£N

BR

I-11

71.1

5**

11.8

6H

igh

Hig

5.44

**7.

23**

8.85

*3.

8544

.64*

10.9

0**

¡7.

93*

61.2

7**

ND

1002

£B

R24

158

.82*

*10

.80

Hig

hH

igh

¡5.

64**

9.17

**8.

20*

15.6

67.

419.

78*

¡7.

9849

.39*

*

BR

230£

UO

1285

57.3

9**

9.23

Hig

hL

ow¡

1.74

**¡

3.24

¡12

.84*

*17

.31

71.1

5**

¡8.

27*

¡9.

50*

54.2

2**

BR

230£

IS-1

656

.41*

*8.

13H

igh

Low

¡5.

55**

¡1.

71¡

10.9

6**

21.6

510

.81

¡1.

39¡

6.55

32.0

0**

GZ£

BR

230

46.4

3**

9.56

Low

Low

¡5.

40**

10.9

4**

¡1.

71¡

15.1

24.4

4*¡

4.49

10.0

5*47

.11*

*

MO

P54

BR

241

40.6

9**

9.56

Low

Hig

6.64

**6.

20**

¡1.

9442

.45*

*10

0.00

**5.

90¡

0.33

55.9

9**

ND

1001

£Pa

plin

e37

.70*

9.13

Low

Low

¡4.

10**

¡2.

01¡

4.13

8.33

7.32

¡14

.75*

*6.

3019

.03*

*

BR

246£

IS-1

336

.67*

*8.

20L

owL

ow¡

8.77

**0.

00¡

6.08

23.0

833

.33

¡7.

36¡

2.48

29.7

6**

UO

601£

BR

231

34.3

1**

9.13

Low

Low

¡4.

92**

2.61

¡2.

603.

47¡

6.38

2.91

¡0.

6919

.67*

*

ND

1002

£IS

-16

31.3

5**

8.10

Hig

hL

ow¡

12.0

9**

¡7.

36**

¡16

.23*

*17

.53

¡8.

110.

00¡

14.6

4**

36.0

8

Opi

um y

ield

ND

1002

£B

R24

152

.04*

*31

0.00

Low

Hig

5.64

**7.

23**

8.20

*15

.66

7.41

9.48

¡7.

9849

.39*

*

ND

1002

£N

BR

I-11

49.2

7**

305.

00L

owH

igh

¡5.

44**

9.17

**8.

85*

3.85

44.6

4*10

.90*

7.93

*61

.27*

*

BR

227£

IS-1

340

.74*

*26

6.00

Low

Low

¡1.

06¡

1.82

1.18

¡11

.86

25.0

12.2

5**

¡3.

566.

70

UO

601£

UO

1285

38.1

2**

308.

00H

igh

Hig

3.16

**1.

031.

19¡

13.4

646

.15*

¡6.

93*

¡2.

8814

.10

UO

601£

Papl

ine

33.9

3**

298.

66H

igh

Hig

2.19

**¡

5.70

**3.

548.

4764

.29*

3.50

¡14

.53*

*8.

85

BR

230£

UO

1285

32.2

0**

286.

00L

owH

igh

¡1.

74**

¡3.

24¡

12.8

4**

17.3

171

.15*

8.27

9.50

*54

.22*

*

BR

230£

Papl

ine

29.0

5**

257.

60L

owH

igh

¡0.

94¡

4.58

9.14

**10

.17

46.4

3*¡

12.0

7.46

2.41

UO

602£

BR

230

28.3

8**

56.3

3L

owL

ow¡

2.93

**7.

4010

.13*

13.7

10.8

1.78

3.34

32.6

7**

ND

1002

£Pa

plin

e28

.06*

*26

1.66

Low

Hig

7.77

**¡

4.82

2.65

¡16

.95

¡10

.71

¡9.

50¡

10.8

6**

7.77

UO

601£

NB

RI-

1125

.86*

*28

0.66

Hig

hH

igh

¡5.

97**

12.7

5**

9.74

**¡

5.77

14.2

99.

06*

2.11

33.0

1**

123

Euphytica (2009) 168:23–32 31

action (GriYng 1956; Sprague 1966) which repre-sents Wxable genetic variance. In view of this, breed-ers may utilize the good general combiners in speciWcbreeding program for improvement of yield and itscomponent traits. It appears that the GCA rank foryield is related to the GCA for the important compo-nent traits. Thus the parents IS-16, IS-13, BR226,BR241, NBRI-5, NBRI-1, UO1285 and Papline couldbe utilized extensively in hybridization followed byselection to accelerate the pace of genetic improve-ment of yield and alkaloid content. It concluded thatin order to synthesize a dynamic population with mostof the favorable genes accumulated, it will be perti-nent to make use of these parents, which are goodgeneral combiner for several characters, in a multiplecrossing program or an intermating populationinvolving all possible crosses among them subjectedto bi-parental mating to supplement speedy recombi-nation and also breaks genetic barrier, if present(Jensen 1970).

Magnitude of heterosis in relation to general combining ability

The present study showed that out of 90 hybrids, themanifestation of heterosis over better parent were sig-niWcant and desirable in 84 hybrids, four crosses fordays to 50% Xowering, 17 for plant height, 12 forpeduncle length, 9 for leaves/plant, 12 for branches/plant, 25 for capsule/plant, 5 each for stem diameterand capsule size, 34 for capsule weight/plant, 26 forseed yield/plant, 21 for husk yield/plant, 25 for opiumyield, 28 for morphine, 13 for codeine, 8 for thebaine,5 for narcotine and 29 for papaverine content. In anycrop breeding program the ultimate objective is toenhance its yield. The enhancement in the yield can notbe easily achieved directly due to its polygenic innature, but it can be achieved through its componenttraits. GraWus (1959) suggested that there could be noseparate gene system for yield per se and that the yieldis an end product of multiplicative interaction betweenyield components. So, for enhancement in opium andseed yield, 10 best heterotic crosses were selected andpresented in Table 3 along with the heterosis of theircomponent traits. The crosses ND1002 £ NBRI-11(71.15%) and ND1002 £ BR-241 (58.82%) for seedyield and crosses ND-1002 £ BR-241 (52.04%),ND-1002 £ NBRI-11 (49.27%), BR-227 £ IS-13(40.74%) and UO-601 £ UO-1285 (38.12%) for

opium yield exhibited highest heterosis over better par-ent and highest per se performance. The high heterosisin these crosses was noticed due to the heterosis exhib-ited by plant height, branches/plant, capsule/plant,stem diameter and capsule weight/plant. However,these crosses for seed yield showed high £ high gcaeVects while crosses for opium yield had low £ highgca eVects. Similarly, other crosses both for opium andseed yield involved high £ high, high £ low andlow £ low general combiners. The best combinationfor the traits involved high £ high, high £ low andlow £ low combiners suggested that the lines taken forthe present study have a diverse origin (Verma and Sri-vastava 2004). High heterosis showed by the crosseswhere both of the parents had high gca might beassigned to sizeable additive £ additive gene actionand Wxable in nature (Verma and Srivastava 2004), beas a transgrassive segregants in advance generations,could be exploited through recurrent breeding andbiparental mating. The crosses revealed high £ lowcross combinations besides expressing the favorableadditive eVects of the high parent showed complimen-tary gene eVects and possess higher heterosis. How-ever, the crosses had low £ low general combiners buthad high heterosis may be due to the interactionbetween favorable genes contributed by the relevantparents (Verma and Srivastava 2004). Such a behaviorhas been attributed to over dominance and epistasis(Rahman et al. 1981; Satyanarayana et al. 2000). Mostof the heterosis displayed by such type of interactionsand are non- Wxable due to the additive £ dominanceor dominance £ dominance type of gene actions, couldbe further exploited through heterotsis breeding.

Acknowledgments Authors thank to the Director, NBRI,Lucknow for encouragement and facilities provided during theinvestigation. Financial support given by Chief ControllerFactories (CCF), Govt. Opium and Alkaloids Works, Dept. ofRevenue; Ministry of Finance, Govt. of India, Now Delhi isgratefully acknowledged. H. K. Yadav also thanks to CSIR forWnancial Support.

References

Bhandari MM (1990) Outcrossing in opium poppy (P. somnife-rum L.). Euphytica 48:167–169. doi:10.1007/BF00037196

Cruz CD, Regai AJ (1994) Modelos biometricos applicados aomelhoramento genetic. Universidade Federal de Vicosa,Imprensa Universitara. Vicosa, Minas Gerais, Brazil

Derck JP (1968) A comparison of two methods for predictingchanges in the distribution of gene frequency when selec-

123

32 Euphytica (2009) 168:23–32

tion is applied repeatedly to a Wnite population. Biometrics13:127–141

Dudley JW, Moll RH (1969) Interpretation and use of estimatesof heritability and genetic variance in plant introduction.Crop Sci 9:257–262

Falconer DS (1989) Introduction of quantitative genetics, 3rdedn. Longaman, Essex, pp 275–276

Gardner CO (1963) Estimation of genetic parameters in crossfertilizing plants and their implication in plant breeding.statistical genetics and plant breeding. NAS-NRS Publ982:225–252

GraWus JE (1959) Heterosis in barely. Agron J 51:551–554GriYng B (1956) Concept of general and speciWc combining

ability in relation to diallel crossing system. Aust J Biol Sci9:463–493

Hayman BI (1954) The theory and analysis of diallel crosses.Genetics 39:789–809

Jensen NF (1970) A diallel selective mating system for cerealbreeding. Crop Sci 10:629–635

Kandalkar VS, Nigam KB (1993) Combining ability for physi-ological characters and opium yield in opium poppy(Papaver somniferum L.). Indian J Genet 53:34–39

Kandalkar VS, Patidar H, Nigam KB (1992) Combining abilityanalysis for harvest index, seed yield and important com-ponent characters in opium poppy (Papaver somniferumL.). Indian J Genet 52:275–279

Kempthorne O, Curnow RN (1961) The partial diallel cross.Biometrics 17:229–250. doi:10.2307/2527989

Khanna KR, Shukla S (1986) HPLC investigation of the inheri-tance of major opium alkaloids. Planta Med 54:157–158.doi:10.1055/s-2007-969106

Khanna KR, Shukla S (1989) Gene action in opium poppy(Papaver sominferum L.). Indian J Agric Sci 59:124–126

Kuehl RO, Rawling JO, Cockerham CC (1968) Reference pop-ulations for diallel experiments. Biometrics 24:881–902.doi:10.2307/2528878

Lal RK, Sharma JR (1991) Genetics of alkaloids in Papaversominferum. Planta Med 57:271–274. doi:10.1055/s-2006-960088

Patra NK, Ram RS, Chauhan SP, Singh AK (1992) Quantitativestudies on the mating system of opium poppy (P. somnife-rum L.). Theor Appl Genet 84:299–302. doi:10.1007/BF00229486

Rahman M, Patwary AK, Miah AJ (1981) Combining ability inrice. Indian J Agric Sci 15:543–546

Robinson HF, Cockerham CC, Moll RH (1960) Studies onestimation of dominance variance eVects of linkage biasin Biometrical Genetics. Pergaman Press, New York,pp 171–177

Satyanarayana PV, Reddy MSS, Kumar I, Madhuri J (2000)Combining ability studies on yield and yield componentsin rice. Oryza 37:22–25

Shukla S, Khanna KR, Singh SP (1993) Genetic architecture ofnarcotine in opium poppy (Papaver somniferym L.). IndianJ Plant Genet Resour 7:139–142

Shukla S (1992) Genetics of seed yield and its contributing traitsin opium poppy (Papaver somniferum L.). Proc Nat AcadSci India 62((B)II):213–217

Shukla S, Khanna KR (1997) Genetic architecture of opiumyield, seed yield and its components in opium poppy(P. somniferum L.). Advances in Plant Science Research(Ed. Dhir), vol 5 & 6. Interational Book Distributors,Dehradun, pp 43–55

Shukla S, Singh SP (1999) Genetic systems involved in inheri-tance of papaverine in opium poppy (Papaver SomniferumL.). Indian J Agric Sci 69:44–47

Shukla S, Singh SP (2004) Exploitation of interspeciWc crossesand its prospects for developing novel plant type in opiumpoppy (P. somniferum L.). In: Trivedi PC (ed) Herbaldrugs and biotechnology. Pointer Publishers, Jaipur, pp210–239

Singh HP, Tewari RK, Singh SP, Singh AK, Patra NK (2002)Genetic studies in opium poppy (P. somniferum L.). J MedArom Plant Sci 24:762–765

Singh SP, Singh HN (1987) Combining ability in relation to yearinteraction in okra. Abelmoshus esculentus (L.) Moench.SABRAO J 19:93–101

Singh SP, Singh HP, Singh AK, Verma RK (2001) IdentiWca-tion of parents and hybrids through line £ tester analysis inopium poppy (Papaver somniferum). J Med Arom PlantSci 22(23):327–330

Singh SP, Shukla S, Khanna KR (1995) The opium poppy. In:Chaddha KL, Gupta R (eds) Advances in horticulture:medicinal and aromatic plants, vol 11. Malhotra Publishinghouse, New Delhi, pp 535–574

Singh SP, Shukla S, Khanna KR (1996) Diallel analysis for seedyield and its components in opium poppy (P. somniferum).J Med Arom Plant Sci 18:259–263

Singh SP, Shukla S, Khanna KR (1999) Breeding strategies inopium poppy (Papaver Somniferum L.) at National Botan-ical Research Institute, Lucknow, India. Appl Bot Abst19:121–139

Singh SP, Yadav HK, Shukla S, Chatterjee A (2003) Studies ondiVerent selection parameters in opium poppy (P. somnife-rum L.). J Med Arom. Plant Sci 25:8–12

Singh SP, Shukla S, Yadav HK (2004) Multivariate analysis inrelation to breeding system in opium poppy (Papaver som-niferum L.). Genetika 36:111–120. doi:10.2298/GENSR0402111S

Sprague GF (1966) Quantitative genetics in plant improvement.In Plant Breeding (Ed. Kenneth, J Frey). A symposium onPlant Breed. Iowa State Univ Press Ames, Iowa, pp 315–354

Verma OP, Srivastava HK (2004) Genetic component andcombining ability analysis in relation to heterosis for yieldand associated traits using three diverse rice growing ecosys-tems. Field Crops Res 88:91–102. doi:10.1016/S0378-4290(03)00080-7

123