Extraction of Cohesive Properties of ElastoPlastic material using Inverse Analysis

27
07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio ©2009 Board of Trustees of the University of Illinois Extraction of Cohesive Properties of Elasto-Plastic material using Inverse Analysis Arun Lal Gain, Jay Carroll, Glaucio H. Paulino, John Lambros University of Illinois at Urbana Champaign 07/18/2009 10th U.S. National Congress on Computational Mechanics

Transcript of Extraction of Cohesive Properties of ElastoPlastic material using Inverse Analysis

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio©2009 Board of Trustees of the University of Illinois

Extraction of Cohesive Properties of Elasto-Plastic material using Inverse

Analysis

Arun Lal Gain, Jay Carroll, Glaucio H. Paulino, John Lambros

University of Illinois at Urbana Champaign

07/18/2009

10th U.S. National Congress on Computational Mechanics

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Contents

Introduction

– Cohesive Zone Modeling

– Elasto-Plastic Forward v/s Inverse Problem

Modeling Approaches

– Shape Regularization

– PPR model

Numerical Simulations

Summary & Conclusions

Future Work

2

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Introduction: Cohesive Zone Model

Cohesive Zone Modeling - fracture seen as phenomenon

of gradual separation taking place across cohesive zone

(path of crack) and resisted by cohesive tractions

Four staged failure

– Stage 1: Material homogeneous

– Stage 2: Crack Initiation

• Criterion: Stress reaching tensile

strength (simplified)

– Stage 3: Crack propagation based on

traction v/s separation curve

– Stage 4: Complete failure

• Criterion: e.g. Crack width reaches

certain predefined value

3

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Introduction: Cohesive Zone Model

4

Various approaches to obtain cohesive zone model are

available in literature

– Obtain through experiments

• Direct tension test

– van Mier, van Vliet, Uniaxial tension test for determination of

fracture parameters of concrete, Fracture of Concrete & Rock,

2002

– Assume the shape

• CZM shape significantly affects fracture analysis results –

should be chosen carefully

– Song S.H, Paulino G.H, Buttlar G.H, Influence of cohesive zone

model shape parameter on asphalt concrete fracture behavior,

American Institute of Physics, 2008

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Introduction: Cohesive Zone Model

5

– Indirect method: Inverse analysis

• Development in experimental stress analysis techniques like

photo-elasticity, DIC have made Inverse Analysis attractive

– van Mier, Fracture processes of concrete : assessment of material

parameters for fracture models, CRC Press, 1997

– Hanson J. H. , An experimental - computational evaluation of the

accuracy of the fracture toughness tests on concrete, PhD Thesis,

Cornell university, 2000

– Hanson J.H., Ingraffea A.R. Using numerical simulations to compare

the fracture toughness values for concrete from the size-effect, two-

parameter and fictitious crack models, Engineering Fracture

Mechanics, 2003

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Introduction: Forward v/s Inverse Problem

6

Forward Problem

Inverse Problem

P P

0 50 100 1500

2

4

6

CMOD(m)

Tn (

Mp

a)

0 0.1 0.2 0.30

200

400

600

CMOD (mm)

Lo

ad

(N

)

Global Response

P P

,x yu

P P

,x yu

DIC / Synthetic Data from forward problem

Optimization

Nelder-Mead Scheme0 50 100 150

0

2

4

6

CMOD(m)

Tn (

Mp

a)

Constitutive Response

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Elasto-Plastic Forward Problem

7

1

1

12

2

element elementcoh coh=K u T

n xf t ld

d N N

1

coh coh+ ,j j j extb i i i i

K u K u u F

1

1

elementcoh

Tc nk t ld

K NN

1 2,

T

x x xd d d

Shen, B., 2009, “Functionally Graded Fiber – Reinforced Cementitious Composites : Manufacturing andExtraction of Cohesive Properties using Finite Elements and Digital Image Correlation”, PhD Thesis, UIUC

Plane Stress J2 Plasticityb K

s

l

2xd

1xd

21

34

Cohesive Element

FF

0 50 100 1500

2

4

6

n (m)

n (

Mp

a)

ck

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Modeling Approaches: Shape Regularization

8

Elasto-Plastic Inverse Problem

1 21 1 2

ext int M

λmin , : R Rf fw w f w f λ F F Y X

1 2 1 2

Cohesive Parameters

X ,X , . .,X ,Y ,Y , . .,Y

coh

n n

λ

Yn c

n

Xn ncn

i

X i - 1 Xi Xi+ 1

Yi X , Yi i coh coh+ , extb K u K u u F

Nelder-Mead Optimization

1

1 1 iψ γ Y10 ,

i

f

Y 2 2

2iψ γ

10i

f

X

1 2

0

0

X X . . Xn

Constraints

1 1

1 1

2

2

i i

X X Xwhere,

X X

γ <<1, ψ >>1

i i i

i

i i

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Modeling Approaches: PPR model

9

Unified potential based model: PPR (Park-Paulino-Roesler)

Park K., Paulino G.H., Roesler J.R., 2009, A unified potential-based cohesive model of mixed-mode fracture,Journal of the Mechanics and Physics of Solids, 57, 891

1

1

ψ , min ,

m

n nn t n t n n t

n n

n

t t

t t n

t t

m

n

ψ

,n n t

n

T

ψ

,t n t

t

T

0 100 200 3000

2

4

6

n (m)

Tn (

Mp

a)

= 1.3

= 2.0

= 4.0

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Modeling Approaches: PPR model

10

Elasto-Plastic Forward Problem

1

1

12

2coh coh=K uelement element T

xf t ld

d N N

1

coh coh+ ,j j j extb i i i i

K u K u λ u F

1

1

elementcoh

Tc nk t ld

K NN

1 2,

T

x x xd d d

s

l

2xd

1xd

21

34

Cohesive Element

FF

0 50 100 1500

2

4

6

n (m)

n (

Mp

a)

ck

coh

max

Cohesive Parameters

, ,n

λ

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Elasto-Plastic Inverse Problem

11

11 1

ext int 3

λmin w , : R Rfw f λ F F

max

Cohesive Parameters

, ,n

λ 1 Constraints:

1

ψ 110 ,f

Barrier Function:

Modeling Approaches: PPR model

coh coh+ , extb K u K u u F

Nelder-Mead Optimization

ψ >> 1

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Problem Details

Numerical Simulations

12

• 5782 Nodes

• 5346 Q4 Elements

• 304 Cohesive Elements

• Displacement Ctrl: 100 Steps

70 0 25

0 14

20 100

GPa, . ,

.

Isotroplic Hardening

MPa, MPa

app

y

E

D mm

K

P P

38.4

150.4

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Forward Problem

Numerical Simulations: Shape Regularization

13

0 0.05 0.1 0.15 0.2 0.250

100

200

300

400

500

600

CMOD (mm)

Lo

ad

(N

)

Elastic bulk material

Elasto-plastic bulk material

0 0.1 0.20

2.5

5

CMOD (mm)

(

MP

a)

Linear softening CZM

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Inverse Problem: Different Loading Points

Numerical Simulations: Shape Regularization

14

0 0.1 0.20

2.5

5

CMOD (mm)

(

MP

a)

Linear softening CZM

• 6 Control Points

• Piecewise Cubic Hermite interpolation

• Synthetic data without any noiseForward Problem Plot

0 0.2 0.4 0.6 0.80

200

400

600

X: 0.3247Y: 170.5

CMOD (mm)L

oa

d (

N)

X: 0.3606Y: 143

X: 0.3964Y: 122.1

X: 0.4322Y: 105.7

X: 0.468Y: 92.52

X: 0.1808Y: 365.5

A

BC DE F

0 0.05 0.1 0.15 0.20

1

2

3

4

5

6

CMOD (mm)

(

MP

a)

Point APoint BPoint CPoint DPoint EPoint F

Initial Guess

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Inverse Problem: Various Control Points

Numerical Simulations: Shape Regularization

15

• Displacement field taken from loading point C = 122.1 N

• Piecewise Cubic Hermite interpolation

• Synthetic data without any noiseForward Problem Plot

0 0.2 0.4 0.6 0.80

200

400

600

X: 0.3964Y: 122.1

CMOD (mm)L

oa

d (

N)

C

0 0.05 0.1 0.15 0.20

1

2

3

4

5

6

CMOD (mm)

(

MP

a)

3 - Control Points4 - Control Points5 - Control Points6 - Control Points

Initial Guess

0 0.1 0.20

2.5

5

CMOD (mm)

(

MP

a)

Linear softening CZM

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

0 0.1 0.2 0.3 0.4 0.50

2

4

6

8

10

CMOD (mm)

(

MP

a)

Inverse Problem: Different Initial Guess

Numerical Simulations: Shape Regularization

16

• Displacement field taken from loading point C = 122.1 N

• 6 Control Points

• Piecewise Cubic Hermite interpolation

• Synthetic data without any noise

Initial Guess 1

Initial Guess 2

0 0.1 0.20

2.5

5

CMOD (mm)

(

MP

a)

Linear softening CZM

Forward Problem Plot

0 0.2 0.4 0.6 0.80

200

400

600

X: 0.3964Y: 122.1

CMOD (mm)L

oa

d (

N)

C

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Inverse Problem: Noise in Synthetic Data

Numerical Simulations: Shape Regularization

17

• Displacement field taken from loading point C = 122.1 N

• 6 Control Points

• Piecewise Cubic Hermite interpolation

• Synthetic data with varying amount of noise

0 0.05 0.1 0.15 0.20

1

2

3

4

5

6

CMOD (mm)

(

MP

a)

Max Noise – 0.00 %

Max Noise – 0.02%

Max Noise – 0.20 %

Max Noise – 2.00 %

Initial Guess

0 0.1 0.20

2.5

5

CMOD (mm)

(

MP

a)

Linear softening CZM

Forward Problem Plot

0 0.2 0.4 0.6 0.80

200

400

600

X: 0.3964Y: 122.1

CMOD (mm)L

oa

d (

N)

C

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Forward Problem

Numerical Simulations: PPR model

18

500

5max

N / m

MPa

= 3

n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.350

100

200

300

400

500

600

CMOD (mm)

Lo

ad

(N

)

Elastic bulk material

Elasto-plastic bulk material

0 0.1 0.2 0.30

2

4

6

CMOD (mm)

(

Mp

a)

= 3.0

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Inverse Problem: Different Loading Points

19

• Synthetic data without any noise

Forward Problem Plot

0 0.1 0.2 0.3 0.40

200

400

600

X: 0.1245Y: 414.2

CMOD (mm)

Lo

ad

(N

)

X: 0.1549Y: 371.6X: 0.1824

Y: 334.9X: 0.2131Y: 296.4X: 0.2439

Y: 260.4X: 0.2749Y: 227.4

AB

CD

EF

0 0.1 0.2 0.3 0.40

1

2

3

4

5

6

CMOD (mm)

(

MP

a)

Initial Guess

Point A

Point B

Point C

Point D

Point E

Point F

Initial Guess

0 0.1 0.2 0.30

2

4

6

CMOD (mm)

(

Mp

a)

= 3.0

Numerical Simulations: PPR model

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Inverse Problem: Various Initial Guesses

Numerical Simulations: PPR model

20

• Displacement field taken from loading point D = 296.4 N

• Synthetic data without any noise

0 0.1 0.2 0.3 0.4 0.50

2

4

6

8

10

CMOD (mm)

(

MP

a)

Initial Guess 2

Initial Guess 1

Initial Guess 3

Forward Problem Plot

0 0.1 0.2 0.3 0.40

200

400

600

X: 0.2131Y: 296.4

CMOD (mm)

Lo

ad

(N

)

D

0 0.1 0.2 0.30

2

4

6

CMOD (mm)

(

Mp

a)

= 3.0

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Inverse Problem: Noise in Synthetic Data

Numerical Simulations: PPR model

21

• Displacement field taken from loading point D = 296.4 N

• Synthetic data with varying amount of noise

0 0.1 0.2 0.3 0.40

1

2

3

4

5

6

CMOD (mm)

(

MP

a)

Initial Guess

Max Noise = 0.00 %

Max Noise = 0.05 %

Max Noise = 0.50 %

Max Noise = 5.00 %

Initial Guess

Forward Problem Plot

0 0.1 0.2 0.3 0.40

200

400

600

X: 0.2131Y: 296.4

CMOD (mm)

Lo

ad

(N

)

D

0 0.1 0.2 0.30

2

4

6

CMOD (mm)

(

Mp

a)

= 3.0

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Load v/s CMOD from experiment

P P

Preliminary results using

PMMA

Inverse Analysis using DIC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 200 400 600 800 1000 1200 1400 1600 1800

Load

(kN

)

Crack Opening Displacement (um)

Load vs. COD

Crack Propagation Observed in Images,Image 16

Image 17 DIC Data used for simulation

Load Line Displacement (mm)

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Extracted Cohesive Relation using Inverse Analysis

23

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.040

2

4

6

8

10

12

14

16

18

n, mm

n, M

Pa

Shape of Cohesive Relation

• Results from different

simulation runs

• Shape similar to the

one used in reference

below

Elices M., Guinea G.V., Gomez J. & Planas J., 2002, The Cohesive Zone Model: Advantages, Limitations and Challenges, EFM, 69, 137

Preliminary results using

PMMA

Inverse Analysis using DIC

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Traction Separation relation for PMMA used by Elices et al.

24Elices M., Guinea G.V., Gomez J. & Planas J., 2002, The Cohesive Zone Model: Advantages, Limitations and Challenges, EFM, 69, 137

Inverse Analysis using DIC

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Summary & Conclusions

Developed inverse analysis techniques to extract

cohesive fracture properties of elasto-plastic

materials

– Shape regularization

– PPR model

Verified implementation for various conditions

Ongoing collaborative work: Hybrid technique

(Experimental DIC + Inverse analysis) for

polymers and metal/metal composites such as

Ti/Ti composites

25

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Future Work

Inverse analysis for fatigue loading

Validation of elasto-plastic inverse analysis using

DIC experiments

Extension of elasto-plastic inverse analysis to

plates and shells

26

07/18/2009 10th U.S. National Congress on Computational Mechanics, Columbus, Ohio

Thank You !

27

Acknowledgements:: Bin Shen, Jason Patric