Electric Bus Feasibility Study for the City of Edmonton

139
I

Transcript of Electric Bus Feasibility Study for the City of Edmonton

I

II

III

ELECTRICBUSFEASIBILITYSTUDYFORTHECITYOFEDMONTON

JUNE2016

A REPORT PREPARED BY

IV

I

TABLEOFCONTENTS

1 EXECUTIVESUMMARY

1.1 DESCRIPTIONOFMANDATE 1:11.2 CONCLUSIONS 1:11.3 MAINFINDINGS 1:41.3.1 CUSTOMERPERCEPTIONSOFTHEE-BUSES 1:41.3.2 ETSANDCITYSTAFFPERCEPTIONSOFTHEE-BUSES 1:41.3.3 DESCRIPTIONOFTHEFIELDTRIALS 1:51.3.4 EXPECTEDRELIABILITYOFE-BUSESINSERVICE 1:61.3.5 EXTERNALITIES 1:71.3.6 ENVIRONMENTALIMPACTOFE-BUSESATETS 1:81.3.7 THEELECTRICBUSTECHNOLOGYANDITSEVOLUTION 1:91.4 THEBUSINESSCASEFORE-BUSESINEDMONTON 1:101.5 RECOMMENDATIONS 1:13

2 DESCRIPTIONOFMANDATE

2.1 OBJECTIVESOFTHISSTUDY 2:12.2 METHODOLOGY 2:12.3 LIMITATIONSOFTHISREPORT 2:2

3 DESCRIPTIONOFFIELDTRIALS

3.1 THEELECTRICBUSESUSEDFORWINTEREVALUATION 3:13.2 DURATIONANDTIMINGOFTHETRIALS 3:43.3 DUTYCYCLESOFTHEBUSES 3:53.4 CLIMATICCONDITIONSDURINGTHETRIALS 3:63.5 DATACOLLECTIONDURINGTHEFIELDTRIALS 3:73.6 AVAILABILITYOFTHEBUSESDURINGTRIALS 3:73.7 EXTRAORDINARYEVENTS 3:73.8 ANALYSISANDSUMMARYOFTRIALS 3:83.8.1 RANGE,STATEOFCHARGE(SOC),ENERGYUSAGE(TOTALTESTAVERAGE) 3:83.8.2 TEMPERATUREANDENERGYUSAGE 3:103.8.3 ROUTEANALYSIS 3:133.8.4 IMPACTOFSLOPEONENERGYCONSUMPTION 3:143.8.5 INTERIORBUSTEMPERATUREANALYSIS 3:183.8.6 OTHERPERFORMANCEPARAMETERS 3:203.9 KEYFINDINGS 3:21

4 CUSTOMERPERCEPTIONSOFTHEE-BUSES

4.1 METHODOLOGY 4:14.2 E-BUSRIDERPERCEPTIONS(ASMEASUREDDURINGTRIALS) 4:24.2.1 BUSMODEL 4:24.2.2 NOTICEDADIFFERENTDESIGNOFETSBUS 4:24.2.3 RESPONDENTPROFILE 4:24.2.4 INTERESTINETSBUYINGELECTRICBUSES 4:34.2.5 WILLINGNESSTOPAYMOREFORBUSSERVICETOALLOWETSTOPURCHASEELECTRICBUSES 4:4

II

4.2.6 EVALUATIONOFELECTRICBUSEXPERIENCED 4:54.2.7 TEMPERATUREEVALUATION 4:74.3 PRE-TRIALPERCEPTIONS(ETSRESEARCH) 4:74.4 KEYFINDINGS 4:9

5 ETSANDCITYSTAFFPERCEPTIONSOFTHEE-BUSES

5.1 METHODOLOGY 5:15.2 PRE-TRIALPERCEPTIONSOFOPERATORSANDMAINTENANCESTAFF 5:15.2.1 BUSOPERATORS 5:15.2.2 MECHANICALANDMAINTENANCESTAFF 5:25.3 POST-TRIALPERCEPTIONSOFOPERATORSANDMAINTENANCESTAFF 5:35.3.1 BUSOPERATORS 5:35.3.2 MECHANICAL,MAINTENANCEANDSERVICESTAFF 5:55.4 KEYFINDINGS 5:7

6 EXPECTEDRELIABILITYOFE-BUSESINSERVICE

6.1 METHODOLOGY 6:16.2 RELIABILITYOFE-BUSESINOTHERSYSTEMS 6:26.2.1 BATTERYELECTRICBUSRELIABILITY,CANADA 6:26.2.2 BATTERYELECTRICBUSRELIABILITY,USA 6:36.3 RELIABILITYEXPERIENCEINWINTERFIELDTRIALSINEDMONTON 6:46.4 IMPACTOFWINTERPERFORMANCEOFE-BUSESONETS’S 6:76.4.1 TEMPERATURE 6:76.4.2 SERVICING 6:76.4.3 BUSDRIVING 6:86.5 LESSONSLEARNED 6:8

7 EXTERNALITIESANDRELATEDCOSTS

7.1 METHODOLOGY 7:17.1.1 METHODOLOGYUSEDTOANALYZEGRIDIMPACTS 7:17.2 BATTERYDEPLETIONANDFUEL-USE 7:27.2.1 SPACEHEATINGANDITSIMPACTOFENERGYEFFICIENCY 7:47.3 ASSIGNMENTOF40E-BUSESFROMWESTWOOD 7:57.3.1 BLOCKSANDROUTES 7:57.3.2 INTERLINING 7:57.3.3 BLOCKASSIGNMENTSTRATEGYANDDUTYCYCLE 7:57.3.4 EXTERNALITIESASSOCIATEDWITHTHEUSEOFTRICKLE-CHARGEDBUSES 7:67.3.5 EXTERNALITIESASSOCIATEDWITHTHEUSEOFEN-ROUTECHARGEDE-BUSES 7:77.4 OTHEREXTERNALITIES 7:97.5 KEYFINDINGS 7:9

8 ENVIRONMENTALIMPACTOFE-BUSESATETS

8.1 METHODOLOGY 8:18.2 CARBONFOOTPRINTOFDIESELBUSES 8:38.3 CARBONFOOTPRINTOFELECTRICBUSES 8:38.4 CARBONFOOTPRINTREDUCTION 8:48.5 CARBONLEVY 8:58.6 OTHERENVIRONMENTALEXTERNALITIES 8:58.7 KEYFINDINGS 8:5

III

9 THEBUSINESSCASEFORE-BUSESINEDMONTON

9.1 METHODOLOGY 9:19.2 ASSUMPTIONS–CAPITALCOSTS 9:29.2.1 BUSPRICESFORECAST(ELECTRICANDDIESEL) 9:29.2.2 FACILITIES 9:29.3 ASSUMPTIONS–OPERATINGCOSTS 9:39.3.1 ROUTES 9:49.3.2 DUTYCYCLEANDOPERATINGCONDITIONS 9:49.3.3 COSTOFENERGY(ELECTRICITYANDDIESEL) 9:59.3.4 ENERGYCONSUMPTION 9:59.3.5 ENVIRONMENTALCOST 9:59.3.6 MAINTENANCEANDSERVICE(M&S)COSTS 9:69.3.7 FINANCIALHYPOTHESES 9:69.3.8 TRAININGCOSTS 9:79.3.9 TOOLINGANDRELATEDCOSTS 9:89.4 LIFECYCLECOSTOFDIESELBUSESINEDMONTON(REFERENCECASE) 9:99.5 LIFECYCLECOSTOFTRICKLE-CHARGEDELECTRICBUSESINEDMONTON 9:109.6 LIFECYCLECOSTOFEN-ROUTECHARGEDELECTRICBUSESINEDMONTON 9:119.7 KEYFINDINGS 9:11

10 THEELECTRICBUSTECHNOLOGYANDITSEVOLUTION

10.1 FUELCELLELECTRICBUSES 10:210.2 BATTERIES 10:310.3 OTHERCHARGINGMETHODS 10:410.3.1 CONDUCTIVECHARGING 10:410.3.2 INDUCTIVECHARGING 10:510.3.3 BOOSTCHARGING 10:6

11 CONCLUSIONSANDOTHERCONSIDERATIONS

11.1 LIMITATIONSOFTHESCALINGUPOFTHEREPORTSINTHISSTUDY 11:111.2 EXPECTEDFINANCIALIMPACTOFUSING40ELECTRICBUSESINEDMONTON 11:211.3 EXPECTEDENVIRONMENTALIMPACTOFUSING40ELECTRICBUSESINEDMONTON 11:411.4 RISKSASSOCIATEDWITHTHEUSEOFELECTRICBUSESATETS 11:411.5 OTHERRISKSANDBENEFITSASSOCIATEDWITHTHEUSEOFE-BUSESATETS 11:511.6 KEYSUCCESSFACTORSFORTHEUSEOFELECTRICBUSESBYETS 11:5

12 RECOMMENDATIONS

12.1 RISKSANDBENEFITSFORTHEE-BUSCASEINEDMONTON 12:112.2 E-BUSTECHNOLOGY 12:112.3 TIMING,NUMBERANDRATEFORTHEINTRODUCTIONOFE-BUSESATETS 12:112.4 CHANGESREQUIREDFORASUCCESSFULTRANSFORMATIONOFETS 12:212.4.1 ESSENTIALCHANGES 12:212.4.2 IMPORTANTCHANGES 12:212.4.3 PREFERABLECHANGES 12:312.5 OTHERRECOMMENDATIONS 12:312.6 NEXTSTEPS 12:4

IV

LISTOFTABLES

TABLE1.1 COMPARATIVELIFECYCLECOSTOFDIESELANDE-BUSTECHNOLOGIES(NPV) 1:11TABLE3.1 TESTBUSDETAILS 3:3TABLE3.2 TESTDURATION 3:4TABLE3.3 TESTROUTEBOOK-OUTSCENARIO 3:5TABLE3.4 SAMPLETESTBOOK-OUTDETAIL 3:5TABLE3.5 AVAILABILITYDATAFROMJAN7-FEB5 3:7TABLE3.6 ENERGYCONSUMPTIONANDRANGE 3:9TABLE3.7 BUSRANGEVS.BLOCKLENGTH 3:9TABLE3.8 ENERGYUSEDATAFROMOTHERSOURCES 3:10TABLE3.9 OTHERPERFORMANCEPARAMETERS-COMPARISON 3:20TABLE4.1 OPINIONOFRIDERSREGARDINGTHEPURCHASEOFE-BUSESBYETS 4:3TABLE4.2 EMPLOYMENTSTATUSOFRESPONDENTS 4:3TABLE4.4 WILLINGNESSTOPAYMOREFORBUSSERVICE 4:5TABLE4.5 WILLINGNESSTOPAYMOREFORBUSSERVICEBYSIZEOFINCREASEBYAGECATEGORY 4:5TABLE4.6 NOISECOMPARISON 4:6TABLE4.7 FUMESCOMPARISON 4:6TABLE4.8 SMOOTHNESSOFRIDECOMPARISON 4:7TABLE4.9 TEMPERATUREONBUS 4:7TABLE5.1 PREANDPOSTTRIALQUALITATIVERESEARCHWITHSTAFF 5:1TABLE5.2 POSITIVEANDNEGATIVEPERCEPTIONSOFOPERATORS 5:4TABLE5.3 PERCEIVEDCHANGESTOOPERATIONSREQUIREDTOENABLEADOPTIONOFELECTRICBUSES 5:5TABLE5.4 POSITIVEANDNEGATIVEPERCEPTIONSOFM&SSTAFF 5:6TABLE6.1 MAINTENANCEEVENTS-ELECTRICBUSES 6:4TABLE6.2 OTHERMAINTENANCEORDESIGNISSUES-ETSELECTRICBUSES 6:5TABLE6.3 BATTERYELECTRICBUSCOMPONENTSANDATTRIBUTES 6:6TABLE7.3 SUBSTATIONCAPACITYLIMITATIONS 7:7TABLE7.4 TRANSITCENTRECHARGINGPOTENTIAL 7:8TABLE8.1 YEAR2013GRIDINTENSITY 8:1TABLE8.2 PROJECTED2034GRIDINTENSITY(WITHOUTCOAL) 8:2TABLE8.3 TOTALLIFEGHGEMISSIONSOFE-BUSES 8:4TABLE9.1 COSTOFBUSES 9:2TABLE9.2 COSTOFFACILITIESUPGRADE 9:2TABLE9.3 ESTIMATEDCOSTOFEN-ROUTECHARGINGSTATIONS 9:3TABLE9.4 MAINTENANCEANDSERVICECOSTFOR40’BUSESINEDMONTON 9:6TABLE9.5 MISCELLANEOUSASSUMPTIONS 9:6TABLE9.6 TRAININGCOSTS 9:8TABLE9.7 COSTBREAKDOWNOFTOOLINGREQUIRED 9:9TABLE9.8 REFERENCECASE:40’DIESELBUSES 9:10TABLE9.9 TRICKLE-CHARGEDE-BUSES,LIFECYCLECOST 9:10TABLE9.10 EN-ROUTECHARGEDE-BUSES,LIFECYCLECOST 9:11

V

LISTOFFIGURESFIGURE1.1 CUMULATIVECOSTSOFDIESELANDE-BUSES 1-12IGURE3.1 TECHNOLOGYREADINESSASSESSMENTGUIDE-COMMERCIALIZATIONPROCESS 3:1FIGURE3.2 LITHIUMIONBATTERYFLOW 3:3FIGURE3.3 TEMPERATURESANDSNOWDAYCHART 3:6FIGURE3.4 TEMPERATUREVS.ENERGYFORBYDE-BUS 3:11FIGURE3.5 TEMPERATUREVS.ENERGYUSEFORNFIE-BUS 3:11FIGURE3.6 TEMPERATUREVS.STATEOFCHARGEBUS#6013 3:12FIGURE3.7 ENERGYUSEBYROUTEATTEMPERATUREBUS#6011 3:13FIGURE3.8 ENERGYUSEBYROUTEATTEMPERATUREBUS#6013 3:14FIGURE3.9 BUS#6013STATEOFCHARGEROUTE7 3:15FIGURE3.10BUS#6013STATEOFCHARGEONHILLS-ROUTE7 3:16FIGURE3.11BUS#6013STATEOFCHARGEUPHILL 3:17FIGURE3.12MAPOFROUTE7 3:17FIGURE3.13INTERIORBUSTEMPERATUREONCOLDDAY 3:18FIGURE3.14 INTERIORTEMPERATUREOFDIESELHEATEDBUSES 3:19FIGURE3.15INTERIORTEMPERATUREOFDIESELBUS 3:20FIGURE4.1 RIDERSURVEYQUESTIONNAIRE 4:1FIGURE4.2 SHOULDETSPURCHASEELECTRICBUSES? 4:4FIGURE4.3 WILLINGNESSTOPAYMOREFORBUSSERVICETOALLOWETSTOPURCHASEELECTRICBUSES 4:4FIGURE4.4 IMPORTANCEOFGREENFOCUS 4:8FIGURE4.5 CUSTOMEREVALUATIONOFELECTRICBUSFEATURESCOMPAREDTOOTHERETSBUSES 4:9FIGURE8.1 ALBERTAPOWERGRIDFORECASTEDINTENSITY 8:2FIGURE9.1 YEARLYREFERENCEDISTANCEFORECASTEDFORDIESELBUSESINEDMONTON 9:5FIGURE10.1HYDROGENFUELCELLBUS 10:2FIGURE10.2COSTOFLI-IONBATTERIES2010-2030 10:3FIGURE10.3FIXEDPANTOGRAPH 10:5FIGURE10.4MOBILEPANTOGRAPH 10:5FIGURE10.5FIXEDINDUCTIONPLATE 10:5FIGURE10.6MOBILEINDUCTIONPLATE 10:5FIGURE11.1CAPITALEXPENSES(CAPEX)FORDIESELANDE-BUSES(20YEARSLIFE) 11:2FIGURE11.2OPERATINGEXPENSES(OPEX)FORDIESELANDE-BUSES(20YEARSLIFE) 11:3

VI

LISTOFAPPENDICESAPPENDIX1: LEXICONANDOTHERUSEFULINFORMATION 1APPENDIX2: BLOCKANALYSISOFTHEWESTWOODGARAGE(SAMPLE) 5APPENDIX3: MID-LIFECOSTREBUILD–DETAILEDCOSTS 7APPENDIX4: DETAILEDMAINTENANCECOSTS 9APPENDIX5: LESSONSLEARNEDFROMTHEFIELDTRIALS 11

VII

VIII

1:1

1 ExecutiveSummary

1.1 DescriptionofMandateTheprimaryobjectiveofthisstudy,undertakenbyMARCON,wastodeterminewhetherornotitisfeasibletointroducebatteryelectricbuses(“e-buses”)inserviceinEdmonton.Shoulde-busesreliablyoperateinEdmonton’swinterconditionswithoutmajorrestrictions,thenMARCONwastaskedtoassesstheeconomicandenvironmentalimpactsofintegratingthemintotheEdmontonTransitSystem(ETS)fleet.

Theprojectalsoaimedatgaugingtheperceptionsoftheriderswithregardstoe-busesaswellastheattitudeofETSandFleetServicesstafftowardsthem.

Finally,MARCONexaminedthepotentialimpactofe-busesonfactorsexternaltoETS:theCity,itscitizensandthepowergrid.

Basedonthefindingsofthisstudy,MARCONwasaskedtoformulaterecommendationsforconsiderationbytheTransportationCommitteeoftheCityregardingtheadoptionofelectricbusesintheETSfleet.

1.2 ConclusionsBasedontheinformationavailableatthetimethisreportwasprepared,MARCONpredictsthatelectricbusesusedinserviceinEdmontoncanperformasreliablyastherestofthefleetofdieselbusesbutwillrequirethoroughplanning,training,andresourcestoensuretheCityofEdmontonderivesthefullbenefitsoftheiruse.

Electricbusesgenerateenvironmentalandpotentialeconomicbenefits.Ane-busoperatingtodaywillemitapproximately38-44%lessCO2

e-(fromthepowergenerators)thanitsdieselequivalent.Althoughimportantfromthestart,theenvironmentalbenefitsforEdmontonwillincreaseovertime,asthepowerusedtochargethebusesoriginatesfromanincreasinglycleansource.Itisalsoexpectedthattheeconomicbenefitsofusinge-busesrelativetousingthedieselbuseswillgrowinthefutureasthecostofoperatingdieselbuseswilloutpacethatofe-busesduetodieselfuelpriceincreases,torisingcarboncostandtoelectricitypricescontinuingtoprogressataslowerpacethanthatofdiesel,ashasbeenthecaseinthepast.

E-busesareabetterchoicefortheenvironmentthanthecurrentdieselfleet.Investmentinelectricvehiclesimprovesairqualityinthecity,andintheatmosphere.Theelectrictransportationmodalshiftisexpectedtoaccelerateasthecostofbatteriesdecreasesandelectricvehicleperformanceimproves.ETScanbeacatalystforthistransitionbydemonstratinghowelectricvehiclescanoperatereliablyinEdmonton’swinterclimate,andbycausingtheutilitiesandregulatorstoplanfortheinfrastructuremodificationsthatarerequiredfortheiruse.

BasedontheresultsofthefieldtrialconductedinEdmontonandontheexperienceofotherCanadiantransitsystems'evaluationsduringwintermonths,e-busescanbe

1:2

expectedtooperateeffectivelyinEdmontoninwinterwithintheoperatinglimitationsofthetechnology.

Whileelectricmotorshavelongbeenusedinindustry,batteriesasamainsourceofenergymadetheirentryinthetransitmarketlessthan10yearsagowiththeadventofdiesel-electrichybridbuses.Fromareliabilityperspective,theyhaveperformedverywell.Batteriesinstalledondiesel-electrichybridbuseshaveinfactexceededindustryexpectationsintermsoftheirlifeanddegradationperformances.Butnewbatterychemistriesarereachingthemarket,sometimeswithoutthebenefitofaproventrackrecord.ThisrepresentsariskforETSbutatleastonemanufacturerhasexpressedawillingnesstoofferinnovativefinancingtermsfortheirbusesthatmightmakeitpossibletoshifttheriskofownershipoftheenergystoragesystemtothemanufacturer.

Handlingbatteriesinthemaintenancegarageorinthecontextofaccidentsrequiresthatoperators,firstrespondersandmaintenancestaffknowtherisksassociatedwiththebatterychemistryselectedwhene-busesarepurchased,andthatallpersonnelbetrainedaccordinglytomitigatesuchrisks.

Adoptinganewtechnologyinvariablypresentsoperationalrisksaswell.Ifnothingelse,timeisrequiredforstafftoadapttothenewvehicles.Thefieldtrialhasshownthatoperatorshavequicklyadaptedtothetestvehicleswithaminimalamountoftrainingandunderconditionsthatwerenotidealgiventheequipmentprovidedbymanufacturerswasavailableforsuchashortperiodoftime.Theadaptationperiodwillbelongerformaintenancestaffastechnicianswillhavetolearntodealwithissuescurrentlyunfamiliartothem.

Thecurrentshorterrangeofe-busescomparedtodieselbusestheoreticallyimpliesthatmoree-busesmayberequiredtoprovidealevelofserviceequivalenttodieselbuses.However,MARCON’sevaluationofcurrentserviceplansshowsthatETSoperatesasufficientnumberofblocks1withtotaldistancewellwithintherangeofe-buses(evenwitha15%to20%energyreservemargin)thatitcanplacee-busesinservicewithoutconcernorsignificantchangetoitsoperations.

Trickle-chargedbusescanservicealmost85%oftheweekdayblocksbut,becausetheblockscallforlongerdistancesduringtheweekend,thesesamebusescanbeassignedtoonlyathirdofthecurrentblocksonSaturdaysandSundays.Aconsiderablylargerproportionoftheweekendblockscouldbeallocatedtotrickle-chargede-busesifthedesignofblockswasoptimizedforelectricbuses.Futuregenerationsofelectricbusesarealsoexpectedtototallymitigatethissituation.Asforen-routechargede-buses,theycanservicealltheblockscurrentlyservicedbytheWestwoodgarage,provideden-routechargersarelocatedatallthetransitstationswherethee-buseswillvisit.

1 Blocks:thesetofrouteassignmentstobeservicedonasingletripbyabus(fromdepartingthegaragetoreturningtothegarage).

1:3

Althoughfieldtrialsrevealedthate-busesareabletonegotiatethesteepesthillsintheETSserviceareawithoutsufferinganadverseimpactonrange,theyalsodemonstratedthattheuseofdieselheatersonane-busprovidesmorecertaintyregardingtherangeofthevehicle,withminimalenvironmentalimpact.Theoperationofelectricheatersrequiresabout20%oftheenergystoredinthebatteries,furtherreducingtheeffectiveoperatingrangeofthebus.EvidenceatotherCanadiantransitagenciesthatevaluatedthebusesinsummerindicatesairconditioninghasasimilarnegativeeffectonrange.

Twochargingtechnologieswereappraisedduringthisproject:(rapid)en-routecharging(pantographsinstalledattransitcentresprovideaquickchargetothebuses-5minutes)and(slow)tricklecharging(busesarechargedatthegarageovernightand/orbetweenblocks).Theuseofen-routechargede-busespresentsrisksthataredifferentthanthoseofoperatingtrickle-chargedbuses.Withtheformer,thecharginginfrastructurerequiredcanberestrictiveintermsofrouteplanningflexibilityasthecostofmovingthechargingequipmentonceinplaceishigh.Withtrickle-chargedbuses,anelectricitygridfailurewherethegarageislocatedmaycripplethee-busfleetforthedurationofthefailure(unlessasufficientlylargebackupgeneratorisinstalled).Thecurrentrangeoftrickle-chargede-busescanalsolimittheblocksthatcanbeassignedtothosebuses.

Oneofthebenefitsofusingeithertypeofe-busistheexpectedincreaseincustomersatisfaction.Alargemajorityofcurrentcustomersexpressedtheirpreferencefortheseclean,quiete-buses.Almosttwo-thirdsofthesurveyrespondentsareevenwillingtopayapremiumtoridethem.

Usingthelatestgenerationofe-buseswillalsohaveanimpactontheimageofEdmontonasbeingaprogressive,environmentallyconsciouscity.

Theintroductionofasmallfleetofe-busesatETScanbeaccommodatedbythecurrentcapacityoftheelectricitygridinEdmonton;particularlyattheproposednewNorthEastTransitGarage(NETG).However,ife-busesareintroducedinlargenumbers,portionsoftheelectricitygridinEdmontonmayneedtobeupgradedtoensurethereissufficientpoweratthelocationswherethelargefleetwouldbecharged.

Electricbusesusedinthefieldtrialweresimplyassignedtoexistingblocks.TheseblockswerecreatedtoserveETSclienteleusingdieselbuses.ThedutycycleusedfortheeconomiccalculationsperformedbyMARCONwasnotoptimizedfore-buses.Consequently,theeconomiclifecyclecostforecastpresentedinthisstudymustbeconsideredconservative.Thelifecyclecostassociatedwithpurchasingandoperating40e-busesoutofthenewNETGiscomparabletothatofusingthelatestgenerationofdieselbusesonthemarketasitfallswellwithinthemarginoferrorprovidedinthisreport.Thenetpresentvalueofthelifecyclecostofafleetof40latestgenerationdiesel,tricklechargedelectric,anden-routechargedelectricbusesisrespectively$69,596,176,$69,916,319and$89,859,999.Thereisnosignificantdifferenceinthelifecyclecostofsubstitutingdieselbusesbytrickle-chargede-buses.MARCONthereforeconcludesthatitistechnicallyandeconomicallyfeasibletointroducee-busesintheETSfleet.

1:4

1.3 Mainfindings

1.3.1 Customerperceptionsofthee-buses

Asurveyofriderswasundertakento:

• Assessbususers’perceptionsofelectricbuses• Determinehowelectricbusfeaturesimpactthequalityandcomfortoftheride• DetermineifriderswouldlikeETStopurchaseelectricbuses• AscertainriderwillingnesstopaymoreforbusservicetoallowforETStopurchase

electricbuses.

Intotal,2,825questionnaireswerecollectedfromETScustomersridingontheelectricbusesthatwerebeingtested.Socio-demographicinformationwascollected(age,employmentstatusandnumberofone-waytripspertypicalweek)todeterminepotentialstatisticallysignificantdifferencesbypopulationsegment.

Theresultsofthesurveyarestatisticallysignificantataconfidencelevelof95%withamarginoferrorof±1.8.TheresultsofthesurveywerecomparedtotheAugust2014ETSsurvey"StealthBusCustomerSurvey-InterimToplineReport".

BothsurveysfoundthatEdmontonbusridersareveryfavourabletoe-buses.E-buseswereconsideredsuperioroneveryperformanceaspectevaluatedbycustomers.

1.3.2 ETSandCityStaffperceptionsofthee-buses

MARCONundertookqualitativeresearchwiththestaffthatwasinvolvedinthefieldtest.Focusgroupdiscussionsandin-personinterviewswereundertakenwithbusoperatorsandwithmaintenanceandmechanicalstaff,preandposttheelectricbustrials.

Fromastaffperspective,integratinge-busesintotheETSfleetandoperationswillrequire:• Relevanttrainingofbusoperationsandmechanical,maintenanceandservicestaff• Preparationwithunionstoresolvepotentialissuesrelatedtocompensationand

responsibilities• Busdesignthatreflectstheneedsofdriversandriders.

Adequatetrainingwillbekeytoensuringstaffbuy-inandasmootherintegrationofthenewtechnology.Thestaffinterviewed,particularlythebusoperators,areconfidentthatwithsufficienttraining,“gettingaccustomedtothisnewtechnologywillbelikegettingaccustomedtoanynewbus”.Generally,busoperatorsareverypositiveconcerningtheadoptionofe-busesinEdmontonastheyfeelitwouldbeanimprovementfortheirpassengersandforthemselves.MaintenanceandservicepersonnelremainedcautiouswithregardstotheirintegrationinETS’fleet.

1:5

1.3.3 DescriptionoftheFieldTrials

Twomodelsofelectricbuseswereevaluatedduringthefieldtrials:oneBYD40-foot(40’)SecondGenerationbus;and,oneNewFlyer40’bus.TheBYDbushada324kWhLithiumIronPhosphatebatteryandanauxiliarydieselheatertoprovideheattothepassengercompartment.TheNewFlyerhada200kWhLithium-nickel-manganese-cobaltbatteryandwasheatedwithadiesel/electricheatercombination.TwoNewFlyerXcelsiordieselbuses(modelyear2013)wereprovidedfromtheETSfleettoprovideacontrolbaselineforcomparisonpurposes.NewFlyerIndustriesisbasedinWinnipeg(MB);BYDisaChineseownedcompanybutmanufacturesitse-busesfortheNorthAmericanmarketatitsplantinLancaster(CA)and,accordingtoBYD,68%oftheircomponentsaresourcedin

NorthAmerica.AsecondBYDbuswithanelectricheaterarrivedinEdmontonattheendofJanuaryandwasnotaformalpartofthefieldtrialalthoughoperatingdatawascollectedbyETS.BusesfromthetwoothermanufacturersinNorthAmerica,NovaBusandProterra,werenotavailableforthefieldtrials.

Despitetherelativelyshortevaluationperiodoffiveweeks,MARCONwasabletomakereasonablecomparisonsbetweenthebusesbycarefullydesigningthetestroutesandcapturingoperatingdata,alongwithrouteandweatherfactorsforameaningfultestatETS.

TheBYDbusaccumulated3,750km,theNFIbus2,834km,andthetwodieselcontrolbuses5,082and4,464kmrespectively.Thetestprogramwasdesignedtoanswerseveralquestions,butmainly:cane-busesperformonallroutesinwinterconditionsinEdmonton?Serviceblockswerechosenforeachtestroutethatcoveredbothmorningandafternoonpeakserviceoverthesteepesthillsinthenetwork.Asmuchaswaspractical,thetestblocksalsooperatedonhighercapacityroutes,andthroughtherivervalleyupanddownhills.Thesetestroutesincludedserviceonweekdaysonly.Thetestbuseswereoperatedonsomeweekendsasoperatorandbusavailabilityallowed.

Temperatureandsnowdatafortheevaluationperiodwererecordedwithobservationsnotedtwicedailyonweekdays,andonceonweekendsattimesthatcorrespondedapproximatelytothemiddleoftheselectedrouteruntimesforthebuses.Edmontonexperiencedanunseasonablywarm2015-2016winter,andformostofthetestperiod.Colderdayswereexaminedcloselyandcomparedtowarmerdaysforenergyusedata.Onboardtemperaturedatawasalsorecordedandthee-busesallmaintainedtemperaturesabove15oCthroughouttheirruns,evenonverycolddays.

1:6

Theelectricbuseswerequitereliableandoperatedmostdaysatover90%availabilityduringthefieldtrial.Problemswerecorrectedwithinareasonableamountoftime.Noelectricpropulsionsystemproblemsoccurredduringthefieldtrialsandallmaintenanceitemswererelatedtonon-propulsionsystemsduringthetestperiod.

Operatingrangeandenergyusewereprimaryfactorsindeterminingbusoperatingstrategyandcostanalysis.TheBYDbusconsumedlessenergyperkm(1.04-1.25kWh/km)thantheNFIbus(1.25-1.38kWh/km)resultinginrecommendedeffectiverangefortheBYDbusof220-264kmandtheNFIbusof116-128km(themostconservativefigurewasusedinoureconomicandenvironmentalimpactcalculations).Thedifferenceinrangeisexplainedbythedisparityinbatterysizeandbythetechnologiesusedforheatingtheinteriorofthebuses.Thedieselcontrolbuseshaveamaximumrangeof800km.TheseresultswerecomparabletothosearrivedatinothertrialsinCanadaandtheUS.Nodirectcorrelationwasobservedbetweenenergyusageandambientoutdoortemperature,whichreachedbelow-20oConseveraldays.However,ifelectricheatersareused,rangecoulddecreasebetween15and25%.

Theinteriornoiselevelfortheelectricbusesatidleisnoticeablylowerthanfordieselbuses.Underacceleration,thenoiselevelsarecomparable.TheaccelerationoftheNFIe-busismarginallyfasterthantheBYDbusandthedieselbus.Howevertheaccelerationofboththeelectricbusesismuchsmootherwithmoretorquethanthedieselbusesavailableatlowerspeeds.Brakingdistancesarecomparable.

1.3.4 Expectedreliabilityofe-busesinservice

E-buseshaveonlybeenoperatinginCanadaonatestbasisbutthereareafewlargerfleetsinoperationintheUSA,inAsia,andinEurope.Areviewofthesetestsandreportsandtheanalysisofthedifferencesbetweenstandarddieselbusesande-busesprovidedareasonablemeasureandqualifiedcommentariesonthegeneralreliabilityofe-buses.

DuringtheETStestprogram,therewereanumberofmaintenanceandoperatingproblemsnotdirectlyrelatedtobatterypropulsiontechnologyoritsaccessoriesthatkeptthebusesofftheroadformaintenancepurposes.Somedowntimewasattributabletotechnicianandoperatorunfamiliarityorunavailabilityofsomesparepartsforthevehicles.Inalargerin-servicefleet,significanteffortswouldbemadetospecifybusesindetail,arrangetrainingforoperators,serviceandmaintenancestaffs,andprovideservicesupport,partssupply,andwarrantyterms.

MARCONreviewedmanyaspectsofbusreliabilityfromnumeroussources:TheETStest,othertestliterature,communicationwithmanufacturersandbusproperties,fieldmeetings,personalbusmaintenanceandoperatingexperience,amongothers.Thisstudyhasfoundthatbatterye-busreliabilityisatanacceptablelevelforETSbusoperationsandmaintenance,beingatleastasreliableasdieselbuses.

TheotherCanadianevaluationsofelectricbusesinrevenueserviceconfirmedthatthebusestestedwerereliable.InWinnipeg,itwasconcludedthatbatteryelectrictransitbusesperformreliablyandefficientlyinManitoba’sextremecoldclimate.TheSociétéde

1:7

transportdel'Outaouais(STO)andSociétédetransportdeMontréal(STM)evaluationsconcludedthattheperformanceofe-busesintermsofautonomy,operatingtimeandregularitywouldallowtheiruseoveralargeportionoftheMontréalandOutaouaisnetworks.TheSociétédetransportdeLavalconcurredwiththisconclusion.

Theinformationavailableregardingthereliabilityofe-busestestedorevaluatedintheUSAconfirmstheresultsobtainedbyCanadiantransitproperties.TheAltoonatestsofelectricbusesidentifiednumerousdeficienciesfoundwithallthreeelectricbusestested(BYD,NFIandProterra).Ofthethreetestsconducted,theNewFlyerXE40wasfoundtohavethefewestdeficiencies.TheBYDbuswasfoundtohavethemost.BYDimmediatelydesignedremediationmeasurestocorrectallthedeficienciesfound.ThelatestgenerationoftheBYDbusesisexpectedtohavefarfewerreliabilitydeficienciesasaresultofthesedesignchanges.

Electrificationoftransitbuseshasbeenevolvingformanyyearsinvariousforms.Trolleybuseshavebeenoperatingwithelectricalcomponentsallovertheworldfordecades.Hybridbuseswithelectricalcomponentshavebeencommonandabundantforseveralyears,andfuelcellinsmallerdemonstrationfleetsaroundtheworld.Thisexperienceallowsrapiddevelopmentofe-buses,usingwell-knownandgenerallyreliabletechnologies.

Theliteraturereview,theinformationobtainedfromotherNorthAmericantransitpropertiesaswellastheresultsfromthefieldtestinEdmontonrevealedthate-busesastestedare,fromanelectricdriveviewpoint,atleastasreliableasdieselbusescurrentlydeployedatETS.

1.3.5 Externalities

Externalitiesrefertocostsandbenefitsassociatedwiththechoicetoinvestine-busesthatarenotincurreddirectlybyETSbutthatmustbeconsideredinabroaderperspectivebyamunicipalgovernment.Ascenarioof40e-busesassignedtotheproposednewNETGwasusedforthispurpose.Onelimitingfactorwhenconsideringlarge-scaledeploymentofe-busesistheimpactontheelectricalgrid,andtheassessmentofavailablepoweratpotentialcharginglocations.

EPCORprovideddatafromwhichMARCONwasabletocalculatethemaximumnumberofbusesthatthispoweravailabilitycouldservice.AnanalysiswasthenconductedtodeterminetheenergyrequiredtosupportserviceblocksoperatingfromtheNETG.Fromthisanalysispotentialblocksthate-busescouldservicewereidentified.Finally,theoptimalassignmentofe-busestopotentialblockswasdetermined.Thestateofcharge(SoC)ofabusanditstotalbatterycapacitydeterminethechargingrequiredtosupplyasufficientamountofenergytothebatterysoitcan(minimally)serviceitsnextblockassignment.

Fromanexternalitiesviewpoint,thereareadvantagestoeache-bustechnology.En-routechargedbusescanbededicatedtothelongerblocks.Thisissignificantbecausethemoredistanceane-buscovers,thegreaterfinancialbenefitityieldscomparedtoits

1:8

diesel-fuelledcounterpart.Themostsignificantadvantageofdistributedchargingstrategiesfromariskmitigationperspectiveisthattherearemorephysicalconnectionstotheelectricalgrid.Consequently,thereisgreaterredundancyintheinfrastructuresystem.Asfortricklecharging,itsmainbenefitisthelowerinitialinvestmentrequired.Charginginfrastructurewouldbelocatedinthegarageaccommodatingthee-buses.Addingchargingstationstothisfacilitywillnotrepresentasubstantialinvestmentcomparedtothecostofmodifyingeighttransitcentresinadditiontotheplannedgarage.

Distributingthechargingprocessofbusesthroughoutthecityhasmanypositivebenefitsforthecity’selectricalinfrastructure,deliveringEPCORwithabetterdistributionoftheadditionalloadoveritsexistingpowergrid.ThiscanprovideopportunitiesforEPCORtoimprovethereturnontheirinfrastructureinvestment.

1.3.6 Environmentalimpactofe-busesatETS

TheGHGintensityofAlberta’sgridisexpectedtodecreaseovertimeasolderand“dirtier”powerplantsaredecommissioned.Toprojectafuturegridintensity,MARCONextrapolatedutilizationofinstalledcapacitybasedonAlberta’s2014electricityproductionreportsandAESO’slong-termoutlookestimates,bothfutureinstalledcapacitiesandtotaldemandinyears2019,2024,and2034.Thegridintensitywouldbeexpectedtodropfrom0.81tonsofCO2equivalentpermegawatt-hour(TCO2

e-/MWh)in2014to0.46TCO2e-

/MWhin2034.

In2015,theETSfleetof40-footdieselbusesemitted61,230TCO2e-fromthecombustionofdiesel,andafurther23,300TCO2

e-fromupstreamemissionsassociatedwithitsproduction.IntheEdmontonfieldtrial,the2013Xcelsiorbusesachievedanaveragefuelefficiencyof49L/100km.DataprovidedbyETSforcalendaryear2015indicatesthatthese2013Xcelsiorbusesaredrivenanaverageof49,497km/year.Atthemeasuredconsumptionrate,acontemporarymodeldieselbusdrivingthatdistancewillgenerateemissionsof89TCO2

e-peryearor1,781TCO2e-initslifetime.Basedonthe2013Alberta

gridintensityfactor,ane-busoperatingtodaywillemitapproximately38-44%lessCO2e-

(fromthepowergenerators)thanitsdieselequivalent.By2034,thee-buswillemit72-74%lessCO2

e-.WhenusedaccordingtotheusagepatterndefinedbyETS(drivingonaverage49,450km)aBYDwillgenerate684TCO2

e-andtheNFI,776TCO2e-respectivelyin

lifetimeemissionsassociatedwithupstreamemissionsfrompowergeneration.Onacomparativebasis,thelatestavailablemodelofXcelsiordieselbusrunningonaverage49,450kmperyearfor20yearswouldemit89TCO2

e-/yearor1,761TCO2e-duringits20-

yearlife.

MARCONalsoconcludesthatitispreferabletoequipelectricbuseswithdieselheatersratherthantolosethepotentialrangeresultingfromthepowerconsumptionofelectricheaters.Theuseofadieselheated,BYDtrickle-chargedelectricbuswouldreducethebus’carbonfootprintby60%over20yearsofitslifewhilstreplacingadieselbusbyadieselheated,en-routechargedNFIelectricbuswouldreducetheGHGfootprintby56%.

1:9

1.3.7 Theelectricbustechnologyanditsevolution

AlthoughitmayseemtheirarrivalontheCanadianmarketwasrathersudden,today’sbatterye-busesaretheresultofseveralgenerationsofvehicletechnology,whichhasbeenextendedtoincludeelectrictrains,tramways,trolleybuses,diesel-electrichybridbusesandfuelcellbuses.Thekeychallengefore-buseshasalwaysbeentheenergystoragesystem(ESS),inparticular,developingabatterychemistrythatmeetstheoperationalrequirementsofe-buses.Whilethereiscertainlyimprovementexpectedwiththecurrentoffering,today’sbatteriesalreadyallowe-busestocompetewiththecostoftraditionaldieselbusesonalifecyclebasis.

Theworldmarketforelectricandhybrid-electricbusesamountedtonearly15,000unitsin2014.Salesareexpectedtogrowatacompoundedannualgrowthrateof19.6%overtheperiod2015-2020.Attheendof2015,Chinaalonewasexpectedtooperateapproximately500,000plug-inhybridelectricandpure-electricvehicles.NearertoCanada,theUnitedStatesDepartmentofTransportationhasannouncedaninvestmentof$24.9million(USD)forthedevelopmentofzero-emissionbuses.Alargeshareofthisincentivewillfuelthedevelopmentofimprovedbatteries.

FuelcellbusesarewellknowninCanadaastwooftheworldleadingmanufacturersofhydrogenfuelcellsarelocatedinthecountry:BallardPowerSystems(inBritishColumbia)andHydrogenics(inOntario).Morethan2,000organizationsthroughouttheworldareactivelyinvolvedinfuelcelldevelopment.Busmanufacturers,suchasDaimler,areworkingonmakingthesehydrogen-poweredvehiclesmoreaffordablebutthecomplexityofhandlingthesevehicleshaskeptmosttransitpropertiesawayfromthemtodate.Withtherapidprogressbeingachievedinbatterychemistry(improvementsinefficiencyandcost),mostexpertsagreethatitwillbechallengingforhydrogenfuelcellbusestocatchuptobatteryelectricbuses.

ThekeytoawideracceptanceofEVsingeneral,andbattery-powerede-busesinparticularisbatterycostandperformance.Severalbatterymanufacturers,includingBoschandBYD,arepredictingthecapacityofbatteriescurrentlybeingdevelopedwilldoublewithin18to48months(dependingonthesource).ReputablefinancialanalystsprojectthecostofbatterieswilldropfromtheircurrentUS$350/kWhtolessthan$120/kWhonaverageby2030.

Therearetwofamiliesofbatterychargingsystems,bothofferingtrickleandrapidchargingoptions:

• Conductive• Inductive

Conductionchargingimpliesaphysicalcontactbetweenthechargingsystemandthebattery.Chargersareeitherinstalledattransitfacilitiessuchasbusbarnsortransitcentres.Inductivechargingallowsforelectricitytomovetoabatterywithoutphysical

1:10

contact.Inductivechargingplatesareusuallylocatedatgroundlevel.Thesecanbelocatedatbusdepots,busstopsandtransitcentres.Theinductivesystem'smainadvantageisthatitiseasierforoperatorstoparkoveraplatethantolineupthebuspreciselyunderpantographs.

1.4 Thebusinesscasefore-busesinEdmontonMARCONcalculatedtheeconomicimpactofshiftingfromdieseltoelectricbusesusingtheirproprietarylifecyclecostforecastingmodel(TLCBu$TM)andperformedacomparativeanalysisofdieselandelectricbusesrelativetocapitalcosts,facilityupgrades(electricalcapacityandother)costs,andoperationalcostsincludingthecostofelectricityandfuel,maintenanceandothercosts.Giventheearlystageoftheelectricbusindustry,thelackofcertaintyrelatedtofuelandenergycosts,andtheshortamountoftimethebuseswereinfieldtrialinEdmonton,theaccuracyofthebusinesscaseislimitedto±25%.

ETSandtheFleetServicesbranchoftheCityofEdmontonprovidedMARCONwithalltheinformationrequestedtoestablishareferencecasebasedonthelatestmodelof40’dieselbusesinthefleet(Xcelsior2013model).Wheneverpossible,datafromEdmonton’sfieldtestwithe-buseswasusedbut,giventheshortdurationofthetest,missingdatawassubstitutedby:

• theresultsofevaluationsconductedinothermunicipalities,and/or• Altoonatestresults,and/or• MARCONteammembers’experiencewithotherelectricbuses,

inordertobuildacostforecastingmodelreflectiveofEdmonton’sownoperatingcharacteristics.

TheSteeringCommitteedirectedMARCONtoundertakeits“calculationsonthefeasibilityof40buses,withdetailsabouthowthestudyarrivedattheconclusionthatcouldbeextrapolatedtosupportdecisionmaking”.MARCONwasnotrequiredtodeterminetheoptimalsizeofanelectricbusfleetinEdmontonwithinthescopeofthisstudy.TheCityshouldbeawarethatMARCON’sconclusions,whicharebasedoncalculationsforafleetof40buses,maynotapplytoasmallerprocurementofbuses.

TheinvestmentrequiredbytheCitywasestimatedonthebasisofthepricesprovidedbymanufacturersforbusesandchargingstations.ThecostofadaptingtheNETGtoe-busrequirementswasprovidedbyanarchitectfirm(MorrisonHershfield)andthecostofen-routechargingstationswasbasedontherecentexperienceatWinnipegTransitCorporation.

TheoperatingcostsfordieselbuseswereprovidedbyETSbasedonitsexperiencewiththenewestbusesintheirfleet.MARCONevaluatedthedetailedcostsofoperationsfore-busesusingtheexperienceoritsteammemberswithelectricvehiclesandtheinformationprovidedbyothertransitproperties.Maintenance,training,tooling,andfacilityupgradecostswereevaluatedbyMARCONaswell.

1:11

Thecurrent(contractual)pricesofdieselfuelandelectricitywereprovidedbytheCityand,attherequestoftheCity,werepeggedatcurrentlevels.TheannouncedProvincial“CarbonLevy”ontransportationfuelwasfactoredinMARCON’scalculationsandtherefore,thelevyondieselfuelwassetatthe2018rateof8.03¢/litreastheprocurementprocessforthevehiclesandtheconstructionofthenewgaragefacilityisunlikelytoresultine-busesbeingputinservicemuchbeforeJanuary2018.Asforthepriceofdiesel,thecostofthelevywaskeptconstantforthe20yearsofthebuses’life.Therewasnocarbontaxaddedtothecostofelectricityasitisalreadybuiltintotheprice.

AllcostswereenteredinTLCBu$TMtoarriveatthecomparativelifecyclecostsforthediesel,trickle-chargedandfast-chargede-buses.

Thereferencebasecaseforthelifecyclecostof40standarddieselbusesovera20-yearlifeusedinregularservicefor989,000kilometreswasdeterminedtobeaNetPresentValue(NPV)of$69.6millionincurrent(nominal)dollars2.

Table1.1Comparativelifecyclecostofdieselande-bustechnologies(NetPresentValuein2016dollars)

Costelementsforafleetof40buses Dieselbuses

Trickle-chargede-buses

En-routechargede-buses

CapitalInvestmentCosts Busacquisition&rebuild(40units) $28075180 $45865569 $57281973BuildingandInfrastructurecost Nonerequired $750000 $1154992Chargingstationscosts Nonerequired Includedwithbus $6767923Othersoft,nonrecurringcosts Nonerequired $119843 $126822

Capitalexpensestotal $28075180 $46861434 $65331710OperatingCosts Maintenance&ServiceCosts $26201313 $18260531 $18064388Charging/Fuellingequipmentmaintenance Negligible $66899 $1131926Fuel&ElectricityCost $14015707 $4831981 $5310479CarbonLevy $1303976 $21496 $21496

OperatingExpensestotal $41520996 $23159937 $24528289TotalNPVLifecycleCost $69596176 $69916319 $89859999%differencewithdieselbuses - +0.46% +29.12%

Source:MARCON,2016.

Theestimatedlifecyclecostof40trickle-chargedelectricbusesinEdmontononanidenticaldutycycle(foratotalof989,000km)willcost44%lessinoperations,mainlyduetolowerfuelandmaintenancecosts.Butthepriceoftrickle-chargedbusesandoftheirchargingstationsrequirecapitalinvestments67%greaterthanthatofdieselbuses,therebyoffsettingtheoperatingcostadvantagesofthee-bus.TheresultingNPVlifecyclecostof40trickle-chargedelectricbusesis$70million,thesameasthecostofrunningdieselbuses.

2 MARCONdidnottakeinflationintoconsiderationforitscalculationsbutdiscountedthefuturecashflowtoobtainanetpresentvalue.

1:12

ThelevelofprecisionrequiredfromMARCONforthisforecastbeing±25%,theoverallcostdifferencefallswellwithinthemarginoferrorandMARCONcanthereforestatethatthereisnosubstantialadditionalcostassociatedwiththeuseoftrickle-chargede-busesintheETSfleet.TheconservativeapproachMARCONhastakentostudythebusinesscaseindicatesthatifamoreaccurateassessmentwereundertaken,itwouldlikelyrevealthatoperatingtheseelectricbuseswouldprovidetheCitywithsubstantialsavings.

Figure1.1Cumulativecostsofdieselande-buses(Inthousandofconstantdollars)

Thelifecyclecostofsubstitutingdieselbusesbyen-routechargede-busesamountsto$95.6millionor,innetpresentvalue,$89.9million,thisis29.1%morethandieselbuses.Thisexceedsthemarginoferrorandindicatesthatasignificantincreaseintheoperatingcostwouldoccurifen-routechargedbuseswereselected.

Therearehoweverseveralopportunitiestoreducethecostofusinge-buses.First,usinginnovativecontractualtermsregardingthee-buses’energystoragesystemcanmitigatetheirhigherpurchaseprice.Reducingtheinitialcashoutlayrequisitefortheirpurchasebyrentingorleasingbatterypackswouldgenerateattractivesavings.Usingthisstrategywouldspreadthecashflowrequirementsoveralongperiodoftime(possiblythelifeofthebus),therebymatchingtheadditionalcapitalcostassociatedwithe-buseswiththesavingsfromlowerenergycosts.

Anotherwayofgeneratingsavingswithelectricbusesconsistsinfavouringtheminthedailyallocationofblocksinsuchawayastoincreasethedistancethee-buseswillcovereachyearfortheirentirelife.Themoredistanceane-buscovers,thegreaterthesavings.Thisisduetothehighercostofoperationsofdieselbuses($1.05/km)comparedtothatoftrickle-chargede-buses($0.59/km)andofen-routechargede-buses($0.62).

Thecalculationspresentedinthisreportarebasedonseveralveryconservativehypotheses.Forexample,thepriceofdieselfuelisheldatcurrentcontractuallevelsforthenext20years,whichishighlyunlikelytohappen.Althoughthepriceofelectricitywillalsorise,petroleumproductspricesexperiencemuchgreatervariationsand,theprice

1:13

currentlypaidbytheCityresultsformthefavourablemarketconditionsthatareunlikelytoholdforthenext20years.

1.5 RecommendationsAtpresent,theeconomicbenefitsofadoptingelectricbusesconservativelycalculatedbyMARCONareslim.Withtime,thesebenefitswillmostlikelyincreaseandyieldinterestingsavings.Theenvironmentalbenefitsassociatedwithe-buseswillalsomakethemmoreattractiveinthefuture.Therearesomerisksassociatedwiththeintroductionofe-busestotheETSfleet,buttheseriskscanbemitigated.

Thetechnologyassociatedwithe-busesiscontinuouslyimproving.FourNorthAmericanmanufacturerswillhavetransitproductsofvariousconfigurationscommerciallyavailableforCanadiantransitfleetswithinthenextyear:NewFlyerIndustries,BYD,NovaBusandProterra.Whileelectricbustechnologyisnotasmatureastheincumbentdieseltechnology,therebypresentingsomerisks,thereisagrowingconsensusintheindustrythatelectricvehicles,includingbuses,willlikelydominatethemarketoverthecomingdecades.InthatcontextandwiththeresultsofthefieldtrialsconductedinEdmonton,MARCONrecommendsthatETSprocurese-busesandaddsthemtotheservicefleetinordertodevelopinternalexpertiseandfamiliaritywiththisbustechnology.

Priortoprocuringe-buses,MARCONfurtherrecommendsthatETSstaffdevelopperformancespecificationsassoonaspossible.Thesespecificationsshouldincludedieselheatersforspaceheatingonboardeachbusinordertoprovidemorecertaintyineffectiverangeforserviceplanning.Giventheamountandnatureofthepreparatoryworkrequiredtoprocurethesebusesandintegratetheminthefleet,entryinserviceinlate2017,orearly2018isreasonablyachievable.

Thefirste-busespurchasedshouldallbelocatedinasinglegaragedesignedormodifiedtoaccommodatethem.Thespecificrequirementsforspaceandequipmentwithinthatfacilityshouldbedeterminedusingafunctionalanalysisbutmustincludeconsiderationspertainingtothesizeofthebackupgeneratorandtheclearanceofthebuswash.Otheritemssuchasthepossibilityofusingcogenerationand/orsolararrayswouldfurtherimprovetheirenvironmentalperformance.

Athoroughevaluationofserviceblocksmustbeundertakeninparallelwiththeprocurementprocesstoidentifywhatchangeswouldoptimizetheuseofe-busesand,therefore,theeconomicandenvironmentalbenefitsofthetechnology.Thegoalwillbetoassignthesebusestothelongestblockstheycanpossiblyhandleinordertoreducetheirfixedcostperkilometre.

MARCONfurtherrecommendsthat:• acomprehensiveengineeringandmaintenancefleetmonitoringprogrambe

designedpriortoanyelectricbusfleetprocurementtoensureprocessesaredevelopedthatwillcapturechangesrequiredtothecurrentmaintenance,servicingandsupportsystemstoensurethesuccessoftheintroductionoftheelectricbusfleet;

1:14

• acomprehensivereviewofallserviceplanningbeundertakentoensurethatserviceblocksareoptimizedforuseoftheelectricbusfleettoachievethebestenvironmental,economicandsystembenefits;and,

• ETSworkwiththesuccessfulbusmanufacturerandapotentialthirdpartytechnicaltraininginstitutiontodevelopthenecessarytrainingpackagestoensureallstaffinvolvedwithoperatingtheelectricbusfleetreceivescomprehensivetrainingpriortocommissioningthenewbuses.

IftheCityintendstoexpandthesizeoftheelectricbusfleetafterafewyears,itisstronglyrecommendedthatathoroughanalysisofthechargingandfacilityupgraderequirementsbecarriedoutforeachtransitgarageintheETSsystem.Thisshouldbeundertakeninparallelwiththeintroductionoftheinitialfleetofe-buses,andthefacilitydevelopmentplanforalltheoperatingfacilities.Thiswillensurethatthepowerrequirementscanbemetandcapitalinvestmentneedsidentifiedinadvanceofanypurchasesofe-buses.

ItisalsorecommendedthatETScontinuetomonitorothertrialsbeingconductedwithe-busesattransitpropertiesinNorthAmericaandinvestigatesourcesofsubsidiesforprocurementofcleantechnologiesthatmaybeavailablefromFederalandProvincialgovernments.

Thereareanumberofactivitiesthatfollow:• TheCitymustdecidewhetheritwillproceedwiththeacquisitionofe-busesor

not;ifso,itmustalsodecidewhensuchapurchasemusttakeplacekeepinginmindtheleadtimerequiredfordelivery.

• ETSmustresolvehowthee-buseswillbeusedinthefleetandhenceforthdeterminewhatperformancethee-busesareexpectedtoachieve.

• Ideallypriorto,butpossiblyconcurrentlywiththeprocurementprocess,ETSmustdefine:

o Theroutesthee-buseswillserviceo Howtheblockassigningprocesswillbemodifiedtooptimisetheiruseo Whattheirspaceassignmentwillbeintheassignedgarageo Howserviceandmaintenanceprocedureswillbeadaptedtoe-buses

• ETSmustthendevelopdetailedspecificationsfortheprocurementofe-busesthatarecompatiblewiththewayETSintendstooperatethemindependentlyfromthosecurrentlypromotedbybusmanufacturers

• TheCitymustthenengageintheprocurementprocessinawaythatmightbedifferentfromitsusualpracticesasnegotiationswithoneorseveralsupplierswillingtoadapttheirvehiclestoETS’specificationswillbethebestwaytoprocurevehiclesthatwillmeettheCity’sexpectations.Thelowestbiddermaynotbethebestsupplier,asthelifecyclecostoftheprocurementshoulddictatethechoiceofsupplier.

• AninternalandexternalcommunicationsstrategymustbecraftedtoillicitmaximumcollaborationfromallCitystaffandtoinstilprideintheorganisationonthepartofallEdmontoncitizensandstaffmembers.

2:1

2 Descriptionofmandate

2.1 ObjectivesofthisstudyTheprimaryobjectiveofthestudywastoexaminetheimpactofadoptingelectricbusesintheEdmontonTransitSystemasfollows:

a. Economic:analyzetheeconomicimpactofshiftingtoelectricbusesusingMARCON'sproprietarylifecyclecostforecastingmodel,comparingdieselandelectricbusesoncapitalcosts,facilityupgrades(electricalcapacityandother),andoperationalcostsincludingthecostofelectricity,fuel,maintenanceandothercosts;

b. Environment:assesstheenvironmentalimpactoftheadoptionofelectricbuses;c. Externalities:evaluatetheexternalimpactsontheCity,itscitizensandthepowergrid;d. ETSStaff:assesstheimpactsofadoptingelectricbusesonETSstaff;e. CustomerPerceptions:evaluatecustomerperceptions;f. Reliability:evaluatethereliabilityofthebuses;and,g. RecommendationsonthefeasibilityandapproachforadoptingelectricbusesintheETS

fleet.

2.2 MethodologyTwoelectricbusesfromtwomanufacturerswereevaluatedduringtheperiod7January2016to5February2016-onefromBYDandtheotherfromNewFlyerIndustries.AsecondBYDbuswithelectricheaterarrivedinlateJanuaryandwasrunafter5February.

MARCONusedacomprehensiveandflexiblemodularapproachtoundertaketheevaluation.Studymodulesreflectingtheobjectiveslistedabovewereestablishedandcanbeusedasindependentdocuments.AllmodulesarehoweverinterlinkedinordertomaximizeefficiencyandprovideacompletepictureofallthefacetsofintroducingelectricbusesintoserviceinEdmonton.Whileconsideringallsourcesofinformationavailable,eachsourcewasassessedindependently,verified,characterizedandweightedinthefinalanalysis.Informationsourcesincluded,amongothers:

a. RedRiverCollegeandWinnipegTransitb. BCTransitc. Sociétédel'Outaouais(STO)inconjunctionwiththeSociétédegestionetd'acquisitionde

véhiculesdetransport(AVT)andtheSociétédetransportdeMontréal(STM)d. PennsylvaniaTransportationInstitute(Altoona)e. NationalResearchEnergyLaboratories(NREL),FTAandtheUSDepartmentofEnergy

(DOE)f. OCTranspo,SociétédetransportdeLaval(STL)andotherpastclientsatMARCONg. ChicagoTransitAuthority(CTA)andCaliforniaAirResourceBoard(CARB)h. Busmanufacturers

TheeconomicanalysiswasperformedbyMARCONusingdataprovidedbyETSfromtwosources:thefieldtrialsandETS’historicalcosts.Thiseconomicdatawasreviewedinconjunctionwithinformationgainedfromothermunicipalitiesandagenciesthathaveevaluatedelectricbuses,asidentifiedabove,toassessandconfirmperformanceandoperationalimplicationsthatwerethenbuiltintothecostforecastingmodel.

2:2

TheenvironmentalanalysiscomparedtheGreenHouseGas(GHG)emissionsproducedbynewer(2013)dieselbusesagainsttheGHGemissionsassociatedwiththeproductionofelectricitycurrentlyusedbytheCityofEdmonton,electricitythatwouldeventuallypowertheelectricbuses.ResearchwasconductedtodeterminethecurrentgridimplicationsandprojectthefutureblendedgridintensityofAlberta'spowergeneration.

TodeterminetheexternalimpactsontheCity,itscitizensandpowergrid,researchandworkwasundertakenwithrelevantpartnerstoassessimpactsoutsideofmunicipaloperatingcostsandenvironmentalimpactsthatcanbeprojectedtooccurifelectricbusesareadopted.

EngagementwithOperationsandMaintenancestaffwasdonethroughdiscussions,focusgroups,andsurveystoassessoperationalimpactsassociatedwithintroducingelectricbusesandtheirperceptionsofdoingso.Similarly,aconsultationbysurveywasundertakenwithcustomerstoobtainacomparativeassessmentoftheirperceptionsofelectricbusescomparedtodieselbuses,andtomeasuretheirpropensitytoadoptsuchatechnology,evenatapremiumprice.

Thedatacollectedduringthefieldtrialwasanalysedtoassessthereliabilityofelectricbustechnologyandtoidentifymaintenanceissues.

2.3 LimitationsofthisreportOperatingdata,driverandcustomerfeedbackwasobtainedinEdmontonovertheevaluationperiod.Theevaluationpresentslimitationsresultingfrom:

• Theshortonemonthperiodofdatacollection;• Havingonlytwoofthethreecommercialmanufacturersrepresentedonthesetests;and,• Havingonlyoneoftheonlytwomanufacturers’busavailableforthesameperiod.

Consequently,informationonbusdurability,maintainability,andenergyefficienciescollectedduringthefieldtrialshadtobevalidatedusingmaterialfromothersourcesthathaveconductedevaluations.However,theperiodwhentheelectricbuseswereavailableforevaluationunderthesameoperatingenvironmentprovidedagoodbasisforcomparingdynamicperformance,driverandcustomerexperienceofthetechnologiesathand.

ThebusmodelsavailablefortheevaluationhavebeentestedthroughtheAltoonaBusTestCentreatthePennsylvaniaTransportationInstitute.Detailedtestreportsareavailableforeachofthebuses.TheBYDe-busisalsobeingevaluatedinserviceoveralongtermbytheSociétédetransportdel'Outaouais(STO)inconjunctionwiththeSociétédegestionetd'acquisitiondevéhiculesdetransport(AVT)andtheSociétédetransportdeMontréal(STM).Thisevaluationwaswellunderwayandproducedlargevolumesofinformation.TheNewFlyerelectricbusisbeingevaluatedinWinnipegandinChicago.TheBYDbushasalsobeenevaluatedinCalifornia.However,theoperatingenvironmentinthesouthernUnitedStatesisnotsimilartotheCityofEdmontoninwinterandsoinformationgainedfromthemwasinstructiveonly.

MuchoftheinformationavailablefromotherCanadianandUSevaluationsandtestingthathasbeen,orisbeing,doneontheelectricbusesofinterest,wasusedtoconfirmandvalidatethedatagainedduringthefieldtrialsinEdmonton.Ourapproach,therefore,wastonarrowthefield-testingtothoseareasforwhichcredibleinformationhadnotalreadybeenobtained.EnergyandfuelcostsinEdmonton,andlocalenvironmentalissueswerealsodeterminedtoarriveatthefulllifecyclecostingandenvironmentalimpactsoftheseelectricbuses.Inadditiontothetechnical

2:3

portionoftheevaluation,buscomparativedynamicperformanceonselectedroutesinEdmontonundersimilarrouteandclimaticoperatingconditions,driverandmaintenancepersonnelimpressions,andcustomerfeedbackformedaportionofourevaluationprogram.Giventherelativelyshorttimeavailable,thisapproachprovidedamorethoroughanalysisofthenewelectricbustechnology.Thebudgetforthisassignmentdidnotallowforadetailedanalysisoftheinfrastructurerequirementstosupportafleetofelectricbuses,specificallyastohowtheproposednewNorthEastTransitGaragewouldneedtobemodified.AprovisionforpossiblefacilitymodificationsprovidedbyETSarchitectswasinsertedinthefinancialanalysis.

NoattemptwasmadetodefinetheimplicationsoftradestrainingonjobclassificationsatETS.Thestudyonlyidentifiesthetypesandestimatedcostsoftrainingthatwouldberequiredtooperateelectricbusesasitappliestooperators,maintenancepersonnelandtrainers.

AsrequestedbytheCity,theaccuracyofthisreportiswithin±25%.TheoneexceptiontothismarginoferroristheprovisionprovidedbytheCityofEdmontonforthecostofadaptingitsnewgaragefacilitytothepresenceofelectricbuses.TheestimatedmarginalcostofmodifyingthenewNorthEastgaragetoallowfortheservice,maintenanceandhousingof40electricbusesinthisfuturefacilitywasprovidedbyMorrisonHershfieldtoanaccuracyof±50%.

2:4

3:1

3 Descriptionoffieldtrials

3.1 TheelectricbusesusedforwinterevaluationTherearecurrentlythreemanufacturersofbatteryelectricbusesinNorthAmericathatofferbusesthatareadvertisedas"commerciallyavailable":NewFlyerIndustriesofWinnipeg(MB),BYDofLancaster(CA)andProterraBusheadquarteredinBurlingame,CA.Thesebuseshaveareasonableamountofdemonstrationtime,and/orhaveactivesalesinNorthAmerica.Theyhavealsobeenthroughvariousstandardbustestingprotocolssuchastheindependent“Altoona”test,conductedatthePennsylvaniaTransportationInstitute3.Thesebuses,although“commerciallyavailable”willmostlikelyhavenumerouschangesandimprovementsgoingforward,asbatterybustechnologyisstillevolving.Thisprocessisnotuncommonasevendieselbusesarestillbeingimprovedtoday,albeitatalessfrequentratethanisexpectedfornewervehiclessuchasCNGandelectricbuses.

InSeptember2011,theU.S.DepartmentoftheEnvironment(DOE)publishedaTechnologyReadinessAcceptanceGuide4foradvancedtechnologybusesthatoutlinedninelevelsofreadiness.Thisguideline,shownbelow,indicatesthatmostbatteryelectricbuses(e-buses)availabletodayareatthe7or8levelofreadiness.Allmanufacturersofe-busesarecontinuouslyimprovingtheirproducts.

Figure3.1TechnologyReadinessAssessmentGuide-CommercializationProcess

Source:U.SDepartmentofEnergy,2015.

Manufacturersthatarecurrentlyofferinge-busesinclude:

• BYDisapubliclylistedcompanythatmadeitsinitialpublicoffering(IPO)inJuly2002.ItislistedonthemainboardoftheStockExchangeofHongKongLimited,withstockcode1211.HK.TheShenzhen-basedcompanymakesrechargeablebatteries,mobilephonecomponentsandsolarpanels.Itisbestknownasamanufacturerofelectriccarsandbuses,anditbroadlyidentifiesitselfasagreenenergyfirm.BYDisinternationallyfocused.ItownsanelectricbusplantinCalifornia,andithassoldortest-launchedelectricvehiclesinColombia,Laos,Thailand,Uruguay,theNetherlands,Belgium,Finland,andBritain.

3 See:(http://altoonabustest.psu.edu/buses/441)BYD;(http://altoonabustest.psu.edu/buses/458)NFI;(http://altoonabustest.psu.edu/buses/454)ProterraE40.

4 DOETechnologyReadinessAssessmentGuide,G143.3-4a,https://www.directives.doe.gov/directives/0413.3-EGuide-04a/view.

3:2

BYDhasarobustbatterytechnology,andabuschassisthatisrapidlyimprovingtobettermatchNorthAmericanqualityandreliabilitystandards.TheyhavealreadycorrectedtheweaknessesidentifiedintheAltoonatestingoftheirprototype40’busandareworkingonseveralotherimprovementsfortheirnextgenerationofe-bus.Theirrange/chargestrategyistohavehigherbatterycapacity5forlongerrange,withhomebasecharging.Theirlatestproductssource68%ofcomponentsinNorthAmerica.BYDhasseveralthousandsofe-busesoperatinginChinaalongwithanumberofrecentsalesintheUSA.

• NewFlyerIndustries(NFI)isthelargestbusmanufacturerinNorthAmerica,withalonghistoryofinnovationandmeetingNorthAmericanbusqualityandstandardizationexpectations.Theirrange/chargestrategyistohavemediumbatterycapacityformediumrange,withen-route(overheadpantograph)chargingatdesignatedstations.Theycanalsosupplyane-buswithlargerbatterypacksforhome-basecharging.

• ProterraisaCaliforniabasedcompanyfocusedsolelyonbatteryelectricbuses.Itwasfoundedin2004withavisiontodesignandmanufactureworld-leading,advancedtechnologyheavy-dutyvehiclespoweredsolelybycleandomesticfuels.Therange/chargestrategyofProterraistohavesmallerbatterycapacityforshorterrange,withen-route(overheadpantograph)chargingatdesignatedstations.ETSwasunabletoobtainaProterratestbusforevaluationduringthetestperiod.

• NovaBusaVolvosubsidiary,basedinQuebec,isneartocompletingaprototypee-busfordemonstration.The100%electricNovaLFSeisbasedontheprovenheavy-dutyLFSplatformandintegrateselectricpropulsiontechnology.

• OtherEuropeanandAsianmanufacturershavebatterybuses,howevertheyarenotactivelymarketingbusesinCanada.Canada’ssmallmarketandTransportCanadaregulationsandotherlocalregulations,plusserviceandpartssupportmakesellingforeignbusesintoCanadaalargeundertaking.

TwoBYDandoneNewFlyer40-foote-buseswereobtainedbyETSforevaluationoverthewinterof2015/16.TwoNewFlyerXcelsiordieselbuses,#4880and#4881(modelyear2013)wereprovidedfromtheETSfleettoprovideacontrolbaselineforcomparisonpurposes.

5 SeelexiconinAppendix1formoreinformation.

3:3

Table3.1TestBusDetails

Type

Bus# Make/Model Year

BatteryType/Engine HeatingType

CurbWeight(lbs)

PassengerCapacity

Estimatedkm

e-bu

ses

6011 BYD40 2014 LiFePO4324kWh

Diesel 32,187 70 250*

6012 BYD40 2014 LiFePO4324kWh

Electric 32,190 70 200*

6013 NFIXE40 2015 Li-IonNMC200kWh

Diesel/Electric 33,245 76 140*

Diesel 4880 NFIXD40 2013 CumminsISL Diesel 28,000 88 800

4881 NFIXD40 2013 CumminsISL Diesel 28,000 88 800Source:Manufacturers’estimates.

ItshouldbenotedfromtheabovetablethatthetwoBYDbuseswereearlygenerationmodelsandthatthey,aswellastheNewFlyere-bus,areheavierthanthetwoNewFlyerdieselcontrolbuses.Thisheavierweightandtheirrespectiveaxleratingsalsoreducethemaximumpassengercarryingcapacityofthee-buses.

ThetwoelectricbusestestedinEdmontonusedifferentLithiumIonbatterytechnology.BYDusesitsproprietaryLithiumIronPhosphate(LiFePO4)batteriesandNewFlyerusesLithium-nickel-manganese-cobaltbatteries(LiNMC).BothareLithiumIonbasedbatteries,butusedifferentchemistriesontheircathodes.Thediagrambelowshowsthegeneralflowwithinthesebatteries6:

Figure3.2LithiumIonBatteryFlow

Theelectrolytewithinthebatteriescontainslithiumions.Thereisnopurelithiumwithinthebatteriesmeaningthatthebatteriesarerelativelysafefromatoxicitypointofview.However,theLiFePO4batteriesusedbyBYDaremorestablethantheLiNMCbatteriesusedbyNewFlyer.The

6 Source-ArgonneNationalLaboratory,Argonne,Illinois

3:4

formerisanintrinsicallysafermaterialthanthelatter.TheFe-P-ObondisstrongerthantheCo-Obond,sothatwhenabused,(short-circuited,overheated,etc.),theoxygenatomsaremuchhardertoremove7,therebyreducingtheriskofcombustion.Bothtypesofbatteryhavesimilarperformanceinprovidingpower,buttheLithiumIronPhosphatebatteriesareslowertorechargeandareexpectedtodeliveralongersystemlife8thanothertypesofLithiumbattery:18+years,comparedtoabouta12-yearlifefortheothers9,althoughbothtypesarewarrantedforonly12years.

3.2 DurationandtimingofthetrialsIdeally,allthreetest-buseswouldbeoperatingatthesametimetogetthebestavailablecomparabletestdata.However,duetothelimitedavailabilityofthedemonstrationbuses,manufacturer’sdelays,alongwithintegrationandcommissioningissues,notallthebusesoperatedatexactlythesametimes.Thissignificantlyreducedthewindowduringwhichtestdatacouldbecapturedundersimilarclimaticoperatingconditions.Carefullydesigningthetestroutesandcapturingoperatingdata,alongwithrouteandweatherfactors,allowedforreasonablecomparisonsbetweenthebusesandameaningfultestatETS.

Table3.2TestDuration

Bus# Make/Model FormalTestStart

FormalTestFinish

DistanceOperated

Notes

6011 BYD40dieselheat

7-Jan-2016 5-Feb-2016 3750 Shorteram/pmrouteswerechosentoallowcomparabledatatoNewFlyer.Somelongerweekendrunswereperformed.6013 NFIXE40 7-Jan-2016 5-Feb-2016 2834

4880 NFIXD40diesel

7-Jan-2016 5-Feb-2016 5082

4881 NFIXD40diesel

7-Jan-2016 5-Feb-2016 4464

Source:MARCON,2016.

Notes:

• ChargingstationproblemsatthebeginningoftheevaluationperiodthedistancerunbytheNFIe-buses.

• Dieselbusesoperatedmoreweekendsandlongerrunsatthestartofthetest.• 6011wasoperatedatETSfromNovember2015toJanuary7,2016,withoutformallycapturing

testdata.• BYDbus6012wasoriginallyintendedtobepartofthecomparativetest,butdidnotarriveat

ETSuntilJan28,andrequiredseveraldaysofcommissioningforETSservice.Itwasoperatingbeyondthescopeoftheagreedtestperiod,so6012detailedtestresultsarenotincludedinthisreport.However,rawdatafromtheextendedperiodwasreviewedanditwasfoundelectricheatersconsumeabout20%to25%moreenergyperkilometre-thisisconsistentwithfindingsatotherproperties.

7 http://www.houseofbatteries.com/articles.php?id=278 SeelexiconinAppendix1.9 Notethatinthebusinesscasecalculations,abatteryreplacementisplannedafter12yearsforbothtypesofbusesbecausethe

warrantyofbothmanufacturersonlyextendsto12years.

3:5

3.3 DutycyclesofthebusesThetestprogramwasdesignedtoanswerseveralquestions,butonewaskey:Cane-busesperformonallroutesinwinterconditionsinEdmonton?

Inordertomaximizetheusefulnessofthetest,serviceblockswerechosenforeachtestroutethatcoveredbothmorningandafternoonpeakservice.Asmuchaswaspractical,thetestblocksalsooperatedonhighercapacityroutes,andthroughtherivervalleyupanddownhills.Thesetestroutesincludedserviceonweekdaysonly.Thetestbuseswereoperatedonsomeweekendsasoperatorandbusavailabilityallowed.

Table3.3TestRouteBook-outScenario

TypeofdayTypeofroute Extremecoldday

Slipperyroadsday

Snowyroadsday Total

Flat 3 3 3 9

Mildhills 5 5 5 15

Maximumslope 5 3 3 11

Total 13 11 11 35

Source:MARCON,2016.

Notes: • Theabovetableshowsthetypesofconditionsthebusesshouldhaverunforthetestperiods.• Theabovescenariowasgenerallymetbythefirsttwotestbuses(6011,6013)withfew

exceptionsduetounavailabilityofthebuses.• 6011ran45routes,6013ran36routes.• Therewere11snowydayswheretemperatureswerebelow-10oC.• Routeswerechosenthatmostlyranthroughtherivervalleys,toensurehillyterrainwas

encountered.• Otherthanbeingarelativelymildwinter,thebusesdidmeetorexceedtheoperating

scenario.

Table3.4SampleTestBook-outDetail

Route(Block)AssignmentsforEachTestBus(AM/PM) BYD NewFlyer NewFlyer

Week

Dates Dieselheat Electricheat Electricheat XD40 XD406011 6012 6013 4880 4881

1 Jan4-8 11204/712 704/711 12808/12817 914/11208 12806/713

2 Jan11-15 12806/713 11204/712 704/711 12808/12817 914/11208

3 Jan18-22 914/11208 12806/713 11204/712 704/711 12808/12817

4 Jan25-29 12808/12817 914/11208 12806/713 11204/712 704/711

5 Feb1-5 704/711 12808/12817 914/11208 12806/713 11204/712

Note:Inordertoaccomplishthetypeofoperatingconditions,andallowbuscomparisons,anam/pmrouterotationwasdesigned.Thisweeklyrotationallowedpracticalmatchingofoperator,buses,andbookoutprocedures,yetallowedreasonabletestcomparisondata.SpecialthankstotheOperationsManageratMitchellGaragewhoworkedwithMARCONtoreviewavailablerunsanddesignaworkabletestplan.

3:6

3.4 ClimaticconditionsduringthetrialsTemperatureandsnowdatafortheevaluationperiodwererecordedfromEnvironmentCanadawebsite10.EdmontonBlatchfordwasthecloseststationtothebusoperatingroutes.Blatchforddoesnothavesnowdata,soinformationfromstationNAMAOlocatedapproximately15kilometresNorthofEdmontonwasusedtoindicatesnowdays.Twotemperatureswererecordedat0900and1700onweekdays,and0900onweekends.Thesetimescorrespondedapproximatelytothemiddleoftheselectedrouteruntimes.

Figure3.3TemperaturesandSnowDayChart

Note:Thebluelineindicatestemperaturesandtheredbars,snowdays.Source:MARCON,2016.

Edmontonexperiencedanunseasonablywarm2015-2016winter,andformostofthetestperiod.Colderdayswereexaminedcloselyandcomparedtowarmerdaysforenergyusedata.

10http://climate.weather.gc.ca/welcome_results_e.html?txtStationName=edmonton&optLimit=specDate&selRowPerPage=25&searchType=stnName&searchMethod=contains&Year=2015&Month=11&Day=6&timeframe=1

-25

-20

-15

-10

-5

0

5

10

3:7

3.5 DatacollectionduringthefieldtrialsInordertocollectandprovidedataforthisreport,effortsweretakentoreviewandunderstandtheEdmontonfleet,maintenanceandoperationsproceduresanddata,andworkmanagementinformationsystems.MeetingswereheldatEllerslieandMitchellgarages,andScotiaTowerofficesanddatawascollectedonMARCONdesignedformsandfromstandardreportsoffthemaintenancemanagementandfuelmanagementinformationsystems.Betweentheseforms,thedatasavedbythecomputersonthebusesandthedataavailableonthechargingstations,agoodsetofdatawasacquired.ThecooperationoftheMaintenance,OperationsandFleetmanagementteamsatthoselocationswasexcellent.

3.6 AvailabilityofthebusesduringtrialsTheelectrictestbuseshadgoodavailabilityduringthetrials.Table3.5wascompiledusingfifty(50)morning,afternoonandweekendsruns.

Table3.5AvailabilityDatafromJan7-Feb5

Bus #daysbusoperated

%daysondesignated

route

DriveSystemMaintenanceEvents

6011–BYD 45=90% 96% Anti-LockBrakingSystemproblems,12vbatterydraining

6013–NewFlyer 36=72% 90% Chargingstationproblems(nobusproblems)4880–2013Diesel 40=80% 80% None4881–2013Diesel 32=64% 86% Engine,brakes,HVACSource:MARCON,2016.

Notethatdieselbusesshowalowlevelofavailabilityduringthetestasearlyintheevaluationperiod,thetwodesignateddieselcontrolbuseswereinadvertentlybookedoutonotherroutes.

Theelectricbuseswerequitereliableandoperatedmostdaysatover90%availability.Problemswerecorrectedwithinareasonableamountoftime.Ascanbeexpectedwithanynon-routineoperation,effortwasrequiredtoensurethesebuseswereaprioritytooperate.ThisisconsistentwiththeexperienceatWinnipegTransit,FoothillsTransit,CA,andChicago.

Noelectricpropulsionsystemproblemsoccurredduringthefieldtrialsandallmaintenanceitemswererelatedtonon-propulsionsystemsduringthetestperiod.

3.7 ExtraordinaryeventsConsiderableeffortmustbeundertakentoconductatestonnewbustechnologies,andinvolvesmanyfacetsoftheorganization.Additionalstaffwithwell-definedrolesandtasksaswellasadditionaltimeisroutinelyrequiredfortestprograms.

Someoftheeventsworthyofmentionare:

• Facilities–installinghighcapacitypowercablesystemstothechargingstationswasexpensiveandtimeconsumingforstaff.Assomeoftheequipmentwasdeliveredbeforetheholidayseason,somechangestothehabitualvacationpolicyshouldhavebeenplannedtoensuretheequipmentwasinplaceandtestedpriortothebeginningofthetest.

3:8

Failingthis,powerfortheNewFlyerChargingStationwasnotavailableforthechargingstationatthestartofthetest,soadieselgeneratorwasrentedforafewdays.AnupdatedsoftwareprogramtomanagethechargingwassentbyNFIandwasinstalledbyETSstafftoallowchargingofthebus.

• Servicing–TheBYDbusdidnotfitintothebuswashduetoitsheight,andhadtobewashedbyhand.

• Towing–towingadapterswerenotimmediatelyavailablesothatoneofthebuseshadtobeflattowed.

• Operatortrainingandfamiliarizationfortestbusesiscriticalandeffortsarerequiredinparticulartoensuresafeoperation.Onlyminimaltrainingoftwohourswasprovidedtooperatorspriortotheprogram,inmanycaseswithoutthebenefitofroadtrials.Oneofthemanufacturersdidnotadequatelyprepareitse-busesforwinteroperationsduetoanoversight.Consequently,wintertireswereinstalledbyETSbecausetheacceleration/decelerationofthebusmadeitslipwithregulartires-thisproblemwaslatercorrectedbyanadjustmenttothesoftwarecontrollingtheABSsystem.

• OperatorshadconcernswiththereducedvisibilityoutthecurbsidewindowoftheBYDbusduetothebatterypackinstalledthere.ThisdesignissuehassincebeencorrectedbyBYDonitslatestgenerationofbus.

3.8 AnalysisandSummaryoftrialsAnalysisofthetrialsfocusedonkeyattributesrelatedtoETSroutesandconditions,andparametersofimportancetoETS.TheevaluationperiodranfromJanuary7toFebruary5,2016.

3.8.1 Range,StateofCharge(SoC),EnergyUsage(totaltestaverage)

Operatingrange,andenergyusewereprimaryfactorsindeterminingbusoperatingstrategy,andcostanalysis.

DataCollectionMethodology:

• Distancedrivenforeachchargingcyclewastakenfromtwosources–odometerreadings,anddocumentedroutekilometresanddeadheadkilometres

• StateofCharge(inpercentage)wastakenfromthedashreadoutatthestartandendofeachchargingcycle.Theenergy(inkilowatt-hours)usedwascalculatedfromthebatterystoragecapacityreadings.Thisisanagreeduponmethodtotrackenergyuse.Someenergyusedatawasobtainedfromthechargingstationandusedtovalidatethecalculateddataforthoseincidentswherethedatasheetswerelost.

• Theestimatedrangetakesintoaccountthegapsandpossibleerrorsinthedataduetosomelostrecords,andtodifferentmeasuringmethods.

3:9

Table3.6EnergyConsumptionandRange

E-bu

s

BatteryStorage

(kWh)

Yield

(Km/%So

C)

Energy

Consum

ption

(kWh/km

)

Theo

retic

al

Rang

e(km)

Recommen

ded

Rang

e(km)

6011–BYD 324 2.40-2.89 1.04-1.25 259-311 220-2646013–NewFlyer 200 1.45-1.60 1.25-1.38 145-160 116-128

DieselB

us

FuelCap

acity

(litres)

Consum

ption

L/10

0km

Theo

retic

al

Rang

e(km)

Recommen

ded

Rang

e(km)

4880–2013Diesel 470 49 800 8004881–2013Diesel 470 45 800 800

Source:MARCON,2016.Notes:

BatteryStorage:RatedbatteryenergystoragecapacityYield:Batteryyieldexpressedinkilometersofrangeforevery1%ofenergystoredEnergyconsumption:BestandworstresultsobtainedduringfieldtrialsTheoreticalrange:Distanceane-buscancoveronasinglechargeusingitsfullbatterycapacityRecommendedrange:Manufacturesrecommendthattheire-busesheadbackforarechargewhen80%(NFI)to85%(BYD)oftotalbatterystorageenergyisdepleted11.

MARCON’sblockanalysisoftheWestwoodgarageinuseasofFebruary16th,2016(showninAppendix2)demonstratesthatwithanappropriatedeploymentofchargingstationsattransitcentres,en-routechargede-buseshavenolimitationsandcanservicealltheblocksoutofthatgarage.

Basedonthedepletionlimitsrecommendedbythemanufacturer,thetrickle-chargede-busesarelimitedtoamaximumrangeof220km.MARCON’sblockanalysisoftheWestwoodgarageestablishesthatonthatbasis,thesebusescanserviceapproximately80%ofallblocks.ThefollowingtableshowstheproportionofblocksservicedfromtheWestwoodgaragethatcanbeservicedbyatransitbusofvariousrangesononechargeorfuelreservoir.

Table3.7Busrangevs.BlockLength

WestwoodGarageBlocksRangeupto(km) %ofallblocks

150 67.7200 76.6250 86.3300 91.5

Source:MARCON,2016

11 Analarmsoundsat10%SoC.Below10%,thepowerwillveryquicklyde-rateuntilthebusiseffectivelyreducedto“creeptorque”onlybythetimeitreaches5%.Sowhileitispossibletogobelow10%,buswouldnotreallyachieveanyeffectivedriving.PerNewFlyere-maildated6April2016.

3:10

Rangeandenergyusedatafromothersources

MARCONreviewedtheinformationavailableonothertestsconductedinNorthAmericainordertocomparetheirresultstothoseobtainedinEdmonton.

Table3.8EnergyUseDatafromOtherSources

Bus kWh/km EstimatedRangekm

Notes

BYD40’ 1.26

205 AltoonatestJune201412

BYD40’ 1.2–1.5 240 STOQuebec2014,noACandwithAC13BYD40’ 1.3 220 STMQuebec2014NewFlyer40’ 1.08–1.30 110-148 Altoonatest14NewFlyer40’ 1.45 100 Winnipeg–nopassengerssummer/winter

average15NewFlyer40' 1.83 140 Chicago(winteraverage)16Proterra35’ 1.08 AltoonatestApril201217Proterra35’ 1.34 FoothillsTransittest2014/1518Source:MARCON,2016.

3.8.2 TemperatureandEnergyUsage

ThefollowingchartsshowtheenergyusageatvariousoutdoortemperaturesasrecordedbyEnvironmentCanadaat0900hoursand1700hourseachday.Thesemomentsapproximatemorningandafternoonruntimes.Energyusewascalculatedusingthestateofchargedataandroutekilometres.MARCONobservednodirectcorrelationbetweenenergyusageandambientoutdoortemperature.

12 FederalTransitBusTest,BYDElectricBus,ReportLTI-BT-R1307,PennsylvaniaTransportationInstitute,PA,27June,201413 EvaluationReportBYD'sGreenCityElectricBus(STO&STM),Sociétédegestionetd'acquisitiondevéhiculesdetransport(AVT),

August201414 FederalTransitBusTest,NewFlyerElectricBusXE40,ReportLTI-BT-R1405,PennsylvaniaTransportationInstitute,PA,30July,201515 ManitobaBatteryElectricTransitBusFleetDevelopmentandDemonstrationReport,RedRiverCollege,Winnipeg,October27,

201516 ConversationwithCTAProjectManager,8January,201617 FederalTransitBusTest,ProterraBE-35,ReportPTI-BT-R1107,PennsylvaniaTransportationInstitute,PA,April,201218 FoothillsTransitBatteryElectricBusDemonstrationReport,NationalRenewableEnergyLaboratory,GoldenCO,January2016

3:11

Figure3.4Temperaturevs.EnergyforBYDE-bus

Source:MARCON,2016.

Figure3.5Temperaturevs.EnergyUseforNFIE-bus

Source:MARCON,2016.

Tempat09:00,17:00 kWh/km

Tempat09:00,17:00 kWh/km

3:12

Figure3.13isofferedasademonstrationofhowlittleimpactoutdoorambienttemperaturehasontheenergyconsumptionofe-buses.Itshowsthestateofcharge(SoC)ofthebatterypackthroughoutthemorningrunofthesamebusonthesamerouteontwodifferentdays:onewithcoldandtheotherwithmuchmildertemperaturesonrecord.NoticethereislittledifferenceintheSoCplotgiventhe17oCdifferenceinambienttemperature.AreviewofdataforotherdayswhenthetemperaturewasbetweenthehighsandlowsinthechartconfirmedthisratherlineardepletionoftheSoC,irrespectiveoftheoutdoortemperature.ThisfindingiscorroboratedbytheSTOandSTMevaluations19.

Figure3.6Temperaturevs.StateofChargeBus#6013

Source:MARCON,2016.

Energyusageforbuspropulsionisnotaffectedbyoutdoor/ambienttemperaturetothesamedegreeasconsumerEVs.Severalreasonsexplainthis:

• Thebusesusedieselfiredheaters(consumercarsuseenergyfromthebattery).• Busesareparkedinaheatedbarnsobatteriesandbuscomponentsarewarmatstartof

route.• Thebatterycompartmentonboarde-busesisequippedwithatemperaturemanagement

systemthatmaintainsitstemperatureatanoptimallevelatalltimes.

19 EvaluationReportBYD'sGreenCityElectricBus(STO&STM),Sociétédegestionetd'acquisitiondevéhiculesdetransport(AVT),August2014.

3:13

• Outsidedatasuggestadecreasein15-25%rangeifelectricheatersareused(outsidetemperaturedependent).DatareviewedfromBYDbus6012collectedafter5Feb16confirmsthisreductioninrangewhenelectricheatersareused.

ThisisgoodnewsforEdmontonbatterybusoperations.Rangecanbereliablycalculatedbasedonbatterystoragecapacity,ifdieselheatersareused.

3.8.3 RouteAnalysis

Ananalysiswasalsoperformedtocomparetheeffectoftemperatureontheroutedriven.Thefollowingchartsshowenergyusebyroute,andtheaveragetemperatureontheroutes.Whileonecanseethereisavariationinenergyusebyroute,thereisnodirectcorrelationbetweentemperatureandenergyuse.

Figure3.7EnergyUsebyRouteatTemperatureBus#6011

Source:MARCON,2016.

Tempat09:00,17:00 kWh/km

3:14

Figure3.8EnergyUsebyRouteatTemperatureBus#6013

Source:MARCON,2016.

Bycomparingthedatainfigures3.14and3.15,MARCONconcludesthatthereisvarianceinenergyuseonsimilarroutesandthattherefore,temperaturehaslittletonoeffectonenergyconsumption.Notethatroute106wasa180kmrunonaSaturday,lighterloadsandeasierrouteshowedlessenergyuse.(WestEdmontonMalltoUniversity)whileroute914isaheavymorningrush,withmanystops,slowerspeeds(SouthgatetoNAIT),whichexplainshigherenergyuse.

3.8.4 ImpactofSlopeonEnergyConsumption

SeveralETSroutescomprisesteephills.Asoneofthekeyobjectivesofthetestingprogramwastoestablishwhetherornote-busescouldbeusedinallEdmontonconditions,thetestprogramincludedrunsthatcoveredthemostchallenginghillsETSisrequiredtoclimb.

Discharge(andrecharge)ratesofbatterieshavebeenexaminedforETSroutesthatincludesteephillsandareillustratedinthefollowingfigures.

Tempat09:00,17:00 kWh/km

3:15

Figure3.9Bus#6013StateofChargeRoute7

Source:MARCON,2016.

NotethattheStateofChargedeclinesquitesteadilythroughoutthe68kmrun.51.2%atendofrun.Acloserlookatthedowntown,McDougallhill,SconaRoadhillportionofRoute7isshownbelow.

0

20

40

60

80

100

120

Kilometers

3.7

5.1

7.6

9.8

11.5

12.7

15.5

17.0

18.5

19.7

20.6

22.2

24.3

26.7

28.1

30.2

32.7

35.5

37.0

39.0

40.6

42.3

43.8

45.3

47.6

49.2

50.0

50.7

51.6

53.8

55.2

58.3

59.6

64.1

67.9

68.3

BUS6013StateofChargeRoute7

Jan18am-14deg

SOCJan18SeedetailofMcDougallhill

3:16

Figure3.10Bus#6013StateofChargeonHills-Route7

Source:MARCON,2016.

Dischargeonlevelroutetodowntownissteady.TheregenerationonMcDougallhillkeepsthebatteryatasteadystateofcharge.Infact,energyfromtheregenerativebrakingispoweringthesteering,fans,compressor,lighting,etc.ThereisthenafairlysteepdischargerateasthebusheadsupSconaRoadHill,consumingapproximately2%ofavailablebatterycapacity.

Thefollowingfigureshowsthereturnportionofthepreviousgraph.EnergyisobtainedfromregenerationwhilethebusheadsdownSconaRoadHill,andisdepletedgoingupMcDougallhill.Againapproximately2%ofavailablebatterycapacityisconsumedtoclimbMcDougallhill.

80

81

82

83

84

85

86

87

88

8910,0

10,3

10,6

10,9

11,2

11,4

11,5

11,6

11,8

12,0

12,1

12,4

12,6

12,8

12,9

13,1

13,4

14,0

15,1

16,0

16,2

16,3

16,4

16,6

16,7

17,0

17,1

17,5

17,7

BUS6013StateofChargeRoute7

Jan18am-14deg

SOCJan18

107Ave,116St

100St,101aAve

Scona,99St

McDougallHillmax9%grade SconaRoadHill

3:17

Figure3.11Bus#6013StateofChargeUphill

Source:MARCON,2016.

ThemapbelowshowsRoute7intheMcDougall-SconaRoadhillarea.

Figure3.12MapofRoute7

Source:Google,2016.

3:18

3.8.5 InteriorBusTemperatureAnalysis

Temperaturedataloggerswereinstalledinthetestbuses(6011&6013electric,and4880&4881diesel).Loggerswereattachedtotheundersideofdriver’sseat,middleseat,rearseat,andinsideanexteriorbodypanel.

Thechartbelowrecordstheaveragebusinteriortemperatureonacoldday,inthiscase-19oC.

Figure3.13InteriorBusTemperatureonColdDay

Source:MARCON,2016.

Theelectricbusesmaintainedtemperaturesabove15oCthroughouttheirruns.Itisunknownwhythedieselbus4880hadcoolerinteriortemperatures,probablyduetothethermostatsetting.

Thefollowingfiguresshowthesamerunforeachbus,withtheindividualtemperatureloggerdatatakenfromlocationsunderthedriver'sseat,underamiddleseatandunderarearseat.Theelectricbuseshadcomfortabletemperatures,althoughtherewasadifferenceintheinteriorlocationsduetoheatingairflow,andcoldairentering.Thelocationofthedataloggers(undertheseats)affectedthereadingsastheyreceivedcolddraftsfromdooropeningswhiletheheaterforcedairmainlyfromtheroofarea.

3:19

Figure3.14DieselHeatedBus#6011*andDiesel&ElectricHeated#6013InteriorTemperature

Note:Bus6011wasfittedwithboth,anelectricandadieselspaceheatersSource:MARCON,2016.

Source:MARCON,2016.

3:20

Figure3.15Bus#4881InteriorTemperature

Source:MARCON,2016.

Datawasalsoanalyzedforthefive-weektestperiod,andnosustainedcoldinteriortemperatureswererecorded.Inaddition,therewerenomaintenanceeventsorreportsrelatedtocoldinterior.

3.8.6 OtherPerformanceParameters

Otherperformanceparametersthatareofinterestinoperatingtransitbusesareinteriorandexteriornoiselevels,accelerationandbraking.WhilethesewerenotmeasuredduringtheETSevaluation,acomparisonwasobtainedfromtheAltoonatestingreports.Thesetestsareconductedunderverycontrolledconditions.TheresultsfortheNewFlyerdieselXD40,theBYDelectricandNewFlyerelectricXE40,areshowninthetablebelow.Noiselevelsaremeasuredwithallaccessorieson.

Table3.9OtherPerformanceParameters-Comparison

PerformanceParameter NFIXD40 BYD NFIXE40InteriorNoiseatIdle,dBa 54.9 47.2 46.5ExteriorNoiseatIdle,dBa 58.5 49.0 49.3ExteriorNoiseunderAccelerationto60km/h,dBa

69.3 68.3 69.3

Accelerationto50km/h,seconds 14.27 16.19 13.71BrakingDistancefrom50km/h,feet 66.78 65.41 67.96

Source:MARCON,2016 Ascanbeseen,theinteriornoiselevelfortheelectricbusesatidleisnoticeablylowerthanforthedieselbuses.However,underaccelerationthenoiselevelsarecomparable.TheaccelerationoftheNFIe-busismarginallyfasterthantheequivalentdieselandalmost2.5secondsfasterthanthe

3:21

BYDbus.Howevertheaccelerationofboththeelectricbusesismuchsmootherandthereismuchmoretorquethanthedieselbusesavailableatlowerspeeds.Brakingdistancesarecomparable.

3.9 KeyfindingsTheelectricbusestestedinEdmonton’swintertrialsprovedtobereliable,operatingatover90%availability.Therewerenoproblemswiththeelectricpropulsionsystem(motorandbatteries).

Therearehoweversomemaintenance/designissueswiththeelectricbusesthatneededextraattentiontomaintainthishighavailabilityrate.Manufacturerstellusthattheywillneedtobeaddressedinproductionbuses.Forexample,earlygenerationsofBYDbuseswereequippedwithanawkwardbuschargingconnectordesign.Thisissuehassincebeenresolved.

Figure3.16NewLocationofBYDBusChargerReceptacle-FrontRightofBus

TheNFIconnectorisheavyandnormally,anoperatinggaragewouldbesuppliedwithaconnectorsupportthatwasnotavailablefortheETStestprogram.

Unfortunately,thetestprogramdurationwastooshorttogainenoughmaintenanceandreliabilitydatafordirectcomparisonofbatteryelectrictodiesel.

Findingsreenergyconsumption:

• ThekWh/kmandrangenumbersobtainedduringthetestprogramaresimilartootherrecenttestdataobtainedfromtheothersourcesidentifiedearlierandfallwellwithintherangesadvertisedbythemanufacturers.ThisvalidatestheEdmontontestingprotocolsashavingbeenreasonablyaccurate.

• MARCONobservedawideday-to-dayvariationinenergyuse.AlthoughthedataatMARCON’sdisposaldoesnotexplainthesedifferences,theyarenotuncommoninfield-testingconductedelsewhere,irrespectiveofthetechnologybeingtested.Thesevariancesareprobablyattributabletodrivinghabits,ascarefuldrivingusingsloweraccelerationandmorebrakingregenerationcanhaveadramaticpositiveeffectonenergyuse.However,thisvariationisnotuniquetoelectricbusesassimilarvariationsinenergyusecausedbydrivinghabitsarefoundforanyvehicle.

3:22

• MARCONwasunabletoobservesignificantdifferencesinenergyusagebetweendryandsnowdaysastoomanyotherfactorsdefinetheimpactofthesnowonenergyconsumption.Nevertheless,Winnipeganecdotallyreportsupto15%moreenergyuseonheavysnowdayswith1-2”onroads.

• TheNFIbus(#6013)usedmoreenergythantheBYDbus(#6011)duringthetestingphase.TheNewFlyerhasa10kWsupplementaryelectricheaterthatmayaccountforsomemoreenergyuse.However,therearetoomanyvariablesinthetest(routes,passengerloads,drivinghabits,etc.)tomakeanywell-foundedcomparisonsonoverallenergyefficiencybetweenthebuses.Usingcontrolledtestingparametersandidenticalprotocols,theAltoonatestsofthesetwobusesrevealthattheBYDe-bususesslightlymoreenergyperkmthantheNewFlyerone(1.26kWh/kmcomparedto1.16kWh/km).

NewYorkMetropolitanTransitAuthorityevaluatedaBYDelectricbusbetween25August2013and25October2015.Duringthisevaluation1,481mileswereaccumulatedinrevenueserviceinheavytrafficandwithfullpassengerloads.Energyuseaveraged1.46kWh/km20onthedaysthebuswasinservice.TheoperatingconditionsinNYCweremoreseverethancanbeexpectedinEdmontonandexplainthehigherenergyusage.ThisobservationwasalsosupportedbySTOandSTMintheirevaluationthatdemonstratedenergyconsumptioncanvaryby15%dependingonthenumberofpassengersonboardthebuses21.

20 BYDandNewYorkMetropolitanTransitAuthoritypressreleasedated9January2014.21 EvaluationReport:BYD'sGreenCityElectricBus(STO&STM),Sociétédegestionetd'acquisitiondevéhiculesdetransport(AVT),

August2014.

4:1

4 Customerperceptionsofthee-buses

Theperceptionsofcustomersconcerningelectricpropulsiontechnologyforbusesweremeasuredthroughtheuseofaself-administeredquestionnaire.Themethodologyandsurveyresultsarediscussedinthissectionofthereport.

4.1 MethodologyAsurveyofriderswasundertakento…

• Assessbususers’perceptionsofelectricbuses• Determinehowelectricbusfeaturesimpactthequalityandcomfortoftheride• DetermineifriderswouldlikeETStopurchaseelectricbuses• AscertainriderwillingnesstopaymoreforbusservicetoallowforETStopurchaseelectric

buses.

Socio-demographicinformationwascollected(age,employmentstatusandnumberofone-waytripspertypicalweek)todeterminepotentialstatisticallysignificantdifferencesbypopulationsegment.

Asurveyquestionnairewasprepared,testedonboardtheelectricbusesonJanuary11thandfinalizedfordistribution.

Figure4.1Ridersurveyquestionnaire

4:2

HardcopiesofthequestionnaireweremadeavailabletoateamofETSpersonnel22thatwereresponsiblefor…

• Boardingtheelectricbuses;• Distributingthequestionnairestopassengersastheyboarded;• Collectingthecompletedquestionnairesfromdisembarkingpassengers.

ETSpersonnelweretaskedwithcompletingtheleft-handportionofthequestionnaireidentifying

• Themodelofelectricbus(BYDwithelectricheating,BYDwithdieselheatingorNewFlyer23);

• Thetimeofday(morningpeak,afternoonpeakorother)theridewasundertaken• Theroute24;• Thedate.

SurveydatawascollectedonweekdaysbetweenJanuary18thandFebruary5thinclusively.Thiswasacompletelyrandomsampling.

Intotal,2,825questionnaireswerecollectedfromETScustomers25ridingontheelectricbusesthatwerebeingtested.Theresultsofthesurveyarestatisticallysignificantataconfidencelevelof95%withamarginoferrorof±1.8.

4.2 E-busriderperceptions(asmeasuredduringtrials)

4.2.1 Busmodel

Ofthe2,825surveyscompleted,57%werebyridersontheNewFlyerelectricbuswhile41%werebyridersononeofthetwoBYDelectricbuses26.

4.2.2 NoticedadifferentdesignofETSbus

Overall,92%ofrespondentsnoticedthatthedesignofthebustheyboardedwasdifferentfromotherETSbuses.Thispercentagewashigheramongthoseagedunder30comparedtothoseaged31yearsorolder.

4.2.3 Respondentprofile

Ridersparticipatinginthesurveyprovidedsomeinformationaboutthemselvesthatallowsthereadertobetterunderstandtherespondentprofile:

• Thenumberofone-waytrips27inatypicalweek;• Theage;• Theemploymentstatus.

22 ETSpersonnelwereprovidedwithatrainingsessionpriortosurveystarttoensureuniformityinmethodology.Personneldistributingandcollectingcompletedquestionnairesweretoldnottoprovideinformationtorespondentsinordertominimizebias.Tominimizebias,ETSpersonnelwasalsoinstructedtostopapromotionalvideofromplayingontheNewFlyerelectricbus.

23 ETSpersonnelidentifiedonlyifthebuswasaBYDoraNewFlyer.NodistinctionwasmadebetweenthetwoBYDmodels.24 On79%ofthequestionnaires,routedatawasnotprovided.25 15yearsofageorolder.26 Onaminority(2%)ofself-administeredquestionnaires,ETSstaffdidnotidentifythebusmodel.27 “One-waytrips”includestransfers.

4:3

Onaverage,theETScustomerssurveyedstatedthattheyundertakejustover9one-waytripsperweek.ThebreakdownispresentedinTable4.1.under“Relativeimportance”.

Withtheexceptionofthegroupthatdidnotprovideinformationregardingthenumberoftripsthytakeeachweek,over70%ofallreadersinallfrequencygroupsareinfavourofETSadoptinge-buses.

Table4.1Opinionofridersregardingthepurchaseofe-busesbyETS

# of trips Relative Importance Should ETS buy electric buses?

per week # of respondents % of total Yes No Don't know 1to5 718 25.4% 77.7% 5.7% 16.6%

6to9 374 13.2% 78.1% 2.9% 19.0%

10to15 1200 42.5% 81.0% 3.0% 16.0%

16to30 186 6.6% 83.3% 5.9% 10.8%

>30 21 0.7% 71.4% 9.5% 19.0%

Noanswer 326 11.5% 65.3% 6.4% 28.2%

Total 2825 100% 78.1% 4.3% 17.6%

Source:MARCON,2016

Theemploymentprofileofrespondentsindicatesastrongrepresentationofstudents(47%).Thislikelyreflectstheroutesselectedfortestingtheelectricbuses.Therestoftherespondentsarefull-timeemployees(37%),retired(3%)andunemployed(2%).

Table4.2Employmentstatusofrespondents

Source:MARCON,2016

4.2.4 InterestinETSbuyingelectricbuses

RidersparticipatinginthesurveywereaskedwhethertheywouldlikeETStopurchaseelectricbuses.Overall,78%ofrespondentswouldlikeETStopurchaseelectricbuses.Interestinbuyingelectricbusesissignificantlyhigheramongyoungeragegroups(15-22yearolds:81%,23-30yearolds:80%,31-59yearsolds:81%)thanamongthoseaged60andover(64%).Similarly,individualswhoarecategorizedasemployedandstudentsaremorefavourable28toETSpurchasingE-busesthanthosewhoareunemployedorretired(73%).

28 79%amongthosewhoareemployedfulltimeand81%amongstudents.

Multiple-response OverallEmployed full time 37%Employed part time 13%Unemployed 2%Retired 3%Student 47%Other 2%No answer 3%

4:4

Figure4.2ShouldETSpurchaseelectricbuses?

Source:MARCON,2016

ThereisnostatisticallysignificantdifferenceininterestforETStopurchaseelectricbusesbyfrequencyoftravel29.

4.2.5 WillingnesstopaymoreforbusservicetoallowETStopurchaseelectricbuses

Overall,64%ofrespondentsindicatedawillingnesstopaymoreforbusservicetoallowETStopurchaseelectricbusesthatcostmorethantheirdieselcounterparts.

Figure4.3WillingnesstopaymoreforbusservicetoallowETStopurchaseelectricbuses

Source:MARCON,2016

OnlythoseindicatingthatETSshouldbuyelectricbusesweretargetedforafollowupquestionconcerningif,andhowmuchofanincreasetheywouldbewillingtopay.Despitethis,someofthosestatingnointerestforETStopurchaseE-busesansweredtheadditionalquestion,anddemonstratedsomeinterestinpayingextraforbusservicetoallowforETStoacquireelectricpropulsiontechnologybuses.Infact,25%ofthose“notinfavourofe-buses”wouldstillbewillingtopaymoretoridethem.

29 Numberofone-waytripsinatypicalweek.

Yes,%78%%

No,%4%%

Don't%know%/NA,%18%%

Yes,%63.5%%

No,%32.7%%

N/A,%3.8%%

Table4.3Willingnesstopaymorefore-buses

ETSshouldbuyE-buses Yes No Don'tknow

Yes 73.4% 13.1% 32.3%No 25.0% 82.8% 54.2%N/A 1.6% 4.1% 13.5%

Source:MARCON,2016

4:5

Willingnesstopaymoreisalsohigher(73%)amongrespondentswhoarefavourabletowardsETSpurchasingelectricbusesthanamongtheircounterpartswhoarenotfavourabletowardsthepurchaseofE-buses(13%).

AsindicatedinTable4.4,willingnesstopaymoreforbusservicetoenableETStopurchaseelectricbusesdecreaseswithage(69%of15-22yearoldrespondents,66%of23-30yearoldrespondents,63%of31-59yearoldrespondentsand61%ofrespondentsaged60yearsorolder).

Table4.4Willingnesstopaymoreforbusservice(Overall,byinteresttobuyE-buses,byagecategory)

Agecategory 15-22 23-30 31-59 60+

Yes 69.2% 65.8% 62.8% 50.7%No 29.4% 33.0% 34.1% 43.3%N/A 1.5% 1.2% 3.1% 6.0%Source:MARCON,2016

AmongrespondentswhoindicateawillingnesstopaymoreforbusservicetoallowforETStopurchaseelectricbuses:

• 46%indicatedthattheywouldbewillingtopay5%more• 35%statedthattheywouldbewillingtopay10%more• 8%claimedthattheywouldbewillingtopay15%more• 7.5%statedthattheywouldbewillingtopay20%more

Thebreakdownbyagecategoryisprovidedinthefollowingtable.

TheaverageincreaseofthosefavourabletopayingmoretoallowETStopurchaseelectricbusesis8.8%.Nostatisticallysignificantdifferencesbyagecategory,byemploymentstatusorbyfrequencyofbususewereidentified.

Table4.5Willingnesstopaymoreforbusservicebysizeofincreasebyagecategory

Source:MARCON,2016

4.2.6 Evaluationofelectricbusexperienced

RespondentswereaskedtoevaluatetheelectricbustheyhadexperiencedcomparedwithotherETSbuseswithrespectto…

• Noise• Fumes• Smoothnessoftheride

%ofallrespondents

Age 15-22 23-30 31-59 60+5%more 46.3% 44.3% 49.0% 47.9% 38.2%10%more 35.4% 40.7% 33.2% 31.3% 36.8%15%more 7.9% 7.9% 8.0% 8.5% 3.9%20%more 7.5% 5.9% 8.0% 8.1% 11.8%Notsure 0.1% - 0.2% - 1.3%Noanswer 2.8% 1.2% 1.7% 4.1% 7.9%Averageincreaseinprice 8.8 8.8 8.7 8.8 9.4

4:6

Respondentswereaskedtoprovidetheirevaluationsusingafive-pointscale:

Theweightingisameanstodevelopaveragesforstatisticalevaluationpurposes.

NoisecomparisonFromanoiseperspective,73%ofrespondentsevaluatedtheelectricbusasbeingbetter(43%)ormuchbetter(30%)thantheotherETSbusestheyarefamiliarwith.ThosewhorespondedthattheywouldlikeETStopurchaseelectricbuseshadamorefavourableevaluationofthenoiseofelectricbuses.Theremainder30(19%)consideredthenoiseleveltobeequivalenttothatofdieselbuses.

Table4.6Noisecomparison

Source:MARCON,2016

FumesOverall,73%ofrespondentsconsideredtheelectricbusasbeingbetter(38%)ormuchbetter(34%)thanotherETSbuseswithrespecttofumes.Again,respondentsindicatingthattheywouldlikeETStopurchaseelectricbusesratede-busesmorefavourablyonfumesthanrespondentswhostatedtheywouldnotlikeETStopurchaseelectricbuses.

Table4.7Fumescomparison

Source:MARCON,2016

SmoothnessofrideWhencomparingthesmoothnessofridebetweenelectricbusesandnon-electricETSbusestheyarefamiliarwith,66%ofrespondentsevaluatedtheelectricbusasbetter(40%)ormuchbetter(26%).Aswiththeprevioustwofeaturesevaluated,respondentswhostatedtheywouldlikeETStopurchaseelectricbusesratedsmoothnessoftheridehigher.

30 4%didnotprovideananswer.

Much%worse% Worse% Same% Be0er% Much%

be0er%

Weigh4ng% 0% 25% 50% 75% 100%

NOISE Much worse Worse Same Better Much better N/A Weighted average

Overall 0.7% 2.7% 19.1% 43.1% 30.1% 4.2% 75.9Yes 0.5% 2.1% 17.1% 43.8% 33.9% 2.7% 77.9No 5.7% 4.9% 34.4% 34.4% 16.4% 4.1% 63.2Bu

y E-

buse

s

statistically significantly higher than overall statistically significantly lower than overall

FUMES Much worse Worse Same Better Much better N/A Weighted average

Overall 0.5% 1.0% 16.6% 38.4% 34.3% 9.1% 78.9Yes 0.5% 0.7% 14.2% 39.3% 38.5% 6.8% 80.8No 1.6% 2.5% 28.7% 31.1% 20.5% 15.3% 69.7B

uy E

-bu

ses

statistically significantly higher than overall statistically significantly lower than overall

4:7

Table4.8Smoothnessofridecomparison

Source:MARCON,2016

4.2.7 Temperatureevaluation

Respondentswerealsoaskedaboutthetemperatureonthebususingafive-pointscale:

Theweightingisameanstodevelopquantitativeaveragesforstatisticalevaluationpurposes.

Asindicatedinthefollowingtable,over80%ofrespondentsratedthetemperatureontheelectricbusesas“comfortable”,withanadditional13%statingthattheyfoundthetemperature“somewhatwarm”.Aswiththefeaturesevaluated(noise,fumesandridesmoothness),respondentsinterestedinhavingETSpurchaseelectricbusesratedthecomfortlevelhigherthantheircounterpartswhowouldnotlikethetransitsystemtopurchaseelectricbuses.

Table4.9Temperatureonbus

Source:MARCON,2016

4.3 Pre-trialperceptions(ETSresearch)InAugust2014,ETSStaffproducedareportentitled“StealthBusCustomerSurvey–InterimToplineReport”31.Accordingtothisdocument,thestudywas“conductedtogathercustomer’sinsightregardingtheircomfortandsomeotheraspectsofnewlydesignedStealthbus”32.Onpage4ofthedocument,thereaderunderstandsthatthe“Stealthbus”isanall-electric.

31 MARCONisinformedthatnoreportfollowedtheInterimToplineReport.ThisreportisthereforeconsideredtheStealthBusCustomerSurveyfinalreport.Resultsbasedon996completedsurveys.

32 “StealthBusCustomerSurvey–InterimToplineReport”,2014,page2.

SMOOTHNESS Much worse Worse Same Better Much better N/A Weighted average

Overall 1.0% 1.6% 24.8% 39.9% 25.7% 7.0% 73.6Yes 0.5% 0.9% 22.2% 42.4% 28.6% 5.4% 75.8No 4.1% 6.6% 45.9% 16.4% 18.0% 9.0% 60.4Bu

y E-

buse

s

statistically significantly higher than overall statistically significantly lower than overall

Much%too%cold%

Somewhat%cold%

Comfort2able%

Somewhat%warm%

Much%too%hot%

Weigh7ng% 0% 50% 100% 50% 0%

TEMPERATURE Much too cold

Somewhat cold Comfortable Somewhat

warmMuch too

hot N/A Weighted average

Overall 0.2% 2.8% 80.5% 13.4% 1.1% 2.0% 90.4Yes 0.2% 2.3% 82.5% 13.7% 0.7% 0.6% 91.1No 1.6% 4.1% 70.5% 15.6% 5.7% 2.5% 82.4B

uy E

-bu

ses

statistically significantly higher than overall statistically significantly lower than overall

4:8

Theresultsofthis2014researcharesimilartotheresultsofthecustomerresearchundertakeninthecontextofthisstudywith94%ofrespondentsindicatingthatitisimportant(24%)orveryimportant(70%)tothemthatETSpursuegreentechnologythatismoreenvironmentallyfriendly.

Figure4.4ImportanceofGreenFocus33

Further,onallthefeaturestested(generalseatcomfort,seatlegroom,airconditioning,overallsmoothnessofride,mechanicalnoiseheardinsidethebus,mechanicalnoiseheardoutsidethebus),ETScustomersparticipatinginthesurveyratedtheelectricbussomewhatormuchbetterthanotherETSbuses.TheseresultsareconsistentwiththefavourablecustomerresultsgatheredinJanuary–February2016withrespecttonoise,fumes,smoothnessofrideandtemperaturecomfort.

33 “StealthBusCustomerSurvey–InterimToplineReport”,2014,page4.

4:9

Figure4.5CustomerevaluationofelectricbusfeaturescomparedtootherETSbuses34

4.4 KeyfindingsTheresultsoftheMARCONsurveyarestatisticallysignificantatahighconfidencelevel(95%)withasmallmarginoferror(±1.8).With996respondents,the2014StealthBusCustomerSurveyisalsoaveryreliablesourceofinformation.

BothsurveyshavefoundthatEdmontonbusridersareveryfavourabletoe-buses.SomuchsothatalmosttwothirdsofthemwouldbewillingtopayapremiuminordertohelpETSacquirethem.E-busesareconsideredsuperioroneveryperformanceaspectevaluatedbycustomers.

34 “StealthBusCustomerSurvey–InterimToplineReport”,2014,page3.

5:1

5 ETSandCityStaffperceptionsofthee-buses

MARCONundertookqualitativeresearchwiththestaff35thatcameintocontactwiththeelectricbusestrialled36.Followingisadiscussionoftheresearchmethodologyemployedaswellastheresultsoftheresearch.

5.1 MethodologyFocusgroupdiscussionswereundertakenwithbusoperators37preandposttheelectricbustrials.Inaddition,interviewswereundertakenwithmaintenanceandmechanicalstaffpreandposttrials.

Table5.1Preandposttrialqualitativeresearchwithstaff

Source:MARCON,2016

Fewstaffmembersparticipatedinboththepreandpostresearchactivitiesundertaken.

5.2 Pre-trialperceptionsofoperatorsandmaintenancestaffAtthetimeofthepre-trialinterviews(December2015),traininghadalreadybeenprovidedtostaffusingthe2ndgenerationBYDbus.TrainingfromNewFlyerpersonneltooperatorsandmaintenanceandmechanicalstaffwasexpectedtotakeplaceonJanuary4th2016.

5.2.1 Busoperators

MARCONaskedETStoinviteallbusdriversthatweretrainedtodrivetheelectricbusestoadiscussionintendedtoprovideinsightsregardingtheperceptionsthatoperatorshaveofE-busespriortodrivingtheminthecontextofregulartransitservice.

Withtheexceptionofoneoperator,alldrivers38participatinginthepre-trialgroupwereselectedbysuperiorstodrivetheelectricbuses.Consequently,theywerenotdrivingtheelectricbusesbecauseofapositivepredispositiontothem.

ParticipantsbelievedthatETSwasinterestedintestingelectricbusesinorder“tobeaheadofthegame”,“tocutfuelcosts”and“tobegreen”.AlltheparticipantsperceivedthetestingofthebusestobeagoodideaandseveralspontaneouslysuggestedthatdeployingelectricbuseswouldbepositivefortheimageofETS.

35 Interviewsandfocusgroupswereundertakenwiththedriversandmechanicalandmaintenancestaffthatwereinformedandmadetheefforttomeetwithresearchers.

36 Somemembersofthestaffcameintocontactwithoneofthethreemodelswhileotherscameintocontactwithallthree.37 Alldriversparticipatinginthepre-trialfocusgrouphadreceivedsometrainingontheelectricbusespriortothediscussion.38 Allindicatedbeingspareboardshift.

Pre-trial Post-trial

Bus operators 10 participants in focus group 5 participants in focus group

Mechanical, maintenance and service staff 4 people interviewed 5 people interviewed

5:2

Whenquestionedwhethertheyconsideredelectricbusestobereadytobeputinservice,participantsstatedthattheyarelikelyreadyforsummer-climateoperationbut,giventheirlackofexperiencewithdrivingthesebusesinwinterconditions,questionedwhethertheyarereadyforsuchconditions.TheparticipantsalsoquestionedwhetherthedurationofthetrialwouldbesufficientlylongtoenableETStogainatrueappreciationfortheabilityofelectricbusestomeetthewinterneedsofthetransitsystem.

Participantsalsostatedthattheyexpectedthedrivingexperiencewithelectricbusestobesuperiortothatofdrivingwithdiesels.Thereasonsprovided:

• Noisereduction• Reductioninpollution(nofumes)• Smootherride(includingexcellentbraking)• Availabilityofairconditioning• Morecomfortableseating

BasedonthetrainingprovidedontheBYDbus,participantsnotedcertaindesignfeaturesthatdidnotappealtothem.Mostofthesefeatureshadlittletodowiththefactthatthebusestestedwereelectric,withtheexceptionof…

• Lowerpassengercapacity,• LackofABS(notyetinstalled),• Regeneratingbrakesresultinginbusesslidinginsnow39,and• Significantnoiseatthebackofthebus(coolingfan).

Theparticipantsgenerallydidnotanticipatedifficultiesgettingaccustomedtoelectricbusesalthoughonedidmentionthatturningcornerswouldrequire“gettingusedto”.

Inthepre-trialdiscussion,participatingoperatorsgenerallywelcomedthechangeandstatedthattheyperceivedtheelectricbusestobebetterequippedthantheirdieselcounterparts.They,however,werenotcertainthatelectricbuses,despitebeingeasiertomaintain,wouldmakelifetimeeconomicsenseforETSgiventheirrelativelyhigheracquisitioncost.Oneoftheparticipantsexpressedseriousconcernwiththeirpurchasepriceandquestionedwhethercitizens,inaneconomicdownturn,wouldbewillingtopaymorefortransitaccessoracceptcutbacksinothermunicipalexpendituresallowingtheCitytoinvestinelectricbuses.

5.2.2 Mechanicalandmaintenancestaff40

PersonnelinterviewedpriortothetrialswereoftheopinionthatETSwastestingelectricbusesgiventheinterestofcitizensandEdmontonCityCouncilincleanervehiculartechnologies.Theyexpectedthetestswererequiredtoprovethe“viabilityandperformanceofthetechnologyinETS’sclimaticandoperatingconditions”.

Muchlikethebusoperators,themaintenanceandmechanicalstaffinterviewedconsideredthetrialperiodasextremelylimited.Inthelatter’sopinion,thebusesshouldbetestedforapproximatelyoneyeartogainabetterappreciationfortheircapabilitiesandpotentiallimitations.OneoftheissuesidentifiedearlyintheexperienceswiththeBYD2ndgenerationbusandsharedduringtheinterviewsisthebus’perceivedinabilitytodriveinwinterconditionswithoutwintertires.

39 ThiswasalsoreportedbyoperatorstothemaintenancestafffortheNFIbus.40 Servicestaffwasnotinterviewedduringpre-trialinterviews.

5:3

Askediftheyexpectedanydifferencesinmaintenancebetweentheelectricbusesandtheirstandarddieselcounterparts,personnelinterviewedexpectedapproximatelythesameamountofwork,althoughdifferentissuesgiventhedissimilaritiesintechnology.SomeofthemembersofthemechanicalandmaintenancestaffstatedthattheyhadreadtheAltoonaevaluationsoftheBYDbusandwerethereforeconcernedaboutthequalityofmanufacturing.ThegeneralperceptionofthemaintenancestaffinterviewedwasthattheBYDqualityispoor.Incontrast,personnelgenerallyviewedtheNewFlyerbusfavourably.Additionalchallengesexpectedbythemaintenanceandmechanicalstaffpriortotrials,particularlyinacontextwhereelectricbusesareintegratedintotheETSfleetincluded:

• Towing:“ETSisnotequippedtotowelectricbuses”,

• Lackofqualifiedpersonnel,

• Accesstosparepartsandprocurementlogisticsthatmayneedtobemodifiedtomeettheneedsofelectricbuses,

• Inabilitytofittheelectricbusesinthewashingarea,

• Lackofunderstandingofhowelectricbusesneedtobetreatedfromasafetyperspective,

• Busrange:“Canweget350kmrangeinthewinter?Ithasoperatingimplications.”

• Charginginfrastructure:thestaffquestionedwhetherthegaragescanbeequippedwiththecharginginfrastructurerequiredtochargetheelectricbuses

• Hoisttrainingwillberequiredtohandlethebatteries

AskediftheyconsideredthatETSshouldpurchaseelectricbuses,maintenanceandmechanicalpersonnelinterviewedbelieved“thetechnologymaybetenyearsout”andthatgiventheeconomicdownturn,questionedwhetherthetimingforpurchasingelectricbuseswasideal.

Inshort,contrarytooperators,maintenanceandservicepersonneldisplayedarathernegativeattitudetowardse-busesaheadofthefieldtrials.

5.3 Post-trialperceptionsofoperatorsandmaintenancestaff

5.3.1 Busoperators

Allbusoperatorsparticipatinginthepost-trialfocusgroupclaimedtohavedrivenboththeBYDandNFIe-buses,althoughtheexperiencesofsomewerepredominantlywithonemodelandconsequently,operators’commentswereverymodel-specific.

5:4

Table5.2PositiveandnegativeperceptionsofOperators41

Source:MARCON,2016

Busoperatorsparticipatinginthediscussionexpressedconcernabouttherangeoftheelectricbuses(“Werunthebuses14-16hoursperday.Weneedthejuicetocontinuedrivingthem.”)aswellastheeconomicsassociatedwithpurchasingandinstallingchargingstations.Further,theyindicatedthatthesilenceofelectricbuses(“youdon’thearthemcoming”)mayposeasafetyissueforpeoplewalkingintheirvicinity.

Askediftheadoptionofelectricbuseswillrequireanychangestooperations,busoperatorsofferedthethoughtsexpressedinTable5.3.

41 Busoperatorsmadeseveralcommentsregardingthedesignelementsofthebuses.Thesearenotreflectedinthetableastheyarenotspecifictotheperformanceofelectricpropulsionbuses.

Content reflects operator language BYD NEW FLYER

Perceived positives

Good acceleration

Smooth ride ("don't feel every pothole")

Quiet

Great heating

Good lighting

Good acceleration

Smooth ride ("don't feel every pothole")

Very quiet

Even better heating than BYD

Even better lighting than BYD ("blue lights reduce the glare on the windshield")

Perceived negatives

Sensitive braking

Difficulty accelerating uphill: "rolled 16 inches before accelerating"

Camera on the BYD looking outside is focused too low

On turns, bus tilts to one side

Rocking side to side

Skidding on ice

Antilock braking issues: "When I applied brake, the ABS grabbed and let go and then it skid"

Difficulty accelerating uphill ("the New Flyer performed better. If the load was lighter, the New Flyer climbed the hill with no problem")

On turns, bus tilts to one side

Door stays open while driving. Requires interlock

Rocking side to side due to battery weight on top of bus (greater than with BYD)

5:5

Table5.3Perceivedchangestooperationsrequiredtoenableadoptionofelectricbuses

Source:MARCON,2016

Despitetheissuesraised,theETSbusoperatorsthatparticipatedinthefocusgroupgenerallyfeltthatelectricbusesarereadytobeplacedinserviceaslongasthecharginginfrastructureisavailabletomeettheoperatingneedsofETS.Moreover,theystatedthatthepublic“isbecomingmoreenvironmentallyawareandETSshouldbesettingtheexample”.

BeforeelectricbusescanbeintegratedintheETSfleet,thedriversneedpropertrainingandeducation42.Theywouldliketoreceiveadriver’smanualdescribingthevehicle’scapabilities,itsspecifications,itshazards(ifany)aswellaswhattodoinemergencycircumstancesor“whensomethinggoeswrong”.

5.3.2 Mechanical,maintenanceandservicestaff

Generally,themechanical,maintenanceandservicestaffinterviewed,whichwereexposedtoallthreeelectricbusmodels,feltthattheywereillpreparedtoservicethemduringthefieldtrialseventhoughtheyreceivedsomemanufacturertraining.Thepersonnelinterviewedfeltthattheyexperienced“severalbumpsthatcouldhavebeeneliminated”hadtheyreceivedthemanualsandpropertraining:“wedidn’tevenhaveanycomputerprogramstocommunicatewiththebus”.Infact,thegeneralperceptionamongthoseinterviewedisthatwiththeappropriatetraining,mostoftheissuesandchallengesexperiencedwouldhavebeenremoved.However,bothBYDandNFIundertheirbususecontractswereresponsibleforallmaintenanceissuesotherthanrunningrepairs.

Ingeneral,themechanical,maintenanceandservicestaffinterviewedfeltagreaterleveloffamiliaritywiththeNewFlyerelectricbusgiventhesimilaritiesbetweenthisbusandtheNewFlyerdieselbusescurrentlyusedintheETSfleet.

42 Driversparticipatinginthefocusgroupfeltthattrainingreceivedwasinsufficient:“even30minutesontheroadwouldhavebeenuseful”,“wewereself-taught”,“toomanypeopleshowedupatthetrainingsessionandIwasintheback,unabletoseewhatwasbeingdemonstrated”).

Perceived changes required

Operating procedures

A change in scheduling may be required:"Currently, buses arrive at transit centers at the same time. If you have to charge the bus at these centers, we need to figure out how to charge at the same time or pace their arrivals."

Shift lengths Buses may be required to return to the garage after every shift.

Other

Depending on the range of the vehicles and the charging strategy implemented, drivers participating in the groups question whether more buses will be required to meet ETS's operational needs if the buses are electric.

5:6

Maintenanceandservicestaffinvolvedwiththefieldtrailsfeltthatalongertrialperiodisrequiredtotrulyevaluatetheelectricbuses:“Wehadthemforashortperiodsowehadminorissues.Wewouldneedmoretimeinordertoevaluatethemaintenanceandmechanicalsideofthebuses.Wewouldneedsomemajorfailurestoevaluatethem.Wenevergotintoanyoftheelectricalcomponents.”AtrialoftwoyearswassuggestedasarequiredperiodtoevaluatethetechnologyanditsviabilityforETS.Theindividualsinterviewedalsostatedthataperiodoftwoyearswouldberequiredforthemto“getusedtotheelectricbuses”.

Table5.4PositiveandnegativeperceptionsofM&SStaff

Source:MARCON,2016

Themechanical,maintenanceandservicestaffinterviewedquestionedthecost-effectivenessofelectricbuses:“Youneedtoconsiderpersonneltraining,mechanicalfailuresthatwouldmultiply.PlusIreadthattheframeofthe[BYD]buseshavefailed43.Inourweatherconditions,itwouldn’tlastlong”.Despitethesequestions,theyexpectthatitwouldbeeasierforthemtomaintainelectricbusesastheyhave“fewerparts,lessfluidssofewerleaks,componentsarelargerand

43 Intheabsenceofinformationandeducationfromthemanufacturers,severalmembersofmechanical,maintenanceandservicestaffinterviewedstatedthattheyundertookInternetresearchanddiscoveredtheAltoonareportwhereBYDelectricbusesreceivedunfavourableevaluations:“FromAltoonatestingresults,weunderstandthatwewouldhavemoreproblemswiththeBYDthanwiththeNewFlyer.Itwasscarylookingattheseresults.Majorcomponentsweresaidtobecomingoffthevehicle.ItdoesputdoubtsinyourmindregardingthequalityofBYD.”

Content reflects personnel language BYD NEW FLYER

Perceived positives

Relatively simple charging compared with New Flyer

Smoothness of ride

Good acceleration

Perceived as a superior product: "just the way it's put together"

Winter ready

Smoothness of ride

Good acceleration

Can fit through the washer

Perceived negatives

Sensitive acceleration

Perceived poor quality of manufacturing of the vehicle

Instability of performance in snow: "Even with the first layer of snow, it would dog track. It would slide from side to side."

Braking issues: "As soon as you hit break, you lost steering control."

Stability issues despite changing the tires

The bus has one extremely large windshield that is heated. ETS changes several windshields per week given that rocks hit them and create damage. Changing these windshields would prove extremely challenging.

Diesel heater on the 2nd generation bus defeats the purpose of having an electric bus as it produces raw pollutants.

Charging procedure is long with too many steps: "When they asked us to reprogram the charger, it took us 2-3 days before we got it to charge the buses"

Diesel heater on the 2nd generation bus defeats the purpose of having an electric bus as it produces raw pollutants.

5:7

probablyrebuildable”.Theyalsoexpectsavingsbecause“wewouldn’tbegoingthroughoillikecrazy”.

Moreover,theyraisedtheissuesofthechangesthatwouldhavetobeimplementediftheelectricbusesweredeployedatETS:

• Additionalspaceinthegarageswouldneedtobeallocatedtochargingstationsandthechargingarea.Consequently,thegarageswouldneedtomakephysicaladjustmentstoaccommodatethesebuses.

• Thewashrackwouldneedtobechanged,particularlyiftheBYDbusisused.• Giventhesilenceofthevehicles,theywouldneedtobeequippedwithanaudiblealarm

forthesafetyofgaragepersonnel.• Specialliftswouldberequiredtochangebatteriesorothercomponents.• SpecialequipmentorprocedureswouldberequiredtochangetheBYDwindshieldswhen

necessary.

5.4 KeyfindingsFromastaffperspective,integratingelectricbusesintotheETSfleetandoperationswillrequire…

• Relevanttrainingofbusoperationsandmechanical,maintenanceandservicestaff• Preparationofunionstoeliminatepotentialissuesrelatedtocompensationand

responsibilities• Busdesignthatreflectstheneedsofdriversandriders.

Adequatetrainingwillbekeytoensuringstaffbuy-inandasmootherintegrationofthenewtechnology.

Thestaffinterviewed,particularlythebusoperators,areconfidentthatwithsufficienttraining,“gettingaccustomedtothisnewtechnologywillbelikegettingaccustomedtoanynewbus”.

Generally,busoperatorsareverypositiveconcerningtheadoptionofe-busesinEdmontonastheyfeelitwouldbeanimprovementfortheirpassengersandforthemselves.Maintenanceandservicepersonnelsomewhatwarmeduptoe-busesinthecourseofthefieldtrials,butstillremainedcautiouswithregardstotheirintegrationinETS’fleet.

6:1

6 Expectedreliabilityofe-busesinservice

6.1 MethodologyElectricbuseshaveonlybeenoperatinginCanadaonatestbasisbutthereareafewlargerfleetsinoperationintheUSA,inAsia,andinEurope.FleetreliabilitystatisticscanbeusuallycomparedwithoutmajordatainvestigationsforNorthAmericanfleets.Othercountriesoftenuseddifferentmetricsthatrequiredetailedanalysisbeyondthescopeofthisreport(agenciessuchastheInternationalBusBenchmarkingGroupprovidesuchcomparisons).

InNorthAmerica,batteryelectricbusesarestillanemergingtechnology.Maintenanceandreliabilitydataavailabledoesnotusuallyoriginatefromastandardin-servicefleetoperatingenvironment,makingitdifficulttocomparee-busesperformancetothoseofstandarddieselorCNGbuses.FoothillsTransitandNationalRenewableEnergyLaboratory,however,haverecentlypublishedadetailedcomparativereport44thatevaluates35ftProterrabusesagainstacontrolfleetofCNGbuses;detailsofwhichwereusedaspartofthisanalysis.

TheSTL(Laval,QC)andtheWTC(Winnipeg,MB)have2busesinserviceeach45,buttheyarestillconsideredtestvehiclesandthereforereceive“specialtreatment”,whichmakesitunfairtocomparethemdirectlytotherestofthefleet.Butnevertheless,ETSbustestingandavarietyoftestreportsfromvarioussources(Transitproperties,Altoonatests,etc.)offerawealthofreliabilityinformation.Areviewofthesetestsandreportsandtheanalysisofthedifferencesbetweenstandarddieselbusesandelectricbusescanprovideareasonablemeasureandqualifiedcommentariesonthegeneralreliabilityofbatteryelectricbuses46.

Thismodulefocusesonthereliabilityofbatteryelectricbustechnology.DuringtheETStestprogram,therewereanumberofmaintenanceandoperatingproblemsnotdirectlyrelatedtobatterypropulsiontechnologyoritsaccessories;otherproblemsrelatedtothebrandofbus,orlackoftraining/servicesupportwerealsoobserved.ItmustbecautionedthatduringtheveryshorttestprogramatETS,thee-busesinusewereatvariousdevelopmentstages(fromadvancedprototypestoearlycommercialization).Someofthedowntimeofthebusesformaintenancepurposeswasattributabletotechnicianandoperatorunfamiliarityorunavailabilityofsomesparepartsforthevehicles.Inalargerin-servicefleet,significanteffortswouldbetakentospecifybusesindetail,arrangetrainingforoperators,serviceandmaintenancestaffs,andprovideservicesupport,partssupply,andwarrantyterms.

InadditiontotheveryshortevaluationperiodatETS,theplanningfortheevaluationwasdonetooquickly,resultinginbusesbeingmadeavailablethatdidnotrepresentthelatestgenerationsofbusesofferedbythemanufacturers.Theshortlead-timetoprocurebusesresultedinnotallowingmanufacturerssufficienttimetoreactresultinginonemanufacturernotbeingabletoprovideabusandanotherforonlyaveryshortperiodoftime.BothBYDbuseswereanearlygenerationbusanddidnotincludeallthedesignmodificationsthathadbeendoneasaresultofothertestinginCanada.Theshortlead-timeanddeliveryofthebusesovertheChristmasperiod

44 FoothillTransitBatteryElectricBusDemonstrationResults,LeslieEudy,RobertProhaska,KennethKelly,andMatthewPost,NationalRenewableEnergyLaboratory,January2016.

45 TheSTLoperatesoneDesignLineandoneBYDbus.WTCoperatestwo(andsoonthree)NFIelectricExcelsiorbuses.46 Thereaderisremindedthatthisreport’slevelofprecisioniscontractuallylimitedto±25%.

6:2

alsoresultedininsufficienttrainingbeingmadeavailabletostaffeventhoughmanufacturershadthecapabilitytoprovidethetraining.

6.2 Reliabilityofe-busesinothersystems

6.2.1 BatteryElectricBusReliability,Canada

MARCONhasreviewedmanyaspectsofbusreliabilityfromnumeroussources.TheETStest,othertestliterature,communicationwithmanufacturersandbusproperties,fieldmeetings,personalbusmaintenanceandoperatingexperience,amongothers.Thisstudyhasfoundthatbatterye-busreliabilityisatanacceptablelevelforETSbusoperationsandmaintenance,beingatleastasreliableasdieselbuses.

However,therearesomecaveatstotheabovestatement:

• Thereisageneralconsensusintheindustrythatthefutureoftransitbusesliesontheelectricpath(batteryorfuelcellpowered).Busmanufacturersarethereforeaggressivelydevelopingandimprovingtheire-busproductline.Thisisconfirmedbytherapiddevelopmentofthisnewtechnology,bythepositiveandrapidwaymanufacturersarereactingtotheformal“Altoona”testsandtotransitproperties'recommendations.Infact,thetechnologyprogressesatsucharatethatMARCONexpectsthefewweaknessesobservedduringtheETSfieldtrialtobecorrectedbythetimeETSisreadytoplaceanorderforwhatwillbeanewgenerationofbatteryelectricbuses.

• ETSstaffexperiencednumerousissueswiththetestbusesfrommaintenancetooperatingcomplaints.MostoftheseproblemsthatarenotattributabletotheinexperienceorlackoftrainingoftheETSstaffhavebeenorarecurrentlybeingimprovedandincorporatedonnewergenerationbuses.

• Muchofthemaintenancecomplaintsrelatetotechnicianunfamiliarity,andreactiontimeofthebusmanufacturer.Thismightnothaveoccurredifamorecarefultestplanhadbeenpreparedattheoutset.But,thissituationwouldmostlikelynotoccurifabuspurchaseprojectwithappropriatepurchaseconditions,training,toolingandpartssupplyisfollowed.

• Someofthemaintenanceissuesarerelatedtoadditionalstafftimeandhandlingofthebuses,duringthebusypeakbookoutandservicingtimes,andweekends.Moreappropriateplanningwouldhaveforeseentheneedforadditionalresourcesforsuchatestprogram.

• Operatorcomplaintsoftenarerelatedtosafetyconditions.Inatestfleetsome“safety”complaintscan’tbeaddressedwithurgency.Thiscanleadtomiscommunicationoftheproblem,delayedtroubleshooting,andreducedconfidenceinthebus.NewbatteryelectricbuseswouldneedconcentratedeffortstotrainOperatorsanddealwithproblemspromptly.Timelymanufacturersupportandchangesinprogrammingcouldalleviatemanyproblems.

• Itisclearthatpurchasingafleetofbatteryelectricbuseswillrequireachangeinmaintenancestaffsupport.Somereductionofrunningmaintenanceandpreventivemaintenanceactivitiescouldbere-allocatedtoe-buscomplextroubleshooting,andongoingservicingactivities.Amorethoroughanalysisoftasks,skills,timeandmotionswouldberequiredtofullyunderstandtheimpact.

6:3

BothoftheotherCanadianevaluationsofelectricbusesinrevenueserviceconfirmedthatthebusestestedwerereliable.InWinnipeg,itwasconcludedthatbatteryelectrictransitbusesperformreliablyandefficientlyinManitoba’sextremecold47climate.TheSTOandSTMevaluationsconcludedthatfore-busesperformanceintermsofautonomy,operatingtimeandregularitywouldallowtheiruseoveralargeportionoftheMontréalandOutaouaisnetworks.Thelackofsignificantvariationsinperformancebasedonoperatingconditions(temperature,drivingstyle,passengerload,chargetime,etc.)justifiedthisconclusion.Becauseofitspredictableandstableperformance,theuseofe-busesdoesnotaddanymajoroperationalconstraintsotherthanthoseoftime,spaceandelectricalsupplyrequiredforcharging48.

TheWinnipegevaluationwasalong-termcooperativeeffortbetweenthemanufacturer,WinnipegTransitandRedRiverCollege,andallowedtechnicalimprovementstobemadetothebusbeforetheformalevaluationphase.TheSTOandSTMevaluationsoftheBYDbusconductedbyAVTidentifiedmanyissueswiththedesignofthebus.ThesewereforwardedtoBYDandBYDrespondedaddressingeachofthe57itemsandconfirmingwhatactionwastakentoremedythedeficiencies49.Thesecorrectiveactionswereincorporatedinsubsequentdesignmodificationstothebus.TheETSevaluatedanearlygenerationoftheBYDbus,aversionthatprecededtheimprovementssuggestedbytheSTMandSTO.Therefore,ETSidentifiedmanyofthesamedeficienciesnotedbyAVTthathavenowbeenaddressedinthecommerciallyavailableversionofthebus.

6.2.2 BatteryElectricBusReliability,USA

TheinformationavailableregardingthereliabilityofelectricbusestestedorevaluatedintheUSAconfirmstheresultsobtainedbyCanadiantransitproperties.TheAltoonatestsofallelectricbusesidentifiednumerousdeficienciesfoundwithallthreeelectricbusestested(BYD,NFIandProterra)50.Ofthethreetestsconducted,theNewFlyerXE40wasfoundtohavethefewestdeficiencies.TheBYDbuswasfoundtohavethemost.BYDlearnedfromthetestresultsandimmediatelydesignedremediationmeasurestocorrectallthedeficienciesfound51.AvisittotheBYDmanufacturingplantinearlyFebruary2016confirmedthatthedesignchangesidentifiedwerebeingincorporatedintothelatestBYDbusesbeingassembled.ThelatestgenerationoftheBYDbusesisexpectedtohavefarfewerreliabilitydeficienciesasaresultofthesedesignchanges.

MTA's(Chicago,IL)experiencewiththeNFIXE40electricbushasmirroredthatofWinnipeg,confirmingthegoodreliabilityofthebus52.

FoothillsTransitevaluatedtheProterraelectricbusesfromApril2014toJuly2015,accumulatingapproximately600,000kmonthe12electricbusesusedinrevenueservice.TheirperformancewascomparedtoacontrolfleetofCNGbuses.Thebusavailabilitytargetforthistransitsystemis85%,higherthanthatofETS.Duringthereportingperiod,theaverageavailabilitywas90%fortheE-busesand94%fortheCNGbuses.Bus-relatedmaintenanceissuesnotassociatedwiththedrive

47 ManitobaBatteryElectricTransitBusFleetDevelopmentandDemonstrationReport,RedRiverCollege,Winnipeg,October2015.48 EvaluationReport:BYD'sGreenCityElectricBus(STO&STM),Sociétédegestionetd'acquisitiondevéhiculesdetransport(AVT),

August2014.49 LetterfromBYDtoAVTdated5August2015.50 TheresultsoftheAltoonatestofNovaBusnewLFS-ewerenotyetavailableatthetimeofMARCON’sanalysis.51 K9MAltoonaTestFindingsCorrectiveActionsApplied,2015.52 ConversationwithCTAProjectManager,8January,2016.

6:4

componentsexplainedthehigherpercentageofunavailabilityfortheE-buses53.TheevaluationconcludedthattheE-buseshaveprovedtobeveryreliable.BusMileageBetweenRoadCalls(MBRC)forthedataperiodwasmorethan9,000miles;propulsion-relatedMBRCwasmorethan25,000miles.

KingCountyMetroinSeattleevaluatedtheProterraCatalyst40’electricbusfrom17October2015to31January2016.Thebuswasoperated24/7overaperiodof106daystosimulateafullyear'sworthofoperatingtime.Thebusaccumulatedover52,000kmincontrolledtestingwithafull-simulatedpassengerload,andunderwentover1,750chargingcycles.Itexperiencednounforeseenmaintenanceissuesandwasavailablefor98%ofthe106days.The2%unavailabilitywasduetoregularroutinemaintenanceinspections54.

6.3 ReliabilityexperienceinwinterfieldtrialsinEdmontonThefollowingfigureshowspropulsionsystemandotherrelatedeventsforelectricbuses6011and6013.The6011BYDbusoperatedbeforeandaftertheofficialtestperiodandisshownhereforreferencepurposesonly.

Table6.1MaintenanceEvents-ElectricBuses

Eventsduringthefieldtrialsperiod:

• Extramaintenanceandoperatingstaffeffortwasrequiredtoensuretheelectricbusesoperatedmostdaysduringthetestperiod.

• Therewerefewpropulsionrelatedproblemswitheitherbusduringthetestperiod.TheBYD6011bushadonepropulsionrelatedissueandtheNFI6013hadnopropulsionrelatedissues.Infact,mostofthemaintenanceitemsexperiencedoncethebuseswereinEdmontonwereunrelatedtothebattery/propulsionsystem.Forexample,mirrors,doors,destinationsignmaintenanceiscommontoanytypeofbus.

• 6011Towing/Boostwasrelatedtotheproblemof12Vbusbodybatteriesdraining(possiblyduetoanETSaddedSmartbussystem).

• 6013hadSundaychangeoversduringthetestperiod.ThisisbecausetheSundayroutesareapproximately360km,so6013waschangedoutafterapproximately90km.

• BYDbuses6011and6012alsooperatedoutsideoftheJan7–Feb5formaltestperiod.Issuesoutsideofthetestperiodarealsonotedbelow.

53 FoothillTransitBatteryElectricBusDemonstrationResults,LeslieEudy,RobertProhaska,KennethKelly,andMatthewPost,NationalRenewableEnergyLaboratory,January2016.

54FreshEnergyVideoReportdated29March2016,http://fresh-energy.org/2016/03/seattles-experience-with-electric-buses/.

Unit No Date Completed

Job Description Labor Hours

N6011 09-11-2015 RE PAIR Cooling S ystem 13.1

N6011 10-11-2015 RE PAIR DoorP anels Interior/E xterior 1.2

N6011 10-11-2015 RE PAIR ModP anels/InfoHolder 1.9

N6011 12-11-2015 RE PAIR Body/CabInterior/E xterior 1.3

N6011 17-11-2015 DIAGNOS E T otalVehicle 5.5

N6011 17-11-2015 INS P E CT PMCVIP 11.0

N6011 18-11-2015 DIAGNOS E Abs/T ractionControl 9.0

N6011 18-11-2015 RE PAIR Battery 0.0

N6011 23-11-2015 T OWING/BOOS T T otalVehicle 0.0

N6011 23-11-2015 CHANGEOVE R T otalVehicle 6.4

N6011 25-11-2015 RE PAIR Decals 2.8

N6011 25-11-2015 AT T ACHDE T ACHWheels/R im 3.2

N6011 25-11-2015 PRE P S E RVICE Body/CabInterior/E xterior 0.0

N6011 07-12-2015 T OWING/BOOS T T otalVehicle 0.0

N6011 09-12-2015 DIAGNOS E WindshieldWiper&Washer 2.9

N6011 09-12-2015 RE PAIR Mirrors 1.1

N6011 10-12-2015 DIAGNOS E S martbus S uite 0.0 Unit No Date Completed

Job Description Labor Hours

N6011 11-12-2015 CL E AN/S E RVIC InteriorComplete 7.0 N6013 18-12-2015 AT T ACHDE T ACHMirrors 0.3

N6011 22-12-2015 RE PAIR Decals 1.2 N6013 19-12-2015 AT T ACHDE T ACHWheels/R im 3.3

N6011 23-12-2015 AT T ACHDE T ACHWheels/R im 2.6 N6013 23-12-2015 DIAGNOS E DoorMechanism 3.1

N6011 28-12-2015 RE PAIR Abs/T ractionControl 2.8 N6013 23-12-2015 RE PAIR DestinationS ign 2.1

N6011 28-12-2015 AT T ACHDE T ACHWheels/R im 0.5 N6013 23-12-2015 PRE P S E RVICE Body/CabInterior/E xterior 13.3

N6011 29-12-2015 DIAGNOS E Abs/T ractionControl 0.0 N6013 24-12-2015 INS P E CT PMCVIP 7.0

N6013 04-01-2016 RE PAIR Decals 3.5

N6011 25-01-2016 T OWING/BOOS T T otalVehicle 1.0 N6013 11-01-2016 DIAGNOS E S martbus S uite 0.0

N6011 25-01-2016 T OWING/BOOS T T otalVehicle 0.5 N6013 12-01-2016 RE PAIR DestinationS ign 0.5

N6013 17-01-2016 CHANGEOVE R T otalVehicle 0.8

N6013 20-01-2016 DIAGNOS E Farebox 0.4

N6013 24-01-2016 CHANGEOVE R T otalVehicle 1.3

N6013 28-01-2016 DIAGNOS E DestinationS ign 1.7

N6013 31-01-2016 CHANGEOVE R T otalVehicle 0.8

N6013 03-02-2016 RE PAIR P anels -E xterior 6.0

N6011 02-03-2016 CHANGEOVE R T otalVehicle 2.7

N6011 03-03-2016 DIAGNOS E Controls -E lectricP ropuls ionMotor

3.4

N6011 03-03-2016 S HOP S UPP L Y Fee 0.0

N6011 04-03-2016 CHANGEOVE R T otalVehicle 1.3

N6011 08-03-2016 DIAGNOS E DoorP anels Interior/E xterior 0.7

N6011 08-03-2016 DIAGNOS E DoorMechanism 0.5

N6011 08-03-2016 DIAGNOS E L ighting S ystem 0.0

N6011 03-03-2016 DIAGNOS E Controls -E lectricP ropuls ionMotor

3.4

N6011 08-03-2016 RE PAIR DoorMechanism 1.3

N6011 02-03-2016 CHANGEOVE R T otalVehicle 2.7

N6011 04-03-2016 CHANGEOVE R T otalVehicle 1.3

Test

Perio

d

Unit No Date Completed

Job Description Labor Hours

N6011 09-11-2015 RE PAIR Cooling S ystem 13.1

N6011 10-11-2015 RE PAIR DoorP anels Interior/E xterior 1.2

N6011 10-11-2015 RE PAIR ModP anels/InfoHolder 1.9

N6011 12-11-2015 RE PAIR Body/CabInterior/E xterior 1.3

N6011 17-11-2015 DIAGNOS E T otalVehicle 5.5

N6011 17-11-2015 INS P E CT PMCVIP 11.0

N6011 18-11-2015 DIAGNOS E Abs/T ractionControl 9.0

N6011 18-11-2015 RE PAIR Battery 0.0

N6011 23-11-2015 T OWING/BOOS T T otalVehicle 0.0

N6011 23-11-2015 CHANGEOVE R T otalVehicle 6.4

N6011 25-11-2015 RE PAIR Decals 2.8

N6011 25-11-2015 AT T ACHDE T ACHWheels/R im 3.2

N6011 25-11-2015 PRE P S E RVICE Body/CabInterior/E xterior 0.0

N6011 07-12-2015 T OWING/BOOS T T otalVehicle 0.0

N6011 09-12-2015 DIAGNOS E WindshieldWiper&Washer 2.9

N6011 09-12-2015 RE PAIR Mirrors 1.1

N6011 10-12-2015 DIAGNOS E S martbus S uite 0.0 Unit No Date Completed

Job Description Labor Hours

N6011 11-12-2015 CL E AN/S E RVIC InteriorComplete 7.0 N6013 18-12-2015 AT T ACHDE T ACHMirrors 0.3

N6011 22-12-2015 RE PAIR Decals 1.2 N6013 19-12-2015 AT T ACHDE T ACHWheels/R im 3.3

N6011 23-12-2015 AT T ACHDE T ACHWheels/R im 2.6 N6013 23-12-2015 DIAGNOS E DoorMechanism 3.1

N6011 28-12-2015 RE PAIR Abs/T ractionControl 2.8 N6013 23-12-2015 RE PAIR DestinationS ign 2.1

N6011 28-12-2015 AT T ACHDE T ACHWheels/R im 0.5 N6013 23-12-2015 PRE P S E RVICE Body/CabInterior/E xterior 13.3

N6011 29-12-2015 DIAGNOS E Abs/T ractionControl 0.0 N6013 24-12-2015 INS P E CT PMCVIP 7.0

N6013 04-01-2016 RE PAIR Decals 3.5

N6011 25-01-2016 T OWING/BOOS T T otalVehicle 1.0 N6013 11-01-2016 DIAGNOS E S martbus S uite 0.0

N6011 25-01-2016 T OWING/BOOS T T otalVehicle 0.5 N6013 12-01-2016 RE PAIR DestinationS ign 0.5

N6013 17-01-2016 CHANGEOVE R T otalVehicle 0.8

N6013 20-01-2016 DIAGNOS E Farebox 0.4

N6013 24-01-2016 CHANGEOVE R T otalVehicle 1.3

N6013 28-01-2016 DIAGNOS E DestinationS ign 1.7

N6013 31-01-2016 CHANGEOVE R T otalVehicle 0.8

N6013 03-02-2016 RE PAIR P anels -E xterior 6.0

N6011 02-03-2016 CHANGEOVE R T otalVehicle 2.7

N6011 03-03-2016 DIAGNOS E Controls -E lectricP ropuls ionMotor

3.4

N6011 03-03-2016 S HOP S UPP L Y Fee 0.0

N6011 04-03-2016 CHANGEOVE R T otalVehicle 1.3

N6011 08-03-2016 DIAGNOS E DoorP anels Interior/E xterior 0.7

N6011 08-03-2016 DIAGNOS E DoorMechanism 0.5

N6011 08-03-2016 DIAGNOS E L ighting S ystem 0.0

N6011 03-03-2016 DIAGNOS E Controls -E lectricP ropuls ionMotor

3.4

N6011 08-03-2016 RE PAIR DoorMechanism 1.3

N6011 02-03-2016 CHANGEOVE R T otalVehicle 2.7

N6011 04-03-2016 CHANGEOVE R T otalVehicle 1.3

Tes

t P

erio

d

Unit No Date Completed

Job Description Labor Hours

N6011 09-11-2015 RE PAIR Cooling S ystem 13.1

N6011 10-11-2015 RE PAIR DoorP anels Interior/E xterior 1.2

N6011 10-11-2015 RE PAIR ModP anels/InfoHolder 1.9

N6011 12-11-2015 RE PAIR Body/CabInterior/E xterior 1.3

N6011 17-11-2015 DIAGNOS E T otalVehicle 5.5

N6011 17-11-2015 INS P E CT PMCVIP 11.0

N6011 18-11-2015 DIAGNOS E Abs/T ractionControl 9.0

N6011 18-11-2015 RE PAIR Battery 0.0

N6011 23-11-2015 T OWING/BOOS T T otalVehicle 0.0

N6011 23-11-2015 CHANGEOVE R T otalVehicle 6.4

N6011 25-11-2015 RE PAIR Decals 2.8

N6011 25-11-2015 AT T ACHDE T ACHWheels/R im 3.2

N6011 25-11-2015 PRE P S E RVICE Body/CabInterior/E xterior 0.0

N6011 07-12-2015 T OWING/BOOS T T otalVehicle 0.0

N6011 09-12-2015 DIAGNOS E WindshieldWiper&Washer 2.9

N6011 09-12-2015 RE PAIR Mirrors 1.1

N6011 10-12-2015 DIAGNOS E S martbus S uite 0.0 Unit No Date Completed

Job Description Labor Hours

N6011 11-12-2015 CL E AN/S E RVIC InteriorComplete 7.0 N6013 18-12-2015 AT T ACHDE T ACHMirrors 0.3

N6011 22-12-2015 RE PAIR Decals 1.2 N6013 19-12-2015 AT T ACHDE T ACHWheels/R im 3.3

N6011 23-12-2015 AT T ACHDE T ACHWheels/R im 2.6 N6013 23-12-2015 DIAGNOS E DoorMechanism 3.1

N6011 28-12-2015 RE PAIR Abs/T ractionControl 2.8 N6013 23-12-2015 RE PAIR DestinationS ign 2.1

N6011 28-12-2015 AT T ACHDE T ACHWheels/R im 0.5 N6013 23-12-2015 PRE P S E RVICE Body/CabInterior/E xterior 13.3

N6011 29-12-2015 DIAGNOS E Abs/T ractionControl 0.0 N6013 24-12-2015 INS P E CT PMCVIP 7.0

N6013 04-01-2016 RE PAIR Decals 3.5

N6011 25-01-2016 T OWING/BOOS T T otalVehicle 1.0 N6013 11-01-2016 DIAGNOS E S martbus S uite 0.0

N6011 25-01-2016 T OWING/BOOS T T otalVehicle 0.5 N6013 12-01-2016 RE PAIR DestinationS ign 0.5

N6013 17-01-2016 CHANGEOVE R T otalVehicle 0.8

N6013 20-01-2016 DIAGNOS E Farebox 0.4

N6013 24-01-2016 CHANGEOVE R T otalVehicle 1.3

N6013 28-01-2016 DIAGNOS E DestinationS ign 1.7

N6013 31-01-2016 CHANGEOVE R T otalVehicle 0.8

N6013 03-02-2016 RE PAIR P anels -E xterior 6.0

N6011 02-03-2016 CHANGEOVE R T otalVehicle 2.7

N6011 03-03-2016 DIAGNOS E Controls -E lectricP ropuls ionMotor

3.4

N6011 03-03-2016 S HOP S UPP L Y Fee 0.0

N6011 04-03-2016 CHANGEOVE R T otalVehicle 1.3

N6011 08-03-2016 DIAGNOS E DoorP anels Interior/E xterior 0.7

N6011 08-03-2016 DIAGNOS E DoorMechanism 0.5

N6011 08-03-2016 DIAGNOS E L ighting S ystem 0.0

N6011 03-03-2016 DIAGNOS E Controls -E lectricP ropuls ionMotor

3.4

N6011 08-03-2016 RE PAIR DoorMechanism 1.3

N6011 02-03-2016 CHANGEOVE R T otalVehicle 2.7

N6011 04-03-2016 CHANGEOVE R T otalVehicle 1.3

Tes

t P

erio

d

6:5

Table6.2OtherMaintenanceorDesignIssues-ETSElectricBuses

BYDBuses(6011,6012) NewFlyerConnectingthechargerisanawkwardtwo-handedoperation.BYDhasmovedthelocationtofrontsideonnewbuses–moreconvenientwithonlyasingleactionrequiredtoinsertthecharger.

Bushasconsiderablebodyrollduetorooftopbatteriesandcomponents.Afrontswaybarwouldimprovethissituation.

Batterypackonfrontrightwheelwellrestrictsdrivervisionforrighthandturns.Someroutesand/ordrivershaveissuewiththis.BYDhasmovedthisbatterypackonitsnewgenerationofbuses.

NewFlyerchargingconnectorisheavy.Anoptionalavailableliftingarmisrequiredforfleetservicetoreducelikelihoodofconnectordamageorstrains.

ABSproblemsearlyonkeptthebusoutofservice.Softwareissue,correctedbyBYDservicestaff.

Buspowermustbecycledon/off30%ofthetimetoconnecttooverheadcharger.

Frontdoorre-openingafterclosing.Asensorwasoutofadjustmentandrepaired.

12Vbusbodybatteriesdrainingwhenparked.ETSSmartbussystemcouldbedrainingpower.

Wiringharnessespoorweatherproofsealsnotedbutdidnotcauseissuesduringthetestprogram.Beingimprovedonnewbuses.

BYDbusaccelerationanddecelerationismoreaggressivethanwhatoperatorsareusedtoduetohightorqueofelectricdrive.WintertiresrequiredinETSwinter.BYDcanre-programtheregenerativebrakingbutitmayimpactenergyconsumption.

BYDbustoohighforexistingbuswash.Buswashinnewfacilityneedstobespecifiedaccordingly.

Source:MARCON,2016

Electrificationoftransitbuseshasbeenevolvingformanyyearsinvariousforms.Trolleybuseshavebeenoperatingwithelectricalcomponentsallovertheworldfordecades.Hybridbuseswithelectricalcomponentshavebeencommonandabundantforseveralyears,andfuelcellinsmallerdemonstrationfleetsaroundtheworld.Thisexperienceallowsrapiddevelopmentofbatterybuses,usingwell-knownandgenerallyreliabletechnologies.Moreofachallengeistheintegrationofthesevariouscomponentsandlogiccontrolstonetwork.Table6.3indicatestherelativereliabilityofthevariouscomponentsusedinelectricbusesbasedonourexperience.Thenon-electricdrivecomponentshavewarrantiessimilartothosefordieselbuses.

6:6

Table6.3BatteryElectricbusComponentsandAttributes

Component Notes ExpectedReliability/WarrantyPeriod

BusChassisandcomponentlayout

Batterybuseshaveverysimilarchassislayoutandattributestostandarddiesel,CNG,hybridorTrolleybuses.Themaindifferences,otherthanBatteries/Motortodrivethebus,iselectricaloperatedaccessories.Asummaryofthesebatterybusattributedifferenceislistedbelow.

BatteryPack

LithiumIon

TechnologyalsousedinHybridbusesandTrolleybuses,andrecentfuelcellbuses.

Goodreliability.

6-12+yearslifeupfordebate.

Warranty-NFIandBYDhaveoffered12yearwarranty.

BatteryPackandComponentCooling

Coolingforbatteries,motor,invertersrequired.TechnologyalsousedinHybridbusesandTrolleybuses.

Goodreliability.

Simplecoolingloopusingelectricfan/radiators.

VoltageInverters,PowerModules

SimilartechnologyusedinHybrid,Trolley,FuelCellbuses.

Improvingreliability.Lessonslearnedfromhybridandfuelcellbuses.

Warrantyfrom2-6years.

Drivemotor(s)

Singleordualwheelmotors

TechnologyusedinHybrid,Trolley,Fuelcellbuses.

Goodreliability.

UsuallyEuropeantechnology.

Warrantyfrom2-6years.

Electricbusrearaxle Standardproductionaxlesavailable

Goodreliability,standardaxles.Specialdriveshaftmustbeused.

Warranty5-6years.

PowerSteering SimilartechnologyusedinHybrid,Trolley,FuelCellbuses.

Goodreliability.

Warrantycoveredunder1-2yearbumpertobumper.

AirCompressor SimilartechnologyusedinHybrid,Trolley,FuelCellbuses.

Excellentreliability–directdrivescrollcompressorsoftenused.

Warrantycoveredunder1-2yearbumper-bumper.

BodyHeating Dieselheatersusedinmostdieselbusessince2007.Electricheatingevolving.

Fairreliability.Dieselheatershaveoftenbeenproblematicinbuseswithsmokingandmaintenanceproblems.

AirConditioning TechnologyusedinHybrid,Trolley,Fuelcellbuses.

Excellentreliability.Electricdrivenaircompressorscommonandstandardavailability.

ElectricalIntegration CommunicationandLogicbetweenelectricalcomponentsiscritical.

Good-Fairreliability.Somemanufacturershavemorerobustexperienceinintegratingvariouselectricalcomponentsthanothers.Techniciansmusthavetrainingandexperience.

HighVoltageWiring Similartechnologyusedinhybridbuses,trolleybusesandFuelCellbuses.

Goodreliability.Somemanufacturershavemorerobustexperienceinqualitycontrolandinstallationmethods.

Source:MARCON,2016.

6:7

6.4 Impactofwinterperformanceofe-busesonETS’s6.4.1 Temperature

ConsideringEdmontonisoneofthecoldestcitiesinNorthAmerica,temperatureisofparticularimportancetoETS.Adetailedanalysisofthetestresultsobtainedduringthetestprogramwasconductedtodeterminetheimpactoftemperatureonperformance.TheAVTreportontheSTO/STMtrialsinQuebecwasalsotakenintoaccount55.Althoughtherewereonlysevenverycold(-15to-22oC)daysduringtheEdmontontestperiod,MARCONisconfident56thattheconclusionsofthistestprogramcanbereliablyextrapolatedtocoldertemperatures:

• Propulsionenergyuse:Propulsionenergyuseandbatteryperformanceisunaffectedbycolderambienttemperatures.RefertoSection3.8.2forfurtherinformation.

• Interiorbusheat:Empiricalmeasurementsshowthatacomfortabletemperaturewasmaintainedduringthetestprograminsidealle-buses,withorwithoutthedieselheater.However…o Electricheat–rigoroustestinginQuebecbyAVThasconcludedthatdieselheatis

requiredinverycoldtemperatures57.Upto50%ofbatterypowercouldbeusedtoheatthebuswithelectricheaters.Ofcoursethisdependsonoutsidetemperature,anddooropeningfrequency.Anecdotalexperienceshowstypically20-30%energyuseforelectricheating.Thiscanbeeasilycalculated–atypicalSpheros300dieselheatercanproduce30kW/hour(100,000BTU)ofmaximumheatingenergy.ETStestsshowed15-20kWh/hourofpropulsionenergyuse.

o Conversely,electricairconditioningcanconsumeupto35kWofenergy.Onextremelyhotdayswithfrequentdooropenings,thiscouldlimitthebuses’operatingrange.

Customerperceptionsoftheindoortemperatureine-buses(seesection4.2.7)indicatethatalle-busesperformedadequatelyand,ifanything,werealittlewarmerthanpreferred.

6.4.2 Servicing

Severalservicingissueswereidentifiedduringthisstudy:

• Batteryelectricbusesmustbeparkedintheheatedparkingbarnwhennotoperating.ThisisnormalforETSoperations,butcriticalforbatterybuses.AWhitePaperfromCALSTART58showedLithium-Ionbatteryperformancedropsoffsharplybelow0oC.However,whenvehiclesarekeptwarmwhennotinuse,theheatmanagementsystemonboardthebusesiswellabletopreventthisdropinperformancebykeepingthebatteriesattheiroptimaltemperatureunderallconditions.

• Dieselusageforspaceheatersnormallyincreasesincoldtemperatures.Adieselfillscheduleshouldbedesignedtoensurethetankhassufficientfuelforaday’soperation.

• Buswashing.Batteryelectricbuseshavemuchmorewiring,connectors,electroniccontrolsandcomponentsthanstandarddieselbuses.Meltingsnowonroofandsalt

55 EvaluationReport:BYD'sGreenCityElectricBus(STO&STM),Sociétédegestionetd'acquisitiondevéhiculesdetransport(AVT),August2014.

56 Certainlywithinthecontractuallevelofprecisionofthisassignment.57 Ibid55.58 E-truckPerformanceinColdWeather,CALSTART,Pasadena,CA,June2014.

6:8

intrusionontocomponentscancauseelectricalproblems.Acleaningandwashingschedulemayhavetobedesigneddependingonroadsaltbuild-uponbuscomponents.

6.4.3 BusDriving

Severaloperatingissueswereidentifiedduringthefieldtrials:

• Batteryelectricbuseshaveregenerativebraking.Whentheacceleratorpedalisreleased,thesystemusesthemotorasanalternator,therebyautomaticallyconvertingthekineticenergyfromthemovementofthebusintoelectricenergythatisbeingsentbacktothebatterypack.Theuseofthemotorinthatmannercausesthebustoslowdown.Thiscancauserearwheelslip,orABSevents,inveryslipperyconditionsbyhavinglessdirectcontroloverrearwheelbraking.BYDrecommendsturningofftheregenerationinextremelyslipperyconditions(icyroads).

• Electricmotorscanhavealotoftorqueandso,electricbusescanacceleraterelativelyrapidly,dependingonhowthedrivesystemhasbeenprogrammed.Rapidaccelerationcanalsocauserearwheelslip.Toacertainextent,operatorsneedappropriatetrainingandmustgetusedtothisaddedpower.Snowtirescanbeinstalledinthewintertohelpthembettercontrolthebusbutaccelerationanddecelerationprogrammingcanbeadjustedbythemanufacturerifnecessary.Reducingtheregenerationrateonbrakingwillhoweverdecreasetheamountofenergythatcanberecoveredandreusedbythebatteries.

• Inanyvehicle,energyuseisgreatlyaffectedbydrivinghabits.DrivertrainingprogramsarestronglyrecommendedtomaximizethebenefitofusingbatteryelectricbusesifETSelectstoelectrifyitsfleet.

• Similartoothertechnologies(hybrid,trolley,fuelcell)batterybuseshavedifferentwarninglightsandalarms,andsafetyprotocols.Againfocuseddrivertrainingisrequired.

• WinnipegTransithasnotedupto15%moreenergyusageonheavysnowdays(2”onroadormore).Thisshouldbetemporaryinoperationasitishopedroadclearingandtrafficwillreducethesnowload.

6.5 LessonsLearnedLessonslearnedandconclusionsregardingtheETSfieldtestandthisinvestigationintoe-Busreliabilityaresummarizedbelow.

TheliteraturereviewaswellastheresultsfromthefieldtestinEdmontonrevealedthate-busesastestedare,fromanelectricdriveviewpoint,atleastasreliableasdieselbusescurrentlydeployedatETS.Ofcourse,thequantityofdataatourdisposalwassomewhatlimitedbytheshortdurationofEdmonton’sfieldtestandbythenewnessofthetechnologyitself.Butgiventhefactthat:

• almostallotherbuscomponentsareakintothosecurrentlybeingused;• electricmotorsaresimple,wellknownandhaveproventobereliableinmany

applications;and,• batteriesareevolvingrapidlybuthavesofardemonstratedtheirrobustness.

ItshouldbenotedthatWTChasbeenexperiencingissueswithitsen-routechargingsystem.ThisshouldbeinvestigatedfurtherinordertocorrectanypotentialproblemifthistechnologyistobeadoptedbyETS.

7:1

7 Externalitiesandrelatedcosts

7.1 MethodologyExternalitiesrefertocostsandbenefitsassociatedwiththechoicetoinvestine-busesthatarenotincurreddirectlybyETSbutthatmustbeconsideredinabroaderperspectivebyamunicipalgovernment.

Inordertodeterminesomeofthesecosts,theETSSteeringCommitteedirectedMARCONtoworkfromasinglescenario:40e-busesassignedtoanewfacilitystillinplanning,theNorthEastTransitGarage(NETG).Calculationsdescribedinthissectionarebasedonthisscenariobutcalculationsfirsthadtobeperformedtodeterminewhetherthegridcouldhandletheadditionalelectricload,andifthebusescouldhandletheusageprescribedbytheSteeringCommittee.

7.1.1 Methodologyusedtoanalyzegridimpacts

Onelimitingfactorwhenconsideringlarge-scaledeploymentofe-busesistheimpacttotheelectricalgrid,andtheassessmentofavailablepoweratpotentialcharginglocations.Poweravailabilitycanalwaysbeincreasedbyaddinginfrastructure,butpotentiallyatgreatcost.InFigure7.1,electricitycreatedatapowerstationisdeliveredtoanendcustomerthroughaseriesofinfrastructureitemsincludingstep-uptransformers,highvoltagetransmissionlines,step-downtransformersubstations,lowervoltagelocaltransmissionlines,andcustomerlocationtransformers.Anyoftheseinfrastructurepiecescanbecapacitychallengedbasedonthelocaldemand.

InEdmonton,thelocaldistributionutilityisEPCOR,anditistheirresponsibilitytoanticipatethepowerneedsoftheirterritoryandplantheinstallationofequipmentthatthecustomerswillrequiretosatisfydemand.Eitherthecustomerortheutilitycaninstallequipmentonthecustomer-sideofadistributionsubstationwithoutregulatoryapprovals.TheAlbertaElectricSystemOperator(AESO)istheregulatorthatprovidesapprovalstotheutilitiestoinstallmajorequipment(substations)thatconnectsdirectlytothegrid.AnAESOregulatedapprovalislengthyandcostlyastheprocessincludesmandatorypublicengagement,front-endengineering,andcouldtakeuptotwoyearsforfinalapprovals.Inthebusinesscasepresentedinsection9,MARCONassumesthatnonewsubstationswouldbebuiltasEPCORdidnotraisethispossibilitywhenpresentedwiththeparametersofthestudy.Substationcapacityatpeakloadisthusoneofthemostsignificantlimitinginfrastructureitemsinthestudy,andthechargingstrategiesdescribedbelowreflectdifferentapproachestodeliveringelectricitytoe-buses.

Figure7.1-KeyComponentsofanelectricalgrid

7:2

Inordertoestablishtheamountofpoweravailableforchargingatvariouslocations,MARCONconnectedwithEPCORandrequestedacurrentandforward-lookingassessmentofavailablepowerateachtransitgarage.EPCORprovideddatafromwhichMARCONwasabletocalculatethemaximumnumberofbusesthatthispoweravailabilitycouldservice.

Theenergyrequiredonadailybasisbyeachofthe40e-buseswasdeterminedbymakingadetailedanalysisofalltheblocksservedbythefleetpostedattheWestwoodfacility,(WestwoodGarage).Potentialblocksthate-busescanservicewerethenidentified.Finally,theoptimalassignmentofe-busestopotentialblockswasdetermined.

AbatterydepletionsimulationdevelopedbyMARCONwasthenusedtopredictthestate-of-charge(SoC)ofbusesreturningtothegarage.TheSoCofabusanditstotalbatterycapacitydictatehowmanyminutesofchargingarerequiredtosupplyasufficientamountenergytothebatterysoitcan(minimally)serviceitsnextblockassignment,andideallybefullycharged.

Despitetheirrating,chargingstationperformanceisultimatelylimitedbythechemistryofthebatteryonthebus.Manybusvendorsareusingamixtureofthirdpartyandproprietarybatterytechnology;someoperationalconstraintslimittheirdeployment.Thescopeofthisprojectdidnotincludeacompletereviewofallchargingoptionsavailableonthemarket.Forthepurposesofthisreport,MARCONbaseditscalculationsontheequipmentprovidedbythevendorsthatparticipatedinthistestprogram.

Onlytwochargingtechnologieswereconsidered:Trickle-charginganden-routecharging.

BYDofferstrickle-charging,conductivechargingunits.PowerspecificationsallowforaBYD12mbustogetafullchargefromemptyin3.5to5½hours,dependingonunitused.

Althoughaconductivesystemisavailablefromthissupplier,NewFlyeroffersanen-routerapidchargerthatwasusedforourcalculationsinEdmonton.Basedonamaturetechnologyfromtherailindustry,thischargeroffersUpto300kWofoutputpowerfroma600VAC3-phasenominalvoltageinput.ItisavailableinbothNemaType1(Indoor)andNemaType3R(Outdoor)enclosures.

Thetwochargingmethodsarefundamentallydifferentinhowtheyinteractwiththegrid,andtheexternalitiesassociatedwitheacharediscussedlaterinthissection.Ultimately,theenvironmentalexternalitiesareinfluencedbythetechnologyconstraintsofeachchargingmethod,becausetheutilizationpotentialofthebusesdeterminestheamountofdieselbeingdisplaced.

7.2 Batterydepletionandfuel-useThebatteryofanelectricbusisanalogoustoitsfueltank.Theoretically,therangeofabusisdeterminedbyitsbatterycapacityanditsfuelefficiency(oftenrelatedtoitscurbweight).Practically,otherfactorssuchasitspayload,thedrivinghabitsoftheoperatorandroadconditionshavesubstantialimpactofitsperformance.

Figure7.2Winnipeg'sen-routechargingequipmentwithaNewFlyerbus

7:3

In the ETS field tests, the BYD buses wereequipped with 324 kWh battery, and the NewFlyerhada200kWhbattery.Bothvendorsofferalternative battery capacities, but 324kWh isone of the largest capacity commerciallyavailabletoday.

In a conservative way, MARCON selected theworst fuel-efficiency performances observedduring the field trials to calculate the single-chargerangepotentialofbothe-bustypes.Thisrepresented electricity consumption rate of1.25kWh/km for the BYD bus. Themanufacturer recommends that at SoC of 15%,the bus returns to the Garage (warning lightsappear on the console). BYD can thereforehandlearunof220kmbefore itheadsbacktothe garage for a recharge. Table 7.1demonstrates a battery depletion model for aBYD bus. The cells marked in green representtime in which the bus is recharging. Note thattheminimumSoCinthisexampleneverreachesbelow15%.

In this example, the bus consumesapproximately 22.5 kWh of electricity per hourof use, and recharges at a rate of 60 kW/hour.The best use for a trickle-charged bus isthereforein“peaker”capacity(2blocksassignedperday)asitenablesitsownertomaximizethe

servicethebuswilltherebyprocure.

InthecaseofanNFIbus,theelectricityconsumptionratewasmeasureda1.38kWh/km.Thebuscanthereforecover116kmonafullchargeofits200kWhbattery60.NFI’se-busoperatinginWinnipegrechargesen-routewiththerapidchargingconductivesystemdescribedearlier.Itislocatedwherethebushasascheduledlayoverattheendofeachrun.Thisallowsthebustotop-upforafewminuteseachhour.Thischargingtechnologycaneradicateconcernswithrangelimitations,providedthatasufficientamountofstrategicallylocatedchargersareavailablealongitsroute61.

59 Rapidchargersdonotrechargebatteriesasfastpast80%oftheirnominalcapacity.MARCONthereforeuses80%ofnominalcapacityasthemaximumSoCinitsmodel.SeediscussiononroundtripefficiencyintheAppendix1lexicon.

60 WhileNFIcanalsodeploya300kWhbatterybus,BYDwasusedtomodelthetrickle-chargingscenariobecauseitismoreefficient.

61 ItshouldbenotedthatwhiletheWTChasa100kWchargerattheirgaragefacility,ithasrarelybeenusedbecausetherapid-chargerlocateden-routeprovidessufficientopportunitiestokeepthebatteryfullycharged.

Hour# Time Charge(kWh)

0 5:00 3241 6:00 2992 7:00 274

3 8:00 2494 9:00 2245 10:00 199

6 11:00 2597 12:00 3198 13:00 324

9 14:00 29910 15:00 27411 16:00 249

12 17:00 22413 18:00 19914 19:00 174

15 20:00 4916 21:00 12417 22:00 184

18 23:00 24419 0:00 30420 1:00 324

21 2:00 32422 3:00 32423 4:00 324

24 5:00 324

Source:MARCON,2016.

Hour# Time

Charge59(kWh)

0 5:00 1601 6:00 157

2 7:00 1553 8:00 1524 9:00 150

5 10:00 1476 11:00 1447 12:00 142

8 13:00 1399 14:00 13710 15:00 134

11 16:00 13112 17:00 12913 18:00 126

14 19:00 12415 20:00 12116 21:00 118

17 22:00 11618 23:00 11319 0:00 111

20 1:00 10821 2:00 16022 3:00 160

23 4:00 160

24 5:00 200

Source:MARCON,2016.

Table7.1BYDBatteryDischarge

Table7.2–NFIBatteryDischarge

7:4

Table7.2demonstratesabatterydischargemodelofen-routechargingfora200kWhNFIbususingarapidconductivecharger,asisthecaseinWinnipeg.Inthisexample,thee-bususesapproximately27.5kWhofelectricityperhour,andthebusreceives5minutesperhourofchargingusinga300kW(25kWh)chargingstation.Itcanbeobservedthatthebatterydepletesthroughouttheday,buttheminimumrecommendedSoC(20%)thatwouldrequirethebustocomeoutofserviceisneverreached.Thusthereisnorangelimitationusingthistechnology.

WhiletheaverageETSdieselfleetfuelefficiencyisapproximately54L/100km,the2013Xcelsiordieselbusesusedasbaselinecomparativevehiclesforthefieldtrialsrunningalongtheelectricbusesconsumedonly49L/100km.

7.2.1 Spaceheatinganditsimpactofenergyefficiency

Inadieselbus,heatforpassengercomfortisharvestedfromtheengine’scoolingsystemthatwouldotherwiseventthisenergy.Spaceheatingthereforehasnoimpactondieselbusenergyefficiency.Inane-bushowever,thedischargeofthebatterypackdoesnotgenerateasufficientamountofheat62tomaintaintheinteriorofthebusatacomfortabletemperatureatalltimes.Heatingloadsthereforerepresentanadditionaldrainonbatteriesunlesse-busesareequippedwithheatersfedbyanotherenergysource.Themostcommonwayistofitthebuswithanauxiliarydiesel-fuelledheater.

Usingelectricspaceheatingreducestheefficiencyofane-bussignificantly.Inourfieldtest,bothmanufacturerssuppliedane-busequippedwithadieselheaterandonebushadanelectricheateraswell.63Datafromotherfieldtrials64performedinQuebec(Montreal,GatineauandLaval)showthatonextremelycolddays,electricheaterscreateapowerdrainonbatteriescanbeasmuchas25%65ofitstotalcapacity.Theenergyconsumptionofbusesusinganelectricheatersincreasessubstantiallyontheseverycolddays,decreasingtherangeofbusesproportionately.Thiscanpotentiallylimittheblocksthatthee-buscanserviceonoccasion.

Whenusingelectricspaceheating,therearenoexternalitiesassociatedwithupstreamelectricitygenerationastheamountofenergyusedbythebusesremainsthesame.ButusingauxiliarydieselheatersincreasesbothGHGemissionsanditsassociatedcost.Thedieselheatersusedinfieldtrialsconsumedanaverageofapproximately2litresofdieselper100km.

Usingdieselspaceheaterswouldalsochangethewaythate-busescouldbecharacterizedandmarketedtocustomers.Forinstance,thebuscould(technically)nolongerbedescribedasentirely“tailpipeemissionfree”,andwhilstthisdieselconsumptionismarginal(approximately4%ofastandarddieselbus),theodourofdieselcombustionmightstillbenoticeabletocustomers.

62 TheoperationofanybatterygeneratesheatduetotheI2Rlossesascurrentflowsthroughtheinternalresistanceofthebatterywhetheritisbeingchargedordischarged.ThisisalsoknownasJouleheating.Inthecaseofdischarging,thetotalenergywithinthesystemisfixedandthetemperaturerisewillbelimitedbytheavailableenergy.Batterydesignersstrivetokeeptheinternalresistanceofthecellsaslowaspossibletominimisetheheatlossesorheatgenerationwithinthebatterybutevenwithcellresistancesaslowas1milliOhmtheheatingcanbesubstantial.SeeEffectsofInternalImpedanceforexamples.

63 NotethatdatafromtheBYDbusequippedwithanelectricheaterisconsideredunreliablebecausethatbuswasputinservicelateinthetestperiodandyieldedsporadicresults.

64 EvaluationReport:BYD'sGreenCityElectricBus(STO&STM),Sociétédegestionetd'acquisitiondevéhiculesdetransport(AVT),August2014.

65 Itshouldalsobenotedthatsevereweatherconditions(below-25C)werenotencounteredduringthetrial,thuscolderdaysthanthoseencounteredwouldlikelydecreasetheefficiencyandrangeofthebusesevenfurther.

7:5

7.3 Assignmentof40e-busesfromWestwood

7.3.1 BlocksandRoutes

TheWestwoodgarage(andthereforeitsreplacement,theNETG)has395weekdayblocks,95Saturdayblocks,and66Sundayblocks.Tocreatea40-busscenarioforeachchargingmethod,thereneedstobeamatchbetweentherangecapabilitiesofthetechnologiesandthecharacteroftheblock.

BasedontheblockscheduleineffectonFebruary16th,2016,weekdayblocksvaryinlengthfrom430kmto12km.SaturdayandSundayblocksdonotinclude‘peaking’servicesthustheaverageblockdistanceisconsiderablylonger,263kmand275kmrespectively,comparedto110kmforweekdays.

Trickle-chargede-busesAne-busequippedwitha324kWhenergystoragesystemandconsuming1.25kWhperkilometreasmeasuredinthefieldtrialscancoverablockof220kmbeforereachingtherecommended15%SoClimit.Buttakingintoaccountaspareratioof20%,theaverageyearlydistanceascribedtoe-busesbySteeringCommittee(seefigure9.1)caneasilybeexceeded,asthemaximumpotentialofthesee-busesis57,850km.Inyear2,theusagepatterncallsfor59,000km.Thisisfeasibleasthebuses,intheirearlylife,willexperiencelessdowntimeformaintenance

Basedonthebatterydepletionmodelsdescribedintable7.1,trickle-chargede-busescanservice334weekdayblocks,butonly33onSaturdayand22onSunday.Itisevenpossibletocreatemoreweekendblockopportunitiesforthesebusesbysplittingsomeofthelongerblocksintoportionsthatthetechnologyiscapableofservicing,buttheredesignofblocksisbeyondthescopeofthisproject.

En-routechargede-busespotentialEn-routechargingenablesbusestostayontheroadmuchlonger.Therearelessthan10BlocksoutoftheWestwoodGaragethatanen-routechargedbuscouldnotcompletebasedontheinfrastructurescenariodescribedinsection7.3.6.

7.3.2 Interlining

Interliningisusedtomaketheoverallfleetutilizationmoreefficientbyhavingabuscovermorethanonerouteduringitsblock.Interliningisirrelevanttothetrickle-chargedbuses,astheydonotrequireanyinfrastructureontheroad.Butchargingstationsforen-routechargede-busesareusuallypositionedattransitcentres,thereforerequiringblockassignmentstobedonewiththelimitationsofthevehiclesinmind,ascertainroutesmaynotbeserviceablebytrickle-chargedbuses.

Inthisanalysis,ablockisconsideredaviableassignmentforanen-routechargedbusonlywhenalloftheroutesonthatblockhaveaTransitCentreequippedwithachargingstation.

7.3.3 BlockAssignmentStrategyandDutyCycle

Duringthefieldtrial,bothBYDandNewFlyerweretestedbythecity’stoughesthillsfullyloaded,andinwinterconditions.Neitherbusshowedperceptibledifficultyclimbingthesehills.Giventhisperformance,MARCONconcludesthatthereisnorouteinthecitythate-busesareincapableofdriving,noristherealikelihoodthatsucharoutewillbedesignedinthefuture.

7:6

Ase-busescandeliversignificantoperationalcostsavingscomparedtodieselbuses(Section9),itisadvantageoustoassigne-busestothelongestblocksthattheirrangesarecapableofservicing.OuranalysisofeachWestwoodgarageservicedblock,ofthenumberofkilometresdrivenandthetimeatwhichthebusesleaveandreturntothegarageisknown(Appendix2).Basedontheresultsofthefieldtrials,MARCONcalculated:

• Theamountofdieselfuelrequiredbythelatestmodeldieselbusesinservice;• Theamountofelectricityrequiredbybothtypesofe-buses;• AbaselineforGHGemissionsfromthedieselbuses;• TheamountofGHGemissionsattributabletotheelectricityconsumedbye-buses;• ThereturntogarageSoC;and,• Theamountoftimeavailabletoreplenishtrickle-chargede-busesatthegarage.

Trickle-chargede-busesInordertoestablishthemaximumin-servicerangeofthesevehicles,thelongest40morningblocksandthelongest40afternoonblocksthetrickle-chargede-busescouldhandlewereassigned.MARCON'sselectionofblockswasbasedontheamountoftimereturninge-busesassignedtomorningblockswouldhaveforrechargingbeforebeingsentontheirafternoonruns.ThemorningblocksselectedinthismodelcommonlyleavetheWestwoodgaragearound06:00hours,andreturnaround09:20hours.Theafternoonblocksgenerallydepartaround15:15hourstoreturnatapproximately21:30hours.

Onaverage,theseassignmentsprovidetheopportunityforabout360minutesofchargingafterthemorningrun,andapproximately500minutesofchargingatnight.Usingadedicated60kWchargerforeachbus,thereissufficientchargingtimebothbetweenthemorningandafternoonblocks(83chargingminutesrequired)andovernight(178chargingminutesrequired)forthebusestoleavethegaragefullychargedeverydayonallassignedblocks.

Usingthetargetedblocks,eachtrickle-chargedbuscouldmaximallydriveupto57,800km/year.TheusagepatternsuppliedbyETScallsforupto59,000kmofserviceinyear2.Thiswillbeachievablewithtrickle-chargede-busesasthedowntimerequiredformaintenanceinthebuses’earlylifeisnomorethan15%.

7.3.4 Externalitiesassociatedwiththeuseoftrickle-chargedbuses

EPCORprovidedMARCONwithestimatesofcurrent(2015)andfuture(2020and2025)loadforalloftheETSgarages.Table7.3describesthesubstationassignedthenewWestwoodfacilityandtheestimateofavailablepowerthatcouldbededicatedtochargingstations.Theestimateincludesaprojectthatwilladdanother100ampsofavailablecapacitytothesiteat600Volts.Availablecurrentsuggeststhatupto44concurrentchargingstationscanoperateunderthiscondition,andifanautomatedswitchgearwasinstalledtotakeadvantageofthechargingequipmentavailabilityratio,upto121busescanbepotentiallychargedunderperfectconditionspernight.

7:7

Table7.3Substationcapacitylimitations

2015 2020

Division CircuitLim

it

2015

Sum

merPeakLoad

ing

AvailableAm

ps

2020

Sum

merPeakLoad

ing

AvailableAm

ps

BYD60

kWCha

rgingStations

#BY

D60

kWCha

rgingStations

NewWestwoodGarage(asplanned) 316 176 140 184 132 47 44Source:EPCOR,2016.

7.3.5 Externalitiesassociatedwiththeuseofen-routechargede-buses

TheWinnipegTransitCorporationhasbeenusingtwoNewFlyeren-routechargede-busesoperatingonthedowntown-airportrunforthepast16months.TheconfigurationofthetechnologydeployedinWinnipeghasbeenusedinthecalculationsofthisstudy’sbatterydepletionandblockanalysisforlackofthisequipmentintheETSfieldtrial.ThebusperformancesusedforourcalculationsarehoweverfromtheNFIe-bustestedinEdmonton.

Thetechnicalconstraintlimitingthemaximumnumberofbusesutilizingen-routechargingisthenumberofchargingstationsthatcanreasonablybedeployedforthistaskandhowefficientlytheycanbeutilizedwithoutaffectingservicedelivery.Ourcalculationsarebasedontheassumptionsthateachbuswillbenefitfroma5-minutechargeatarapidchargingstation.MARCONassumedautilizationrateofonly75%,resultinginnomorethan8busesperhourhavingaccesspercharger.

Theinfluenceontime-of-dayavailabilityofchargingstationsassociatedwithinterliningwasnotstudiedasitexceedsthescopeofthisstudy.Inordertocharge40e-busesinserviceatanygiventime,8en-routerapidchargingstationsarerequired.Theywouldbelocated66at:

• 1station–JasperPlaceTC• 1station–ColiseumTC• 1station–BelvedereTC• 1station–EastClareviewTC• 1station–WestClareviewTC• 1station–NorthgateTC• 1station–EauxClairesTC• 1station–CastleDownsTC

Theen-routechargingstrategyassuggestedabovepermitsmostofthelongestblocksoutofthegaragetobeassignedtoe-buses.Eachbusdoes,however,requireaccesstoachargerforon

66 Thescopeofthisstudydoesnotprovideforananalysisofthefeasibilityofinstallingrapidchargingstationsatthelocationsindicatedherein.

7:8

average4-6minutesperhour.Conveniently,thistimerequirementislargelybuiltintotheBlockschedule,withlayoversatatransitcentreofapproximatelythesamefrequencyanddurationalreadybuiltintoeachroute.Interliningcanalsohavetheaddedbenefitofanextendedlayoverasabusshiftsfromroute-to-routedependingontheblock,therebyprovidingadditionalchargeravailability.

TheanalysisofWestwood’sblockssuggeststhatusingthisrapidchargingequipment,ETScoulddeploymorethan40e-busesassignedtothemajorityofthelongestblocksoutofthegarage.Iftheutilizationrateofen-routechargingstationsreached75%,thesameen-routecharginginfrastructurecouldserviceanadditional16buses.

Assumingthatwhene-busesreturntothegarage,theiraverageSoCis69%,toppingupeache-busto80%ofitsbatterynominalcapacitywouldrequirealittlelessthan5minutes.Asinglerapidchargercantheoreticallyperformthistask,butequippingthegaragewithasecondunitwouldallowtheservicecrewtousethesameroutineaswiththedieselbuses.Alternatively,thesee-busescouldbetoppedupatthefirsttransitcentrestheyencounterontheirblockbysimplyadding5minutestotheblocks.Thiswouldhavelessthana1%impactontheaverageassignedblocklength(1034minutes).Inthiscase,atricklechargerwillberequiredatthegaragetohandlecasesofself-depletion(seelexiconinAppendix1).

EPCORalsoprovidedforward-lookingpowercapacityandpowerutilisationestimatesfortheTransitCentrelocations.Allidentifiedlocationshavesufficientpoweravailabletoinstallatleasttwo300kWhrapidchargingstationsasEastandWestClareviewwoulddrawpowerfromtheWestClareviewTC.Thisanalysissuggeststhatnoadditionalsubstationswouldberequiredtobebuilttosatisfytheimplementationofthistechnology,andthatthereissignificantopportunitytoexpandbeyond40busesinthefuture.

Table7.4TransitCentrechargingpotential

Division CircuitLimit

2015SummerPeakLoading

AvailableAmps

2020SummerPeakLoading

AvailableAmps

#NewFlyer300kWChargingStation

NorthgateTransitCentre 380 333 47 346 34 3.9

ColiseumTransitCentre

380 319 61 305 75 5.0

BelvedereTransitCentre 310 145 165 250 60 4.0

EastClareviewTransitCentre 0.0

WestClareviewTransitCentre

380 345 35 279 101 6.7

EauxClairesTransitCentre

380 262 118 272 108 7.2

CastleDownsTransitCentre 380 332 48 345 35 2.3

JasperPlaceTransitCentre 380 225 155 234 146 9.7

Source:EPCOR,2016.

Thiscapabilitydoescomeatacapitalcostasshowninsection9.2.2.WhilethepriceofaBYDe-busincludesitstricklechargingsystem,transitpropertiesmustpurchaserapid-chargingstationsseparately.En-routechargingsystemsservemultiplebuses(5-12each).

7:9

7.4 OtherexternalitiesInits2016budget,theFederalGovernmentannounceditsintentiontoinvestintransitinfrastructure.Intotal,thisbudgetcommitted$347MtotheprovinceofAlbertaandEdmontonwilllikelyreceivealargeshareofthesefundsastheyareallottedonthebasisofridership.

Fundinghasbeenearmarkedforprojectsthatincreasedriderdensity,andbenefittheenvironment.ETS’sValleyLineLRTprojectsatisfiestheserequirements,aspotentiallywouldanelectricbusdeployment.Oneadvantageofane-busproposalisthatETShasanaturalprocurementcycleplannedin2017fornewbuses,anddieselbuseswillnotlikelyqualifyforthisfederalfundingopportunity.

Despitethisfavourablesituation,thebusinesscasepresentedinsection9doesnottakeanycontributiontotheimplementationprojectfromeitherthefederalorothersource.

7.5 KeyfindingsExternalitiesassociatedwithchargingprincipallyconcerntheamountofpoweravailableatspecificlocationsatboththegaragesandtransitcentreswherechargingequipmentwillbelocated.TodeterminehowabuswillfunctionallyoperatewithinETS’sexistingblockstructure,everyblockassignedoutofthegaragewasevaluatedtodeterminewhetherane-buswouldbecapableofcompletingtheblock.Suitableblockswererankedbydistancewiththepreferredassignmentrankedbythelongestdistancetravelled.

Fromanexternalitiesviewpoint,thereareadvantagestoeache-bustechnology.En-routechargedbusescanbededicatedtothelongerblocks.Thisissignificantbecausethemoredistanceane-buscovers,thegreaterfinancialbenefitityieldscomparedtoitsdieselfuelledcounterpart.Themostsignificantadvantageofdistributedchargingstrategiesfromariskmitigationperspectiveisthattherearemorephysicalconnectionstotheelectricalgrid,thusthereisgreaterredundancyintheinfrastructuresystem.Forinstance,ifasinglesubstationweretofailinadistributednetwork,anen-routechargedbuswouldstillmostoftenhave2-3otherTransitCentrestochargeat.Interliningactuallyreducesriskinanen-routescenario.However,ifthesubstationupstreamoftheGaragewastofail,everythingdependentuponitdoesaswell.

Asfortricklecharging,itsmainbenefitisthelowerinitialinvestmentrequired.Charginginfrastructurewouldbelocatedinonefacility.Addingchargingstationstothisfacilitywillnotrepresentasubstantialinvestmentcomparedtothecostofmodifyingeighttransitcentresinadditiontotheplannedgarage.Tricklechargingatasinglelocationwillalsominimizethedisruptionoftrafficinthecitythatwillinevitablyresultfromthemodificationofthetransitcentres.

Also,distributingthechargingprocessofbusesthroughoutthecityhasmanypositivebenefitsforthecity’selectricalinfrastructure,deliveringEPCORwithabetterdistributionoftheadditionalloadoveritsexistingpowergrid.ThiscanprovideopportunitiesforEPCORtoimprovethereturnontheirinfrastructureinvestment.

Creatingadditionaldemandforelectricitymightalsospurtherenewalofenergyproductionequipment,andpotentiallytheinstallationofgreatercapacitywithinthecity.

Albertahasnotexperiencedasignificantdeploymentofelectricvehicles.UtilitiesandAESOhavethereforenotdevelopedprojectsormodifiedtheirdemandforecastswithelectricvehicles(EVs)

7:10

inmind.ETScouldbethecatalystforatransportationelectrificationstrategycitywide.EPCORandtheCityshouldworkcollaborativelytodevelopapolicyandinfrastructureplansthatanticipatehowelectricalenergydemandwillgrowinresponsetoemergingEVtechnologies,andariseinconsumerconfidenceinhowanelectricvehiclecanmeettheirtransportationneeds.Bycreatingtheseplans,therewillbemoreopportunityforcapacitybuildingwithintheratebase,whichwillreduceprojectspecificcosts.ConsumercomfortwithEVswillalsopotentiallyeasestakeholderconcernswhenregulatedprojectsworktheirwaythroughtheapprovalprocess.

Finally,theadoptionofEVsbytheirmunicipalgovernmentsendsastrongandpositivesignaltocitizensregardingthistechnology.Itwillencouragethepopulationtoconsider,andeventuallyadoptEVsinawiderfashion.ThiswillhaveameasurableimpactonthecarbonfootprintofEdmonton.

8:1

8 Environmentalimpactofe-busesatETS

8.1 MethodologyTheGHGintensityofAlberta’sgridisexpectedtodecreaseovertimeasolderand“dirtier”powerplantsaredecommissioned.Toprojectafuturegridintensity,MARCONextrapolatedutilizationofinstalledcapacitybasedonAlberta’s2014electricityproductionreports67andAESO’slongtermoutlook68estimates,bothfutureinstalledcapacitiesandtotaldemandinyears2019,2024,and2034.

AESOalsoprojectspowergenerationscenariosthatincludeMainGrowth,LowGrowth,EnvironmentalShiftandEnergyTransformation.UsingthemainoutlookAESOscenario,thegridintensitywouldbeexpectedtodropfrom0.81TCO2

e-/MWhin2014to0.46TCO2e-/MWhin

2034.Thisanticipatedimprovementwouldhaveresultedmainlyfromthe2012Federalregulationregardingcoal-firedpowerplantsthatdecreesthedecommissioningofcoal-firedplantsnolaterthan45yearsfromtheircommissioningdate.Inaddition,theuseofrenewableenergy,cogenerationandgas-firedpowerplantsbyutilities,oilsandscompaniesandpetroleumrefiningindustrieswillalsocontributetoreducingthegrid’sintensity.

Table8.1Year2013gridintensity

InstalledCapacity(MW)

%oftotal

capacityGHG

t/MWhUtilisation

rateProduction(MWh/year)

GHG(TCO2e/year)

Coal 6271 42% 1.20 81% 44441574 53329888Cogeneration 4245 28% 0.42 61% 22683582 9527104CombinedCycle 843 6% 0.42 43% 3175412 1333673SimpleCycle 804 5% 0.55 33% 2288988 1258943Hydro 894 6% - 24% 1840388 -Wind 1459 10% - 27% 3476388 -Other 423 3% - 66% 2430795 -Total 14939

0.81 80337128 65449609

Source:AESO2014Long-TermOutlook,GovernmentofAlbertaElectricityStatistics.

InNovember2015,theProvincialGovernmentindicatedthatAlbertawillbancoalpowerplantscompletelyby2030.Thepolicywillforcecoal-generatingunitsthatwerestilloperatingintheAESOmodelin2030toclose“prematurely”.TheProvincealsoindicateditsintentiontohaveupto30%renewableinstalledcapacity.Tomodeltheimpactofthispolicy,MARCONusedacombinationofAESO’sEnvironmentalShiftandTransformativescenarios(describedinFigure8.2).Inthismodel,coalhasbeendecommissionedandproductionofelectricityhasshiftedtonaturalgasandrenewableformsofenergy.Utilizationratesofrenewablesareexpectedtoremainthesamebecausetheyarelimitedbynature,whilstgasgenerationisincreasedtomakeupforthelostcoalcapacity.Thenetresultofthispolicyisafurthergridintensityreductiontoapproximately0.37TCO2

e-/MWhby2034.

67 http://www.energy.alberta.ca/electricity/682.asp.68 Source:AESO2014long-termoutlook,AESO,2014.

8:2

Table8.2Projected2034gridintensity(withoutcoal)

InstalledCapacity(MW)

%oftotal

capacityGHG

t/MWhUtilisation

rateProduction(MWh/year)

GHG(TCO2e/year)

Coal 0 0% 1.05 0% - -Cogeneration 7527 30% 0.42 80% 52749216 22154671CombinedCycle 7471 30% 0.42 70% 45812172 19241112SimpleCycle 2939 12% 0.55 50% 12872820 7080051Hydro 1894 8% - 24% 3981946 -Wind 3777 15% - 27% 8933360 -Other 1343 5% - 66% 7764689 -Total 24951 MW 0.37 132114203 48475834Source:MARCONcalculationsbasedonAESOdatafromAESO2014Long-TermOutlook,andGoAPolicyannouncedinNov.2015.

Thereisthereforeamarkeddifferencebetweenthecurrentstatus,thecurrentlyregulatedshutdownscheduleandthenew(yettobeenacted)policyasfigure8.2shows.

Figure8.1Albertapowergridforecastedintensity

Source:AESO2014Long-TermOutlookandMARCON,2016.

0,81

0,68

0,63

0,47

0,46

0,37

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

2014 2019 2024 2034

AverageGridIntensity(t/MWh)

AESO2011 2015GoAPolicy

8:3

8.2 Carbonfootprintofdieselbuses

Indeterminingtheemissionfactorofdieselfuelbothdirectcombustionandupstreamemissionsfromtheextraction,refinement,andstorageofpetroleumtomakedieselfuelareconsidered.TheSpecifiedGasEmittersRegulation(SGER)protocol69statesthattheemissionfactortousefordieselcombustionis2.7171kgCO2

e-/litre70,andupstreamemissionsis0.9579kgCO2e-/litre71,

therebytakingintoconsiderationtheuseofbiodiesel.Combinedemissionsfromallsourcesareequalto3.675kgCO2

e-/litre.

In2015,theETSfleetof40-footdieselbusesdrove42millionkilometres,therebyconsumingalmost23millionlitresofdieselfuel.Theresultingaveragefuelefficiencyforthewhole40-footbusfleetis54.6L/100km.

ConsequentlytheETS40-footbusfleet(841buses)emitted61,230TCO2e-fromthecombustion

ofdiesel,andafurther23,300TCO2e-fromupstreamemissionsassociatedwithitsproduction.

UnlessagreateramountofbiodieselismixedintothedieselfuelpurchasedbyETS,thefuelwilllikelyhavethesameapproximateemissionfactor20yearsfromnowasitdoestoday.Astherehasbeennoindicationingovernmentpolicyannouncementsinthepastthreeyearstoincreasethecurrentfederalmandateof2%biodiesel,ithasbeenassumedthattoday’semissionfactorfordieselwillremainthesame.

IntheEdmontonfieldtrial,the2013Xcelsiorbusesachievedanaveragefuelefficiencyof49L/100km.DataprovidedbyETSforcalendaryear2015indicatesthatthese2013Xcelsiorbusesaredrivenanaverageof49,497km/year.

Forcomparativepurposes,theSteeringCommitteesuppliedMARCONwiththe20-yearusagepatternshownintable8.3andfigure9.1later.Thisusagepatternresultsinanaveragedistanceof49,450km/yearforcomparativepurposes.Atthemeasuredconsumptionrate,acontemporarymodeldieselbusdrivingthatdistancewillgenerateemissionsof89TCO2

e-peryearor1,781TCO2

e-initslifetime.

8.3 CarbonfootprintofelectricbusesBecausetheGHGintensityofAlberta’sgridwilldecreaseprogressivelyuntil2030,thecarbonfootprintofelectricbuseswilldiminishovertimeaswell.Basedonthe2013Albertagridintensityfactor,ane-busoperatingtodaywillemitapproximately38-44%lessCO2

e-(fromthepowergenerators)thanitsdieselequivalent.By2034,thee-buswillemit72-74%lessCO2

e-.

Thefollowingtableshowstheyearlyemissionsofbothtrickle-chargedanden-routechargedbusesbasedontheusagepatternprovidedbyETS.Yearlyelectricityconsumptionofbothtypesofe-busesisalsodisplayedalongwiththeemissionsresultingfromelectricityusageanddieselfuelusageforspaceheating.

69 http://open.alberta.ca/dataset/c1c50abd-c082-4b2f-a119-0fc0a3b1caa7/resource/31b488e3-1ee8-463d-91aa-fb7df765c1d6/download/2013-02-ProtocolFuelSwitchingMobile.pdf.

70 Idem,page79.71 Idem,page78.

8:4

Table8.3TotallifeGHGEmissionsofe-buses

Year

BYD NFI

km/year kWh TCO2e-

/kWhElectricityTCO2

e-DieselTCO2

e- kWh TCO2e-/kWh

ElectricityTCO2

e-DieselTCO2

e-2017 57,000 71,250 0.00081 57.7 103 78,660 0.00081 63.7 1032018 59,000 73,750 0.00081 59.7 106 81,420 0.00081 66.0 1062019 58,000 72,500 0.00081 58.7 104

80,040 0.00081 64.8 104

2020 54,000 67,500 0.00068 45.9 97 74,520 0.00068 50.7 972021 54,000 67,500 0.00068 45.9 97 74,520 0.00068 50.7 972022 54,000 67,500 0.00068 45.9 97

74,520 0.00068 50.7 97

2023 54,000 67,500 0.00068 45.9 97 74,520 0.00068 50.7 972024 52,000 65,000 0.00068 44.2 94 71,760 0.00068 48.8 942025 50,000 62,500 0.00046 28.8 90

69,000 0.00046 31.7 90

2026 50,000 62,500 0.00046 28.8 90 69,000 0.00046 31.7 902027 48,000 60,000 0.00046 27.6 86 66,240 0.00046 30.5 862028 45,000 56,250 0.00046 25.9 81

62,100 0.00046 28.6 81

2029 45,000 56,250 0.00046 25.9 81 62,100 0.00046 28.6 812030 45,000 56,250 0.00037 20.8 81 62,100 0.00046 28.6 812031 44,000 55,000 0.00037 20.4 79

60,720 0.00046 27.9 79

2032 44,000 55,000 0.00037 20.4 79 60,720 0.00046 27.9 792033 44,000 55,000 0.00037 20.4 79 60,720 0.00046 27.9 792034 44,000 55,000 0.00037 20.4 79

60,720 0.00037 22.5 79

2035 44,000 55,000 0.00037 20.4 79 60,720 0.00037 22.5 792036 44,000 55,000 0.00037 20.4 79 60,720 0.00037 22.5 79Avge 49,450 61,813 0.000536 34.2 89 68,241 0.000536 38.8 89

TLC 989,000 1,236,250 684 1,781 1,364,820 776.8 1781

Source:MARCON.2016

WhenusedaccordingtotheusagepatterndefinedbyETS(drivingonaverage49,450km)aBYDwillgenerate684TCO2

e-andtheNFI,776TCO2e-respectivelyinlifetimeemissionsassociated

withupstreamemissionsfrompowergeneration.

8.4 CarbonfootprintreductionOnacomparativebasis,thelatestavailablemodelofXcelsiordieselbusrunningonaverage49,450kmperyearfor20yearswouldemit89TCO2

e-/yearor1,761TCO2e-duringits20-yearlife.

Asdieselheatersarepreferableone-buses,thefuelconsumptionoftheseheatersreportedinthetrialwasapproximately2litresper100km.IfitwasassumedthatthisaverageconsumptionwouldapplytothemonthsofDecemberandJanuary,but75%ofthataveragewasusedforthemonthsofNovemberandFebruaryand50%forthemonthsofOctoberMarch,andApril,Asaresult,e-buseswouldburn412litresofdieselperyearandthereforeproduceemissionsof1.51TCO2

e-/year.

So,usingadieselheatedBYDbustoreplaceadieselbuswouldreducethebus’carbonfootprintby60%over20yearswhilstreplacingadieselbusbyaNFIwouldreducetheGHGfootprintby56%respectively.

8:5

8.5 CarbonLevyAlthoughthepriceofcarbonismarketdriven,thereisaregulatedceilingpriceofemissionsinAlberta.Between2007and2015,thisceilingpricewassetat$15/tonne.Theceilingpricechangedto$20asofJanuary1,2016,andto$30asofJanuary1,2017.

Consequently,thecarbonlevyimposedbytheProvinceofAlbertaondieselfuelhasbeensetat5.35¢/litrefor2017and8.03¢/litrefor201872.

Calculationsofthefinancialimpactofthecarbonlevyareprovidedinsection9.

8.6 OtherenvironmentalexternalitiesTherearemanyotherenvironmentalopportunitiesthatarequantifiable,butconsideredbeyondthescopeofthisproject.Forinstance,accidentaldischargesofdieselandoil,duetoequipmentfailureandregularuse,depositspetroleumproductontothesurfaceofcityroads.ThesechemicalseventuallymaketheirwaytotheSaskatchewanRiverviathestormsewernetwork,andthereisanimpacttotheenvironment.Anelectricbuswouldnotleakthesefluids,butthereisnofinancialcostsavingstotheCitybecausethereisn’taremediationprogramforthispollutant.

ThetailpipeemissionsfromdieselbuseshavebeenimprovingbutstillincludesmoggeneratingNOxandSOx,aswellasparticulatemattersthatareharmfultopeople.Thesechemicalsandotherelementsindieselexhaustalsoproducenoxiousodoursthatareunpleasantbutchallengingtoattributeasocietaleconomiccost.Thetransitridersurveys(Section4)demonstratedthatapproximately80%oftheriderssurveyedindicatedthattheyperceivedthee-bustobebetterormuchbetterthanadieselbus.

Upstreamemissionsthatoriginateatcoal-firedpowerplantshaveconsiderablenegativehealtheffectstothosewithintheirair-shed,whichincludesthewesternedgesofEdmontonthataredownwindofthepowerplantsintheWabamumarea.TheProvince’scommitmenttoclosedowncoal-firedpowerby2030ispartlymotivatedbytheintentiontoendthesehealth-harmingsourcesofemissions.

Finally,thenoisepollutioncreatedbydieselenginesisreducedconsiderablywhenusinge-buses.

8.7 KeyfindingsElectricityinAlbertaisconsideredtohavethehighestGHGintensityinCanada,butitwillgetbetterovertime.Ane-busiscurrently38%to44%betterthanitsdieselequivalent,andisexpectedtobecome72%to74%betterby2034.Thecurrentpolicytoendcoal-firedpowerin2030,greaterdependencyongaselectricalgeneration,andthegoaltohaveuptoonethirdofAlberta’spowerbeingrenewableareresponsibleforthisgain.

Theuseofdieselheatersonboarde-buseswilluse4%ofthedieselfuelcurrentlyconsumedbydieselbusesatmost,irrespectiveofwhiche-busisequippedwiththeseheaters.Consideringthe

72 Source:GovernmentofAlberta,http://www.alberta.ca/climate-carbon-pricing.cfm,2016.

8:6

rangereductionimplicationsofanelectricallyheatedbus,dieselheatedbusesareconsideredmoredesirabledespitetheirsmallimpactontheenvironment.

Whetherupstreamemissions,orthosefromthetailpipe,e-busesareabetterchoicefortheenvironmentthanthecurrentdieselfleet.Investmentinelectricvehiclesimprovesairqualityinthecity,andintheatmosphere.TheelectrictransportationmodalshiftisexpectedtoaccelerateasthecostofbatteriesdecreasesevenfurtherandEVperformanceimprovesevenmore.ETScanbeacatalystforthistransitionbydemonstratinghowelectricvehiclescanoperateinEdmonton’swinterclimate,andbycausingtheutilitiesandregulatorstoplanfortheinfrastructuremodificationsthatarerequiredfortheiruse.

9:1

9 Thebusinesscasefore-busesinEdmonton

MARCONwasrequiredto“analyzetheeconomicimpactofshiftingtoelectricbusesusingtheirproprietarylifecyclecostforecastingmodel.Theanalysiswillcomparedieselandelectricbusesoncapitalcosts,facilityupgrades(electricalcapacityandother),andoperationalcostsincludingthecostofelectricityandfuel,maintenanceandothercosts.”[1]

Thelevelofprecisioninbusinesscasecalculationsdependsonthequalityoftheworkinghypothesesprovidedtothemodelused.Giventheearlystageoftheelectricbusindustry,lackofcertaintyrelatedtofuelandenergycosts,andashortamountoftimethebuseswereinfieldtrialinEdmonton,thebusinesscaseaccuracyislimitedto±25%.Insomeinstances,inputwasprovideddirectlybytheSteeringCommitteemembersasnotedinthesourcereferencesprovided.Forexample,theanalysisconsideredacquiringandoperating40busesbasedoutofthenewNorthEastGarage,comparingthecostrelatedtoelectricbuseswiththelatestmodelofdieselbusesintheETSfleet(NewFlyerIndustry,Xcelsior2013model).Fortybuseswereselectedasthisrepresentsthepresentscheduleforbusreplacementsinboth2017and2018.

9.1 MethodologyETSandtheFleetServicesbranchoftheCityofEdmontonprovidedMARCONwithalltheinformationrequestedtoestablishareferencecasebasedonthelatestmodelof40’dieselbusesinthefleet(Xcelsior2013model).Wheneverpossible,datafromEdmonton’sfieldtestwithe-buseswasusedbut,giventheshortdurationofthetest,missingdatawassubstitutedby:

• theresultsofevaluationsconductedinothermunicipalities,and/or• Altoonatestresults,and/or• MARCON’steammembersexperiencewithotherelectricbuses,

inordertobuildacostforecastingmodelreflectiveofEdmonton’sownoperatingcharacteristics.

TheSteeringCommitteedirectedMARCONtomakeits“calculationsonthefeasibilityof40buses,withdetailsabouthowthestudyarrivedattheconclusionthatcouldbeextrapolatedtosupportdecision-making”.MARCONwasfurtherinstructedtousethenewNETG(thatwasdesignedasadirectreplacementbuildingoftheWestwoodGarage)asthefacilitythatwouldhostthe40e-buses.Althoughthatbuildinghasnotbeendesignedtohouseelectricbuses,ETSusedalocalarchitectfirm73toappraisethecostofadaptingthisfacility,butwithoutthebenefitofacompletefunctionalanalysis.

ThecalculationswereundertakenusingMARCON’sproprietarylifecyclecostmodelTLCBu$™.

Asthegoalofthisassignmentconsistsofcomparingthethreetechnologies(diesel,en-routechargee-busesandtrickle-chargede-buses),coststhatareidenticalforallthreetechnologiesarenottakenintoconsideration.Forexample,inflationisthesameforall,yearafteryear.Thereisnopointinconsideringthisfactorinacomparativemode.Anotherexampleistheleasecostoftires,whichisthesameforalltypesofbuses.Ontheotherhand,theinterestrateusedfordiscountingwastakenintoconsideration,asthetimingofexpensesisdifferentforthethreetechnologies,e-busesrequiringamoreintenseinitialinvestmentthandieselbuses.

73 Source:MorrisonHershfield,2016.

9:2

9.2 Assumptions–Capitalcosts

9.2.1 Buspricesforecast(electricanddiesel)

Thepricesforbuses,aswellasthepriceofkeycomponentssuchasthereplacementtheenergystoragesystem,usedinourcalculationswereprovidedbybusmanufacturersforthemostpart.

Table9.1Costofbuses

DieselBuses

Trickle-chargedBuses

En-routechargedBuses

Grosspriceofbuses(inCAD) $600000 $949200 $1300000Mid-liferebuild $128755 $248627 $169075Residualvalueatlife’send–buses(%oforiginalcost)

0.5% 0.5% 0.5%

Sources:ETS,BYD,NewFlyerIndustries,ETSandMARCON,2016.

Thecostsofrebuildingdieselbusesatmid-lifearewelldocumentedbyETSandhistoricallyamounttoatotalof$128755.Thisamountcomprisesofengineandtransmissionrebuildorreplacement(includingturbocompressor)at$64534andbodyworkat$64221.Theamountofbodyworktobeperformedonallbuses(dieselandelectric)willremainthesame,regardlessoftheirpowertrain.Attheendof2015,ETSimplementedanewrebuildingpolicywherebycertainpartsarenolongerreplacedasapreventivemeasure.Thiswillresultinasmallercapitalcostbutmayincreasethecostofmaintenanceinthesecondhalfofthebuslifeassomefailingpartswillneedreplacement.MARCONconservativelyelectedtorelyonhistoricaldataratherthanexpectedoutcomesfromthisnewpolicyforitscalculations.

Thecostofrebuildinge-busesatmid-lifeisnotavailablefromanysourcenoe-bushasreachedthatstageoflifeyet(prototypesexcepted).ThecosthasthereforebeencalculatedbyMARCONbasedonalongexperiencewithtrolleybusesandusingadifferentialapproach.Thismeansthatthedetailedcostofrebuildingadieselpowertrainwasusedasastartingpointandvariouscomponentsandtaskswereaddedorsubtractedforeachofthetwoe-busmodelsworkasrequiredbytheirrespectivedesigns.DetailedcalculationsareshowninAppendix3.Thefinalresultshowsacostof$184406fortrickle-chargedbusesand$104854foren-routechargedbusesinadditiontothecostofbodywork.

Theseestimatesweredevelopedconsideringthatonemanufacturer(BYD)suggeststhattheirbatterypackwilllast20yearswithonly1%degradationperyearofservice.MARCONhasconservativelyestimatedthatthebatterypackwouldbereplacedattheendofitswarranty(12years).Norevenuewasconsideredforthepotentialsaleorreuseofbatterypacks,nordidanyexpenseenterthecalculationstotakeapossiblecostofdisposalintoaccount.

9.2.2 Facilities

Housingthereferencefleetof40dieselbusesattheNETGwillnotaffectthecurrentcostestimateforthenewfacilityasithasbeendesignedforthisverypurpose.

Table9.2Costoffacilitiesupgrade(inclusiveofchargingstations)

DieselBuses

Trickle-chargedBuses

En-routechargedBuses

Facilitiesupgradecost(inCAD) $0 $750000 $1154992Sources:MorrisonHershfield(BYD)andMARCON(NFI),2016.

9:3

AccordingthearchitectretainedbytheCityofEdmonton,theestimatedcosttoaddtherequiredelectriccapacityandcomponentstohouse40e-busesatthisfacilityis$750,000.Thecostofthetrickle-chargersisincludedinthepriceofthebusquotedbythemanufacturerwhileaddingafast-chargertotheNETGwouldaddapproximately$405thousandtothecostofthefacility.AchargingstationshouldbeinstalledattheNETGtorechargeunitscomingoutofmaintenance74ortotopupunitsiftheneedarises75.

Thesetrickle-chargedunitsbeingverysimple,MARCONbudgetedonly$100/yearperunitfortheirmaintenance.Foren-routechargedvehicles(wherechargingwouldoccuratpantographchargingstationslocatedattransitstations),thecostofmaintainingthefastchargingstationsishigher.

Additionalinvestmentsarerequiredforen-routechargedbuses.Inordertoservicethe40e-busesinthiscasestudy,eight(8)transitstationswillrequirerapidchargers.SincetheNFIe-buswasusedasthereferenceinthiscasesimulation,theNFIfastchargerinstalledinWinnipegrecentlywasusedasabasecaseforestimatinghowmuchthesestationswouldcosttheCityofEdmonton.Table9.3providesthecostbreakdownofasinglechargingstationcosting$845990,installationincluded.

Table9.3Estimatedcostofen-routechargingstations

InCdn$Charger(USD$320000) $404992Transformer $40000Cabling $80000Civilworks $180000Engineering&Projectmanagement $140998

Source:MARCONbasedonWinnipegTransitCorporationinformation,2016.

Chargingstationmaintenancehasbeenevaluatedat1%oftheirinitialvalueperyearand,inourcalculations,conservativelyremainsconstantforthedurationoftheplanninghorizon.Notethatifthebatterytechnologyselectedallows,atricklechargercouldreplacethefastchargerplannedfortheNETGatlessthanhalfthecostofarapidcharger.

Afunctionalanalysisofthetransitcentreswasnotincludedinthescopeofthisstudy.Someorallofthemmaynotlendthemselveseasilytotheadditionofacharginginfrastructureintheircurrentconfiguration.Itislikelythatsomemodificationswillberequiredtoalltransitcentrestoimprovetheflowofamixedfleetofbusesinandoutoftheseareas.

9.3 Assumptions–OperatingcostsETSrequestedthatMARCONforecastthecostofoperatinge-busesusingthecurrentpracticesappliedtothedieselfleet.Thesearenotoptimizedfore-busesandthereforeresultinaveryconservativescenarioforanelectricfleet.

74 E-busesthatareleftunusedexperienceself-discharge.SeeAppendix1formoreinformation.75 Thecostofthatstationcouldbeavoidedifatransitstationequippedwitharapidchargerwaslocatedverynearthegarage.

9:4

9.3.1 Routes

Despitethefactthate-busescantechnicallyoperateonallthecurrentroutesservedbyETS,thechoiceofroutesislimitedbyseveralfactors:

a. Eachgarageservicesspecificroutesandwithall40electricbusesassignedtoaspecificgarage,thee-busfleetistherebylimitedtotheroutesservicedoutofthatgarage.

b. Theen-routechargedbusesrequireacharginginfrastructurethatisusuallylocatedattransitstations.Assignmentofthesee-busesisthereforeconstrainedbytheavailabilityofchargingstationsontheirroutesattheirplannedtimeofarrival.

c. Althoughnotrequiringen-routeinfrastructure,trickle-chargedbuseshaveashorterautonomy(range)thandieselbuses.Inthecurrentblockstructure,theycannotbeassignedtoroutesorblocksthatexceedtheirsafeoperatingrange.

TheoptimizationofETS’sblockstructureisbeyondthescopeofMARCON’sassignmentandcalculationsareperformedonthebasisofthecurrentblocstructurewithoutanychangesoverthe20-yearlifeofthebustomakeafaircomparisonbetweenthethreetechnologies.ETSwouldlikelyadjustschedulingtobetteralignwiththecapabilitiesoftheassets.

9.3.2 Dutycycleandoperatingconditions

Dutycyclehasanimportantimpactontheperformanceofallbuses.Forexample,heavytrafficforcesbusestostopandgoveryoften.Asalargequantityofenergyisrequiredtoovercomeinertia,thistypeofdutycycle(lowspeed,manystops)causesthefuelconsumptionofdieselbusestoincreasesignificantly.Ontheotherhand,electricbusesareequippedwithakineticenergyrecoverysystemthatregeneratesenergyfrombraking.Theefficiency76ofsuchsystemscanreachover65%77andcanresultinextendingtherangeofbatteriesbyalmost40%78.E-busesarethereforemuchlessaffectedbyasimilardutycycle.Giventheshortperiodofthefieldtest,fewroutesanddutycyclesweretested.Datafromthefieldtestandothersourcesdoesnotallowforaconclusivequantitativeanalysisoftheimpactofdutycycleonbusperformance.

Thedesignandcurbweightofthebusestestedresultinareductionofmaximumpassengercapacityatcrushloadscomparedtodieselbuses.Theoretically,thiscouldmeanthatmoreelectricbuseswouldberequiredtoprovidethesamelevelofserviceduringpeakservicehours.Aftercarryingoutananalysis,ETSconcludedthatthemaximumcapacityofe-busesintermsofnumberofpassengersandweightrestrictionswillnotbeasignificantissue.Furthermore,batterymanufacturersareimprovingtheirproductsataveryfastrateandtheybelievethattheweightcapacitylimitationswillbeeliminatedinfuturegenerationsofelectricbuses.

Theannualdistancestobeassignedtoe-busesweredeterminedbytheCityandETSbasedontheactualperformanceofdieselbussesbasedonhistoricalaveragesfortheETSfleet.Thereferencedistancesperyearwereprovidedasfollows:

76 Definedastheratiooftheactualregeneratedenergytothetotalkineticenergythatcanberegenerated.77 Source:RegenerativeBrakingSystemforSeriesHybridElectricCityBus,JunzhiZhang,XinLu,JunliangXueandBosLi,The

WorldElectricVehicleJournal,Vol2,Issue4.78 Source:AnalysisofregenerativebrakingeffecttoimprovefueleconomyforE-REVbusbasedonsimulation,JongdaiChoi,

JongryeolJeong1,Yeong-ilPark,SukWonCha,ProceedingsofEVS28,2015.

9:5

Figure9.1YearlyReferenceDistanceforecastedforDieselBusesinEdmonton

Source:ETS,2016.

ThetotaldistanceforatransitbusinserviceinEdmontonisforecastedtobe989,000kmor49,450kmperyear.ThisiscomparabletoETS’shistoricaldatashowingthat40’busesarerunninganaverageof49,947kmperyear.

9.3.3 Costofenergy(electricityanddiesel)

Giventhatthedevelopmentofaforecastingmodelforthepriceofdieselandelectricityisbeyondthescopeofthisstudy,thepricesofdieselandelectricityweremaintainedatthecurrentlevelforthe20-yearforecastingperiod.BothpriceswereprovidedbytheCityofEdmonton:

• Electricity:11¢perkWhand• Dieselfuel:$0.8631perlitre.

9.3.4 Energyconsumption

Fromabusinesscaseperspective,themaincontributionofthefieldtrialtothebusinesscaseistheenergyconsumptiondata.Thisinformationwasgatheredinwinter,whereconditionsareparticularlydifficultfortransitbusesofalltypes.MARCONselectedtheworstfuel-efficiencyperformanceobservedduringthefieldtrialstobuildEdmonton’sbusinesscase.Despitethelackofextremelycoldweatherduringthefieldtestperiod,theuseoftheenergyconsumptiondataobtainedatthattimeofyearrepresentsaveryconservativeestimateoftheperformanceafleetofe-buseswillachieveduringtherestoftheyearwhenclimateconditionsaremorefavourable.

Theenergyconsumptionbye-busesduringEdmonton’sfieldtrialsisdescribedinsection7:1.25kWh/kmforthetrickle-chargedBYDe-busand1.38kWh/kmfortheNewFlyere-bus.

Thedieselbusesusedforcomparativepurposesconsumed45to49L/100km,comparedtotheaverageof48.53L/100kmforthefleetof2013ExcelsiorDieselbusespurchasedinthesameyear.Thataverageperformanceisusedinourforecasts,asthe40newbusesETSwouldpurchase(ifdieselfuelled)wouldperformatleastaswell.

9.3.5 Environmentalcost

TheannouncedProvincial“CarbonLevy”ontransportationfuelisfactoredinMARCON’scalculations.TheProvinceofAlbertasetat5.35¢/litre(for2017)and8.03¢/litre(for2018)79levyondieselfuel.Intheprojections,MARCONusesthatlatteramountastheprocurementprocess

79 Source:GovernmentofAlberta,http://www.alberta.ca/climate-carbon-pricing.cfm,2016.

9:6

forthevehiclesandtheconstructionofthenewgaragefacilityisunlikelytoresultine-busesbeingputinservicemuchbeforeJanuary2018.Aswiththecostoffuel,thecostoftheCarbonLevyiskeptconstantforthe20yearsoftheforecast.

Thereisnocarbontaxaddedtothecostofelectricityasitisalreadybuiltinthepricebute-buseswillbeconsumingasmallquantityofdieselfuelforspaceheatingpurposes.Amodestcostof$25thousandwillincurredbybothtypesofe-busesforthatpurpose.

9.3.6 Maintenanceandservice(M&S)costs

M&Scostsincludethreecategoriesofcosts:preventivemaintenance,routine(orrunning)maintenanceandservicingthebusesonadailybasis.Thecostofexceptionalrepairs(accidents,vandalism,etc.)isexcludedfromourcalculations.ThecostofmaintainingEdmonton’sentirefleetin2015isusedasthebasisforourcalculations.Whilethelatestbusesmaybemorereliable,theywillageandtheircostofmaintenancewillincreasewithtime.Usingall40’busesprovidesalonghistoryofmaintenancedatatothebusinesscase.M&Scostsfore-busesarecalculatedasavariationfromthedieselfleet,addingandsubtractingitemstothecurrentlistofrunningmaintenance.

Thecostperkilometreisthereforebasedontheaveragedistancerunbya40’businthecourseoftheyearasdescribedintable9.3.

Table9.4Maintenanceandservicecostfor40’busesinEdmonton

PreventivemaintenanceDieselBus E-Bus

(40'fleetaverage) Trickle-charged En-routechargedTotal/km $0.125 $0.094 $0.094Runningmaintenance Total/km $0.613 $0.407 $0.401Servicing Total/km $0.045 $0.045 $0.045Totalmaintenance&servicing

Total$/km $0.783 $0.546 $0.540Sources:ETS(fordieselbuses),2015,andMARCON(fore-buses),2016

Numbersintheabovetablehavebeenroundedto1/10thofacentprecisionandadetailedlistofhowMARCONdeterminedthemaintenancecostsofe-busesisprovidedinAppendix4.

9.3.7 Financialhypotheses

Workinghypothesesregardingthefinancialaspectsofacquiringnewbusesarecommontoallthreetypesofbuses.

Table9.5Miscellaneousassumptions

Financial Discountfactor/interestrate(%) 1.9%*Exchangerate(USD1toCAD)(asofApril19): $1.2656Buslife(years) 20*Mid-lifeoverhaulafter(years) 12*Inflationrate Ignored *Source:ETS,2016.

9:7

9.3.8 Trainingcosts

Trainingisanessentialpartoftheprocessforintroducingnewbustechnologiesintorevenueservice.Busoperators,mechanics,servicepersonsandtrainersneedtobethoroughlytrainedbeforeanewfleetisplacedinservice.Thistrainingcanbeprovidedthroughtheselectedbusmanufacturertotrainallemployeesaffectedbythenewtechnology,includingoperatorandmechanicaltrainersinthecompany.Athirdpartytechnicaltraininginstitutioncanalsoprovideit.Busmanufacturersalsoprovideoperatingandmaintenancemanuals,usuallyprovidedaspartofthecontract.

NewFlyerIndustriesconfirmedthatthemajorityofitsstandardXcelsiorcoursesapplytotheelectricbuses.TheyalsoofferOEMtrainingontheelectricpropulsionsystemandbatteries,whichisn'ttotallydefinedasofyet.Studenthand-outmaterialsareprovidedwitheachcourse.Generally,thepriceoftrainingisincludedinthecostofthebusanditwouldbesubjecttothetermsintheRFPandthenegotiatedcontract.Thelengthoftrainingwoulddependonthescopeoftrainingandsincemostofthenon-electriccomponentsonelectricbusesareverysimilartothosefoundonstandarddieselbuses,itisestimatedtrainingdesignedforETSmechanicswouldtake40to60hours.Similarly,ETStrainerscouldbetrainedwhocouldthentrainmechanics.Operatorfamiliarizationwithelectricbusescouldtakeabouteighthours.

BYDwillprovidetrainingtoclientsanditalsoispartofthepriceofthebus.Theirtrainingpackagescatertooperators,mechanicsandtrainers.BYDispreparedtoprovideasmuchtimeasnecessarytoensuretheclientpersonnelareproperlytrainedtooperatetheirequipmentandwillalsoprovideallthetrainingmaterialsandmanualsrequired80.NoinformationisavailableatBYDregardingthelengthoftrainingforoperators,servicepersonnelandmaintenancestaff.Therefore,thecostoftrainingusedinMARCON’sforecastsisnearlyidenticalforbothtypesofbuses,someadditionaltimehavingbeenprovidedfortrainingoperatorstousedoverheadchargingstationsonen-routechargedbuses.

NAIThasahistoryofprovidingtechnicaltrainingcoursestoETS,themostrecentbeingin2013whentrainingwasprovidedforElectronicsTechnicianswhoweretoworkontheEdmontonLRTsystem.IndiscussionswiththeNAITContinuingEducationDepartmentitwasconfirmedthatNAITwouldbehappytosetupatrainingprogramtogivemechanicscertificationonhighvoltageelectricbussystems81.AnycoursewouldbedevelopedjointlybetweenNAIT,ETSand,ofnecessity,theselectedbusmanufacturer.Thecoursewouldbetailoredtothespecificmodelofbuspurchasedandisestimatedtobebetween40and60hourslong.Thecosttodevelopthisspecializedcoursewouldbeanadditionalone-timecostandwouldtakebetween80and100hoursofcoursedevelopmenttime,estimatedtocostabout$10,000-$15,000.Actualtrainingcouldcostabout$2,000perstudent,dependingonitslength.Definitivecostscouldnotbeprovidedatthetimeofwritingthisreport.

80Source:BYD’sVice-PresidentofSales,10February2016.81Source:NAITDepartmentofContinuingEducation,March2016.

9:8

Table9.6Trainingcosts

Trickle-chargedbuses

En-routechargedbuses

Coursepreparation-operators Providedbymfr. Providedbymfr.

Coursedelivery-operatorhours $6979 $13958

Coursepreparation-service Providedbymfr. Providedbymfr.

Coursedelivery-servicepersonnelhours $544 $544

Coursepreparation-maintenance(flatfee) $15000 $15000

Coursedelivery-maintenance(perstudentfee) $16000 $16000

Coursedelivery-maintenancepersonnel(hours) $37320 $37320

TOTAL $75843 $82822

Source:MARCON,2016

Inadditiontotheactualcostoftraining,overtimecostswouldlikelybeincurredbyETSunlesscollectiveagreementshaveotherprovisions.EstimatingthesecostswasbeyondthescopeoftheassignmentgiventoMARCON.

InadditiontothetrainingrequiredforETSpersonnel,itisveryimportantthatfamiliaritytrainingbeprovidedforemergencyfirstrespondersintheCityofEdmonton.Inthecaseofanaccidentinvolvinganelectricbus,theywillneedtoknowwheretheemergencyhighvoltagepowershut-offswitchislocated.Ifthereisafire,theywillneedtoknowthatrespiratorswillbeneededbecauseifbatteriesarerupturedtheremaybenoxiousfumes.Hereagain,estimatingthesecostswasbeyondthescopeoftheassignmentgiventoMARCON.

9.3.9 Toolingandrelatedcosts

Thebulkoftoolsrequiredtomaintainelectricbusesisverysimilartothoserequiredtomaintaindieselbuses.However,therearesomeuniquetoolsandtestingequipmentthatwillberequiredtomaintaintheelectricbusesastheyhavebatterypacks,invertersandelectricdrivesystems.Anon-exhaustivelistofthesespecialisttools,basedonexperiencewithhybridelectricbusesandtrolleybusesisasfollows:

• Propulsionservicekitapproximately$5,000whichwillincludeddiagnosticinterface/cables,highimpedancemulti-meter,batteryprotectiontools,highvoltagegloves,andmotorbearingre&retools

• Accessoriestoolsapproximately$5,000whichwillincludespecialtoolsforelectricaccessories–HVAC,aircompressor,steering,andcooling

• BatterypackandInverterliftingjigsapproximately$2,000.• Otherbustoolsapproximately$10,000,dependingonmake/modelofbusaxles,brakes,

PLC,body,etc

Anoverheadcrane,orjibcraneforliftingrooftopbatterypacksorothercomponentswillberequiredandMARCONassumeditwouldbeavailableinthenewNETGfacility.Again,basedontrolleyandhybridexperiencebatterypackscanbemadetolastalongtimewithproperheat/voltagemonitoring,andselectedcellreplacementlaterinlife.Aforkliftshouldbeabletoremovesmallerroofcomponentssuchasinverters,andHVACunits.

9:9

Gantryplatformsorprobablyrollingscaffoldplatformswillberequiredforroofaccess.Fallprotectionanchorswillalsoberequiredformaintainersworkingontheroofsoftheelectricbuses.Arollingscaffoldsimilartotheoneinthepicturebelowshouldbeused.

DependingontheETSmaintenancemodel–anelectrical“lab”maybeneededforelectroniccomponentrepair/troubleshooting,or,thisfunctioncanbeoutsourced.

Theincreaseincomplexelectricaltroubleshooting/maintenancethatwillbeneededtomaintainelectricbusesmayneedanElectrical/ElectronicsEngineerortechnicalelectricalsupervisoronstaff.

Table9.7Costbreakdownoftoolingrequired

#required UnitPrice Total

Propulsionservicekit 2 $5000 $10000

BatterypackandInverterliftingjigs 2 $2000 $4000

Rollingscaffold 1 $20000 $20000

Otherbustools 1 $10000 $10000

Totalcostoftooling $44000

Source:MARCON,2016

9.4 LifecyclecostofdieselbusesinEdmonton(referencecase)Thelifecyclecostofdieselbusespresentedinthisreportisnotintendedtobecomplete.Itisproposedasafairbasisforcomparingtheoverallcostofrunningdieselversuselectricbuses.Somecostcategoriesare,andwillremainidenticalforbothtypesofbusesandwerethereforeexcludedfromourcalculations.Forexample,thecostoftireleasingwillnotvaryfromonetypeofbustotheother.Managementoverheadcostbelongtothissamecategoryof“invariable”coststhatcanbeignoredforthepurposeofcomparingdifferenttechnologies.

Table9.4summarizesthebasecaseforcomparativepurposesusingdieselbusesasfollows:theacquisitioncostsarebasedonthelatestNFIXcelsiorbusesasarethefuelcosts.Themaintenancecostsarebasedontheaverage40’dieselfleetdata.

Figure9.2ExampleofRollingScaffold

9:10

Table9.8Referencecase:40’dieselbuses

Discountedtotal Total

CapitalInvestmentCosts Busacquisition&rebuild(40units) $28075180 $29030200

BuildingandInfrastructurecost NonerequiredOthersoft,nonrecurringcosts Nonerequired

OperatingCosts M&SCosts $26201313 $30976741

Fuellingequipmentmaintenance NegligibleFuel&ElectricityCost* $14015707 $16570707CarbonLevy $1303976 $1541637

TotalCost $69596175 $78118776Source:MARCON,2016

Table9.8showsthatoperating40newgeneration40’dieselbusesinregularservicefor989,000kmatETSwillroughlycosttheCityofEdmonton$78.0millionoverits20yearlifeifthecostoffacilities,managementoverheadandothersmallercomponentsthatareexcludedfromcalculationsasexplainedearlier.Notaccountingforinflationandonanetpresentvalue(“NPV”)basis,thisrepresents$69.6millionin2016dollars.Theseareourreferencenumbers.

9.5 Lifecyclecostoftrickle-chargedelectricbusesinEdmontonUsingatrickle-charged,40’electricbusonanidenticaldutycycleandforthesame989,000kmwillcost68%lessinfueland42%lessmaintenanceandserviceasitemizedinAppendix4.Butthepriceoftrickle-chargedbusesandoftheirchargingstationsrequireaninitialinvestment58%greaterthanthatofdieselbuses,therebyoffsettingtheoperatingcostadvantagesofthee-bus.Thetotaloriginalinvestmentrequiredbytrickle-chargede-busesis62%higherthanfordieselbuses.

Table9.9providesthebreakdownofthetotal$76million($70MNPV)forecastedcostofoperatingafleetof40’trickle-chargedbusesinEdmonton.

Table9.9Trickle-chargede-buses,lifecyclecost

Discountedtotal Total

CapitalInvestmentCosts Busacquisition&rebuild(incl.ESSreplacement) $45865569 $47723240

BuildingandInfrastructurecost $750000 $750000Othersoft,nonrecurringcosts $119843 $119843

OperatingCosts M&SCosts $18260531 $21588679

Chargingstationmaintenance $66899 $80000Fuel/ElectricityCost $4831981 $5712654CarbonLevy $21496 $25413

TotalCost $69916319 $75999829Source:MARCON,2016

9:11

Intermsofnetpresentvalue,thetotalcostofoperatingdieselbusesandtricklechargede-busesisessentiallyidentical.

9.6 Lifecyclecostofen-routechargedelectricbusesinEdmontonUsingen-routechargedbusespresentstheadditionalcostofbuildinganetworkoffastchargersattransitstations.Thiscostalonewasevaluatedatnearly$846,000perunitand,tomeetthe989,000kmtargetsetbyETS,eight(8)stationsmustbeinstalledattransitstationsandonemoreatthenewNETG.At$1.3Mperunit,en-routechargede-busesareexpensiveaswell.Theirlowenergyandmaintenancecostscannotcompensatefortheadditional150%initialinvestmentrequiredcomparedtodieselbuses.

Asaresult,thelifecyclecostofreplacingdieselbusesbyen-routechargede-busesamountsto$95.6million.Withanetpresentvalueof$89.9million,thisis28.5%morethandieselbuses.Thisexceedsthemarginoferrorsetforthisevaluationandindicatesthatasignificantincreaseintheoperatingcostofthefleetwouldoccurifthistechnologywereselected.Table9.10providesadditionalinformationforeachcostcategory.

Table9.10En-routechargede-buses,lifecyclecost

Discountedtotal Total

CapitalInvestmentCosts Busacquisition&rebuild(incl.ESSreplacement) $57281973 $58503000

BuildingandInfrastructurecost $1154992 $1154992Chargingstationscosts $6767923 $6767923Othersoft,nonrecurringcosts $126822 $126822

OperatingCosts M&SCosts $18064388 $21356787

Chargingstationmaintenance $1131926 $1353585Fuel/ElectricityCost $5310479 $6278362CarbonTax(ondieselfuelforheaters) $21496 $25413

TotalCost $89859998 $95566884Source:MARCON,2016

9.7 KeyfindingsWiththe40-busscenario,ourcalculationsindicatethatthecostofusingtrickle-chargede-buseswillbecomparabletothatofusingnewdieselbusesinEdmonton.En-routechargedbuseswouldhowevercostsignificantlymorethantricklechargede-busesanddieselbuses.Thesecalculationsarebasedonoperatinge-busesinthesamemannerasdieselbusesarecurrentlyused.Thisisnotoptimalfore-busesand,ifETSadaptstothisnewtechnology,theuseoftrickle-chargedelectricbusescouldbelowerthanthatofdieselbusesifserviceplanningandoperatingchangesaremade.

10:1

10 TheelectricbustechnologyanditsevolutionSeveralorganisationshavebeenworkingonelectricbusesforyears.AlthoughitmayseemtheirarrivalontheCanadianmarketwasrathersudden,today’sbatteryelectricbuses(e-buses)aretheresultofseveralgenerationsofvehicletechnology,whichhasbeenextendedtoincludeelectrictrains,tramways,trolleybuses,diesel-electrichybridbusesandfuelcellbuses.

Withsuchanancestry,whydide-busestakesolongtoreachthecommercialstage?Theshortansweris:Batterychemistry.Technologycontinuestoevolveinordertodeliverareliableproductthat:

• Storesareasonableamountofenergy• Iscompact• Canbeoperatedsafely• Weighsaslittleaspossible• Canbedischargedandrechargedoften• Andquickly• Doesnotdegrademuchorrapidly;and,• Isavailableatanaffordableprice.

Whilethereiscertainlystillimprovementexpectedwiththecurrentoffering,today’sbatteriesalreadyallowe-busestocompetewiththecostoftraditionaldieselbusesonalifecyclebasis.Manybatterymanufacturersarestakingtheirfutureone-buses.

Theworldmarketforelectricandhybrid-electricbusesamountedtonearly15,000unitsin2014.Accordingtoarecentreport82,salesareexpectedtogrowatacompoundedannualgrowthrateof19.6%overtheperiod2015-2020.Attheendof2015,Chinaalonewasexpectedtooperateapproximately500,000plug-inhybridelectricandpure-electricvehicles.

NearertoCanada,theUnitedStatesDepartmentofTransportationhasannouncedaninvestmentof$24.9million(USD)forthedevelopmentofzero-emissionbuses.Alargeshareofthisincentivewillfuelthedevelopmentofimprovedbatteries.

Therearestillrelativelyfewelectricbusmanufacturersandsomehaveaglobalpresence:ABVolvo(Canada’sNovaBusparentcompanyfromSweden)andBYDCompanyLimited(China)areoperatingacrossallmajormarkets.Globally,YUTONGGROUP(China)isthelargestplayerintheelectricbusmarket.Thecompanyholdsthelargestmarketshareoftheworld’sbiggestmarket,China.ABVolvowithitsbroaderregionalpresenceacrossallthemajorelectricbusmarketsholdsthesecondpositioninglobalelectricbussales,andisthelargestelectricbusmanufacturerinEurope.

SolarisBusandCoachS.A.(Poland)launcheditsarticulatedelectricbus'Urbino18',inSeptember2014.EBUSCO(Netherlands)offersEBUSCO2.0,anewproductunderthecompany'selectricbusportfolio.OthermajorplayersoperatingintheelectricbusmarketincludeIrizar(Spain),ShenzhenWuzhoulongMotorsCo.Ltd.(China),FAWGroupCorporation(China),KingLongUnitedAutomotiveIndustryCo.Ltd.(China),DaimlerAG(Germany),AlexanderDennisLimited(UnitedKingdom),AshokLeylandLtd(India),NewFlyerIndustries(Canada),andProterraInc.(USA).

82 GlobalElectricBusMarketSize,Share,Development,GrowthandDemandForecastto2020,P&SMarketResearch,October2015.

10:2

Fourmanufacturersoffertheire-busesinCanada:NFI,BYD,ProterraandsoonNovabus.

10.1 Fuelcellelectricbuses

FuelcellbusesarewellknowninCanadaastwooftheworldleadingmanufacturersofhydrogenfuelcellsarelocatedinthecountry:BallardPowerSystems(inBritishColumbia)andHydrogenics(inOntario).Hydrogenfuelcellbuses(H2FC)areequippedwithahydrogenreservoir(mostlyhighpressuregaseousbutpossiblyliquid)thatprovidesthemwithflexibilityandrangethataresimilartothoseofadieselbus.However,theinfrastructurerequiredtorefuelaH2FCbusissignificantlymoreexpensiveandcomplexthanadieselfuelpump,orasimpleelectriccharger.InadditiontotheH2fuellingequipment,thegarages,depotsandbarnsofatransitsystemmustbeequippedtohandlelighterthanairexplosivegases.Thisentailstheinstallationofventilation,lighting,electricalandsafetysystemsthatarealsomoreexpensivethanregularequipment.

Figure10.1Hydrogenfuelcellbus

Unlessitistheby-productofanotherindustrialprocessandcanberecuperatedinsufficientquantities,largeH2productioninvolvesusingeitherelectricity(waterelectrolysis)ornaturalgas(steammethanereforming).Bothprocessessufferfromsignificantquantitiesofenergylostorusedforproductionandinthefollowingstepsofcompressionorliquefactionofthegasaswellastransportation.ItbecomesdifficulttojustifyH2inaworldwhereelectricandnaturalgasbusesarealreadycommerciallyavailable.

Inalmostallcases,H2fuelmustbetruckedovertothetransitfacilityandstoredonsite.Whentransitgaragesarelocatedindenselypopulatedareas,firemarshalsarehesitanttograntpermitsforsuchinstallationsasthefirecodesarenotveryspecificregardingtheuseofindustrialhydrogeninfillingstationsand,whenevertheydo,theyrequiresecuritysystemsthataddsignificantcosttotheoperation.

Morethan2,000organizationsthroughouttheworldareactivelyinvolvedinfuelcelldevelopment83.Busmanufacturers,suchasDaimler,areworkingonmakingthesehydrogen-poweredvehiclesmoreaffordablebutthecomplexityofhandlingthesevehicleshaskeptmost

83 Source:http://batteryuniversity.com/learn/article/the_future_battery.

10:3

transitpropertiesawayfromthemtodate.Withtherapidprogressbeingachievedinbatterychemistry(improvementsinefficiencyandcost),mostexpertsagreethatitwillbechallengingforhydrogenfuelcellbusestocatchuptobatteryelectricbuses84.

10.2 Batteries

ThekeytoawideracceptanceofEVsingeneral,andbattery-powerede-busesinparticularisbatterycostandperformance.

Severalbatterymanufacturers,includingBosch85andBYD86,arepredictingthecapacityofbatteriescurrentlybeingdevelopedwilldoublewithin18to48months(dependingonthesource).Whilesomeclaimtheirpricewillnotincrease,othersclaimitwillactuallydecreasebyvirtueoftwowellknowphenomena,thelearningcurveandtheeconomiesofscale.ReputablefinancialanalystsprojectthecostofbatterieswilldropfromtheircurrentUS$350/kWhtolessthan$120onaverageby2030asfigure10.6shows.

Figure10.2CostofLi-Ionbatteries2010-2030

Source:Bloomberg New Energy Finance, 2015.

Lithium-Ionisthebasicingredientinmanybatterychemistries,butitisnottheonlyone.Currentlyresearchisdedicatedtocheapermaterials.Canada’sIREQ(InstitutderechercheenélectricitéduQuébec)isoneofseveralprominentplayersinthatfield,developingagenerationofbatteriesthat

84 Twoofthewritersofthisreporthavecumulatedover25yearsofexperiencewithhydrogenandhydrogenbuses(H2buses).Theyhaveco-authoredtheonlyroadmapinexistenceinCanadaforthedevelopmentofH2busesandtheirimplementationintransitsystems.

85 Source:http://ecomento.com/2015/10/13/bosch-developing-electric-car-battery-of-the-future/,October2015.86 Source:WangChuanfu,CEOofBYD,inapresentationtohisstaffattheirCaliforniaplant,February2016.

10:4

willsucceedlithium-ionbatteriesintransportationelectrification.TheworkperformedonthisSolidStateBatterytechnologyisinnovativeintwoways:first,itusesasolidelectrolyte;and,secondtheanodeismadeofmetalliclithiumwithaspeciallytreatedsurface.Thisisexpectedtoyieldamorestable,saferbutyetcheaperbattery87.

Althoughthisresearchispromising,itisoneofmanyprojectsexpectedtoyieldpowerpacksthatwillbebothdenser(energy-wise)andcheaper.

10.3 Otherchargingmethods

Recently,majorelectricbusmanufacturers,namelyIrizar,Solaris,VDLandVolvo, concludedanagreement88withnumeroussuppliersofchargingtechnologiesthatwillallowthemalltousethesameopeninterfacebetweenbusandcharger.Thisagreementisseenasavitalsteptowardsfindingacommonstandardthatwillapplytoalltechnologies.

Althoughonlythethreemainsuppliersofchargingtechnology(ABB,HelioxandSiemens)havesignedthisagreement,theopeninterfacewillbeaccessibletoeveryoneinhopethatallmanufacturerswilladoptthenewstandard.TheEuropeanbodyCEN-CENELEC89isworkingwiththeinternationalstandardizationbodyISO/IEConthedevelopmentofEuropeanandinternationalstandards.Thesestandardsarenotexpecteduntil2019.

Therearetwofamiliesofchargingsystems,bothoffertrickleandrapidchargingoptions:

• Conductive• Inductive

10.3.1 Conductivecharging

Conductivechargingimpliesaphysicalcontactbetweenthechargingsystemandthebattery.Usingwiresistheoldestandmostcommonformofpoweringelectrictransit.TheETStrolleybusesthatoperatedfordecadesinEdmontonareanexampleofthistechnology.Inthiscase,apoleconnectorfromthebusengagesoverheadwires90.

Chargingbatteryelectricbusesisrarelyperformedontheroadonacontinuousbasis.Rather,chargersareeitherinstalledattransitfacilitiessuchasbusbarnsortransitcentres.Intheformercase,itismostcommontofindanelectriccablerunningfromatricklechargertoeache-businthegarage.Alternatively,rapid-chargersareusedattransitcentresand/orgarages.Figures10.1and10.2illustratethetwomostcommonsystems.Infigure10.3,amobilearmoneachbusreachestoanoverheadchargingplatewhileinfigure10.4,themobilearmisattachedtotheoverheadapparatus(calledapantograph)anditreachesdowntothee-bus.

Therearetwocommontypesofpantograph:amobileapparatuslocatedonthetopofe-busesreachesuptofixedpantographstoreachacontacthead.Alternatively,amobilearmreachesdownfrommobilepantographstomakecontactwithcontactbars.Inbothcases,physicalcontactisrequired.

87 Source:NewLithiumMetalPolymerSolidStateBatteryforanUltrahighEnergy:NanoC-LiFePO4versusNanoLi1.2V3O8,NanoLetters,February2015,pp2671–2678.

88 Seehttp://www.abb.com/cawp/seitp202/ab11e1c9cedfc92d44257f79004b0f5c.aspx.89 EuropeanCommitteeforElectro-technicalStandardization(seehttp://www.cencenelec.eu).90 Edmontonabandoneditsoverheadwiresin2009,anddecommissioneditsagingwireandassociatedtransformerinfrastructure.

10:5

Figure10.3FixedPantograph Figure10.4MobilePantograph

Whiletherearelesswell-knownpantographsystems,withtheagreementrecentlyconcludedinEurope,theyareunlikelytoprogresspasttheprototypestage.Itshould,however,benotedawidevarietyofpresentationsofthesetwotypesofpantographsexist;andmanyofthemareaestheticallyappealing,enablingCityplannerstointegratethemwithotherstreetfurniture.

Inadditiontotheapparentsectionofthechargingstation,hiddencomponentscanbehousedundergroundorinaseparateenclosure.Thesizeofthisequipmentdependsonseveralfactorssuchastheratedpower91oftheequipment,theequipmentmanufacturerandtheneedforadditionalequipmentsuchasstep-uporstep-downtransformers.

10.3.2 Inductivecharging

Inductionallowsforelectricitytomovetoabatterywithoutphysicalcontact.Inductivechargingplatesareusuallylocatedatgroundleveland,hereagain,thebuseitherlowersitselfasneartotheinductionplateaspossibleoramechanismmovestheplateuptothebus.Figures10.3and10.4illustratebothtechnologies.

Figure10.5FixedInductionPlate Figure10.6MobileInductionPlate

ACanadiancompany,Bombardier,offersaninductivechargingsystemthatisalreadycommerciallyusedforbothbusesandtrainsinEurope.

Again,aswithconductivecharging,thesystemscaneithertricklechargethebus(usuallyatthebusdepotorinitsparkinglot)orrapidchargeen-routeatbusstopsandtransitcentres.In

91 SeelexiconinAppendix1formoreinformation.

10:6

additiontotheinductionplate,therearealsocomponentsthatcanbelocatedunderoraboveground.

Theinductivesystem'smainadvantageisthatitiseasierforoperatorstoparkoveraplatethantolineupthebuspreciselyunderpantographs.Therearehoweverconcernsregardingtheefficiencyofthetechnologyastheamountofenergytransferredtothebus’energystoragesystemdiminisheswiththedistancebetweentheplatesandthebatteries.Thequantityofsnowandicecanincreasethedistancebetweentheinductionplateandthereceivingcomponent.Suchconditionsthereforehaveanimpactonchargingefficiencies,andthetimerequiredtorechargebuses.

Aswasthecasefortheconductivechargingsystems,therearealternativesystemsthathavenotbeenverysuccessfultodate,mainlyduetothecostoftheinfrastructurerequired.Forexample,aninductionwirecanbeembeddedintheroadalongthewhole(oratleastalargeportion)ofabusroute.Thistypeofcharging,whichwouldbenefitfromalmostcontinuouscharging,wouldallowforarelativelysmallerbatteryon-boardthee-bus.However,itwouldlimittheroutesforbusestostreetsequippedwiththeseundergroundcables,therebyrequiringlong-termcommitmenttotherouteswheretheyareinstalled,whichisaconsiderationforevolvingmunicipalitiesorthosethatadjustroutestomeetevolvingriderneedsandridershiptrends.

10.3.3 Boostcharging

Itwasoncebelievedthatprovidingsmalleramountsofelectricityonamorefrequentbasistoabuswouldbethebestwaytoacceleratetheadoptionofe-busesbytransitsystems.Bydoingso,thesizeofthebatteryonboardthebusescouldbekepttoaminimum,therebyreducingcurbweight,increasingpayloadandimprovingfuelefficiency.

Withtherapidadvancementsalreadymadebybatterymanufacturers,andwiththeanticipatedimprovementsinthecomingmonthsandyears,markettrendsfavourkeepinginvestmentsininfrastructuretoaminimum,makingboostchargingratherunpopularatthemoment.

11:1

11 ConclusionsandotherconsiderationsBasedontheinformationavailableatthetimethisreportwasprepared,MARCONpredictsthatelectricbusesusedinserviceinEdmontoncanperformasreliablyastherestofthefleetofdieselbusesbutwillrequirethoroughplanning,training,andresourcestoensuretheCityofEdmontonderivesthefullbenefitsoftheiruse.

Electricbusesofferenvironmentalandpotentialeconomicbenefits.Althoughimportantfromthestart,theenvironmentalbenefitsforEdmontonwillincreaseovertime,asthesourceofenergyusedtochargethebusesgetscleaner.Itisalsoexpectedthattheeconomicbenefitsofusinge-busesrelativetousingthedieselbuseswillimproveinthefutureasthecostofoperatingdieselbuseswilloutpacethatofe-busesduetodieselfuelpriceincreases,therisingcarboncostandthepriceofelectricitycontinuingtoprogressataslowerpaceashasbeenthecaseinthepast.

MARCONconcludesthatitisfeasibletointroducee-busesintheETSfleet.

11.1 LimitationsofthescalingupofthereportsinthisstudyTheroadtrialsofe-busesinEdmontonwereconductedduringaveryshortperiodoftime,inJanuary2016.ThatperiodwasnotmarkedlycoldbyEdmontonstandards,norweretheremanysnowdays.Thebuseswerethereforenottestedunderverysevereclimateconditionsandtheirperformanceinextremecoldweathercannotbepredictedaccurately.BasedontheresultsofthetrialandexperienceofotherCanadiantransitevaluationsduringwintermonths,e-busescanbeexpectedtooperateeffectivelyinEdmontoninwinterwithintheoperatinglimitationsofthetechnology.

Theaccuracyofthedataprovidedinthisreportis±25%.Oneexceptiontothislevelofaccuracy:thecostofmodifyingthenewgaragefacilitytoaccommodatee-buses,whichisestimatedat$750,000within±50%byathirdpartyselectedbytheCityofEdmonton92.

MARCONuseditsproprietarymodel,TLCBu$™,topredictthelifecyclecostofoperatinge-busesinEdmonton.AsinstructedbytheSteeringCommittee,thecalculationsarebasedon40busesonly.Usingthisrelativelysmallfleetmakesthefixedcostofinfrastructure(garage,tooling,chargingstations,etc.)relativelyhighasaproportionofthetotalcostofadoptinge-busesinthefleet.Increasingthesizeofthee-busfleetwouldyieldsavingsforETSinthefuture.

Thecostofdieselfuelandelectricityaremaintainedconstantforthe20-yearlifeoftheanalysis.Thepricehistoryofbothenergysourcesindicatesthatfuturepriceincreasesfordieselshould,onaverage,outpacetheexpectedriseinthecostofelectricity,makingthebusinesscaseforelectricbusesmoreattractive.

Timelinessofdataisalsoimportant.ThefinancialprojectionsaremadewiththeinformationprovidedtoMARCONinthecourseofwinter2015-2016.Largeelementsofcostandperformanceareexpectedtochangesubstantiallyovertime.Forexample,thepriceofelectricbusesisexpectedtodecreaseassuppliersgainbothsalesvolumeandmanufacturingexperience.Batteryperformanceisimprovingrapidly.Asaresult,thesameenergystoredonboardwithasmallerand

92 MorrisonHershfield.

11:2

lighterbatteryandalowercostofbatteriescanreasonablybeexpected.Bothhaveanimportantimpactonlifecyclecost.

Batteriesinstalledondiesel-electrichybridbuseshaveexceededindustryexpectationsintermsoftheirlifeanddegradationperformance.Butnewbatterychemistriesarereachingthemarket,sometimeswithoutthebenefitofaproventrackrecord.ThisrepresentsariskforETSbutatleastonemanufacturerhasexpressedawillingnesstoofferinnovativetermsforthesaleofitsbuses.InaninformalproposaldiscussedwithMARCON,themanufacturerofferedtoleasetheirbatterypackfortwelveyears(thelengthofthewarranty)ortorentthemforaslongasETSownsthebuses.ThisovertureshowsthatitmightbepossibletoshifttheriskofownershipofthebatteriesovertothebussupplierselectedbyETS,therebyeasingthecashflowrequirementsforthepurchaseofe-busesovertimeandmatchingthehighercapitalcostofe-buseswiththeenergysavingstheyprocure.

Itshouldbenotedthatthefinancialdataprovidedinthisreportisnotintendedasapredictionofthefullcostofbusownershipoverthenext20years.Rather,theevaluationwasconductedtoprovideafaircomparisonbetweenthreetechnologies:diesel,trickle-chargedbusesanden-routechargedbuses.

Finally,thecurrentETSdutycycleofdieselbuseswasusedtoestablishabasisforcomparisonbetweendieselandelectricbuses.Thisdutycycleisnotoptimalfore-buses.AdaptingETSproceduresandpracticestoaccommodatethecapabilitiesofe-buseswillundoubtedlyprovidebetterresultsfore-buses.

11.2 Expectedfinancialimpactofusing40electricbusesinEdmontonUsingastandardprocurementpractice,theinitialandmid-liferebuildcapitalexpenses(CAPEX)ofe-busesarenoticeablyhigherthanthecostofdieselbusesasshowninthefollowingfigure.

Figure11.1Capitalexpenses(CAPEX)fordieselande-buses(20yearslife)

Source:MARCON,2016.

11:3

However,theoperatingexpenses(OPEX)expensesofe-busesare,fortheirpart,onlyapproximately56%to59%ofthecostofrunningdieselbuses.Thiscalculationassumesthatthepriceofdieselfuelwillremainatitscurrentlevelforthenext20years,whichishighlyunlikely.

Figure11.2Operatingexpenses(OPEX)fordieselande-buses(20yearslife)

Source:MARCON,2016

Giventhedutycycleusedfortheeconomiccalculationsperformedandthehypothesesrelatedtothecostofenergyandthepriceofthecarbonlevy,theeconomicforecastisveryconservative.

Andonthatbasis,thelifecyclecostassociatedwithpurchasingandoperating40trickle-chargede-busesoutofthenewNETGiscomparabletothatofusingthelatestgenerationofdieselbusesonthemarket.

Despitethefactthatalmosttwo-thirdsofETScustomerssurveyedexpressedawillingnesstopaymoreinordertoridee-buses,noadditionalrevenueisfactoredintoMARCON’scalculations.Infact,noincreasesareforeseenforthefaresoverthe20-yearperiodusedinMARCON’sanalysis.AllthehypothesesusedinMARCON’scalculationsareselectedinasimilarlymoderateway.

Thereareseveralopportunitiestofurtherimprovethebusinesscasefore-buses.Forexample,leasingorrentingthee-buses’energystoragesystemcanmitigatetheirhigherpurchaseprice.Favouringthee-businthedailyblockallocationinsuchawayastoincreasethedistancethee-buseswillcovereachyearfortheirentirelifewillalsoproducesavingsasthecostofoperationsofdieselbuses($1.05/km)ishigherthanthatoftrickle-chargede-buses($0.59/km).

Thecalculationspresentedinthisreportarebasedonseveralveryconservativehypotheses.Forexample,thepriceofenergy,dieselfuelincluded,isheldatcurrentcontractuallevelsforthe20yearslifeofthebuses.Althoughthepriceofelectricitywillrise,petroleumproductspriceshavehistoricallyexperiencedmuchgreatervariationsandthepriceofdieseliscurrentlylow.

11:4

11.3 Expectedenvironmentalimpactofusing40electricbusesinEdmontonTheuseofe-busesinEdmontonwouldgenerateGHGsavingof38%to44%comparedtodieselbusesusedinthesameway.Thesesavingswillreach72%to74%by2034astheAlbertaelectricitysupplybasegetscleanerwiththeprogressivephasingoutofcoal-firedpowergeneration.

Theuseofdieselheatersonboarde-buseswilluse4%ofthedieselfuelcurrentlyconsumedbydieselbuses,irrespectiveofwhiche-busisequippedwiththeseheaters.Consideringtherangereductionimplicationsofheatinge-buseselectrically,equippinge-buseswithdieselheatersisconsideredmoredesirabledespitethesmallimpactofdieselheatingontheenvironment.

Whetherupstreamemissions,orthosefromthetailpipe,e-busesareabetterchoicefortheenvironmentthanthecurrentdieselfleet.ETScanfurtherdecreaseitsenvironmentalfootprintbymanyotherways:sourcingrenewablepowerforthebuses,co-generatingheatandelectricityinthenewfacilitythatwillhostthebuses,installingsolararraysonthatsamebuilding,etc.

11.4 RisksassociatedwiththeuseofelectricbusesatETSAdoptinganewtechnologyinvariablypresentsrisks.Ifnothingelse,timeisrequiredforstafftoadapttothenewvehicles.Thefieldtrialhasshownthatoperatorshavequicklyadaptedtothetestvehicleswithaminimalamountoftrainingandunderconditionsthatwerenotidealastheequipmentprovidedbymanufacturerswasavailableforonlyashortperiodoftime.Theadaptationperiodwillbelongerformaintenancestaffastechnicianswillhavetolearntodealwithunfamiliarissuesbutoperatorswillgetusedtodrivinge-busesveryquickly.

Whileelectricmotorshavelongbeenusedinindustry,batteriesmadetheirentryinthetransitmarketasamainsourceofenergylessthan10yearsagowiththeadventofdiesel-electrichybridbuses.Fromareliabilityperspective,theyhaveperformedverywell.Thisissueanditsassociatedriskshavealreadybeendiscussedbutadditionally,handlingbatteriesinthemaintenancegarageoraccidentsrequiresthatoperators,firstrespondersandmaintenancestaffknowtherisksassociatedwiththebatterychemistryselectedwhene-busesarepurchased,andthatallpersonnelbetrainedaccordinglytomitigatesuchrisks.

Thecurrentshorterrangeofe-busescomparedtodieselbusesalsopresentsariskthatmoree-busesmayberequiredthandieselbusestoprovideanequivalentlevelofservice.However,MARCON’sevaluationofETSserviceplansshowsthatthepropertyoperatesasufficientnumberofblockswithtotaldistancewellwithintherangeofe-buses(evenwitha15to20%energyreservemargin).ETScanthereforeplace40e-busesinservicewithouthavingtoworryaboutthisissue.Also,upcominggenerationsofe-busesareexpectedtototallymitigatethisrisk.MARCONalsoobservedthate-busesareabletonegotiatethesteepesthillsintheETSserviceareawithoutexperiencinganadverseimpactonrange.

Thefieldtrialalsodemonstratedthattheuseofdieselheatersonane-busprovidesmorecertaintyregardingtherangeofthevehicle,withminimalenvironmentalimpact.Approximately20%ofenergystoredonboardthee-busisrequiredtooperateelectricheaters.Inextremecoldthiscouldbehigher,furtherreducingtheeffectiveoperatingrangeofthebus.EvidenceatotherCanadiantransitagenciesthatevaluatedthebusesinsummerindicatesairconditioninghasasimilarnegativeeffectonrange.

11:5

Theuseofen-routechargede-busespresentsrisksthataredifferentthanthoseofoperatingtrickle-chargedbuses.Withtheformer,thecharginginfrastructurerequiredcanberestrictiveintermsofrouteplanningflexibilityasthecostofmovingthechargingequipmentformonestationtoanotherwillbehigh.Withtrickle-chargedbuses,anelectricitygridfailureaffectingthegaragewheree-busesarechargedcanhampere-busfleetoperationsiftheelectricitysupplyfailureoccurswhene-busesarescheduledforacharge(unlessasufficientlylargebackupgeneratorisinstalled).Therangeofthecurrentgenerationoftrickle-chargede-busesalsolimitstheportionoftheblocksthatcanbeassignedtothesebuses.

11.5 Otherrisksandbenefitsassociatedwiththeuseofe-busesatETSOneoftheimportantbenefitsofusinge-busesistheexpectedincreaseincustomersatisfaction.Alargemajorityofcurrentcustomersexpressedtheirpreferenceforthesecleanbuses.Almosttwo-thirdsofthemexpressedawillingnesstopayapremiumtoridethem.Anddespiteresidentsalongtheroutesnotbeingsurveyedonthattopic,itisfairtoassumethatmostwillpreferaquietbustoanoisyoneintheirneighbourhood.

Usingthelatestgenerationofe-buseswillalsohaveanimpactontheimageofEdmontonasbeingaprogressive,environmentallyconsciouscity.

Theintroductionofe-busesatETScanbeaccommodatedbythecurrentcapacityoftheelectricitygridinEdmonton,particularlyattheproposednewNorthEastTransitGarage.However,ife-busesareintroducedinlargenumbers,theelectricitygridinEdmontonmayneedtobeupgradedinsomeareastoensurethereissufficientpoweratthelocationswherelargefleetwouldbecharged.

11.6 KeysuccessfactorsfortheuseofelectricbusesbyETSThereareseveralkeysuccessfactorstotheimplementationofe-busesinEdmonton.MARCONhasidentifiedtheminatimesequenceasfollows:

1. Clearlydeterminingwhatperformancethee-busesareexpectedtoachieve2. Makingtherighte-bustechnologychoicefortheintendeduse3. Priortotheprocurementprocess,definingexactly:

a. Theroutesthee-buseswillserviceb. Howtheblockassignationprocesswillbemodifiedtooptimisetheirusec. Whattheirspaceassignmentwillbeintheassignedgaraged. Howserviceandmaintenanceprocedureswillbeadaptedtoe-busese. Whatdesignchangesmustbemadetotheassignedgaragetoaccommodatee-

buseswithminimalimpactonoperations4. Developingspecificationsfortheprocurementofe-busesthatarecompatiblewiththe

wayETSintendstooperatethemandnotthebrandofbusesavailable5. Engaginginaprocurementprocessthatwillinvolvenegotiationswithoneorseveral

supplierswillingtoadapttheirvehiclestothespecificationsETShasdeveloped6. Obtainingfavourableterms(ex.batteryrentalorleasing)fromtheselectedsupplierasETS

willlikelybeshowcasedbythebusmanufacturerinfuturepromotionsoftheirproduct7. KeepingallETSstaffinformedofthegoalsoftheCitywithregardstoe-busesand

developingadetailedplanoftheprocessETSwillusetobringthemintoservice8. Afterdeliveryofthebuses,ensuringthebusesareassignedtothedutycycleandroutes

theywereoriginallyintendedfor

11:6

9. Optimizetheuseofthebusestothemaximumdistancetheycandeliverastheircostadvantageincreaseswitheverykilometreinservice

10. Ensuringthedeploymentlocationofe-busescanbesupportedbytheelectricitygridatthatlocation.

12:1

12 Recommendations

12.1 Risksandbenefitsforthee-buscaseinEdmontonWhiletherearerisksassociatedwiththeintroductionofe-busestotheETSfleet,theseriskscanbemitigated.Inthelongrun,theenvironmentalbenefitsassociatedwithe-buseswillmakethemmoreattractive.Thecostofoperatingtricke-chargede-busesisalreadycomparabletothatofoperatingadieselbusfleet(withinthelevelofprecisionrequiredfromMARCON’scalculationsherein).Thebusinesscasefore-buseswillkeepimprovingwithtimeascheaperenergystoragesystemsintroducedbymanufacturers.

Therefore,theadditionofe-busestotheETSfleetisrecommended.

12.2 E-bustechnologyTwochargingtechnologieswereevaluatedinthecourseofthisproject.Thetrickle-chargedbusesprovedtobemoreeconomicaltooperatewithsomelimitationsintermsofservicedeliverytoriders.Busesthatcanberechargedatacentrallocationcanserveareasonableblocklengthwhileprovidingalmostthesameflexibilityasthecurrentdieselbusesintermsoftheirrouteassignments.Withtheexpectedimprovementsinenergystoragesystemsannouncedbytheindustry,rangelimitationissueswillbecomeirrelevantfortrickle-chargedbuseswithinafewyears.ETSisthereforelessrestrictedwhendeployingthesee-busesthantheywouldbewithen-routechargedbusesthatmustnecessarilyrunfromonechargingstationtothenextinordertomaintaintheirrange.

Whiletheydonotexperiencerangelimitationsbecausetheycanquicklyreplenishtheirbatteries,en-routechargedbusesrequireacharginginfrastructurethatpushestheirlifecyclecostbeyondwhatcouldbeconsideredcomparabletothatofdieselbuses,outsidethe±25%marginoferror.

Forthesereasons,iftheCityofEdmontonchoosestoadde-busestoitsfleet,MARCONrecommendsthattrickle-chargede-busesbeadopted.

Thetechnologyassociatedwithe-busesiscontinuouslyimproving,withfourmanufacturersthatwillhavetransitproductsofdifferentconfigurationsavailableinthenextyearortwo-NewFlyer,BYD,NovaBusandProterra.ThematurityofthetechnologyinthedevelopmentcycleissuchthatMARCONsupportstheprocurementofe-busesbyETS.

Aprocurementofalimitednumbere-buseswillnotnecessarilyoptimizetherequiredcapitalcostoffacilityupgrades,charginginfrastructure,specializedtoolingandotherinitialsoftcosts.Whileasmallerfleetthantheoneevaluatedinthisreportwoulddamagethebusinesscasefore-buses,asmallprocurementwillprovideETSwithagoodopportunitytoevaluateallthefacetsofoperatingane-busfleet,andtooptimizetheoperationalprocessesrequiredshouldafurtherexpansionoftheelectricbusfleetbedesired.

12.3 Timing,numberandratefortheintroductionofe-busesatETSElectricbustechnologyisnotasmatureastheincumbentdieseltechnologyandso,adoptingelectricbusesdoespresenttherisksidentifiedinchapter11.Butatthistime,thereisagrowingconsensusintheindustry:electricvehicleswillmostlikelydominateoverthenextfewdecades.

12:2

InthatcontextandwiththeresultsofthefieldtrialsconductedinEdmonton,MARCONrecommendsthatETS’snextbusprocurementcompriseofalimitednumberoftrickle-chargedelectricbuses.Puttinge-busesinserviceinEdmontonwillrepresentacredibleandconclusivefirststepingreeningEdmonton’stransitbusfleet.

Giventheamountandnatureofthepreparatoryworkrequiredtoprocurethesebusesandintegratetheminthefleet,itwouldbereasonabletoexpecttheirentryinserviceinlate2017,orearly2018.

12.4 ChangesrequiredforasuccessfultransformationofETS

12.4.1 Essentialchanges

Inordertominimizethecostofinfrastructureandoperations,MARCONrecommendsdeployingthesee-busestoasinglegaragedesignedormodifiedtoaccommodatethem.Theirspecificrequirementsshouldbedeterminedusingafunctionalanalysisbutmustincludeconsiderationspertainingtothesizeofthebackupgeneratorandtheclearanceofthebuswash.Otheritemssuchasthepossibilityofusingcogenerationand/orsolararrayswouldimprovefurthertheirenvironmentalperformance.

Inprocuringthemodestfleetofe-buses,MARCONfurtherrecommendsthatETSstaffdevelopaperformancespecificationassoonaspossible.Thesespecificationsshouldincludedieselheatersforspaceheatingonboardeachbusinordertoprovidemorecertaintyineffectiverangeforserviceplanning.Duetothedrainonthebatteriestheuseofairconditioningisnotrecommended.

Athoroughevaluationofserviceblocksmustbeundertakeninparallelwiththeprocurementprocesstoidentifywhatchangeswouldoptimizetheuseofe-busesand,therefore,theeconomicandenvironmentalbenefitsofthetechnology.Thegoalwillbetoassignthesebusestothelongestblockstheycanpossiblyhandleinordertoreducetheirfixedcostperkilometre.

12.4.2 Importantchanges

MARCONrecommendsthat:

• Acomprehensiveengineeringandmaintenancefleetmonitoringprogrambedesignedpriortoanye-busfleetprocurementtoensureprocessesaredevelopedthatwillcapturechangesrequiredtothecurrentmaintenance,servicingandsupportsystemstoensurethesuccessoftheintroductionofthee-busfleet

• Acomprehensivereviewofallserviceplanningbeundertakentoensurethatserviceblocksareoptimizedforuseofthee-busfleettoachievethebestenvironmentalandeconomicbenefits

• ETSworkwiththesuccessfulbusmanufacturerandpotentialthirdpartytechnicaltraininginstitutiontodevelopthenecessarytrainingpackagestoensureallstaffinvolvedwithoperatingthee-busfleetreceivecomprehensivetrainingpriortocommissioningthenewbuses

Ifitisintendedtoexpandthesizeofthee-busfleetafterafewyearsofexperiencewiththemodestfleetidentifiedabove,itisstronglyrecommendedthatathoroughanalysisofthechargingandfacilityupgraderequirementsbecarriedoutforeachtransitdepotintheETSsystem.Thisshouldbecarriedoutinparallelwiththeintroductionoftheinitialfleetofe-buses,

12:3

andthefacilitydevelopmentplanforalltheoperatingdepots.Thiswillensurethatthepowerrequirementscanbemetandcapitalinvestmentneedsidentifiedinadvanceofanypurchasesofe-buses.

ItisalsorecommendedthatETScontinuetomonitorothertrialsbeingconductedwithe-busesattransitpropertiesinNorthAmericaandinvestigatesourcesofsubsidiesforprocurementofcleantechnologiesthatmaybeavailablefromFederalandProvincialgovernments.

12.4.3 Preferablechanges

ItispossibletoreducetheGHGintensityoftheelectricitytheCitypurchasestozerothroughthepurchaseorproductionofrenewableenergy.Therearecurrentlymanyopportunitiestoacquirerenewableenergyfromcertifiedsourcesaroundtheprovince.Edmontoncurrentlypurchasessomerenewableenergycredits(RECs),buttherepresentativeofEdmonton’sOfficeofEnergyManagementconfirmedtoMARCONthattheCityprefersconductingenergyefficiencyprojectsratherthantopurchaseoffsetstoreduceitscarbonfootprint.

ConsideringthepreferenceoftheCityofEdmontonforenergyefficiencyoverthepurchaseofRECs,ETSshouldexplorecogenerationpotentialwhereboilerscurrentlyspecifiedtoheatthebuildingarereplacedbycogenerationunitsthatsimultaneouslyproduceheatandpowerusingabundantandcheapnaturalgasaswellassolararraysonthegarageroofwherethebuseswillbehoused.TheOfficeofEnergyManagementindicatedthatitismandatedtoexplorethebusinesscasesofmodernizationandrenewableenergyinvestment,andtheyareinterestedinexploringthispotentialpriortothebuildingbeingconstructed.

12.5 OtherrecommendationsStandardgovernmentsourcingprocessesaregenerallyillsuitedtotheadoptionofnewtechnologiesbecausetheusual“lowcostbidder”approachdoesnotallowtheorganisationtoselectanensembleofsuppliersthatwillminimizetheoverallcostoftheimplementation.TheprocurementprocessattheCityofEdmontonwasnotexaminedbut,basedonthisgeneralobservation,MARCONsuggeststhataspecialtaskforcebeselectedtooverseethearrivalofthee-busfleet,fromdesignandprocurementtotheribbon-cuttingceremony.

AtleastonebusmanufacturerhasexpressedmuchflexibilityinprovidingacontractualarrangementfortheprovisionofitsvehiclesthatwouldallowETStoleaseorrenttheenergystoragesystemsforthee-buses.Theeconomicanalysisandresultinglifecyclecostanalysisshowthattheinitialhighcapitalcostofpurchasinge-busesismostdamagingtothee-busbusinesscase.

Thepossibilityofusingthisprocurementofe-busesandthepossibilityoffurtherprocurementsfromthesamesupplierasleverageforeconomicdevelopmentintheEdmontonareashouldalsobetakenintoconsiderationasonemanufacturerhasexpressedaninterestinperformingatleastpartofitse-busassemblyinCanada.

Finally,ifETSeverconductsfield-testingofnewtechnologiesinthefuture,MARCONrecommendsthatthe“lessonslearnedfromthefieldtrials”presentedinAppendix5beconsidered.

12:4

12.6 NextstepsTheactivitiestobeundertakeniftheCitydecidestointroducee-busesintheETSfleetare:

• ETSmustresolvehowthee-buseswillbeusedinthefleetandhenceforthdeterminewhatperformancethee-busesareexpectedtoachieve.

• Ideallypriorto,butpossiblyconcurrentlywiththeprocurementprocess,ETSmustdefine:o Theroutesthee-buseswillserviceo Howtheblockassignationprocesswillbemodifiedtooptimisetheiruseo Whattheirspaceassignmentwillbeintheassignedgarageo Howserviceandmaintenanceprocedureswillbeadaptedtoe-buses

• ETSmustthendevelopdetailedspecificationsfortheprocurementofe-busesthatarecompatiblewiththewayETSintendstooperatethemindependentlyfromthosecurrentlypromotedbybusmanufacturers

• TheCitymustthenengageintheprocurementprocessinawaythatmightbedifferentfromitsusualpracticesasnegotiationswithoneorseveralsupplierswillingtoadapttheirvehiclestoETS’specificationswillbethebestwaytoprocurevehiclesthatwillmeettheCity’sexpectations.Thelowestbiddermaynotbethebestsupplierasthelifecyclecostoftheprocurementshoulddictatethechoiceofsupplier.

• AninternalandexternalcommunicationsstrategymustbecraftedtoillicitmaximumcollaborationfromallCitystaffandtoinstilprideintheorganisationonthepartofallEdmontoncitizensandstaffmembers.

12:5

12:6

1

Appendix1: Lexiconandotherusefulinformation

CycleLifeThisisthenumberoftimesanenergystoragesystemcanbedischargedandrechargedbeforeend-of-life.

Cyclelifemayvarywithdepthofdischarge(DOD)and/ordischargerate.Itisusuallyspecifiedasanumberofcyclestoacertaindepth-of-discharge(e.g.5,000cyclesto80%DOD),orevenasatableorgraph.AsampleisprovidedinFigure1.

Cyclelifemayalsovarybasedonthechargerate.

Figure1-SampleCycleLifevs.Depth-of-DischargeGraph

EnergyCapacityThisistheamountofenergythatcanbestoredinthedevicefordeliverytoaloadandisdescribedinkilowatt-hour(kWh)ormegawatt-hour(MWh).

Itisimportantheretonotethedifferencebetweendirectcurrent(DC)andalternatingcurrent(AC)ratings,andbetweenthe“ratedcapacity”andthe“useablecapacity.”Manyenergystoragedevices(especiallythosecalled“batteries”)areratedinDC,whileanenergystorage“system”–whichinteractswiththeelectricgrid–isratedinAC.So,itisimportanttonotewhichoneisbeingdiscussedbyspecifying“kWh-DC”or“kWh-AC”.

Itisalsoimportanttonotewhetherthisisthe“nameplaterating”orthe“useablecapacity.”Sometechnologies(e.g.lead-acidandlithium)haveatheoreticalratingbasedon100%discharge.However,usingthiscapacityrepeatedlywouldcausephysicaldamagetothebattery,somanufacturersrecommendusingonlysomepercentage(i.e.,50%or80%)ofthenameplate

2

rating.Thereareotherenergystoragesystems,especiallyflowbatteries;thatcando100%depthofdischarge(DOD)withoutphysicaldamagetothebattery.

PowerRatingThisistheamountofpowerwhichcanbedeliveredfromtheenergystoragesystem,andismeasuredinkilowatts(kW)ormegawatts(MW).

ThismustalsobespecifiedasDC(ifdiscussingthebatteryalone)orAC(ifdiscussinganenergystoragesystem).

Thisratingisafunctionofthebatteryitselfandofthepowerelectronics(inverter),whichareusedtoconvertthebatteryenergyintoACpower.Themostcommonspecificationisforcontinuouspower,butdifferentdevicesmayalsoberatedforshort-termor“surge”power.Thepowerratingisusuallythesameforbothdischargeandrecharge,butitcanbedifferentinspecialcircumstances,especiallywhendiscussingthebatteryalone.

RoundTripEfficiency

Thisistheratiooftheamountofenergy,whichcanbedischargedfromtheenergystoragesystemtotheamountofenergyittakestorechargetotheinitialstate.ItisusuallyabbreviatedasRTE,whichmustbespecifiedasDC(ifdiscussingthebatteryalone)orAC(ifdiscussinganenergystoragesystem).

ACRTE=DCRTE*inverterefficiency*chargerefficiency

Round-tripefficiencymayvarybasedoncharge/dischargerate.

Notethatallenergystoragesystemshavearound-tripefficiencyoflessthan100%.

ActualDCRTEcanbebetween65%and95%,dependingonthebatterytechnology.

SystemLife

Thisisthenumberofyearsthatthesystemisexpectedtooperatewithinspecifiedparameters.Forexample,somesystemsmaybespecifiedtooperateforfiveortenyearsandthenbereplaced/recycled,whileothersmaybespecifiedtooperatefor25years,assumingcertainmaintenanceandcomponentreplacementsalongtheway.

Invertersandpumps/motordrivesandflow-batterymembranesareexamplesofcomponentsthatmayneedrefurbishingand/orreplacementoverthelifeofthesystem.

Therearealsootherspecificationswhichmaybedescribedonadatasheet,including:

Degradation

Someenergystoragesystems(especiallyelectrochemical)willexperienceareductionincapacityovertheirlife.Suchsystemsareoftenratedusingterminologysuchas“5,000cyclesto80%finalcapacity.”

3

Note–thisisthereasonwhypeoplearelookingatsellingusedelectricvehicle(EV)batteriesforhomeenergystorageaftertheyhaveoutlivedtheirspecifiedlifeinthevehicle.

Self-Discharge

Thisistherateatwhichanenergysystemwilllosecapacityifleftunconnectedtoachargingsource.

Itimportanttonotethatsometechnologies(leadacid,lithium,flowbatteries)aresuitabletostandbyuse(longperiodsofinactivityfollowedbyuse),whileothers(sodiumnickelchloride,liquidmetalbatteries)aredesignedtobeusedcontinuously,sincetheir“losses”helpprovidetheheatingforthehightemperatureelementsofthebattery.

4

5

Appendix2: BlockanalysisoftheWestwoodgarage(sample)93

93 AfullversionoftheanalysiswassuppliedtoETSinelectronicformat

WestwoodGarage-February16thDataPullWeekdayBlocksSummary

#Blocks Averagekm/day #Buses km/yearBYD 80 210.0 40 2,184,000NewFlyer 40 316.6 40 3,292,710Diesel 395 208.6 40 2,169,698

Legend AMBlockPMBlockBlockpossiblewith20%efficiencyloss(ElectricHeaters)Blockpossibleundernormalconditions(DieselHeaters)BlockassignedtoaBYDBlockassignedtoaNFI

Note:ForEn-routechargers,negativetimetofillnumbersindicatethatthereislessthan5minutesperhourrequiredtokeepthebusatfullchargemostoftheday

Block Start End Duration Distance InterlineRoutesTC1 TC2 TC3 TC4 StartChargeEnrouteChargeFinishChargeTimetoFill85301t 00-01-0111:54 00-01-0112:34 40 12 ,853 324.0 0.0 308.5 1685303t 00-01-0112:00 00-01-0112:39 39 12 ,853 324.0 0.0 308.5 1685302t 00-01-0111:58 00-01-0112:37 39 15 ,853 324.0 0.0 305.5 1994501t 00-01-0111:53 00-01-0112:39 46 16 ,945 324.0 0.0 304.1 2094502t 00-01-0111:58 00-01-0112:44 46 16 ,945 324.0 0.0 304.1 2094503t 00-01-0112:03 00-01-0112:49 46 16 ,945 324.0 0.0 304.1 2090301t 00-01-0111:55 00-01-0112:44 49 18 ,903 324.0 0.0 301.6 221623 00-01-0115:35 00-01-0116:50 75 23 ,16 324.0 0.0 295.8 2880001t 00-01-0112:00 00-01-0112:56 56 23 ,800 324.0 0.0 295.6 2884201t 00-01-0111:56 00-01-0113:01 65 23 ,842 324.0 0.0 295.1 2914503 00-01-017:28 00-01-018:37 69 23 ,145 324.0 0.0 294.9 2985501t 00-01-0111:56 00-01-0112:54 58 23 ,855 324.0 0.0 294.8 2985502t 00-01-0114:37 00-01-0115:35 58 23 ,855 324.0 0.0 294.8 2985101t 00-01-0111:57 00-01-0112:56 59 24 ,851 324.0 0.0 293.9 3086601t 00-01-0111:48 00-01-0112:51 63 25 ,866 324.0 0.0 292.6 3185201t 00-01-0111:50 00-01-0113:02 72 25 ,852 324.0 0.0 292.2 3285202t 00-01-0111:57 00-01-0113:09 72 25 ,852 324.0 0.0 292.2 3294301t 00-01-0111:42 00-01-0112:54 72 26 ,943 324.0 0.0 291.2 3384901t 00-01-0112:00 00-01-0113:18 78 26 ,849 324.0 0.0 291.1 3384902muwf 00-01-0114:57 00-01-0116:15 78 26 ,849 324.0 0.0 291.1 33822 00-01-017:03 00-01-018:40 97 26 ,8,12 324.0 0.0 291.1 3384401t 00-01-0112:00 00-01-0113:22 82 27 ,844 324.0 0.0 290.3 3416811 00-01-017:19 00-01-018:23 64 27 ,168 324.0 0.0 290.0 3493501t 00-01-0111:38 00-01-0112:55 77 28 ,935 324.0 0.0 289.6 3484502t 00-01-0111:53 00-01-0113:17 84 28 ,845 324.0 0.0 289.6 348502 00-01-016:31 00-01-018:05 94 29 ,85 324.0 0.0 287.4 3716207t 00-01-0115:51 00-01-0117:13 82 31 ,162 324.0 0.0 285.5 391619mwf 00-01-017:11 00-01-018:47 96 31 ,16 324.0 0.0 284.8 391608 00-01-017:26 00-01-019:02 96 31 ,16 324.0 0.0 284.8 391614t 00-01-0115:23 00-01-0117:03 100 32 ,16 324.0 0.0 284.0 4084504t 00-01-0114:02 00-01-0115:59 117 32 ,845,853 324.0 0.0 284.0 4016001 00-01-016:30 00-01-018:11 101 33 ,160 324.0 0.0 282.8 4116002 00-01-017:00 00-01-018:41 101 33 ,160 324.0 0.0 282.8 4118307 00-01-0116:12 00-01-0117:53 101 34 ,183,186 324.0 0.0 282.1 4218203 00-01-016:36 00-01-018:39 123 34 ,182 324.0 0.0 281.8 4218205 00-01-016:51 00-01-018:54 123 34 ,182 324.0 0.0 281.8 42

6

7

Appendix3: Mid-lifecostrebuild–detailedcosts

DieselXcelsior

2014-2015

Diesel40'Buses

2012-2015 ExcelsiorE-Bus BYDE-Bus Notes

Rebuild/Overhaul/MidlifeCostseBusonly(thickborder) Energystoragelifeexpectancy(years) 12 12 1

EnergyStoragereplacement(perbus)(partsonly)* $244000 $156542 2

EnergyStoragereplacement(perbus)(partsonly)* $63000 $85000 3

ESSreplacement(labour) $1500 $1500 4Annualpreventivemaintenance(powerpack) $0 $0 5

EnergyStorageSystemdisposalcosts(perbus) 6

PowerInverterModule(PIM)(partsonly) $15000 $0 7

PIMLabour $750 $0 8Powertrain(Incl:turbocompressor) EngineorMotor

rebuild/replacement N/A N/A $23104 $30806 9

eBusMotorreplacementlabour $1500 $2250 10

Transmissionrebuild/replacement N/A N/A N/A $61100 11

BYDreductiongearslabour $3750 12CombinedEngine&

Transmissionrebuild/replacement

$64534 $64534 N/A N/A

BodyMidlife $64221 $64221 $64221 $64221 13

NOTES

1) BothNFIandBYDoffered12yearbatterywarrantyonrecentRFP2) BYD=C$156,542NFI=4x$61,000(61,000for50kW,200kWtotal)Re:Salesquotedcosts3) AlternatefuturecostanalysisusingCARBreport*4) Estimate2days(replacementandtestinglabour)5) IncludedinPMInspectionsnotedbelow6) Futurecostsunknown.Recyclingprobable.7) BYD-includedinBatterysystem.NFI-$15,000auxinverter(assumemotor,chargerinverterincluded

withcomponents)8) 1dayreplacementandtestinglabour9) BYDmotorreplacementcost(2).NFI-nopriceobtainedassumeBYD*1.5(singlelargermotor)10) Replacementandtestinglabour(2daysNFI,3daysBYD-2motors)11) BYDreductiongearset@$1.3012) 5daysaxlesre&reandrebuild13) Assumesameasdiesel(BYDunknownasit’sanewproductionbus)

8

9

Appendix4: Detailedmaintenancecosts

DieselXcelsior2014-2015

Diesel40'Buses2012-2015

ExcelsiorE-Bus

BYDE-Bus Notes

MAINTENANCECOSTS

1RunningMaintenance

Brakemaintenance(annualperbus) $3032 $5225

$1516 $1516 2

Body/CabInterior/Exterior(annualperbus)

$2923 $3952

$3952 $4348 3

PreventativeMaintenanceInspections(annualperbus)

$6251 $6251

$4689 $4689 4

GeneralEnginework(annualperbus) $914 $2836

$0 $0

TransferCase(annualperbus) $0 $0

$0 $0

Suspension(annualperbus) $701 $1819

$1819 $1819

HvacSystem(annualperbus) $968 $1664

$1664 $1664 5GeneralTransmissionwork(annualperbus)

$340 $1504

$0 $0

CoolingSystem(annualperbus) $546 $1437

$546 $273 6Steering(annualperbus) $166 $1237

$1361 $1361 7

FuelSystem(annualperbus) $34 $1102

$0 $0 8AirCompressorSystem(annualperbus) $185 $726

$653 $653 9

Wheels,Rims,Hubs&Bearings(annualperbus)

$739 $663

$663 $663 10

ExhaustSystem(annualperbus) $226 $648

$0 $0

CrankingSystem(annualperbus) $284 $625

$0 $0

SupplementalInformationDevices(annualperbus)

$23 $549

$549 $549 11

LightingSystem(annualperbus) $178 $414

$178 $178 12ChargingSystem(annualperbus) $17 $399

$0 $0 13

AirIntakeSystem(annualperbus) $5 $375

$200 $200 14Instruments,Gauges,Meters&Warning(annualperbus)

$174 $323

$258 $258 15

ElectricalSystem(annualperbus) $14 $266

$266 $320 16ElectricalAccessories(annualperbus) $117 $200

$401 $401 17

Axles(annualperbus) $0 $150

$150 $150 18HydraulicSystems-Multi-Function(annualperbus) $0 $149

$0 $0

Modules/Relays/Wiring-Electrical(annualperbus) $63 $132

$264 $264 19

DriveShafts(annualperbus) $11 $130

$156 20Frame(annualperbus) $0 $46

$46 $46

IgnitionSystem(annualperbus) $5 $14

$0 $0

Oilchanges(annualperbus) $0 $0

$0 $0 21

Misc.OtherSystems(annualperbus) $107 $48

$1500 $1800 22Tires,Tubes,Liners&Valves(annualperbus) $26 $5

$26 $26 23

TotalRunningMaintenance $18048 $32891

$20859 $21178

10

1) Ingeneral,used2012-2015astheaverageBatterybuscomparison-startingpointas2014-15Xcelsiorsaretoonewforlong-termaveragecost.UseXcelsiorcostforspecificnewtechnologyonnewbuses(e.g.diskbrakes).DifferencesinNFIandBYDgeneralizedasthisisnota"purchase"analysis,andbusdetailsmaychangeinfuture.

2) 50%lessbrakemaintenance-hybridandtrolleyexampleswithregenerativebraking3) XE40-sameas2012-15average.BYDadd10%forless"refined"body,lessstandardsourcing4) PMannualaveragecost,calculatedovera140,000kmcycle5) SlightlylesselectricACmaintenance,butaddfordieselheater(samecost)6) NFI-sameasXD40,multiplecoolingsystems.BYD-50%ofXD,simplercoolingsystem7) Add10%formorecostlypowersteeringmotor8) DieselheaterfuelincludedinHVACcost9) Deduct10%fromdiesel(foroil-lessscrollcompressor,nobeltdirectdrive)10) Sameasdiesel11) Sameasdiesel2012-1512) UseXD40costs,forLEDlighting13) Noalternatoronbatterybus14) Someairfiltersone-buses15) 20%less,noengine/transmissiongauges16) Samebasicbodyelectricalasdiesel(BYDadd20%-ETSexperience)17) Doubletheelectricalaccessoriesasdiesel18) Sameasdiesel19) Doubletheelectricalwiringasdiesel20) 20%more-morecostlydriveshaftonbatterybus21) OilchangesareincludedinthePMcyclenumbers22) Estimateforotherelectricalsystemsonbuscomparedtodiesel(2dayswork)BYD20%moredueto

morecomplicatedsystem(ETSexperience)23) XD40costsused(shouldbehigher-3tires/year)

11

Appendix5: Lessonslearnedfromthefieldtrials

Thefieldtrialconductedinthewinterof2015-2016inEdmontonprovidedanopportunitytolearnandimprove.Shouldtheoccasionarisetoconductanotherfieldtrialregardinganewbustechnology,thefollowingcommentsmaybehelpful:

• Agoodunderstandingoftheelectricbusmarket,testbusavailability,andstatusofe-busescommercialavailabilityshouldbeacquiredbeforestartingfieldtrialstoensurethattheobjectivesofsuchatestprogramcanbemetasefficientlyaspossibleandthatthetimingforthetestisoptimal.

• Anoverallprojectscheme,anchoredbyadetailedtestplan,isnecessarytoensureallprogramcomponentsareconsideredandthatadetailedplanispreparedforthefieldtest.Thisshouldbecompletedwellaheadofacquiringthebusestobeevaluated.Leadtimestoobtaintestbuses,leaseagreements,bordercrossingandregulatoryapprovals,facilitymodifications,techniciantraining,drivertraining,andsupportpersonnelarekeytothewintertesting.Leadtimesareoftenlongerthananticipatedandtakemuchcoordinationthanoriginallyexpected.

• Adetailedtestplan,organizedpriortoputtingbusesinserviceishighlyrecommended.Thisplanshouldincludeatestdesignthatwillachievetheobjectivesandprocurethedatarequiredtomakemeaningfulconclusions,evenifitmeanstestingthebusesindependentlyofrevenueservicetoobtainspecifictechnicalobjectivesunderidenticaloperatingconditionsbeforeevaluatingtheminrevenueservice.

• Agreatnumberofvariablescanaffecttheperformanceofvehiclesbeingtested.Ideally,allfactorsshouldbecontrolledwhileonlyonevariesinordertoassesstheimpactofthelatteronbusperformance.Forexample,runningbuseswithoutpassengersbutloadedtocapacityontheidenticalrouteforseveraldaysallowsforthebestpossiblemeasurementofweatherconditionsonbusperformance.

• Ingeneral,staffwillbeunderpressuretoaccommodateatestofthismagnitude.Therearemanyadditionaltasks,workroutines,andtroublecallsformaintenance,operating,andmanagementstaff.Tosuccessfullyoperatesuchafieldtest,itisrecommendedtoallocatestafftimespecificallytothetest.Ideallyatestcoordinatorwouldbeavailabletodealdailywithongoingplanningandissues.Inaddition,inthistest,aconsultingfirmwithexperienceinfieldtestscanperformmuchoftheplanningandcoordinationtasks,butstillneedsassistancefromgaragestafffordailyrunningtasks.

• Staffmotivationtobeapartofthetest,toputintheextraeffort,andtounderstandtherationaleandbenefitsofallthisextraworkshouldbeconsideredakeysuccessfactor.Seniormanagementshouldcommunicatetheprojectatanearlystage,andfollowupduringthetesttochampionthecause.Testfatigueandmoralecandegradethetestresults,andaffectstaffappreciationoffutureelectricbusdecisions.

• Trainingandmatchingoperatorstotestbusesandblocksofworkisacomplicatedeffort.Unionandworkrulescreateconstraintsandlimittheavailabilityofoperator/bus/blockmatchups.Trainingmustbeorganized,andoperatorcomplaintsmustbeaddressedwithsomeurgency.Drivability,ergonomics,visibility,andbusfamiliarityshouldbepre-testedandworkedoutwithoperators,bussupplier,management,andtraining/safetybeforeevaluationcommences.

• Datacollectionduringthefieldtestiskey.Specificbusdataisrequiredtoberecordedbyhand.Briefformswithinstructionsmustbecommunicatedtostaff,andfollowedupquicklyifdataisnotrecordedcorrectlyorinatimelymanner.Muchdatacanbeobtainedfromexistingcomputersystemsfrommaintenanceandoperations.Itis

12

recommendedthisdatabecollectedfrequently(twiceperweekormore),tobeabletomonitorandreacttoproblemsinatimelymanner.

• Technicianswilloftenstruggletotroubleshoottestbuses,especiallywhenthetechnologyisunfamiliartothemandwheninsufficienttrainingisprovided.Batterybuseshavemanyunfamiliarsystemscomparedtoadieselfleet,andextensivetraining/familiarizationtimeisrequired.Supportfrombusmanufacturersiskey,withanagreementforeitheron-sitespecialisttodothework,orattheveryleast,promptpersonalhelp.

• Analyzingelectricbustestdataisasignificantundertakingaswell,andrequiresgooddatacollectionandvalidation.Inthistest(seeSection3),ETStestdataisreportedincategoriesthataremeaningfultoETS.Inaddition,othertestsandbusoperatingdataisrequiredtovalidatetheETStestconclusionsduetotheshortlengthofthefieldtest.

• Whenevertheopinionofthepublicisrequiredasaninputintheanalysis,thegeneralconditionsofthedatacollectionenvironment(inthiscase,thebusitself)shouldbemadetomatchthoseof“usualconditions”asmuchaspossible.Thebusshouldbepaintedthesamewayasothersinthefleetandasfewthingsaspossibleshoulddistinguishitfromtherestofthefleet.Publicizingthetestisnotrecommended.Itwillinvariablyattractthosewhoarethemostinfavouroragainstnewtechnologies,therebycreatingabiasinthesampleofcustomerssurveyed.

13

14

www.MARCON-net.com

15