ECE 656 Exam 3 SOLUTIONS: Fall 2017 - nanoHUB

14
ECE-656 Fall 2017 1 NAME:______________________________________ PUID: ______________________________________ ECE 656 Exam 3 SOLUTIONS: Fall 2017 December 12, 2017 Mark Lundstrom Purdue University This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. Only the Texas Instruments TI-30X IIS scientific calculator is allowed. There are four equally weighted questions. To receive full credit, you must show your work (scratch paper is attached). The exam is designed to be taken in 75 minutes. Be sure to fill in your name and Purdue student ID at the top of the page. DO NOT open the exam until told to do so, and stop working immediately when time is called. The last two pages, which list equations may be removed, if you wish. 100 points possible, 25 per question 1) 25 points 2a) 5 points 3a) 5 points 4a) 10 points 2.5pts each 2b) 5 points 3b) 10 points 4b) 5 points 2c) 10 points 3c) 5 points 4c) 10 points 2d) 5 points 3d) 5 points ------------------------- Course policy ------------------------- I understand that if I am caught cheating in this exam, I will earn an F for the course and be reported to the Dean of Students. Read and understood: ______________________________________________ signature

Transcript of ECE 656 Exam 3 SOLUTIONS: Fall 2017 - nanoHUB

ECE-656 Fall20171

NAME:______________________________________ PUID:______________________________________

ECE656Exam3SOLUTIONS:Fall2017

December12,2017MarkLundstromPurdueUniversity

Thisisaclosedbookexam.Youmayuseacalculatorandtheformulasheetattheendofthisexam.OnlytheTexasInstrumentsTI-30XIISscientificcalculatorisallowed.Therearefourequallyweightedquestions.Toreceivefullcredit,youmustshowyourwork(scratchpaperisattached).Theexamisdesignedtobetakenin75minutes.BesuretofillinyournameandPurduestudentIDatthetopofthepage.DONOTopentheexamuntiltoldtodoso,andstopworkingimmediatelywhentimeiscalled.Thelasttwopages,whichlistequationsmayberemoved,ifyouwish.100pointspossible,25perquestion

1)25points 2a)5points 3a)5points 4a)10points

2.5ptseach 2b)5points 3b)10points 4b)5points 2c)10points 3c)5points 4c)10points

2d)5points 3d)5points

-------------------------Coursepolicy-------------------------IunderstandthatifIamcaughtcheatinginthisexam,IwillearnanFforthecourseandbereportedtotheDeanofStudents.Readandunderstood: ______________________________________________ signature

ECE-656 Fall20172

Exam3Solutions:ECE656Fall20171a) Whenwewritetherecombinationterminthevariousbalanceequationsas

Rφ = nφ − nφ

0( ) τφ ,sometimesatermcorrespondingto nφ appearsandaterm

correspondingtoitsequilibriumvalue, nφ

0 ,doesnotappear.Whendoesitnotappear?

a) Understeady-stateconditions.b) Underspatiallyuniformconditions.c) Whenthebalanceequationcorrespondstoamomenthigherthan2.d)Whenthebalanceequationcorrespondstoamomenthigherthan3.e)Whenthequantityinthebalanceequationisaflux.

1b) Whenwewriteadrift-diffusionequationintheform,

Jnj = nqµnE j + 2 3( )µn ∂W ∂x j ,whatassumptionarewemaking?

a) Non-degeneratecarrierstatistics.b) Thetemperaturedoesnotvarywithposition.c) Theelectrontemperatureisequaltothelatticetemperature.d) Thekineticenergyisequallydistributedbetweenthethreedegreesof

freedom.e) OnlythattheBTEisvalid.

1c) Whatdoesmomentequationdoes

φ !p( ) =υx p2 2m*( ) giveus?

a) Thecarriercontinuityequation.b) Thecarrierfluxequation.c) Thecarrierenergybalanceequation.d) Thecarrierenergyfluxequation.e) Thecarrierenergysquaredcontinuityequation.

1d) Whensimulating

r t( ), p t( )( ) ,inphasespacebytheMonteCarloapproach,whichofthefollowingistrue?

a) r t( )

iscontinuousand

p t( ) iscontinuous.b) r t( )

isdiscontinuousand

p t( ) iscontinuous.c) r t( )

iscontinuousand

p t( ) isdiscontinuous.d) r t( )

isdiscontinuousand

p t( ) isdiscontinuous.e) Noneoftheabove

ECE-656 Fall20173

Exam3Solutions:ECE656Fall20171e) Whatis“selfscattering”inaMonteCarlosimulation?

a) Amanybodyeffectinwhichanelectroninteractswithitself.b) Anelectron-electronscatteringeventinwhichanelectronscattersfromanother

electron.c) Anelectron-electronscatteringeventinwhichanelectronscattersfromthe

entireplasmaofalltheelectrons.d) Amathematicaltechniquethatsimplifiesthecomputationoffree-flight

times.e) Amathematicaltechniquethatsimplifiesthecomputationofthefinalscattering

state.

1f) Inpractice,onecommonlyextendsthenear-equilibriumdrift-diffusionequationto

high-fieldsbyreplacingthemobilityanddiffusioncoefficientsbyelectricfielddependentquantities,asin Jnx = nqµn E( )E x + qDn E( )dn dx .WhatassumptionisnecessarytowritetheDDequationinthisform?

a) Parabolicenergybands.b) Non-degeneratecarrierstatistics.c) Themicroscopicrelaxationtimeapproximation.d) Thattheenergyrelaxationtimeisshorterthanthemomentumrelaxationtime.e) Thattheshapeofthedistributionattheparticularlocation,whateveritis,

dependsonlyontheelectricfieldatthatlocation.1g) Intheclassicdescriptionofthevelocityvs.electricfieldcharacteristicinbulkSi,

υd =µn0E 1+ E E C( )2

,approximatelywhatisthemagnitudeof E C ?

a) ≈ 0.1kV cm .b) ≈1kV cm .c) ≈10 kV cm .d) ≈100 kV cm .e) ≈1000 kV cm .

ECE-656 Fall20174

Exam3Solutions:ECE656Fall20171h) Whatismeantbytheterm,“non-local”semiclassicaltransport.

a) TransportthatcannotbedescribedbyaDDequationwithafield-dependent

mobilityanddiffusioncoefficient.b) Steady-statetransportinanelectricfieldthatvariesmorerapidlyinspacethan

theenergyrelaxationlength,where Te istheelectrontemperature.c) Transienttransportinanelectricfieldthatvariesmorerapidlyintimethanthe

energyrelaxationtime.d) Alloftheabove.e) Noneoftheabove.

1i) Underwhatconditionsdoesvelocityovershootoccurforarapidlyvaryingelectric

field?a) Whentransportisballistic.b) Whentransportisquasi-ballistic.c) Whenthemomentumrelaxationtimeismuchshorterthantheenergy

relaxationtime.d) Whenthemomentumrelaxationtimeismuchlongerthantheenergyrelaxation

time.e) Whenthemomentumrelaxationtimeisnearlyequaltotheenergyrelaxation

time.1j) Whichofthefollowingistrueaboutaballisticdevicewithtwo,idealLandauer

contactsatdifferentvoltages?

a) ThedistributionfunctioninthedeviceisaFermi-DiracdistributionwiththeaverageFermilevelofthetwocontacts.

b) ThedistributionfunctioninthedeviceisaFermi-DiracdistributionwiththeFermilevelofthecontactwiththemorepositivepotential.

c) ThedistributionfunctioninthedeviceisaFermi-DiracdistributionwiththeFermilevelofthecontactwiththemorenegativepotential.

d) Eachstateinthedeviceisinequilibriumwithoneofthetwocontacts.e) Eachstateinthedeviceisinequilibriumwithboththetwocontacts

ECE-656 Fall20175

Exam3Solutions:ECE656Fall20172) MonteCarlosimulationsofhigh-fieldtransportinbulksiliconwithanelectricfieldof

100,000V/cmshowthefollowingresultsfortheaveragevelocityandkineticenergy:

υd = υ = 1.04×107 cm/s

u = KE = 0.364 eV Forthisproblem,youmayassumeasimpleparabolicbandwithaneffectivemassof

m* = mC

* = 0.26m0 .2a) Estimatetheaveragemomentumrelaxationtime, τ m .Anumericalansweris

required.Solution:

µn = υ E = 104 cm2 /V-s

µn =

q τ m

mc*

,where mc

* istheconductivityeffectivemass.UseMKSunitsforthecalculation:

τ m = q

µnmc* =

µnmc*

q= 104×10−4 × 0.26× 9.11×10−31

1.6×10−19 1.54×10−14

τ m = 1.54×10−14 s

2b) Estimatetheaverageenergyrelaxationtime, τ E .Anumericalansweris

required.Solution:

Fromtheenergybalanceequation:

JxE x = nq υ E x =

n u − u0( )τ E

τ E =

u − u0( )q υ E x

u0

q= 1.5

kBTL

q= 0.039

τ E =

u − u0( )q υ E x

=0.364− 0.039( )

1.04×107 ×105 = 0.313×10−12

τ E = 0.3 ps

ECE-656 Fall20176

Exam3Solutions:ECE656Fall20172c) Estimatethedriftenergyinelectronvolts.Anumericalanswerisrequired.Solution:

Edr =

12

m*υd2 = 0.5 0.26( ) 9.11×10−31( ) 1.04×105( )2

= 1.28×10−21 J

Edr eV( ) = 1.28×10−21

q= 8.01×10−3 eV

Edr eV( ) = 8.01×10−3 eV

2d) Estimatethethermalenergyinelectronvolts.Anumericalanswerisrequired.Solution:

Fromtheformulasheet: u = 1

2m*υd

2 + 32

kBTe

32

kBTe = u − 12

m*υd2 = 0.364− 0.008 = 0.356

32

kBTe = 0.356 eV

Virtuallyalloftheenergyisthermalenergy.

ECE-656 Fall20177

Exam3Solutions:ECE656Fall2017 3) Whenderivingthemomentumbalanceequationin3D,atensor,

Wij =

υi p j2

f r , p,t( )p∑

occurs.Thisquestionisaboutthediagonalcomponentofthetensor, Wxx .Youmayassumeasimple,parabolicenergybandandspatialvariationinthex-directiononly.

3a) Usethebalanceequationprescriptiontoobtainanexpressionforthex-directedflux

associatedwith Wxx .Solution:

Fφx ≡

12

m*υx2⎛

⎝⎜⎞⎠⎟υx f x, !p,t( )

p∑ = FWxx

.

FWxx

isafluxofthequantity, Wxx .Itcanalsobewrittenas

F

Wxx

≡ 1Ω

12

m*υx2⎛

⎝⎜⎞⎠⎟υx f

p∑ = n

12

m* υx3

3b) Usethebalanceequationprescriptiontoobtainanexpressionforthe“generation

rate”associatedwith Wxx .Solution:

Gφ = −qE x

∂φ∂px

fp∑

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

Theterminsidethesumis

∂φ∂px

=∂ 12m*υx

2⎛⎝⎜

⎞⎠⎟

∂px= 12m*

∂ px2( )

∂px= υx

sowefind

Gφ = −qE i

υx f!p∑

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪= JnxE x

ECE-656 Fall20178

Exam3Solutions:ECE656Fall20173c) Writedownanexpressionforthe“recombinationrate”associatedwith Wxx .Solution:

Rφ ≡nφ − nφ

0

τφ

=Wxx −Wxx

0

τWxx Wxx

0 = n0

kBTL

2

3d) Writedownthetotalbalanceequationfor Wxx ,andexplainwhatwouldneedtobe

doneinordertosolvethisequationincombinationwiththefirstbalanceequation(thecontinuityequation)andthesecondbalanceequation(themomentumbalanceequation).

Solution:

∂Wxx

∂t= − d

dxFWxx( ) + JnxE x −

Wxx −Wxx0

τWxx

Tosolvethisequation,wewouldneedtoterminatethehierarchyanddevelopanapproximationfor

FWxx

intermsofthequantitiesinthepreviousbalanceequations.

Wewouldalsoneedtodevelopanexpressionfortherelaxationtime,

τWxx

.

ECE-656 Fall20179

Exam3Solutions:ECE656Fall20174) ThisproblemconcernstheballisticSchottkybarrierdiodeshowninthefigure

below.Notethatitisforwardbiased.Assumethatthesemiconductorissiliconwithaneffectivedensityofstatesof NC = 3.23×1019 cm-3 andthatthetemperatureis300K.Thequantity, Fn ,istheelectronquasi-Fermilevel(elecrochemicalpotential)inthesemiconductorand EFM istheFermilevelinthemetal.Notshownontheleftisanidealcontactinequilibrium.

Answerthefollowingquestions.Numericalanswersarerequired.

4a) Atthemetal-semiconductorjunction,whatisthedensityofballisticelectronsinthe

semiconductorwithpositivevelocities, n+ x = 0−( )?

Solution:Inabulk,diffusivesemiconductor,

n = NCe Fn−EC( ) kBT At x = 0− onlythepositivevelocitystatesarefilledbythecontactattheleft.Halfofthestateshavepositivevelocities,so

n+ x = 0−( ) = NC

2e Fn−EC( ) kBT = 3.23×1019

2e−0.1/0.026 = 3.45×1017 cm-3

n+ x = 0−( ) = 3.45×1017 cm-3

Thenon-degenerateassumptionwearemakingisclearlyOK.Exam3Solutions:ECE656Fall2017

ECE-656 Fall201710

4b) Atthemetal-semiconductorjunction,whatisthedensityofballisticelectronsinthe

semiconductorwithnegativevelocities, n− x = 0−( ) ?

Solution:Inabulk,diffusivesemiconductor,

n = NCe Fn−EC( ) kBT

At x = 0− onlythenegativevelocitystatesarefilledbythecontactattheright.Halfofthestateshavenegativevelocities,so

n− x = 0−( ) = NC

2e EFM −EC( ) kBT = 3.23×1019

2e−0.2/0.026 = 7.37 ×1015 cm-3

n− x = 0−( ) = 7.37 ×1015 cm-3

Thenon-degenerateassumptionwearemakingisclearlyOK.

4c) WhatisthecurrentdensityinAmperespercm2?Youwillneedaneffectivemassfor

thisquestion;youmayassumeasimpleparabolicbandwithaneffectivemassof

m* = mC

* = 0.26m0 .Solution:

Jn = qυT n+ 0−( )− n− 0−( )⎡

⎣⎤⎦

Fromtheformulasheet:

υx

+ =υT = 2kBT π m* ηF << 0( )

υT =2kBTπ m* =

2 1.38×10−23( )300

3.14 0.26( ) 9.11×10−31( ) = 1.06×105 m/s

Jn = qυT n+ 0−( )− n− 0−( )⎡

⎣⎤⎦ = 1.6×1019 1.06×107( ) 3.45×1017 − 7.37 ×1015⎡⎣ ⎤⎦ A/ cm2

Jn = 5.73×105 A/ cm2

ECE-656 Fall201711

ECE-656KeyEquations(Weeks1-15)

Physicalconstants:

= 1.055 ×10−34 J-s[ ] m0 = 9.109 ×10

−31 kg[ ] kB = 1.380 ×10

−23 J/K[ ] q = 1.602 ×10−19 C[ ] ε0 = 8.854 ×10−14 F/cm[ ]

--------------------------------------------------------------------------------------------------------------------Densityofstatesink-space:1D:

Nk =2 × L 2π( ) = L π 2D: Nk =2 × A 4π 2( ) = A 2π 2 3D:

Nk =2 × Ω 8π 2( ) = Ω 4π 3 Densityofstatesinenergy(parabolicbands,perlength,area,orvolume):

D1D E( ) = gv

π2m*

E − ε1( ) D2D E( ) = gV

m*

π2 D3D E( ) = gv

m* 2m* E − EC( )π 23

--------------------------------------------------------------------------------------------------------------------FermifunctionandFermi-DiracIntegrals/Bose-Einsteinfunction

f0 E( ) = 1

1+ e E−EF( ) kBT N0 =

1e!ω0 kBT −1

F j ηF( ) = 1

Γ( j +1)η jdη

1+ eη−ηF0

∫ F j ηF( )→ eηF ηF << 0

dF j

dηF

=F j−1

Γ(n) = n −1( )! (naninteger) Γ(1 / 2) = π Γ( p +1) = pΓ( p) --------------------------------------------------------------------------------------------------------------------Scattering:

S !p, ′!p( ) = 2π

"H !′p , !p

2δ ′E − E − ΔE( )

H ′p , p =

e− i ′p r

−∞

+∞

∫ US (r )ei pr dr

1τ p( ) == S p, ′p( )

′p ,↑∑

1τ mp( ) = S p, ′p( )Δpz

pz0′p ,↑∑

1τ Ep( ) = S p, ′p( )ΔE

E0′p ,↑∑

ADP: Kq

2= q2DA

2 ODP: Kq

2= D0

2 PZ: Kq

2= eePZ κ Sε0( )2 POP: Kβ

2= ρe2ω 0

2

q2κ 0ε0κ 0

κ∞

−1⎛⎝⎜

⎞⎠⎟

S !p, ′!p( ) = π

Ωρ ωKq

2Nω + 1

2∓

12

⎛⎝⎜

⎞⎠⎟δ ′!p − !p ∓ #!q( )δ ′E − E ∓ #ω( )

δ ′!p − !p ∓ #!q( )δ ′E − E ∓ #ωβ( )→ 1

#υqδ ±cosθ + #q

2 p∓ω q

υq⎛

⎝⎜

⎠⎟

1τ= 1τ abs

+ 1τ ems

= 2π

DA2kBTcl

⎝⎜⎞

⎠⎟D3D E( )

2(ADP)

LD =

κ Sε0kBTq2n0

1τ= 1τ m

= 2πDO

2

2ρω0

⎝⎜⎞

⎠⎟N0 +

12

12

⎛⎝⎜

⎞⎠⎟

D3D E ± ω0( )2

N0 =

1eωo kB T −1

(ODP)

ECE-656 Fall201712

BoltzmannTransportEquation:

∂ f∂t

+!υ i∇r f +

!Fe i∇ p f = df

dt coll

!Fe = −q

!E − q

!υ ×!B

dfdt coll

= −f − fS( )τ m

= −δ fτ m

(RTA)

WithasmallB-field,theresulting2Dcurrentequationis !Jn =σ S

!E -σ SµH

!E ×

!B( )

ω cτ m <<1( )

µH = µnrH rH ≡ τ m

2 τ m

2

• ≡ •( )E E

IsothermalNear-EquilibriumTransport:SummaryofLandauerApproach

I = 2q

hT E( )∫ M E( ) f1 − f2( )dE àsmallbias,isothermal: f1 E( )− f2 E( ) = − ∂ f0

∂E⎛⎝⎜

⎞⎠⎟ qV( )

Linearresponse(alsocalledlowbias,near-equilibrium):

I = GV G = 2q2

hT E( )∫ M E( ) −

∂ f0

∂E⎛⎝⎜

⎞⎠⎟

dE G = 2q2

hT E( ) M E( )

T E( ) ≡T E( )∫ M E( ) −∂ f0 ∂E( )dE

M E( ) −∂ f0 ∂E( )dE∫⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

M E( ) = M E( ) −∂ f0 ∂E( )dE∫

Rball =

1M EF( )

h2q2 =

12.8kΩM

Modes/channels(general):

M E( ) ≡ h4

υx+ E( ) D1D E( ) υx

+ E( ) =υ E( )

M E( ) =WM 2D ≡W h4

υx+ E( ) D2D E( ) υx

+ E( ) = 2πυ E( )

M E( ) = AM 3D ≡ A h4

υx+ E( ) D3D E( ) υx

+ E( ) = 12υ E( )

Modes(Parabolicbands):

E k( ) = EC + !2k 2 2m*( ) Modes(graphene):

M E( ) = M1D E( ) = gv

M E( ) =W M2D E( ) = gvW

2m* E − EC( )π!

M (E) =W 2 E π!υF

M E( ) = A M3D E( ) = gv A m*

2π!2 E − EC( )

Transmission: T E( ) = λ E( )

λ E( ) + L

ECE-656 Fall201713

Mean-free-pathforbackscattering:

1D: λ E( ) = 2υ E( )τ m E( ) 2D: λ E( ) = π2υ E( )τ m E( ) 3D: λ E( ) = 4

3υ E( )τ m E( )

Diffusioncoefficient:

Dn = υx+ λ 2 Dn =υT λ0 2

Dn E( ) = υx+ E( ) λ E( ) 2

Uni-directionalthermalvelocity:

υx

+ =υT = 2kBT π m* ηF << 0( ) Thermoelectrictransport:Coupledcurrentequations(diffusive): Jx =σE x −σ S dT dx Jx

Q = Tσ SE x −κ 0 dT dx

Coupledcurrentequations(inverted): E x = ρJx + S

dTL

dx

Jx

Q = π Jx −κ e

dTdx

Transportcoefficients:

σ = ′σ E( )∫ dE =

2q2

hM λ

′σ E( ) = 2q2

hλ E( ) M E( )

A−∂ f0

∂E⎛⎝⎜

⎞⎠⎟

M = M E( ) −∂f0

∂E⎛

⎝⎜⎞

⎠⎟∫ dE

S = −

kB

qE − EF

kBT⎛

⎝⎜⎞

⎠⎟′σ E( )∫ dE ′σ E( )∫ dE = −

kB

q⎛

⎝⎜⎞

⎠⎟E − EF

kBT=

kB

−q⎛

⎝⎜⎞

⎠⎟EC − EF( )

kBT+

Δn

kBT

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪ π = TLS (KelvinRelation)

κ 0 = TkB

q⎛

⎝⎜⎞

⎠⎟

2E − EF

kBT⎛

⎝⎜⎞

⎠⎟

2

′σ E( )∫ dE =κ 0 = σTkB

q⎛

⎝⎜⎞

⎠⎟

2E − EF

kBT⎛

⎝⎜⎞

⎠⎟

2⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪ave κ e =κ 0 − πSσ

κ e

σ=

kB

q⎛⎝⎜

⎞⎠⎟

2E − EF

kBT⎛

⎝⎜⎞

⎠⎟

2

−E − EF

kBT⎛

⎝⎜⎞

⎠⎟

2⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪T = LT (Weidemann-Franz“Law”)

2

kB

q⎛⎝⎜

⎞⎠⎟

2

< L < π 2

3kB

q⎛⎝⎜

⎞⎠⎟

2

(parabolicbandswithenergy-independentscattering)

ThermoelectricmaterialFigureofMerit: zT =

S 2σTκ

Latticethermalconductivity: κ L =

π 2kB2TL

3hλ ph !ω( )M ph !ω( )

AWph !ω( )d !ω( )∫

Generalbalanceequation

ECE-656 Fall201714

∂nφ∂t

= −∇ •!Fφ +Gφ − Rφ

Prescription:

nφ (!r ,t) = 1

Ωφ( !p) f !r , !p,t( )

!p∑

!Fφ ≡

φ !p( ) !υ f !r , !p,t( )!p∑

Gφ = −q

!E i

!∇ pφ f

!p∑

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

Rφ ≡

nφ − nφ0

τφ

Currentequation:

Jnx = nqµnE x + 2µn

d nuxx( )dx

u = 1

2m*υd

2 + 32

kBTe

υSAT ≈

!ω0

m*