Determination of Trihalomethanes (THMs) in Water by GC/MS

125
Determination of Trihalomethanes (THMs) in Water by GC/MS By Lai-nor CHENG (Jj5 後, ) A thesis submitted to the Chemistry Division Graduate School The Chinese University of Hong Kong in partial fulfillment of the requirements for the degree of Master of Philosophy 1998 Thesis Committee: Prof. O. W. LAU (Chairman) Prof. Dominic T. W CHAN Prof. Jimmy C. M. Yu Prof. Frank S. C. Lee (External Examiner)

Transcript of Determination of Trihalomethanes (THMs) in Water by GC/MS

Determination of Trihalomethanes (THMs) in Water by GC/MS

By

Lai-nor CHENG

( J j 5 後 , )

A thesis submitted to the Chemistry Division

Graduate School

The Chinese University of Hong Kong

in partial fulfillment of the requirements for the degree of

Master of Philosophy 1998

Thesis Committee:

Prof. O. W. LAU (Chairman)

Prof. Dominic T. W CHAN

Prof. Jimmy C. M. Yu

Prof. Frank S. C. Lee (External Examiner)

Acknowledgment

I wish to express my sincere thankfulness to my supervisor, Prof. Jimmy C. M.

Yu,for his invaluable guidance and advice throughout the entire project and the

preparation of this thesis.

Special thank is given to Ms S. L. Man for her precious idea and technical

assistance during this project.

Thanks are extended to Prof. Dominic T. W. Chan and Prof. P. K. Hon for

their valuable advice on GC/MS and analytical chemistry, respectively. I am also

indebted to Mr. S. F. Luk for his helpful discussion and provision of some important

reference materials.

Besides, my thanks are also due to the Chief Chemist, Mr. T. L. Cheung of the

Water Supplies Department of HK for the provision of their analytical data and Prof.

P. K. Wong for the use of GC/MS instrument.

In addition, I want to deeply thank Ms Linda Y. L. Chan, Mr. Kalvin Y. K. Lai

and Mr. J. Lin of my research group and Ms Jessie H. Y. Lai for their support and

prompt assistance, and Mr. K. L. Chui for the translation of the Chinese abstract.

Finally,my thanks are also due to the colleagues of the Department of Chemistry of

CUHK,the brothers and sisters of my church and my family members who provided

precious tapwater samples for analysis and gave me spiritual support.

Department of Chemistry

The Chinese University of Hong Kong

April 1998

Lai-Nor Cheng

Table of Contents

page

TABLE OF CONTENTS i

ABSTRACT v

LIST OF FIGURES vi

LIST OF TABLES vii

Chapter 1 Introduction 1

1.1 Water Treatment Process 1

1.2 Disinfectants 3

1.3 THMs formation 4

1.4 Various Guideline Values 6

1.5 WHO Guideline Values in 1993 (used inHK) 6

1.6 THM-FP 7

1.7 Removal Methods 7

Chapter 2 Sample Collection, Pretreatment & Storage 8

2.1 Cleaning of Sample Bottles 8

2.2 Sample Collection 8

2.3 Sample Pretreatment & Storage 8

Chapter 3 Experimental 9

3.1 Analysis Methods 9

3.1.1 Sample Preparation Methods 9

i

3.1.1.1 Liquid-liquid Extraction (LLE) 9

3.1.1.2 Purge & Trap (P&T) 9

3.1.1.3 Static and Dynamic Headspace (HS) 9

3.1.1.4 Direct Aqueous Injection 10

3.1.2 GC Detectors 10

3.1.3 Sensitivity 10

3.2 LLE & GC/MS (SIM) 11

3.3 Reagents & Apparatus 12

3.3.1 Reagents 12

3.3.2 Apparatus 12

3.4 Procedure 13

3.4.1 Pentane Extraction 13

3.4.2 Instrument Configuration 14

3.4.3 GC Parameters 14

3.4.4 MS Parameters 19

3.5 Preparation of Standards 19

3.5.1 Stock Standard Solution 19

3.5.2 Primary Dilution Standard 20

3.5.3 Secondary Dilution Standard 20

3.5.4 Calibration Standards 20

3.6 Validation of the method 21

3.6.1 Calibration Graphs 21

3.6.2 Recovery & Precision 27

3.6.3 Detection Limits 30

ii

3.7 Quality Control 30

Chapter 4 THMs levels and THM-FP of Tapwater 31

4.1 Sample Collection Sites in HK 31

4.2 Data Acquisition 31

4.3 Calculations 31

4.3.1 Blank Correction 31

4.3.2 Calculation of THMs concentration 31

4.3.3 Mean, Standard Deviation & RSD % 32

4.4 Summary of THMs levels & THM-FP in tapwater of HK 32

4.4.1 THMs levels in tapwater of HK 33

4.4.2 THM-FP in tapwater of HK 34

4.5 THMs levels & THM-FP in the 19 districts of HK 34

Chapter 5 THMs levels of Well, Distilled & Mineral water 42

5.1 THMs levels and THM-FP of Well water 42

5.2 THMs levels of Distilled water 42

5.2 THMs levels of Mineral water 43

Chapter 6 Removal Methods 44

6.1 Heating 44

6.1.1 Procedure 44

6.1.2 Results 45

6.2 Activated Carbon Filter 47

iii

6.2.1 Procedure 48

6.2.2 Results 48

Chapter 7 Conclusion 49

References 51

Appendix 56

A. Properties & Toxicity ofTHMs 57

B. Collection Date & Time of Tapwater samples & Well water samples 59

C. THMs levels of Tapwater in the 57 collection sites of HK 62

D. THM-FP of Tapwater in the 57 collection sites of HK 69

E. Raw data ofTHMs levels (ng/L) in Tapwater of HK 76

F. Raw data of THM-FP levels (ng/L) in Tapwater of HK 90

G. Raw data of THMs concentrations in Well,Distilled & Mineral water 104

H. Specification of Activated Carbon Filter 106

I. (1) Mass Spectrum of Chloroform 108

(2) Mass Spectrum of Chlorodibromomethane 109

(3) Mass Spectrum of Bromodichloromethane 110

(4) Mass Spectrum of Bromoform 111

iv

Abstract

Chlorine is commonly used as disinfectant in drinking water treatment process.

However, it may also react with organic precursors (e.g. humic substances) existing in

water forming trihalomethanes (THMs), which are known carcinogens. The most

popular THMs found in drinking water are chloroform (trichloromethane, CHCI3),

bromodichloromethane (CHCl2Br), chlorodibromomethane (CHClBr2) and

bromoform (tribromomethane, CHBr3).

Since drinking water is essential to human, its quality is of great concern. The

aim of this project is to survey the quality of drinking water (or tapwater) in the 19

districts of Hong Kong, specifically trihalomethanes (THMs). It is a good news that

the results comply with the WHO guideline values and the tapwater is safe for

drinking. In addition, well water, commercially available distilled water and mineral

water are also investigated to contain very low or negligible level of THMs.

Futhermore,in order to lower the cancer risk, some possible removal methods are

studied according to the drinking habits of HK people heating (or boiling) and

activated carbon filtration. Both methods are proved to have good THMs removal

efficiencies (at least over 88%).

Furthermore, trihalomethanes-formation potential (THM-FP), which is the

maximum amount of THMs that can be formed during chlorination, is also measured

for the drinking water in the 19 districts of HK. It is an indirect measurement of

organic precursors in water and it can reflect the water quality. Results show that

most of the THM-FP measured are below the WHO guideline values and Lantau

Island has the best water quality in HK.

v

摘 要

氯氣消毒是飮用水的常見處理方法。然而,在處理過程中,氯氣可以與水

裏的有機物(如腐殖質等)反應形成有致癌作用的三鹵甲烷(THMs )。在處

理過的食水中,常見的三鹵甲院有氯仿、二氯一溴甲烷、一氯二溴甲烷和三溴

甲烷。

眾所周知,飮用水對於人類的生存至關重要。因此,它的質量必須予以重

視。本課題的工作就是對香港十九個地區的飮用水(或自來水)質量,尤其是

對其中所含的三鹵甲院水平進行檢測°結果顯示,香港的自來水達到世界衛生

組織的要求,可以安全飲用°除此之外,本文還對井水、市場上供應的蒸飽水

以及礦泉水進行了測試,發現它們三鹵甲烷的含量都是非常低’甚至達到可以

忽略的水平。由於三鹵甲烷對人有致癌的作用,本文還就香港人常見的飲水習

慣,如飮用前先將水煮沸、活性碳過濾等可能去除三鹵甲烷的方法,進行了硏

究。結果表明,這兩種方法都能有效地除去三鹵甲烷(去除率至少可達88%)。

此外,本文還對香港十九個地區飮用水中三鹵甲烷形成潛力(THM-FP )

値,即在氯化過程中形成三幽曱烷的最大値,進行了測量。這個指標是通過對

水中有機前體(organic precursor )的非直接測量’來反映水的質量。結果表明,

大部分地區樣本的三鹵甲烷形成潛力値是低於世界衛生組織的允許量。其中,

大嶼山的飮用水質量是全港最好的。

List of Figures

page

1.1 A Typical Fresh Water Supply System (Schematic) of HK 1

1.2 Water Treatment Process 2

1.3 Proposed mechanism for Haloform formation 5

3.1 Typical GC Ion Chromatogram of THMs Mix Standard 15

3.2 Typical GC Ion Chromatogram of Blank Pentane (extraction solvent) 16

3.3 Typical GC Ion Chromatogram of Tapwater sample (Kam Tin) 17

3.4 Typical GC Ion Chromatogram of Tapwater sample (Peng Chau) 18

3.5 Calibration Curve for CHC13 in drinking water 22

3.6 Calibration Curve for CHCl2Br in drinking water 23

3.7 Calibration Curve for CHClBr2 in drinking water 24

3.8 Calibration Curve for CHCI3 in drinking water 25

4.1 Distribution of THMs Levels in tapwater of the 19 districts of HK 37

4.2 Distribution ofTHM-FP in tapwater of the 19 districts of HK 38

4.3 Principal Water Supply System in Hong Kong 39

6.1 Concentration change of THMs upon heating 46

vi

List of Tables

page

1.1 Various Guideline Values for TTHMs in drinking water 6

1.2 WHO Guideline Values for THMs in drinking water (1993) 6

3.1 Characteristics of common GC Detectors 10

3.2 Detection Limits for some analysis methods 11

3.3 Configuration of Instrument 14

3.4 GC Parameters 14

3 .5 GC Oven Temperature Program 14

3.6 MS (SIM) parameters 19

3.7 Selected Ions for Detection 19

3.8 Concentration ranges of calibration standards 21

3.9 Data of Calibration Curves 26

3.10 Raw data for calculation of Recovery & Precision 28

3.11 Calculation of Recoveries in Deionized water and Tapwater matrices 29

3.12 Summary of Precision 29

3.13 Detection Limits for Deionized water and Tapwater matrices 30

4.1 Brief summary of experimental results of THMs Levels in tapwater of HK 33

4.2 Average Concentration of THMs in tapwater of HK 33

(by the Water Supplies Department of HK)

4.3 Brief summary of experimental results of THM-FP in tapwater of HK 34

4.4 Summary of experimental results of THMs Levels in tapwater of the 19 35

districts of HK

4.1 Summary of experimental results of THM-FP in tapwater of the 19 36

vii

districts of HK

4.6 Summary of Average TTHMs concentration in tapwater of HK Island, 40

Kowloon Peninsula, N.T. & Islands

5.1 THMs Levels & THM-FP of Well water from Sheung Shui 42

5.2 THMs Levels of Different Brands of Distilled water 42

5.3 THMs Levels of Different Brands of Mineral water 43

6.1 THMs concentration changes upon heating 45

6.2 THMs concentration changes upon standing 45

6.3 Removal Efficiencies of Heating at different temperatures & time 47

6.4 Removal Efficiencies of Activated Carbon Filtration 48

viii

Chapter 1

Introduction

Drinking water is essential to human. Hence, its quality is of great concern.

The aim of this project is to survey the quality of drinking water (or tapwater) in

Hong Kong, specifically trihalomethanes (THMs), which are disinfection by-products

(DBPs) of chlorination. In addition, some possible removal methods are studied with

reference to the drinking habit of HK people.

1.1 Water Treatment [1-2]

In HK, the primary source of drinking water (i.e. raw water) comes either

directly from Guangdong or from one of the storage reservoirs in the territory. It is

purified by the treatment works of the Water Supplies Department before providing

for public use.

Figure 1.1 A Typical Fresh Water Supply System (Schematic) of HK [1]

1

Drinking water should be clear, odourless, wholesome, fresh and free from

bacteria. 'The fundamental purpose of water treatment is to protect the consumer

from pathogens and impurities in water that may be offensive or injurious to human

health” The four stages are as follows :

(1) Reservoir Storage --- Reservoir storage permits natural self-purification

such as sedimentation, aeration and sunlight.

(2) Coagulation, Flocculation and Sedimentation -一 In the treatment works,

alum (sulphate of alumina) is added to the incoming water to assist the suspended

solids to coagulate into large particles which settle on the floor of the clarifiers (or

flocculation tank) in the form of sludge.

(3) Filtration —- The water then goes to the filtration plant where more finely

divided suspensions are retained on sand filters. After passing through the filter

media, the water goes to clear water tanks (or chamber).

Figure 1.2 Water Treatment Process [1]

2

(4) Disinfection — Hydrated lime is used to neutralise the water since alum

(which has been added) makes it acidic. Moreover, it also makes the water slightly

alkaline to reduce corrosion of water pipes and fittings. The water is dosed with

chlorine in solution for disinfection and a fluoride compound is added for dental care.

The water is then ready for public use.

1.2 Disinfectants

'Disinfection is the final safeguard and also protects drinking water during

distribution against external contamination and regrowth." [2]

Since the early 1900s, chlorine, being easy and ready to use especially in its

most common form of hypochlorite [3], has been the major disinfectant introduced

into drinking water for preventing waterborne diseases. However, in 1974,a Dutch

chemist, Johnnes Rook, found that chloro and bromo trihalomethanes (THMs), which

are known carcinogens, were present in treated drinking water and implicated that

chlorine was the cause. With the advancement of instruments, it is now discovered

that THMs and HAAs (Haloacetic acid) are the major disinfection-by-products

(DBPs) associated with chlorine. [2,4]

In order to minimize THMs formation, alternative disinfectants are then tried,

such as chloramines, chlorine dioxide and ozone. Although many of them help to

minimize the THMs, they also create potential new problems. Ozone cannot give a

residual effect during distribution and of higher cost. Chloramines is not an effective

disinfectant as chlorine and have toxicological properties. Chlorine dioxide is

associated with inorganic contaminants (chlorite and chlorate). [2,5,6]

Hence, chlorine is still popularly used over the world, such as the United

States, Canada, the Republic of China and also in HK.

3

1.3 THMs Formation [8]

In Hong Kong, tapwater is dosed with chlorine for disinfection by the Water

Supplies Department. Although chlorine can efficiently kill the bacteria, it also reacts

with organic precursors (e.g. humic substances) existing in water and produces side-

products such as trihalomethanes (THMs).

Cl2 + organic precursors > THMs

(e.g. humic substances,

humic and fulvic acid)

The most common THMs found in tapwater are chloroform

(trichloromethane, CHC13), bromodichloromethane (CHCl2Br),

chlorodibromomethane (CHClBr2) and bromoform (tribromomethane, CHBr3). The

proposed mechanism is shown on the following page..

Factors affecting THMs formation may be the amount of precursors, chlorine

dosage, the amount of bromine, temperature, pH and contact time.

4

0 「

广0

1

O

II

nu

- V

-II

z^

I fa

st

R-

C-

CH

3 R

—C

二C

H2

R—

C —

CH

2X

Slow

L

J,

'H

i0

OH

" sl

ow

° o

o i-

H.o

o

r 〔

?1

^^

- o

©

p —

g —

cx

O-

r —

CU

CX

2 R

-^-C

HX

, R

(U

CH

X

2 J

〇H_

人匕

J

-x®

xz

fa

st

-x0

O

II O

H"

II R

-C

-C

X3

+ H

20

R —

C —

〇H

+

CH

X3

-OH

0 Figu

re 1

.3

Prop

osed

mec

hani

sm f

or H

alof

orm

form

atio

n [8

]

5

1.4 Various Guideline Values

TTHMs (ng/L)

US EPA Maximum Contaminant Level (1992) [8] 100

Canadian Maximum Acceptable Concentration (1989) [9] *350

UK Maximum Concentration (1989) [8] 100

EEC Maximum Admissible Concentration (1980) [8] 1

The Republic of China (1985) [10] *< 60 (CHC13 only)

Japan (1993) [11] <100

Table 1.1 Various Guideline Values for TTHMs in drinking water

TTHMs = Total Trihalomethanes i.e. [CHCIJ+[CHClBr2]+[CHCl2Br]+[CHBrJ

EEC = European Economic Community

*under review

1.5 WHO Guideline Values in 1993 (used in HK) [12]

•Guideline value (ng/L) Remarks

Chloroform 200 for excess risk of 10"5 ”

Bromodichloromethane 60 for excess risk of 10'5 ••

Dibromochloromethane 100

Bromoform 100

THMs ratio*** <1

Table 1.2 WHO Guideline Values for THMs in drinking water ( 1 9 9 3 ) “=

~

WHO = World Health Organization

^Assuming daily per capita consumption of 2 litres by a person weighing 60 kg.

**the guideline value is the concentration in drinking water associated with an

excess lifetime cancer risk of 10'5 (one additional cancer per 100 000 of the

6

population ingesting drinking water containing the substances at the guideline

value for 70 years).

***Sum of ratio of concentration of each to its respective guideline value should not

exceed I, i.e.

CCHC1

CC HCl 2 Br

CCHClBr2

CCHBr

- + — - ~ + - — - + — — — ~ < 1 CGV 1

CG V 2 GV3

CG V 4

CGVI,CGV2, CGV3, CGV4 are guideline values for CHC13, CHC^r, CHClBr2 and

CHBr3f respectively..

1.6 THM-FP

Usually, the reaction of precursors and chlorine is incomplete during

chlorination. A special test called trihalomethanes-formation potential (THM-FP) can

be used to determine the maximum amount of THMs that can be formed during

chlorination. Moreover, It is also an indirect measurement of organic precursors in

water, which reflects the quality of water. [7]

Therefore, since THMs are carcinogenic, it is necessary to survey the THMs

levels in drinking water of HK and determine whether they exceed the World Health

Organization (WHO) guideline values. In addition, it is also interesting to survey the

THM-FP in HK as an indicator of water quality.

1.7 Removal Methods

According to drinking habits of HK people heating and activated carbon

filtration^ their THMs removal efficiencies are studied.

7

Chapter 2

Sample Collection, Pretreatment & Storage

2.1 Cleaning of Sample Bottle

Samples were collected by 68 ml glass bottles with ground-glass stoppers.

Bottles were cleaned by detergent, rinsed with tapwater and deionized water. Finally,

they were oven-dried at 100 °C for at least 1 hour.

2.2 Sample Collection

Before sample collection, the water tap was opened and run for approx. 5

seconds, until a steady stream was achieved. The bottle was fully filled with water

and tightly stoppered, nearly without any headspace inside. (If headspace exists, some

volatile THMs may escape from liquid phase to gas phase and hence leads to loss.)

2.3 Sample Pretreatment & Storage

For measurement of existing THMs level in tapwater. the sample bottle was

pre-added with approx. 0.3 g Na 2S 20 3 in order to remove the residual Cl2 in tapwater

during sample collection. The sample was stored in refrigerator at 4。C. [13-15]

For measurement of THM-FP in tapwater. phosphate buffer (pH=7, 0.5ml)

and phosphoric acid (85% w/v, after 11 times dilution, 0.04ml) were used to adjust

the sample to pH 7 (since the equilibrium between hypochlorite ions (OCT) and

hypochlorous acid (HOC1) is pH dependent). Furthermore, NaOCl solution (10%

w/v, 2.8^1) was added to provide an excess free chlorine with chlorine residue of 1-5

mg/L. The sample was then maintained at 25 °C in water bath for 7 days. [16]

Note: 1. Refrigerator should be organic free.

2. If possible, water samples were analysed within 14 days after sample

collection.

8

Chapter 3

Experimental

3.1 Analysis Methods

Several sample preparation methods and GC detectors are suitable for analysis

of THMs in drinking water.

3.1.1 Sample Preparation Methods [17]

3.1.1.1 Liquid-liquid Extraction (LLE)

This is the most common sample preparation method used in water analysis.

It may be carried out by manually shaking the water sample with an organic solvent in

an extraction flask (or separation funnel) or automatically using a continuous liquid-

liquid extractor.

3.1.1.2 Purge & Trap (P&T)

This technique is most suitable for ppb level analysis of low molecular weight,

slightly water-soluble volatile organics with a boiling point below 200°C. An inert gas

is bubbled through the water sample. The purgeable organics in water sample is

caused to change from aqueous to vapour phase, and trapped by adsorbents such as

Tenax or activated charcoal and/or condensed by cryo-cooling. When the adsorbent

trap is heated, the trapped compounds are desorbed and introduced into GC.

3.1.1.3 Static & Dynamic Headspace (HS)

This technique is used to analyse volatiles whose sample matrix is of no

interest, e.g. water, soil, etc. Static headspace can measure down to ppm (parts-per-

million or mg/L) level (with FID detection) whereas dynamic headspace can measure

down to ppb (paits-per-billion or jxg/L) level.

9

Static: Water sample is placed in a headspace vial, sealed and put in a

thermostat to drive volatiles from it into the headspace for sampling. A portion of the

vapour phase is introduced by a gas-tight syringe into a GC. (one phase equilibrium)

Dynamic: Vapour phase in the vial is continuously driven by an inert gas onto

an adsorbent such as Tenax or a cold trap. After enrichment, it is then introduced into

GC by heating the trap.

3.1.1.4 Direct Aqueous Injection (DAI)

The water sample is directly injected into the GC column without additional

preparation.

3.1.2 GC Detectors [17-19]

Table 3.1 Characteristics of common GC Detectors . _ — — I • ‘ • • •

Name Type Selectivity Minimum Linear

Detectability Range �_-_ ,__ , - | I I ‘ • ‘

FID UNIVERSAL C-H 10 pg C/sec 107

ECD SELECTIVE compounds capturing 0.2 pg Cl/sec 104

electrons e.g. halogens

ELCD SELECTIVE halogens and S,N 1 pg Cl/sec 106

5 pg S/sec 104

MSD UNIVERSAL characteristic ions 1 ng full scan mode 105

1 pg ion monitoring

mode

FID = Flame Ionization Detector

ECD = Electron Capture Detector

ELCD = Electrolytic Conductivity Detector

MSD = Mass Selective Detector

3.1.3 Sensitivity

In order to obtain proper sensitivity for pg/L (or ppb) level detection, sample

preparation should match suitable GC detector(s). The possible combinations are:

10

Table 3.2 Detection Limits for some analysis methods

Detection Limit(ng/L)

(I) LLE / GC / ECD (EPA method501.2) [13] 05

" (2Tp&t7^ / "eCdT201 *0~0~1~0~05

(3) P&T / GC / ELCD (EPA method 502.1) [15] 0.003 - 0.05

(4) P&T / GC / MS (scan mod€)(EPA method 524.2) [21] 0.03 - 0.12

"( lTSMicHS7^TECDT221 1

(6) Static HS / GC / MS (scan mode) [17] 10-100

一 历 函 a9-2~6

(8) DAI / GC / MS (SIM mode) [24] 0.1-0.2

*unit in parts-per-trillion (ppt) or ng/L

Due to the availability of apparatus and instruments, LLE / GC / MS (SIM

mode) is used for analysis in this project. This analysis method can give detection

limits down to 0.02-0.05 ng/L level (CHC13 - CHBr3)(described in section 3.6.3)

3.2 LLE & GC/MS (SIM mode)

Pentane is a suitable extraction solvent for THMs because of its immisciblility

with water and ability to dissolve THMs. [13] Moreover, it has a low boiling point

and it comes out from GC column well before the four THMs. Hence, there is no

problem of solvent peak or tailing.

For GC/MS, selective ion monitoring (SIM) mode is used instead of scan

mode because SIM mode possesses a lower detection limit as shown in Table 3.1. In

general, 1 to 2 prominant fragment ions of each analyte are chosen for SIM mode.

In this project, electron impact ionization (EI) is used to ionize the organic

compounds entering the ionization chamber (or ionization source) of mass

23

spectrometer. The molecules are bombarded with electrons of 70 eV emitted from a

tungsten filament. Molecular ions (M.+) are formed which are then dissociated into

typical fragment ions, radicals and neutral species. Quadrupole mass filter is used to

separate ions with different mass-to-charge ratios. The ions are then detected by the

electron multiplier. [17-19]

3.3 Reagents & Apparatus

3.3.1 Reagents

a. Pentane, 99.0%, spectrophotometric grade,E-Merck

b. Methanol (methyl alcohol), 99.7%, spectrophotometric grade, E-Merck

c. Bromoform, 99%, RDH

d. Bromodichloromethane, 98%, Aldrich

e. Dibromochloromethane, 98%, Aldrich

f. Choloroform, 99.0-99.4%, BDH

g. Acetone, 99.8%, HPLC grade, Labscan,

h. Deionized water, Nfilli-Q, RG,18 MH.cm

- checked to contain -0.03 ppb CHC13 for THMs.

Hence considered to contain negligible THMs.

i. Buffer solution pH 7.00 (phosphate), BDH

j. ortho-Phosphoric acid, 85%, GR, E-Merck

k. Sodium hypochlorite, 10 % w/v, (from Black Point Power Station, HK)

3.3.2 Apparatus

a. Extraction Flasks

- for extraction of water samples

12

_ 25 ml conical flask (pyrex glass) fitted with a ground-glass stopper

- cleaned with detergent and rinsed with deionized water, and then oven-dried

at 100°C for at least 1 hour.

b. Volumetric Flasks

- for preparation of stock and standards

_ 10ml volumetric flasks (pyrex glass) fitted with ground-glass stoppers

- cleaned with detergent and rinsed with deionized water, and air dry.

c. Standard Storage Containers

- 1.5 ml scew-capped vials with Teflon-faced silicone septa

d. 10-jj.I microsyringes (Hamilton #701)

_ for preparation of calibration standards

- cleaned with methanol

e. 10-ml pipets (pyrex glass)(& Pipet Filler)

- for pipetting water samples

_ cleaned with water and acetone, and rinsed with deionized water

f. 25-^1 and 1-ml micropipets (& pipet tips)

_ for adding sodium hypochlorite and phophate buffer for setting THM-FP, and

pipetting pentane for extraction, respectively

3.4 Procedure

3.4.1 Pentane Extraction

20 ml of water sample was pipetted into a 25-ml conical flask fitted with

ground glass stopper. 2 ml pentane was then added. The flask was tightly stoppered

and shaken for 10 minutes. The pentane extract was transferred with a dropper to a

1.5-ml vial with minimum headspace. 1 |il of the pentane extract was then injected

13

into the capillary GC column. The choice of GC and MS parameters to be used are

discussed in the following sections.

3.4.2 Instrument Configuration

Table 3.3 Configuration of Instrument

Gas Chromatograph HP 5890 Series II

Detector HP 5972 MSD

GC Injector HP 7673

3.4.3 GC Parameters

The following was the GC condition developed:

Table 3.4 GC Parameters

Injector Port Split/Splitless liner

Injector Port Temperature 160 °C

Column Supelco PTE-5

30mx0.25mmx0.25pim

bonded; poly(5% diphenyl / 95% dimethylsiloxane)

Column Flow Rate 1.5 ml/min (helium)

~SpiitRatio \0:T

The GC oven temperature program was developed as follows:

Table 3.5 GC Oven Temperature Program

Temp (°C)“Rate (°C /min)~Time (mins)

32 0 2

32-37 5 1

37-127 30 3

Total = 6 • — ^ • w B g g g g — a i a a — ^ ^ M M B B M

The GC ion chromatograms obtained were shown on the following pages.

14

Ab

un

dan

ce

CH

C,3

T

IC:

ST

D-V

-A.D

6500

i

6000

5500

i

5000

i

45

00

4000

+

3500

-

.

30

00

]

2500

-

20

00

-

1500

CH

Ci2

Br

1000

^

|1

CH

ClB

r2

50

01

I 八

A

C

HB

I!_

__

__

Q ‘

I

I -—

i—~I

—J—

I—I—

I—I—

J—i—

I—I—

I—I—

I—I—

I—I—

I—'—

‘—

'—‘

—I—

‘—

‘—

1 I

1 1

‘ 1

I 1

1 1

1 I

Tim

e(m

in)-

>u

2.50

3.

00

3.50

4.

00

4.50

5.

00

5.50

Figu

re 3

.1

Typi

cal G

C Io

n C

hrom

atog

ram

of T

HM

s M

ix S

tand

ard

----

CH

C13

158

ppb

(2.

40m

in),

CH

Cl2

Br

28.6

ppb

(3.

58m

in),

CH

ClB

r212.6

ppb

(4.

72m

in)

& C

HB

r3 3

.43

ppb(

5.65

min

)

15

Ab

un

dan

ce

TIC

: 5-

PE

NT

-2.D

150

i

140

i

13

0 ":

1 1

Q

- *

V

^ V

V

A

~~

^^

. «

^A

A_

^_

K^

Jt

-I

^^

*

10

0 --

-.

90

80

70 —

60

50 1

40

30

20

10 :

^

J,

1 «

1 J

1 1

. .

1 1

> 1

“ 1

‘ ‘

1 ‘

1 1

‘ 1

‘ 1

1 ‘

1

I 1

1 I

1 ‘

1

1

Tim

e(m

in)-

->

u 2.

50

3.00

3.

50

4.00

4.

50

5.00

5.

50

Figu

re 3

.2

Typi

cal G

C Io

n C

hrom

atog

ram

of B

lank

Pen

tane

(ex

tract

ion

solv

ent)

*The

pea

k at

2.4

0 m

in i

s at

trib

uted

to

chlo

rofo

rm w

hich

alr

eady

exi

sts

in b

lank

pen

tane

.

16

Ab

un

dan

ce

TIC

: II

IS40

B1.

D

2400

1

22

00

20

00

18

00

16

00

1400

12

00

1000

80

0 "

60

0 “

40

0 ;

200

I A

^—

Ti

—0

4.50

Figu

re 3

.3

Typi

cal G

C I

on C

hrom

atog

ram

of T

apw

ater

sam

ple

(Kam

Tin

)

17

Ab

un

dan

ce

TIC

: 5-

S57

-B2.

D

22

0:

I

20

0 :

180:

160

:

14

0 :

12

0:

[ I

.

10

0:

80

60

40

20

:

Tim

e(m

in)-

>

0 '

' '

' '

' '

1 1

' '

' 1

1 1

' '

1 1

1 1

' 1

1 1

' '

1 '

1 '

>

''

''

v }

2.50

3.

00

3.50

4.

00

4.50

5.

00

5.50

Figu

re 3

.4

Typi

cal G

C Io

n C

hrom

atog

ram

of T

apw

ater

sam

ple

(Pen

g C

hau)

18

3.4.4 MS Parameters

Table 3.6 MS (SIM) parameters

Dwell Time (for each ion in a group) 100 msec

Solvent 5elay 2 mins

EM Voltage autotune value

" M s T r ^ f e r Line Temperature 200°C

For each of the THMs, two prominant ion fragments were chosen for

detection, which are tabulated as follows:

Table 3.7 Selected Ions for Detection

Group Retention Time Selected Ions Detection Period

(mins) (m/z) (mins)

I CHCls, 2.40 83,85 2吃4&

CHCl2Br 3.58

n CHClBr2 472 127, 129 4、5也

HI O f f i ^ 5^65 171, 173 ? • •• • 量 —

3.5 Preparation of Standards [13-15]

3.5.1 Stock Standard Solution

9.8 ml methanol was placed in a 10-ml ground-glass stoppered volumetric

flask. It was weighed to the nearest 0.1 mg. Using a 25-(il micropipet, appropriate

amounts (-10 mg) of the four THMs pure standards were added and reweighed.

Precaution was taken to ensure that pure standards fell directly into alcohol without

contacting the flask neck. The solution was diluted to volume, stoppered, and then

mixed by inverting the flask several times. The standard solution was transferred to

1.5-ml vials and stored with minimum headspace at 4。C. Concentration in

19

micrograms per microlitre was calculated from the net gain in weight multiplied by the

corresponding purity of pure standard. (-1000

3.5.2 Primary Dilution Standard

For different THMs, dilution factors were different. The following procedures

(section 3.5.2 - 3.5.4) are given as an example for CHC13.

Approximately 8 ml of methanol was placed in a 10-ml ground-glass

stoppered volumetric flask. 1 ml of stock standard solution was pipetted into it and

diluted to the mark with methanol. The diluted standard was transferred to a 1.5-ml

vial with minimum headspace and refrigerated to 4 °C. (-100 ^g/^il)

3.5.3 Secondary Dilution Standard

Approximately 8 ml of methanol was placed in a 10-ml ground-glass

stoppered volumetric flask. 1 ml of primary standard solution was pipetted into it and

diluted to the mark with methanol. The diluted standard was transferred to a 1.5-ml

vial with minimum headspace and refrigerated to 4 °C. (-10 |ig/|il)

3.5.4 Calibration Standards

0.07 to 158.4 (or 〜160) |ig/L CHC13 standards were prepared by spiking ~0.2

to 8.0 stock standard or dilution standard to 20 ml of deionized water and

extracting with 2 ml pentane. The extracted solvent was transferred to a 1.5-ml vial.

Measurement was performed in an identical manner as that for the samples to

compensate for possible extraction losses.

20

3.6 Validation of method

3.6.1 Calibration Graphs

Calibration standards covering the range of concentrations in the real samples

were prepared.

Table 3.8 Concentration ranges of calibration standards

Concentration range (|ig/L)

CHC13 0.07-158.4

CHCl2Br 0.13-28.60

CHClBr2 0.12-12.65

CHBr3 0.16-3.43

The calibration graphs (peak area versus concentration) are linear (R2=0.999)

The graphs and data for each THMs are shown on the following pages

21

1400

00

j

1200

00 -

^

^

1000

00 -

^

^

la

8000

0 --

^

^

z 20

000

- -

^^

y =

843

.58x

.R

2 =

0.9

999

0 1

1 1

1 1

1 1

1

0 20

40

60

80

10

0 12

0 14

0 16

0

Co

nce

ntr

atio

n (^

ig/L

)

Fig

3.7

Cal

ibra

tion

grap

h fo

r CH

ClBr

2 in d

rink

ing

wat

er

22

20

00

0 丁

1800

0

16

00

0 -

14

00

0 -

I 12

000

--

^^

^

U

1000

0 -

^^

^^

1 ^

^ 彳

8

00

0 --

^

^

60

00

--

40

00

--

^^

y =

627.

47X

^^

R2 =

0.9

994

2000

--

^^

0 i

^—

1

I 1

1 1

1

0 5

10

15

20

25

30

Co

nce

ntr

atio

n (^

ig/L

)

Fig

3.6

Cal

ibra

tion

gra

ph f

or C

HC

l 2Br

in d

rink

ing

wat

er

23

6000

j

5000

--

^^

4000

--

^^

| ^

^

6 30

00

--

2000

--

1000

-

^^

y”

38.0

8x

R2 =

0.9

994

0 1

1 1

1 1

1 1

o 2

4 6

8 10

12

14

Co

nce

ntr

atio

n (^

g/L

)

Fig

3.7

Cal

ibra

tion

grap

h fo

r C

HC

lBr 2

in d

rink

ing

wat

er

24

900

j a

80

0 --

700

--

^^

60

0 --

^

^

1 50

0 -

^^

^

I 40

0 --

300

--

^^

20

0 -

-

^^

y =

256

.18x

100

- ^

^ R

2 = 0

.999

4

0 V^

1 1

1 1

1 '

1

0 0.

5 1

1.5

2 2.

5 3

3.5

Co

nce

ntr

atio

n (^

ig/L

)

Fig

3.7

Cal

ibra

tion

grap

h fo

r CH

ClBr 2

in d

rink

ing

wat

er

25

CH

C13

C

HC

l2B

r C

HC

lBr2

C

HB

r3

Con

e (^

g/L

) A

rea

Cou

nts

Con

e (j

ig/L

) A

rea

Cou

nts

Con

e (^

g/L

) A

rea

Cou

nts

Con

e (n

g/L

) A

rea

Cou

nts

OO

O

OO

O

OO

O

00

0 0

00

00

0 0

00

0.00

0.07

13

0.33

0.

13

53.5

9 0.

12

33.1

7 0.

16

28.4

8

0.14

16

7.33

0.

26

162.

44

0.58

28

2.59

0.

31

85.5

4

0.21

29

5.00

1.

30

992.

09

1.15

62

2.56

1.

09

271.

60

0.88

91

5.67

2.

60

2008

.76

4.03

17

99.3

4 1.

87

485.

82

35.2

0 28

448.

33

9.10

58

53.4

2 6.

90

2995

.01

2.65

66

8.06

79.2

0 67

462.

33

15.6

0 97

06.0

9 9.

78

4241

.67

3.43

88

5.80

114.

40

9654

8.00

22

.10

1374

1.09

12

.65

5567

.01

15

8.4

0 1

33

54

2.6

7 2

8.6

0 1

80

00

.09

Tabl

e 3.

9 D

ata

for t

he c

alib

ratio

n gr

aphs

26

3.6.2 Recovery & Prerision

This test was done by dosing THMs standards (at the same level as in the real

samples) into three identical 20-ml of

(i) Deionized water

(ii) representative Tapwater sample (CUHK)

and back extracting again to determine the percent recovery.

Moreover, the relative standard deviation (RSD%) over the three identical

water samples are reported as precision.

27

Table 3.10 Raw data for calculation of Recovery & Precision

THMs Cone (ng/L)

C H C l s C H C i j B r C H C l B r 2 CHBr3

Pure Deionized water RG-1 0.03

RG-2 0.04

RG-3 0.03

mean= 0.03

stdev= 0.01

RSD%= 24.02

Spiked Deionized water RG-1S 42.40 13.20 6.07 1.67

RG-2S 43.06 12.53 5.66 1.49

RG-3S 44.57 13.22 5.86 1.58

mean= 43.34 12.98 5.86 1.58

stdev= 1.11 0.39 0.20 0.09

RSD%= 2.56 3.02 3.47 5.67

Pure Tapwater TAP-1 39.66 13.20 4.05 0.15

TAP-2 42.57 13.32 3.98 0.17

TAP-3 42.17 13.17 3.83 0.15

mean= 41.47 13.23 3.96 0.16

stdev= 1.58 0.08 0.11 0.01

RSD%= 3.81 0.59 2.87 5.91

Spiked Tapwater TAP-IS 85.51 25.28 9.36 1.73

TAP-2S 80.72 24.84 9.39 1.70

TAP-3S 83.02 24.66 9.18 1.69

mean: 83.08 24.92 9.31 1.71

stdev= 2.40 0.32 0.11 0.02

RSD%= 2.88 1.28 1.20 1.36

28

Tabl

e 3.

11 C

alcu

latio

n of

Rec

over

ies

in D

eion

ized

wat

er a

nd T

apw

ater

mat

rices

Ave

rage

TH

Ms

Con

e (n

g/L

) R

ecov

ery

%

CH

CI3

C

HC

l2B

rCH

ClB

r2C

HB

r3

CH

C13

C

HC

l2B

rCH

ClB

r2

CH

Br3

Pur

e D

eion

ized

wat

er

~~

00

3 ND

ND

ND

~

Spi

ked

Dei

oniz

ed w

ater

43

.34

12.9

8 5.

86

1.58

Dif

fere

nce

43.3

1 12

.98

5.86

1.

58

98

100

102

101

Pur

e T

apw

ater

41

.47

13.2

3 1

96

01

6

Spi

ked

Tap

wat

er

83.0

8 24

.92

9.31

1.

71

Dif

fere

nce

41.6

2 11

.69

5.35

1.

55

95

90

93

99

amo

un

t of

sta

nd

ard

dose

d 44

13

5.

75

1.56

Tabl

e 3.

12

Sum

mar

y of

Pre

cisi

on

RS

D %

~~C

HC

I3

CH

Cl2

Br

CH

ClB

r2

CH

Br3

Pur

e D

eion

ized

wat

er

*24.

02

ND

ND

ND

Spi

ked

Dei

oniz

ed w

ater

2.

56

3.02

3.

47

5.67

Pur

e T

apw

ater

3^

81

05

9 1

87

5.91

Spi

ked

Tap

wat

er

2.88

1.

28

1.20

1.

36

•re

lativ

ely

larg

e val

ue

of

RS

D%

for

pure

dei

oniz

ed w

ater

is

mai

nly

bec

ause

of

its

smal

l av

erag

e co

nce

ntr

atio

n of

CH

C13

(0.

03 j

ag/L

)

29

From the results, recoveries for the tapwater are lower than that of deionized

water. They are possibly attributed to two reasons. The first one is that matrix effect

of tapwater may lower the pentane extraction efficiency. Another one is that during

spiking of standards, THMs which already exist in tapwater may escape out of the

extraction flask,but this will not happen in nearly THM-free deionized water.

3.6.3 Detection Limits

Two kinds of detection limits are studied Method Detection Limit (MDL)

& Limit of Detection (LOD). They were estimated from three times the standard

deviation (3CT) of background noise obtained from 10 runs of deionized water (for

MDL) and tapwater (for LOD). They stand for the lowest concentration ofTHMs in

water that can be detected by the analysis method.

In both cases, background noises at or close to the retention times of the four

THMs were integrated.

Table 3.13 Detection Limits for Deionized water and Tapwater matrices

MDL (^ig/L) LOD (卩g /L )~

(deionzed water) (tapwater)

CHC13 0.02 0.03

CHBrCl2 0.04 0.05

CHBr2Cl 0.03 0.04

CHBr3 0.02 0.03

3.7 Quality Control [13-15]

External standard was used. For every 20-25 injections, a 20 |ig/L mixed

standard was run to check the stability of the instrument.

30

Chapter 4

THMs levels and THM-FP of Tapwater

4.1 Sample Collection Sites in HK

Tapwater samples were taken from the 19 districts of HK. In each district, 3

different sites were chosen. Hence, there were totally 57 sample collection sites

(shown in Figure 4.1 & 4.2).

4.2 Data Acquisition

At each site, duplicate samples were taken every time --- one for

determination of THMs levels and another for THM-FP. Samples were collected on

three different dates. (Appendix B)

Each sample was extracted twice to eliminate error due to manual extraction,

and each extracted solvent (stored in vial) were injected twice (duplicate

measurements) in GC/MS to check the repeatability of GC/MS. Consequently, there

were 4 injections for each sample either for THMs levels or THM-FP.

4.3 Calculations

4.3.1 Blank Correction

Since blank pentane usually contains some CHC13 (〜4 ppb), each data for

CHC13 was subtracted from that in blank pentane before proceeding to further

calculations.

4.3.2 Calculation of THMs concentration

• Concentration of each THMs species

Peak Area

[THM] — slope of Corresponding Calibration Curve

31

Note: When calculating THM-FP, each [THM-FP] is divided by a dilution factor

of 0.992 ( = 1 - 0.5448 / 68 ) because total volume of 0.5448 ml of buffer, acid &

NaOCl is added to sample giving a total volume of 68 ml.

• Concentration of Total Trihalomethanes

=[TTHMs] = [CHC13] + [CHBrCy + [CHBr2Cl] + [CHBr3]

• Sum of THMs Ratio

CCHC13

CCHCl 2Br

CCHClBr2

CCHBr ?

GV2 ^GV3 ^GV4

Cgvi ,Cgv2 , Cgv3, Cgv4 are guideline values for C H C 1 3 , CHCl2Br, CHClBr2 and

CHBr3, respectively..

4.3.3 Mean, Standard Deviation & Relative Standard Deviation %

The four injections of each site are calculated as follows:

CA1 + CA2 + CB1 + CB2 广 mean = : Cm

l l c i - c m l2

stdev = J~~-:~ = CT V 4 - 1

RSD% 100% C m

4.4 Summary of THMs level & THM-FP in tapwater of HK

All samples are collected from March,97 to August,97.

Details of data are in Appendix C-F.

32

4.4.1 THMs levels in tapwater of HK

Table 4.1 Brief summary of experimental results of THMs Levels in tapwater of HK

THMs Levels in HK (yig/L) WHO(^ig/L)~~

Average : Min : Max

CHCls 4 7 . 0 8 : Z 2 5 :104.68 200

''"cmrCh 1L04 j"…1.90"… \ '"2\A2 60

"cifirVci 2.40"…:…—0.58"…;"…8.96 "foo

“CHBr3" 0.06 : 'ND \"…2.56 ioo

Sum of THDVls ratio 0.44 j 0.06 "…:…"0.77 < i

It is a good news that the THMs levels measured at various sites of HK all

comply with WHO guideline values and so is the sum of THMs ratio. Therefore,

tapwater in HK is safe for drinking.

These data agrees with those performed by the Water Supplies Department of

Hong Kong from April 1 ’97 to June 30,97. [25]

Table 4.2 Average Concentration of THMs in tapwater of HK

: Average Concentration (^g/L)

CHClV j "<50

""CHBr€i2 j <"l5

"CHBrVc'l : <25

CHBT3 i <25 •

{Source from Chief Chemist of Water Supplies Department by private

communication)

What will be the maximum amount of THMs produced if extra chlorine is

dosed ?

33

4.4.2 THM-FP in tapwater of HK

Table 4.3 Brief summary of experimental results of THM-FP in tapwater of HK

THM-FP in HK (枓g/L) WHO (fig/L)

Average 丨 Min 丨 Max

CHCls 72^14 j 1 A 6 ~ ~ ~ j 158.02 200

" CHBrCiz 13.71……T"" 4]78"" 22J3 60

"CHBrzCl 2.76 y - — - y — {0¾

" chb t s 0.69……:…"m""V' '2. i2 106

Sum ofTHMs ratio 0.62 T 0 ¾ i l'ois""" U

Even if extra chlorine is dosed, THM-FP in tapwater of HK is still safe for

drinking.

However, WHO guideline values are set for the cancer risk of 1 in 100,000

people drinking water at that level. [12] By calculation, there may be 47 in 6,000,000

people drinking water at the max. THM-FP of HK and 31 in 6,000,000 people

drinking water at the max. THMs levels in HK

Therefore, in order to lower the cancer risk, some removal methods are

studied in Chapter 6.

4.5 THMs levels & THM-FP in the 19 districts of HK

The results for the 19 districts are shown below :

34

Tab

le 4

.4

Sum

mar

y of

exp

erim

enta

l re

sult

s of

TH

Ms

Lev

els

in t

apw

ater

of

the

19 d

istr

icts

of

HK

Dis

tric

t T

HM

s L

evel

s (^

g/L

) ~

CH

Cls

CH

Cl2

Br

CH

C!B

r2

i C

HB

r3

TH

Ms

Rat

io

TT

HM

s

1 C

entr

al &

Wes

tern

43

.54

1 11

.34

1 2.

36

1 ND

0~

43

57

24

1 1

J ;

2

Wan

Chai

33

.72

1 12

.09

1 3.

53

1 ND

0

41

49 3

4 1

1 -I

3 E

aste

rn

37.8

5 1

13.5

8 1

4.15

1

ND

0.46

55

58

1 1

J ;

4

Sou

ther

n 39

.38

1 10

.69

1 2.

79

1 0.

05

0.40

52

.91

5 Y

auT

sim

50

.92

1 11

.35

1 2.

16

1 ND

0

47

64

43

1 1

4 :

6

Mo

ng

Ko

k 51

.16

1 13

.26

1 2.

46

1 ND

0.

50

66 8

9 1

1 -I

7 Sha

m S

hui

Po

46.4

9 1

10.0

8 1

1.62

1

ND

0.42

58

19

j 1

-I

8 K

owlo

on C

ity

50.8

5 1

12.0

6 1

2.11

1

ND

0.48

65

.03

"~9

~lV

on

g~

farS

in

1一1一

5一一

一 f"

一—

!!

^孓 一

一 1

2.

25~~~1

ND

0.49

66

~12

10

Kw

un T

ong

40.4

2 !

T

2.47

~~1

3.45

1

a05~

0.

44

~56M

~

TlK

wa

i T

sing

46

.49

1 9.

25

1 1.

52

1 ND

0

40

57 2

6 j

-|

^ :

12

T

suen

Wan

60

.57

1 9.

98

1 1.

31

1 ND

0.

48

71 8

6 1

1 -j

13

Tuen

Mun

53.6

0 1

9.38

1

1.37

1

ND

0.44

64

35

j 1

14

Yue

n L

ong

60.8

4 1

9.73

1

1.22

1

ND

0.48

71

.78

j 1

-j 15

N

orth

56

.79

i 8.

33

1 0.

83

1 ND

0.

43

65.9

5 j

1 16

T

aiP

o 75

.13

1 10

.86

1 1.

24

1 ND

0.

57

87.2

3 j

1 -I

17

Sha

tin

48.7

5 1

11.1

3 1

1.93

i

ND

0.45

61

.82

j J

-I 18

Sai

Kun

g 42

.78

1 17

.22

1 5.

56

1 0.

04

0.56

65

.60

19

Isla

nds

5.71

1

5.04

1

4.15

1

0.92

0A

6 15

^83

1 1

1 35

Tab

le 4

.5

Sum

mar

y of

exp

erim

enta

l re

sults

of T

HM

-FP

in ta

pwat

er o

f the

19

dist

rict

s of

HK

D

istr

ict

TH

M-F

P (

^g/L

)

CH

C13

j

CH

Cl2

Br

CH

ClB

r2!

~C

HB

r3~

~

TH

Ms

Rat

io

"""T

TH

Ms~

~~

1 C

entr

al &

Wes

tern

67

.14

i 14

.29

i 2.6

9 i

0.00

0

60

84.1

2

2 W

an~C

har

5~5~

01~~

1~"~

~147

7一一

一!

3.7

7 一

一一

1"

~~

o7

o8

a5

6 73

~6~2

.

i J

3 E

aste

rn

62.3

1 i

17.2

1 i

4.5

5 i

0.12

0.

64

84 1

7 1

J J

4 S

outh

ern

55.0

2 i

13.9

7 i

3.2

4 i

0.0

7 0.

54

72.3

0

5 Y

au T

sim

77

.50~

~~I

14.7

4 !

Z6

5 !

0

00

06

6 94

89

1 J

J 6

Mo

ng

Ko

k 79

.12

. 15

.18

i 2.4

7 i

0.00

0.

67

96.7

7

一 7

一”

Sh

amS

hu

iPo

66~

4~1~

~1~

~~

"12~

10

1".8

8 t"

~~

0~

00

a55

~

8一0一

3一9

1 ]

J 8

Kow

loon

Cit

y 78

.20

i 15

.19

i 2.3

7 i

0.00

0.

67

- 95.7

7

"~9

一“

Wo

ng

Tad

Sin

71

~55

~"1

""

一1

2.5

8 t"

~~ T

oo

0.65

91

~5~7

^

\ ]

10

Kw

un

Ton

g 56

.45

i 15

.44

i 4.

02

i 0.

09

0.58

75

.99

~T

lK

wa

i T

sing

8

1.4

0!

11

.88

i 1/

76

00

0 0

62

95.0

4 ^

\ ]

12

Tsu

en W

an

92.0

0 i

12.4

4 i

1.60

i

0.00

0.

68

106.

03

\ j

13

Tue

n M

un

72.6

3 i

10.2

1 i

1.44

i

0.00

0.

55

84.2

7 1

J j

14

Yue

n L

ong

90.3

0 i

11.9

2 i

1.44

i

0.00

0.

66

103.

65

j j

_{

15

Nort

h 10

1.56

i

12.6

2 i

1.20

!

0.00

0.

73

115.

38

_}

j

16

Tai

Po

115.

69

i 13

.86

i 1.

55

i 0.

00

0.82

13

1.10

"~1~

7S

hat

Tn

75~

10~

~1

~14.

26

i i

l"~

~0

~0

0 a

64

91~7

8 J

j ]

18

Sai

Kun

g 60

.85

I 18

.94

i 5.

74

i 0.

06

0.68

85

.59

19

Isla

nds

UA5

! 72

0 !

536

I 12

9 0

25

27.0

0

36

J :

^^

. W

x

^j^J

iiii

iiil

llil

^^,

Fig

ure

4.1

D

istr

ibuti

on

of T

HM

s L

evel

s in

tap

wat

er o

f th

e 19

dis

tric

ts o

f H

K

37

I ^

^ •

Fig

ure

4.2

D

istr

ibuti

on

of T

HM

-FP

in

tap

wat

er o

f th

e 19

dis

tric

ts o

f H

K

38

«

jP

S

\ Pr

opos

ed N

orth

Lon

tau S

upply

Rou

te

J •

Po

mpin

g St

ation

0

X^

^ •

Pr

opos

ed V

eolm

ent W

orks

O

Prop

osed

Pum

ping

Slol

ion

f ^

Figu

re 4

.3

Prin

cipa

l Wat

er S

uppl

y Sy

stem

in H

ong

Kon

g [2

6]

39

Table 4.6 Summary of Average TTHMs concentration in tapwater of HK Island,

Kowloon Peninsula, N.T. & Islands

District No. Ave. THMs Levels Ave. THM-FP

(Pg/L) (Kg/L)

HK Island M 53.77 78.55

Kowloon Peninsula 5-10 62.84 89.23

New Territories 11-18 68.23 101.61

Islands (Southern Lantau 19 15.83 27.00

Island & Peng Chau)

It is very obvious that the CHC13 level (both THMs & THM-FP) in Southern

Lantau Island (also Peng Chau) is significantly lower than the others. HK Island is the

second lowest. Then Kowloon Peninsula is the third lowest. The highest level is in

the New Territories.

This reflects that the concentration of organic precursors in water of Lantau

Island is lowest. In other words, the quality of raw water in Lantau Island is the best.

Shek Pik Reservoir supplies the southern coast of Lantau Island (e.g. Mui Wo,

Cheung Sha), Peng Chau and Cheung Chau, where all raw water is purely collected

from the island itself. Discovery Bay has its own reservoir (for raw water collection

and storage) and treatment works.

From the report of the Water Supplies Department, it is known that in 1996,

over 70 % of Hong Kong's annual demand (720 million cubic metres) is supplied

from Guangdong (Dongjiang or the East River). (Note: There will be an annual

increase by 30 million cubic metres from 1995 to 2000) The rest is supplied from the

local reservoirs.

Water extracted from the river is pumped over a series of dams and pipelines

across the border at Muk Wu to Hong Kong. Water received at Muk Wu is delivered

40

along three aqueduct systems to the Tai Lam Chung Reservoir, Shatin Treatment

Works or the Plover Cove Reservoir, the High Island Reservoir or Pak Kong

Treatment Works. [ 1 ]

The overall quality of HK water is the second best. Shek Pik Reservoir also

meets some 25% of the demand of Hong Kong Island. The rest is supplied by the

reservoirs of the island such as the Pok Fu Lam Reservoir, the Aberdeen Reservoir, or

the Tai Tarn Reservoir. In addition, some treated water are supplied from the

treatment works of Kowloon and the New Territories, such as Pak Kong Treatment

Work,Shatin Treatment Work and Shek Lei Pui Treatment Work.

The overall quality of Kowloon water is the third best. Besides that from

Guangdong, raw water of Kowloon Penninsula is mainly obtained from the Shing

Mun Reservoir, the High Island Reservoir and the Plover Cove Reservoir.

The overall quality of the New Territories water is the worst, especially in Tai

Po. This may be attributed to the higher mixing ratio of Guangdong water with local

water. Raw water of N. T. mainly comes from the Tai Lam Chung Reservoir, the

High Island Reservoir, the Plover Cove Reservoir and the Shing Mun Reservoir.

41

Chapter 5

THMs levels of Well, Distilled & Mineral water

Besides tapwater, it is also of interest to investigate the THMs levels in other

kinds of drinking water available in HK. Although there are only a few people

drinking well water in HK, it can be a good comparison to tapwater for its natural and

non-chlorinated characteristics. Distilled water & mineral water are commercially

available and their THMs levels are also studied.

5.1 THMs levels and THM-FP of Well water

Table 5.1 THMs Levels & THM-FP of Well water from Sheung Shui

Well water Concentration (^ig/L)

CHCls CHCl2Br CHClBr2 CHBr3 Ratio TTHMs

THMs levels 023 ND ND ND OOO 023

THM-FP 26.33 21.16 9.84 1.15 0.59 58.48

Well water from Sheung Shui was studied. From the results, it is apparent

that well water contains only very low concentration of chloroform and it is free of

other THMs. This can be explained by the absence of chlorine dose. The low THM-

FP reflects that the quality of water is quite good in terms of organic precursors.

5.2 THMs levels of Distilled water

Table 5.2 THMs Levels of Different Brands of Distilled water

Distilled water THMs Levels (ng/L)

B r a n d ~ Source CHC13 CHCl2Br CHClBr2 CHBr3 Ratio TTHMs

Watson's EK L78 032 ND ND 001 2.10

Cool HK 1.45 0.38 ND ND 0.01 1.83

Best Buy HK 2.17 0.39 ND ND 0.02 2.56

42

Commercial distilled water also contains very low level of chloroform and

bromodichloromethane. This means that the distillation treatment process can remove

most of the THMs.

5.3 THMs levels of Mineral water

Table 5.3 THMs Levels of Different Brands of Mineral water

Mineral water THMs Levels (|ig/L)

Brand”” Source CHC13 |CHCl2Br|CHClBr2| CHBr3 Ratio |TTHMs

PierVal F r a n c e 0 . 6 2 ND ND ND 000 0.62

Park 'N Shop France 0.12 ND 0.15 ND 0.00 0.27

Commercial mineral water contains very low level of chloroform and traces of

chlorodibromomethane.

43

Chapter 6

Removal Methods

Although experimental results show that both THMs level and THM-FP are

below the WHO guideline values, which only represent the cancer risk of 1 in 100,000

for person weighing 60 kg, drinking the water at that level for 70 years and 2 litres

per day. Hence, by calculation, there may be 47 in 6,000,000 HK people having

cancer due to drinking water at the max. THM-FP level! Therefore, in order to lower

the cancer risk, it is necessary to treat tapwater prior to drinking.

Usually, the drinking habit of HK people is to boil tapwater before drinking.

Moreover, it is now getting more popular of using activated carbon filter.

It is of interest to evaluate the THMs removal efficiency of both water

treatment methods.

6.1 Heating

Since the vapour pressures of the four THMs (Appendix A) are quite high,

heating may be an effective way for their removal from drinking water.

6.1.1 Procedure

Two litres of tapwater (using CUHK tapwater as a representative sample) was

transferred into an electric kettle. The water was heated from room temperature to

boiling. At different temperatures, -25 ml aliquots of water sample were taken out

from the kettle and stored in a small glass bottle (fitted with glass stopper) with

minimum headspace. The aliquots were allowed to cool to room temperature before

performing extractions and measurements. Another two litres of tapwater were

transferred into another identical electric kettle with cover as a control (for observing

the time effect on THMs levels).

44

6.1.2 Results

Table 6.1 THMs concentration changes upon heating

Heating Concentration (ng/L)

Temp (。C) Time (min) CHC13 CHCl2Br CHClBr2 CHBr3

~26 0 29.28 9^24 1^97 ND

40 2 27.33 8.50 1.67 ND 60 3 25.65 7.97 1.63 ND 83 7 25.80 7.43 1.55 ND

90 8 23.57 6.61 1.46 ND

lOO(Omin) 10 1.84 0.65 0.20 ND 100(2min) 12 0.57 0.24 ND ND 100(4min) 14 0.46 ND ND ND 100(6min) 16 0.42 ND ND ND 100(8min) 18 0.37 ND ND ND 100(10min) 20 0.40 ND ND ND

The heating curve is plotted on the next page.

Table 6.2 THMs concentration changes upon standing

Control Cone (^g/L)

Temp (°C) Time (min) CHC13 CHCl2Br CHClBr2 CHBr3

_ - 28.88 9^44 0 4 ND~~

26 2 30.23 9.60 1.95 ND 26 3 31.04 9.75 1.95 ND 26 7 30.96 9.73 1.97 ND 26 10 31.54 9.89 1.98 ND 26 20 31.30 9.64 1.91 ND

From the results of the control, the THMs concentrations are nearly

unchanged upon standing. Hence, it can be concluded that the time effect is not

significant. From the result of heating, it is obvious that the THMs concentration

drops significantly when 100 °C is reached. This can be explained by the fact that

during boiling, a lot of volatile substances (such as THMs) changes to gaseous state

and escapes out of the water sample.

The removal efficiencies at different temperatures and time are calculated as follows:

45

30 -

r 1 \

T5

\ I

10

\ 。

^

\ -^

-CH

C1

2B

r

5t

\\

x~

X

x—

0 -I

1 1

1 1

^^

^=

¾

i 0

2 4

6 8

10

12

14

16

18

20

Tim

e (m

in)

I 1

1 :

1——

I 1

^ 1

26

40

60

83

90

100

Tem

p (°

C)

Fig

ure

6.1

C

on

cen

trati

on

chan

ge

of

TH

Ms

up

on

Hea

tin

g

46

Table 6.3 Removal Efficiencies of Heating at different temperatures & time

Heating Removal Efficiency %

Temp (°C) Time (min) CHC13 CHCl2Br CHClBr2

~26 0 0 0 0

40 2 7 8 15

60 3 12 14 17

83 7 12 20 22

90 8 20 28 26

100(0min) 10 94 93 90

100(2min) 12 98 97 >98

100(4min) 14 98 >99* >98*

100(6min) 16 99 >99 >98

100(8min) 18 99 >99 >98

100(10min) 20 99 >99 >98

^calculations are based on Limits of Detection (LOD)

Note: Since CHBr3 is not detected in this sample, no removal efficiency is calculated.

When boiling was just started, removal efficiencies can be at or over 90%.

After boiling for 6 minutes, 98% or over removal efficiencies can be achieved.

6.2 Activated Carbon Filtration

Adsorption is also a possible way of removing organic compounds from

water.

There are commercially available activated carbon filters for purifying drinking

water. One of the popularly used brand, National PJ-3RF Water Purifier is chosen

for study. (Refer to Appendix H for Specifications of the Activated Carbon Filter

used)

Note: The filter has been in use for 4 months with average daily water flow of 5

litres.

47

6.2.1 Procedure

The water was adjusted to flow through the filter from an ordinary water tap

at three different flow rates to study if there was any difference.

6.2.2 Results

Table 6.4 Removal Efficiencies of Activated Carbon Filtration

Cone (|ag/L) Removal Efficiencies (%)

CHCls CHCliBr CHClBr2 CHBr3 CHC13 CHCl2Br CHClBr2

Without AC Filtration ~

moderate 36.08 11.78 3.97 ND

With AC Filtration “

fast (5.5 L/min) 3.86 ND ND ND 89 >99* >99*

moderate (3.2 L/min) 4.32 ND ND ND 88 >99 >99

slow (1.3 L/min) 4.06 ND ND ND 89 >99 >99

Calculations are based on Limits of Detection (LOD)

Note: CHBr3 is not detected in this sample, so no removal efficiency is calculated.

From the results, it is obvious that the effect of flow rate does not obviously

affect the removal efficiencies. Activated carbon filtration can give good removal

efficiencies (over 88%).

48

Chapter 7

Conclusion

The tapwater in the 19 districts of HK is safe for drinking in terms of THMs

level. It complies with the WHO guideline values (1993). The quality of water can

be reflected in the THM-FP. The water of Lantau Island is of the best quality.

Well water (from Sheung Shui), commercially available distilled water and

mineral water contain very low levels of THMs compared with that of tapwater.

The two drinking habits of HK people heating & activated carbon

filtration, can both give satisfactory removal efficiencies ( at least 88% ) for THMs in

water.

In fact, there are two main strategies to lower the THMs levels in tap water.

One is to remove the organic precursors (e.g. humic and fulvic acids) in raw water

before chlorination. Another is to remove the THMs formed after chlorination (as in

Chapter 6 ). For the former strategy, several technologies can be used _一 enhanced

coagulation (e.g. using ferric chloride instead of alum), granular activated carbon

(GAC) adsorption, membrane filtration (nanofiltration) [27-28], advanced oxidation

processes (AOPs, e.g. H 2 0 2 in the presence of UV light)[29] and photoassisted

heterogeneous catalytic oxidation (PHCO, e.g. Ti02 in the presence of UV light)[30].

For the latter strategy, besides heating and activated carbon adsorption

(discussed in Chapter 6), aeration or air stripping (transferring substances from liquid

to gas phase)[31-32], AOPs (e.g. ozone in the presence of hydrogen peroxide or UV

light [33]),PHCO (e.g. Ti0 2 in the presence of UV Ught [34]) and high-energy

electron becan[35] can also remove THMs.

49

From news report, it is known that the water quality ofDongjiang (or the East

River) has deteriorated significantly in these few years. The pollution is mainly caused

by the massive increase in discharge of untreated wastewater from nearby farms

(fertilisers, pesticides), factories (chemicals, heavy metals) and inhabitants (domestic

sewage). [36-37]

In order to solve this problem, the Guangdong authority has recently decided

to build a biological nitrification plant to treat the micro-organic pollutants (removal

e伍ciency for ammoniacal nitrogen is 75%) in raw water [38]. Moreover, industrial

sewage must be treated to meet the required standard before discharge [39]. In

addition, the SAR government and the Guangdong authority are considering the

feasibility of constructing a new closed water supply aqueduct to keep pollution

away. [40] Through these measures, the quality of drinking water in Hong Kong is

expected to further improve in the near future.

50

References

1. Water Supplies Department (Hong Kong), Hong Kong's Water,

http://www.info.gov.hk/wsd.htm.(1997)

2. R. A. Minear, G. L. Amy, “Disinfection By-products in Water Treatment :

the Chemistry of their Formation & ControV\ CRC Press, Lewis Publishers

(1996)

3. A. Rosa, M. Fabris, Water Quality - A safe drinking water supply -

Disinfection, “Water Hong Kong ’96’ 10th IWSA-ASPAC Regional

Conference & Exhibition, Technical Papers", Vol. 1,Water Supplies

Department (Hong Kong), p.236 (1996)

4. N. F. Gray, "Drinking Water Quality", John Wiley & Sons (1994)

5. E. A. Bryant, G. P. Fulton and G. C. Budd, "Disinfection Alternatives for

Safe Drinking Water", Van Nostrand Reinhold (1992)

6. G. C. White, “The Handbook of Chlorination and alternative Disinfectants",

3rd edition, Van Nostrand Reinhold (1992)

7. J. Dojlido and G. A. Best, “Chemistry of Water and Water Pollution",

Chapter 4,Ellis Horwood series in Water & Wastewater Technology, Ellis

Horwood (1993)

8. A. C. Twort, F. M. Law, “Water Supply”, 4th edition, Edward Arnold (1994)

9. K. C. Decker, B. W. Long, Canada's Cooperative Approach to Drinking

Water Regulation, J. Am" Water Works Assoc., 84(4), 120 (1992)

10. “Collection of Standards of the Republic of China --- Sanitary Standard for

Drinking Watef' (in Chinese), GB 5749-85, the Republic of China (1985)

51

11. "Water Hong Kong '96, 10th IWSA-ASPAC Regional Conference &

Exhibition, Commemorative Album”,p. 54,Water Supplies Department

(Hong Kong) (1996)

12. World Health Organization (Geneva), “Guidelines for drinking-water

quality", 2nd edition, WHO (1993).

13. U.S. Environmental Protection Agency, Method 501.2,Analysis of

trihalomethanes in drinking water by liquid/liquid extraction, Ohio (1979)

14. A. E. Greenberg, L. S. Clesceri and A. D. Eaton, “ Standard Methods for the

Examination of Water & Wasterwater", 18th edition, American Public Health

Association, (1992)

15. U.S. Environmental Protection Agency, Method 502.1,Volatile Halogenated

Organic Compounds in Water by Purge and Trap Gas Chromatography,

Ohio (1989)

16. T. Aoki and K. Kawakami, Continuous-flow method for the determination of

total trihalomethane formation potential in waters, Analytica Chimica Acta,

261, 335 (1992)

17. S. Riezve, S. Pat & S. Claus, “Water Analysis - organic micropollutants”,

Hewlett-Packard Company (1994)

18. H. H. Hill, D. G. McMinn, “Detectors for Capillary Chromatography’ John

Wiley & Sons (1992)

19. D. A. Skoog & J. J. Leary, “Principle of Instrumental Analysis"

Saunders College Publishing, p.429, p.610 (1992)

20. L. Lepine, J. Archambault, Parts-per-Trillion Determination of

Trihalomethanes in Water by Purge and Trap Gas Chromatography with

52

Electron Capture Detection, Anal Chem. 64, 810 (1992)

21. L. H. Keith, “Compilation of EPA ’s Sampling & Analysis Methods", Lewis

Publishers (1992)

22. B. T. Croll, M. E. Sumner and D. A. Leathard, Determination of

Trihalomethanes in Water using Gas Syringe Injection of Headspace Vapours

and Electron-Capture Gas Chromatography, Analyst, 111, 73 (1986)

23. D. Hou, J. Tang, Determination of Halocarbons in Drinking Water by Direct

Aqueous Injection Gas Chromatography, Anal Chem., 63,2078 (1991)

24. T. Fujii, Direct Aqueous Injection Gas Chromatography-Mass Spectrometry

for Analysis of Organohalides in water at concentrations below the parts-per-

billion level, Journal of Chromatography, 139,297 (1977)

25. Source from the Chief Waterworks Chemist, Mr. Tze-leung Cheung, of

Water Supplies Department of Hong Kong by private communication

26. “Hong Kong's Water", Water Supplies Department (Hong Kong) (1993)

27. J. G. Jacangelo, J. DeMarco, D. M. Owen & S. J. Randtke, Selected

Processes for removing NOM : an overview, J. Am. Water Works Assoc.,

87(1),64 (1995)

28. G. Crozes, P. White & M. Marshall, Enhanced coagulation : its effect on

NOM removal & chemical costs., J. Am. Water Works Assoc.,87(1), 78

(1995)

29. J. M. Symons & K. L. Worley, An advanced oxidation process for DBP

control,丄 Am. Water Works Assoc., 87(11),66 (1995)

30. D. W. Hand, D. L. Perram & J. C. Crittenden, Destruction of DBP precursors

with catalytic oxidation, J. Am. Water Works Assoc., 87(6),84 (1995)

53

31. P. V. Roberts and J. A. Levy, Energy Requirements for Air Stripping

Trihalomethanes, J. Am. Water Works Assoc., 77(4), 138 (1985)

32. J. Q. Adams and R. M. Clark, Evaluating the cost of packed tower aeration

and GAC for controlling selected organics, J. Am. Water Works Assoc.,

83(1), 49 (1991)

33. D. W. Ferguson, J. T. Gramith and M. J. McGuire, Applying Ozone for

Organics Control and Disinfection: A Utility Perspective, J. Am. Water Works

Assoc., 83(5),32 (1991)

34. C. Korman, D. W. Bahnemann and M. R. Hoffinan,Photolysis of chloroform

and other organic molecules in aqueous Ti02 suspensions, Environ. Sci.

Technol.,25,494 (1991)

35. W. J. Cooper, E. M. Cadavid, M. G. Nickelsen, K. Lin, C. N. Kurucz and T.

D. Waite, Removing THMs from drinking water using high-energy electron-

beam irradiator^ J. Am. Water Works Assoc., 85(9),106 (1993)

36. South China Morning Post, "Villagers turn East River into dumping site",

p.5, April 12 (1997)

37. South China Morning Post, tc

Raw Sewage risk to drinking water as pollution

soars", p.l, April 11 (1997)

38. Wen Wei Po (Chinese), "Construction of Dongjiang biological treatment

plant has started", Jan 6 (1998)

39. Ta Kung Pao (Chinese), “ The Mainland authorities are very concerned about

the protection of Dongjiang water", Nov 26 (1997)

40. Hong Kong Standard, <c

Pollution concerns spur search for new water

sources", Nov 26 (1997)

54

41. K. Verschueren,“Handbook of Environmental Data on Organic Chemical^

3rd edition, VanNostrand Reinhold (1996)

42. J. C. Prager, “ Environmental Contaminant Reference DataboolC' Vol. l,Van

Nostrand Reinhold (1995)

43. C. Maksimovic, F. Calomino, J. Snoxell, “ Water Supply Systems: New

Technologies", p.242, Springer (1996)

44. Material Safety Data Sheet, Chemwatch, Australia (1997)

45. “National Water Purifier PJ-3RF — Operating Instructions", Matsushita

Electric Industrial Co., Ltd., Japan

55

TA

@

》^^ vO

^A 5

E

p

p

A.

Prop

ertie

s &

Tox

icity

of T

HM

s [4

1-44

]

';

App

eara

nce

i M

olec

ular

i

Boi

ling

i

Mel

ting

i

* V

apou

r i

Sol

ubil

ity

in

i S

peci

fic

Gra

vity

i

**R

efer

ence

i W

eigh

t 丨

P

oint

(。

C)丨

Poi

nt (

°C)丨

Pr扔

sure

(k

Pa)

丨 w

ater

(m

g/L

)丨(

rela

tive

to w

ater

D

ose

j I

j j

j j

@2

0°C

) j

(mg/

kg/d

ay)

-…(S

ifiV

…厂

飞;

^^“

-婉!^

…-厂

-.1]

¾¾

¾ …

"j 6

i ;

-6

4 T

……

i*48

9 j

o'o

f

……

厂-

¾¾

…1

87

j -5

5 ^

6:

^^

^)

^1

¾.

] l"

98

j *6

"02

"c

St

fi

rr

r co

iorV

eit-

oiai

e…厂

…2¾

¾¾

…;

119

厂…

W-^

T…

]…ib

.Ti^

jiP

c…

1^

¾¾

)^¾

¾

] 2

38

j 0*

02

i ye

llow

hea

vy l

iqui

d 丨

丨丨

i

…亡

亜、

…-厂

"cSo

i"ie

VsT

iq-ui

d …

j….2

^.75

i"50

j

6-7

1

. 6

:^

¾¾

¾

…厂

^元

运^

^ 1

2*89

j

o'o

i

* V

apou

r pr

essu

re o

f w

ater

is

2.33

kP

a @

20 °C

. (g

iven

as

a re

fere

nce)

••

Ref

eren

c e d

ose

is a

n es

tim

ate

of

a da

ily

expo

sure

lev

el t

o th

e hu

man

pop

ulat

ion

that

is

like

ly t

o be

wit

hout

app

reci

able

ris

k of

dele

teri

ous

effe

cts

over

a l

ifet

ime

(EP

A,

1993

).

Uni

ts a

re m

g co

ntam

inan

t pe

r kg

mas

s of

hum

an p

er d

ay. [

43]

57

Tox

icit

y ;

:O

rai

(rat

), L

D5

0 丨

Ora

j (h

uman

), L

Dlo

C

lass

ific

atio

n

j (m

g/kg

) j

(mg/

kg)

CH

CI3

80

0 ;

14

0 i

Gro

up

2B:

Pos

sibl

y C

arci

noge

nic

to H

uman

s (b

y th

e IA

RC

)

CH

Cl2

Br

i 91

6 i

Not

Ava

ilab

le

: G

roup

2B:

Pos

sibl

y C

arci

noge

nic

to H

uman

s (b

y th

e IA

RC

)

CH

ClB

r2

1 84

8 [

No

t A

vail

able

G

roup

3:

NO

T c

lass

ifia

ble

as t

o it

s ca

rcin

ogen

icit

y to

hum

ans

(by

the

IAR

C)

(Evi

denc

e of

carc

inog

enic

ity

may

be

inad

equa

te o

r li

mit

ed i

n ex

peri

men

tal

anim

als)

CH

Br3

*";

H

47

'\43

) A

3: A

nim

al C

arci

noge

n (a

t re

lati

vely

hig

h do

ses)

(by

the

AC

GE

H)

IAR

C =

Int

erna

tion

al A

genc

y fo

r R

esea

rch

on C

ance

r

AC

GIH

= A

mer

ican

Con

fere

nce

of

Gov

ernm

ent

Indu

stri

al H

ygie

nist

s, I

nc.

LD

50 =

Dose

Let

hal

to 5

0% o

f th

e po

pula

tion

LD

lo =

Low

est

Let

hal

Dos

e

58

B.

Col

lect

ion

Dat

e &

Tim

e of

Tap

wat

er sa

mpl

es &

Wel

l wat

er sa

mpl

es

Dis

trict

1

I 1

II

1 H

I D

ate

Tim

e D

ate

Tim

e D

ate

Tim

e

Cen

tral

1

Cen

tral

24

/3/9

7 10

:30p

m

22/4

/97

8:00

am

13/5

/97

8:00

am

& W

este

rn

2 Sai

Yin

g P

un

22/4

/97

7:25

am

15/5

/97

7:30

am

2/6/

97

12:0

0pm

3 K

enne

dy T

ow

n 24

/4/9

7 7:

00am

15

/5/9

7 6:

55am

29

/5/9

7 7:

00am

Wan

Cha

i 4

Cau

sew

ay B

ay

24/3

/98

8:00

am

21/4

/97

8:00

am

29/6

/97

10:3

0pm

5 W

an C

hai

20/4

/97

6:40

pm

14/5

/97

6:30

pm

28/5

/97

8:30

pm

6 H

appy

Val

ley

20/4

/97

7:10

pm

14/5

/97

6:00

pm

28/5

/97

7:30

pm

Eas

tern

7

Siu

Sai

Wan

23

/3/9

7 7:

30am

18

/5/9

7 6:

40am

21

/6/9

7 12

:00p

m

8 T

ai K

oo S

hing

20

/3/9

7 8:

40am

23

/5/9

7 8:

55am

29

/5/9

7 7:

10am

9 N

orth

Poi

nt

14/5

/97

10:0

0pm

28

/5/9

7 9:

40pm

12

/6/9

7 8:

50pm

Sou

ther

n 10

A

berd

een

23/3

/97

12:0

0pm

20

/4/9

7 9:

00am

18

/5/9

7 11

:30a

m

11

Won

g C

huk

Han

g 24

/4/9

7 4:

00pm

15

/5/9

7 3:

50pm

30

/5/9

7 2:

25pm

12

Wah

Fu

17/5

/97

11:5

0pm

18

/5/9

7 10

:15p

m

25/5

/97

8:00

pm

Yau

Tsi

m

13

Tsi

m S

ha T

sui

24/3

/98

6:13

pm

21/4

/97

6:10

pm

6/6/

97

6:00

pm

14

Wat

erlo

o 17

/5/9

7 7:

15pm

30

/5/9

7 9:

45pm

12

/6/9

7 8:

10pm

15

Jord

an

24/4

/97

7:30

am

15/5

/97

6:15

am

28/5

/97

5:50

pm

Mong

Kok

16

M

on

gK

ok

26/3

/97

9:53

pm

21/5

/97

1:00

pm

21/6

/97

12:0

0pm

17

Tai

Kok

Tsu

i 24

/3/9

8 9:

00am

22

/4/9

7 9:

00am

14

/5/9

7 11

:20a

m

18

Pri

nce

Edw

ard

16/5

/97

9:00

am

3/6/

97

8:30

am

13/6

/97

9:00

pm

Sha

m S

hui

Po

19

Sha

m S

hui P

o 23

/3/9

7 3:

00pm

11

/5/9

7 1:

40pm

25

/5/9

7 3:

00pm

59

20

Che

ung

Sha

Wan

11

/5/9

7 1:

00pm

25

/5/9

7 1:

00pm

29

/6/9

7 12

:30p

m

21

Shek

Kip

Mei

16

/5/9

7 9:

00am

10

/6/9

7 1:

30am

2/

7/97

11

:15p

m

Kow

loon

Cit

y~

~2

2 K

owlo

on C

ity

24/3

/97

7:45

am

14/5

/97

7:55

am

12/6

/97

7:56

am

23

Kow

loon

Ton

g 12

/5/9

7 9:

55am

17

/5/9

7 7:

35pm

1/

7/97

3:

37pm

24

To

Kw

a W

an

1/5/

97

8:00

am

15/5

/97

8:00

am

13/6

/97

10:5

0pm

Won

g T

ai S

in

25

Lo

kF

u 23

/3/9

7 7:

30am

14

/5/9

7 8:

00am

4/

6/97

12

:44p

m

26

Won

g T

ai S

in

18/5

/97

7:35

am

25/5

/97

7:25

am

1/6/

97

7:25

am

27

Cho

i H

ung

15/5

/97

6:00

pm

24/5

/97

11:0

0am

31

/5/9

7 7:

00pm

Kw

un

Ton

g 28

K

wun

Ton

g 23

/3/9

7 9:

00am

20

/4/9

7 8:

30am

25

/5/9

7 8:

30am

29

Kow

loon

Bay

26

/5/9

7 1:

05pm

15

/6/9

7 8:

20am

1/

7/97

1:

35pm

30

Lam

Tin

22

/4/9

7 7:

30am

15

/5/9

7 7:

50am

12

/6/9

7 11

:00p

m

Kw

ai T

sing

31

K

wai

Chu

ng

23/3

/97

7:00

pm

18/5

/97

9:00

am

1/6/

97

2:30

pm

32

Tsi

ng Y

i 25

/3/9

7 9:

00am

13

/5/9

7 9:

00am

4/

7/97

9:

00am

33

Tai

Wo

Hau

21

/4/9

7 7:

35am

15

/5/9

7 7:

45am

11

/6/9

7 11

:00p

m

Tsu

en W

an

34

Tsu

en W

an

23/3

/97

7:30

am

27/4

/97

7:20

am

18/5

/97

6:45

am

35

Sha

m T

seng

14

/5/9

7 8:

00am

21

/5/9

7 6:

30am

28

/6/9

7 8:

50pm

36

Riv

era

Gar

dens

30

/4/9

7 7:

00pm

14

/5/9

7 7:

00pm

31

/5/9

7 9:

30pm

Tue

n M

un

37

Tue

n M

un (

Siu

Hon

g C

t)

21/4

/97

8:45

am

26/5

/97

8:10

am

2/6/

97

8:15

am

38

Tue

n M

un (

Sam

Shi

ng E

st)

22/4

/97

7:10

am

15/5

/97

7:09

am

4/6/

97

11:0

0pm

39

Tue

n M

un (

Che

e L

ok G

dns)

21

/4/9

7 8:

41am

15

/5/9

7 9:

00am

4/

6/97

0:

45am

Yue

n L

ong

40

Kam

Tin

23

/3/9

7 3:

00pm

10

/5/9

7 5:

30pm

12

/8/9

7 7:

30am

41

Fai

rvie

w P

ark

23/3

/97

5:30

pm

10/5

/97

6:00

pm

5/7/

97

9:00

pm

42

Yue

n L

ong

20/4

/97

7:30

pm

18/5

/97

7:00

am

22/6

/97

7:00

pm

Nor

th

43

Fan

ling

26

/4/9

7 8:

50pm

17

/5/9

7 8:

25pm

29

/6/9

7 6:

58pm

44

She

ung

Shu

i 26

/4/9

7 8:

40pm

17

/5/9

7 8:

15pm

29

/6/9

7 6:

47pm

45

Lo

Wo

25/5

/97

10:3

0pm

1/

6/97

10

:30p

m

10/6

/97

8:00

am

60

Tai

Po

46

Tai

Po

(Fu

Shi

n E

st)

21/4

/97

9:00

am

16/5

/97

9:00

am

2/7/

97

10:3

0am

47

T

ai P

o(K

wo

ng

Fu

k E

st)

15/5

/97

7:50

am

1/6/

97

10:1

5pm

12

/6/9

7 7:

30am

48

T

ai W

o 13

/5/9

7 8:

25am

5/

6/97

11

:30a

m

13/6

/97

8:00

am

Sha

tin

49

Sha

tin

25/3

/97

9:30

am

13/5

/97

9:00

am

12/6

/97

8:30

am

50

Ma

On

Sha

n 14

/5/9

7 8:

00am

2/

6/97

6:

00pm

12

/6/9

7 8:

30am

51

C

UH

K

25/3

/97

11:4

0am

31

/5/9

7 12

:45p

m

2/7/

97

4:30

pm

Sai

Kun

g 52

Sai

Kun

g T

own

C.

23/3

/97

10:0

0pm

28

/4/9

7 7:

55am

18

/5/9

7 5:

45pm

53

T

seng

Lan

Sh

ui

27/4

/97

7:00

am

8/6/

97

7:15

am

16/8

/97

3:30

pm

54

Tse

ung

Kw

an O

24

/3/9

7 7:

30am

21

/4/9

7 7:

32am

7/

6/97

1:

45pm

Isla

nds

55

Dis

cove

ry B

ay

26/3

/97

11:3

0am

23

/4/9

7 11

:30a

m

13/5

/97

8:00

pm

56

Mui

Wo

18/3

/97

4:00

pm

20/4

/97

5:00

pm

7/7/

97

4:00

pm

57

Pen

g C

hau

18/3

/97

2:00

pm

20/4

/97

3:30

pm

7/7/

97

2:00

pm

*Wel

l w

ater

(S

heun

g S

hui)

14

/8/9

7 8:

45am

61

C.

THM

s Lev

els

of T

apw

ater

in th

e 57

col

lect

ion

sites

of H

K

Dis

tric

t "

" T

HM

s L

evel

s (^

g/L

) A

vera

ge T

HM

s L

evel

s (^

g/L

)

CH

CI3

C

HC

l2B

r C

HC

lBr2

C

HB

r3

*Rat

io

CH

C13

C

HC

l2B

r C

HC

lBr2

C

HB

r3

*Rat

io

Cen

tral

1

Cen

tral

I

44

.03

11.6

5 2A

2 N

D

04

4 46

.58

12.7

5 2A

i N

D

04

7~

~

& W

este

rn

II

50.5

6 16

.08

3.40

N

D

0.55

III

45.1

5 10

.52

1.92

N

D

0.42

2 Sai

Yin

g P

un

I4

3.3

1 14

.08

3~48

N

D

04

9 37

.16

11.2

9 2J

2 N

D

04

0

II

54.6

7 13

.63

2.40

N

D

0.52

II

I 13

.49

6.15

2.

27

ND

0.

19

3 K

enne

dy T

own

I4

5.0

4 11

.31

2J1

ND

0

44

46.8

9 9^

98

L88

N

D

04

2

II

48.8

6 9.

35

1.60

N

D

0.42

III

46.7

8 9.

29

1.72

ND

0.

41

^

Wan

Cha

i 4

Cau

sew

ay B

ay

I2

9.5

2 12

.89

4J7

ND

0

41

28.4

7 11

.09

3^45

N

D

03

6

II

36.8

4 14

.35

4.20

N

D

0.47

III

19.0

4 6.

03

1.79

N

D

0.21

5 W

an C

hai

I2

8.6

5 11

.83

43

4 N

D

03

8 32

.68

11.7

6 1

63

ND

0

40

II

38.4

5 12

.96

3.59

N

D

0.44

II

I 30

.95

10.4

9 2.

95

ND

0.

36

6 H

appy

Val

ley

I3

3.1

7 13

.24

4JO

O

ND

0

43

40.0

1 1143

Jib

ND

0

46

II

44.9

4 14

.09

3.28

N

D

0.49

III

41.9

4 12

.97

3.21

N

D

0.46

Eas

tern

7

Siu

Sai

Wan

I

26

.83

16.8

3 ^

5 N

D

05

0 31

.49

1163

4^94

N

D

04

3

II

42.0

2 15

.73

4.32

N

D

0.52

III

25.6

3 8.

34

2.13

N

D

0.29

~8

Tai

Koo

Shi

ng

I 38

.08

19^9

1 8^

96

ND

0

61

41

.9

6 16

^47

5AS

N

D

0.54

62

n 40

.01

13.6

4 3.

53

ND

0.46

III

47.7

9 15

.87

3.95

ND

0,

54

9 N

ort

h P

oint

I

40.8

3 11

.12

2J1

ND

0A

\ 40

.10

10.6

3 2^

04

ND

0.40

II

44.1

9 12

.15

2.31

ND

0,

45

III

35.2

9 8.

61

1.69

ND

0.

34

Sou

ther

n 10

Abe

rdee

n I

44.3

5 12

.97

45

2 ND

0

48

40.0

3 12

.42

3^92

0

14

04

5~

II

23.0

1 9.

17

3.63

0.

43

0.31

III

52.7

3 15

.12

3.62

ND

0.

55

11 W

ong

Chu

k H

ang

18.0

5 3A

2 0

96

ND

01

5 29

.71

6^88

1^

64

ND

02

8~

II

36.8

1 11

.15

2.66

ND

0.

40

III

34.2

7 6.

36

1.32

ND

0.

29

12 W

ah F

u I

53

.64

13.8

8 2^

95

ND

05

3 48

.40

12.7

8 1

81

ND

0.48

II

48.9

6 13

.23

3.03

ND

0.

50

III

42.6

0 11

.24

2.45

ND

0.

42

Yau

Tsi

m

13 T

sim

Sha

Tsu

i I

35

.15

11.7

5 2^

49

ND

04

0 44

.47

10.9

2 2A

5 ND

0

43

II

36.1

1 11

.56

2.68

ND

0.

40

III

62.1

6 9.

44

1.29

ND

0.

48

14 W

ater

loo

I6

5.8

0 11

.93

2J7

ND

05

5 55

.28

97

4 1^

90

ND

04

6

II

57.8

4 10

.52

2.09

ND

0.

49

III

42.2

0 6.

76

1.43

ND

0.

34

15 J

orda

n I

46

.37

13.2

4 21

2 ND

0

48

51

01

11

40

2^45

ND

0

51 ~

~

II

54.2

6 13

.05

2.21

ND

0.

51

III

58.3

9 13

.90

2.41

ND

0.

55

Mong

Kok

16

Mon

g K

ok

I4

6.8

1 17

.46

5^07

ND

0

58

43.5

5 12

.38

2J6

ND

0.45

II

50.0

6 12

.11

1.91

ND

0.

47

I in

I 3

3.77

7.

57

1.30

ND

0.

31

63

17 T

ai K

ok T

sui

I 51

.96

13.7

6 2.

35

ND

0.51

46

.98

13.2

3 2.

37

ND

0.48

II

50.6

6 15

.28

3.03

ND

0.

54

III

38.3

1 10

.65

1.73

ND

0.

39

18 P

rinc

e E

dwar

d I

60.9

7 14

.32

2J8

ND

oi

l 62

.97

14.1

8 22

6 ND

0.

57

I I

74.9

6 16

.75

2.77

ND

0.

68

m

52.9

7 11

.45

1.82

ND

0.

47

Sha

m S

hui

Po

19 S

ham

Shu

i P

o I

40.5

2 12

.14

2^48

ND

0

43

52.8

2 11

.62

V79

ND

04

8”

II

68.7

2 9.

97

0.84

ND

0.

52

III

49.2

2 12

.76

2.05

ND

0.

48

20 C

heun

g S

ha W

an

I 27

.15

T66

h5

6 ND

0

28

31.7

1 8^

00

1~47

ND

oT

\ II

42

.05

11.1

8 2.

06

ND

0.42

II

I 25

.93

5.16

0.

80

ND

0.22

21 S

hek

Kip

Mei

I

69.6

9 15

.81

2^57

ND

0M

54

.94

10.6

2 f

ia

ND

04

7

II

39.7

8 9.

21

1.64

ND

0.

37

III

55.3

6 6.

84

0.58

ND

0.

40

Kow

loon

Cit

y 22

Kow

loon

Cit

y I

48.0

1 11

.54

2^27

ND

0

46

45.7

6 10

.86

L97

ND

0~43

~~

n 45

.50

11.2

7 1.

88

ND

0.43

II

I 43

.78

9.78

1.

76

ND

0.40

23 K

owlo

on T

ong

I5

7.0

1 12

.66

Z2

8 A

®

05

2 54

.27

11.9

2 h9

1 ND

0.

49

II

69.7

3 15

.23

2.41

ND

0.

63

III

36.0

8 7.

87

1.22

ND

0.

32

24 T

o K

wa

Wan

I

57

.92

16^6

1 H

i ND

0

60

52.5

2 13

^41

239

ND

oT

l

H

57.5

2 14

.36

2.33

ND

0.

55

III

42.1

2 9.

26

1.72

ND

0.

38

Wong

Tai

Sin

25

Lok

Fu

I4

6.5

7 10

.24

2A5

ND

04

3 49

.71

11.2

5 1

08

ND

0.46

II

36.0

1 9.

98

1.69

ND

0.

36

64

III

I 66.5

5 13

.54

2.09

ND

0.

58

26 W

ong

Tai

Sin

I

68

.02

15.3

1 1

50

ND

06

2 52

.24

13.2

2 2

35

ND

05

1 ~~

II

39.2

8 11

.06

2.05

ND

0.

40

in

49.4

2 13

.29

2.52

ND

0.

49

27

Cho

i H

ung

I5

5.8

2 13

.95

^4

5 ND

0

^4

51.5

0 13

.68

232

ND

05

1

n 44.8

9 11

.09

1.93

ND

0.

43

III

53.7

7 15

.99

2.60

ND

0.

56

Kw

un

To

ng

28

Kw

un

Tong

I3

3.4

8 14

.13

6^01

ND

0

46

34.5

2 12

.57

43\

ND

0.43

II

32.9

6 11

.54

3.84

ND

0.

40

III

37.1

3 12

.04

3.07

ND

0.

42

29

Kow

loon

Bay

I

55

.20

13.3

2 2A

\ ND

0

52

46.2

4 9

Jl

L3

7 ND

0.

40

II

53.6

7 8.

64

1.15

ND

0.

42

III

29.8

4 6.

58

0.83

ND

0.2

7 ;

30 L

am T

in

I4

1.1

9 18

.70

67

5 0

42

05

9 40

.50

15

32

4j66

0

14

05

1

n 49

.28

17.8

8 4.

86

ND

0.59

m

31

.05

9.38

2.

38

ND

0.34

Kw

ai T

sing

31

Kw

ai C

hung

I

36

.28

10.2

8 1

67

ND

o3

i 45

.57

9^60

V7

6 ND

0

41

II

50.6

1 8.

98

1.18

ND

0.

41

III

49.8

1 9.

53

1.43

ND

0.

42

32 T

sing

Yi

I5

2.0

1 12

.16

Hi

ND

04

8 60

.87

11.2

0 L

57

ND

05

1

II

68.8

3 10

.07

1.20

ND

0.

52

III

61.7

6 11

.38

1.39

ND

0.

51

33 T

ai W

o H

au

I3

4.8

7 8

J4

L62

ND

0J3

33

.03

6^96

12

2 ND

0.

29

II

37.7

5 7.

16

1.05

ND

0.

32

III

26.4

6 5.

56

0.99

ND

0.

23

Tsu

en W

an

34 T

suen

Wan

I

63.4

6 10

.62

L34

ND

05

17

0.8

3 11

.30

1A6

ND

0.56

65

II

75.8

0 11

.96

1.59

ND

0.

59

III

73.2

3 11

.31

1.45

ND

0.

57

35 S

ham

Tse

ng

I3

2.5

4 6^

08

09

2 ND

0

27

32.5

0 5?

92

08

8 ND

0.

27

II

38.9

8 6.

73

1.00

ND

0.

32

in

25.9

8 4.

94

0.73

ND

0.

22

36 R

iver

a G

arde

ns

I8

3.3

9 13

^86

L59

ND

0

66

78.3

7 1^7

4 1^

59

ND

0.62

n

71.9

3 11

.10

1.43

ND

0.

56

III

79.7

9 13

.24

1.76

ND

0.

64

Tuen

Mun

37

Tu

enM

un

I4

73

3 9^

24

L61

ND

0

41

51

87

9^47

L

37

ND

0.44

(S

iuH

on

gC

t)

II

53.5

5 8.

99

1.16

ND

0.

43

III

60.7

2 10

.19

1.34

ND

0.

49

38 T

uen

Mun

I4

5^

09

8^56

M

8 ND

0

38

5]

L5

8 8^

91

13

1 ND

0.

42

(Sam

Shi

ng E

st)

II

51.8

9 11

1 1.

01

ND

0.40

III

57.7

6 10.4

0 1.

45

ND

0

.48

39 T

uen

Mun

I4

M3

9J3

L

56

ND

0^

1 55

36

9J6

L42

ND

0.

45

(Che

e L

ok G

dns)

II

55

.70

9.47

1.

24

ND

0.45

II

I 6

1.9

4 10.4

7 1.

46

ND

0

.50

Yue

n L

on

g4

0 K

am T

in

I6

2^

50

10

29

L61

ND

0

^5

06

15

3 1087

1^50

ND

0.

51

II

73.6

5 9.

56

0.85

ND

0.

54

III

51.4

4 12

.76

2.03

ND

0.

49

41F

airv

iew

Par

k I

61

92

9J9

\M

ND

0^

06

8^

10

10

31

IAS

ND

0.52

II

84

.58

11.0

5 1.

03

ND

0.62

II

I 5

5.7

9 10.1

0 1.

04

ND

0

.46

42 Y

uen

Lon

g r

~7

06

39

J5

U4

ND

0^

25

L8

9T

99

0^

8 ND

0.

40

II

49

.68

8.1

6 1.

04

ND

0

.39

III

I 35

.35

6.47

0.

78

ND

0.29

66

Nort

h 43

Fan

ling

I

75.9

2 9.

84

0.92

ND

0.

55

58.1

5 8.

53

0.85

ND

0.

44

II

55.1

8 8.

02

0.73

ND

0.

42

III

43.3

5 7.

73

0.89

ND

0.

35

44 S

heun

g Shu

i I

76

.52

1025

f09

ND

05

6 59

.24

8^85

0

91

ND

0.45

n

55.6

0 8.

12

0.74

ND

0.

42

III

45.5

9 8.

19

0.88

ND

0.

37

45 L

o W

o I~

~51.9

3 T

38

06

5 ND

03

9 52

.98

T62

07

3 ND

0.

40

II

67.7

6 9.

44

0.81

ND

0.

50

III

39.2

5 6.

04

0.73

ND

0.

30

T^

Vo

46 T

ai P

o I

77

.56

1U

5 L

39

ND

0^

9 67

.21

10.1

7 L

20

ND

0.52

(F

uS

hin

Est

) II

75

.03

11.2

1 1.

34

ND

0.58

II

I 49

.06

8.14

0.

88

ND

0.39

47

Tai

Po

I8

6^

58

1Z20

L

35

ND

06

5 7

46

8 1091

125

ND

0.57

(K

won

g F

uk E

st)

II

82.8

1 12

.35

1.32

ND

0.

63

III

54.6

5 8.

18

1.08

ND

0.

42

48 T

ai W

o I7

2^

40

9^92

U

1 ND

0

^4

83.4

9 ll

T50

L2

7 ND

0.

62

II

104.

68

13.9

6 1.

44

ND

0.77

II

I 73

.38

10.6

1 1.

26

ND

0.56

ShS

hi

49 S

hati

n r

~4

07

11

Z7

5 1

J2

ND

0A34

3J91

U2

L73

ND

0.

42

II

49.9

9 11

.85

1.91

ND

0.

47

III

38.8

8 8.

77

1.57

ND

0.

36

50 M

a O

n Sha

n f

"4

6^

6U

J6

Z00

ND

M54

9^11

L94

I

l5

ND

0.47

II

63

.92

15.6

7 2.

90

ND

0.61

II

I 38

.06

8.38

1.

57

ND

0.35

51

CU

HK

I

53

J7

10

24

Z0

8 ND

0

46

53^4

3 1

03

4 L

91

ND

0.46

II

57

.57

14.6

4 2.

93

ND

0.56

67

llll

l 49

.56

6.14

0.

73

ND

0.36

~~

Sai

Kun

g 52

Sai

Kun

g T

own

C.

I3

53

8\

9M

8j

02

ND

05

83

9^

49

lMO

1

90

ND

0.54

H

40

.98

16.5

8 5.

73

ND

0.54

II

I 42

.13

14.7

9 3.

95

ND

0.50

53 T

seng

Lan

Shu

i I

39

J7

1X

09

6^09

ND

0

^5

4”

46

^8

16^6

3 4

88

ND

0.56

n

54.5

8 16

.18

3.67

ND

0.

58

III

32.2

9 8.

46

1.48

ND

0.

32

54 T

seu

ng

Kw

anO

I

34

12

2L

42

^2

4 ND

0

^1

4h

96

Ku

18

9 0

^3

0,57

D

39

.51

16.9

3 5.

75

0.38

0.

54

III

52.2

6 16

.04

3.69

ND

0.

57

""

"U

^d

s 55

Dis

cove

ry B

ay

IZ

70

8^

2 8

^5

Z56

02

7 Z

67

6A0

T0

5 ZO

O

0.21

II

3.

06

5.48

6.

84

2.01

0.

20

III

2.25

4.

21

5.36

1.

42

0.15

56M

ui

Wo

I4

98

5J6

3^

25

ND

01

4 4

01

10

7 L

87

ND

0.09

n

2.75

2.

16

1.60

ND

0.

07

III

4.28

1.

90

0.76

ND

0.

06

57

Pen

gC

hau

I

UA

6 6

^2

44

2 0

23

10

46

5^

6 1

54

0J7

0.

19

II

9.32

5.

46

3.64

0.

63

0.18

|m

| 10

,91

5.49

2.

55

0.23

0.

17

ND =

Not

Det

ecte

d m

ean=

47

.08

11.0

4 2.

40

0.06

0.

44

*Rat

io=

TH

Ms

rati

o m

ax=

10

4.68

21

.42

8.96

2.

56

0.77

m

in 二

2.

25

1.90

0.

58

ND

0.06

68

D.

THM

-FP

of T

apw

ater

in th

e 57

col

lect

ion

sites

of H

K

Dis

tric

t ~

~

TH

M-F

P (

|ig/

L)

Ave

rage

TH

M-F

P(^

g/L

)

CH

CI3

C

HC

l2B

r C

HC

lBr2

CH

Br3

*R

atio

C

HC

13

CH

Cl2

Br

CH

ClB

r2

CH

Br3

*R

atio

Cen

tral

1

Cen

tral

I8

7.6

5~

~~

14

.34

Z0

3 ND

070~

~77

.27

15.1

4 2

48

ND

0.66

&

Wes

tern

II

71

.11

16.1

2 3.

13

ND

0.66

II

I 73

.06

14.9

5 2.

29

ND

0.64

2 Sai

Yin

g P

un

「6

0.5

5""

"14

.39

3^22

ND

~~05

757.

81

13.6

5 3^

00

ND

0.55

II

88

.16

18.1

1 2.

95

ND

0.77

II

I 24

.72

8.44

2.

84

ND

0.29

3 K

enne

dy T

own

I61

.27

~~

~1

4.3

9 2J

1 ND

""05

766.

33

14.0

8 2^

59

ND

0.59

H

63

,14

12.6

8 2.

23

ND

0.55

II

I 74

.56

15.1

7 2.

78

ND

0.65

~

~W

an C

hai

4 C

ause

way

Bay

I6

6.4

1 16

.78

4^57

ND

0665

1.75

13

.82

18

1 0

J0

0.5

3 II

57

.57

15.4

5 4.

40

0.31

0.

59

III

31.2

6 9.

22

2.45

ND

0.

33

5 W

an C

hai

I39

.94

~~

12

.65

3^96

0

41

~~

04

55

0.2

91

3.9

4 1

65

014“

“0.

52

II

60.1

7 15

.69

3.74

ND

0.

60

III

50.7

6 13

.49

3.27

ND

0.

51

6 H

appy

Val

ley

T 55

.41

15^2

2 3^

96

ND05

762.

9916

^54

Jm

ND~~~0.

63

II

69.4

7 17

.69

3.68

ND

0.

68

III

64.0

9 16

.70

3.89

ND

0.

64

~~

East

ern

7

Siu

Sai

Wan

51

.02

18

70

T8

6 ND

0655

3^03

~~16

T7

5^07

ND

0.60

II

61

.57

19.2

7 4.

94

ND

0.68

II

I 46

.50

12.3

6 2.

42

ND

0.46

8 T

ai K

oo S

hing

I

54

.98

22

J3

9J1

L

07

0.7

5 5

9.6

61

9^

22

5^96

0

36

0.6

8

69

II

54.1

9 16

.00

4.14

ND

0.

58

III

69.8

1 19

.34

4.43

ND

0.

72

9 N

orth

Poi

nt

I70

.90

~~

14

.97

231

ND""

0637

4.23

15

.62

2^60

ND

0.

66

n 69

.08

15.3

6 2.

73

ND

0.63

II

I 82

.70

16.5

3 2.

72

ND

0.72

Sou

ther

n 10

Abe

rdee

n 「

71

.18

16

^6

3 4^

00

ND06

758.

67

15.5

0 0

22

~~

0.6

0 II

32

.47

10.7

8 4.

15

0.67

0.

39

III

72.3

7 19

.10

4.17

N

D

0.72

11

Won

g C

huk

Ha

ng

「2

8.9

6 8^

63

2^24

ND

""03

145.

40

lT6

1 Z

57

ND

0.45

II

53

.62

14.5

8 3.

07

ND

0.54

II

I 53

.61

11.6

1 2.

39

ND

0.49

12 W

ah F

u I5

5.9

6 14

.32

3J02

ND

0556

1.00

14

.79

10

4 ND

0.

58

II

61.1

9 15

.14

3.15

ND

0.

59

III

65.8

6 14

.92

2.94

ND

0.

61

Yau

Tsi

m~~~13

Tsi

m S

ha T

sui

T

57.7

9 8^

87

L80

ND

045~

~64

.761

073

L99

ND

~~~0.

52

II

55.5

7 12

.16

2.71

ND

0.

51

III

80.9

2 11

.15

1.47

ND

0.

61

14 W

ater

loo

「7

5.8

6""

"16

.17

2^9

ND06

8~~82

.89

16.0

7 Io

4 ND

0.

71

II

81.9

9 16

.05

3.08

ND

0.

71

III

90.8

1 16

.00

3.13

ND

0.

75

15 J

orda

n f

86.8

1 ~~

~17

21

Z9

8 ND

~~07

5~~8^

851X

41

Z92

ND""

"0.7

4 II

72

.56

16.6

8 2.

75

ND

0.67

II

I 95

.18

18.3

4 3.

03

ND

0.81

Mon

g K

ok~~

~16

Mon

g K

ok

f 7

6.6

7\5

A9

3A6

ND0.

67

70.9

1 1332

2^22

ND

0.60

II

81

.85

14.5

8 2.

13

ND

0.67

II

l[ 54

.20

10.1

9 1.

38

ND

0.45

70

17 T

ai K

ok T

sui

I 81

.34

12.4

0 2.

04

ND

0.63

79

.15

15.1

0 2.

50

ND

0.67

II

80

.58

17.1

9 3.

28

ND

0.72

H

I 75

.52

15.7

1 2.

17

ND

0.66

18 P

rinc

e E

dwar

d 「

78

.78

"""1

7.1

7 2^

60

ND07

1 87

.31

YhU

2^

68

ND

0.75

II

10

7.22

20

.24

3.27

ND

0.

91

III

75.9

3 13

.99

2.16

ND

0.

63

Sha

m S

hui P

o 19

Sha

m S

hui

Po

F

76

.67

14

.04

2^83

ND

0657

4.98

12.9

7 2^

01

ND""

"0.6

1 II

82

.14

10.4

6 1.

01

ND

0.60

m

66

.12

14.4

2 2.

18

ND

0.59

20

Che

ung

Sha

Wan

36

.84

S35

L83

ND

0344

4.94

9^

23

h6

5 ND

0.40

II

59

.12

12.3

6 2.

19

ND

0.52

II

I 38

.85

6.99

0.

92

ND

0.32

21 S

hek

Kip

Mei

1

7^2

2

J3

ND0.

73

79

.31

14

j09

h99

ND~~0.

65

II

90.3

8 17

.27

2.61

ND

0.

77

III

65.0

0 7.

49

0.63

ND

0.

46

Kow

loon

City

22 K

owlo

on C

ity

「8

1.

07

U2

\ Z

78

ND0.

65

75

.83

1A

07

^3

6 ND

0.64

II

68

.06

14.8

9 2.

17

ND

0.61

II

I 78

.35

14.1

2 2.

12

ND

0.65

23

Kow

loon

Ton

g f

67.3

1"""

12^6

8 L

94

ND05

7~~74

71 ~

~~14

^57

2A4

ND~~~0.

64

II

103.

39

20.3

0 3.

09

ND

0.89

II

I 53

.44

10.7

1 1.

39

ND

0.46

24 T

oK

waW

an

TlTX

l175

4 1

73

ND0.

71

84

.07

16

¾

T62

ND""

"OjT

II

91

.04

18.4

7 2.

68

ND

0.79

II

I 84

.02

14.8

1 2.

44

ND

0.69

Won

g T

ai S

in

25 L

ok

Fu

FT

m1

3^

97

L7

3"

""

ND

0.6

4 7

5.9

11

4J

7 2A

0 ND

0M~

II

56.8

1 12

.72

2.10

ND

0.

52

71

III

I 93

.89

15.8

0 2.

46

ND

0.76

26 W

ong

Tai

Sin

I7

5.7

1 16

.37

2^63

ND

~~~06

872.

44

15.8

2 21

0 ND

0.

65

n 59

.75

13.6

4 2.

39

ND

0.55

II

I 81

.85

17.4

6 3.

07

ND

0.73

27 C

hoi

Hung

「7

1.2

9~

~~

17

32

^8

ND06

872.

31

16

J3

Z95

ND0.

66

II

57.9

6 13

.14

2.27

ND

0.

53

III

87.6

6 18

.52

3.41

ND

0.

78

Kw

un T

ong

28 K

wun

Ton

g F

4

4.9

31

9J

2 T9

9 ND

062~

~45

.521

6^9

15

3 0

09

0.5

6 II

42

.32

14.6

5 4.

48

0.28

0.

50

m

49.3

0 15

.99

4.12

ND

0.

55

29 K

owlo

on B

ay

「7

4.0

0~

~~

1^

28

2^56

ND

067~

~63

.881

2^40

1

J5

ND0.

54

II

64.5

3 10

.31

1.39

ND

0.

51

III

53.1

0 10

.61

1.29

ND

0.

46

30 L

am T

in

T

55

.56

1X

68

5^

92

~~

~0

53

0.6

4 5

9.9

4V

7M

4

J7

0J

80

.6

4 II

61

.32

19.3

9 4.

86

ND

0.68

II

I 62

.95

14.9

5 3.

53

ND

0.60

Kw

ai T

sin

g3

1 K

wai

Chu

ng

F

63

.87

12

J0

7 3^

04

ND0.

55

79

.50

~\2

2\

2J3

ND

0.62

II

72.8

9 11

.19

1.58

ND

0.

57

III

101.

75

13.3

6 1.

76

ND

0.75

32 T

sing

Yi

""

"ll

05

Z0

1 ND

0.68

9

7.5

8~

~1

14

8 h

69

ND0.

73

II

108.

16

12.7

4 1.

37

ND

0.77

m

96.0

6 14

.67

1.69

ND

0.

74

33 T

ai W

o H

au

FT

m

8J4

L

39

ND~~0.

44

67

.10

9^

95

\A6

ND0.

52

II

65.7

2 9.

79

1.22

ND

0.

50

III

77.7

4 11

.71

1.78

ND

0.

60

Tsu

enW

an

34 T

suen

Wan

I

82

.51

U3

9 L

98

ND

0.

62

10

0.4

6U

A7

U4

ND""

“0?

75~

72

II

123.

15

14.9

2 1.

80

ND

0.88

m

95

.72

14.0

9 1.

74

ND

0.73

35 S

ham

Tse

ng

I6

8.4

5 8^

95

TT

^ ND

oJo6

2.96

^

80

U7

W

0.47

II

65

.11

9.23

1.

25

ND

0.49

II

I 55

.34

8.23

1.

09

ND

0.42

36 R

iver

a G

arde

ns

「1

14

.79

14

.52

L55

A

®~

~0

.83

11

2.5

61

5.0

4 1

80

ND~~~0.

83

II

110.

45

14.5

1 1.

77

ND

0.81

II

I 11

2.44

16

.08

2.07

ND

0.

85

Tue

nMun

~~

~37

Tue

n M

un

I6

3.6

2 8^

97

L34

ND

""04

877.

00""

"10.

99

155

ND

~~0.

58

(Siu

Hon

g C

t)

n 82

.49

11.4

5 1.

56

ND

0.62

II

I 84

.91

12.5

5 1.

75

ND

0.65

38 T

uen

Mu

n I

59

.19

8^24

h2

0 ND

""04

566.

39

8^96

1L

39

ND~~~0.

50

(Sam

Shi

ng E

st)

II

58.1

1 6.

88

1.42

ND

0.

42

III

81.8

8 11

.76

1.56

ND

0.

62

39 T

uen

Mun

I6

6.3

3 9A

4 L

41

ND~~05

074.

48“

“10

.67

L38

ND

~~~0.

56

(Che

e L

ok G

dns)

II

71

.89

10.2

1 1.

14

ND

0.54

II

I 8

5.2

4 12.3

4 1.

58

ND

0.65

Y

uen

Lo

ng

40

Kam

Tin

I9

8.6

8~

~1

1.8

5 L

52

ND07

1 ~

~9

3.4

0~

~1

2.8

6 h6

1 ND

~0.

70

II

106.

54

11.1

1 1.

03

ND

0.73

II

I 74

.97

15.6

3 2.

45

ND

0.66

41 F

airv

iew

Par

k I"

"“86

.20

9J8

M

5 ND

0^61

97.4

012.

38

1J9

ND

0.71

II

119.

96

13.4

8 1.

25

ND

0.84

III

86.0

2 13

.90

1.47

ND

0.

68

42

Yuen

Lo

ng

「1

02

.4

3f

08

7 \2

\ ND

071

~~

80

.10

10

50

h2

7 ND

"""0

.59

n 75

.96

10.5

5 1.

44

ND

0.57

III

61.9

2 10

.08

1.14

ND

0.

49

73

Nort

h 43

Fan

ling

I

137.

00

13.7

3 2.

26

ND

0.94

10

0.91

12

.24

1.56

ND

0.

72

II

75.5

8 10

.28

1.08

ND

0.

56

III

90.1

3 12

.71

1.35

ND

0.

68

44 S

heun

g Shu

i T

136.

08~

~15

.50

Tli

ND

0959

8.84

12.6

6 12

5 ND

0.

72

II

71.1

8 10

.07

0.93

ND

0.

53

m

89.2

5 12

.41

1.28

ND

0.

67

45 L

o W

o F

1

03

.45

1Z

81

L08

ND0.

74

10

4.9

41

Z9

5 L

23

ND0.

75

II

124.

43

14.9

0 1.

35

ND

0.88

III

86.9

5 11

.15

1.25

ND

0.

63

Tai

Po

46 T

ai P

o T

1

58

.02

15

.15

L70

ND""

1.06

1

12

.08

13

.30

L49

ND

0.80

(Fu

Shi

n E

st)

II

99.9

1 13

.51

1.62

ND

0.

74

III

78.3

2 11

.24

1.14

ND

0.

59

47 T

ai P

o F

10

8.60

~~

13.4

6 L

52

ND""

“0.

78

11

7.7

01

4.6

6 V7

3 ND

0.

85

(Kw

ong

Fuk

Est

) II

14

1.19

17

.79

2.14

ND

1.

02

III

103.

31

12.7

2 1.

51

ND

0.74

48 T

ai W

o T

1

13

.86

12

.57

L23

N

D~~0.

79

11

7.3

01

16

2 \A

2 N

D~~~0.

83

II

142.

35

16.0

9 1.

62

ND

1.00

III

95.6

8 12

.19

1.42

ND

0.

70

Sha

tin

49 S

hati

n I~

~84

.03

13.4

4 2^

28

ND""

0677

6.57

uJ

l 2^

24

ND

0.64

II

70.8

8 14

.51

2.25

ND

0.

62

III

74.7

9 13

.49

2.18

ND

0.

62

50 M

a O

n Sha

n T

63

.82~

~~

13.5

8 Z

07

ND05

773.

9015

^55

2j60

ND

0.

65

II

83.3

2 19

.36

3.53

ND

0.

77

III

74.5

5 13

.71

2.19

ND

0.

62

51 C

UH

K

F

72.7

9""

"12.7

5 2

70

ND06

074.

84

13^4

3 2^

41

ND

0.62

II

91.0

8 19

.53

3.60

ND

0.

82

74

I II

I I

60.6

4 7.

99

0.94

ND

0.

45

Sai

Kung

52 S

ai K

ung

Tow

n C

. I

52.4

4 17

.23

6J0

ND

06

15

1.0

5 16

.70

12

7 ND

0.

59

II

50.7

9 18

.20

5.94

ND

0.

62

III

49,9

4 14

.66

3.75

ND

0.

53

53 T

seng

Lan

Shu

i 「

60

.88

~~

~2

1.9

6 7

45

ND0J

566.

97~~~20

.57

19

1 ND

0.

74

II

73.0

6 19

.17

4.36

ND

0.

73

III

42.7

3 9.

8403

1.

6891

ND

0.

39

54 T

seung

Kw

an O

I

58.8

7 1

M1

6^51

ND

0676

4.52

19

.56

6^04

0

19

0.7

1

II

60.0

9 20

.62

7.09

0.

58

0.72

II

I 74

.61

19.6

5 4.

53

ND

0.75

Isla

nds

55 D

isco

very

Bay

I

11.1

7 8^

93

7J0

Z1

7~

~0

30

8j6

5 8

31

78

8 Z

38

~~

0.2

8

II

7.16

7.

88

8.22

2.

72

0.28

II

I 7.

62

8.11

1.

12

2.26

0.

27

56 M

ui

Wo

I1

9.7

0 8^

68

6J3

L2

30

31

13

.9

9 6^

52

4J4

0

79

0.2

3

II

11.2

4 6.

10

4.4

9 0.

91

0.21

II

I 11

.03

4.78

1.

79

0.21

0.

15

57 P

eng

Cha

u T

21

.12

8^66

63

5 L

27

03

31

6.8

0 6

J8

4?06

0

72

0.2

4

II

15.1

0 6.

52

4.01

0.

69

0.23

|I

Il|

14.1

8 5.

17

1.83

0.

18

0.18

ND =

Not

m

ean=

72

.14

13.7

1 2.7

6 0.

09

0.62

D

etec

ted

*Rat

io=

TH

Ms

max

=

158.

02

22.3

3 9.

31

2.72

1.

06

rati

o m

in=

7.

16

4.78

0.

63

ND

0.15

75

E. R

awda

ta o

f TH

Ms L

evel

s (

ig/L

) in

Tapw

ater

of H

K

^ n

m

CH

Cb

CH

Cl2

Br

CH

ClB

r2

CH

Br3

C

HC

I3

CH

Cl2

Br

CH

CIB

r2

CH

Br3

~

CH

C1

3 C

HC

l2B

r C

HC

lBr2

C

HB

iT"

1 C

entr

al

A1

40.4

2 1

08

7 2J

9 N

D

49.3

8 15

?74

339

ND

45.0

6 il

57

l05

ND

A

2 4

4.6

8 10

.12

2.1

6 N

D

49.1

8 15

.74

3.22

N

D

45.5

9 11

.70

2.01

N

D

B1

42

.16

10.9

4 2.

32

ND

51

.72

16.3

2 3.

41

ND

57

.53

25.0

1 5.

91

ND

B

2 48.8

4 14

.68

1.81

N

D

51.9

7 16

.52

3.58

N

D

58.3

2 25

,15

5.93

N

D

mea

n=

4

4.0

3 11

.65

2.12

50

.56

16.0

8 3.4

0 —

45.3

3 11

.63

2.0

3 —

stde

v=

3.6

6 2.

05

0.22

1.

49

0.4

0 0.1

5 —

0

.37

0.09

0.

02

RS

D%

=

8.3

0 17

.63

10.3

7 —

2.

95

2.4

8 4.

42

——

0.

82

0.80

1.

12

2 S

ai Y

ing

Pu

n A

1 42.6

5 14

.19

3.5

5 N

D

55.0

1 13

.55

2.3

9 N

D

13.4

4 6.

09

2.23

N

D

A2

42.5

9 13

.90

3.74

N

D

54.2

8 13

.55

2.3

8 N

D

13.3

5 6.

50

2.22

N

D

B1

43.7

0 14

.07

3.1

7 N

D

54.5

7 13

.81

2.4

1 N

D

13.3

7 5.

95

' 2.

29

ND

B

2 44.3

0 14

.15

3.46

N

D

54.8

3 13

.61

2.41

N

D

13.7

9 6.

05

2.35

N

D

mea

n=

4

3.3

1 14

.08

3.4

8 —

54.6

7 13.6

3 2.4

0 —

13

.49

6.15

2.

27

stde

v=

0.8

3 0.

13

0.2

4 —

0.32

0.1

2 0.

02

0.2

1 0.

24

0.06

RS

D%

=

1.93

0.

92

6.8

1 —

0.58

0.9

1 0.6

6 —

1.

52

3.96

2.

60

3 K

enn

edy

To

wn

A1

48.5

3 11

.42

2.0

9 N

D

48.5

1 9.2

5 1.

69

ND

45.4

0 9.

14

1.72

N

D

A2

47

.67

11.2

5 2.1

4 N

D

49.1

9 9.4

8 1.

62

ND

46.4

3 9.

00

1.70

N

D

B1

41.6

2 11

.24

2.1

9 N

D

48.8

8 9.3

1 1.

48

ND

47.1

1 9.

46

1.66

N

D

B2

42.3

2 11

.32

2.8

0 N

D

64.6

3 11

.93

1.96

N

D

48.1

9 9.

56

1.81

N

D

mea

n=

45.0

4 11

.31

2.3

1 —

48.8

6 9

.35

1.60

46.7

8 9.

29

1.72

stde

v=

3.5

7 0.

08

0.3

3 —

0.3

4 0.1

2 0.

11

——

1.

17

0.26

0.0

7 —

RS

D%

=

7.92

0.

73

14.3

1 —

0.6

9 1.

25

6.72

2.5

1 2.

84

3.78

4 C

ause

way

Bay

A

1 29.9

2 14

.04

3.52

N

D

36.6

7 14

.40

4.22

N

D

19.2

7 6.

18

1.81

N

D

A2

29.7

3 13

.16

4.8

0 N

D

37.7

4 14

.64

4.23

N

D

19.0

6 6.

08

1.84

N

D

B1

28.7

0 12

.26

3.7

3 N

D

35.9

1 13

.99

4.2

5 N

D

18.9

7 6.

01

1.75

N

D

B2

29.7

1 12

.10

5.4

1 N

D

37.0

6 14

.35

4.1

1 N

D

18.8

6 5.

85

1.76

N

D

76

mean

=

29.5

2 12

.89

4.3

7 —

36.8

4 14.3

5 4.

20

19.0

4 6.

03

1.7

9 —

stde

v=

0.5

5 0.8

9 0.8

9 —

0.7

7 0.2

7 0.

06

0.1

7 0.

14

0.0

4 —

R

SD

%=

1.

86

6.9

4 20.4

9 —

2.0

8 1.

88

1.49

0.

90

2.36

2.3

9 —

5 W

an

Ch

ai

A1

28.4

1 12

.03

4.3

6 N

D

38.2

6 13

.07

3.56

N

D

30.0

6 10

.19

2.8

5 N

D

A2

28.3

6 11

.89

4.4

4 N

D

38.6

2 12

.92

3.59

N

D

30.6

2 10

.41

3.0

1 N

D

B1

29.2

2 11

.85

4.3

3 N

D

38,4

1 12

.91

3.59

N

D

31.4

6 10

.76

2.9

6 N

D

B2

28.6

2 11

.54

4.2

2 N

D

38.5

0 12

.93

3.63

N

D

31.6

4 10

.58

3.00

N

D

mean

=

28.6

5 11

.83

4.3

4 —

3

8.4

5 12

.96

3.59

30.9

5 10

.49

2.9

5 —

stdev

=

0.4

0 0.2

1 0.0

9 —

0.1

5 0.0

7 0.

03

——

0.

74

0.24

0

.07

——

RS

D%

=

1.38

1.

77

2.1

1 —

0.3

9 0.5

7 0.

82

——

2.

39

2.30

2

.41

——

6 H

ap

py

Val

ley

A1

33.7

3 13

.63

4.0

1 N

D

45.5

3 14

.26

3.28

N

D

40.7

8 12

.79

3.1

0 N

D

A2

32.8

4 13

.06

3.93

N

D

45.2

5 14

.08

3.31

N

D

41.9

5 12

.93

3.2

0 N

D

B1

32.5

3 12

.94

3.92

N

D

44.2

1 14

.25

3.25

N

D

42.2

2 12

.98

3.2

8 N

D

B2

33.5

6 13

.31

4.1

5 N

D

44.7

4 13

.78

3.25

N

D

42.8

0 13

.17

. 3.2

9 N

D

mean

=

33.1

7 13

.24

4.0

0 —

44.9

4 14

.09

3.28

41

.94

12.9

7 3

.21

stdev

=

0.5

7 0.3

1 0.1

1 —

0.5

8 0.

22

0.03

0.

85

0.16

0.0

9 —

RS

D%

=

1.73

2.3

1 2

.67

——

1.

30

1.58

0.

90

——

2.

02

1.20

2.7

2 —

7 S

iu S

ai W

an

A1

26.9

7 16

.67

7.5

4 N

D

41

.87

15.8

3 4.

26

ND

25

.65

8.37

2.1

4 N

D

A2

24.3

9 16

.35

9.1

5 N

D

42.0

2 15

.98

4.2

7 N

D

25.9

1 8.

38

2.1

0 N

D

B1

31.1

0 18

.91

9.0

7 N

D

42.4

5 15

.61

4.48

N

D

25.3

0 8.

39

2.1

3 N

D

B2

24.8

9 15

.36

7.6

5 N

D

41.7

4 15

.51

4.2

9 N

D

25.6

5 8.

23

2.1

7 N

D

mea

n=

26.8

3 16

.83

8.3

5 —

42.0

2 15

.73

4.32

25.6

3 8,

34

2.1

3 —

stde

v=

3.05

1.

50

0.8

8 —

0.3

1 0.

21

0.10

0.

25

0.07

0.0

3 —

RS

D%

=

11.3

8 8.

92

10.5

0 —

0.7

3 1.

36

2.40

0.9

7 0.8

7 1.

34

——

8 T

ai K

oo

Sh

ing

A1

39.9

7 20.5

0 9.1

5 N

D

39.1

8 13

.42

3.51

N

D

47.7

8 16

.06

3.8

6 N

D

A2

37.5

6 18

.25

9.13

N

D

38.9

3 13

.25

3.54

N

D

47.4

3 15

.92

3.9

7 N

D

B1

39.8

4 22.6

6 8.

03

ND

40.9

0 13

.88

3.56

N

D

47.7

5 15

.71

3.9

1 N

D

B2

34.9

4 18

.22

9.54

N

D

41.0

4 14

.01

3.48

N

D

48.2

2 15

.80

4.0

7 N

D

mea

n=

38.0

8 19

.91

8.9

6 —

40.0

1 13

.64

3.5

3 —

47.7

9 15

.87

3.9

5 —

77

stde

v=

2.3

7 2.1

2 0.6

5 —

1.11

0.3

6 0.0

4 —

0.

32

0.1

5 0.0

9 —

RS

D%

=

6.22

10

.65

7.2

7 —

2.7

7 2.6

7 1.

00

——

0.

68

0.9

5 2.2

8 —

9 N

ort

h P

oin

t A

1 41.9

4 11

.28

2.10

N

D

43.8

7 12

.14

2.2

8 N

D

35.2

7 8.

61

1.75

N

D

A2

41.3

5 11

.31

2.1

1 N

D

44.4

2 12

.19

2.3

4 N

D

34.7

3 8.

70

1.72

N

D

B1

40.3

2 10

.96

2.12

N

D

43.5

4 12

.10

2.2

7 N

D

35.7

5 8.

67

1.66

N

D

B2

39.7

2 10

.95

2.1

1 N

D

44.9

4 12

.19

2.3

6 N

D

35.4

0 8.

46

1.63

N

D

mea

n=

40.8

3 11

.12

2.1

1 —

44.1

9 12

.15

2.3

1 —

35.2

9 8.6

1 1.

69

stdev

=

1.00

0.2

0 0.0

1 —

0.6

2 0.

05

0.0

4 —

0.

42

0.1

1 0.

06

——

RS

D%

=

2.4

5 1.

76

0.40

1.40

0.3

7 1.

84

1.19

1.

29

3.30

10

Ab

erd

een

A1

46.4

3 12

.54

4.1

7 N

D

22.2

2 8.9

5 3.7

2 0.3

0 51

.09

14.6

3 3.4

1 N

D

A2

44.4

2 11

.83

4.5

0 N

D

22.2

7 9.

02

3.4

8 0.

60

52.9

6 15

.13

3.71

N

D

B1

41.7

0 14

.87

5.71

N

D

23.4

2 9.

22

3.62

0.

36

53.2

1 15

.29

3.73

N

D

B2

44.8

5 12

.61

3.71

N

D

24.1

4 9.

50

3.70

0.

46

53.6

6 15

.45

3.62

N

D

mea

n=

44.3

5 12.9

7 4.5

2 —

23.0

1 9.1

7 3.6

3 0.

43

52.7

3 15

.12

3.6

2 —

stde

v=

1,97

1.

32

0.86

0.7

7 0.

26

0.0

9 0.

08

1.13

0.3

5 0.1

5 —

RS

D%

=

4.44

10

.17

18.9

2 —

3.

36

2.82

2.6

0 17

.76

2.14

2.

34

4.1

2 —

11

Wo

ng

Ch

uk

Ha

ng

A1

18.0

0 3.

24

0.91

N

D

E E

E N

D

34.6

1 6.5

0 1.

38

ND

A2

18

.21

3.0

9 0.8

7 N

D

36.8

3 11

.39

2.8

3 N

D

35.3

2 6.

60

1.37

N

D

B1

18.1

1 3.

18

1.03

N

D

36.8

1 11

.05

2.6

4 N

D

33.4

9 6.1

7 1.

22

ND

B

2 17

.87

2.9

8 1.

01

ND

36.7

8 11

.00

2.5

1 N

D

33.6

7 6.

16

1.31

N

D

mean

=

18.0

5 3.1

2 0.9

6 —

36.8

1 11

.15

2.6

6 —

34.2

7 6.

36

1.32

stde

v=

0.1

5 0.1

1 0.0

8 —

0.0

2 0.2

1 0.

16

0.85

0.

22

0.0

7 —

RS

D%

=

0.8

1 3.

63

8.12

0.

06

1.91

5.

96

2.49

3.

52

5.3

9 —

12

Wa

hF

u A

1 53

.16

13.9

8 2.9

0 N

D

47.6

5 12

.92

2.9

5 N

D

43.0

5 11

.63

2.5

9 N

D

A2

54 0

7 14

02

2.86

N

D

48.0

2 12

.90

2.94

N

D

43.5

1 11

.37

2.4

4 N

D

Bl

52 8

8 13

.43

3.0

5 N

D

49.9

5 13

.65

3.22

N

D

41.5

8 10

.87

2.3

8 N

D

B2

54 4

6 14

.09

2.9

9 N

D

50.2

0 13

.45

3.02

N

D

42.2

7 11

.08

2.3

7 N

D

mea

n=

53

.64

13.8

8 2.9

5 —

48.9

6 13

.23

3.0

3 一

42

.60

11.2

4 2.4

5 一

stde

v=

0.74

0.

30

0.0

9 —

1.31

0.

38

0.13

0.

86

0.33

0.1

0 —

78

RS

D%

=

1.39

2.1

9 2

.97

2.6

7 2.8

7 4.3

6 —

2.0

1 2.

98

4.12

13

Tsi

m S

ha

Tsu

i A

1 37.3

8 12

.97

2.2

4 N

D

35.9

6 11

.40

2.76

N

D

63.9

5 9.

54

1.38

N

D

A2

34.8

7 10

.06

2.44

N

D

36.6

1 11

.81

2.7

0 N

D

64.6

8 9.

81

1.34

N

D

B1

33.7

0 12

.12

2.72

N

D

35.9

2 11

.43

2.6

7 N

D

59.5

0 9.

06

1.20

N

D

B2

34.6

3 11

.84

2.5

5 N

D

35.9

5 11

.61

2.5

8 N

D

60.5

0 9.

33

1.25

N

D

mea

n=

35.1

5 11.7

5 2.4

9 —

36.1

1 11

.56

2.6

8 —

62.1

6 9.

44

1.29

stde

v=

1.57

1.

22

0.2

0 —

0.33

0.1

9 0.0

8 —

2.5

5 0.

32

0.09

RS

D%

=

4.4

7 10

.43

8.13

0.

93

1.62

2

.87

4.0

9 3.

38

6.59

14

Wat

erlo

o A

1 66.5

5 12

.35

2.23

N

D

56.3

5 9.

91

1.92

N

D

44.1

2 7.

36

1.50

N

D

A2

65.9

7 11

.93

2.1

7 N

D

57.1

2 10

.18

1.92

N

D

43.4

6 7.

23

1.79

N

D

B1

65.6

4 11

.73

2.1

4 N

D

58.2

9 10

.85

2.2

7 N

D

40.3

4 6.

21

1.19

N

D

B2

65.0

4 11

.71

2.1

4 N

D

59.5

8 11

.11

2.2

5 N

D

40.8

8 6.

26

1.23

N

D

mea

n=

65

.80

11.9

3 2.1

7 —

57.8

4 10

.52

2.0

9 —

42.2

0 6.

76

1.43

stde

v=

0.63

0.3

0 0.

04

1.41

0.5

6 0.2

0 —

1.

87

0.62

.

0.28

RS

D%

=

0.96

2.4

9 1.

95

——

2.

43

5.35

9.

36

——

4.

43

9.15

19

.39

15

Jord

an

A1

46.1

4 13

.21

2.43

N

D

54.4

7 13

.12

2.31

N

D

57.7

8 13

.91

2.3

9 N

D

A2

46.1

1 13

.17

3.1

9 N

D

55.0

4 13

.19

2.2

8 N

D

58.4

7 13

.94

2.3

8 N

D

B1

46.5

9 13

.23

2.5

9 N

D

53.3

0 12

.93

2.0

9 N

D

58.4

7 13

.87

2.4

4 N

D

B2

46.6

3 13

.32

2.6

9 N

D

54.2

3 12

.97

2.1

6 N

D

58.8

5 13

.89

2.4

1 N

D

mea

n=

46.3

7 13

.24

2.7

2 —

54.2

6 13.0

5 2.2

1 —

58.3

9 13

.90

2.4

1 —

stde

v=

0.2

8 0.0

6 0.3

3 —

0.

73

0.12

0.1

0 —

0.

44

0.03

0.

03

——

RS

D%

=

0.6

1 0

.47

12.0

4 —

1.34

0.9

1 4.

52

——

0.7

6 0.

22

1.08

16

Mo

ng

Ko

k A

1 44.7

1 16

.05

5.26

N

D

49.7

2 11

.96

1.85

N

D

32.9

4 7.

38

1.28

N

D

A2

44.3

4 16

.98

5.68

N

D

50.4

9 12

.03

1.89

N

D

33.8

4 7.

55

1.35

N

D

B1

50.7

5 17

.83

5.1

0 N

D

49.5

5 12

.18

1.97

N

D

34.1

1 7.

61

1.30

N

D

B2

47.4

6 18

.99

4.2

4 N

D

50.4

8 12

.29

1.92

N

D

34.2

0 7.

75

1.25

N

D

mea

n=

46.8

1 17

.46

5.0

7 —

50.0

6 12

.11

1.91

33.7

7 7.

57

1.30

stde

v=

2.9

7 1.

25

0.6

0 —

0.5

0 0.1

5 0.0

5 —

0.5

8 0.

15

0.0

4 —

RS

D%

=

6.34

7.

16

11.9

1 —

0.9

9 1.

21

2.6

8 —

1.71

2.

03

3.10

79

s

—— org

O

O

N

r

n

o

I

K

;

s00

「一 I

F:o

家o"sQgoi

—— so

z.0.0

oro

——

£0.0

80.0

890

——

§

so

9<N0

=A3ptt

—— 080

IS

W

6

S

«

S

v

f

i

o

r

4

I

^

99. L

H.Ll

l«s

m s

.

o

v

o

o

.

g

0

0

0

0

§

o

o

o

f

s

3

§

浮口

s

m

§ofs«oMoo.«o«s§

^s

o

T

t

§

i

s

;

fr

<

s

s

§ so

g

s

o

o

o

v

o

<

N

§

S

<

N

m

o

h

I

-

t

O

N

O

N

.

s

QM

?.0

.

t

o

§

v

o

o

.

t

N

v

o

o

i

?§

s

0

5

o

O

N

v

o

e

s

i

^

l

Mis

0<s

5.0

so

—00r6

0

9

<

N

口00

§

s

=%a2

—— 60.0

9

0

.

0

<

N

r

o

——

80.0

9<n.o

9CSI

——

sTt.o

so

9c.e

=A9pjs

—— s«svoz/

3.0

L6.6«s

卜.

^ 2.

¾

.0^

ni«s

m

§ S«NI

Ac

‘6

m

.0

S.ON^0.

¾

m

卜「二00

二寸

s

m 0

!

<

N

P

<

N

I

卜600

§

s.oS.6

Iror-azs

9二f-H«o«o.5

s

m s

<

N

o

o

<

N

l

(

^

^

§

O

N

0

Mfs.OI

SI009

§

8

<

N

s

r

c

i

t

s

o

x

r

n

s

§ 161

LL-l\ 寸

6.8

QM

oooo

二Of-Hooovo§

s.g

卜00.

5

oinqs

§qs

—— s

,

8

6

0

r

t

-

9

0

——

9

6

<

N

o

«

o

0

0

«

n

ml

s

=%Qsoi

—— 9

0

0

i

r

o

T

t

r

o

——

8

0

0

s

r

o

6ri

v

o

o

o

o

o

f

s

.

o

o

o

t

l

=A(I>pls

—— SI

Sid

5

SZ/91

I

SH«s3【

卜ONOVOHswfi

m ovod00「G

§

<N

^n^ooop §

t

s

f

v

i

^

o

2

L

L

(

r

l

r

>

<

N

r

a

m

o

o

h

r

-

t

^

r

-

H

l

-

H

§

gvol-Hvo

,p

§

6

0

C

S

0

2

G

.

6

S

3

m

5

:

一 g

o

o

<

N

«

o

§

0

0

<

N

g

.

SL

§

S<n9

2

m

0

0

.

1

-

1

二 g<N«r>§

<

N

«

n

o

o

v

o

I

-

H

§

^

0

0

2

I

V PJBMPW

sa-cd

gTH

—— 0

£

<

N

6

6

1

——ooorf(Scsl-H口一 —

SOI

=%as

—— so

.0

9

卜0

——

n

o

6

1

0

£90

——

.0

9

I

r

t

0

1¾¾

—— Ms

sol

£00{

—foow

^^ fov)

f

口vo®iG

l«s

§

W

/

I

»

n

S

.

O

I

o

o

g

.

c

n

§

。rnho。

so<寸

§

s s.f-tf-H00.^fsg

GN .oofn§

0

o

o

<

N

O

o

r

-

H

d

G

o

t

n

§

0

0

0

0

.

一 ^

�00^3

m

O

O

A

.

2

0

0

9

f

n

§

g

f

w

Q

z

o

o

o

r

s

^

n

p

n^

2

m 081

ISItsrl-.6E

§

f

s

I

-

H

r

n

'

l

-

-

(

l

r

l

§

9

2

3

£

<

N

5 5

3

¾

¾

¾

s

ZJ

loo

cmOOOH

^s

^^

§OOD

O

N

O

N

o

o

s

Sol

—Hsvorfr5

g doq

—— 卜

8.

I

s

ST

__

s

o

o

浮onox

OQS

—— 8

0

0

^

0

o

o

r

n

.

f

s

_

_

sofsto.o

861

Iooro

ccsoooro

—— yri

s

二经

I

3 渰

沄.

I 二

一svo

Mi«s

§ 191

^sCS66C

§

s

gsg

§vorn一

s

nM

g

C

K

§

0

0

¾

S

2

§

ISI

艺oo«os

az

s.os§00<N<N卜oi

§

^Omsol-H3

a

z

o

o

o

.

l

t

O

S

o

\

5

§

s

Rpoorr.paz

R

f

n

O

O

O

O

.

G

5

11

OH

—— §

6«ol

o

o

v

o

d

o

O

N

.

l

-

H

I

s

s 寸

9.0

=%QSH

—— so

no

.0

——

60.0

6fs.o

on

——

iro

sro

Ico=A(UPJS

——

s

0

0

0

0

®

p.s

^p

lo.LS

n§«s

§ ori

900-L

^

§

«

N

i

§

c

s

0

2

0

0

£

.

g

m

m «n

卜卜

§

s S009

m

s 苕

d s

§oorl SA

§ON「<N^.

.0^

§

h

o

f

s

.

<

s

I

<

2

QM

s.l

s

aN

S

«

N

s

o

h

§

$

s

p

v snoHnoolix

s

—«nr6 66

1

s

c

o

5

s

<

s

I

f

s

C

N

l

o

2

"

\

Q

g

—voro 61.0

ILl _

_

v

o

o

.

o

o

t

N

o

r

-

H

g

.

l

__

-.0

6,I

N>1

——

9

r

f

-

1

0

0

0

\

0

0

I

0

0

0

0

ossTf

——

LVl

【©ooTfl«a

§ QL.l

OZ/6

orcsTI-§

081

ZTIl

96.3

a

z

«

o

f

n

o

i

s

o

o

T

t

s

m

v

o

r

-

r

t

«

r

>

C

K

o

o

<

s

(

N

r

f

r

§ SI

I

0

0

0

0

5

§

^

<

N

0

9

0

1

0

0

6

X 寸

3

QN

09.

j

o

n

c

k

§

WOO.I

61HI

fvo

§

g

f

s

0

0

2

T

f

o

o

.

O

N

r

r

5

§

0

0

6

1

寸66

m

s

00

卜.9

§

f

s

.

2

s

v

o

r

t

5

.

^

u

n

<

H

M

i

x

s

—— 6

1

9

c

s

t

£

s

O

N

f

s

l

-

H

s

o

S90

——

S8.I

5.0

so

=%CISH

—— 寸

0.0

so

€ri

——

iro

8

0

0

9

<

s

o

«

0

0

0

L

O

O

8S0

—— 8

S

0

S

9

渰.gg

3,�

00^.

¾

s

ss

H§«s

§

K

o

U

9 9

r

t

l

n

p

z 芗.1-1^s

so<£Qz

f

s

s

i

goovos

§ 2.0

s

Nr

s

§

go<^0.0^

m

s

1

2

s

QN

.0

S

K

0

0

v

o

«

r

l

§

«

o

.

ofs.6

I

.

6

£

P

N S<Nr-oo.SI009.69

3

aN sx

§

s

01.6

t00.6e

§

^

<

N

r

n

o

o

.

O

N

r

n

o

5

PW&.DI

二名的

u

A2

49.1

8 10

.01

2.5

2 N

D

35.6

8 9.

75

1.57

N

D

65.8

3 13

.42

2.0

8 N

D

B1

45.9

4 8.

89

3.05

N

D

36.4

3 9.

96

1.70

N

D

66.6

4 13

.70

2.0

8 N

D

B2

44.6

0 11

.17

2.1

4 N

D

36.2

5 10

.19

1.71

N

D

68.2

8 13

.71

2.1

2 N

D

mea

n=

46.5

7 10

.24

2.4

5 —

36.0

1 9.9

8 1.

69

66.5

5 13

.54

2.0

9 —

stde

v=

1.92

1.

03

0.4

5 —

0.3

8 0.1

8 0.0

9 —

1.25

0.1

9 0.

02

RS

D%

=

4.1

3 10

.05

18.2

7 —

1.

07

1.80

5.

04

——

1.

89

1.37

0.8

5 —

26

Wo

ng

Tai

Sin

A

1 70.6

6 15

.90

2.54

N

D

38.7

6 11

.06

1.95

N

D

49.5

1 13

.25

2.5

9 N

D

A2

69.6

2 15

.71

2.51

N

D

39.2

0 11

.07

2.0

8 N

D

49.7

4 13

.31

2.50

N

D

B1

65

.87

14.7

9 2.

50

ND

39.1

9 10

.99

2.0

1 N

D

49.0

0 13

.16

2.52

N

D

B2

65.9

3 14

.84

2.43

N

D

39.9

6 11

.13

2.1

4 N

D

49.4

2 13

.46

2.4

7 N

D

mea

n=

68.0

2 15.3

1 2.5

0 —

39.2

8 11

.06

2.0

5 —

49.4

2 13

.29

2.52

stde

v=

2.4

8 0.5

8 0.0

5 —

0.

50

0.0

6 0.0

8 —

0.

31

0.12

0.0

5 —

RS

D%

=

3.65

3.

78

1.84

1.

28

0.53

4.

03

——

0.

62

0.92

2.0

9 —

27

Ch

oi

Hu

ng

A1

54.5

8 13

.60

2.5

0 N

D

44.5

6 10

.95

1.95

N

D

54.5

2 17

.95

. E

ND

A2

55

.34

13.8

2 2

.37

ND

44.8

6 11

.00

1.83

N

D

55.4

4 18

.30

E N

D

B1

56.7

3 14

.31

2.4

5 N

D

44.8

2 11

.20

1.99

N

D

52.3

4 13

.83

2.62

N

D

B2

56.6

5 14

.09

2.4

9 N

D

45.3

4 11

.21

1.94

N

D

52.7

9 13

.87

2.5

8 N

D

mea

n=

55

.82

13.9

5 2.4

5 —

44.8

9 11

.09

1.93

53.7

7 15

.99

2.60

stde

v=

1.05

0.

31

0.0

6 —

0.33

0.

14

0.0

7 —

1.

46

2.4

7 0.

03

——

RS

D%

=

1.88

2.

24

2.33

0.73

1.

23

3.51

2.

71

15.4

7 1.

06

——

28

Kw

un

To

ng

A1

31.0

9 12

.38

5.55

N

D

32.5

6 11

.38

3.74

N

D

36.8

3 12

.11

2.9

6 N

D

A2

34.3

1 15

.21

6.42

N

D

33.2

6 11

.53

3.90

N

D

37.3

0 12

.18

3.13

N

D

B1

36.7

8 16

.54

6.23

N

D

33.0

8 11

.73

3.84

N

D

37.0

7 11

.82

3.03

N

D

B2

31.7

4 12

.40

5.83

N

D

32.9

5 11

.50

3.89

N

D

37.3

2 12

.04

3.1

5 N

D

mea

n=

33.4

8 14.1

3 6.0

1 —

32.9

6 11

.54

3.84

37.1

3 12

.04

3.0

7 —

stde

v=

2.6

0 2.0

8 0.3

9 —

0.3

0 0.1

5 0.0

7 —

0.23

0.1

6 0.0

9 —

RS

D%

=

7.7

8 14

.75

6.51

0.9

0 1.

27

1.90

0.62

1.

29

2.9

4 —

82

29

Ko

wlo

on

Bay

A

1 55.5

4 13

.54

2.1

8 N

D

53.6

5 8.

40

1.05

N

D

28.3

6 6.

42

0.8

2 N

D

A2

56.0

0 13

.60

2.0

6 N

D

54.5

9 8.

83

1.15

N

D

28.3

2 6.

24

0.8

0 N

D

B1

54.6

7 13

.11

2.0

9 N

D

53.4

5 8.

65

1.20

N

D

31.3

2 6.

77

0.8

6 N

D

B2

54.5

8 13

.02

2.1

2 N

D

52.9

9 8.

70

1.21

N

D

31.3

7 6.

89

0.8

5 N

D

mea

n=

55.2

0 13

.32

2.1

1 —

53.6

7 8.6

4 1.

15

29.8

4 6.

58

0.8

3 —

stde

v=

0.6

9 0.2

9 0.0

5 —

0.6

7 0.1

8 0.0

7 —

1.

73

0.30

0.

03

——

R

SD

%=

1.

25

2.2

0 2.

42

1.26

2.0

5 6.

31

5.81

4.

61

3.23

30

Lam

Tin

A

1 40.4

4 18

.00

6.2

4 0.4

8 48.2

1 17

.43

4.74

N

D

32.5

0 9.

81

2.4

0 N

D

A2

40.1

2 17

.89

6.2

2 0.3

9 48.3

2 17

.55

4.8

7 N

D

32.5

8 9.

67

2.3

5 N

D

B1

42.4

0 19

.49

7.3

5 0.3

9 50

.44

18.3

0 4.9

9 N

D

29.4

4 9.

11

2.3

6 N

D

B2

41

.77

19.4

4 7.2

1 0.

43

50.1

3 18

.23

4.83

N

D

29.6

7 8.

92

2.4

2 N

D

mea

n=

41.1

9 18

.70

6.7

5 0.

42

49.2

8 17

.88

4.86

31.0

5 9.

38

2.3

8 —

stde

v=

1.08

0.8

8 0.6

1 0.

04

1.18

0.4

5 0.

11

——

1.

73

0.43

0.

03

——

RS

D%

=

2.6

2 4.

70

8.9

7 9.

73

2.3

9 2.5

3 2.1

7 —

5.

56

4.58

1.

27

31

Kw

ai C

hu

ng

A1

39.1

5 9.

54

2.6

4 N

D

49.2

9 8.

81

1.19

N

D

50.0

4 9.

53

' 1.

50

ND

A2

36.3

9 11

.49

2.5

5 N

D

49.5

6 8.7

8 1.

20

ND

50

.22

9.66

1.

32

ND

B

1 33.3

6 10

.02

3.13

N

D

51.5

8 9.2

4 1.

21

ND

49.1

8 9.

48

1.47

N

D

B2

36.2

2 10

.08

2.3

8 N

D

52.0

0 9.

10

1.11

N

D

49.7

9 9.

45

1.42

N

D

mea

n=

36.2

8 10

.28

2.6

7 —

50.6

1 8.9

8 1.

18

49.8

1 9.

53

1.43

stde

v=

2.3

6 0.

84

0.3

2 —

1.

38

0.23

0.

04

0.46

0.0

9 0.0

8 —

RS

D%

=

6.52

8.

17

12.1

1 —

2.7

3 2.

52

3.68

0.

92

0.96

5.

59

32

Tsi

ng

Yi

A1

46.4

3 11

.66

2.0

0 N

D

69.5

1 10

.09

1.25

N

D

60.5

7 11

.34

1.37

N

D

A2

51.6

8 10

.83

1.98

N

D

68.7

6 10

.02

1.24

N

D

61.7

0 11

.34

1.40

N

D

B1

54.4

6 14

.17

2.1

7 N

D

67.8

3 10

.09

1.11

N

D

62.1

3 11

.40

1.39

N

D

B2

55.4

8 11

.97

2.3

1 N

D

69.2

4 10

.09

1.21

N

D

62.6

4 11

.46

1.41

N

D

mea

n=

52.0

1 12

.16

2.1

1 —

68.8

3 10

.07

1.20

61.7

6 11

.38

1.39

stde

v=

4.05

1.

42

0.1

5 —

0.7

4 0.0

4 0.

06

0.8

8 0.

06

0.02

RS

D%

=

7.7

9 11

.71

7.3

0 —

1.

07

0.3

8 5.

41

——

1.

43

0.54

1.

13

——

33

Ta

iWo

Ha

u A

1 35.0

7 7.

69

1.52

N

D

37.7

0 7.

01

1.15

N

D

26.6

4 5.

52

0.9

2 N

D

A2

35.4

9 7.

83

1.40

N

D

37.2

7 7.

14

1.03

N

D

26.7

8 5.

45

0.9

4 N

D

83

B1

34.3

3 8.5

5 1.

79

ND

38

.20

7.4

5 1.

08

ND

26

.33

5.63

1.

04

ND

B

2 34

.58

8.50

1.

79

ND

37

.84

7.05

0.9

5 N

D

26.1

2 5.

65

1.06

N

D

mea

n=

34.8

7 8.1

4 1.

62

——

37.7

5 7.1

6 1.

05

——

26

.46

5.56

0.9

9 —

stde

v=

0.52

0.4

5 0.2

0 —

0.3

9 0.2

0 0.0

8 —

0.30

0.

09

0.0

7 —

RS

D%

=

1.48

5.4

7 12

.27

1.02

2.

82

7.8

9 —

1.13

1.

68

7.0

8 —

34

Tsu

en W

an

A1

66.6

0 9.

74

1.45

N

D

75.0

5 11

.71

1.56

N

D

72.5

1 11

.33

1.42

N

D

A2

64.2

1 9.

34

1.46

N

D

75.6

1 11

.87

1.36

N

D

72.7

7 11

.27

1.51

N

D

B1

62.1

9 12

.16

1.19

N

D

76.0

6 12

.08

1.82

N

D

73.5

5 11

.25

1.44

N

D

B2

60,8

3 11

.23

1.27

N

D

76.4

8 12

.18

1.61

N

D

74.0

9 11

.39

1.43

N

D

mea

n=

63.4

6 10

.62

1.34

75.8

0 11

.96

1.59

73.2

3 11.3

1 1.

45

——

stde

v=

2.5

1 1.

31

0.13

0.6

1 0.2

1 0.1

9 —

0.72

0.0

6 0.

04

——

RS

D%

=

3.96

12

.34

10.0

5 —

0.81

1.

76

11.7

9 —

0.99

0.

56

2.75

35

Sh

am T

sen

g A

1 32.9

3 6.1

2 0.9

7 N

D

39.1

0 6.6

9 1.

04

ND

26

.16

4.94

0.

74

ND

A

2 32

.55

6.0

4 0.9

7 N

D

38.9

9 6.

66

0.9

9 N

D

26.3

9 5.

04

0.71

N

D

B1

31.8

9 6.0

5 0.8

5 N

D

38.4

7 6.

72

1.00

N

D

25.4

4 4.8

7 ‘

0.

75

ND

B

2 32.7

7 6.1

0 0.

89

ND

39.3

7 6.

86

0.9

9 N

D

25.9

4 4.

92

0.70

N

D

mea

n=

32.5

4 6.0

8 0.

92

——

38.9

8 6.7

3 1.

00

25.9

8 4.

94

0.73

stde

v=

0.4

6 0.0

4 0.

06

——

0.3

8 0.0

9 0.

03

——

0.

40

0.0

7 0.

02

——

RS

D%

=

1.40

0.

62

6.46

0.9

7 1.

32

2.7

7 —

1.

56

1.45

3.

37

——

36

Riv

era

Gard

en

s A

1 84

.44

15.4

4 1.

62

ND

72

.20

11.3

1 1.

45

ND

79

.38

13.1

5 1.

81

ND

A2

85

.03

15.2

0 1.

79

ND

72.1

0 11

.29

1.40

N

D

80.3

1 13

.29

1.79

N

D

B1

82.2

8 12

.33

1.33

N

D

72.2

1 11

.08

1.46

N

D

79.7

1 13

.38

1.72

N

D

B2

81.8

2 12

.48

1.62

N

D

71.2

4 10

.74

1.40

N

D

79.7

5 13

.14

1.72

N

D

mea

n=

83.3

9 13

.86

1.59

71.9

3 11

.10

1.43

79.7

9 13

.24

1.76

stde

v=

1.58

1.

69

0.1

9 —

0.4

7 0.2

6 0.

03

0.3

9 0.

12

0.05

RS

D%

=

1.89

12

.17

12.1

4 —

0.6

5 2.3

8 2.

23

——

0.4

9 0.8

7 2.

59

——

37

Tu

en M

un

A1

46.5

0 9.

09

1.62

N

D

53.4

2 8.9

7 1.

22

ND

57.5

1 9.

98

1.25

N

D

(Siu

Ho

ng

Ct)

A

2 46

.84

9.06

1.

56

ND

53

.40

9.07

1.

15

ND

61.3

5 10

.14

1,36

N

D

B1

47.6

3 9.

47

1.64

N

D

53.6

3 8.

80

1.11

N

D

62.0

8 10

.38

1.31

N

D

B2

48.3

6 9.

34

1.64

N

D

53.7

4 9.

11

1.17

N

D

61.9

4 10

.26

1.44

N

D

84

mea

n=

47.3

3 9.2

4 1.6

1 —

53.5

5 8.9

9 1.

16

60.7

2 10

.19

1.34

stde

v=

0.83

0.2

0 0.0

4 —

0.

16

0.1

4 0.0

5 —

2.1

6 0.1

7 0.

08

RS

D%

=

1.76

2.

12

2.38

0.

31

1.54

4.0

5 —

3.5

7 1.

66

6.06

38

Tu

en M

un

A1

45.8

4 8.7

8 1.

41

ND

52

.81

7.6

9 0.9

8 N

D

57.4

5 10

.45

1.45

N

D

(Sam

Sh

ing

Est

) A

2 44.6

0 8.

46

1.56

N

D

51.9

5 7.7

7 1,

00

ND

58.5

4 10

.73

1.47

N

D

B1

45

.51

8.53

1.

38

ND

51

.55

7.7

5 0.9

8 N

D

56.2

5 9.

85

1.40

N

D

B2

44.3

9 8.4

7 1.

55

ND

51

.24

7.8

5 1.

07

ND

58.7

9 10

.59

1.47

N

D

mea

n=

45.0

9 8.

56

1.48

51.8

9 7.7

7 1.0

1 —

57.7

6 10

.40

1.45

stde

v=

0.7

0 0.1

5 0.0

9 —

0.68

0.0

7 0.0

4 —

1.

16

0.39

0.

03

RS

D%

=

1.55

1.

76

6.31

1.

31

0.8

7 4.3

8 —

2.0

1 3.

73

2.11

39

Tu

en M

un

A1

48.4

0 9.

30

1.66

N

D

56.7

8 9.

60

1.28

N

D

60.5

2 10

.25

1.44

N

D

(Ch

ee L

ok

Gd

ns)

A

2 48.8

5 9.3

5 1.

58

ND

56

.26

9.6

7 1.

18

ND

61.9

1 10

.55

1.49

N

D

B1

48.2

2 9.

36

1.46

N

D

55.6

6 9.

53

1.26

N

D

61.9

1 10

.41

1.46

N

D

B2

48.2

4 9.

29

1.56

N

D

54.1

1 9.

06

1.27

N

D

63.4

3 10

.69

1.43

N

D

mea

n=

48.4

3 9.3

3 1.

56

55.7

0 9.4

7 1.

24

——

61.9

4 10

.47

1.46

stde

v=

0.2

9 0.0

4 0.0

9 —

1.16

0.2

8 0.0

5 —

1.

19

0.19

0.

03

——

RS

D%

=

0.6

0 0.3

8 5.

44

2.08

2.

94

3.64

1.

92

1.79

2.

08

——

40

Ka

m T

in

A1

59.5

2 10

.26

1.51

N

D

72.8

1 9.4

0 0.8

5 N

D

51.0

9 12

.41

1.94

N

D

A2

66.2

1 10

.22

1.88

N

D

74.3

8 9.

45

0.82

N

D

51.2

4 12

.44

1.94

N

D

B1

63.9

3 10

.50

1.78

N

D

73.3

3 9.

70

0.94

N

D

52.0

1 13

.13

2.12

N

D

B2

60.3

3 10

.18

1.25

N

D

74.0

7 9.6

8 0.

80

ND

51.4

1 13

.08

2.15

N

D

mea

n=

62.5

0 10

.29

1.61

73.6

5 9.5

6 0.8

5 —

51.4

4 12

.76

2.0

3 —

stde

v=

3.13

0.1

5 0.

28

0.71

0.1

6 0.

06

0.4

0 0.

40

0.11

RS

D%

=

5.0

1 1.

41

17.7

3 —

0.

96

1.63

7.4

9 ~

: 0.7

8 3.

10

5.60

41

Fai

rvie

w P

ark

A

1 59.9

9 9.

75

E N

D

85.1

9 11

.22

0.9

7 N

D

55.0

8 10

.10

1.01

N

D

A2

62.2

2 11

.84

1.31

N

D

84.4

8 11

.09

1.05

N

D

56.1

6 10

.12

1.01

N

D

B1

68.0

5 8.

62

1.79

N

D

84.6

4 10

.88

1.19

N

D

55.3

8 10

.00

1.05

N

D

B2

65.4

2 8.

94

1.27

N

D

84.0

1 11

.01

0.92

N

D

56.5

6 10

.18

1.08

N

D

mea

n=

63.9

2 9.

79

1.46

84

.58

11.0

5 1.

03

——

5

5.7

9 10

.10

1.04

stde

v=

3.54

1.

45

0.2

9 —

0.49

0.1

4 0.

12

0.6

9 0.

08

0.03

85

——

I

r

r

n

r

r

i

二;

—o「ON

^p ©cs;

r-l.x<soooIXOQW^

—— s

o

o

o

o

o

5

.

0

go.o

二.ofsooo

so

600

.0

=Ao3s

——

f

x

o

s

v

o

— s.o5o>必nL9

——

S90

8€£

S.K

m p.o2.9

寸00

§

s.o

r:oovo§OO40 n«N«r»�

CQ

m

o

o

o

v

o

«

n

<

N

.

O

N

f

n

§

寸oo.o

0«o6

1

0

0

9

P

N

so

9C.

0

6

I

"

o

s

m 0

^

.

0

o

o

O

N

«

o

0

0

0

.

§

^

.

0

o

o

t

s

O

N

§

so

vi.L ,£<N>r»

s

m .0

寸0.9

I1.6C

§

.0

6

8

.

9

9

P

N

.0

Ry,

5

o^vcrl

-- 寸

o

c

s

«

o

一 00.

們,一

卜o.

__

Orel

g「J

寸ro.l

—t

M^OQS

—— so

no

9

寸o

—— so

no09.0

——2.0 2.0 S.I =AoPJS

——ooaoo s 6ssTf

——

?.0

Nlooovoc

I

《s

rlSL

l«s

m .0

<

N

0

0

<

N

$

§ooho

s K

力 §ONfs.

.2o

卜卜卜

2PQ

m 880

s

o

oQ

z

§ soo00

「$

Qz S.I

£.01OONVO卜 3

m 一

ON.O

^s

LLlrtt

§

0卜0

loooo,g«r>pzOOON.O

gloI SZ.SL

3

m ^

.

0

«

r

>

r

o

o

«

0

0

.

3

m

«

o

.

0

f

o

o

§

660

noI

61.9

卜 I

V

s

q

c

y

l

^

I

S

l

l

s

;

5

—— s

6

r

<

s

O

r

n

.

f

-

H

0<Nc

SH

——

sooy/o 9//1

"%as"a

—— s

o

o

o

o

r

o

9«oo

——

o

o

i

r

o 寸

8o

—— 8

0

0

8

0

0

寸ri

=A93S

—— sowp

p

.

©

f

s

o

o

o

s

l

n

M

O

s

o

S

V

5

=uss

§ s

o

O

0

8

S

II_

§

5

9

r

0

0

§

so

6

/

/

6

0

0

6

9

f

s

C

Q

§

«

n

6

o

s

x

PM

€.0

ao.00orn.gg

§s.

llr-L

3

§ ^

.

0

tnnLO

N

.

f

s

§

F.Qvo

卜.

go

•这

pz

§ 68.6

Izlni

3

§ £

0

0

0

9

K

Z

,

E

.

f

n

r

t

§

?.0

S6.L

§

.0«oy/6

IV Moal

-£ s

l

寸 I 2

££

119

S

I

I

«

o

9

o

8

9

0

0

G

<

N

^

^

=%asJX!

—— so

6

0

0

0

0

o

900

6

0

0

<

N

£

o

2

o

"

o

c

s

o

^

.

0

N>l

—— §

ZT9

S£S€

——

0

0

5£o>Gor-ni«a

m

^5oorrvo

nz000.

一 696

§

ZXH

O

N

o

m

<JN

Ls

§Vof-H.g §

O

O

O

N

.

O

寸一.00sy

Qz

<S.H ££.6»r>91

s

QN

.0

099

€9«r>£

§

O

i

l

«

o

r

o

o

o

I

-

H

o

«

n

§

ofs-

g

C

N

o

3

m s

o

t

N

t

.

9

0

0

.

£

§

g

o

s

.

0

0

t

s

n

O

N

§

寸o.

«00069

IV

sfloq

SSA

—Ttrc .0

£<s,l —

o

o

f

s

I

-

H

^

.

0

I

g.200

卜.

艺吣

nox

OQS

46

Ta

iPo

A1

77.8

8 11

.20

1.43

N

D

74.3

0 11

.00

1.38

N

D

48.0

3 8.

03

0.8

5 N

D

(Fu

Sh

in E

st)

A2

77.2

4 11

.11

1.45

N

D

73.0

7 10

.84

1.27

N

D

48.6

4 8.

10

0.8

7 N

D

B1

76.9

3 11

.15

1.47

N

D

76.5

8 11

.50

1.31

N

D

49.6

2 8.

12

0.9

3 N

D

B2

78.1

9 11

.13

1.22

N

D

76.1

5 11

.50

1.38

N

D

49.9

4 8.

33

0.8

5 N

D

mean

=

77.5

6 11.1

5 1.

39

——

7

5.0

3 11

.21

1.34

49

.06

8.1

4 0.8

8 —

stde

v=

0.5

7 0.0

4 0.1

2 —

1.

63

0.3

4 0.0

5 —

0.

88

0.1

3 0.0

4 —

RS

D%

=

0.7

4 0.3

3 8.3

9 —

2.1

8 3.0

5 4.0

2 —

1.79

1.

57

4.5

4 —

47

Ta

iPo

A1

88.1

4 12

.17

1.38

N

D

81.3

6 12

.16

1.34

N

D

52.6

8 7.

70

1.03

N

D

(Kw

on

g F

uk

Est

) A

2 87

.16

12.4

0 1.

30

ND

82.7

2 12

.37

1.28

N

D

53.2

2 8.

06

1.16

N

D

B1

86.2

9 12

.18

1.27

N

D

83.9

8 12

.28

1.38

N

D

55.8

6 8.

41

1.01

N

D

B2

84.7

3 12

.08

1.45

N

D

83.1

9 12

.58

1.28

N

D

56.8

5 8.

55

1.10

N

D

mean

=

86.5

8 12

.20

1.3

5 —

82.8

1 12

.35

1.32

54.6

5 8.1

8 1.

08

stde

v=

1.45

0.

13

0.0

8 —

1.10

0.1

8 0.0

5 —

2.02

0.3

8 0

.07

RS

D%

=

1.67

1.

10

5.96

1.33

1.

43

3.72

3.

69

4.6

9 6.2

6 —

48

Tai

Wo

A1

70.9

1 9.

81

1.12

N

D

103.

21

13.7

7 1.

45

ND

73.5

9 10

.62

1.34

N

D

A2

72.1

8 9.

99

1.14

N

D

105.

09

14.0

2 1.

44

ND

73

.69

10.5

2 1.

21

ND

B

1 73

.31

10.0

3 1.

01

ND

10

4.75

13

.94

1.38

N

D

72.9

6 10

.70

1.26

N

D

B2

73.2

1 9.8

7 1.

17

ND

10

5.68

14

.09

1.51

N

D

73.2

9 10

.58

1.24

N

D

mea

n=

72.4

0 9.

92

1.11

104.6

8 13

.96

1.44

73.3

8 10

.61

1.26

stde

v=

1.12

0.1

0 0.0

7 —

1.05

0.

14

0.0

5 —

0.

33

0.0

8 0.0

6 —

RS

D%

=

1.55

1.

03

6.23

1.01

1.

00

3.62

0.

45

0.73

4.3

9 —

49

Sh

atin

A

1 43.3

8 12

.72

1.47

N

D

49.4

4 11

.65

1.86

N

D

40.5

4 9.

08

1.73

N

D

A2

41.4

1 12

.23

1.91

N

D

49.5

4 11

.79

1.94

N

D

39.6

8 8.

93

1.55

N

D

B1

38.2

2 11

.49

1.73

N

D

50.1

2 11

.81

1.96

N

D

37.9

1 8.7

7 1.

52

ND

B

2 39

.85

14.5

8 1.

79

ND

50.8

4 12

.14

1.88

N

D

37.3

9 8.

31

1.48

N

D

mea

n=

40.7

1 12

.75

1.72

49.9

9 11

.85

1.91

38.8

8 8.7

7 1.

57

stde

v=

2.20

1.

32

0.1

9 —

0.6

4 0.

21

0.0

5 —

1.48

0.

34

0.1

1 —

RS

D%

=

5.40

10

.33

10.7

4 —

1.

28

1.76

2.5

9 —

3.

80

3.83

6.9

2 —

50

Ma

On

Sh

an

A1

46.7

1 11

.73

2.0

0 N

D

62.6

8 15

.32

2.7

8 N

D

36.6

4 7.9

8 1.

47

ND

A2

47

.46

11.9

4 1.

99

ND

63.8

0 15

.77

2.9

6 N

D

36.8

3 7.9

7 1.

51

ND

87

B1

46.3

9 11

.70

1.95

N

D

64.2

1 15

.62

2.9

1 N

D

37.6

9 8.

43

1.60

N

D

B2

46.8

7 11

.66

2.0

5 N

D

65.0

0 15

.98

2.94

N

D

41.0

8 9.

14

1.69

N

D

mea

n=

46.8

6 11

.76

2.00

63.9

2 15

.67

2.90

38.0

6 8.

38

1.57

stde

v=

0.4

5 0.1

3 0.0

4 —

0.9

7 0.2

8 0.0

8 —

2.

06

0.55

0.1

0 —

RS

D%

=

0.9

6 1.

07

2.0

3 —

1.

51

1.78

2.7

7 —

5.42

6.

58

6.36

51

CU

HK

A

1 54

.50

9.1

7 2.

13

ND

56

.92

14.5

7 2.

92

ND

49.0

3 6.

15

0.72

N

D

A2

53.0

6 11

.08

2.3

8 N

D

57.5

7 14

.59

2.96

N

D

49.2

0 6.

20

0.79

N

D

B1

51.2

9 9.2

7 1.

62

ND

57

.28

14.5

8 2.8

9 N

D

50.3

7 6.1

9 0.

70

ND

B

2 53

.83

11.4

3 2.

20

ND

58

.52

14.8

2 2.9

4 N

D

49.6

2 6.

04

0.71

N

D

mean

=

53.1

7 10

.24

2.0

8 —

57.5

7 14

.64

2.9

3 —

49.5

6 6.

14

0.7

3 —

stde

v=

1.39

1.

19

0.33

0.69

0.1

2 0.

03

——

0.6

0 0.0

7 0.

04

——

RS

D%

=

2.6

1 11

.58

15.6

6 —

1.19

0.

83

0.9

9 —

1.21

1.

18

5.84

52

Sai

Ku

ng

To

wn

C.

A1

36.9

6 17

.94

8.69

N

D

43.3

6 16

.97

5.91

N

D

43.1

0 15

.02

3.99

N

D

A2

37.3

6 20

.14

8.05

N

D

42.5

6 16

.60

5.72

N

D

42.8

1 15

.00

3.96

N

D

B1

34.3

5 18

.43

6.92

N

D

39.4

5 16

.33

5.73

N

D

41.1

3 14

.49

3.89

N

D

B2

32.8

4 20.8

5 8.

42

ND

38

.56

16.4

0 5.5

7 N

D

41.4

6 14

.64

3.95

N

D

mea

n=

35.3

8 19

.34

8.02

40.9

8 16

.58

5.7

3 —

42.1

3 14

.79

3.9

5 —

stde

v=

2.1

5 1.

38

0.7

8 —

2.

33

0.2

8 0.1

4 —

0.9

7 0.2

7 0.

04

——

RS

D%

=

6.0

8 7.

14

9.74

5.70

1.

71

2.43

2.3

1 1.

80

1.09

53

Tse

ng

Lan

Shui

A1

36.7

6 15

.20

5.00

N

D

51.9

6 17

.88

4.4

4 N

D

54.4

6 16

.17

3.76

N

D

A2

37.7

0 15

.46

5.04

N

D

52.7

9 17

.91

4.63

N

D

55.7

8 16

.30

3.74

N

D

B1

41.1

1 18

.82

7.03

N

D

51.4

5 17

.37

4.46

N

D

54.4

5 16

.33

3.6

5 N

D

B2

41.1

3 18

.86

7.2

9 N

D

51.2

4 17

.48

4.46

N

D

53.6

3 15

.92

3.55

N

D

mea

n=

39.1

7 17

.09

6.0

9 —

51.8

6 17

.66

4.50

54.5

8 16

.18

3.6

7 —

stde

v=

2.2

8 2.

03

1.24

0.6

9 0.2

8 0.0

9 —

0.8

9 0.1

9 0.1

0 —

RS

D%

=

5.82

11

.86

20.3

9 —

1.

33

1.57

2.0

3 —

1.

63

1.17

2.

65

——

54

Tse

un

g K

wan

O

A1

35.7

0 19

.01

7.6

5 N

D

39.5

9 16

.91

5.77

0.

32

52.8

7 16

.15

3.72

N

D

A2

28.9

1 23.8

5 7.

44

ND

40.2

0 17

.15

5.85

0.

32

52.7

7 16

.13

3.76

N

D

B1

35.1

5 22.0

7 9.

68

ND

39

.14

16.6

4 5.

58

0.48

51.6

2 15

.95

3.63

N

D

B2

36.7

1 20

.76

8.1

8 N

D

39.1

1 17

.02

5.82

0.

41

51.8

0 15

.92

3.64

N

D

88

mea

n=

34.1

2 21.4

2 8.

24

——

39.5

1 16

.93

5.7

5 0.

38

52.2

6 16

.04

3.69

stde

v=

3.53

2.0

5 1.

01

——

0.5

1 0.

22

0.1

2 0.

08

0.6

5 0.1

2 0.

06

RS

D%

=

10.3

4 9.5

5 12

.26

1.28

1.

30

2.0

4 20

.25

1.24

0.7

4 1.

67

55

Dis

cov

ery

Bay

A

1 2.5

5 9.2

0 8.

81

2.2

0 3.

23

5.43

6.8

7 2.

00

2.2

1 4.2

9 5.4

7 1.

43

A2

3.12

8.1

8 9.

10

2.8

0 2.9

6 5.

46

6.8

8 1.

95

2.2

6 4.2

6 5.

26

1.46

B1

2.8

9 9.

36

8.89

2.9

1 3.

04

5.56

6.9

1 2.

17

2.2

3 4.0

9 5.

25

1.44

B2

2.22

7.7

3 8.

99

2.3

3 3.

02

5.47

6.6

9 1.

94

2.3

1 4.2

1 5.

45

1.36

mean

=

2.70

8.6

2 8.9

5 2.5

6 3.0

6 5.

48

6.8

4 2.0

1 2.2

5 4

.21

5.36

1.

42

stde

v=

0.4

0 0.7

9 0.

13

0.3

5 0.

12

0.06

0.1

0 0.

10

0.0

5 0.0

9 0.

12

0.04

RS

D%

=

14.7

3 9.1

7 1.

43

13.5

3 3.7

9 1.

06

1.46

5.

17

2.1

0 2.1

0 2.

22

2.90

56

Mu

i W

o A

1 3.

62

4.4

2 3.

16

ND

2.6

1 1.

95

1.59

N

D

3.85

1.

77

0.74

N

D

A2

5.50

5.

84

3.39

N

D

2.7

9 2.

19

1.60

N

D

4.31

1.

81

0.76

N

D

B1

5.13

4.6

0 3.

36

ND

2.9

0 2.

12

1.59

N

D

4.44

1.

94

0.80

N

D

B2

5.6

7 5.7

6 3.

11

ND

2.

73

2.38

1.

62

ND

4.

52

2.1

0 0.

73

ND

m

ean

=

4.9

8 5.1

6 3.2

5 —

2.7

5 2.

16

1.60

4.

28

1.90

0.

76

——

stde

v=

0.94

0.7

5 0.

14

——

0.

12

0.1

7 0.0

1 —

0.

30

0.1

5 0.

03

RS

D%

=

18.7

8 14

.53

4.24

4.41

8.

09

0.9

1 —

7.01

7.9

5 3.

68

57

Pen

g C

hau

A

1 9.

98

8.32

E

0.82

9.

29

5.69

3.

62

0.65

10

.45

5.42

2.

39

0.2

5

A2

10.9

3 7.1

0 5.

35

1.23

9.

39

5.54

3.6

5 0.

65

10.9

5 5.2

7 2.

55

0.21

B1

13.4

8 5.

66

3.56

1.

83

9.0

5 5.

22

3.6

6 0.

74

11.0

3 5.6

9 2.

64

0.2

4

B2

10.2

6 6.6

1 4.

36

1.89

9.

56

5.38

3.

62

0.46

11

.20

5.61

2.

63

0.23

mean

=

11.1

6 6.9

2 4.

42

1.44

9.

32

5.46

3.

64

0.63

10

.91

5.4

9 2.5

5 0.2

3

stde

v=

1.59

1.

11

0.8

9 0.5

1 0.2

1 0.

20

0.02

0.

12

0.32

0.1

9 0.

11

0.02

RS

D%

=

14.2

7 15

.98

20.2

2 35.6

2 2.2

9 3.

69

0.6

4 18

.53

2.96

3.

46

4.44

7.

93

E =

Peak

s ca

nnot

be

inte

grat

ed a

ccur

atel

y (m

ainl

y at

tribu

ted

to th

e lim

itatio

n of

softw

are f

or i

nteg

ratio

n) o

r Ins

trum

enta

l err

or

ND

= N

ot D

etec

ted

*For

Cen

tral,

the I

II B

1 &

B2

set o

f dat

a (in

ital

ic)

are

not u

sed

in c

alcu

latio

n of

mea

ns s

ince

they

are

con

sider

ed a

s ina

ccur

ate.

Th

e in

accu

racy

may

be

mai

nly

ascr

ibed

to

inac

cuat

e pi

petti

ng o

f vol

ume

of e

xtra

ctio

n so

lven

t an

d/or

loss

of s

olve

nt d

urin

g ex

tract

ion

89

F. R

awda

ta o

f TH

M-F

P (

ig/L

) in

Tapw

ater

of H

K

i I

n I

m

CH

Cb

CH

Cla

Br

CH

ClB

r2

CH

Br3

C

HC

13

CH

Cl2

Br

CH

ClB

r2

CH

Br3

C

HC

b C

HC

l2B

r C

HC

lBr2

C

HB

r3

1 C

en

tral

A1

85.1

3 15

.27

L9

6 N

D

72

.17

16^5

1 3^

07

ND

73.2

7 15

.00

221

ND

~~

A2

87.1

8 13

.64

2.1

1 N

D

71

.59

16.2

5 3.

18

ND

75

.06

15.3

3 2.3

7 N

D

B1

89.7

9 13

.30

1.60

N

D

70.6

6 16

.02

3.11

N

D

72.4

0 14

.83

2.33

N

D

B2

88.5

0 15

.17

2.43

N

D

70.0

2 15

.70

3.1

7 N

D

71.4

9 14

.64

2.23

N

D

mea

n=

87.6

5 14

.34

2.0

3 —

71.1

1 16

.12

3.1

3 —

73

.06

14.9

5 2.2

9 —

stde

v=

1.99

1.

02

0.3

4 —

0.9

6 0.3

5 0.0

5 —

1.52

0.2

9 0.0

8 —

RS

D%

=

2.2

7 7.1

2 17

.03

1.34

2.

15

1.70

2.08

1.

96

3.33

2 S

ai Y

ing

Pu

n A

1 61.1

0 14

.19

3.30

N

D

87.2

0 18

.20

2.9

5 N

D

24.6

3 8.

41

2.84

N

D

A2

61.5

0 14

.45

3.10

N

D

91.2

4 18

.83

2.93

N

D

24.6

6 8.5

5 2.8

7 N

D

B1

60.4

2 14

.64

3.26

N

D

90.2

3 18

.35

3.03

N

D

24.7

0 8.

54

2.8

5 N

D

B2

59.1

7 14

.29

3.21

N

D

83.9

8 17

.07

2.8

8 N

D

24.8

9 8.

26

2.8

1 N

D

mean

=

60.5

5 14.3

9 3.

22

——

88.1

6 18

.11

2.9

5 —

24.7

2 8.

44

2.8

4 —

stdev

=

1.02

0.2

0 0.0

9 —

3.2

7 0.

75

0.06

0.

11

0.14

0.

02

——

RS

D%

=

1.69

1.

40

2.73

3.

71

4.11

2.

10

0.46

1.

60

0.80

3 K

enn

edy

To

wn

A1

61.3

3 14

.38

2.60

N

D

66.4

2 13

.11

2.26

N

D

75.2

9 15

.28

2.8

2 N

D

A2

61.1

4 14

.27

2.74

N

D

64.8

5 13

.07

2.34

N

D

75.7

0 15

.20

2.8

7 N

D

B1

61.3

2 14

.42

2.8

9 N

D

60.9

1 12

.25

2.11

N

D

73.0

7 15

.07

2.64

N

D

B2

61.2

9 14

.48

2.8

5 N

D

60.4

0 12

.29

2.21

N

D

74.1

8 15

.14

2.7

8 N

D

mea

n=

61.2

7 14.3

9 2.7

7 —

63.1

4 12

.68

2.2

3 —

74.5

6 15.1

7 2.7

8 —

stde

v=

0.0

9 0.0

9 0.1

3 —

2.9

5 0.4

7 0.0

9 —

1.

18

0.0

9 0.1

0 —

RS

D%

=

0.14

0.6

0 4.6

6 —

4.6

8 3.

73

4.20

1.59

0.5

8 3.

50

——

4 C

ause

way

Bay

A

1 67

.71

15.2

5 4.4

0 N

D

57.2

6 15

.47

4.22

E

31.6

3 9.

32

2.44

N

D

A2

66.1

6 17

.96

4.4

2 N

D

56.8

1 15

.51

4.43

E

31.8

7 9.

43

2.5

5 N

D

B1

65.8

8 16

.39

4.3

7 N

D

57.9

6 15

.31

4.51

0.2

7 30

.72

9.0

7 2.

40

ND

90

B2

65.9

0 17

.52

5.1

0 N

D

58.2

6 15

.50

4.44

0.3

4 30

.82

9.06

2.4

0 N

D

mea

n=

66.4

1 16

.78

4.5

7 —

57.5

7 15.4

5 4.

40

0.3

1 31

.26

9.22

2

.45

stde

v=

0.8

7 1.

22

0.3

5 —

0.

66

0.1

0 0.

13

0.0

4 0.5

7 0.

18

0.0

7 —

RS

D%

=

1.32

7.

25

7.7

4 —

1.15

0.6

2 2.8

7 14

.44

1.83

1.

98

2.9

8 —

5 W

an

Ch

ai

A1

39.8

1 12

.71

3.94

0.

45

59.7

7 15

.60

3.59

N

D

50.1

3 13

.29

3.1

7 N

D

A2

39.5

2 12

.73

4.0

8 0.3

7 58.8

4 15

.55

3.74

N

D

50.1

5 13

.33

3.32

N

D

B1

40.0

4 12

.63

4.0

0 E

61.8

9 16

.02

3.91

N

D

50.9

8 13

.71

3.3

0 N

D

B2

40.3

9 12

.54

3.8

1 E

60.1

7 15

.61

3.71

N

D

51.8

0 13

.63

3.2

7 N

D

mean

=

39.9

4 12

.65

3.9

6 0.4

1 60.1

7 15

.69

3.74

50

.76

13.4

9 3

.27

stdev

=

0.3

7 0.0

8 0

.11

0.05

1.

28

0.2

2 0.

13

0.80

0.

21

0.0

7 —

RS

D%

=

0.92

0.6

7 2.8

4 12

.86

2.12

1.

39

3.54

1.

57

1.55

2.1

3 —

6 H

ap

py

Val

ley

A1

55.0

8 15

.00

3.9

1 N

D

66.1

2 16

.64

3.40

N

D

63.1

5 16

.62

3.8

4 N

D

A2

55.8

8 15

.53

4.1

0 N

D

70.3

4 18

.13

3.74

N

D

64.0

2 16

.66

3.8

7 N

D

B1

55.2

1 15

.31

3.8

9 N

D

72.5

9 18

.66

3.86

N

D

64.2

9 16

.66

3.8

7 N

D

B2

55.4

9 15

.07

3.9

3 N

D

68.8

2 17

.34

3.70

N

D

64.9

0 16

.88

3.9

6 N

D

mea

n=

55.4

1 15

.22

3.9

6 —

69.4

7 17

.69

3.68

64.0

9 16

.70

3.8

9 —

stde

v=

0.3

5 0.

24

0.1

0 —

2.72

0.8

9 0.

20

0.73

0.

12

0.0

5 —

RS

D%

=

0.64

1.

59

2.4

2 —

3.91

5.

01

5.43

1.

14

0.72

1.

37

——

7 S

iu S

al W

an

A1

57.3

1 20

.66

8.13

N

D

60.2

9 19

.09

4.8

7 N

D

46.6

3 12

.87

2.6

2 N

D

A2

50.1

5 17

.73

6.7

8 N

D

61.5

8 19

.43

5.22

N

D

47.8

7 13

.03

2.6

6 N

D

B1

47

.97

17.6

4 8.

42

ND

62.7

5 19

.45

4.7

7 N

D

45.9

3 11

.83

2.1

9 N

D

B2

48.6

3 18

.76

8.1

3 N

D

61.6

5 19

.10

4.90

N

D

45.5

7 11

.69

2.2

1 N

D

mea

n=

51.0

2 18

.70

7.8

6 —

61.5

7 19

.27

4.94

46

.50

12.3

6 2.4

2 —

stde

v=

4.30

1.

41

0.7

4 —

1.

00

0.2

0 0.

20

1.01

0.6

9 0.2

6 —

RS

D%

=

8.42

7.

52

9.3

7 —

1.63

1.

03

3.97

2.

18

5.59

10

.63

8 T

ai K

oo

Sh

ing

A1

54.1

2 24.5

8 9.8

6 N

D

54.3

5 16

.02

4.14

N

D

69.3

0 19

.36

4.5

1 N

D

A2

58.3

7 21

.32

9.1

7 N

D

54.4

0 16

.09

4.11

N

D

70.4

6 19

.59

4.3

7 N

D

B1

52.7

8 20.7

0 8.9

1 N

D

54.3

7 15

.98

4.14

N

D

69.1

3 18

.96

4.3

4 N

D

B2

54.6

6 22

.71

9.3

0 N

D

53.6

4 15

.91

4.16

N

D

70.3

5 19

.45

4.4

9 N

D

91

mea

n=

54

.98

22.3

3 9

.31

1.07

5

4.1

9 16

.00

4.14

69

.81

19.3

4 4.4

3 —

stdev

=

2.39

1.

72

0.4

0 0.

15

0.3

7 0.0

7 0.

02

——

0.

69

0.2

7 0.0

8 —

R

SD

%=

4.

35

7.7

1 4.3

2 13

.65

0.6

8 0.

46

0.5

1 —

0.99

1.

40

1.86

9 N

ort

h P

oin

t A

1 74

.12

15.6

2 2

.57

ND

70.0

3 15

.57

2.66

N

D

82.4

5 16

.46

2.6

8 N

D

A2

72.5

4 15

.28

2.4

6 N

D

68

.60

15.3

3 2.

91

ND

84

.47

16.7

4 2.7

1 N

D

B1

69.3

6 14

.82

2.2

5 N

D

68.7

3 15

.27

2.73

N

D

81.6

6 16

.46

2.70

N

D

B2

67.5

8 14

.15

2.1

8 N

D

68

.97

15.2

7 2.

60

ND

82

.23

16.4

8 2.7

7 N

D

mean

=

70.9

0 14

.97

2.3

7 —

6

9.0

8 15

.36

2.73

82.7

0 16.5

3 2.7

2 —

stdev

=

2.9

7 0.

64

0.1

8 —

0.6

5 0.

14

0.13

1.

22

0.1

4 0.

04

——

RS

D%

=

4.19

4.2

4 7.6

5 —

0.9

4 0.

93

4.83

1.

48

0.8

5 1.

43

——

10 A

ber

dee

n A

1 70

.46

16.3

0 4

.57

ND

31.4

3 10

.49

3.96

0.5

6 74

.44

19.5

2 4.2

8 N

D

A2

72.5

9 19

.18

3.7

9 N

D

32.0

2 10

.63

4.11

0.7

2 68

.69

18.2

2 3.

98

ND

B

1 73

.34

16.5

3 4.4

0 N

D

33.3

7 10

.91

4.18

0

.65

73.3

7 19

.42

4.2

6 N

D

B2

68.3

3 14

.53

3.2

5 N

D

33.0

6 11

.07

4.34

0.7

4 72

.97

19.2

4 4.1

5 N

D

mean

=

71.1

8 16.6

3 4.0

0 —

32.4

7 10

.78

4.15

0

.67

72.3

7 19

.10

4.1

7 —

stdev

=

2.26

1.

92

0.6

0 —

0.9

0 0.

26

0.16

0.0

8 2.

53

0.6

0 0.

14

——

RS

D%

=

3.17

11

.53

14.9

8 —

2.7

8 2.

41

3.88

12

.06

3.49

3.

13

3.38

11 W

on

g C

hu

k H

an

g A

1 28

.99

8.6

7 2.1

2 N

D

52.2

9 14

.01

2.9

7 N

D

52.3

8 11

.30

2.3

7 N

D

A2

28.7

3 8.5

9 2.0

4 N

D

51.4

5 14

.05

2.88

N

D

52.9

1 11

.47

2.42

N

D

B1

28.2

5 8.

48

2.3

6 N

D

58.3

2 15

.93

3.37

N

D

54.2

6 11

.66

2.4

6 N

D

B2

29.8

5 8.7

5 2.4

3 N

D

52.4

3 14

.31

3.05

N

D

54.9

0 12

.02

2.32

N

D

mean

=

28.9

6 8.6

3 2.2

4 —

53.6

2 14

.58

3.07

53

.61

11.6

1 2.3

9 —

stdev

=

0.6

7 0.1

2 0.1

9 —

3.1

6 0.

91

0.21

1.

17

0.3

1 0.

06

RS

D%

=

2.32

1.

35

8.52

5.9

0 6.

25

6.94

2.

17

2.6

6 2.3

8 —

12 W

ah

Fu

A1

56.2

8 14

.26

2.9

7 N

D

59.8

3 14

.80

3.04

N

D

66.4

8 15

.22

3.00

N

D

A2

55.9

3 14

.46

3.1

0 N

D

59.7

3 14

.73

2.9

9 N

D

66.8

0 15

.05

2.9

6 N

D

B1

55.4

3 14

.34

3.0

1 N

D

64

.29

16.0

5 3.

45

ND

64

.78

14.6

1 2.8

9 N

D

B2

56.1

8 14

.21

3.0

0 N

D

60.9

1 14

.96

3.12

N

D

65.3

7 14

.80

2.9

0 N

D

mea

n=

55

.96

14.3

2 3.0

2 —

61.1

9 15

.14

3.1

5 —

65

.86

14.9

2 2.

94

92

€6

—— n

o

6

2

160

——

so

ZTO

5 I

s

SOI

600.1

—oorl 621

©<s

3oogi

9

0

I

^

«

s

.

^

2

s

y

a

L

»ass

§«ocs;

S

O

N

§ s^.

二 rsoo§

二 d

f

2

s

mONfs;

h

v

o

O

N

§

2

.

<

N

Q

M

<

n

.

$

s

mo\i 终0

^^ §

s

f

s

i

Gss§

crn0000.=2o

3

§ 6

寸 I<s9oI §

2

<

n

T

r

l

-

H

n

o

o

o

§

s)

svslp-r-r

MOMelluos

91

I s

a/i

90<n--

oo

•卜

s.o

so

--

3

r

0

0

2

r

-

L

=%as

—— Moo

yro

961

—— 61.0 寸

1.0

2.0

——

.0

UO

CSI

=Aa>PJS

—— ST

S

W

O

N

I

fl

»991

^

—OOonH

�.二

svcw

Hli

m 寸

rc 0

.

8

1

o

o

f

n

.

O

N

§

s.^

C9.9IoootN卜

m

o

o

o

f

w

0

9

.

9

1

3

g

«

o

o

o

P

Q

m

o

\

<

N

s

K

l

-

H

§

O

N

<

s

o

o

.

c

s

§

S

<

N

0

9

.

9

«

0

.

5

0

0

s

m

v

o

o

d

O

N

2

§

lrzl

C

o

o

v

o

r

-

H

<

N

卜 §

g

r

o

s

m

00.^

srooI

§

51ooovo

一<N<Ncn

§

p

f

s

一 y UCpJOfSl

--

o£fs6I<N6CI -

Mrvi«o<s

O

N

<

N

O

O

O

O

H

2

o«orn"n0

\0Q2

—— yxro

g£.o

yyi

—— Aoo^.0

s —

so

o

t

n

o

9

9

<

N

»

>

1

—— oovo

一0000\

»©«sij

——

600T

vog.5

卜 Ni«s

P

N

2

c

w

l

-

H

a

v

u

s

l

-

f

O

O

N

§

<

o

l

-

4

c

n

0

§

900.3

怂o.p

Nm

GN

o

.

r

n

^

^

O

O

O

N

O

O

O

O

§

2

.

r

n

^

^

Gs

§

£00<N»00.

二00,3

s

m«ol

—t.m «0.5:§

s

.

f

n

6

«

O

O

8

§

«

n

O

N

<

N

v

o

v

o

l

H

!r>5L

s

PM

一ts.foSVOI-H9 卜s:§ se

r

-

l

T

r

-

§

<

S

6

<

N

O

N

.

9

1

5

00

一 JiiCAV

H

— 66.

卜vo

一w-iooo __

s.^

卜 8

<

n

k

i ―

Ui-L C6.9

6

卜.1 =

%asf^

—— /,00

6

1

0

6

9

0

9

0

0

«

o

r

o

so

——

no

3.0

SI =A3pts

——

Lrr.l

nsooo

s

Ls.ss —

©OO.H

0000^n^

"ass

m 口.

v

o

t

s

.

�ooooo§

s Srsl-H

^^

§

�ON一

寸400oONvoln<SPQ

m

«

0

.

0

0

0

0

2

O

N

r

f

o

o

o

§

ru?.loor-H.fsI-H§ 寸

9

;

2

o

<

r

t

-

O

N

g 3

PM

o

t

N

.

二 s-s

§

0

0

9

<

N

s

(

N

r

-

(

0

<

N

w

s

«

n

§

o

g

.

H

2

0

0

^

^

3

m 一

sd

$

0

0

0

§

口<N<N00」1

—I

们vo

§

<ng.6

6.8s

5

S

S

H

C

U

M

s

H

n

—— O

Z

/

t

o

o

o

;

f

n

T

t

f

t

I

svo

s.

00

卜ooovoono

x

OQS

—— sor-ro

60

——

iro

so

n

f

s

v

o

o

o

^

.

0

8£o=Aopts

RS

D%

=

2.46

6.9

4 16

.74

——

1.

55

1.14

1.

03

——

1.

67

5.81

9.2

6 —

17 T

ai K

ok

Tsu

i A

1 82

.88

14.0

1 1.

70

ND

80.4

9 17

.34

3.22

N

D

74.5

3 15

.53

2.3

0 N

D

A2

82.3

4 11

.80

1.98

N

D

80.6

8 17

.16

3.36

N

D

73.8

4 15

.32

2.0

3 N

D

B1

80.3

3 11

.67

2.4

4 N

D

80.3

5 17

.10

3.30

N

D

77.2

6 16

.23

2.1

8 N

D

B2

79.8

3 12

.10

2.0

5 N

D

80.7

9 17

.16

3.25

N

D

76.4

4 15

.76

2.1

7 N

D

mean

=

81.3

4 12

.40

2.0

4 —

80.5

8 17

.19

3.28

75

.52

15.7

1 2.1

7 —

stdev

=

1.49

1.

09

0.3

1 —

0.1

9 0.

10

0.06

1.60

0.3

9 0.1

1 —

R

SD

%=

1.

84

8.82

14

.95

0.2

4 0.

60

1.77

2.

12

2.4

7 5.

06

18 P

rin

ce E

dw

ard

A

1 78

.34

16.9

6 2.5

1 N

D

103.

84

19.4

0 3.

19

ND

76

.44

14.1

5 2.1

6 N

D

A2

78.7

0 16

.97

2.5

8 N

D

105.

22

19.7

6 3.

22

ND

77

.84

14.3

6 2.2

6 N

D

B1

78.3

4 17

.72

2.5

9 N

D

109.

43

20.9

6 3.

33

ND

74

.68

13.8

1 2.2

0 N

D

B2

79.7

2 17

.03

2.7

2 N

D

110.

38

20.8

2 3.

36

ND

74

.76

13.6

6 2.0

1 N

D

mea

n=

78

.78

17.1

7 2.6

0 —

107.

22

20.2

4 3.

27

75.9

3 13

.99

2.1

6 —

stdev

=

0.65

0.3

7 0.0

9 —

3.1

7 0.7

7 0.

08

1.51

0.

32

0.1

1 —

RS

D%

=

0.83

2.

13

3.32

2.9

6 3.

81

2.55

1.

99

2.2

8 4

.87

19 S

ham

Sh

ui

Po

A1

78.0

0 12

.93

2.7

1 N

D

81.6

1 10

.36

1.06

N

D

65.7

5 14

.29

2.1

9 N

D

A2

77.2

6 13

.41

3.0

9 N

D

82.4

8 10

.45

0.98

N

D

66.3

9 14

.48

2.1

3 N

D

B1

76.2

7 15

.21

2.7

7 N

D

83.0

1 10

.74

1.04

N

D

66.5

0 14

.51

2.2

2 N

D

B2

75.1

5 14

.60

2.7

3 N

D

81.4

8 10

.29

0.98

N

D

65.8

5 14

.40

2.1

7 N

D

mean

=

76.6

7 14

.04

2.8

3 —

82.1

4 10

.46

1.01

66

.12

14.4

2 2.1

8 —

stde

v=

1.24

1.

05

0.1

8 —

0.7

3 0.

20

0.04

0.

38

0.1

0 0.0

4 —

RS

D%

=

1.61

7.4

9 6.2

2 —

0.8

8 1.

91

4.16

0.

57

0.6

9 1.

66

20 C

heu

ng

Sh

a W

an

A1

37.8

0 8.

52

1.82

N

D

57.7

3 12

.09

2.14

N

D

39.1

9 7.0

8 0.9

1 N

D

A2

37.3

0 8.

41

1.75

N

D

59.8

4 12

.32

2.0

7 N

D

39.5

6 7.0

5 0.9

5 N

D

B1

36.1

8 8.

35

1.80

N

D

59.1

8 12

.48

2.20

N

D

38.0

0 6.8

0 0.9

2 N

D

B2

36.1

0 8.

10

1.96

N

D

59.7

2 12

.57

2.34

N

D

38.6

4 7.

01

0.9

1 N

D

mean

=

36.8

4 8.3

5 1.8

3 —

59.1

2 12

.36

2.19

38

.85

6.9

9 0.9

2 —

stde

v=

0.84

0.1

8 0

.09

——

0

.97

0.21

0.

12

0.68

0.

13

0.0

2 —

RS

D%

=

2.28

2.

16

5.0

7 —

1.64

1.

69

5.27

1.75

1.

83

1.97

94

21

Sh

ek

Kip

Me

i A

1 80

.11

16.9

4 2.6

5 N

D

101.

52

19.2

3 2.8

9 N

D

62.3

9 7.2

6 0.5

8 N

D

A2

81.2

9 17

.63

2.6

9 N

D

85.6

8 16

.46

2.45

N

D

62.4

8 7.

22

0^63

N

D

Bl

84.2

0 17

.68

2.7

9 N

D

86.8

7 16

.63

2.5

3 N

D

66.9

7 7.

72

0.63

N

D

B2

84.5

7 17

.84

2.7

9 N

D

87.4

6 16

.77

2.56

N

D

68.1

5 7.7

7 0

.67

ND

m

ean

=

82.5

4 17

.52

2.7

3 —

90.3

8 17

.27

2.6

1 —

65

.00

7.4

9 0.6

3 —

stdev

=

2.1

8 0.4

0 0.0

7 —

7.4

6 1.

31

0.20

2.9

9 0.2

9 0.

03

RS

D%

=

2.65

2.

26

2.6

4 —

8.

26

7.5

8 7.4

9 —

4.61

3.

93

5.36

22 K

ow

loo

n C

ity

A1

82.1

8 12

.08

2.4

1 N

D

74.3

1 16

.24

2.32

N

D

77.8

0 13

.97

2.16

N

D

A2

82.2

3 14

.38

3.61

N

D

66.5

0 14

.69

2.12

N

D

77.8

3 13

.98

2.06

N

D

Bl

80.6

3 12

.67

2.5

4 N

D

63.3

3 13

.89

1.99

N

D

79.0

1 14

.16

2.1

0 N

D

B2

79.2

3 13

.70

2.5

6 N

D

68.1

0 14

.73

2.2

7 N

D

78.7

8 14

.35

2.1

7 N

D

mea

n=

81.0

7 13

.21

2.7

8 —

68.0

6 14

.89

2.1

7 —

78.3

5 14

.12

2.1

2 —

stde

v=

1.43

1.

03

0.5

6 —

4.6

1 0.9

8 0.

15

——

0.

63

0.1

8 0.0

5 —

RS

D%

=

1.77

7.

80

20.1

3 —

6.7

8 6.5

9 6.8

7 —

0.81

1.

28

2.4

7 —

23

Ko

wlo

on

To

ng

A1

69.4

1 13

.02

2.0

4 N

D

105.

84

20.6

7 3.

05

ND

52

.14

10.4

9 1.

34

ND

A

2 69.4

6 13

.20

1.96

N

D

104.

80

21.0

8 3.

25

ND

52

.40

10.6

8 1.

34

ND

B

l 66.1

4 12

.36

1.81

N

D

102.

71

19.9

7 3.

07

ND

53

.54

10.6

0 1.

46

ND

B

2 64

.24

12.1

5 1.

95

ND

10

0.23

19

.50

3.00

N

D

55.6

7 11

.06

1.44

N

D

mea

n=

67.3

1 12

.68

1.94

10

3.39

20

.30

3.0

9 —

53

.44

10.7

1 1.

39

stde

v=

2.5

7 0.5

0 0.1

0 —

2.4

8 0.

71

0.11

1.

61

0.2

5 0.0

6 —

RS

D%

=

3.82

3.

96

4.9

9 —

2.4

0 3.4

7 3.

44

3.01

2.

31

4.6

0 —

24 T

oK

wa

Wa

n A

1 77

.14

17.3

8 2.8

0 N

D

90.3

0 18

.45

2.76

N

D

85.5

3 14

.94

2.4

8 N

D

A2

78.4

6 17

.82

E N

D

89.3

7 18

.03

2.54

N

D

84.7

5 15

.16

2.4

7 N

D

Bl

75.8

8 17

.45

2.7

5 N

D

93.3

4 18

.95

2.76

N

D

83.1

8 14

.66

2.43

N

D

B2

77.1

1 17

.50

E N

D

91.1

5 18

.46

2.64

N

D

82.6

4 14

.51

2.3

9 N

D

mea

n=

77.1

5 17

.54

2.7

8 —

91.0

4 18

.47

2.68

84.0

2 14

.81

2.44

stde

v=

1.06

0.1

9 0.0

4 —

1.70

0.3

8 0.

11

1.34

0.2

9 0.0

4 —

RS

D%

=

1.37

1.

11

1.32

1.87

2.0

5 3.

96

——

1.

60

1.95

1.

76

——

95

25

Lo

kF

u A

1 77.4

5 12

.42

2.0

6 N

D

55.7

1 12

.50

1.96

N

D

94.7

0 15

.86

2.4

8 N

D

A2

75.6

2 13

.55

1.93

N

D

56.1

8 12

.51

2.04

N

D

94.7

0 16

.06

2.3

6 N

D

B1

79.3

5 14

.24

1.31

N

D

57.8

6 13

.09

2,16

N

D

92.5

9 15

.58

2.4

4 N

D

B2

75.7

5 15

.67

1.62

N

D

57.4

7 12

.79

2.25

N

D

93.5

6 15

.71

2.5

5 N

D

mean

=

77.0

4 13

.97

1.73

56

.81

12.7

2 2.

10

——

93

.89

15.8

0 2.4

6 —

stdev

=

1.75

1.

36

0.33

1.02

0.2

8 0.

13

1.01

0.

21

0.0

8 —

RS

D%

=

2.2

7 9.

74

19.3

2 —

1.80

2.2

1 6.

02

1.08

1.

30

3.2

1 —

26 W

on

g T

ai S

in

A1

75.4

0 16

.18

2.5

1 N

D

59.1

5 13

.62

2.41

N

D

81.3

4 17

.32

2.9

7 N

D

A2

75.7

3 16

.19

2.66

N

D

60.3

9 13

.82

2.40

N

D

82.5

9 17

.46

3.15

N

D

B1

75.1

3 16

.45

2.74

N

D

59.3

4 13

.55

2.38

N

D

81.0

6 17

.28

3.06

N

D

B2

76.6

0 16

.67

2.62

N

D

60.1

1 13

.59

2.36

N

D

82.4

2 17

.77

3.0

8 N

D

mean

=

75.7

1 16

.37

2.6

3 —

59.7

5 13

.64

2.39

81.8

5 17

.46

3.0

7 —

stde

v=

0.64

0.

24

0.1

0 —

0.6

0 0.1

2 0.

02

0.77

0.

22

0.0

7 —

RS

D%

=

0.8

4 1.

45

3.78

1.00

0.

88

1.04

0.

94

1.27

2.

33

27

Choi

Hu

ng

A1

69.2

8 17

.41

3.2

9 N

D

57.2

5 12

.84

2.21

N

D

86.9

9 18

.50

3.40

N

D

A2

69.5

8 17

.32

3.2

7 N

D

58.3

5 13

.25

2.31

N

D

88.7

2 18

.70

3.4

5 N

D

B1

72.8

0 17

.20

3.03

N

D

57.2

8 13

.12

2.26

N

D

87.0

4 18

.32

3.3

7 N

D

B2

73.5

2 17

.34

3.1

5 N

D

58.9

6 13

.37

2.30

N

D

87.9

1 18

.57

3.42

N

D

mea

n=

71.2

9 17

.32

3.1

8 —

57.9

6 13

.14

2.27

87

.66

18.5

2 3.4

1 —

stde

v=

2.1

7 0.0

9 0.1

2 —

0.

84

0.23

0.

05

——

0.

82

0.16

0.0

3 —

RS

D%

=

3.0

5 0.

51

3.7

7 —

1.

45

1.71

2.

05

0.94

0.

86

0.9

4 —

28

Kw

un

To

ng

A1

44.6

9 20.0

6 7.

72

ND

42.7

4 14

.83

4.52

0.

34

49.2

7 16

.50

4.22

N

D

A2

44.2

2 17

.46

8.10

N

D

42.9

8 14

.92

4.65

E

50.6

3 16

.75

4.46

N

D

B1

44.4

1 19

.76

8.04

N

D

41.5

5 14

.33

4.40

E

48.2

2 15

.14

3.8

8 N

D

B2

46.4

1 19

.18

8.1

0 N

D

42.0

0 14

.52

4.36

0.

22

49.0

8 15

.58

3.91

N

D

mea

n=

44.9

3 19

.12

7.9

9 —

42.3

2 14

.65

4.48

0.2

8 49.3

0 15

.99

4.1

2 —

stde

v=

1.00

1.

16

0.1

8 —

0.

66

0.2

7 0.

13

0.0

8 1.

00

0.76

0

.27

——

RS

D%

=

2.23

6.

09

2.2

9 —

1.56

1.

84

2.94

29.7

3 2.

02

4.7

5 6.6

8 —

96

29

Ko

wlo

on

Bay

A

1 75.5

5 16

.47

2.5

7 N

D

63.8

3 10

.20

1.40

N

D

51.5

4 10

.30

1.28

N

D

A2

75.6

4 16

.63

2.60

N

D

64

.47

10.3

5 1.

37

ND

53

.63

10.9

6 1.

27

ND

B

1 71.6

7 15

.81

2.4

4 N

D

64

.77

10.3

4 1.

40

ND

53

.14

10.5

3 1.

30

ND

B

2 73.1

3 16

.21

2.6

4 N

D

65.0

5 10

.37

1.39

N

D

54.1

1 10

.66

1.30

N

D

mean

=

74.0

0 16

.28

2.56

64

.53

10.3

1 1.

39

53.1

0 10.6

1 1.

29

stde

v=

1.94

0.3

6 0.0

9 —

0.5

2 0.

08

0.0

1 —

1.11

0

.27

0.01

RS

D%

=

2.62

2.2

1 3.

51

0.8

1 0.7

7 1.

03

2.10

2.5

8 0.

89

30

Lam

Tin

A

1 55

.68

17.2

0 5.

66

0.6

4 6

1.2

7 19

.45

4.90

N

D

64.2

9 15

.22

3.54

N

D

A2

55.0

1 17

.49

5.80

0.3

9 61.4

5 19

.57

5.01

N

D

64.2

4 15

.13

3.54

N

D

B1

55.7

9 17

.96

5.9

7 0.

53

60.9

0 19

.16

4.72

N

D

61.3

8 14

.76

3.4

7 N

D

B2

55.7

7 18

.06

6.2

5 0.5

5 61.6

4 19

.39

4.8

1 N

D

61.9

0 14

.69

3.55

N

D

mea

n=

55

.56

17.6

8 5.9

2 0。

53

61.3

2 19

.39

4.86

62.9

5 14

.95

3.5

3 —

stde

v=

0.3

7 0.4

0 0.

26

0.11

0.

32

0.1

7 0.

13

——

1.

53

0.2

7 0.

04

——

RS

D%

=

0.6

7 2.2

8 4.

33

19.9

6 0.5

1 0.

89

2.5

8 —

2.

43

1.78

1.

02

——

31

Kw

ai C

hu

ng

A1

64.2

0 10

.56

3.39

N

D

71.2

9 11

.00

1.32

N

D

102.

41

13.4

8 1.

78

ND

A2

65

.82

13.9

0 3.

08

ND

71.4

4 10

.90

1.64

N

D

101.

94

13.4

5 1.

75

ND

B

1 61

.32

10.7

6 3.

00

ND

74.3

7 11

.59

1.50

N

D

100.

40

12.9

3 1.

71

ND

B2

64.1

5 13

.08

2.7

0 N

D

74.4

6 11

.26

1.86

N

D

102.

25

13.5

7 1.

81

ND

m

ean

=

63.8

7 12

.07

3.04

72.8

9 11

.19

1.58

101.

75

13.3

6 1,

76

——

stde

v=

1.87

1.

67

0.2

8 —

1.

76

0.31

0.

23

0.92

0.2

9 0.

04

RS

D%

=

2.92

13

.83

9.35

2.42

2.

75

14.4

3 —

0.

91

2.1

5 2.

40

32

Tsi

ng

Yi

A1

84.0

9 13

.15

2.02

N

D

110.

83

13.0

0 1.

49

ND

97

.27

14.8

2 1.

76

ND

A2

88

.04

11.6

9 2.2

7 N

D

111.

03

13.2

2 1.

39

ND

97

.24

14.7

7 1.

71

ND

B

1 91

.74

13.8

6 1.

54

ND

10

6.13

12

.44

1.33

N

D

95.0

0 14

.53

1.66

N

D

B2

90.2

5 13

.48

2.2

0 N

D

104.

66

12.3

0 1.

29

ND

94

.73

14.5

4 1.

64

ND

m

ean

=

88.5

3 13

.05

2.0

1 —

10

8.16

12

.74

1.37

96

.06

14.6

7 1.

69

stde

v=

3.33

0.9

5 0.3

3 —

3.2

5 0.

44

0.0

9 —

1.

38

0.1

5 0.0

5 —

RS

D%

=

3.76

7.2

8 16

.54

——

3.

01

3.46

6.3

6 —

1.44

1.

02

3.14

33

Ta

iWo

Ha

u A

1 57.3

9 8.

12

1.38

N

D

77.8

3 11

.50

1.37

N

D

79.3

5 11

.87

1.82

N

D

A2

57.4

3 8.

34

1.28

N

D

64.7

3 9.

70

1.12

N

D

78.4

2 11

.79

1.74

N

D

97

B1

58.2

7 8.4

8 1.

42

ND

67.5

7 10

.02

1.33

N

D

76.5

8 11

.65

1.85

N

D

B2

58.2

8 8.

43

1.49

N

D

64.8

6 9.

66

1.21

N

D

76.6

1 11

.53

1.72

N

D

mea

n=

57.8

4 8.3

4 1.

39

——

68.7

5 10

.22

1.26

77

.74

11.7

1 1.

78

——

stde

v=

0.5

0 0.1

6 0.0

9 —

6.2

0 0.8

7 0.1

1 —

1.38

0.1

5 0.

06

RS

D%

=

0.8

7 1.

88

6.3

7 —

9.0

1 8.

51

9.03

1.

77

1.30

3.

54

——

34

Tsu

en W

an

A1

79.5

9 10

.67

2.3

0 N

D

125.3

7 14

.68

1.77

N

D

93.7

5 13

.86

1.69

N

D

A2

81.4

1 11

.92

1.60

N

D

123.

33

14.5

3 1.

84

ND

94

.70

14.0

5 1.

75

ND

B

1 84

.60

10.8

6 2.

22

ND

12

1.24

15

.17

1.74

N

D

97.2

2 14

.11

1.74

N

D

B2

84.4

3 12

.13

1.80

N

D

122.

67

15.3

0 1.

85

ND

97

.20

14.3

4 1.

79

ND

m

ean

=

82.5

1 11

.39

1.98

123.1

5 14

.92

1.80

95

.72

14.0

9 1.

74

stde

v=

2.4

4 0.7

4 0.

33

——

1.

71

0.38

0.0

5 —

1.

77

0.2

0 0.

04

RS

D%

=

2.9

5 6.4

8 16

.87

1.39

2.

52

3.01

1.84

1.

40

2.30

35

Sh

am T

sen

g A

1 69.3

1 9.

10

1.09

N

D

64.8

9 9.

15

1.24

N

D

53.7

0 7.

82

1.04

N

D

A2

64.8

9 8.4

7 1.

09

ND

66.3

0 9.

42

1.25

N

D

55.0

7 8.1

8.

1.04

N

D

B1

71.1

2 9.

28

1.29

N

D

64.1

6 9.

11

1.29

N

D

55.9

1 8.4

9 1.

12

ND

B

2 68.4

7 8.

96

1.23

N

D

65.0

8 9.

24

1.22

N

D

56.6

7 8.

45

1.15

N

D

mea

n=

68.4

5 8.9

5 1.

18

——

65.1

1 9.2

3 1.

25

55.3

4 8.2

3 1.

09

——

stde

v=

2.62

0.3

5 0.

10

0.8

8 0.

14

0.03

1.27

0.3

1 0.

05

——

RS

D%

=

3.83

3.9

0 8.

63

——

1.

36

1.51

2.

20

2.30

3.

71

5.04

36

Riv

era

Gard

en

s A

1 11

4.73

14

.47

1.59

N

D

144.

27

17.3

0 2.

03

ND

11

2.27

16

.02

2.11

N

D

A2

116.

03

14.6

1 E

ND

11

6.60

14

.07

1.53

N

D

113.

64

16.3

7 2.0

9 N

D

B1

114.

09

14.2

2 1.

43

ND

97.4

8 12

.88

1.47

N

D

111.

11

15.7

7 2

.07

ND

B

2 11

4.30

14

.78

E N

D

95.4

7 12

.64

1.44

N

D

112.

76

16.1

7 2.

01

ND

m

ean

=

114.

79

14.5

2 1.

51

113.4

5 14

.22

1.62

11

2.44

16

.08

2.0

7 —

stde

v=

0.8

7 0.2

4 0.1

1 —

22.6

5 2.

15

0.2

8 —

1.

05

0.2

6 0.

04

——

RS

D%

=

0.76

1.

64

7.40

19

.96

15.0

8 17

.13

0.94

1.

59

2.12

37

Tu

en

Mu

n A

1 63.5

5 8.9

7 1.

35

ND

80.7

5 10

.95

1.44

N

D

83.4

9 12

.45

1.82

N

D

(Siu

Ho

ng

Ct)

A

2 63

.32

8.91

1.

26

ND

83.0

8 11

.13

1.51

N

D

83.4

5 12

.51

1.72

N

D

B1

64.2

1 9.

13

1.36

N

D

81.8

7 11

.76

1.64

N

D

85.1

9 12

.42

1.73

N

D

B2

63.4

2 8.

86

1.38

N

D

84.2

4 11

.98

1.63

N

D

87.4

9 12

.84

1.72

N

D

98

mea

n=

63

.62

8.9

7 1.

34

——

82.4

9 11

.45

1.56

84.9

1 12.5

5 1.

75

——

stde

v=

0.40

0.1

2 0.0

5 —

1.

5 1

0.49

0.1

0 —

1.

90

0.1

9 0.

05

——

RS

D%

=

0.63

1.

30

4.02

1.83

4.

32

6.1

4 —

2.

24

1.53

2.

81

——

38

Tu

en

Mu

n A

1 58.6

9 8.0

7 1.

24

ND

58.1

0 6.

89

1.47

N

D

80.1

7 11.5

7 1.

53

ND

(S

am S

hin

g E

st)

A2

58.1

4 7.8

0 1.

13

ND

58.1

9 6.

94

1.48

N

D

79.4

7 11.3

7 1.

54

ND

B

1 60.0

2 8.

56

1.27

N

D

58.1

0 6.

81

1.36

N

D

84.0

6 12

.03

1.57

N

D

B2

59.9

0 8.

53

1.17

N

D

58.0

4 6.

87

1.36

N

D

83.8

2 12

.08

1.60

N

D

mea

n=

59.1

9 8.2

4 1.

20

——

58.1

1 6.

88

1.42

81

.88

11.7

6 1.

56

——

stde

v=

0.92

0

.37

0.06

0.0

6 0.

05

0.0

7 —

2.

40

0.3

5 0.

03

RS

D%

=

1.56

4.5

0 5.

14

——

0.1

1 0.

75

4.6

6 —

2.93

2.9

6 1.

96

39

Tu

en

Mu

n A

1 64.4

1 9.

36

1.48

N

D

73.4

4 10

.41

1.18

N

D

86.2

1 12

.51

1.66

N

D

(Ch

ee L

ok

Gd

ns)

A

2 64

.56

9.06

1.

33

ND

70.0

1 10

.15

1.15

N

D

85.1

2 12

.34

1.57

N

D

B1

66.2

9 9.

42

1.39

N

D

72.6

4 10

.23

1.11

N

D

87.2

2 12

.63

1.59

N

D

B2

70.0

6 9.

92

1.45

N

D

71.4

4 10

.06

1.10

N

D

82.4

0 11

.90

1.50

N

D

mea

n=

66.3

3 9.4

4 1.

41

——

71.8

9 10

.21

1.14

85.2

4 12

.34

1.58

stde

v=

2.63

0.3

6 0.0

7 —

1.

50

0.15

0.0

4 —

2.08

0.

32

0.07

RS

D%

=

3.96

3.7

9 4.

73

——

2.0

8 1.

45

3.43

2.

44

2.5

9 4.

36

——

40

Kam

Tin

A

1 94

.36

12.5

8 1.

63

ND

10

7.01

11

.21

1.04

N

D

74.7

7 15

.77

2.46

N

D

A2

97.0

9 12

.54

1.21

N

D

109.

05

11.5

1 1.

02

ND

76

.24

16.0

1 2.

55

ND

B

1 10

1.41

11

.07

1.58

N

D

103.

83

10.8

3 0.9

9 N

D

74.8

1 15

.47

2.41

N

D

B2

101.

87

11.2

2 1.

67

ND

10

6.26

10

.89

1.07

N

D

74.0

6 15

.26

2.3

7 N

D

mea

n=

98

.68

11.8

5 1.

52

——

10

6.54

11

.11

1.03

74

.97

15.6

3 2.4

5 —

stde

v=

3.60

0.8

2 0.

21

2.1

6 0.

31

0.0

3 —

0.92

0.3

3 0.

07

RS

D%

=

3.65

6.9

0 13

.97

——

2.

03

2.82

3.1

8 —

1.

22

2.1

2 3.

06

41

Fai

rvie

w P

ark

A

1 88

.82

8.4

9 1.

70

ND

11

9.02

13

.48

1.28

N

D

87.6

0 14

.18

1.45

N

D

A2

84.0

0 8.9

7 1.

58

ND

11

7.21

13

.09

1.30

N

D

87.3

9 14.1

7 1.

47

ND

B

1 86

.36

11.0

6 1.

08

ND

12

2.97

13

.81

1.22

N

D

86.0

0 13

.81

1.40

N

D

B2

85.6

2 10

.60

1.46

N

D

120.

65

13.5

2 1.

20

ND

83

.11

13.4

4 1.

55

ND

m

ean

=

86.2

0 9.7

8 1.

45

119.

96

13.4

8 1.2

5 —

86.0

2 13.9

0 1.

47

stde

v=

2.00

1.

24

0.2

7 —

2.4

5 0.

30

0.0

5 —

2.0

7 0

.35

0.06

99

RS

D%

=

2.32

12

.72

18.5

0 —

2.04

2.

20

3.70

2.40

2.

53

4.02

42

Yu

en L

ong

A1

100.

60

10.7

4 1.

15

ND

76

.36

10.5

0 1.

59

ND

60

.31

10.0

0 1.

13

ND

A

2 10

2.17

10

.94

1.23

N

D

75.7

9 10

.47

1.42

N

D

62.0

6 9.

99

1.18

N

D

B1

102.

81

10.8

6 1.

19

ND

76

.12

10.6

8 1.

40

ND

62

.13

10.0

4 1.

14

ND

B

2 10

4.13

10

.96

1.28

N

D

75.5

8 10

.54

1.35

N

D

63.1

9 10

.28

1.11

N

D

mea

n=

102.4

3 10

.87

1.21

75

.96

10.5

5 1.

44

61.9

2 10

.08

1.14

st

dev=

1.

47

0.10

0.

06

0.34

0.

09

0.10

1.

19

0.13

0.

03

——

R

SD

%=

1.

43

0.91

4.

65

——

0.

45

0.89

7.

28

1.93

1.

32

2.30

43

Fan

lin

g A

1 13

3.48

13

.38

2.27

N

D

74.2

0 10

.15

E N

D

87.9

3 12

.51

1.26

N

D

A2

133.

76

12.9

8 2.

21

ND

74

.58

10.2

4 E

ND

89

.42

12.5

6 1.

45

ND

B

1 14

0.79

14

.16

2.21

N

D

76.5

1 10

.39

1.28

N

D

90.8

3 12

.78

1.34

N

D

B2

139.

99

14.4

0 2.

35

ND

77

.04

10.3

2 0.

88

ND

92

.36

12.9

8 1.

36

ND

m

ean

=

137.

00

13.7

3 2.

26

75.5

8 10

.28

1.08

90.1

3 12

.71

1.35

stde

v=

3.92

0.

66

0.0

7 —

1.40

0.

10

0.28

1.90

0.

21.

0.08

R

SD

%=

2.

86

4.82

2.9

7 —

1.

86

0.98

25

.99

——

2.

11

1.68

5.

59

——

44

Sh

eun

g S

hui

A1

140.

08

17.3

9 1.

89

ND

70

.69

10.1

4 0.9

7 N

D

87.7

3 12

.25

1.26

N

D

A2

140.

62

17.4

7 1.

68

ND

71

.54

10.1

8 0.

89

ND

89

.57

12.4

0 1.

34

ND

B

1 13

1.70

13

.45

1.24

N

D

70.9

6 10

.02

0.91

N

D

89.3

2 12

.43

1.24

N

D

B2

131.

92

13.6

9 1.

36

ND

71

.54

9.93

0.

93

ND

90

.36

12.5

6 1.

27

ND

m

ean

=

136.

08

15.5

0 1.

54

71.1

8 10

.07

0.93

89.2

5 12

.41

1.28

stde

v=

4.93

2.

23

0.29

0.

42

0.11

0.

03

1.10

0.

13

0.04

R

SD

%=

3.

63

14.3

8 19

.09

——

0.

60

1.13

3.

70

1.24

1.

03

3.49

45

Lo

Wo

A1

102.

94

12.8

1 1.

09

ND

12

6.00

15

.05

1.37

N

D

88.1

6 11

.42

1.25

N

D

A2

105.

01

13.2

2 1.

07

ND

12

6.27

15

.05

1.39

N

D

87.9

8 11

.34

1.26

N

D

B1

102.

25

12.5

0 0.9

9 N

D

123.

15

14.6

8 1.

31

ND

85

.73

10.9

0 1.

21

ND

B

2 10

3.60

12

.71

1.14

N

D

122.

30

14.8

2 1.

34

ND

85

.93

10.9

4 1.

30

ND

m

ean二

10

3.45

12

.81

1.08

12

4.43

14

.90

1.35

86

.95

11.1

5 1.

25

——

st

dev=

1.

17

0.31

0.

06

——

2.

00

0.18

0.

04

——

1.

30

0.2

7 0.

03

——

RS

D%

=

1.13

2.3

8 5.

69

1.61

1.

23

2.71

1.

49

2.41

2.7

7 —

100

46

Ta

iPo

A1

156.

34

15.0

4 1.

64

ND

97

.62

13.2

1 1.

62

ND

78.7

5 11

.28

1.15

N

D

(Fu

Sh

in E

st)

A2

158.

95

15.1

6 1.

65

ND

97

.08

13.2

2 1.

54

ND

78.3

6 11

.20

1.16

N

D

B1

158.

38

15.3

0 1.

75

ND

10

1.93

13

.65

1.64

N

D

77.1

3 11

.11

1.13

N

D

B2

158.

38

15.1

0 1.

76

ND

10

3.02

13

.96

1.67

N

D

79.0

4 11

.35

1.13

N

D

mea

n=

158.0

2 15

.15

1.70

99.9

1 13

.51

1.62

78.3

2 11.2

4 1.

14

stde

v=

1.15

0.

11

0.06

3.00

0.

36

0.0

6 —

0.

84

0.1

1 0.

01

——

R

SD

%=

0.

73

0.72

3.

79

——

3.

00

2.6

8 3.

50

1.08

0.9

4 1.

17

——

47

Ta

iPo

A1

110.

22

13.7

6 1.

84

ND

14

0.73

17

.64

2.0

2 N

D

101.

84

12.5

0 1.

47

ND

(K

wo

ng

Fu

k E

st)

A2

106.

34

13.3

4 1.

34

ND

14

3.64

17

.96

2.3

2 N

D

102.

87

12.6

1 1.

47

ND

B

1 10

8.48

13

.36

1.46

N

D

139.

38

17.7

1 2.0

2 N

D

104.

69

12.9

5 1.

58

ND

B

2 10

9.36

13

.39

1.45

N

D

141.

03

17.8

7 2

.21

ND

10

3.82

12

.81

1.50

N

D

mea

n=

108.6

0 13

.46

1.52

141.

19

17.7

9 2.1

4 —

103.3

1 12

.72

1.51

stde

v=

1.67

0.2

0 0.

22

1.78

0.

14

0.1

5 —

1.23

0.2

0 0.

05

——

RS

D%

=

1.53

1.

48

14.3

0 —

1.

26

0.81

6.7

7 —

1.

19

1.59

3.

48

48

Tai

Wo

A1

112.

96

12.5

4 1.

18

ND

14

3.50

16

.02

1.57

N

D

95.3

5 12

.04

1.33

N

D

A2

115.

17

12.5

9 1.

35

ND

14

2.91

16

.07

1.61

N

D

95.6

7 11

.89

1.36

N

D

B1

114.

50

12.7

1 1.

15

ND

14

1.49

16

.20

1.66

N

D

95.1

4 12

.27

1.48

N

D

B2

112.

83

12.4

5 1.

24

ND

14

1.51

16

.10

1.63

N

D

96.5

6 12

.56

1.53

N

D

mea

n=

11

3.86

12

.57

1.23

142.

35

16.0

9 1.

62

95.6

8 12

.19

1.42

stde

v=

1.15

0.

11

0.0

9 —

1.01

0.0

8 0.0

4 —

0.6

3 0.2

9 0.0

9 —

RS

D%

=

1.01

0.8

7 7.

20

0.71

0.4

7 2.3

4 —

0.6

6 2.3

8 6.

59

49

Sh

atin

A

1 84

.53

14.0

6 2.3

3 N

D

70.1

6 14

.18

2.2

1 N

D

75.2

3 13

.61

2.23

N

D

A2

87.0

5 13

.23

2.6

1 N

D

71.8

4 14

.58

2.22

N

D

76.2

4 13

.66

2.19

N

D

B1

81.0

1 13

.36

2.0

8 N

D

70.1

7 14

.44

2.3

4 N

D

73

.69

13.3

4 2.

16

ND

B

2 •

83.5

4 13

.11

2.1

0 N

D

71.3

4 14

.83

2.2

6 N

D

74.0

0 13

.36

2.13

N

D

mea

n=

84.0

3 13

.44

2.2

8 —

70.8

8 14

.51

2.2

5 —

74

.79

13.4

9 2.

18

stde

v=

2.5

0 0.

42

0.2

5 —

0.

85

0.2

7 0.0

6 —

1.

17

0.1

6 0.

04

RS

D%

=

2.9

7 3.

16

10.8

5 —

1.

20

1.86

2.7

2 —

1.

57

1.21

1.

83

50

Ma

On

Sh

an

A1

64.0

6 13

.52

2.1

2 N

D

83.5

2 19

.55

3.4

5 N

D

75.2

3 13

.88

2.22

N

D

A2

63.3

4 13

.50

2.1

1 N

D

85.7

8 19

.78

3.7

6 N

D

75

.25

13.7

7 2.

23

ND

101

B1

64.0

3 13

.92

2.08

N

D

82.0

4 19

.11

3.52

N

D

74.2

8 13

.66

2.19

N

D

B2

63.8

7 13

.38

1.99

N

D

81.9

5 18

.99

3.39

N

D

73.4

5 13

.54

2.1

1 N

D

mea

n=

63.8

2 13

.58

2.0

7 —

83.3

2 19

.36

3.5

3 —

74.5

5 13.7

1 2.

19

——

stde

v=

0.3

4 0.2

4 0.

06

——

1.

79

0.3

7 0.1

6 —

0.

86

0.1

4 0

05

——

RS

D%

=

0.5

3 1.

74

2.93

2.1

5 1.

91

4.5

4 —

1.16

1.

04

2.34

51

CU

HK

A

1 73.8

0 12

.26

3.46

N

D

93.1

3 19

.88

3.6

5 N

D

60.0

4 8.0

5 0.

96

ND

A

2 76.5

6 13

.60

2.5

7 N

D

94.7

0 20.1

8 3.

75

ND

61

.39

7.9

5 0.9

1 N

D

B1

68.5

9 12

.27

2.3

8 N

D

86.8

5 18

.67

3.45

N

D

60.1

7 8.

02

0.9

7 N

D

B2

72.2

1 12

.87

2.41

N

D

89.6

2 19

.41

3.56

N

D

60.9

5 7.9

5 0.

91

ND

m

ean

=

72.7

9 12

.75

2.70

91.0

8 19

.53

3.6

0 —

60

.64

7.9

9 0.

94

stde

v=

3.33

0.

64

0.51

3.53

0.

66

0.13

0.64

0.0

5 0.

03

——

RS

D%

=

4.5

7 4.9

8 18

.86

——

3.8

7 3.

38

3.60

1.

06

0.6

1 3.

07

52

Sai

Ku

ng

To

wn

C.

A1

55.0

5 17

.60

5.91

N

D

49.9

3 18

.05

7.2

0 N

D

49.4

2 14

.52

3.64

N

D

A2

53.1

7 17

.15

6.55

N

D

49.4

4 17

.79

5.55

N

D

49.5

3 14

.56

3.38

N

D

B1

50.9

0 16

.64

5.58

N

D

51.6

1 18

.43

5.56

N

D

50.5

9 14

.79

4.02

N

D

B2

50.6

3 17

.52

6.3

7 N

D

52.1

8 18

.53

5.4

7 N

D

50.2

1 14

.79

3.9

7 N

D

mea

n=

52.4

4 17

.23

6.10

50.7

9 18

.20

5.9

4 —

49

.94

14.6

6 3.7

5 —

stde

v=

2.0

8 0.

44

0.4

4 —

1.

31

0.34

0.

84

——

0.

56

0.14

0.

30

——

RS

D%

=

3.9

7 2.

54

7.1

9 —

2.5

8 1.

90

14.0

6 —

1,

12

0.9

7 8.

04

——

53

Tse

ng

La

nS

hu

i A

1 59.2

9 21

.23

7.22

N

D

53.3

2 17

.92

4.5

5 N

D

72.0

6 18

.92

4.28

N

D

A2

60.0

7 21

.36

7.13

N

D

54.4

5 17

.84

4.73

N

D

73.7

6 19

.26

4.50

N

D

B1

62.6

8 22.8

0 7.

88

ND

49.5

0 16

.54

4.94

N

D

73.0

8 19

.18

4.2

8 N

D

B2

61.4

9 22.4

7 7.5

9 N

D

49.6

6 16

.89

4.3

7 N

D

73.3

3 19

.30

4.3

6 N

D

mea

n=

60.8

8 21.9

6 7.4

5 —

51.7

3 17

.30

4.6

5 —

73.0

6 19

.17

4.36

stde

v=

1.50

0.

78

0.3

5 —

2.

53

0.6

9 0.2

5 —

0.

72

0.1

7 0.

10

RS

D%

=

2.4

7 3.5

7 4.6

5 —

4.8

9 3.9

7 5.

30

——

0.9

9 0.9

1 2.

33

——

54

Tse

un

g K

wan

O

A1

56.3

0 19

.24

7.0

9 N

D

55.7

5 17

.98

5.86

0.

40

74.3

5 19

.47

4.54

N

D

A2

58.5

5 18

.75

6.4

2 N

D

55.7

1 18

.13

5.8

9 0.4

9 74

.92

19.7

2 4.6

7 N

D

B1

60.8

3 19

.07

6.2

5 N

D

64.1

4 22.9

8 8.2

9 0.6

9 74.4

8 19

.43

4.46

N

D

B2

59.8

0 16

.58

6.2

9 N

D

64.7

5 23.3

9 8.

30

0.75

74.6

8 19

.99

4.44

N

D

102

mea

n=

58.8

7 18.4

1 6

.51

——

60.0

9 20.6

2 7.

09

0.5

8 74.6

1 19

.65

4.5

3 —

stde

v=

1.95

1.

24

0.3

9 —

5.04

2.9

7 1.

40

0.1

6 0.2

5 0.

26

0.1

0 —

RS

D%

=

3.3

2 6.7

3 5.9

8 —

8.39

14

.39

19.7

4 28.2

2 0.

33

1.32

2.3

0 —

55

Dis

cov

ery

Bay

A

1 12

.53

10.1

8 8.0

8 2.

53

7.1

7 7.9

1 8.

22

2.8

1 7.

26

7.75

7.4

2 2.

32

A2

11.1

4 9.

10

6.8

7 2.2

7 7.2

4 7.8

2 8.

31

2.7

8 7.5

9 8.

11

7.7

4 2.

13

Bl

9.4

7 7.

83

8.4

6 1.

80

7.02

7.9

0 8.

23

2.8

1 7.

61

8.15

7

.80

2.30

B2

11.5

2 8.

61

7.3

8 2.

08

7.22

7.9

0 8.

10

2.4

7 8.

00

8.44

7.9

4 2.

30

mean

=

11.1

7 8.

93

7.7

0 2.

17

7.16

7.8

8 8.

22

2.7

2 7.

62

8.11

7.7

2 2.

26

stdev

=

1.28

0.9

8 0.7

1 0.3

1 0.

10

0.0

4 0.

09

0.1

7 0.

30

0,28

0.2

2 0.

09

RS

D%

=

11.4

4 11

.02

9.2

1 14

.22

1.38

0.5

6 1.

08

6.1

0 3.9

7 3.

51

2.8

4 3.

86

56

Mu

i W

o A

1 20.2

0 10

.45

5.6

8 1.

23

11.4

5 6.4

4 4.

87

0.9

9 10

.82

4.82

1.

80

0.14

A2

18.3

5 8.

55

6.5

5 1.

32

11.7

3 6.5

4 5.

12

1.12

11

.02

4.84

1.

78

0.14

Bl

20.8

5 8.

87

6.6

2 1.

03

10.8

4 5.

70

3.87

0.8

6 10

.98

4.68

1.

81

0.18

B2

19.4

0 6.

83

5.6

7 1.

35

10.9

4 5.

73

4.11

0.6

9 11

.29

4.77

, 1.

77

0.17

mean

=

19.7

0 8.

68

6.1

3 1.

23

11.2

4 6.

10

4.49

0

.91

11.0

3 4.

78

1.7

9 0.

16

stdev

=

1.08

1.

48

0.5

3 0.

14

0.42

0.4

5 0.

60

0.1

9 0.

20

0.07

0.0

2 0.

02

RS

D%

=

5.48

17

.09

8.5

8 11

.60

3.76

7.3

9 13

.26

20.3

5 1.

77

1.47

0.8

9 13

.03

57

Pen

g C

hau

A

1 21.1

8 9.

09

6.9

0 0.9

7 15

.27

6.4

7 3.

96

0.5

9 13

.99

4.9

7 1.

80

0.16

A

2 22.1

8 7.

46

5.8

0 1.

10

15.0

3 6.5

9 3.

98

0.7

5 13

.93

5.17

1.

84

0.19

Bl

20.1

9 9.

52

6.9

9 1.

56

15.3

5 6

.67

4.21

0.8

5 14

.39

5.23

1.

86

0.1

7

B2

20.9

2 8.

55

5.7

0 1.

47

14.7

6 6.3

5 3.

89

0.5

9 14

.42

5.29

1.

81

0.19

mean

=

21.1

2 8.

66

6.3

5 1.

27

15.1

0 6.5

2 4.0

1 0.6

9 14

.18

5.1

7 1.8

3 0.

18

stdev

=

0.82

0.8

9 0.6

9 0.2

8 0.2

7 0.1

4 0.

14

0.1

3 0.

26

0.14

0.0

3 0.

02

RS

D%

=

3.90

10

.25

10.8

6 22

.30

1.77

2.1

2 3.

43

18.6

4 1.

80

2.68

1.

47

9.57

E =

Peak

s ca

nnot

be

inte

grat

ed a

ccur

atel

y (m

ainl

y at

tribu

ted

to th

e lim

itatio

n of

softw

are f

or i

nteg

ratio

n) o

r Ins

trum

enta

l err

or

ND

= N

ot D

etec

ted

103

G.

Raw

data

of T

HM

s con

cent

ratio

ns in

Wel

l, D

istill

ed &

Min

eral

wat

er

TH

Ms

conce

ntr

atio

n (^

g/L

) T

HM

-FP

(^i

g/L

) C

HC

b C

HC

I2B

r C

HC

lBr2

C

HB

r3

CH

C1

3 C

HC

l2B

r C

HC

lBr2

C

HB

r3

1 W

ell

wate

r A

1 0.

23

ND

N

D

ND

27

.92

22.1

4 10

.26

1.23

(Sh

eun

g S

hu

i)

A2

0.1

7 N

D

ND

N

D

27.7

6 22.1

7 10

.37

1.17

B1

0.3

0 N

D

ND

N

D

25.3

1 20

.12

9.11

1.

06

B2

0.24

N

D

ND

N

D

24.3

3 20.2

1 9.

62

1.15

mea

n=

0.2

3 —

26.3

3 21

.16

9.8

4 1.

15

stde

v=

0.0

5 —

1.

79

1.15

0.5

9 0.0

7

RS

D%

=

23.2

7 —

6.7

9 5.

42

6.0

0 6.

25

2 W

atso

n's

A

1 1.

63

0.33

N

D

ND

D

isti

lled

wate

r A

2 1.

80

0.2

9 N

D

ND

B

1 1.

80

0.2

8 N

D

ND

B

2 1.

90

0.3

8 N

D

ND

m

ean

=

1.78

0.

32

——

stdev

=

0.1

1 0.0

5 —

RS

D%

=

6.1

0 14

.73

3 C

ool

A1

1.33

0.3

7 N

D

ND

D

isti

lled

wate

r A

2 1.

50

0.41

N

D

ND

B

1 1.

55

0.35

N

D

ND

B

2 1.

44

0.38

N

D

ND

m

ean

=

1.4

5 0.3

8

stde

v=

0.0

9 0.

02

RS

D%

=

6.3

2 6.2

8 —

104

鄉 § § § I 一 I § § § § 1 1 1 § § § § 一 一 一

§ E _ 一 一 _ 一 一 0 1 3 0 : 1 4 0 1 6 0 1 7 0 : 1 5 0 . 0 2 1 5

o

1 1

0 . 2 8 0 3 9 0 4 4 0 4 4 0 3 9 0 0 8 1 9 . 9 5 ^ ^ 一 _ _ § 二 § I 一 一

1 5 8 3 7 2 5 4 4 8 1 2 7 1 0 9 8 2 9 2 5 J 3 1 3 o 1 . 1 . 1 . 7 . 5 . 6 . 5 7 . 6 . 0 . 4 o o 1 1 L o . . 6

2 . 2 . 2 . 2 . 2 . o . 5 . o . 0 . 0 . o o . o l l 0 . 0 . o . o . 0 . 0 . n

4

I L 1 1 / 0 = ^ I I I l k

1 2 1 2 S ^ V ) 0 / J 2 1 2 S 5 V ) 0 / 1 2 1 2 S V 0 /

A 幻

C C e a 彻 S D A M C C g d e S D A 5 C C 2 s d e D

m s t c R S m u R S m s t d R S

r r r

彻 I t e p ^

^ a o a

w w h w

炒 - S h s j v

C U I 5 r a 灿

s i l l r v y , k

e s t , l s t l e r a r k

B D 朽 M p a M

4 5 6

H.

Spec

ifica

tion

of A

ctiv

ated

Car

bon

Filte

r [4

5]

Fil

teri

ng c

apac

ity

i li

tre/

min

[a

t w

ater

pre

ssur

e of

0.1

MP

a]

Car

trid

ge f

ilte

r co

mpo

nent

s:

(Car

trid

ge t

ype)

i P

owde

red

acti

vate

d ca

rbon

Wat

er p

ress

ure

at w

hich

the

uni

t ca

n be

use

d:

; 0

.04〜

0.29

MP

a

Wor

king

pre

ssur

e:

: 0

.04〜

0.74

MP

a [s

afet

y va

lve

oper

atin

g pr

essu

re:

0.29

MP

a]

Fil

trat

ion

capa

city

i R

esid

ual

chlo

rine

eli

min

atio

n ca

paci

ty:

: 12

,500

lit

res

i (a

t a

dens

ity

of

2 pp

m)

「fu

ri^i

iyr乂

2,"5

00 l

itre

s

Mass

1.1

kg [

2.6

kg w

ith w

ater

ful

l]

106

Per

form

ance

: R

emov

able

com

pone

nts:

i

• M

inut

e fo

reig

n pa

rtic

les

in w

ater

(tu

rbid

ity)

.

:•

Red

rus

t fr

om i

ron

wat

er p

ipes

.

i •

O

ffen

sive

tas

te,

colo

ring

and

odo

r in

wel

l-w

ater

.

;•

Det

erge

nt i

n un

derg

roun

d w

ater

,

j i

• E

xces

s ch

lori

ne (

odor

) in

wat

er.

i U

nrem

ovab

le c

ompo

nent

s:

: •

Ir

on c

onte

nts

and

heav

y m

etal

s (s

ilve

r, co

pper

an

d le

ad)

i di

ssol

ved

in w

ater

, an

d sa

lt (

sea

salt).

*The

uni

t do

es n

ot t

rans

form

har

d w

ater

int

o so

ft w

ater

.

107

I.

(1)

Mass

Sp

ectr

um

of

Ch

loro

form

Sc

an 4

2 (2

.396

min

)

Ab

un

dan

ce

30

00

2500

*85

2000;

15

00

10

00

- 4

7

35

48

50

0 -

37

82

0 ‘

I

I I

I I

I I

I I—

I I

I I

I 1

I I

I I

I 1

II—

I I

I I

I I

I I

1 I

I I

I I

I )

I I

I I

» I

1

I I

» I

< I

I » I

I 1

I I

I .

I I

» •

t

I I

»

m/z

-^

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

108

I. (2

) Mas

s Spe

ctru

m o

f Bro

mod

ichl

orom

etha

ne

Sca

n 18

8 (3

.597

min

)

Ab

un

dan

ce

«33

60

00

:

55

00

:

50

00

:

*8

5

45

00

40

00

35

00

3000

:

25

00

2000

15

00

4?

12

9

1000

49

50

0:

m/z

Q

40

50

60

70

80

90

100

110

120

130

140

109

I.

(3)

Mass

Sp

ectr

um

of

Ch

loro

dib

rom

om

eth

an

e S

can

523

(4.7

29

min

)

Ab

un

dan

ce

“仙

10

00

0"

95

00

i *

12

7

9000

1 85

00 1

8

00

0 :

75

00

1 7000

1 6500

1 60

00 1

5

50

01

50

00

1 4500

1 4000

i 3

50

01

3000

1

25

00

i 81

20

00 i

1

50

01

9

3

10

00

i 9

4 1

CC

20

7

50

01

109

119

146

15

8 1

7f

1,21

6 23

5 26

2 i

, ,i

, ,i

im.

,i,

,1.,

1,

i, i,

I.M

, \

, .•

. .

i.

i,

u'i

I

, •

.

•1

•‘

m/z

~>

u

go

100

120

140

160

180

200

220

2

40

2

60

110

I.

(4)

Mass

Sp

ec

tru

m o

f B

rom

ofo

rm

Sca

n 69

9 (5

.633

min

)

Ab

un

dan

ce

*173

1300

0 :

12

00

0 •:

1100

0 :

1000

0 •:

90

00

•;

80

00

70

00

*1

71

60

00

5000 •

81

40

00

93

30

00

2000

25

6 25

4 1

00

0 :

80

, 11

4 14

4 19

1 20

7 I

,_

_ n

^ ,

, 11

1 ,

, ll

'li,

I f

, ,

. .

I >

'

' 1'

'

^ I

1 1

‘'

1 I

1 1

'

m/z

->u

80

10o

120

140

160

180

2

00

220

2

40

260

111

ShThOiEDO

圓__111 seLjejqL-| >m门:)