DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA)1

11
DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA) 1 Hwan Su Yoon Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 468 Biology Building, Iowa City, Iowa 52242, USA Kirsten M. Mu ¨ller Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1 Robert G. Sheath Office of the Provost, California State University San Marcos, San Marcos, California 92096, USA Franklyn D. Ott 905 NE Hilltop Drive, Topeka, Kansas 66617, USA and Debashish Bhattacharya 2 Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, Iowa 52242, USA Previous phylogenetic studies of the Rhodophyta have provided a framework for understanding red algal phylogeny, but there still exists the need for a comprehensive analysis using a broad sampling of taxa and sufficient phylogenetic information to clearly define the major lineages. In this study, we determined 48 sequences of the PSI P700 chl a apoprotein A1 (psaA) and rbcL coding regions and established a robust red algal phylogeny to identify the major clades. The tree included most of the lin- eages of the Bangiophyceae (25 genera, 48 taxa). Seven well-supported lineages were identified with this analysis with the Cyanidiales having the earliest divergence and being distinct from the remaining taxa; i.e. the Porphyridiales 1–3, Bangiales, Flori- deophyceae, and Compsopogonales. We also analy- zed data sets with fewer taxa but using seven pro- teins or the DNA sequence from nine genes to resolve inter-clade relationships. Based on all of these analyses, we propose that the Rhodophyta contains two new subphyla, the Cyanidiophytina with a single class, the Cyanidiophyceae, and the Rhodophytina with six classes, the Bangiophyceae, Compsopogonophyceae, Florideophyceae, Por- phyridiophyceae classis nov . (which contains Por- phyridium, Flintiella, and Erythrolobus), Rhod- ellophyceae, and Stylonematophyceae classis nov . (which contains Stylonema, Bangiopsis, Chroodacty- lon, Chroothece, Purpureofilum, Rhodosorus, Rho- dospora, and Rufusia). We also describe a new order, Rhodellales, and a new family, Rhodellaceae (with Rhodella, Dixoniella, and Glaucosphaera). Key index words: Bangiophyceae; Compsopogono- phyceae; Cyanidiophyceae; Florideophyceae; Porphyridiophycae; red algal lineages; Rhod- ellophyceae; Rhodophyta; Stylonematophyceae Abbreviations: BPP, Bayesian posterior probabili- ties; ML, maximum likelihood; MP, maximum par- simony; PsaA, PSI P700 chlorophyll a apoprotein A1; PsaB, PSI P700 chlorophyll a apoprotein A2; PsbA, PSII reaction center protein D1; PsbC, PSII 44 KD apoprotein; PsbD, PSII D2 reaction center protein; TBR, tree bisection-reconnection The red algae (Rhodophyta) are a distinct eukaryotic lineage whose members are united in phylogenetic anal- yses of nuclear, plastid, and mitochondrial genes (Fresh- water et al. 1994, Ragan et al. 1994, Van de Peer and De Wachter 1997, Burger et al. 1999, Yoon et al. 2002b, 2004). Rhodophytes lack chl b and c but contain all- ophycocyanin, phycocyanin, and phycoerythrin in the form of phycobilisomes on unstacked thylakoids. The plastid in these taxa is bound by two membranes and produces floridean starch that is deposited in the cyto- plasm. All members of this group lack flagella and cent- rioles in all stages of the life history (Gabrielson et al. 1990, Graham and Wilcox 2000). It is believed that the red algal plastid originated from a cyanobacterial pri- mary endosymbiosis and this organelle shares a com- mon ancestry with green and glaucophyte algae 1 Received 13 September 2005. Accepted 27 December 2005. 2 Author for correspondence: e-mail debashi-bhattacharya@ uiowa.edu. 482 J. Phycol. 42, 482–492 (2006) r 2006 Phycological Society of America DOI: 10.1111/j.1529-8817.2006.00210.x

Transcript of DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA)1

DEFINING THE MAJOR LINEAGES OF RED ALGAE (RHODOPHYTA)1

Hwan Su Yoon

Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 468 Biology

Building, Iowa City, Iowa 52242, USA

Kirsten M. Muller

Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1

Robert G. Sheath

Office of the Provost, California State University San Marcos, San Marcos, California 92096, USA

Franklyn D. Ott

905 NE Hilltop Drive, Topeka, Kansas 66617, USA

and

Debashish Bhattacharya2

Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology

Building, Iowa City, Iowa 52242, USA

Previous phylogenetic studies of the Rhodophytahave provided a framework for understanding redalgal phylogeny, but there still exists the need for acomprehensive analysis using a broad sampling oftaxa and sufficient phylogenetic information toclearly define the major lineages. In this study, wedetermined 48 sequences of the PSI P700 chl aapoprotein A1 (psaA) and rbcL coding regions andestablished a robust red algal phylogeny to identifythe major clades. The tree included most of the lin-eages of the Bangiophyceae (25 genera, 48 taxa).Seven well-supported lineages were identified withthis analysis with the Cyanidiales having the earliestdivergence and being distinct from the remainingtaxa; i.e. the Porphyridiales 1–3, Bangiales, Flori-deophyceae, and Compsopogonales. We also analy-zed data sets with fewer taxa but using seven pro-teins or the DNA sequence from nine genes toresolve inter-clade relationships. Based on all ofthese analyses, we propose that the Rhodophytacontains two new subphyla, the Cyanidiophytinawith a single class, the Cyanidiophyceae, and theRhodophytina with six classes, the Bangiophyceae,Compsopogonophyceae, Florideophyceae, Por-phyridiophyceae classis nov. (which contains Por-phyridium, Flintiella, and Erythrolobus), Rhod-ellophyceae, and Stylonematophyceae classis nov.(which contains Stylonema, Bangiopsis, Chroodacty-lon, Chroothece, Purpureofilum, Rhodosorus, Rho-

dospora, and Rufusia). We also describe a neworder, Rhodellales, and a new family, Rhodellaceae(with Rhodella, Dixoniella, and Glaucosphaera).

Key index words: Bangiophyceae; Compsopogono-phyceae; Cyanidiophyceae; Florideophyceae;Porphyridiophycae; red algal lineages; Rhod-ellophyceae; Rhodophyta; Stylonematophyceae

Abbreviations: BPP, Bayesian posterior probabili-ties; ML, maximum likelihood; MP, maximum par-simony; PsaA, PSI P700 chlorophyll a apoproteinA1; PsaB, PSI P700 chlorophyll a apoprotein A2;PsbA, PSII reaction center protein D1; PsbC, PSII44 KD apoprotein; PsbD, PSII D2 reaction centerprotein; TBR, tree bisection-reconnection

The red algae (Rhodophyta) are a distinct eukaryoticlineage whose members are united in phylogenetic anal-yses of nuclear, plastid, and mitochondrial genes (Fresh-water et al. 1994, Ragan et al. 1994, Van de Peer and DeWachter 1997, Burger et al. 1999, Yoon et al. 2002b,2004). Rhodophytes lack chl b and c but contain all-ophycocyanin, phycocyanin, and phycoerythrin in theform of phycobilisomes on unstacked thylakoids. Theplastid in these taxa is bound by two membranes andproduces floridean starch that is deposited in the cyto-plasm. All members of this group lack flagella and cent-rioles in all stages of the life history (Gabrielson et al.1990, Graham and Wilcox 2000). It is believed that thered algal plastid originated from a cyanobacterial pri-mary endosymbiosis and this organelle shares a com-mon ancestry with green and glaucophyte algae

1Received 13 September 2005. Accepted 27 December 2005.2Author for correspondence: e-mail debashi-bhattacharya@

uiowa.edu.

482

J. Phycol. 42, 482–492 (2006)r 2006 Phycological Society of AmericaDOI: 10.1111/j.1529-8817.2006.00210.x

(Bhattacharya and Medlin 1995, Delwiche et al. 1995,Cavalier-Smith 1998, McFadden 1999, Bhattacharyaet al. 2004, Rodrıguez-Ezpeleta et al. 2005). These three‘‘primary’’ plastid-containing groups are considered tobe taxonomically united in the kingdom Plantae (Cava-lier-Smith 1998) or Archaeplastida (Adl et al. 2005).

Traditionally, the phylum Rhodophyta has been di-vided into two classes (or subclasses), Bangiophyceae(Bangiophycidae) and Florideophyceae (Florideo-phycidae) (Garbary and Gabrielson 1990). However,recent studies have concluded that the Florideo-phyceae form a monophyletic group with the orderBangiales (Oliveira and Bhattacharya 2000, Mulleret al. 2001, Yoon et al. 2002b, Saunders and Hommer-sand 2004). The Bangiophyceae, which has in the pastbeen divided into six orders (Bangiales, Cyanidiales,Compsopogonales, Erythropeltidales, Porphyridiales,and Rhodochaetales), is now considered to form a se-ries of radiations that define the ancestral lineages ofthe red algae (Gabrielson et al. 1985, Freshwater et al.1994, Ragan et al. 1994). Comprehensive phylogeneticstudies of the Bangiophyceae (Oliveira and Bhatta-charya 2000, Muller et al. 2001, 2003, West et al. 2005)using the plastid and nucleus-encoded small subunit(SSU) rDNA and plastid rbcL show furthermore thatthe Porphyridiales are paraphyletic and comprise atleast three independent lineages. This result is gener-ally consistent with previous morphological studiesthat show great differences in plastid ultrastructureand variable vegetative and reproductive anatomy(Gabrielson et al. 1985, 1990, Garbary and Gabrielson1990, Muller et al. 2001). However, all of these previ-ous studies are characterized either by broad taxonsampling with a single gene (Muller et al. 2001) ornarrow sampling with multiple genes (Yoon et al.2002b, 2004). For this reason, whereas the identity ofthe major red algal lineages has been relatively firmlyestablished, their interrelationships remain unclear.Recently, Saunders and Hommersand (2004) pro-posed a new red algal taxonomic scheme based onprevious molecular phylogenies and ultrastructuralcharacters (e.g. Golgi–ER association). Their taxo-nomic system is a large step forward but still containsthe paraphyletic class Rhodellophyceae that includesboth unicellular and pseudofilamentous forms (i.e.Porphyridiales Kylin ex Skuja 1939, StylonematalesK. Drew 1956, and ‘‘Porphyridiales 1’’ sensu Mulleret al. 2001).

In this study, we determined 48 sequences from thePSI P700 chl a apoprotein A1 (psaA) and rbcL codingregions with broad taxonomic sampling. We includedmost of the lineages of Bangiophyceae (25 genera, 48taxa) in the analyses because these taxa represent theancestral pool of red algae. In addition, we analyzeddata sets with fewer taxa but using seven proteins orDNA sequence from nine genes to resolve inter-claderelationships. The combination of all of these phylo-genetic studies was then used to advance our under-standing of the higher-level taxonomic relationshipswithin the red algae.

MATERIALS AND METHODS

Taxon sampling and sequencing. Forty-eight red algal taxawere used to infer the phylogeny of the Bangiophyceae (Ta-ble 1). The data set included all bangiophycean orders and25 genera from the different phylogenetic lineages (Garbaryand Gabrielson 1990, Muller et al. 2001). Our alignment alsoincluded 10 green algae, two glaucophytes, and three cyano-bacteria as the outgroup (Bhattacharya and Medlin 1995,Moreira et al. 2000). We obtained algal cultures from theCulture Collection of Algae & Protozoa (CCAP), Provasoli-Guillard National Center for Culture of Marine Phytoplank-ton (CCMP), the Dipartimento di Biologia Vegetale (DBV)culture collection at the University of Naples, the Sammlungvon Algenkulturen (SAG) at the University of Gottingen, andthe Culture Collection of Algae at the University of Texas atAustin (UTEX). Some of the bangiophytes were collected inthe field and/or maintained in the private collection of F. D. Ott.

The algal cells were frozen in liquid nitrogen and groundwith glass beads using a glass rod and/or Mini-BeadBeatert(Biospec Products Inc., Bartlesville, OK, USA). Total genomicDNA was extracted using the DNeasy Plant Mini Kit (Qiagen,Santa Clarita, CA, USA). PCR were carried out using specificprimers for each plastid gene (Yoon et al. 2002a). Because in-trons were found in the psaA gene of some red algae, the RT-PCR method was used to isolate cDNA for these coding regions(H. S. Yoon et al. unpublished data). The PCR products werepurified using the QIAquick PCR Purification Kit (Qiagen),and were used for direct sequencing using the BigDyet Ter-minator Cycle Sequencing Kit (PE-Applied Biosystems, Nor-walk, CT, USA), and an ABI-3700 at the Roy J. Carver Centerfor Comparative Genomics at the University of Iowa. SomePCR products were cloned into the pGEM-T vector (Promega,Madison, WI, USA) before sequencing.

Phylogenetic analyses. We primarily used amino acid se-quences in the phylogenetic analysis in order to minimizepotentially misleading phylogenetic signal because of DNAmutation bias at the third positions of codons (Sandersonet al. 2000, Pinto et al. 2003) or because of heterogeneouscodon usage (Inagaki et al. 2004). The protein sequenceswere manually aligned using SeqPup (Gilbert 1995). Twodata sets were used in the phylogenetic analyses and thealignments are available from D. Bhattacharya. In the firstdata set, we generated a concatenated alignment of sevenplastid-encoded proteins (7PEP; a total of 2564 aa): PsaA(465 aa), PSI P700 chlorophyll a apoprotein A2 (PsaB, 422aa), PSII reaction center protein D1 (PsbA, 319 aa), PSII 44KD apoprotein (PsbC, 334 aa), PSII D2 reaction center pro-tein (PsbD, 296 aa), RbcL (405 aa), and TufA (323 aa), from16 bangiophytes, and from 15 outgroup taxa including greenand glaucophyte algae and cyanobacteria. Because the rbcLgene of the green and glaucophyte algae are of a cyanobac-terial origin, whereas those in the red algae and red algal-derived plastids are of proteobacterial origin (Valentin andZetsche 1990, Delwiche and Palmer 1996), the evolutionarilydistantly related green and glaucophyte rbcL sequences werecoded as missing data in the phylogenetic analyses. In thesecond amino acid data set, we combined only PsaA and RbcL(2PEP), and added 33 more bangiophytes to the alignment(now a total of 49 bangiophytes). The Cyanidiales, which isthe earliest diverging clade of red algae (Yoon et al. 2002b,2004), was used as the outgroup for this data set. In additionto the amino acid data, we generated a DNA alignment thatincluded nuclear SSU rDNA (18S; 1486 bp) and plastid SSUrDNA (16S; 1285 bp) sequences resulting in a nine-geneDNA sequence data set (9GDS; 10,463 bp) that excludedthe green and glaucophyte algae. Three additional Cyanidi-ales species were included in the DNA alignment and used asthe outgroup for this data set.

THE MAJOR LINEAGES OF RED ALGAE 483

TA

BL

E1

.S

amp

lein

form

atio

nan

dG

enB

ank

acce

ssio

nn

um

ber

sfo

rta

xa

incl

ud

edin

the

ph

ylo

gen

etic

anal

yses

.

Tax

aS

pec

ies

So

urc

erb

cLps

aAps

aBps

bAps

bCps

bDtu

fA1

8S

rDN

A1

6S

rDN

A

Rho

doph

yta,

Ban

giop

hyce

aeB

ang

iale

sB

angi

aat

ropu

rpu

rea

(Ro

th)

CA

gar

dh

SA

G3

3.9

4F

DO

ttO

45

8(f

resh

-wat

er)

AY

11

97

70

AY

11

96

98

AY

39

13

74

AY

11

973

4A

Y8

76

20

2A

Y8

76

22

7A

F5

45

587

D8

83

87

AF

54

56

16

Ban

gia

fusc

opu

rpu

rea

(Dillw

yn)

Lyn

gb

yea

SA

G5

9.8

1(m

arin

e)a

AY

11

97

71

AY

11

96

99

Ban

gia

sp.

(max

ima

form

)B

oli

nas

,C

AD

Q3

08

42

3D

Q3

08

44

1

Por

phyr

ale

uco

stic

taT

hu

ret

SA

G5

5.8

8D

Q3

08

42

4D

Q3

08

44

2

Por

phyr

apu

rpu

rea

(Ro

th)

C.

Ag

ard

hG

enB

ank

NC

_00

09

25

NC

_00

09

25

NC

_000

925

NC

_000

925

NC

_000

925

NC

_000

925

NC

_000

925

AF

36

23

62

NC

_000

925

Co

mp

sop

og

on

ales

Bol

dia

eryt

hros

ipho

nH

ern

do

nB

lack

Riv

er,

On

tari

o,

Can

ada

AF

07

812

1M

issi

ng

Com

psop

ogon

coer

ule

us

(Bal

bis

ex

C.

Ag

ard

h)

Mo

nta

gn

e

SA

G3

6.9

4F

DO

ttO

79

8A

F0

87

11

6A

Y1

197

01

AY

39

13

75

AY

11

973

7A

Y8

76

20

3A

Y8

76

22

8A

F5

45

589

AF

34

27

48

AF

17

07

13

9

C.

coer

ule

us

(syn

.5C

.ho

oker

i)

FD

Ott

O6

46

DQ

30

842

5D

Q3

08

44

3

C.

coer

ule

us

(syn

.5C

.oi

shii)

FD

Ott

O1

12

3D

Q3

08

42

6D

Q3

08

44

4

C.

coer

ule

us

(syn

.5C

omps

opog

onop

sis

lept

ocla

dos)

Ala

bam

a,U

SA

AF

08

711

5D

Q3

08

44

5

Ery

thro

pel

tid

ales

Ery

thro

tric

hia

carn

ea(D

illw

yn)

J.A

gar

dh

UT

EX

LB

14

25

FD

Ott

MO

14

AF

08

711

8A

Y1

197

03

Ery

thro

clad

iair

regu

lari

sR

ose

nvi

ng

eU

TE

XL

B1

41

9F

DO

ttM

O3

60

AF

08

711

7D

Q3

08

44

6

Rh

od

och

aeti

ales

Rho

doch

aete

parv

ula

Th

ure

tU

TE

XL

B2

71

5A

Y1

197

77

AY

11

97

07

AY

39

13

89

AY

11

974

3M

issi

ng

Mis

sin

gA

F5

45

601

AF

13

94

62

AF

54

56

23

Cya

nid

iale

sC

yan

idio

schy

zon

mer

olae

Lu

ca,T

add

eiet

Var

ano

DB

V2

01

JAV

AA

Y1

197

65

AY

11

96

93

AY

39

13

76

AY

11

972

9N

C_0

04

799

NC

_004

799

AF

54

55

90

AF

44

13

76

AF

54

56

17

Cya

nid

ium

cald

ariu

m(T

ild

en)

Gei

tler

RK

1(S

him

ots

uke,

Jap

an)

NC

_00

18

40

NC

_00

18

40

NC

_001

840

NC

_001

840

NC

_001

840

NC

_001

840

NC

_001

840

AB

09

08

33

NC

_001

840

Cya

nid

ium

cald

ariu

m(T

ild

en)

Gei

tler

DB

V0

19

SIP

EA

Y5

412

97

AY

54

12

81

Cya

nid

ium

sp.

Mo

nte

Ro

taro

,It

aly

AY

39

13

68

AY

39

13

62

AY

39

13

77

AY

39

136

5M

issi

ng

Mis

sin

gA

Y3

91

37

1M

issi

ng

AY

39

135

9C

yan

idiu

msp

.S

ybil

Cav

e,N

aple

s,It

aly

AY

39

13

69

AY

39

13

63

AY

39

13

78

AY

39

136

6A

Y8

76

20

4A

Y8

76

22

9A

Y3

91

37

2M

issi

ng

AY

39

136

0G

aldi

eria

daed

ala

Sen

tso

vaIP

PA

SP

50

8A

Y5

413

02

AY

54

12

83

Gal

dier

iam

axim

aS

ents

ova

IPPA

SP

50

7A

Y3

913

70

AY

39

13

64

AY

39

13

79

AY

39

136

7A

Y8

76

20

5A

Y8

76

23

0A

Y3

91

37

3A

B0

90

832

AY

39

136

1

Gal

dier

iapa

rtita

Sen

tso

vaIP

PA

SP

50

0A

B1

80

08

AY

54

12

84

Gal

dier

iasu

lphu

rari

a(G

ald

ieri

)M

ero

laS

AG

10

8.7

9A

Y1

197

67

AY

11

96

95

AY

39

13

80

AY

11

973

1A

Y8

76

20

6A

Y8

76

23

1A

F5

45

591

AF

34

27

47

AF

17

07

18

Gal

dier

iasu

lphu

rari

a(G

ald

ieri

)M

ero

laU

TE

X2

393

AF

23

306

9A

Y5

412

85

Gal

dier

iasu

lphu

rari

a-D

BV

DB

V0

09

VT

NE

AY

11

97

68

AY

11

96

96

AY

39

13

81

AY

11

973

2A

Y8

76

20

7A

Y8

76

23

2A

F5

45

592

Mis

sin

gA

F5

45

618

Gal

dier

iasu

lphu

rari

a-D

BV

DB

V0

12

BN

TE

AY

54

13

10

AY

54

12

88

Po

rph

yrid

iale

sP

1D

ixon

iella

gris

ea(G

eitl

er)

Sco

tt,

Bro

adw

ater

,S

aun

der

s,T

ho

mas

etG

abri

elso

n

SA

G3

9.9

4,

FD

Ott

O1

13

AY

11

97

73

AY

11

97

02

AY

39

13

83

AY

11

973

8M

issi

ng

Mis

sin

gA

F5

45

595

L26

18

7A

F5

45

621

P1

Gla

uco

spha

era

vacu

olat

aK

ors

hik

ov

UT

EX

LB

166

2D

Q3

08

42

7D

Q3

08

44

7

HWAN SU YOON ET AL.484

TA

BL

E1

(Con

tin

ued

).

Tax

aS

pec

ies

So

urc

erb

cLps

aAps

aBps

bAps

bCps

bDtu

fA1

8S

rDN

A1

6S

rDN

A

P1

Rho

della

mac

ula

taE

van

sC

CM

P7

36

DQ

30

842

8D

Q3

08

44

8P

1R

hode

lla

viol

acea

(Ko

rnm

ann

)W

ehrm

eyer

SA

G1

15.7

9A

Y1

197

76

AY

11

97

06

AY

39

13

86

AY

11

974

2D

Q3

084

61

DQ

30

84

62

AF

54

55

98

AF

16

86

24

AF

54

56

22

P2

Ban

giop

sis

subs

impl

ex(M

on

tag

ne)

Sch

mit

zP

R2

1(P

uer

toR

ico

)A

Y1

197

72

AY

11

97

00

AY

39

13

82

AY

11

973

6M

issi

ng

Mis

sin

gA

F5

45

594

AF

16

86

27

AF

54

56

20

P2

Chr

ooda

ctyl

onor

nat

um

(C.

Ag

ard

h)

Bas

son

(syn

.5C

.ra

mos

um

)

SA

G1

03.7

9,

FD

Ott

MO

44

7D

Q3

08

42

9D

Q3

08

44

9

P2

Chr

ooth

ece

mob

ilis

Pas

cher

etP

etro

vaF

DO

ttO

13

63

DQ

30

843

0D

Q3

08

45

0

P2

Kyl

inie

lla

latv

ica

Sku

jaF

DO

ttO

50

6D

Q3

08

43

1D

Q3

08

45

1P

2P

urp

ure

ofilu

map

yren

oidi

geru

mW

est

etZ

ucc

arel

lo

CC

AP

138

3/1

DQ

30

843

2D

Q3

08

45

2

P2

Rho

dosp

ora

sord

ida

Gei

tler

UT

EX

LB

26

16

FD

Ott

O1

51

5D

Q3

08

43

3D

Q3

08

45

3

P2

Rho

doso

rus

mar

inu

sG

eitl

erS

AG

11

6.7

9F

DO

ttM

O3

60

AY

11

97

78

AY

11

97

08

Mis

sin

gA

Y1

19

74

4A

Y8

76

20

8A

Y8

76

23

3A

F5

45

595

AF

34

27

50

AF

17

07

19

P2

Rho

doso

rus

sp.

CC

MP

15

30

DQ

30

843

4D

Q3

08

45

4P

2R

ufu

sia

pilic

ola

Wu

jek

etT

imp

ano

FD

Ott

O7

03

1D

Q3

08

43

5D

Q3

08

45

5

P2

Sty

lon

ema

alsi

dii

(Zan

ard

ini)

Dre

wS

AG

2.9

4A

Y1

197

79

AY

11

97

09

AY

39

13

88

AY

11

974

5M

issi

ng

Mis

sin

gA

F5

45

600

AF

16

86

33

AF

17

07

14

P2

S.

alsi

dii

(syn

.5G

onio

tric

hum

eleg

ans)

UT

EX

LB

195

7D

Q3

08

43

6D

Q3

08

45

6

P3

Ery

thro

lobu

sco

xiae

Bac

a,W

olf

etC

ox

FD

Ott

O5

30

DQ

30

843

7D

Q3

08

45

7

P3

E.

coxa

e(s

yn.5

E.

fottii)

UT

EX

LB

254

5D

Q3

08

43

8D

Q3

08

45

8P

3F

lin

tiel

lasa

ngu

inar

iaO

ttS

AG

40

.94

FD

Ott

O3

40

AY

11

97

74

AY

11

97

04

AY

39

13

84

AY

11

974

0D

Q3

084

63

DQ

30

84

64

AF

54

55

96

AF

34

27

49

AF

17

07

19

P3

Por

phyr

idiu

mae

rugi

neu

mG

eitl

erS

AG

13

80

-2A

Y1

197

75

AY

11

97

05

AY

39

13

85

AY

11

974

1A

Y8

76

20

9A

Y8

76

23

4A

F5

45

597

AF

16

86

23

X17

59

7

P3

Por

phyr

idiu

mpu

rpu

reu

m(B

ory

de

Sai

nt-

Vin

cen

t)R

oss

inD

rew

etR

oss

(syn

.5P.

cru

entu

m)

CC

MP

13

28

DQ

30

843

9D

Q3

08

45

9

P3

Por

phyr

idiu

mso

rdid

um

Gei

tler

FD

Ott

O2

50

DQ

30

844

0D

Q3

08

46

0

Rho

doph

yta,

Flo

ride

ophy

ceae

Cho

ndr

us

cris

pus

Sta

ckh

ou

seN

ova

Sco

tia,

Can

ada

U0

29

84

AY

11

97

10

AY

39

13

90

AY

11

974

6A

Y8

76

21

0A

Y8

76

23

5A

F5

45

602

Z1

41

40

Z2

95

21

Pal

mar

iapa

lmat

a(L

.)K

un

tze

Mai

ne,

US

AU

28

42

1A

Y1

197

11

AY

39

13

91

U2

81

65

AY

87

621

1A

Y8

76

23

6A

F5

45

603

Z1

41

42

Z1

82

89

Tho

rea

viol

acea

Bo

ryd

eS

ain

t-V

ince

nt

SA

G5

1.9

4F

DO

ttO

28

2A

F0

29

16

0A

Y1

197

12

Vir

idip

lan

tae

Ara

bido

psis

thal

iana

(L.)

Hey

nh

old

Gen

Ban

kN

AN

C_0

009

32

NC

_000

932

NC

_000

932

NC

_000

934

NC

_000

935

X52

25

6

Anth

ocer

osfo

rmos

aeG

enB

ank

NA

NC

_00

45

43

NC

_004

543

NC

_004

543

NC

_004

543

NC

_004

543

NA

Cha

etos

phae

ridi

um

glob

osu

m(N

ord

sted

t)K

leb

ahn

Gen

Ban

kN

AN

C_0

041

15

NC

_004

115

NC

_004

115

NC

_004

115

NC

_004

115

NA

Chl

amyd

omon

asre

inha

rdtii

Dan

gea

rdG

enB

ank

NA

NC

_00

53

53

NC

_005

353

NC

_005

353

NC

_005

353

NC

_005

353

NC

_005

353

Chl

orel

lavu

lgar

isB

eije

rin

ckG

enB

ank

NA

NC

_00

18

65

NC

_001

865

NC

_001

865

NC

_001

865

NC

_001

865

NC

_001

865

Gen

Ban

kN

AN

C_0

013

19

NC

_001

319

NC

_001

319

NC

_001

319

NC

_001

319

NA

THE MAJOR LINEAGES OF RED ALGAE 485

All protein phylogenies were reconstructed under maxi-mum likelihood (ML) using proml in the PHYLIP V3.6b pro-gram package (Felsenstein 2002). The trees were inferred withthe JTTþG evolutionary model and global rearrangementswith four random addition replicates (Jones et al. 1992). The avalues for the g distribution for the different data sets werecalculated using TREE-PUZZLE V5.2 (Schmidt et al. 2002). Toassess the stability of monophyletic groups in the ML trees, wecalculated bootstrap support values using PHYML V2.4.3(Guindon and Gascuel 2003) and unweighted maximum par-simony (MP) using PAUP*V4.0b10 (Swofford 2004). We alsocalculated Bayesian posterior probabilities (BPP) usingMrBayes (V3.0b4, Huelsenbeck and Ronquist 2001). In theBayesian inference of the amino acid data, we used theWAGþG model with Metropolis-coupled Markov chain Mon-te Carlo from a random starting tree. These analyses were runfor 1,000,000 generations with trees sampled each 200 cycles.Four chains were run simultaneously of which three wereheated and one was cold, with the initial 20,000 cycles (200trees) being discarded as the ‘‘burn in.’’ A consensus tree wasmade with the remaining 1800 phylogenies to determine theposterior probabilities at the different nodes. In the MP anal-yses, 1000 bootstrap replicates were analyzed (Felsenstein1985) with 10 heuristic searches with random-addition-se-quence starting trees and tree bisection-reconnection (TBR)branch rearrangements. For the ML bootstrap analysis (500replicates), we used the JTTþG evolutionary model.

For the DNA data set, we used ML and BPP approaches.We used a site-specific GTR model to incorporate differentrates in the genes at the three codon positions. This approachappears to be superior to using a single set of rate parametersfor protein-coding DNA sequences (Shapiro et al. 2005). Fivedifferent rates were used to account for among-site rate var-iation (0.50931, 18S; 0.43367, 16S; 0.60518, 1st codon;0.16149, 2nd codon; 2.80154, 3rd codon). For the ML analy-sis, global rearrangements and random sequence addition rep-licates (five rounds) were used with TBR branch swapping.The unweighted MP analysis was performed as describedabove.

RESULTS AND DISCUSSION

The seven major lineages of red algae. Seven well-supported lineages were identified within the red al-gae (Figs. 1 and 2). The Cyanidiales was the earliestdivergence in the plastid protein tree and was distinctfrom the remaining red algal lineages (i.e. the Por-phyridiales-(1), Porphyridiales-(2), Porphyridiales-(3), Bangiales, Florideophyceae, and Compsopogon-ales). The Porphyridiales-(2) and the Compsopogon-ales were united in a clade (495% BPP, 55% MP; Fig.2), whereas the Porphyridiales-(1) grouped togetherwith the monophyletic clade of BangialesþFlorid-eophyceae (495% BPP, 76% ML; Fig. 1). The exist-ence of these seven red algal lineages in the plastidtrees is consistent with analyses of nuclear SSU rDNA(Muller et al. 2001), plastid SSU rDNA (Oliveira andBhattacharya 2000), and multi-gene plastid data set(Yoon et al. 2002b, 2004).

Although we used an extensive concatenated dataset of 7PEP (2564 aa) in our analyses, the lineage re-lationships were weakly supported except for the earlydivergence point of the Cyanidiales and the Bangi-alesþFlorideophyceae sister group relationship. Wethen added 18S and 16S rDNA sequences to the seven-T

AB

LE

1(C

on

tin

ued

).

Tax

aS

pec

ies

So

urc

erb

cLps

aAps

aBps

bAps

bCps

bDtu

fA1

8S

rDN

A1

6S

rDN

A

Mar

chan

tia

poly

mor

pha

L.

Mes

ostigm

avi

ride

Lau

terb

orn

Gen

Ban

kN

AN

C_0

021

86

NC

_002

186

NC

_002

186

NC

_002

186

NC

_002

186

NC

_002

186

Pin

us

thu

nbe

rgia

na

Fra

nco

Gen

Ban

kN

AN

C_0

016

31

NC

_001

631

NC

_001

631

NC

_001

631

NC

_001

631

NA

Psi

lotu

mn

udu

m(L

.)B

eau

vois

Gen

Ban

kN

AN

C_0

033

86

NC

_003

386

NC

_003

386

NC

_003

386

NC

_003

386

NA

Zea

may

sL

.G

enB

ank

NA

NC

_00

16

66

NC

_001

666

NC

_001

666

NC

_001

666

NC

_001

666

NA

Gla

uco

ph

yta

Cya

nop

hora

para

doxa

Kors

hik

ov

Gen

Ban

kN

AN

C_0

016

75

NC

_001

675

NC

_001

675

NC

_001

675

NC

_001

675

NC

_001

675

Gla

uco

cyst

isn

osto

chin

earu

mIt

zig

soh

n

UT

EX

B1

92

9N

AA

Y8

761

95

AY

87

61

99

AY

87

620

1A

Y8

76

22

6A

Y8

76

25

2M

issi

ng

Cya

no

bac

teri

aN

osto

csp

.P

CC

71

20

Gen

Ban

kN

AN

C_0

032

72

NC

_003

272

NC

_003

272

NC

_003

272

NC

_003

272

NC

_003

272

Syn

echo

cyst

issp

.P

CC

680

3G

enB

ank

NA

NC

_00

09

11

NC

_000

911

NC

_000

911

NC

_000

911

NC

_000

911

NC

_000

911

The

rmos

ynec

hoco

ccu

sel

onga

tus

BP

-1G

enB

ank

NA

NC

_00

41

13

NC

_004

113

NC

_004

113

NC

_004

113

NC

_004

113

NC

_004

113

P1

,p

orp

hyr

idia

les-

(1);

P2

,p

orp

hyr

idia

les-

(2);

P3

,p

orp

hyr

idia

les-

(3).

Th

eac

cess

ion

nu

mb

ers

of

seq

uen

ces

det

erm

ined

inth

isst

ud

yar

esh

ow

nin

bo

ldte

xt.

aM

uller

etal

.(2

00

3).

HWAN SU YOON ET AL.486

gene DNA sequence data set (9GDS; total 10,463 bp) inan attempt to increase the phylogenetic resolution.Three additional Cyanidiales species were added totest the interrelationship of these taxa and this cladewas used to root the tree. The ML phylogeny tree in-ferred from these data using the site-specific GTRmodel was similar to the 7PEP tree, except for the po-sition of the Porphyridiales-(3) lineage (Fig. 2). Similarto the 7PEP phylogeny, the Compsopogonales andPorphyridiales-(2) grouped together (55% ML) andthe Porphyridiales-(1) showed a weak sister group re-lationship (495% BPP, 53% ML) to the Bangiales andFlorideophyceae. Our analyses highlight the inherentdifficulties in resolving the intra-lineage relationshipsof the red algae (except for the position of the Cya-nidiales and the monophyly of the BangialesþFlorid-eophyceae). This may reflect a rapid radiation of thered algal lineages or poor resolving power of plastidsequences.

There are two important fossils to interpret theevolutionary history of the red algae. One is the well-preserved Bangia-like multicellular filamentous fossil,Bangiomorpha pubescens (Butterfield 2000). This fossilwas found from the approximately 1200 million yearold (Ma) Hunting Formation in Somerset Island, Can-ada, and contains putative spores that indicate sexualdifferentiation. The second fossil is of Corallinales(florideophytes) that contain typical reproductivestructures from the 599 Ma Doushantuo Formation,China (Xiao et al. 1998, 2004). Xiao et al. (2004) sug-gested the florideophyte—bangiophyte divergence tohave occurred in the Neoproterozoic or earlier. Based

on these fossils and our phylogeny, we postulate thatafter the divergence of the Cyanidiales, the five majorred algal lineages radiated around 1200 Ma, likely overa relatively short evolutionary time period. Thereafter,

FIG. 1. Bangiophycean red algal phylo-geny inferred using the maximum likeli-hood (ML) method and the combinedplastid protein sequences of PSI P700chlorophyll a apoprotein A1, PSI P700chlorophyll a apoprotein A2, PSII reactioncenter protein D1, PSII 44 KD apoprotein,PSII D2 reaction center protein, RbcL,and TufA. The results of a ML bootstrapanalysis are shown above the branches,whereas the values below the branches re-sult from a maximum parsimony bootstrapanalysis. The thick branches represent495% Bayesian posterior probability.

FIG. 2. Bangiophycean red algal phylogeny inferred usingthe maximum likelihood (ML) method and the combined DNAsequences of 18S rDNA, 16S rDNA, PSI P700 chlorophyll aapoprotein A1, PSI P700 chlorophyll a apoprotein A2, PSIIreaction center protein D1, PSII 44 KD apoprotein, PSII D2reaction center protein, rbcL, and tufA. The results of a MLbootstrap analysis are shown above the branches, whereas thevalues below the branches result from a maximum parsimonybootstrap analysis. The thick branches represent 495% Bayesianposterior probability.

THE MAJOR LINEAGES OF RED ALGAE 487

the Florideophyceae diverged from the ancestor of theBangiales before 599 Ma when the coralline algae di-verged from the stem of florideophytes. Yoon et al.(2004) estimated divergence times using molecularclock methods and proposed the following dates forthe split of the red algae (1449–1513 Ma), Cyanidiales(1350–1416 Ma), and florideophytes (around 800 Ma,see Fig. 3 in Yoon et al. 2004).

Novel findings of our study. Porphyridiales-(2): Por-phyridiales-(2) is comprised of mostly pseudo-filamentous, filamentous, or colonial multicellulartaxa (Bangiopsis, Chroodactylon, Chroothece, Kyliniella,Purpureofilum, and Stylonema), but also includes uni-cellular forms such as Rhodosorus, Rhodospora, andRufusia (Fig. 3). Most members of this lineage con-tain sorbitol/digeneaside or only sorbitol as a low mo-lecular weight carbohydrate (Karsten et al. 2003,West et al. 2005). In addition all species of Porphy-ridiales-(2) contain putative group II introns in thepsaA gene at conserved positions (H. S. Yoon et al.unpublished data). These ribozymes are unique andare potentially a diagnostic character for this lineage.Group II introns are common in the green algaeand in green algal-derived plastids [e.g. Euglena andChlamydomonas (Odom et al. 2004, Perron et al. 2004,Sheveleva and Hallick 2004)] but apparently are rarein the red algae. Our preliminary phylogenetic analy-ses of the Pophyridiales-(2) group II introns show thatsequences at the homologous genic site 229 in psaAdiffer significantly in sequence from other intronspresent in Flintiella [position 219, Porphyridiales-(3)]and Rhodella [position 91, Porphyridiales-(1)]. It is like-ly that the introns at position 229 share a single origin(H. S. Yoon et al. unpublished data). This finding sug-gests that these mobile elements invaded the psaA gene(and potentially other sequences) in the plastid gen-ome of the common ancestor of Porphyridiales-(2) andhave been maintained in some taxa.

Rufusia pilicola diverges first in the Porphyridiales-(2). This poorly studied species was isolated fromsloth’s hair by one of the authors (F. D. Ott). The ma-terial came from the coastal city of Limon, Costa Rica(provided by Dr. Arroyo). The other species of Por-phyridiales-(2) occur in a variety of habitats, includingmarine, freshwater, and in caves. Bangiopsis and Kylini-ella make a well-supported monophyletic group withPurpureofilum that is sister to two Stylonema strains. TheSAG stain of S. alsidii formed a well supported a cladewith the UTEX strain. The S. alsidii UTEX strain hadbeen recognized as Goniotrichum elegans (Chauvin) V.May 1965, whereas the SAG strain was renamed fromGoniotrichum alsidii. Because these two S. alsidii strainsshow a high sequence divergence (79 substitutionsamong 2610 bp) in the psaA and rbcL genes, a moredetailed monographic study of Stylonema, including ex-amination of type specimens is required to verify thespecies delimitation.

Porphyridiales-(3): The Porphyridiales-(3) lineageincludes the three unicellular genera Erythrolobus,Flintiella, and Porphyridium. The three species of

Porphyridium are phylogenetically distinct from theFlintiella and Erythrolobus clade. It was previously re-ported that Flintiella and Porphyridium share the asso-ciation of the golgi with the mitochondria and ER(Scott et al. 1992) and floridoside as a low molecularweight carbohydrate (Karsten et al. 2003).

Compsopogonales: This lineage consists of onefreshwater order Compsopogonales and two marineorders Erythropeltidales and Rhodochaetales. Sah-lingia, Chlidophyllon, and Pyrophyllon are included inthis lineages (Kornmann 1989, Nelson et al. 2003).All of these species are multicellular, though withvaried morphologies. Although our two-gene phylo-geny (Fig. 3) did not support the monophyly ofCompsopogon spp. with Boldia erythrosiphon (as wouldbe expected; Rintoul et al. 1999, Muller et al. 2001),the nuclear SSU rDNA and the plastid multi-geneanalyses show a sister group relationship of the Er-ythropeltidales and Rhodochaetales (Zuccarello et al.2000, Muller et al. 2001, Yoon et al. 2002b) with theCompsopogonales and B. erythrosiphon. We were,however unable to isolate the psaA coding regionfrom B. erythrosiphon and only used the rbcL sequencein this analysis. Rintoul et al. (1999) suggested thatComposopogon coeruleus and Compsopogoniopsis le-ptocladus should be recognized as the single species,

FIG. 3. Bangiophycean red algal phylogeny inferred usingthe maximum likelihood (ML) method and the combined plastidprotein sequences of PSI P700 chlorophyll a apoprotein A1 andRbcL. The results of a ML bootstrap analysis are shown abovethe branches, whereas the values below the branches result froma maximum parsimony bootstrap analysis. The thick branchesrepresent 495% Bayesian posterior probability.

HWAN SU YOON ET AL.488

C. coeruleus, based on the identity in the sequence ofSSU rDNA and rbcL.

Taxonomic conclusions. A classification system for agroup of organisms should reflect its phylogeny. Areliable phylogeny ideally uses both broad taxonsampling and sufficient phylogenetic information.This study used analyses of seven- and nine-genedata sets with selected taxa, and a two-gene data setthat encompassed most of the bangiophycean genera.Although many clade interrelationships are still un-resolved, we clearly identified seven red algal lineag-es that should be recognized at the class-level. TheCyanidiophyceae diverged first in red algal evolutionand is separated from the remainder of the red algallineages. Hence, we propose the creation of two newsubphyla, Cyanidiophytina, for this grouping, andRhodophytina that encompasses the rest of the class-es. Saunders and Hommersand (2004) treated theCyanidiophyceae as the phylum Cyanidiophyta withanother phylum Rhodophyta under the subkingdomRhodoplantae. However, we believe that it is not ne-cessary to divide the red algae into two phyla becausethis group, including the cyanidiophytes, is phylo-genetically distinct in eukaryotic trees (Rodrıguez-Ezpeleta et al. 2005) and they share important bio-chemical features with other red algae such as thebiosynthesis of floridean starch in the cytoplasm(Barbier et al. 2005). In addition, all rhodophytesshare an important synapomorphy, a plastid boundby two membranes that lacks chl b or c. Rather, ourdata indicate that it is appropriate to divide therhodophytes into two subphyla, maintaining thetraditional characteristics of the phylum as a whole(Fig. 4). Under this taxonomic scheme the subphy-lum Rhodophytina contains six classes: Bangio-phyceae, Compsopogonophyceae, Florideophyceae,Porphyridiophyceae, Rhodellophyceae, and Stylo-nematophyceae. The interrelationships among theclasses of the subphylum Rhodophytina are unclearexcept for the monophyly of the Bangiophyceae and

the Florideophyceae. We did not find any phylo-genetic evidence to unite the Porphyridiales into asingle clade (as suggested by Saunders and Hommer-sand 2004). This (negative) evidence does not dis-prove Porphyridiales monophyly. However, itsuggests that if all three or a subset of the lineagesshare a monophyletic origin, the branch that unitesthem may prove difficult to establish unless a greatdeal more (or with higher phylogenetic resolution)sequence data is brought to bear on this issue. Ourtrees do, however, demonstrate an ancient split oftaxa formerly classified in the Porphyridiales. Forthese reasons, we chose to recognize this group asthree independent clades within the Rhodophytina.

Phylum Rhodophyta Wettstein 1901Subphylum 1: Cyanidiophytina H. S. Yoon, K. M.

Muller, R. G. Sheath, F. D. Ott et D. Bhattacharya,subphylum nov.

Rhodophyta unicellularis, forma globosa vel el-liptica; habitatio thermae acidae; cum pariescrassus vel paries absens; heterotrophicus vel au-totophicus; cellulae divisionem vel endospora.Unicellular red algae, spherical or elliptical inshape, inhabiting in acidic and high temperatureenvironment; thick cell wall or lack of cell wall;facultative heterotrophs or obligate photo-autotrophs; cell division or endospore form-ation.

Class Cyanidiophyceae Merola, Castaldo, DeLuca, Gambardella, Musacchio et Taddei 1981

Order Cyanidiales Christensen 1962Family 1 Cyanidiaceae Geitler 1935Genera Cyanidium, CyanidioschyzonFamily 2 Galdieriaceae Merola, Castaldo, DeLuca, Gambardella, Musacchio et Taddei 1981Genus Galdieria

FIG. 4. Red algal phylogeny and alterna-tive taxonomic schemes.

THE MAJOR LINEAGES OF RED ALGAE 489

Subphylum 2: Rhodophytina

Unicellular, pseudofilamentous or multicellularred algae; various plastid morphologies and or-ganellar associations; life histories unknown orwhere known biphasic or triphasic.

Class 1: Bangiophyceae Wettstein 1901

Order Bangiales Nageli 1847Family Bangiaceae Engler 1892Genera Bangia, Dione, Minerva, Porphyra, Pseudo-bangia

Class 2: Compsopogonophyceae G. W. Saunders etHommersand 2004

Order 1 Compsopogonales Skuja 1939Family 1 Boldiaceae Herndon 1964Genus BoldiaFamily 2 Compsopogonaceae Schmitz in Engleret Prantl 1896Genus CompsopogonOrder 2 Erythropeltidales Garbary, Hansen etScagel 1980Family Erythrotrichiaceae G. M. Smith 1933Genera Erythrotrichia, Chlidophyllon, Erythrocladia,

Pyrophyllon, SahlingiaOrder 3 Rhodochaetales Bessey 1907Family Rhodochaetaceae Schmitz in Engler etPrantl 1896Genus Rhodochaete

Class 3: Florideophyceae Cronquist 1960Multiple orders.Class 4: Porphyridiophyceae H. S. Yoon, K. M.

Muller, R. G. Sheath, F. D. Ott et D. Bhattacharya,class nov.

Rhodophyta unicellularis; chloroplasti singulariset ramosi vel stellaris cum pyrenoides; Golgi cumreticulo endoplasmatico et mitochondrion conso-ciatus; cellulae cum floridoside; reproductio adivisio cellulosa.Unicellular red algae with a single branched orstellate plastid with or without pyrenoid; Golgiassociation with mitochondria and ER; cells withfloridoside as a low molecular weight carbohy-drate; reproduction by cell division.Order Porphyridiales Kylin ex Skuja 1939Family Porphyridiaceae Skuja 1939Genera Porphyridium, Erythrolobus, Flintiella

Class 5: Rhodellophyceae Cavalier-Smith 1998

Order Rhodellales ord. nov. H. S. Yoon, K. M.Muller, R. G. Sheath, F. D. Ott et D. Bhattacharya,order nov.Rhodophyta unicelluaris; chloroplasti singulariset lobati cum pyrenoides in centro vel a centro;Golgi cum reticulo endoplasmatico et nucleusconsociatus; cum mannitol; reproductio a divisiocellulosa.

Unicellular red algae; a single highly lobed plastidwith eccentric or centric pyrenoid, Golgi associa-tion with nucleus and ER; contains mannitol; re-production by cell division.Family Rhodellaceae fam. nov. H. S. Yoon, K. M.Muller, R. G. Sheath, F. D. Ott et D. Bhattacharya,fam. nov.Characters as for orderGenera Rhodella, Dixoniella, Glaucosphaera

Class 6: Stylonematophyceae H.S. Yoon, K.M.Muller, R.G. Sheath, F.D. Ott et D. Bhattacharya,classis nov.

Rhodophyta unicelluaris, pseudofilamentosis velfilamentosis; chloroplasti cum morphologiaevariabilis et cum vel sine pyrenoides; Golgi cumreticulo endoplasmatico et mitochondrion conso-ciatus; reproductio a division cellulosa vel mono-spora.Unicellular or pseudofilamentous or filamentousred algae; various plastid morphologies with orwithout pyrenoid; Golgi association with mito-chondria and ER; reproduction by cell divisionor monospores.Order Stylonematales Drew 1956Family Stylonemataceae Drew 1956Genera Stylonema, Bangiopsis, Chroodactylon,Chroothece, Purpureofilum, Rhodosorus, Rhodospora,Rufusia

This work was supported by grants from the National ScienceFoundation awarded to D. B., K. M. M., and R. G. S. (DEB01-07754) and to D. B. (MCB 02-36631).

Adl, S. M., Simpson, A. G., Farmer, M. A., Andersen, R. A.,Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G.,Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S.,Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J.,Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L.,Moestrup, O., Mozley-Standridge, S. E., Nerad, T. A., Shearer,C. A., Smirnov, A. V., Spiegel, F. W. & Taylor, M. F. 2005. Thenew higher level classification of eukaryotes with emphasis onthe taxonomy of protists. J. Eukaryot. Microbiol. 52:399–451.

Barbier, G., Oesterholt, C., Larson, M. D., Halgren, R. G., Wilker-son, C., Garavito, R. M., Benning, C. & Weber, A. P. M. 2005.Comparative genomics of two closely related unicellularthermo-acidophilic red algae, Galdieria sulphuraria and Cyanid-ioschyzon merolae, reveals the molecular basis of the metabolicflexibility of Galdieria sulphuraria and significant differences incarbohydrate metabolism of both algae. Plant Physiol. 137:440–74.

Bhattacharya, D. & Medlin, L. 1995. The phylogeny of plastids: areview based on comparisons of small-subunit ribosomal RNAcoding regions. J. Phycol. 31:489–98.

Bhattacharya, D., Yoon, H. S. & Hackett, J. D. 2004. Photosyntheticeukaryotes unite: endosymbiosis connects the dots. BioEssays26:50–60.

Burger, G., Saint-Louis, D., Gray, M. W. & Lang, B. F. 1999. Com-plete sequence of the mitochondrial DNA of the red algaPorphyra purpurea. Cyanobacterial introns and shared ancestryof red and green algae. Plant Cell 11:1675–94.

Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: im-plications for the evolution of sex, multicellularity, and theMesoproterozoic/Neoproterozoic radiation of eukaryotes.Paleobiology 26:386–404.

HWAN SU YOON ET AL.490

Cavalier-Smith, T. 1998. A revised six-kingdom system of life. Biol.Rev. 73:203–66.

Delwiche, C. F. & Palmer, J. D. 1996. Rampant horizontal transferand duplication of rubisco genes in eubacteria and plastids.Mol. Biol. Evol. 13:873–82.

Delwiche, C. F., Kuhsel, M. & Palmer, J. D. 1995. Phylogeneticanalysis of tufA sequences indicates a cyanobacterial origin ofall plastids. Mol. Phylogenet. Evol. 4:110–28.

Felsenstein, J. 1985. Confidence limits on phylogenies: an ap-proach using the bootstrap. Evolution 39:783–91.

Felsenstein, J. 2002. PHYLIP (Phylogeny Inference Package) 3.6. De-partment of Genetics, University of Washington, Seattle, WA.

Freshwater, D. W., Fredericq, S., Butler, B. S., Hommersand, M. H.& Chase, M. W. 1994. A gene phylogeny of the red algae(Rhodophyta) based on plastid rbcL. Proc. Natl. Acad. Sci. USA91:7281–5.

Gabrielson, P. W., Garbary, D. J. & Scagel, R. F. 1985. The nature ofthe ancestral red alga: inferences from a cladistic analysis. Bio-systems 18:335–46.

Gabrielson, P. W., Garbary, D. J., Sommerfeld, M. R., Townsend, R.A. & Tyler, P. L. 1990. Phylum Rhodophyta. In Margulis, L.,Corliss, J. O., Melkonian, M. & Chapman, D. J. [Eds] Handbookof Protoctista: The Structure, Cultivation, Habitats and Life Historiesof the Eukayotic Microorganisms and Their Descendants Exclusive ofAnimals, Plants and Fungi. Jones and Bartlett Pub., Boston, 914pp.

Garbary, D. J. & Gabrielson, P. W. 1990. Taxonomy and evolution.In Cole, K. M. & Sheath, R. G. [Eds] Biology of the Red Algae.Cambridge University Press, New York, pp. 477–98.

Gilbert, D. G. 1995. SeqPup, A Biological Sequence Editor and AnalysisProgram for Macintosh Computer. Indiana University, Blooming-ton, IN.

Graham, L. D. & Wilcox, L. W. 2000. Algae. Prentice-Hall, Inc., NJ,640 pp.

Guindon, S. & Gascuel, O. 2003. A simple, fast, and accurate al-gorithm to estimate large phylogenies by maximum likeli-hood. Syst. Biol. 52:696–704.

Huelsenbeck, J. P. & Ronquist, F. 2001. MRBAYES: Bayesian in-ference of phylogenetic trees. Bioinformatics 17:754–5.

Inagaki, Y., Simpson, A., Dacks, J. & Roger, A. 2004. Phylogeneticartifacts can be caused by leucine, serine, and arginine codonusage heterogeneity: dinoflagellate plastid origins as a casestudy. Syst. Biol. 53:582–93.

Jones, D. T., Taylor, W. R. & Thornton, J. M. 1992. The rapidgeneration of mutation data matrices from protein sequences.Comput. Appl. Biosci. 8:275–82.

Karsten, U., West, J. A., Zuccarello, G. C., Engbrodt, R., Yokoyama,A., Hara, Y. & Brodie, J. 2003. Low molecular weight carbo-hydrates of the Bangiophycidae (Rhodophyta). J. Phycol.39:584–9.

Kornmann, P. 1989. Sahlingia n. ov. gen. based on Erythrocladia sub-integra (Erythropeltidales, Rhodophyta). Br. Phycol. J. 24:223–8.

McFadden, G. I. 1999. Plastids and protein targeting. J. Eukar. Mi-crobiol. 46:339–46.

Moreira, D., Le Guyader, H. & Phillippe, H. 2000. The originof red algae and the evolution of chloroplasts. Nature 405:69–72.

Muller, K. M., Cole, K. M. & Sheath, R. G. 2003. Systematics ofBangia (Bangiales, Rhodophyta) in North America. II. Bio-geographical trends in karyology: chromosome numbers andlinkage with gene sequence phylogenetic trees. Phycologia42:209–19.

Muller, K. M., Oliveira, M. C., Sheath, R. G. & Bhattacharya, D.2001. Ribosomal DNA phylogeny of the Bangiophycidae(Rhodophyta) and the origin of secondary plastids. Am. J.Bot. 88:1390–400.

Nelson, W. A., Broom, J. E. & Farr, T. J. 2003. Pyrophyllon andChlidophyllon (Erythropeltidales, Rhodophyta): two new gen-era for obligate epiphytic species previously placed in Porphyra,and a discussion of the orders Erythropeltidales and Bangi-ales. Phycologia 42:308–14.

Odom, O. W., Shenkenberg, D. L., Garcia, J. A. & Herrin, D. L.2004. A horizontally acquired group II intron in the chlorop-

last psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity. RNA10:1097–107.

Oliveira, M. C. & Bhattacharya, D. 2000. Phylogeny of the Bangio-phycidae (Rhodophyta) and the secondary endosymbioticorigin of algal plastids. Am. J. Bot. 87:482–92.

Perron, K., Goldschmidt-Clermont, M. & Rochaix, J. D. 2004. Amultiprotein complex involved in chloroplast group II intronsplicing. RNA 10:704–11.

Pinto, G., Albertano, P., Ciniglia, C., Cozzolino, S., Pollio, A., Yoon,H. S. & Bhattacharya, D. 2003. Comparative approaches tothe taxonomy of the genus Galdieria Merola (Cyanidiales, Rho-dophyta). Cryptogamie Algol. 24:13–32.

Ragan, M. A., Bird, C. J., Rice, E. L., Gutell, R. R., Murphy, C. A. &Singh, R. K. 1994. A molecular phylogeny of the marine redalgae (Rhodophyta) based on the nuclear small-subunit rRNAgene. Proc. Natl. Acad. Sci. USA 91:7276–80.

Rintoul, T. L., Sheath, R. G. & Vis, M. L. 1999. Systematics andbiogeography of the Compsopogonales (Rhodophyta) withemphasis on the freshwater families in North America. Phyco-logia 38:517–27.

Rodrıguez-Ezpeleta, N., Brinkmann, H., Burey, S. C., Roure, B.,Burger, G., Loffelhardt, W., Bohnert, H. J., Philippe, H. &Lang, B. F. 2005. Monophyly of primary photosyntheticeukaryotes: green plants, red algae, and glaucophytes. Curr.Biol. 15:1325–30.

Sanderson, M. J., Wojciechowski, M. F., Hu, J. M., Khan, T. S. &Brady, S. G. 2000. Error, bias, and long-branch attraction indata for two chloroplast photosystem genes in seed plants.Mol. Biol. Evol. 17:782–97.

Saunders, G. W. & Hommersand, M. H. 2004. Assessing red algalsupraordinal diversity and taxonomy in the context of con-temporary systematic data. Am. J. Bot. 91:1494–507.

Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A.2002. TREE-PUZZLE: maximum likelihood phylogeneticanalysis using quartets and parallel computing. Bioinformatics18:502–4.

Scott, J. L., Broadwater, S. T., Saunders, B. D., Thomas, J. P. &Gabrielson, P. W. 1992. Ultrastucture of vegetative organiza-tion and cell division in the unicellular red alga Dixoniella griseagen. nov. (Rhodophyta) and a consideration of the genus Rho-della. J. Phycol. 28:649–60.

Shapiro, B., Rambaut, A. & Drummond, A. J. 2005. Choosing ap-propriate substitution models for the phylogenetic analysis ofprotein-coding sequences. Mol. Biol. Evol. 23:7–9.

Sheveleva, E. V. & Hallick, R. B. 2004. Recent horizontal introntransfer to a chloroplast genome. Nucleic Acids Res. 32:803–10.

Swofford, D. L. 2004. PAUP*: Phylogenetic Analysis Using Parsimony(* and Other Methods) 4.0b10. Sinauer Associates, Sunderland,MA.

Valentin, K. & Zetsche, K. 1990. Rubisco genes indicate a closephylogenetic relation between the plastids of Chromophytaand Rhodophyta. Plant Mol. Biol. 15:575–84.

Van de Peer, Y. & De Wachter, R. 1997. Evolutionary relation-ships among the eukaryotic crown taxa taking into accountsite-to-site rate variation in 18S rRNA. J. Mol. Evol. 45:619–30.

West, J. A., Zuccarello, G. C., Scott, J., Pickett-Heaps, J. & Kim, G.H. 2005. Observations on Purpureofilum apyrenoidigerum gen. etsp. nov. from Australia and Bangiopsis subsimplex from India(Stylonematales, Bangiophyceae, Rhodophyta). Phycol. Res.53:49–66.

Xiao, S., Knoll, A. H., Yuan, X. & Pueschel, C. M. 2004. Phosp-hatized multicellular algae in the Neoproterozoic DoushantuoFormation, China, and the early evolution of florideophytered algae. Am. J. Bot. 91:214–27.

Xiao, S., Zhang, Y. & Knoll, A. H. 1998. Three-dimensional pres-ervation of algae and animal embryos in a Neoproterozoicphosphorite. Nature 391:553–8.

Yoon, H. S., Hackett, J. D. & Bhattacharya, D. 2002a. A single or-igin of the peridinin—and fucoxanthin-containing plastids in

THE MAJOR LINEAGES OF RED ALGAE 491

dinoflagellates through tertiary endosymbiosis. Proc. Natl.Acad. Sci. USA 99:11724–9.

Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattacharya,D. 2004. A molecular timeline for the origin of photosyntheticeukaryotes. Mol. Biol. Evol. 21:809–18.

Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. 2002b.The single, ancient origin of chromist plastids. Proc. Natl. Acad.Sci. USA 99:15507–12.

Yoon, H. S., Hackett, J. D., Van Dolah, F. M., Nosenko, T., Lidie, K.L. & Bhattacharya, D. 2005. Tertiary endosymbiosis drivengenome evolution in dinoflagellate algae. Mol. Biol. Evol.22:1299–308.

Zuccarello, G., West, J., Bitans, A. & Kraft, G. 2000. Molecularphylogeny of Rhodochaete parvula (Bangiophycidae, Rho-dophyta). Phycologia 39:75–81.

HWAN SU YOON ET AL.492