Cooling with the heat of the sun and utilization of passive solar energy.

26
COOLING WITH THE HEAT OF THE SUN AND UTILIZATION OF PASSIVE SOLAR ENERGY George Lampadas, Marco Mendes & Moses Aglina Renewable Energy Technology University of Applied Sciences 02.04.2013

Transcript of Cooling with the heat of the sun and utilization of passive solar energy.

COOLING WITH THE HEAT OF THE SUN AND UTILIZATION OF PASSIVE

SOLAR ENERGY

George Lampadas, Marco Mendes & Moses Aglina

Renewable Energy Technology

University of Applied Sciences

02.04.2013

CONTENTS

2. Technical Principles of the Systems2.a. Cooling with the heat of the sun.2.b. Utilization of passive solar energy.

3. Economical Analysis/Cost

4. Environmental Analysis

5. Future of Solar Energy in The World

1. Introduction

Renewable Energy Technology

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

Solar energy can be utilized in various ways:• Provide electricity• Mechanical power• Heat • Lighting

Passive solar energy utilizes building constituents such as walls, floors, roofs, windows, exterior building elements and landscaping to control heat generated by sun. 

1. Introduction

George Lampadas, Marco Mendes & Moses Aglina

Advantages: Passive solar heating and cooling can save substantial electricity

bills Creates a pleasant environment. Employing the power of the sun can substantially reduce electricity

peaks during the summer. Reduce CO2 emissions.

University of Applied Sciences

2. Technical Principles of the Systems

Renewable Energy Technology

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Solar cooling uses heat from the sun to drive a thermal cooling process. This displaces the use of the fossil fuel derived electricity that would otherwise be used in the conventional mechanical cooling process.

2.a. Cooling with the heat of the sun.

The Core Solar Cooling Technologies

Solar Heat

Collection

Renewable Energy Technology

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

• Air collectors• Flat plate collectors

• Evacuated tube collectors

• Tracking collectors

Thermal CoolingProcess

• Absorption chillerso Stage oneo Stage two

• Adsorption chillers• Desiccant cooling

o Solido Liquid

Additionally, auxiliary equipment (cooling towers, buffer tanks, heat exchangers) are very important.

The Absorption Method

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Absorption chillers differ from the more prevalent compression chillers in that the cooling effect is driven by heat energy, rather than mechanical energy.The simplest absorption machines are residential refrigerators, with a gas flame at the bottom, ice cubes at the top and no electricity involved. An absorption chiller is larger and more complicated, but the basic principle is the same.

Renewable Energy Technology

The Absorption Method, Single Stage

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

The single-effect “cycle” refers to the transfer of fluids through the four major components of the refrigeration machine - evaporator, absorber, generator and condenser. Single-effect LiBr/H2O absorption chillers use low pressure steam or hot water as the heat source. The water is able to evaporate and extract heat in the evaporator because the system is under a partial vacuum. The thermal efficiency of single-effect absorption systems is low.

The Absorption Method, Double StageThe double-effect chiller differs from the single-effect in that there are two condensers and two generators to allow for more refrigerant boil-off from the absorbent solution. The image shows the double effect absorption cycle on a Pressure-Temperature diagram.The higher temperature generator uses the externally supplied steam to boil the refrigerant from the weak absorbent.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

The Adsorption Method

The adsorption (solid vapor) cycles have distinct advantage over the other heat driven refrigeration cycle, in their ability to be driven by heat of relatively low, near environmental temperature. Under the cycle, waste heat below 100 degrees can be recovered. Many adsorbent/adsorbate pairs have been used in adsorption refrigeration/heat pumping system. The system:• Does not require a wet cooling tower.• Does not require management of solution chemistry.• Can run off a lower temperature heat source.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

The Desiccant Method

Conventional vapor-compression cooling systems are not designed to handle temperatureand humidity loads separately. As a result, oversized compressors are often installed to dehumidify the incoming air. Also, vapor compression systems are often operated for long cycles and at low temperatures to meet humidity requirements, which reduces their efficiency and requires reheating the dry, cold air to achieve some degree of comfort. Both methods are expensive. Desiccant systems, however, can supplement conventional air conditioners.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

The Cooling Processes

Processes are differentiated between closed refrigerant circulation systems (for producing cold water) and open systems according to the way in which the process is carried out: that is, whether or not the refrigerant comes into contact with the atmosphere.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

The Open cooling systems.Is used for dehumidification and evaporative cooling. Both processes can further be classified according to either liquid or solid sorbents. In addition to the available refrigerating capacity, the relationship between drive heat and realized cold energy (coefficient of performance; COP) is also an essential performance figure of such systems.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

2. b. Utilization of Passive Solar Energy

Definition:Passive solar heating systems make use of the building components to collect, store, and distribute solar heat gains to reduce the demand for space heating. A passive solar system does not require the use of mechanical equipment because the heat flow is by natural means, such as radiation, convection, and conductance, and the thermal storage is in the structure itself.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

A passive solar heating system is made up of the following principles, all of which must work together for the design to be successful:

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

• Aperture (Collector): In a passive solar heating system, the aperture (collector) is a large glass (window) area through which sunlight enters the building.

• Absorber: The hard, darkened surface of the storage element is known as the absorber. This surface sits in the direct path of sunlight. Sunlight then hits the surface and is absorbed as heat.

• Thermal mass: The thermal mass is made up of materials that retain or store the heat produced by sunlight.

• Distribution: Is the method by which solar heat circulates from the collection and storage points to different areas of the building.

• Control: Elements to help control under- and overheating of a passive solar heating system include roof overhangs, electronic sensing devices, operable vents and dampers.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

Passive Solar Heating Concepts

Direct gain: In a direct gain design, sunlight enters the house through south-facing windows and strikes floors and walls, which absorb and store the solar heat.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

Indirect gain: The building envelope captures solar heat, which is then conducted and/or convected to the building interior, possibly with a time delay of up to 8 h.

Isolated gain passive: Solar energy is converted to heat outside the insulated building envelope and then delivered to the building storage. This can be done with two ways:

With gravity-driven convection.  With a small fan ( "hybrid" system).

Renewable Energy Technology

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

3.Economic and Cost Analysis of the Systems.

Cost according to Energy Star standards for energy-efficient construction and passive solar design:• Passive solar homes typically result in energy savings from 40 to 75%

• Additional construction costs associated with such are typically 0 to 10%.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

Simulation

House cost

200€

Average Electricity Cost

(Monthly ) 100€ 150€ 200€ 250€ 300€

Installments (year) 10 15 20

Economic and Cost Analysis of the Systems.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

100,00€ 12.000,00€ 212.000,00€ 21.200,00€ 7.200,00€ 207.200,00€ 20.720,00€ 3.000,00€ 203.000,00€ 20.300,00€ 7.200,00€ 217.200,00€ 21.720,00€ 3.000,00€ 150,00€ 18.000,00€ 218.000,00€ 21.800,00€ 10.800,00€ 210.800,00€ 21.080,00€ 4.500,00€ 204.500,00€ 20.450,00€ 10.800,00€ 220.800,00€ 22.080,00€ 4.500,00€ 200,00€ 24.000,00€ 224.000,00€ 22.400,00€ 14.400,00€ 214.400,00€ 21.440,00€ 6.000,00€ 206.000,00€ 20.600,00€ 14.400,00€ 224.400,00€ 22.440,00€ 6.000,00€ 250,00€ 30.000,00€ 230.000,00€ 23.000,00€ 18.000,00€ 218.000,00€ 21.800,00€ 7.500,00€ 207.500,00€ 20.750,00€ 18.000,00€ 228.000,00€ 22.800,00€ 7.500,00€ 300,00€ 36.000,00€ 236.000,00€ 23.600,00€ 21.600,00€ 221.600,00€ 22.160,00€ 9.000,00€ 209.000,00€ 20.900,00€ 21.600,00€ 231.600,00€ 23.160,00€ 9.000,00€

100,00€ 18.000,00€ 218.000,00€ 14.533,33€ 10.800,00€ 210.800,00€ 14.053,33€ 4.500,00€ 204.500,00€ 13.633,33€ 10.800,00€ 220.800,00€ 14.720,00€ 4.500,00€ 150,00€ 27.000,00€ 227.000,00€ 15.133,33€ 16.200,00€ 216.200,00€ 14.413,33€ 6.750,00€ 206.750,00€ 13.783,33€ 16.200,00€ 226.200,00€ 15.080,00€ 6.750,00€ 200,00€ 36.000,00€ 236.000,00€ 15.733,33€ 21.600,00€ 221.600,00€ 14.773,33€ 9.000,00€ 209.000,00€ 13.933,33€ 21.600,00€ 231.600,00€ 15.440,00€ 9.000,00€ 250,00€ 45.000,00€ 245.000,00€ 16.333,33€ 27.000,00€ 227.000,00€ 15.133,33€ 11.250,00€ 211.250,00€ 14.083,33€ 27.000,00€ 237.000,00€ 15.800,00€ 11.250,00€ 300,00€ 54.000,00€ 254.000,00€ 16.933,33€ 32.400,00€ 232.400,00€ 15.493,33€ 13.500,00€ 213.500,00€ 14.233,33€ 32.400,00€ 242.400,00€ 16.160,00€ 13.500,00€

100,00€ 24.000,00€ 224.000,00€ 11.200,00€ 14.400,00€ 214.400,00€ 10.720,00€ 6.000,00€ 206.000,00€ 10.300,00€ 14.400,00€ 224.400,00€ 11.220,00€ 6.000,00€ 150,00€ 36.000,00€ 236.000,00€ 11.800,00€ 21.600,00€ 221.600,00€ 11.080,00€ 9.000,00€ 209.000,00€ 10.450,00€ 21.600,00€ 231.600,00€ 11.580,00€ 9.000,00€ 200,00€ 48.000,00€ 248.000,00€ 12.400,00€ 28.800,00€ 228.800,00€ 11.440,00€ 12.000,00€ 212.000,00€ 10.600,00€ 28.800,00€ 238.800,00€ 11.940,00€ 12.000,00€ 250,00€ 60.000,00€ 260.000,00€ 13.000,00€ 36.000,00€ 236.000,00€ 11.800,00€ 15.000,00€ 215.000,00€ 10.750,00€ 36.000,00€ 246.000,00€ 12.300,00€ 15.000,00€ 300,00€ 72.000,00€ 272.000,00€ 13.600,00€ 43.200,00€ 243.200,00€ 12.160,00€ 18.000,00€ 218.000,00€ 10.900,00€ 43.200,00€ 253.200,00€ 12.660,00€ 18.000,00€

Electricity €Years A0 A40 A75 B40 B75 C40 C75100,00€ 10 212.000,00€ 207.200,00€ 203.000,00€ 217.200,00€ 213.000,00€ 227.200,00€ 223.000,00€ 150,00€ 10 218.000,00€ 210.800,00€ 204.500,00€ 220.800,00€ 214.500,00€ 230.800,00€ 224.500,00€ 200,00€ 10 224.000,00€ 214.400,00€ 206.000,00€ 224.400,00€ 216.000,00€ 234.400,00€ 226.000,00€ 250,00€ 10 230.000,00€ 218.000,00€ 207.500,00€ 228.000,00€ 217.500,00€ 238.000,00€ 227.500,00€ 300,00€ 10 236.000,00€ 221.600,00€ 209.000,00€ 231.600,00€ 219.000,00€ 241.600,00€ 229.000,00€ 100,00€ 15 218.000,00€ 210.800,00€ 204.500,00€ 220.800,00€ 214.500,00€ 230.800,00€ 224.500,00€ 150,00€ 15 227.000,00€ 216.200,00€ 206.750,00€ 226.200,00€ 216.750,00€ 236.200,00€ 226.750,00€ 200,00€ 15 236.000,00€ 221.600,00€ 209.000,00€ 231.600,00€ 219.000,00€ 241.600,00€ 229.000,00€ 250,00€ 15 245.000,00€ 227.000,00€ 211.250,00€ 237.000,00€ 221.250,00€ 247.000,00€ 231.250,00€ 300,00€ 15 254.000,00€ 232.400,00€ 213.500,00€ 242.400,00€ 223.500,00€ 252.400,00€ 233.500,00€ 100,00€ 20 224.000,00€ 214.400,00€ 206.000,00€ 224.400,00€ 216.000,00€ 234.400,00€ 226.000,00€ 150,00€ 20 236.000,00€ 221.600,00€ 209.000,00€ 231.600,00€ 219.000,00€ 241.600,00€ 229.000,00€ 200,00€ 20 248.000,00€ 228.800,00€ 212.000,00€ 238.800,00€ 222.000,00€ 248.800,00€ 232.000,00€ 250,00€ 20 260.000,00€ 236.000,00€ 215.000,00€ 246.000,00€ 225.000,00€ 256.000,00€ 235.000,00€ 300,00€ 20 272.000,00€ 243.200,00€ 218.000,00€ 253.200,00€ 228.000,00€ 263.200,00€ 238.000,00€

Electricity €Years A0 A40 A75 B40 B75 C40 C75 A40 A75 B40 B75 C40 C75100,00€ 21.200,00€ 20.720,00€ 20.300,00€ 21.720,00€ 21.300,00€ 22.720,00€ 22.300,00€ 2,26% 4,25% -2,45% -0,47% -7,17% -5,19%150,00€ 21.800,00€ 21.080,00€ 20.450,00€ 22.080,00€ 21.450,00€ 23.080,00€ 22.450,00€ 3,30% 6,19% -1,28% 1,61% -5,87% -2,98%200,00€ 22.400,00€ 21.440,00€ 20.600,00€ 22.440,00€ 21.600,00€ 23.440,00€ 22.600,00€ 4,29% 8,04% -0,18% 3,57% -4,64% -0,89%250,00€ 23.000,00€ 21.800,00€ 20.750,00€ 22.800,00€ 21.750,00€ 23.800,00€ 22.750,00€ 5,22% 9,78% 0,87% 5,43% -3,48% 1,09%300,00€ 23.600,00€ 22.160,00€ 20.900,00€ 23.160,00€ 21.900,00€ 24.160,00€ 22.900,00€ 6,10% 11,44% 1,86% 7,20% -2,37% 2,97%100,00€ 14.533,33€ 14.053,33€ 13.633,33€ 14.720,00€ 14.300,00€ 15.386,67€ 14.966,67€ 3,30% 6,19% -1,28% 1,61% -5,87% -2,98%150,00€ 15.133,33€ 14.413,33€ 13.783,33€ 15.080,00€ 14.450,00€ 15.746,67€ 15.116,67€ 4,76% 8,92% 0,35% 4,52% -4,05% 0,11%200,00€ 15.733,33€ 14.773,33€ 13.933,33€ 15.440,00€ 14.600,00€ 16.106,67€ 15.266,67€ 6,10% 11,44% 1,86% 7,20% -2,37% 2,97%250,00€ 16.333,33€ 15.133,33€ 14.083,33€ 15.800,00€ 14.750,00€ 16.466,67€ 15.416,67€ 7,35% 13,78% 3,27% 9,69% -0,82% 5,61%300,00€ 16.933,33€ 15.493,33€ 14.233,33€ 16.160,00€ 14.900,00€ 16.826,67€ 15.566,67€ 8,50% 15,94% 4,57% 12,01% 0,63% 8,07%100,00€ 11.200,00€ 10.720,00€ 10.300,00€ 11.220,00€ 10.800,00€ 11.720,00€ 11.300,00€ 4,29% 8,04% -0,18% 3,57% -4,64% -0,89%150,00€ 11.800,00€ 11.080,00€ 10.450,00€ 11.580,00€ 10.950,00€ 12.080,00€ 11.450,00€ 6,10% 11,44% 1,86% 7,20% -2,37% 2,97%200,00€ 12.400,00€ 11.440,00€ 10.600,00€ 11.940,00€ 11.100,00€ 12.440,00€ 11.600,00€ 7,74% 14,52% 3,71% 10,48% -0,32% 6,45%250,00€ 13.000,00€ 11.800,00€ 10.750,00€ 12.300,00€ 11.250,00€ 12.800,00€ 11.750,00€ 9,23% 17,31% 5,38% 13,46% 1,54% 9,62%300,00€ 13.600,00€ 12.160,00€ 10.900,00€ 12.660,00€ 11.400,00€ 13.160,00€ 11.900,00€ 10,59% 19,85% 6,91% 16,18% 3,24% 12,50%

Electricity € Years A40 A75 B40 B75 C40 C75100,00€ 2,26% 4,25% -2,45% -0,47% -7,17% -5,19%150,00€ 3,30% 6,19% -1,28% 1,61% -5,87% -2,98%

0%

A0 A40 A75 B40 B75

210.000,00€ 75%0%

20

40% 75%

5%

10

15

20

10

200.000,00€ 40%

10

15

Investm ent VS Electricity € 10 Years

€ 9.500,00

€ 10.000,00

€ 10.500,00

€ 11.000,00

€ 11.500,00

€ 12.000,00

1 2 3 4 5 6

Additonal Costs Vs Savings 20 Years/100€

€ 10.000,00

€ 10.500,00

€ 11.000,00

€ 11.500,00

€ 12.000,00

€ 12.500,00

€ 13.000,00

€ 13.500,00 1 2 3 4

Additonal Costs Vs Savings 20 Years/300€

Simulation(Cont.)

Electricity € Years A40 A75 B40 B75 C40 C75 € 100.00

10

2.26% 4.25% -2.45% -0.47% -7.17% -5.19% € 150.00 3.30% 6.19% -1.28% 1.61% -5.87% -2.98% € 200.00 4.29% 8.04% -0.18% 3.57% -4.64% -0.89% € 250.00 5.22% 9.78% 0.87% 5.43% -3.48% 1.09% € 300.00 6.10% 11.44% 1.86% 7.20% -2.37% 2.97% € 100.00

15

3.30% 6.19% -1.28% 1.61% -5.87% -2.98% € 150.00 4.76% 8.92% 0.35% 4.52% -4.05% 0.11% € 200.00 6.10% 11.44% 1.86% 7.20% -2.37% 2.97% € 250.00 7.35% 13.78% 3.27% 9.69% -0.82% 5.61% € 300.00 8.50% 15.94% 4.57% 12.01% 0.63% 8.07% € 100.00

20

4.29% 8.04% -0.18% 3.57% -4.64% -0.89% € 150.00 6.10% 11.44% 1.86% 7.20% -2.37% 2.97% € 200.00 7.74% 14.52% 3.71% 10.48% -0.32% 6.45% € 250.00 9.23% 17.31% 5.38% 13.46% 1.54% 9.62% € 300.00 10.59% 19.85% 6.91% 16.18% 3.24% 12.50%

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

Simulation(Cont.) Diagrams.

1 2 3 4 5

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

Investment VS Electricity €10 Years

B40 B75 C40 C75

1 2 3 4 5

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

Investment VS Electricity €15 Years

Series1 Series2 Series3 Series4

1 2 3 4 5

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Investment VS Electricity € 20 Years

Series1 Series2 Series3 Series4 Series5 Series6

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

Simulation(Cont.)Electricity € Years A0 A40 A75 B40 B75 C40 C75 € 100.00

10

€ 21,200.00

€ 20,720.00

€ 20,300.00

€ 21,720.00

€ 21,300.00

€ 22,720.00

€ 22,300.00

€ 150.00

€ 21,800.00

€ 21,080.00

€ 20,450.00

€ 22,080.00

€ 21,450.00

€ 23,080.00

€ 22,450.00

€ 200.00

€ 22,400.00

€ 21,440.00

€ 20,600.00

€ 22,440.00

€ 21,600.00

€ 23,440.00

€ 22,600.00

€ 250.00

€ 23,000.00

€ 21,800.00

€ 20,750.00

€ 22,800.00

€ 21,750.00

€ 23,800.00

€ 22,750.00

€ 300.00

€ 23,600.00

€ 22,160.00

€ 20,900.00

€ 23,160.00

€ 21,900.00

€ 24,160.00

€ 22,900.00

€ 100.00

15

€ 14,533.33

€ 14,053.33

€ 13,633.33

€ 14,720.00

€ 14,300.00

€ 15,386.67

€ 14,966.67

€ 150.00

€ 15,133.33

€ 14,413.33

€ 13,783.33

€ 15,080.00

€ 14,450.00

€ 15,746.67

€ 15,116.67

€ 200.00

€ 15,733.33

€ 14,773.33

€ 13,933.33

€ 15,440.00

€ 14,600.00

€ 16,106.67

€ 15,266.67

€ 250.00

€ 16,333.33

€ 15,133.33

€ 14,083.33

€ 15,800.00

€ 14,750.00

€ 16,466.67

€ 15,416.67

€ 300.00

€ 16,933.33

€ 15,493.33

€ 14,233.33

€ 16,160.00

€ 14,900.00

€ 16,826.67

€ 15,566.67

€ 100.00

20

€ 11,200.00

€ 10,720.00

€ 10,300.00

€ 11,220.00

€ 10,800.00

€ 11,720.00

€ 11,300.00

€ 150.00

€ 11,800.00

€ 11,080.00

€ 10,450.00

€ 11,580.00

€ 10,950.00

€ 12,080.00

€ 11,450.00

€ 200.00

€ 12,400.00

€ 11,440.00

€ 10,600.00

€ 11,940.00

€ 11,100.00

€ 12,440.00

€ 11,600.00

€ 250.00

€ 13,000.00

€ 11,800.00

€ 10,750.00

€ 12,300.00

€ 11,250.00

€ 12,800.00

€ 11,750.00

€ 300.00

€ 13,600.00

€ 12,160.00

€ 10,900.00

€ 12,660.00

€ 11,400.00

€ 13,160.00

€ 11,900.00

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

Simulation(Cont.)Diagrams.

1 2 3 4 5 6

€ 9,500.00

€ 10,000.00

€ 10,500.00

€ 11,000.00

€ 11,500.00

€ 12,000.00

Additional Costs Vs Savings 20 Years/100€

1 2 3 4 5 6

€ 10,000.00

€ 10,500.00

€ 11,000.00

€ 11,500.00

€ 12,000.00

€ 12,500.00

€ 13,000.00

€ 13,500.00

Additional Costs Vs Savings 20 Years/300€

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

Conclusion :

• This simulation demonstrate:

• Savings on Electricity bill in particular for higher consumption.

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

4. Environmental analysis.The long-term goal of Governments is to improve the energy efficiency of households; this will have several beneficial environmental aspects. Passive Solar could achieve this in a series of ways: Reducing household energy demand by utilizing solar gains. Using the sun’s heat to reduce the amount of heating required for a property. Utilize passive solar cooling to reduce the need for air conditioning during summer. In addition: Solar heat is environmentally friendly. Solar heat does not pollute or produce greenhouse gases. Solar heating helps conserve the earth's energy resources

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology

George Lampadas, Marco Mendes & Moses Aglina University of Applied Sciences

Renewable Energy Technology