Control of an offshore wind turbine modeled as discrete system

21
Control of an offshore wind turbine modeled as discrete system Pedro Varella Barca Guimarães Suzana Moreira Avila UNIVERSIDADE DE BRASÍLIA - BRAZIL EO L UnB-UFG

Transcript of Control of an offshore wind turbine modeled as discrete system

Control of an offshore wind turbine modeled as discrete system

Pedro Varella Barca Guimarães Suzana Moreira Avila

UNIVERSIDADE DE BRASÍLIA - BRAZIL

EO L UnB-UFG

Guide

• Introduction

• Objectives

• Inverted Pendulum Model • Motion’s Equation

• Transfer Function

• Numerical Analysis

• Proportional Control • Block Diagram (Closed-Loop)

• Graphic Result

• Block Diagram (Open-Loop)

• Conclusions

Guide

• Introduction

• Objectives

• Inverted Pendulum Model • Motion’s Equation

• Transfer Function

• Numerical Analysis

• Proportional Control • Block Diagram (Closed-Loop)

• Graphic Result

• Block Diagram (Open-Loop)

• Conclusions

Introduction

Introduction

Offshore wind park at Cumbria Onshore wind park at Britain

Introduction

Guide

• Introduction

• Objectives

• Inverted Pendulum Model • Motion’s Equation

• Transfer Function

• Numerical Analysis

• Proportional Control • Block Diagram (Closed-Loop)

• Graphic Result

• Block Diagram (Open-Loop)

• Conclusions

Objectives

• Analise offshore wind turbine’s linear dinamic behavior and stability, modeled as an inverted pendulum;

• Look for a critical situation for its torcional spring to apply a proportional control.

Guide

• Introduction

• Objectives

• Inverted Pendulum Model • Motion’s Equation

• Transfer Function

• Numerical Analysis

• Proportional Control • Block Diagram (Closed-Loop)

• Graphic Result

• Block Diagram (Open-Loop)

• Conclusions

Inverted Pendulum Model

Motion’s Equation

(𝑀 +𝑚𝑏 +𝑚𝑐) (𝑚𝑏 + 2.𝑀). 𝑎

(𝑚𝑏 + 2.𝑀). 𝑎 𝐼 + (𝑚𝑏 + 2.𝑀). 𝑎2𝑢 𝜃

+ 𝑐 00 0

𝑢 𝜃

+ 0 00 𝐾𝑚 − 𝑚𝑏 + 2.𝑀 . 𝑔. 𝑎

𝑢𝜃

=𝐹

2. 𝑎. 𝐹

Inverted Pendulum Model

Transfer Function

• A = (mb + 2.M).a².(mc - M) + (M + mb + mc).I

• B = (I + (mb + 2.M).a²).c

• C = (M + mb + mc).(Km – (mb + 2M).a.g)

• D = (Km – (mb+2M).a.g).c

𝐺 = 𝑠 𝑚𝑏 +𝑚𝑐 . 𝑎 + 2. 𝑐. 𝑎

𝑠3. 𝐴 + 𝑠2. 𝐵 + 𝑠. 𝐶 + 𝐷

Inverted Pendulum Model

Numerical Analysis

Km values Poles

Km = 8,2763.1014 -0,0000 + 840,21i -0,0000 - 840,21i

-0,0000

Km = 8,2763.108 -0.0014 + 0.6997i -0.0014 - 0.6997i

-0.0034

Km = 8,2763.107 0.3805 -0.3832 -0.0034

Guide

• Introduction

• Objectives

• Inverted Pendulum Model • Motion’s Equation

• Transfer Function

• Numerical Analysis

• Proportional Control • Block Diagram (Closed-Loop)

• Graphic Result

• Block Diagram (Open-Loop)

• Conclusions

Proportional Control

Block Diagram (Closed-Loop)

Proportional Control

Graphic Result

Proportional Control

Block Diagram (Open-Loop)

Proportional Control

Transfer Function

• A = (mb + 2.M).a².(mc - M) + (M + mb + mc).I

• B = (I + (mb + 2.M).a²).c

• C = (M + mb + mc).(Km – (mb + 2M).a.g) + (mb+mc).(mc + mb + M)

• D = (Km – (mb+2M).a.g).c + 2.c.a.(mc + mb + M)

Poles:

• -0,0000 + 0,1656i;

• -0,0000 - 0,1656i;

• -0,0061.

𝐺 = 𝑠 𝑚𝑏 +𝑚𝑐 . 𝑎 + 2. 𝑐. 𝑎

𝑠3. 𝐴 + 𝑠2. 𝐵 + 𝑠. 𝐶 + 𝐷

Guide

• Introduction

• Objectives

• Inverted Pendulum Model • Motion’s Equation

• Transfer Function

• Numerical Analysis

• Proportional Control • Block Diagram (Closed-Loop)

• Graphic Result

• Block Diagram (Open-Loop)

• Conclusions

Conclusions

• The inverted pendulum is a system originally unstable and with a non-linear behavior;

• It was possible to identify a critical situation to apply the proportional control;

• The proportional control was effective for this problem:

• Stabilized the system;

• Kept it within the regime of small displacements.

References

• Ogata, K., Modern Control System, 4ª Edição, Prentice-Hall, New Jersey, 2002

• Pao L.Y. and Johnson K.E., A tutorial on the dynamics and control of wind turbines and wind farms Proceedings of the American Control Conference, St Louis, EUA, 2009

• A. C. Drummond, K. C. Oliveira, A. Bauchspiess, Estudo do Controle de Pêndulo Inverso sobre Carro utilizando Rede Neural de Base Radial, IV Congresso Brasileiro de Redes Neurais, 1999.

• Gordon M. Stewart, Matthew A. Lackner, The effect of actuator dynamics on active structural control of offshore wind turbine, 2011

Thank you!

• Contact:

Pedro Varella - [email protected]

Suzana Avila - [email protected]