Contextualized Chemistry Bringing Career Relevance to your ...

66
Contextualized Chemistry Bringing Career Relevance to your High School Chemistry Class High School Lab Curriculum Preparing students for college sciences Jewyl Clarke Grossmont College High School Curriculum Lead Core Academics for Careers [email protected] www.ClarkeChemistry.com/teachers Sign In Sheet: https://goo.gl/21WDCt

Transcript of Contextualized Chemistry Bringing Career Relevance to your ...

Contextualized ChemistryBringing Career Relevance to your High 

School Chemistry ClassHigh School Lab Curriculum 

Preparing students for college sciences 

Jewyl ClarkeGrossmont College High School Curriculum LeadCore Academics for [email protected] www.ClarkeChemistry.com/teachers

Sign In Sheet:https://goo.gl/21WDCt

Who am I Jewyl Clarke

High School Medical Chemistry Teacher HASPI Medical Chemistry Curriculum Design  Core Academics for Careers Curriculum Lead

Health; Biotechnology; Global Trade & Logistics; Small Business & Entrepreneurship, Advanced Manufacturing, Transportation & Renewables, Information Communication Technology

Coming Soon… CareerAcademics.com

Who are you? Core Academic Teacher

Middle or High School?Career Technical Education TeacherAcademic Elective TeacherCounselorAdministratorAlready have a pathway?Already use HASPI labs?

What is this talk all about FREE Curriculum (HASPI.org)

Free Lab Curriculum for Medical Biology, Medical Chemistry & Medical Physical Science

Additional Free Resources Green Chem/English/Business Linked Learning unit Various other resources

NGSS and Contextualization Adding relevance to your classroom is a key focus of NGSS.

Learning chemistry in the context of careers is a great way to bring in the relevance.

The relevance to other disciplines within the sciences and across other subjects is also strongly emphasized by NGSS

THE CALIFORNIA FRAMEWORK COMES OUT ON NOVEMBER 17th FOR REVIEW!  Take the time to give your feedback on the direction the state will take. 

Barriers to College and Career SuccessLack of career awareness*

Limited availability of science prerequisite courses:Anatomy & Physiology, Microbiology

High attrition rates in prerequisite courses* up to 60%

Waiting lists/selection criteria/TEAS

Limited clinical placements

Attrition in licensure/training programs

Workforce retention

• Increase  awareness of career opportunities

• Improve science proficiency 

• Strengthen post‐secondary transitions 

Project Goals

Medical ResourcesBring rigor and career relevance to core science classes to support CTE pathways High School 

• Medical Biology Lab Curriculum• Medical Chemistry Lab Curriculum• Anatomy and Physiology Lab Curriculum• PD Events for CTE & Academic Teachers to collaborate

• Middle School• Medical Life Science• Medical Physical Science• Medical Earth Science

• CTE Classes end up full of students who are excited and interested in a career in medicine!

Click on the curriculum you would like to see

Go to www.HASPI.org

Just click the folder to see the curriculum inside

You will find both the pdf and Word versions.  For some labs there are 

additional files as needed. 

Green Resources3 sets of green projects linking classrooms lasting 5‐10 weeks‐ Life Cycle Analysis Project

‐ Chemistry, English, Physics‐ Sustainable Energy Project

‐ CTE Alternative Energy, Economics or Histry and Physics‐ Reducing the Impact of Human Activity Project

‐ CTE Digital Media, English, Environmental Science Find our green Linked Learning curriculum here: 

https://goo.gl/YMPmnq

Additional Resources Napoleon’s Buttons

A great book full of application ChemMatters

Quarterly Chemistry Magazine for High School Students from the ACS

Compound Interest  Tons of amazing posters  making chemistry relevant

UCCI  University of California Curriculum Integration

Careeracademics.org is coming soon and will have resources as they are developed across career sectors.  For now go to www.ClarkeChemistry.com/teachers

Applying the labs to your classes Labs go straight into D‐Level lab Sciences

Aligned with Common Core and Next Generation Science Standards

No need for a course number change

Use one or all of the labs – there is no minimum requirement 

The curriculum is free: www.haspi.org

The supplies needed are listed in the teacher guide and you can obtain the supplies as you normally would for your lab

Some Curriculum Lab Kits are available to purchase* *supplies are limited

Calorimeter Design Project – Engineering in ChemistryA strong focus on Engineering in the chemistry classroom might focus on apparatus design!

Students read about biomedical engineering and learn to engineer their own equipment.

First they test a number of devices to see what makes a good insulator

Each lab team designs their own calorimeter to see how effective it is. They must work around cost constraints as outlined in the NGSS engineering standards.

This calorimeter can then be used for all Calorimetry labs in the energy unit!

View Lab 6a (need web access)

6a Calorimeter Design Project

6a Calorimeter Design Project

6a Calorimeter Design Project

!!

Thermodynamics: Enthalpy of Hydration for MgSO4, HASPI Medical Chemistry Lab **Draft** 2/28/2014 !

1

Thermodynamics: Enthalpy of Hydration of MgSO4  A Calorimetry experiment  HASPI Medical Chemistry Lab  Background/Introduction 

 Many common reactions in chemistry cause temperature changes.  Endothermic reactions absorb heat, making the environment around them feel colder.  Exothermic reactions release heat, making the environment around them feel warmer.  We can use these reactions to provide thermotherapy so that treatment can be quick and can be available anywhere.  Thermotherapy is the use of heat or cold to treat an injury or illness.  We use chemical reactions to create heat packs and cold packs. 

 Cold packs are used most often to reduce inflammation and swelling.  This is best for a new injury. 

Cold therapy decreases blood flow  Less blood flow leads to less swelling and inflamation  Cold therapy is ideal for an area is swollen or bruised  Cold treatment is best during the first 24‐48 hours after an injury   Cold therapy should occur for 20 minutes at a time with at least 10 minutes between 

applications  Hot packs are used in order to provide pain relief, often in the back or due to arthritis.   This treatment is best for recurring pain.  

Blood vessels are dilated so that there is an increased flow of blood to the muscles.    Blood flow brings oxygen and nutrients so that damaged tissue can heal.     The heat allows soft tissues to stretch so that there is decreased stiffness and increased 

flexibility.  This can greatly increase the range of motion.   Heat can relax joints, muscles, ligaments and tendons  Heat therapy should occur in 20 minute increments 

  Hot Pack Chemistry  There are a few ways that exothermic reactions can used as hot packs.  The reaction we will study today mixes anhydrous magnesium sulfate (MgSO4) with water.  When these mix heat is released.  In a hot pack there is powdered MgSO4 along with a small bag of water. When you squeeze the hot pack, the water packet bursts to begin the reaction.  This type of hot pack can only be used one time.    Another type of hot pack uses a supersaturated solution of sodium acetate.  Sodium acetate has a boiling point of 130°F, but if you melt it by heating it above that temperature, you can cool it back down and it will stay a liquid until something causes just one molecule to freeze.  This causes a chain reaction until all of the sodium acetate freezes.  In order for the molecules to solidify and freeze, the energy within them must be released, which is why this feels hot in your hands.  These hot packs are reusable as long as you boil them to dissolve or melt the sodium acetate again.     

Name(s): Period: Date:

!!

Thermodynamics: Enthalpy of Hydration for MgSO4, HASPI Medical Chemistry Lab **Draft** 2/28/2014 !

2

Iron filings are also able to be used as a hot pack.  They react with oxygen in the air, so they are in a mesh packet which is sealed inside of the packaging.  Once opened, the iron filings react with the oxygen in the same reaction as the creating of rust, but it happens very quickly because the iron is in very small pieces.  Water is able to speed up this reaction, increasing the heat for a moment, but the heat pack will cool more quickly if the reaction speeds up.   Cold Pack Chemistry Endothermic reactions can be used as cold packs.    A commonly used cold pack contains ammonium nitrate and water.  When the small bag of water inside is put under pressure it bursts to begin the endothermic reaction.  This reaction needs energy, so it takes the energy from you, making you feel cold.  Cold is just the sensation of energy moving away from you.  A New Concept ‐ Calorimetry! Today we will use calorimetry to study the energy given off by our reactions.  Calorimetry allows us to measure the energy given to water by a reaction, or by a hot metal.  This is used to find the amount of energy in our food, to identify unknown metals and in this case, to find the Enthalpy of Hydration for our substance.  In calorimetry we are going to do a reaction in a very well insulated container, which we will make from styrofoam cups.  As the reaction proceeds, the water will absorb the energy released.  We can use a thermometer to measure the change in temperature of the water, then use the reaction q=mc∆T in order to find out the quantity of energy that was released!     

Name(s): Period: Date:

Review Questions 1. What is the difference between an exothermic and endothermic reaction? 2. How do you choose which therapy is right for your injury? 3. Why wouldn't a hot pack help with swelling? 4. How do you think you might be able to re-use the chemicals in a Magnesium Sulfate hot

pack? 5. If the reaction creating rust (Iron Oxide) is exothermic, why don't rusty cars and nails feel

warm? 6. What does the cold sensation mean in chemistry? 7. Why do we need an insulated container for calorimetry? 8. What errors do you predict we will encounter in a calorimetry lab?

!Reaction!!

Heat  q=m c ∆T

energy!in!Joules!

mass!in!grams!

specific!heat!

change!in!temperature!

!!

Thermodynamics: Enthalpy of Hydration for MgSO4, HASPI Medical Chemistry Lab **Draft** 2/28/2014 !

3

Thermodynamics: Enthalpy of Hydration of MgSO4  A Calorimetry experiment  HASPI Medical Chemistry Lab ###   Objectives Find the amount of energy released when MgSO4 is rehydrated to form MgSO47H2O Specifically: 

Calculate the Enthalpy of Hydration (∆H) for MgSO4  

Learn Calorimetry techniques 

Apply Hessʹ Law  Use the equation q=mcΔT 

 Materials

Foam Cup Calorimeter  Thermometer  Anhydrous MgSO4  MgSO47H2O crystals 

DI or distilled water   Digital Balance and weigh boats  50ml or 100mL Graduated cylinder

 Connections to past labYou prepared the anhydrate by heating the MgSO47H2O (s) last semester in the hydrated crystals lab.  It took heat to remove the water from the crystals, which meant it was an endothermic reaction.   That energy has been stored in the anhydrate and when the reaction is reversed the energy you put into the MgSO4 with your Bunsen Burner will now be released in an exothermic reaction.    ScenarioIn this lab we will dissolve Magnesium Sulfate hydrate (MgSO47H2O) and magnesium sulfate anhydrate (MgSO4) to find the ∆H values for each process.    A hydrate is a chemical with water trapped in its crystalline structure.  When you look at the hydrate you will notice it looks dry, not wet.  That is because the water is trapped.  We use a dot in the formula of a hydrate to show that the water molecules are trapped.  In order to find the ∆H (enthalpy of hydration) for this we will do two separate reactions, then relate them to find our goal reaction !Reaction!1:!MgSO4(s)!!!!!!!!!!!!!!!!!!!!!Mg+2(aq)!+!!SO4A2(aq)!Here we will add water to the anhydrate to dissolve the substance !Reaction!2:!MgSO47H2O!(s)!!!!!!!!!!!!!!!!!!!!!!Mg+2(aq)!+!!SO4A2(aq)!+!7H2O(l)!Here we will dissolve the hydrated crystal in water !!Goal!Reaction:!MgSO4(s)!+!7H2O(l)!!MgSO47H2O!(s)!By adding the above reactions together we can determine the ∆H for this reaction. 

         

Name(s): Period: Date:

H2O!

H2O!

!!

Thermodynamics: Enthalpy of Hydration for MgSO4, HASPI Medical Chemistry Lab **Draft** 2/28/2014!!

4

Using Hessʹ law you can reverse the second reaction and add it to the first in order to calculate the ∆H of the goal reaction.  First we will calculate the ∆H for reaction 1 and reaction 2 using calorimetry.  Procedure and calculations for Reaction 1: MgSO4(s)!!!!!!!!!!!!!!!!!!!!!Mg+2(aq)!+!!SO4A2(aq)! 1. Obtain a sample of the anhydrous MgSO4.  Weigh the sample and record the mass in data table 1.  It should be about 1.50‐3.00g. 2. Add exactly 20.0mL of DI water to your calorimeter 3. Record the initial temperature of the water 4. Add the MgSO4 anhydrate to your calorimeter and immediately close the lid 5. Stir until the temperature stops increasing 6. Record the highest temperature reached as the final temperature   

DATA TABLE 1Mass of anhydrous MgSO4 pellet or powder 

 

Mass of water used (same as mL)   

Initial temperature of the water   

Final Temperature of the water   

∆T (Final ‐ Initial)   

Calculations for Reaction 11. Use q=mc∆T to find out how many joules of energy were absorbed by the water.   Remember that the specific heat of water is 4.184J/ g°C.  Be sure to use the mass of water for this calculation. (For water 1mL =  1g)     

a) Energy in Joules   b) Energy in kJ 

2. Find the moles of anhydrate used a. What is the molar mass of MgSO4?    b. Convert the grams of MgSO4 in data table 1 into moles     

a) molar mass of MgSO4 

 

 

 b) moles of MgSO4 used 

3. Find the joules of heat released from the reaction in kJ. Remember, energy absorbed by water is negative the energy released from the reaction.   

Energy=  

4. Find the ∆H for this reaction in kJ/ mol.  (divide kJ by moles)    

∆H1 =   

5. Is this reaction endothermic or exothermic?  

Name(s): Period: Date:

H2O!!!

Thermodynamics: Enthalpy of Hydration for MgSO4, HASPI Medical Chemistry Lab **Draft** 2/28/2014!!

6

 Conclusions: Calculate the ∆H for the goal reaction using the given reactions 1. Label each reaction with the enthalpy of reaction you found in the lab  Reaction 1:                MgSO4(s)                    Mg+2(aq) +   SO4

‐2(aq)               ∆H1 =    Reaction 2:    MgSO47H2O (s)  Mg+2(aq) +   SO4

‐2(aq) +  7H2O(l)               ∆H2 =    2. In order to find the goal reaction, the above reactions may be reversed or multiplied as needed so that they add up to make this reaction: MgSO4(s) +  7H2O(l) MgSO47H2O (s) Remember that a reversed reaction causes the sign on the ∆H value to reverse, and a doubled reaction doubles the ∆H value.   Cancel out anything that appears on both sides of the arrows.   Show your work as you add these reactions together:  Reaction 1:                                                                                                                               ∆H =   +    Reaction 2:                                                                                                                              ∆H =    Equals Goal Reaction       MgSO4(s)         +          7H2O(l)          MgSO47H2O (s)                  ∆H =    3. When you add together the ∆H values, what is the ∆H of hydration for MgSO4?      4. If the theoretical value is ‐104.0kJ/ mol, what is the percent error?      5. List 2 sources of unavoidable error        

Name(s): Period: Date:

H2O!

H2O!

Teacher guides include the lab overview, NGSS connections, supplies needed and where you may order them, setup directions and best practices tips.

HASPIMedicalChemistryUnit6:Energy Page1

HASPIMedicalChemistryLab6bHotPackCalorimetryTeacherInformationLabOverviewInthislabstudentsmeasuretheamountofenergyreleasedinthetypeofreactionthatoccursinahotpack.BylinkingthistothehydratedcrystalslabinthefallwherestudentsheatedEpsomsalts(magnesiumsulfatehydrate)untiltheylostallwater,studentsareabletoquantifytheenergythattheystoredintheiranhydratepelletsincethelastlaboccurred.Toquantifythistheymustdissolvetheanhydrateinw

at e ras we

l

l as

the hy drateandus e Hess’la w to f indth e dif ference.T hean hydratedissolvinginwaterisanexothermicreaction.Thehydrate(Epsomsalts)dissolvinginwaterisaslightlyendothermicreaction.Studentswillexperiencebothtypesofreactionsinthislab,andtheywillturnpotentialenergytheyputintotheiranhydrateinthepreviouslabbackintokineticenergywhichtheycanmeasureastheincreaseinwatertemperature.NextGenerationScienceStandards

NGSS/CommonCoreState StandardsStudentswhodemonstrateunderstandingcan:HS‐PS1‐4:Developamodeltoillustratethatthereleaseorabsorptionofenergyfromachemicalreactionsystemdependsuponthechangesintotalbondenergy.HS‐PS3‐1:Createacomputationalmodeltocalculatethechangeintheenergyofonecomponentinasystemwhenthechangeinenergyoftheothercomponent(s)andenergyflowsinandoutofthesystemareknown.HS‐PS3‐3:Design,buildandrefineadevicethatworkswithingivenconstraintstoconvertoneformofenergyintoanotherformofenergy.HS‐PS3‐4:Planandconductaninvestigationtoprovideevidencethatthetransferofthermalenergy,whentwocomponentsofdifferenttemperaturesarecombinedwithinaclosedsystem,resultsinamoreuniformenergydistributionamongthecomponentsinthesystem(secondlawofthermodynamics).MedicalApplication:Hotpacksandcoldpacksarechemicalreactionsthatstudentswillstudy.

ScienceandEngineering PracticesDevelopingandUsingModelsDevelopamodelbasedonevidencetoillustratetherelationshipsbetweensystemsorbetweencomponentsofasystem.UsingMathematicsandComputationalThinkingCreateacomputationalmodelorsimulationofaphenomenon,designeddevice,process,orsystem.ConstructingExplanationsandDesigningSolutionsDesign,evaluate,and/orrefineasolutiontoacomplexreal‐worldproblem,basedonscientificknowledge,student‐generatedsourcesofevidence,prioritizedcriteria,andtradeoffconsiderations.PlanningandCarryingOutInvestigationsPlanandconductaninvestigationindividuallyandcollaborativelytoproducedatatoserveasthebasisforevidence,andinthedesign:decideontypes,howmuch,andaccuracyofdataneededtoproducereliablemeasurementsandconsiderlimitationsontheprecisionofthedata(e.g.,numberoftrials,cost,risk,time),andrefinethedesignaccordingly.

DisciplinaryCoreIdeasPS1.A:StructureandPropertiesofMatterAstablemoleculehaslessenergythanthesamesetofatomsseparated;onemustprovideatleastthisenergyinordertotakethemoleculeapart.PS1.B:ChemicalReactionsChemicalprocesses,theirrates,andwhetherornotenergyisstoredorreleasedcanbeunderstoodintermsofthecollisionsofmoleculesandtherearrangementsofatomsintonewmolecules,withconsequentchangesinthesumofallbondenergiesinthesetofmoleculesthatarematchedbychangesinkineticenergy.

HASPIMedicalChemistryUnit6:Energy Page2

DisciplinaryCoreIdeas(continued)PS3.A:DefinitionsofEnergyEnergyisaquantitativepropertyofasystemthatdependsonthemotionandinteractionsofmatterandradiationwithinthatsystem.Thatthereisasinglequantitycalledenergyisduetothefactthatasystem’stotalenergyi

s conserved,evenas,within

thesystem,energyiscontinuallytransferredfromoneobjecttoanotherandbetweenitsvariouspossibleforms.Atthemacroscopicscale,energymanifestsitselfinmultipleways,suchasinmotion,sound,light,andthermalenergy.PS3.B:ConservationofEnergyandEnergyTransferConservationofenergymeansthatthetotalchangeofenergyinanysystemisalwaysequaltothetotalenergytransferredintooroutofthesystem.Energycannotbecreatedordestroyed,butitcanbetransportedfromoneplacetoanotherandtransferredbetweensystems.Uncontrolledsystemsalwaysevolvetowardmorestablestates—thatis,towardmoreuniformenergydistribution(e.g.,waterflowsdownhill,objectshotterthantheirsurroundingenvironmentcooldown).Mathematicalexpressions,whichquantifyhowthestoredenergyinasystemdependsonitsconfiguration(e.g.relativepositionsofchargedparticles,compressionofaspring)andhowkineticenergydependsonmassandspeed,allowtheconceptofconservationofenergytobeusedtopredictanddescribesystembehavior.Theavailabilityofenergylimitswhatcanoccurinanysystem.PS3.D:EnergyinChemicalProcessesAlthoughenergycannotbedestroyed,itcanbeconvertedtolessusefulforms—forexample,tothermalenergyinthesurroundingenvironment.ETS1.A:DefiningandDelimitinganEngineeringProblemCriteriaandconstraintsalsoincludesatisfyinganyrequirementssetbysociety,suchastakingissuesofriskmitigationintoaccount,andtheyshouldbequantifiedtotheextentpossibleandstatedinsuchawaythatonecantellifagivendesignmeetsthem(secondary).

Crosscutting ConceptsEnergyandMatterChangesofenergyandmatterinasystemcanbedescribedintermsofenergyandmatterflowsinto,outof,andwithinthatsystem.SystemsandSystemModelsModelscanbeusedtopredictthebehaviorofasystem,butthesepredictionshavelimitedprecisionandreliabilityduetotheassumptionsandapproximationsinherentinmodels.ConnectionstootherDCIsinthisgrade‐band:HS.PS1.A; HS.PS1.B; HS.PS2.B; HS.LS2.B; HS.ESS1.A; HS.ESS2.A; HS.ESS2.D; HS.ESS3.A;HS.PS3.A;HS.PS3.B;HS.PS3.D;HS.LS1.CArticulationofDCIsacrossgrade‐bands:MS.PS1.A; MS.PS2.B; MS.PS3.A; MS.PS3.B; MS.PS3.C; MS.ESS2.A; MS.PS3.D ; MS.LS1.CCommonCoreStateStandardsConnections:ELA/Literacy

RST.11‐12.1 Citespecifictextualevidenceto support analysis of science and technical texts, attending to important distinctionstheauthormakesandtoanygapsorinconsistenciesintheaccount.(HS‐PS3‐4)

WHST.9‐12.7 Conductshortaswellasmore sustained research projects to answer a question (including a self‐generated question)orsolveaproblem;narroworbroadentheinquirywhenappropriate;synthesizemultiplesourcesonthesubject,demonstratingunderstandingofthesubjectunderinvestigation.(HS‐PS3‐3),(HS‐PS3‐4),(HS‐PS3‐5)

WHST.11‐12.8 Gatherrelevantinformationfrom multiple authoritative print and digital sources, using advanced searches effectively;assessthestrengthsandlimitationsofeachsourceintermsofthespecifictask,purpose,andaudience;integrateinformationintothetextselectivelytomaintaintheflowofideas,avoidingplagiarismandoverrelianceonanyonesourceandfollowingastandardformatforcitation.(HS‐PS3‐4),(HS‐PS3‐5)

WHST.9‐12.9 Drawevidencefrominformational texts to support analysis, reflection, and research. (HS‐PS3‐4), (HS‐PS3‐5)SL.11‐12.5 Makestrategicuseofdigitalmedia (e.g., textual, graphical, audio, visual, and interactive elements) in presentationsto

enhanceunderstandingoffindings,reasoning,andevidenceandtoaddinterest.(HS‐PS3‐1),(HS‐PS3‐2),(HS‐PS3‐5),(HS‐PS1‐4)

CommonCoreStateStandardsConnections:MathematicsMP.2 Reasonabstractlyandquantitatively. (HS‐PS3‐1), (HS‐PS3‐2), (HS‐PS3‐3), (HS‐PS3‐4), (HS‐PS3‐5)MP.4 Modelwithmathematics.(HS‐PS3‐1), (HS‐PS3‐2), (HS‐PS3‐3), (HS‐PS3‐4), (HS‐PS3‐5), (HS‐PS1‐4)HSN.Q.A.1 Useunitsasawaytounderstand problems and to guide the solution of multi‐step problems; choose and interpretunits

consistentlyinformulas;chooseandinterpretthescaleandtheoriginingraphsanddatadisplay.(HS‐PS3‐1),(HS‐PS3‐3),(HS‐PS1‐4)

HSN.Q.A.2 Defineappropriatequantities for the purpose of descriptive modeling. (HS‐PS3‐1), (HS‐PS3‐3), (HS‐PS1‐4)HSN.Q.A.3 Choosealevelofaccuracyappropriate to limitations on measurement when reporting quantities. (HS‐PS3‐1),

(HS‐PS3‐3),(HS‐PS1‐4)

HASPIMedicalChemistryUnit6:Energy Page5

References:http://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=1&ContentID=4483http://www.spine‐health.com/treatment/heat‐therapy‐cold‐therapy/benefits‐heat‐therapy‐lower‐back‐painhttp://www.middleschoolchemistry.com/lessonplans/chapter5/lesson9http://home.howstuffworks.com/question290.htmhttp://prezi.com/lranljsxv4hx/copy‐of‐chemistry‐hotcold‐packs/http://www.chemistryland.com/CHM130FieldLab/Lab11/Lab11.html

Volatility across Career Sectors Volatility is a key concept when it comes to IMF and there are multiple ways to link it to relevance in the real world

Medical Application of VolatilityHASPI Med Chem Lab 3b

Energy Application of Volatility When crude oil is pumped from underground it is actually a mixture of hydrocarbons.

The smallest hydrocarbons have the highest volatility.  They evaporate first and the vapor is collected.  

Each “fraction” has a different volatility and allows each type of fuel to be isolated at refineries.  https://johnvagabondscience.files.wordpress.co

m/2008/09/fractional_distillation.jpg

Advanced Manufacturing & Green Chemistry ‐ Volatility

Volatile Organic Compounds If you have ever used nail polish, you have experienced the idea of VOC’s… the solvent in the nail polish is very volatile, so your nails dry quickly after use.

11 billion pounds of VOCs are released every year from paint –2nd only to automobile emissions!

Industrial solvents are another source of VOCs. 

Although it protects us from UV rays in the stratosphere, Ozone is a lung irritant when it is near ground level and considered pollution.

Intermolecular Forces Round Robin: Volatility  Lab 3bYou will need 3 cotton swabs 3 small microcentrifuge tubes filled with clear liquid

Water Acetone Ethanol

1 square of foil or a lab table

In the classroom I just use 3 test tubes and refill them throughout the day! The same cotton swab works for hours.

Photosynthesis & Respiration I developed this lab because NGSS asks chemistry to address Photosynthesis and Respiration… this lab tackles that concept while providing a thermodynamics review for chemistry students!

Application Worksheet 6C This brings in global health concerns, tying global trade and medicine into one assignment.  It also addresses caloric intake for various ages to encourage better health. 

Carbon Cycle

Catalysts and Enzymes Examples of the use of catalysts

Catalytic converters in cars – Platinum, palladium and rhodium catalyze the breakdown of dangerous chemicals in exhaust fumes

The Haber Bosch process to create ammonia to be used in fertilizer and explosives requires an iron catalyst

There are thousands of chemical processes requiring catalysts in industry

Catalysts and EnzymesExamples of the use of enzymes

Biofuel ‐ Cellulose is broken down by cellulases to produce the source for fermentation 

Baby food‐ Trypsin is an enzyme used to pre‐digest baby food

Meat Tenderizer ‐Enzymes from pineapple and other plants are used to tenderize meat

Detergents‐ Many enzymatic detergents are used –especially for pre‐treatment

Fermentation‐ Yeast add air to breads, create wine & beer, and create vinegars.  

Cheese – Uses rennin and other enzymes to react with proteins in milk 

Lab 9c: Reaction Rates Inquiry (Lab 9c)

Station 4 & 5 – Catalysts and Enzymes Find the baggie with a contact case and a small jar of Hydrogen Peroxide (H2O2), and the baggie with a slice of potato.

Remove the top portion of the contact case and set it aside.  Pour half of the H2O2 into the contact case.

Smash the potato up a bit inside its baggie Add the potato to the jar and place the lid back on the contact case – observe!

Lab 10a: Sense‐able smells The background for this lab addresses the  This would tie in very well with the Spices chapter (Peppers Nutmeg & Cloves) from Napoleon’s Buttons

Overall, this lab is a wonderful way to teach students the basics of organic molecules so you can begin to use more journal articles showing shorthand notation of molecules and increase the understanding that students have. 

Sense-able SmellsMaking Organic Structures Accessible for High School

Andro Rios and Gerald FrenchAdapted from Bio-Bridge Pilot Training Session

Copyrighted All Rights Reserved

CH3

H3C CH3

OH

2004 Nobel Prize in Physiology or Medicine

“ fortheirdiscoveriesinodorantreceptorsandtheorganizationoftheolfactorysystem”

Linda BuckFred Hutchinson Cancer

Research Center Seattle, WA, USA

Richard Axel Columbia University New York, NY, USA

http://nobelprize.org/nobel_prizes/medicine/laureates/2004/illpres/

Nobel Prize 2004 Website

CH3

H3C CH3

OH

http://nobelprize.org/nobel_prizes/medicine/laureates/2004/illpres/

Odorant molecules can serve as sources of

engagement!!

Why introduce bond line organic structures?

They highlight only the important parts of a molecule

They are easier to use for discovering patterns

To directly address the “intimidation factor”

Scientists use this language, why not students of science?

Compare and Contrast

N

NN

NO

NH2

GH2OH

H

http://well.blogs.nytimes.com/2012/03/26/the-chocolate-diet/?_r=0

bayfieldcoffeecompany.com/

What is the unifying pattern in amino acids?Consider two structural versions

Activity Objectives

1. To demonstrate the everyday role of organic molecules.

2. To make molecular structures less intimidating.

3. To provide students with the opportunity to make their own observations and conclusions.

4. To empower students with the skills to engage in other activities relating to bio-molecules.

Are you hypersensitive to common odors or fragrances?

While these odors are considered pleasant and safe, there are many people who suffer severe irritation

even from the most common and mild odors/aromas.  If you are one of these individuals, 

you should not participate in this activity.

Before you begin….……..For each sample, first try wafting, because some odors are stronger than others.

If you still can’t smell anything, bring the sample closer to your nose.

Part D. Alcohols

Molecular Structure Description and association of odor

Odor identification

Part A. Fill out this table as you go about wafting the odors from the three samples

Odor 10

Odor 11

Odor 12

Alcohols Part D. Compare and Contrast

All alcohols seem to have this in common:

Odor 10 Odor 11 Odor 12

Alcohols Part D. slide 2

1. No matter which carbon atom you look at in the Full atom version, how many lines are connected to it?

2. If the letters (C, H and O) in Odor 10, or any molecule you have smelled today, represent atoms in a molecule, what might the lines connecting the letters represent?

The short-hand and full atom version of Odor 10 is shown below. Answer the following questions relating to the structures.

Always four lines.

They represent the chemical bonds between atoms in a molecule.

How many lines are connected to each O?

How many lines are connected to each H?

Draw the Lewis Dot Structure for each of these atoms (representing all of thevalence electrons)

Two lines.

One line.

How are unpaired electrons in a lewis dot structure similar to the lines that are shown to connect 2 atoms in a molecular structure?

The number of unpaired electrons is equal to the number of bond lines

What kind of bond holds non-metals together?

Covalent bonds

Alcohols Part D. slide 3

Hypothesis:

Shown below are two short-hand versions of Odor 10, the one on the right includes all of the hydrogen atoms. Look at the arrows pointing at two different carbon atoms in the representation on the left. Observe in the representation on the right that each of those carbon atoms has a different amount of hydrogen atoms bonded to it. Look for a pattern and provide a reason why you think this happens?

Each vertex needs four lines. If there are less than four linesat a vertex, then lines with an ‘H’ are added until the vertexhas a total of four lines.

Hint: Question 1 provides a strong clue……

Each carbon atom needs four bonds. If there are less than four bonds at a carbon atom, then hydrogens are added until the carbon atoms has four bonds.

AlcoholsOdor 10

Rose

Odor 11

Thyme

Odor 12

Peppermint

Images:http://commons.wikimedia.org/wiki/Rosa_Hybrid_Tea#mediaviewer/File:Rosa_%27Mrs_Aaron_Ward%27.jpghttp://wellandgood.com/2012/04/06/thyme-may-be-more-effective-against-acne-than-benzoyl-peroxide/http://hips.seas.harvard.edu/recent-news

Designing your Pathway – Best Practices Don’t wait!

Start small with whatever you have. 

Changing course numbers is not essential

Collaborate Work with colleagues, community and local businesses

Educate Make sure your admin and counseling are on board and understand your pathway!  Share your brochure with the community. 

Rinse and Repeat If it doesn’t work, get rid of it.  Revise every year.  Let stakeholders in on any revisions and move ahead!

Work‐based Learning and LeadershipBest Practices

Emphasize that students need to create their own opportunities! Industry Tours

College Campus Tours

Internships

Service Learning Projects

Externships

Classroom Guest Speakers

Scholarships

Student Job Shadows

Community Service 

Leadership Programs

Volunteer Hours

Job Shadows

If possible a centralized Industry Coordinator is ideal to maintain relationships with organizations

Students will be prepared to pursue ANYcareerof their choice, but they need to be exposed to these career options in high school so they have a better direction 

with their college education. 

Courses are intended for students of ALL academic levels and backgrounds

THE VISION

THANKYOU!Contact: [email protected]

Resources from today:www.ClarkeChemistry.com/teachers

Health & Sciences Pipeline Initiative Curriculum www.HASPI.org

Coming soon: www.CareerAcademics.org 

Sign In Sheet: If you didn’t have a chance to sign in: https://goo.gl/21WDCt

ContextualizedChemistry:BringingCareerRelevancetoyourClassroomByJewylClarke DigitalSignInSheet:https://goo.gl/[email protected]/teachersGreenResources:3setsofgreenprojectslinkingclassroomslasting5‐10weeks

- LifeCycleAnalysisProject- Chemistry,English,Physics

- SustainableEnergyProject- CTEAlternativeEnergy,EconomicsorHistryandPhysics

- ReducingtheImpactofHumanActivityProject- CTEDigitalMedia,English,EnvironmentalScience

FindourfreegreenLinkedLearningcurriculumhere:https://goo.gl/YMPmnqAdditionalResources: Napoleon’sButtons

o Agreatbookfullofapplication ChemMatters

o QuarterlyChemistryMagazineforHighSchoolStudentsfromtheACS CompoundInterest

o Tonsofamazingpostersmakingchemistryrelevanto http://www.compoundchem.com/

UCCIo UniversityofCaliforniaCurriculumIntegrationo http://ucci.ucop.edu/

Careeracademics.orgiscomingsoonandwillhaveresourcesastheyaredevelopedacrosscareersectors.Fornowgotowww.ClarkeChemistry.com/teachers

MedicalResources:

HealthandSciencePipelineInitiativeHASPIbeganasaprogramtosupporthighschoolswithhealthpathwaysintheSanDiegoregion,andhasnowbeenadoptedatschoolsstatewideandisusedbymany

schoolsbeyondthestate.ThisfreelabcurriculuminfusesthehighschoolBiology,ChemistryorAnatomy‐Physiologycoursewithmedicallyrelevanttopicsthroughbackgroundreadingswhichgivestudentsmedicalcontextandrealworldapplication.WealsonowhavemedicallyapplicablelabsforallmiddleschoolclassesandallofourlabsareNGSSaligned!Thisdoesnothavetobeaseparatecourseorcoursenumberfromyourtraditionalsciencecourses,rather,thesecanreplaceorbuildontothelabsyoualreadytoinordertobringmedicalrelevancetoyourstudents.HASPIMedicalChemistryLabsSummaryTheHASPIMedicalChemistryLabsareacollectionoflabs&activitiesthatcanbeusedtoreinforcetheNextGenerationScienceStandards(NGSS)andincorporatealinkbetweenchemistryandmedicine.Alistofsuppliesandpurchasinginformationhasbeenprovidedontheteacherinformationsheetsforeachlab.Thecurriculumisfreesotofindthelabsgotowww.HASPI.org.Althoughyoumaycreatedifferentunits,wehavedividedthestandardsinto10unitsofstudytobettercreatealabcurriculumthatcoversthephysicalsciencecomponentsthatarelistedinAppendixKofthe

NGSSaspartofaChemistrycourse.Therecommendedconceptsarenotallintegratedintothelab,butarelistedtohelpyouinplanningyourschoolyearusingontheNextGenerationScienceStandards.Unit1:TheAtomUnit1recommendedconcepts

- ScientificMethod- Measurement&SignificantFigures- AtomicTheory&AtomicStructure

- UnitConversions- Convertingmasstomolesforsingle

atomsLab1a–DiscoveringIsotopesofPennium(HS‐PS1‐1,HS‐PS1‐8)InthislabstudentscomparethetwoisotopesofPennium,andfindthepercentabundanceofeachisotopeinasealedfilmcanister.Penniesbefore1982differinmassfrompenniesafter1982becausetheircompositionchanged,sotheirdifferenceinmassservestoprovideamodelforisotopes.StudentslearnabouttheroleofIsotopesinmedicalimaging.Thisisagreatlabtofocusonsignificantfiguresandcomputationalthinkingaswellasisotopes.Unit2:Electrons&ThePeriodicTableUnit2recommendedconcepts

- Organizationoftheperiodictable- Trends- Valenceelectrons&Electron

configuration- Dotstructure,orbitalnotation

- IonicCharges- OctetRule- Wavelength&Frequencyoflight- VSEPR&ElectronDotStructure- Practicemolecalculationswithions

Lab2a–ModelingMolecules(HS‐PS1‐1,HS‐PS1‐2,HS‐PS1‐3)InthislabstudentswilllearntodrawLewisstructuresusingtheirknowledgeoftheperiodictableandvalenceelectrons,thencreatephysicalmodelsofspecificmoleculesusingVSEPR(ValenceShellElectronPairRepulsion).Thebackgroundinformationlinksthe3Dstructureofmoleculestotheinteractionbetweenbiologicalreceptorsandmedicationsorotherligandsthatcanbind.Thisisagreatlabtohelpleadintocovalentbondingasitusestheirknowledgeofelectrons,butitalsohelpsstudentstounderstandtherelationshipbetweenelectronsastheybond.ThislabcanbedoneattheendofUnit2,butitcouldalsoworkwellinunit4.Unit3:Bonding&Mixtures–Intramolecular&IntermolecularForcesUnit3recommendedconcepts

- Heterogeneous&HomogenousMixtures

- IonicBonding&Naming- CovalentBonding&Naming

- IntermolecularForces- MolarMass- PracticeMoleCalculationswith

Molecules&Compounds

Lab3a–DeterminingBondingTypes(HS‐PS1‐1&HS‐PS1‐3)Inthislabstudentsaregiventhreeunknownsubstancesandneedtodeducewhichisionic,whichiscovalentandwhichispolarcovalentthroughtestingthesolubility,meltingpointandconductivityofthesubstances.Thebackgroundexplainstherolethatelectrolytesplayinthebody.Lab3b–IntermolecularForcesRoundRobin(HS‐PS1‐3)Inthislabstudentsexperienceintermolecularforcesthroughfourmini‐labs.Theystudysurfacetension,volatility,polarity&surfactantsandreadabouttheconnectiontomedicine.Itisbesttohavestudentsarriveatastation,dothepre‐labreadingandquestions,thenperformthelabandcompletethepost‐lab

reading&questionsbeforetheymoveontothenextstation.Thisisagreatopportunityforstudentstofindoutmoreaboutintermolecularforces.Unit4:MoleculesUnit4recommendedconcepts

- LewisStructures- PercentComposition- Hydratedcrystals

- Macromolecules–DNA,Protein- BasicOrganicChemistry- MicroscopicvsMacroscopicScale

Lab4a–HydratedCrystalsLab(HS‐PS1‐7,HS‐PS1‐4)Inthislabstudentswillheatmagnesiumsulfatehydrate(Epsomsalts)untilthewaterhasbeenremoved.Theycanthencalculatethepercentwaterinthehydrateandusethattocalculatetheformulaofthehydratedcrystalandcompareittotheoreticaldata.Inthebackgroundstudentslearnabouttheimportanceofmagnesiuminmedicine.*Theproductofthislabneedstobereservedtouseinlab6b*Lab4b–MoleculesofLife(HS‐LS1‐6)Inthislabstudentswillreadaboutdifferentmacromolecules,thengothroughacondensationpolymerizationbytapingaminoacidstogetherintoaproteininorderto“synthesize”insulin.Thislabisgreatwaytoshowhowchemistryisrelevantinthebiologicalsciences.Unit5:ReactionsUnit5recommendedconcepts

- BalancingReactions- PredictingProductsinReactions

- Stoichiometry- PercentYield&PercentError

Lab5a–AspirinTitration(HS‐PS1‐7)Inthislabstudentscomparetwotypesofaspirinusingtitration.Thefocusofthelabisonstoichiometrysothistitrationcanbedonejustafteryouteachmoles.StudentswillfirstcalculatehowmuchNaOHitshouldtaketoneutralizetheaspirinbasedonstoichiometriccalculations.ThentheywilldothelabandfindouthowmuchNaOHitactuallytakestoneutralizetheaspirinanddoapercenterrorcalculation.Thefactthatstudentstitratetwoseparatetypesofaspirinisagreatwayforthemtoseethatthemorereactantyouadd,themoreproductyouwillget.AstheNextGenerationScienceStandardsdonotspecificallydiscussacids&bases,thisisagreatwaytointegratesomeofthosetraditionalconceptsintoyourNGSSalignedcurriculum.Unit6:EnergyUnit6recommendedconcepts

- Energy- ThermochemicalEquations- Hess’Law- Endothermic&Exothermic- KineticvsPotentialEnergy- TransferofEnergy

- SpecificHeat&Calorimetry- Photosynthesis&Respiration- CarbonCycle- EngineeringDesign- HeatingCurves- PhaseChanges

Lab6a–CalorimeterDesignProject(HS‐PS1‐4,HS‐PS3‐1,HS‐PS3‐3,HS‐PS3‐4,HS‐ETS1‐1,HS‐ETS1‐2,HS‐ETS1‐3)Inthislabstudentswillactasengineerstoidentifythequalitiesofagoodinsulatingdeviceanduseclasswidedatatoinformtheirowncalorimeterdesign.Studentsreadaboutmedicaldeviceandequipmentengineering.

Lab6b–HotPackCalorimetry(HS‐PS1‐4,HS‐PS3‐1,HS‐PS3‐3,HS‐PS3‐4)Inthislabstudentsmeasuretheamountofenergyreleasedinthetypeofreactionthatoccursinahotpackandlearnabouttheuseofhotvs.coldtherapy.BylinkingthistothehydratedcrystalslabinthefallwherestudentsheatedEpsomsalts(magnesiumsulfatehydrate)untiltheylostallwater,studentsareabletoquantifytheenergythattheystoredintheiranhydratepelletsincethelastlaboccurred.ToquantifythistheymustdissolvetheanhydrateinwateraswellasthehydrateanduseHess’lawtofindthedifference.Theanhydratedissolvinginwaterisanexothermicreaction.Thehydrate(Epsomsalts)dissolvinginwaterisaslightlyendothermicreaction.Studentswillexperiencebothtypesofreactionsinthislab,andtheywillturnpotentialenergytheyputintotheiranhydrateinthepreviouslabbackintokineticenergywhichtheycanmeasureastheincreaseinwatertemperature.*Studentsusetheproductfromlab4aaspartofthisexperiment.Lab6c–Photosynthesis&RespirationChemistry(HS‐PS1‐4,HS‐LS1‐5,HS‐LS1‐7)Studentswillreadabouttheinternationalenergycrisisofnutritionandhowmalnutrition&obesitylinktohealthissues.Nextstudentswillcalculatetheenergyinvolvedinphotosynthesisandrespiration,studyingtheendothermicandexothermicreactionsassociatedwithphotosynthesis&respirationthenreflectontheirownconsumptionofcarbohydratesasitpertainstotheirpersonalnutrition.Unit7:Gasses&AtmosphereUnit7recommendedconcepts

- IdealGasLaw- GlobalWarming- GasStoichiometry

- RelationshipsbetweenEarth’sSystems- CarbonCycle- KineticMolecularTheory

Lab7a‐StomachStoichiometry(HS‐PS1‐7,HS‐ESS3‐6)AlthoughgassesarenotaspecificfocusofNGSStherearemanyoftheconceptswithinNGSSwhichapplytothegasses.Inthislabstudentswillcreategasintwodifferentways.Theywilluseorganisms(yeast)tocreateCO2andtheywillalsoburnacandletoreleaseCO2.InthistheycanstudystomachgasstoichiometryandconnectittotheglobalwarmingconceptsfromNGSS.Lab7b‐GasLawsInquiry(HS‐PS1‐7)AlthoughgassesarenotaspecificfocusofNGSStherearemanyoftheconceptswithinNGSSwhichapplytothegasses.Inthislabstudentswillinvestigatetherelationshipbetweenvariablesinordertodetermineiftheyaredirectlyorinverselyproportional.Unit8:Water,Solutions&AcidsUnit8recommendedconcepts

- Solutions- ConcentrationCalculations

- Acids&Bases- OceanAcidification

Lab8a‐Blood&SeaBufferLab(HS‐PS1‐6,HS‐ESS3‐6)Theadditionofcarbondioxidetoawaterbasedsolutioncancauseacidificationofthatsolution.Inthebloodandintheocean,thisismitigatedthroughacomplexbuffersystem.Inthislabstudentscomparetheadditionofcarbondioxidetoabufferedsolutionandanon‐bufferedsolution.TheCO2isaddedintwodifferentwayssothatstudentscanstudytheeffectsofCO2onpHaswellastheeffectsofthebuffer.ThefirstwayCO2isaddedisthroughbreathingfromthetopandthesecondisbybubblingtheCO2intothesolutionwithastraw.Studentswillalsolearnthatabuffersystemisactuallyacomplexchangeinequilibrium.

Unit9:Rates&EquilibriumUnit9recommendedconcepts

- ReactionRates- ReactionKinetics- Variablesthatchangerates

- ActivationEnergy- Equilibrium- LeChatalier’sPrinciple

Lab9a–AlkaSeltzerRatesofReaction(HS‐PS1‐5)Inthislabstudentsstudyreactionratesastheypertaintochangesintemperatureandconcentration.ByaddingcertainamountsofAlkaSeltzertowaterandsealingitintoafilmcanister,theycantakedataonthetimeittakesforthereactiontobuildupenoughpressuretopopthetop.Lab9b–Rates&EquilibriumVirtualLab(HS‐PS1‐5,HS‐PS1‐6)Thisonlinelabisagreatwayforstudentstostudytheintricaciesofrates,equilibriumandLeChatelier’sprinciple.Theywillneedtohaveacalculatorhandyinordertodothecalculations,andtheyenterthemonlinetoseetheresultsofeachstepintheprocess.Thiswebactivityworksonanydevice–phones,tabletsorcomputers,andyoudon’tneedtodownloadanyprograms.Lab9c–RatesinquiryLab(HS‐PS1‐5)In this round robin style lab students study reaction rates as they pertain to changes in a number of variables. This is a great inquiry lab at the beginning of your unit because it has a lot of experimentation with rates. Each station has a background reading connecting the concept to the medical field.  Unit10:IntrotoOrganicUnit10recommendedconcepts

- ReadingShorthandnotationmolecularstructures

- Molarmassoflargemolecules- Overviewoffunctionalgroups

Lab10a–SmellLab–ReceptorsinAction(HS‐PS1‐3)Introducingorganicchemistrycanbetough,butthesmelllabisagreatwaytohelpsstudentsrelatethelewisdotstructuretolargermolecules.Withabackgroundreadingondrugmoleculesandreceptors,thesmelllabthenwalksstudentsthroughtheidentificationofanumberoffunctionalgroupsaswellashowtounderstandashorthanddrawingofanychemicalstructure.AnoteonCopiesFormanyoftheselabsthecontenttakesupto8pages,andthiscanbeanextremeamountofcopies.Iusuallymakemycopies“2up”onthemachine.Thistakes2normalsheetsandcopiesiton1singlesheet.Thismeansthat8pagesofmaterialherecanbecondenseddownto2sheetofpaper,copied2sided.Ifyouusethebookletoutputonyourcopymachineyoucanhavestudentsfoldthewholethinginhalfandendupwithanicelabbookletforeachstudent.Forsomereasontheyjustlovebooklets.Youmayneedthemtocompleteanyquestionsonaseparatesheetofpaperinthatcasebecausethereisnotasmuchroomtowrite.FeedbackTheselabsundergoconstantrevision,andwillcontinuerevisionuntilthestatehasfinalizedtheCaliforniaFrameworkforNGSS.Thismeansthatwerecommendthatyougotothewebsitetogetthemostuptodateversionofthelabeachyearyouuseit.Inthemeantimewewouldlovetogetyourfeedback!PleaseemailMedChem@HASPI.orgwithyourquestions,correctionsorsuccessstories

  HASPI  Medical  Chemistry  Unit  10:  Intro  to  Organic  Chemistry   Lab  10a  Page  10    

Part D: Alcohols Molecule            

Odor  10   Odor  11   Odor  12    

Smell  Prediction        

   

1.  The  odors  10,  11  &  12  comprise  the  family  of  molecules  called  alcohols.    Identify  the  common  pattern  within  the  family  of  alcohols  and  draw  it  to  the  right.    

   

   

2.   The   short-­‐hand   and   full   atom   version   of  Odor   10   is   shown.   Answer   the   following  questions  relating  to  the  structures          

a.  Refer  to  the  full  atom  version  for  Odor  10.    How  many  lines  are  connected  to  each  carbon  atom?  

 

b.  How  many  lines  are  connected  to  each  hydrogen  atom?  

 

c.  How  many  lines  are  connected  to  each  Hydrogen  atom?  

 

3.  Molecular  Structures  would  not  exist  without  the  valence   electrons   that   are   available   for   bonding.    Draw  the  lewis  dot  structures  for  carbon,  hydrogen  and  oxygen  

                       C       H     O  

4.   How   are   unpaired   electrons   in   a   lewis   dot  structure   similar   to   the   lines   that   are   shown   to  connect  2  atoms  in  a  molecular  structure?  

     

5.   The   atoms   that   comprise   the   molecular  structures   in   this   lab   are   carbon,   hydrogen   and  oxygen  atoms.    They  are  all  non-­‐metals.    What  type  of  bond  holds  the  atoms  together?  

 

6.   Shown   to   the   right   are   two   short-­‐hand  versions   of   Odor   10,   the   one   on   the   right  includes   all   of   the   hydrogen   atoms.     Look   at  the   arrows   pointing   at   two   different   carbon  atoms   in   the   representation   on   the   left.  Observe  in  the  representation  on  the  right  that  each   of   those   carbon   atoms   has   a   different  amount  of  hydrogen  atoms  bonded  to  it.  Look  for   a   pattern   and   provide   a   reason   why   you  think  this  happens?            

             

Actual  Smell   Odor  10    

Odor  11   Odor  12  

H3C OH

CH3 CH3

OH

CH3

CH3H3C

CH3

H3C CH3

OH

H3C OH

CH3 CH3=

Odor 10Short-hand version

H3C OH

CH3 CH3

Odor 10Short-hand withhydrogen atoms

included

H

H

H

H H

H

HH

H3C OH

CH3 CH3

CCCCCCCCO

C CHHH

H

HH

HHH

H

H

H

H

H H

H

HH=

Odor 10Short-hand version

Odor 10Full atom version