Chapter 4. The hypothesis of eolian loess origin - the physical aspects

27
CHAPTER 4 THE EOLIAN LOESS ORIGIN HYPOTHESIS - THE PHYSICAL ASPECTS (Remake after “Top 5 geomorphology and paleogeography problems of Ukraine”, Kyiv, 2012. Vіk-print, 113 p.) If we look at the idea of eolian loess formation from philosophy branch "Knowledge", which envisages a phased study of natural phenomena from the idea to the theory, then the level of validity of that idea is not higher that category - a hypothesis which is the second stage of knowledge, only. There are not classic physical base. There are not piece of evidence. There are not geological and geomorphologic evidence. There is mental concept, and no more. It is no enough for true science. In recently, the basic evidence of eolian hypothesis became beautiful computer graphics, which is likely, has aesthetic value, but not scientific. A striking example of it is "Aeolian dynamics and processes during the last glacial in Europe: data from loess-paleosoil sequences". Unlike other in this paper in addition to good design, it specifically appointed the locations of deflation areas, from where dust was blew-out away for

Transcript of Chapter 4. The hypothesis of eolian loess origin - the physical aspects

CHAPTER 4

THE EOLIAN LOESS ORIGIN HYPOTHESIS - THE PHYSICAL

ASPECTS (Remake after “Top 5 geomorphology and paleogeography problems

of Ukraine”, Kyiv, 2012. Vіk-print, 113 p.)

If we look at the idea of eolian loess formation

from philosophy branch "Knowledge", which envisages

a phased study of natural phenomena from the idea to

the theory, then the level of validity of that idea

is not higher that category - a hypothesis which is

the second stage of knowledge, only. There are not

classic physical base. There are not piece of

evidence. There are not geological and

geomorphologic evidence. There is mental concept,

and no more. It is no enough for true science.

In recently, the basic evidence of eolian

hypothesis became beautiful computer graphics, which

is likely, has aesthetic value, but not scientific.

A striking example of it is "Aeolian dynamics and

processes during the last glacial in Europe: data

from loess-paleosoil sequences".

Unlike other in this paper in addition to good

design, it specifically appointed the locations of

deflation areas, from where dust was blew-out away for

the formation of the European loess belt. The overall

patterns of the atmospheric circulation and transport

of dust, according to the authors, were as shown in

Fig. 4.1. What was the scheme of the atmospheric

circulation in those days, in fact, no one knows. This

pattern is fantasy of authors. For the reconstruction

of such schemes simply the sufficient input data do not

exist. It is simple example. Even today, when the huge

meteorological, geological and geomorphologic databases

exist, there is no consensus, whether we live in times

of global warming, or we are on the verge of a new ice

age. Some have come up with an interesting definition.

We live in a period of warming on the background of

general geological cooling. This is how? It is not

fantasy, it is demagogy. About what the reliable

reconstructions of the past with the return of tens of

thousands of years, can we talk? Such schemes can not

be attributed to the genre "science fiction", because

it need at least a minimum of theoretical

justification. About what the reliable reconstructions

of the past with the return of tens of thousands of

years, can we talk? Such schemes can not be attributed

to the genre "science fiction", because it needs at

least a minimum of theoretical justification.

Рис. 4.1. Loess in Europe: general considerations map of theEuropean “Loess Belt” According to K. van Gijssel, 2006,

modified (base: International Quaternary Map of Europe, UN/BGR1965–1995). [Antoine, 2009]

As already noted, the authors dare to show the

position of the deflation zones, while mysteriously

others have write that these zones were somewhere in

the north, in the periglacial zone.

Compared with the idea of pioneers of eolian

conceptions, such as P. Tutkovsky [1910], this scheme

takes into account more recent information about a

significant drop in the ocean level during glacial

periods. This allowed the authors, although it does not

fit in with the logic of the sequence of events;

significantly increase the square of deflation area due

to the bottom of the North Sea and the Atlantic Ocean

shelf. The contradiction lies in the fact that the

removal of dust may begin only after the ablation of

glaciers. Prior to this, just nothing was for blowout.

The kingdom of ice spread everywhere. Both moraine,

outwash plain and even land did not exist, only water.

For some reason, authors do not take into account the

presence of enormous number of melt water. The water

must be of huge amount, melted three-kilometer icecap.

Naturally, that a significant portion of the water run

into the ocean, the level of which is constantly was

rising. And it is possible that by the time, when the

authors suggest the eolian activation, the places where

the deflation belt, were already under water.

Moreover, a significant part of the areas covered

by ice, the runoff system is not yet formed these areas

was occupied by swamps and lakes and today territories

of Baltic States mostly are wetland. A confirmation of

the significant post-glacial wetted of land we can

found in the paleogeography paper [Куниця, 2007]. If we

assume that the degradation of the glacier has

regularity, then today arid zones must been shifted to

the north i.e. Alaska, Yakutia and Taimyr, Yamal and

so on. But even using the field descriptions, satellite

imagery and geological survey data, we nowhere find the

signs of aridity. Traces of eolian activities somewhere

are present. For example, Alaska has a few small sand

areas. But in this case it concerns about the sand, but

not about clay. This fact some authors use as evidence

of the fine grain mass deflation. It is not correct

because the physical properties sand and clay are

significantly different. The effect of the wind on the

sand is possible under certain physical parameters

(humidity) in virtually all climatic zones. While fine

grain material shown the adhesion property. That

prevents the detaching of fine particles from the

surface. Detail on this later.

In general, it is clear that the final stage of the

glacial periods was not favorable for eolian activity.

Naturally, the "obvious" is not exactly a scientific

term, but the "eolizm" ideologues do not give the

slightest opportunity to go to the scientific language.

Would they have specific facts or calculations, charts,

maps, and then the scientific language was used by them

and their opponents. But in this case we have to talk

to them in one language. But in what language is not

clear.

Speaking of calculations, we propose a task. If

look at the map (Figure .4.1) we see that the deflation

area to several times less of square of loess zones.

Average thickness of the loess in Europe is 5 m. It

means from the deflation zones the 10 m rock was

withdrawn, at minimum. What rocks it was? What portion

of them belonged to the fine fraction? In any case,

gradual removal of sand leads that the big remains on

the surface begun save it. Further disinflation became

impossible. This type of surface is called deflation.

If perceive the seasonal changes of the Earth's

surface as a compressed time model of glacial epochs,

then the period of the glaciers melting will correspond

of the annual snowmelt time. We live in a frame of this

model, and no surprise that eolian activity does not

begin immediately after the disappearance of the snow.

It can start only after the land became sufficiently

dry. It is "eolian active period". The moisture level

of the sand (table 4.1) which stops its deflation has

long been well known [Захаров, 1964], but this aspect

of eolian processes, neither before nor now "eolists"

do not mention. If you look at table 4.1, you

understand why. All is simple. Any eolian activities

are impossible when moisture of sand overcome 4%. It is

tragedy for “eolists”. My condolences!

Table 4.1.

We see the 5m, 10m 15m op perfectly uniform

thickness of loess and no trace of seasonal changes.

How is it possible? Even with a layer thickness of 5 m

accumulation rate of 2 mm per year of its formation

will last 2,500 years. And all this time there was no

winter, no spring, any summer? There were the

uninterrupted wind, uninterrupted dust and

uninterrupted loess, only. There were no vegetation, no

animals, and, in the end, no people! It is stupid,that uninterruptedly is repeating in "scientific"

paper. It must to interrupt.

Continue to analyze the content of the map. Dwell

only on the assumption of the deflation areas existence

in the past in Polissia. It is unknown what kind data

were used to draw conclusions about the existence of

conditions for deflation here. After analysis of the

map seems that for map compilation any data was not

used, include the simplest physical map of Europe.

Easy to show, that the study of this simple map

would be enough for the more important conclusions.

History of European glaciations contains very important

omission. This is the role of continental topography in

postglacial water escaping. Mainly it is topographic

barrier (red line on fig. 4.2.) that running from

Germany (Rain valley) to central east Ukraine (Dnipro

valley). Its length is 1500 km more. On the west end it

starts from Harz Mountains with average elevation about

1000 m. On the east end are the Volyn and Mozyr uplands

with elevations 200 m less. Within the Dnipro-river

valley in the previous ice ages the barrier prolonged

to the east (as the end moraine) up to Smolensk–Moscow

Upland. Nevertheless, this segment of barrier was

destroyed by 5 time’s catastrophic floods of the

Holocene second half.

In general the remains of orographic barrier are

arc-form bent to the sough. Along it there is few bends

second order. All together are trap for melted glacial

water. From local bands the water escaping is

impossible in total. Drainage of these areas is carried

out by evaporation, only. This area is doomed to be

wetland long-long time after end of ice ages. The story

that this plain after the ice stages was occupied by

desert are only tale and no more. Ten thousands years

after the glaciation (Wurm LGM show by blue line on

Fig. 4.2) area stays strong wetted.

Evidences of this statement you can see on the

topographic map partly cover Polissia area on the

junction of three countries – Ukraine, Poland and

Byelorussia. During the last glaciation this area

was spaced from the ice sheet by few hundreds

kilometres. The water was coming from the southern

uplands and from ice body simultaneously. According

the geological prospecting, the lacustrine sediments

lie at the altitude near 200 m on the south of

Ukrainian Polissia. At the last stage of Wurm ice

age (12 ka BP) the water elevation in proglacial

lake was about 140m.

Fig. 4.2. Arrangement of the Wurm glacial limit and theorographic barrier that prevented runoff of melt water to the

south (Blue arrow – catastrophic flood direction, УКЩ -Ukrainian crystalline massif, BA – Voronezh massif)

Data Aggregation Geological Survey fully

confirms the strong watering of the Pripyat basin

after each glaciation. In this regard, among the

geologists was the term "Pripyat marshes." [Коржуев,

1960]. After that recall the contents of Table 4.1 and

draw conclusions.

Will not judge the quality of the entire map, but

the interpretation of the Polissia territory is

absolutely incorrect. It is useful to indicate that

Polissia deflationary zone, as shown on the map, is the

greatest.

In addition to high humidity Polissia there is

another obstacle to the deflation of fine-grained

material. First, it wills the observed data. After, the

justification will be presented. This will be done on

the basis of classical physics. It will be next reason

for disorder of "eolists".

Will not be assuming mistake to think that

"eolists" think the take-off speed and the size of

the grains have linear dependence. The smaller the

grain size of the smaller should be the speed of the

wind. Then for dust, it can be close to zero. How as

it is in reality?

Fig. 4.3 and 4.4 show two graphs of the wind

speed at liftoff for the various diameters sand

grains. The first graph is taken from the

publication's P. Zakharov [1960], the second graph

after R. Baghold [1941].

Fig. 4.3. The maximum windspeed at liftoff at a height

Fig. 4.4. The dependence ofthe threshold speed the

of 15 cm, required toinitiate movement of soilparticles: 1 - sand; 2 -sandy loam; 3 - heavy loam.

separation from grain size.

Both graphs have the same character of the

curve. From grains diameter of about 0.1 mm, the

curve of the speed liftoff to rise in both sides, in

the direction of decrease and increase the grain

size. The both wings have almost linear curve, as

seen from Fig. 4.4 the proportional scale saved. For

example, speed liftoff of particles of 0.02 mm is

the same that required for particles of 0.6 mm.

According P. Zakharov speed of wind must be about 7

m/s at a height of 15 cm above ground.

Explaining the law of increasing the liftoff

speed with decreasing grain size, A. Ivanov said

that the reason interpret by increasing of molecular

forces [1972], i.e., responsibility for this

widespread in nature and well-studied phenomenon -

adhesion. Its physical aspects are widely known

among physicists, but either among naturalists. Its

ubiquity can be seen even from the titles of the

papers, such as «Theoretical and experimental

investigations in planetary dust adhesion» [Perko,

2002].

This name reflects the adhesion and it

participation in geological processes. People in

everyday life and production activities are

constantly faced with adhesion. For example, noting

that after a while the cement itself hardens, and a

bunch of fresh clay after a while covered with a

solid crust, and in the subsequent time a bunch of

soft clay bulk material turned into a monolith.

Flour and sugar behave in the same manner. The

question, can the wind destroy such compacted

substance? Answer is simple, no!

To say that the concept adhesion is alien for

geology is impossible. Enough on the Internet to

search by keyword «Loess adhesion force» or «Clay

adhesion force» and it becomes clear that in

engineering geology this phenomenon is known,

studied and taken into account when calculations of

subsidence, resistance structures, etc. It is

strange that those who offer a certain pattern of

interaction different substances, loess, failed to

learn its main physical properties.

A good example of adhesion is earth roads loess

provinces. In the long absence of rain in they

formed a thick fluffy layer of dust, in which the

feet sink. When on such roads car rides, its kinetic

energy is partly focus on destruction of monolithic

loess, which are transformed into a loose mass, i.e.

in dust. This mass is lifted into the air following

a car and forms dense clouds of dust that hang in

the air for a long time and slowly travel with weak

wind. Day after day track gets deeper. Several

decades ago, a smaller cloud of dust, on such roads

could also be observed for slow moving carts. A

smaller dust clouds rose from under pedestrian feet.

That is, the apparent ease of lifting dust and its ease

of movement by wind and gave impetus for the emergence

of eolian loess formation version. Too easily dust

rose. Reality was a bit more complicated, and

interestingly, even much more interesting.

Sooner or later, but the rains started. Rainwater flows

into a rut bring back the blown out loess. After a

while the puddles became dry, dirt, due to

manifestations of adhesion, became compact, then it

forms a hard crust on which we can confidently go and

can drive the lorry. After then, everything is back to

initial point: the fluffy dust, running car, clouds of

dust, track, puddles, sludge, crust, and finally, the

idea of eolian origin of loess has been forge.

Congratulations!

Let's try to break this vicious circle! It has

already been said about the scrutiny of the effects

of wind on sand and clay surfaces. Let us dwell on

some details. In the phenomenon of migration of sand

blown studied not only the physical principles of

the wind effects on the surface, but also the

participation of factors such as a change of wind

speed with height, surface moisture, seasonality,

the impact on the wind-sand flow of the

electrostatic field. With respect to clay particles

transportation by wind, anything like this is not

done. It is vain. Since then we had to start.

To fill this gap, we will analyze why and how

the dust flies out from under the wheels of cars and

carts in loess roads. Of field prospecting

experience we can say that the car is moving at

average speed of about 20 km/h or 5.6 m/s. We assume

that the velocity air relative to ground is car

velocity, i.e. the 5.6 m/s. The extrapolating of

speed at liftoff (Fig. 4.3), we find that for a

given rate, it could raise the grains diameter of

from 0.035 mm to 0.5 mm. But as is known, about 80 %

of the loess fraction lies in interval from a 0.05

mm and 0.002 mm. And 5—30 % is clay with grain less

0,002 mm. This means that at a given speed, only the

largest particles will liftoff. As can be seen from

both graphs, the experimental results limited of

grain size from 0.015 and 0.04 mm. On Fig. 4.4 the

line of graph continued by dotted, i.e. these values

are assumed.

The wind speed at the height of 15 cm for the

liftoff of particles: 0.05 mm is 4.7 m/s (in terms

of standard height weathervanes about 10 m/s). For

particle less than 0.015 experimental data not

presented. For 0.015 mm grain extrapolated rate

equals 13.5 m/s at a height of 15 cm, or about 27

meters at an altitude wind vane. What is the speed

of separation should be for smaller particles are

impossible to say.

But even the rate of 27 m/s is sufficient for

denial of eolian conception origin of loess. In

Beaufort scale this rate of wind lie in the whole

gale category. Obviously, for small grains the wind

must be even stronger. For the present climate these

rates of wind are rare and mentioned in weather

reports, when it comes to hurricanes or storms. Even

in the windiest area, which has the Caspian Sea

region, the wind rates above 7-Beaufort number are

unknown (Table 2б for areas marked on the map in

Fig. 4.1 as deflation zone, these figures for

eolian activity is even less favorable (Look tohttp://www.atlas-yakutia.ru/weather/wind/climate_russia-

povt_wind.html). Assume that in those days atmosphere

energy was other no reason. Today, as then, the

source of energy was the sun, and on its energy

stability the system "Earth" stands hundreds of

millions of years.

Table 2. Repeatability of daily average wind speed (%),for Astrakhan, 2000г (Copyright © atlas-yakutia.ru Russia

2007 – 2014) 

Beaufort number

Wind speed m/s

Description Jan.

Feb.

Mar.

Apr.

May Jun.

Jul.

Aug Sep.

Oct.

Nov Dec

0 0-0.5 Calm 0 0 0 0 0 0 0 0 0 0 0 01 0.5-1.7 Light air 35.

53.6 0 13.

33.2 6.7 9.7 16.

116.7

19.4

10 6.5

2 1.8-3.3 Light breeze

12.9

10.7

10 20 16.1

6.7 6.5 25.8

13.3

45.2

16.7

16.1

3 3.4-5.2 Gentle breeze

25.8

53.6

53.3

33.3

51.6

43.3

58.1

38.7

56.7

25.8

46.7

48.4

4 5.2-7.4 Moderate breeze

16.1

25 26.7

23.3

16.1

20 19.4

19.4

6.7 6.5 16.7

22.6

5 7.5-9.8 Fresh breeze

9.7 3.6 6.7 6.7 9.7 13.3

6.5 0 3.3 3.2 10 6.5

6 9.9-12.4 Strong breeze

0 3.6 3.3 3.3 0 6.7 0 0 3.3 0 0 0

7 12.5-15.2

High wind,moderate gale,

0 0 0 0 3.2 3.3 0 0 0 0 0 0

8 15.3-18.2

Gale,fresh gale

0 0 0 0 0 0 0 0 0 0 0 0

9 18.3-21.5

Strong gale 0 0 0 0 0 0 0 0 0 0 0 0

10 21.6-25.1

whole gale 0 0 0 0 0 0 0 0 0 0 0 0

11 25.2-29.0

Violent storm

0 0 0 0 0 0 0 0 0 0 0 0

12 >29 Hurricane 0 0 0 0 0 0 0 0 0 0 0 0

Let’s return to the ground dusty roads. This

requires a search for answers to the questions: 1.

Why deflation is limited only by the width of the

road? 2. How dust was raised in the air? 3. How

formed the dust clouds, which took of volume in

hundreds cubic meters?

The answer to the

first question is almost

is, it needs only

detailed. Deflation is

limited by the width of

roads in loess (clay)

areas and occurs due to

anthropogenic activities.

Motion of lorry supports

surface rocks in the loose

bulk state. If the virgin

surface and has even minimal vegetation, the wind

erosion or non-existent, or it provokes by animals

activities. Most clearly evidenced of it presents on

the space views on arid zones. For example please

look on the West Kazakhstan (fig. 4.5).

The answers to second and third questions

require some remarks. Unfortunately, until today all

geography theory stands on the concept that derived

from direct observations of human organs, sight,

hearing, smell and feeling on contact. Physical

laws, except gravity, rarely involved. For example,

every one after the post-secondary schools is know

Fig. 4. 5. Detailed space image of the plateau Ustuyrt area. White spots are rodent settlements.

the phenomenon as electrification and electrostatic

forces. But how often they are used to explain

natural phenomena?

Everybody knows that when the solid part

transfers by the wind they are electrified. Air

becomes one sign and solids become opposite. So when

the dust rises up in the air under the pressures of

feet or wheels it instantly electrified. Between

the particles an electrostatic force emerges that

pushes away the particles in different directions.

Dispersion makes gravity and aerodynamics secondary

factors. Therefore, the lifted dust occupies the

maximum of possible volume. Slow discharge of dust

is the cause of slow it sedimentation. The presence

of residual charge makes the fluffy dust. Partly the

dust was removed outside the road.

Note, the above text does not preclude the

natural deflation of clay rocks. Interesting

examples of this have solonchak (sor) and blowout

basins of western Kazakhstan. But this phenomenon is

not primitive as represented by some researchers.

There is dry surface, there is a breeze and it is

enough. Deflation began. The physical properties of

dry clay surface are slightly different from the

concrete. Who tried to spade it, one knows. For

beginnings, the surface must be disintegrated. And

then rocks can be removed by wind. It is an

interesting process line with strong operations

sequence. Step by step. About it will speak in the

next time.

Литература:

1. Армашевский П. Я. О происхождении лесса (Общая геологическаякарта России, лист ( Полтава – Харьков – Обаянь), Труды Геол.Ком., т. ХУ, №1, 1903. с 2. Афанасьев А.П. и др. Новые материалы к изучению движениятукуланов Центральной Якутии. - В кн.: Природа и хозяйствоСибири. Якутск, 1977, с. 55-56.3. Веклич М. Ф. Западное ричерноморьеб Юго-Запад и ЦентрЕвропейскаой части СССР // Геохронология СССР, т. 3, (Новейшийэтап). Под ред. Зубакова В. А. – Л., Наука, 1974. с. 85-94. 4. Величко А. А., Тимирева С.Н. Западная Сибирь — великаяпозднеледниковая пустыня // Природа. 2005. №5. С. 54–62.5. Возгрін. Б. Д, Гладких M. І,; Рижов С. М.; Суховій М. О. Нові данніщодо геологічного датування палеоантропологічних решток зс.Лащове. - Археологія України , Інститут археології НАНУкраїни, 2004, с. 71-75;6. Вознячук Г. Н. К стратиграфии и палеогеографии неоплейстоценаБелоруссии и смежных территорий // Пробл. Палеогеогр. антроп.Белоруссии: Минск. 1973. с. 45-75 7. Геоморфологічна карта України // Національний Атлас України(електронна версія) / Палієнко В. П. Під ред. Л. Г. Руденка.– Київ: ІГ НАНУ, 2006.8. Гладких M. І, Рижов С. М, Синиця Є. В. Охоронні розкопки наКанівщині / Археологічні відкриття в Україні 2001-2002 р.р., ІAHAH України, 2002, с. 109-1119. Горецкий Г. И. Об уточнении геологических датировок палеолитаРусской равнины. - Тр. ГИН АН СССР, 1959, вып. 32. с.21-3510. Дмитриев А.И. Микроэволюционные процессы в популяцияхископаемых грызунов прикаспия в голоцене // ВестникНижегородского университета им. Н.И. Лобачевского. Сер. Биол.Вып. 1 (9).  Матер. VIII Всерос. популяцион. семин. «Популяции впростр. и времени» (11–15.04.2005 г.) Н. Новгород. Узд.Нижегородского госунив. 2005. С. 57-67.11. Залеський І.І. Зелінський П., Федорович С. Вік еолових форм урайоні смт. Маневичі // Природа Зах. Полісся та прилег. терит. –Зб. наук. праць. - №. 5 – Луцьк, 2008. – С. 8 – 13.12. Заморій П. К. Четвертинні відклади Української РСР: В 2 ч. –К. : Вид-во КГУ, 1961. – Ч. 1. – 550 с.; 13. Захаров П.С. Пыльные бури. Л., Гидрометеоиздат, 1965. - 164с.

14. Звід пам’яток історії і культури України: Полтав. Обл. ./Новосанжарський район/, упоряднтак В. О. Мокляк, - Полтава,Дивосвіт, 2007. – 178 с. ; 15. Иванов А.П. Физические основы дефляции песков пустыни.Ашхабад, 1972 - 112 с.16. Історичний Атлас України, 2010.17. Калечиц Е.Г. Первоначальное заселение территорииБелоруссии // Минск, Наука и техника, 1984. – 159 с.18. Карлов Н. Н., Кравченко А. И. Четвертичные вулканические пеплыокрестностей Днепропетровска //Тр. Комис. по изучению четверт.периода, вып. ХIII, 1957, с. 290-300.;19. Карта неотектонічних рухів // Національний Атлас України(електронна версія) / Палієнко В. П. Під ред. Л. Г. Руденка.– Київ: ІГ НАНУ, 2006.20. Климатический справочник СССР. Вып.10, УССР и МССР. Киев,1950, - 713 с. 21. Коржуев, С. С. Рельеф Припятского Полесья / С. С. Коржуев. –Мн., 1960. 141 с.22. Крокос В. І. Четвертичная серия Днепропетровського района //Путеводитель экскурсии второй четверт-геол конф. - М. -Л.,1932. - С. 145-161. 23. Куница Н. И. Природа Украины в плейстоцене. – Черновцы,Рута, 2007, 240с.24. Левицький І.Ф. Гінцівська палеолітична стоянка // Палеоліт інеоліт Укрїни, т.1., вип. 3, К., 1949. с.198-236.25. Личков Б.Л. К вопросу о существовании пустынь в четвертичноевремя в Европе // Зап. Киев. о-ва естествоисп. — К., 1928. — Т.28. — Вып. 3. — С. 42. 26. Малеева А.Г. История фауны грызунов и природного очага чумысеверо-западного Прикаспия в позднем антропогене: Автор. дисс.канд. биол. наук. Свердловск: 1967. 17 с. 27. Маринич А.М. Геоморфология Юного Полесья. Киев, изд-воКиевского госуниверситета, 1963. - 252 с.28. Мороз С. А. Олігостромова природа Канівськихдислокацій //Сучасний стан та перспек. розв. геоморфол.,неотектон. та палеогеог. Антроп. України, 1996. – с. 19-21. 29. Нехорошев П.Е. Конец среднего палеолита на Русской равнине всвете материалов стоянки Шлях // Актуальные проблемы первобытнойархеологии восточной Европы: Сборник Статей / АрхеологическийАльманах, № 20. – Донецк: «Донбас» 2009. с.111-129.30. Нужний Д.Ю., Ступак Д.В., Шидловський П.С.  Розкопкипізньопалеолітичного поселення Семенівка III у басейні Трубежу у1997-1998 pp. // Археологічні відкриття в Україні 1997 - 1998pp. – К., 1998. - С. 115-118.

31. Пазинич В. Г. Геофізика явища еолової акумуляції. – К. :Геопрогноз, 1994 - 47 с.32. Пазинич В. Катастрофічні повені голоценового періоду налівобережжі середнього Дніпра // Наукові праці УкрНДГМІ, 2009,Вип. 258. с. 160-168. 33. Пазинич В.Г., Стахів М.П. Результати обстеження алювіальноїтовщі в кар’єрі м. Комсомольськ (Полтавська обл.) // Фіз.географія та геоморфол. № 55, К., 2009. с. 175-176 34. Пазинич В.Г. Серебряков В.Л. Результати радіовуглецевогодатування похованого ґрунту з Ярошівського граніт. кар’єру //Фіз. Геогр..та геомор.. № 61, К., 2010. с. 145-150.35. Пазинич В. Періодичність катастрофічних повеней в басейніДніпра // Фізична географія та геоморфологія № 61, Київ, 2010.с. 174-18236. Пазинич В., Галаган О., Пазинич Н. До протиріч у датуваннідніпровської «морени» // Фізична географія та геоморфологія №59, Київ, 2010, с. 144-148.37. Пидопличко И. Г. Новый метод определения геологическоговозраста ископаемых костей четвертичной системы, К., Изд-во АНУССР, отд. вып., 1952, 90 С. 38. Пазинич В. Г. Періодичність катастрофічних повеней в басейніДніпра // Фізична географія та геоморфологія № 61, Київ, 2010,с. 174-18239. Пазинич В. Г. Топ-5 геоморфологічних та палеогеографічнихпроблем України, Київ, 2012. Вік-Принт, 113с.40. Переверзнєв С.И., Сорокун А.А. Дослідження неолітичної стоянкиРоманків на Київщині // Кам’яна доба, вип..13., Шлях, К., 2010.– с.254-269. 41. Петренко Л.В., Третяк П.Р., Ковалюх Н.Н. Геохронологияформирования аллювиальных отложений р. Днестр в позднем голоцене// Стратиг. и коррел. морск. и контин. отлож. Украины, Зб. науч.труд. ИГН, К.: 1987. С.78-85. 42. Підопдічко І.Г. Дослідження палеоліту в УРСР //Палеоліт і неоліт України,Т.1. Вип.1, АН УРСР, 1949. – с. 7-36.43. Підопдічко І.Г. Палеолітична стоянка Новгород-Сівенрськ //Палеоліт інеоліт України, Т.1. Вип.2, АН УРСР, 1949. – с. 65-107.44. Попов А.И., Тумель Н.В. и др. Региональная криолитология || Уч.Пособие, Изд-во Моск. ун-та, 1989, 255 с.45. Ризниченко В. В. О геоморфологических особенностях итектонике района прирыва Днепра через Украинскую кристаллическуюполосу // Тр. ком. по изуч. четверт. периода. – 1932. -Вып. 2. – С. 4-32.

46. Степанчук В. М. та інш. Багатошарова стоянка Міра насередньому Дніпрі: основні результати розкопок 2000 року.Кам’яна доба України, вип. . 5., К., Шлях, 2004 – С. 62-99. 47. Степанчук В.Н. Нижний и средний палеолит Украины. –Черновцы, Зелена Буковина, 2006. 463 с. 48. Саваренский Ф. П. Четвертичные отложения в районеДнепростроя // Путеводидель екскурсий второй четвертично-геологической конференции. - М. -Л., 1932. - С. 163-184. 49. Тутковский П. А. О происхождении озерных лессов. Трудыобщества исследователей, Житомир, 1912. 240 с. 50. Финаев А.Ф. Модель переноса и выпадения пылевого аэрозоля вюжных районах Таджикистана //Археология и палеоэкология Евразии.Новосибирск, 2004. с.349-358.51. Чапалыга А. Л. Позднеледниковое обводнение в Понто-Каспийскомбассейне как прототип Всемирного потопа // В книге: Экологияантропогена и современности: природа и человек. СПб. :Гуманистика, 2004. 52. Четвертинні відклади // Національний Атлас України (електроннаверсія) / Возгрін Б.Д., Гожик П.Ф., . Під ред. Л. Г. Руденка.– Київ: ІГ НАНУ, 2006.53. Швец Г. І. Водність Дніпра. - К. : АН УРСР, 1960. – 148 с. 54. Шелкопляс В. Н., Христофорова Т. Ф. Возраст плейстьоценовыхозерно-ледниковых отложений перигляцыальной зоны УССР, //Перигляциальные образования плоейстоцена (Препринт ИГН 80-16),К., 1980, с. 39-40 55. Aeolian Sediment Transport. www.geo.utep.edu/pub/ hurtado/241256. Antoine P., Rousseau D., Hatte C., Gauthier C., Moine O., Iang A., Fuchs M., Zöller L., Lagroix F., Sima S. Aeolian dynamics and processes during the last glacial in Europe: data from loess-palaeosol sequences // Laboratoire de Géographie Physique, UMR 8591 CNRS, Meudon France, 2009. (pages-142.unibe.ch/science/adom/pdf/ADOM_Antoine.pdf)57. Bagnold, R. A. The Physics of Blown Sand and DesertDunes, Methuen, N-Y., 1941. 58. Cserny, T., Nagy-Bodor E. Limnogeological investigations on LakeBalaton. -- In: Gierlowski-Kordesch, E., K. Kelts (Eds): LakeBasins through Space and Time. AAPG Studies in Geology 46, 2000.p. 605-618.59. Dinu Al., Soficaru A., Miriţoiu N. The Mesolithic at the Danube’sIron gates: new radiocarbon dates and old stratigraphies,Documenta Praehistorica, 34, 2007, p. 31 – 52.60. Fedorowicz S., Ùanczont M., Muc A,. Comparison of luminescence (TLand OSL) dating results from selected loess profiles in SE

Poland and the NW Ukraine Geologija. 2005. Vilnius Nr. 50. p.19–2661. Fladerer F. A calf-dominated mammoth age profile from the 27 kyBP stadial Krems-Wachtberg site in the middle Danube valley //Advances in mammoth research, Deinsea 9, 2003. p. 135-158.62. Fodor L., Csillag G., Németh K., Budai1 T., Cserny T., Martin U.,Brezsnyánszky K., Dewey J. Tectonic development, morphotectonics andvolcanism of the Transdanubian Range: a field guide //Occasional Papers of the Geological Instit. Hungary, volume 204.2005, p. 59-86.63. Fodor L., Bada G., Csillag G., Horváth E., Ruszkiczay-rüdiger Z., Síkhegyi F.New data on neotectonic structures and morphotectonics of thewestern and central Pannonian Basin Occasional Papers of theGeological Institute of Hungary, volume 204, 2005, p. 35-44.64. Frechen M., Terhorst B., Rahle W. The Upper Pleistoceneloess/palaeosol sequence from Schatthausen in North Baden-Württemberg // Quaternary Science Journal. 56/3 2007 p.212-22765. Frechen M., Kösel M., Rähle W. The Late Pleistocene loess profi le Nussloch (SW wall). // Quaternary Science Journal. 56/4 2007 p.227-25566. Frechen M., Schirmer W. Luminescence Chronology of the Schwalbenberg II Loess in the Middle Rhine Valley Quaternary Science Journal, 60 / 1, 2011 p. 78–8967. Gerasimenko N. Stari Bezradychi section // The Ukraine Quaternary explored: the middle and upper Pleistocene of the middle Dnieper area and its importance for East-West European correlation (9-14 September 2001). Keiv, 2001. – p. 13-19.68. Hooke Roger LeB. . Principles of Glacier Mechanics. Second Edition Department of Earth Sciences and Climate Change Institute University of Maine, Orono, 200569. Huhmann M. Landschaftsentwicklung gegenwartigeBodendegradation ausgewahlter Gebiete am oberen Dnister(Westukraine) – Marburg, Lahn/2005/ - XXYIII, 299S.70. Jary Z. Zapis zmian klimatu w górnoplejstoceńskich sekwencjachlessowo-glebowych w Polsce i w zachodniej części Ukrainy. Zdzisław Jary. Instytut Geografii, Wroclaw, 2007. p. 136.71. Klimaszewski М. Geomorfologia. – Warszawa. 1978. – S.101072. Kukla V.J.,, Lozek V., Barta V. Das Lessprofil von Nove Mesto imWaagtal Eiszeitalter und Gegenwart Band 12 Seite 73-941961.73. Lisá L., Fišáková N. The Dolní Věstonice – Pavlov settlement complex // Abstract book and confer. guide, OIS 3 Confer. Anthropos Pavilion, 15th - 17th of March, Brno 2010, p. 52-61

74. Nádor A., Sinha R., MagyariA., Tandon S.K., Medzihradszky Z., Babinszkia E.,Thamó-Bozsó E., Unge Z.r, Singh A.. Late Quaternary (Weichselian)alluvial history and neotectonic control on fluvial landscapedevelopment in the southern Körös plain, Hungary,Palaeogeography, Palaeoclimatology, Palaeoecology 299 (2011) 1–14.75. Neruda P. Moravia during ois 3: Cultural relations.Praehistoria vol. 9–10 (2008–2009) p.125-149 76. Perko H. A. Theoretical and experimental investigations inplanetary dust adhesion. Colorado State University Fort Collins,Colorado Spring 2002, p.213.77. Ringer A., Lengye Gl. The upper Palaeolithic site at Budapest Corvin-tér, Praehistoria vol. 9–10 (2008–2009) . p. 205-213 78. Rousseau D.-D., Antoine P., Gerasimenko N., Sima1 A., Fuchs M., Hatt´e C., Moine O., Zoeller L. // North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits. Climate of the Past. Clim. Past, 7, 221–234, 2011 79. S´ıkhegyi F.. Active structural evolution of the western andcentral parts of the Pannonian basin: a geomorphologicalapproach EGU Stephan Mueller Spec. Public. Series, 3, 203–216,200280. Simon U., Einwögerer T. An Upper Palaeolithic Open Air Sitenear Saladorf (Lower Austria), Wiss. Mitt. Niederösterr.Landesmuseum, 19б 2008ю зю 141-14881. Sümegi1 P., Molnár M., Svingor E., Szántó Z., Hum1 L., Gulyás1 S. Resultsof radiocarbon analysis of upper weichselian loess sequencesfrom hungary // radiocarbon, Vol 49, Nr 2, 2007, p 1023–103082. Schielein P., Schellmann G., Lomax J.. Stratigraphy of LateQuaternary fluvial terraces at the confluence of the Lech andDanube valleys Quaternary Science Volume 60 / Number 4 / 2011 /414–424 / DOI 10.3285/eg.60.4.0283. Székely B., Molnár G., Ferencz E., Dövényi P., Krumrei I. and Timár G.Swaths of topographic sink depressions interpreted as remnantsof paleomeanders in the vicinity of Lake Balaton, Hungary:evidences of young uplift or base level drop?, 2005. GeophysicalResearch Abstracts, Vol. 7, 09989, 2005.84. Vlačik M. Carnivores from Trenčianske Bohuslavice – PodTureckom and Moravany – Lopata II , two Gravettian open-airsites in Slovakia Slovensky kras acta Carsologica slovacasuppl. 1 113 – 124 Liptovsky mikulaš, 2009.85. Zieliński P, Sokołowski R.J., Fedorowicz S. and Jankowski M. -Stratigraphic position of fluvial and aeolian deposits in theŻabinko site (w Poland) based on tl dating/ G eochronometria

(2011) 38 , Journal on methods and applications of absolute chronology : 64-71 , Мarch 01, 2011.86. Zolitschka B, Negendank J F W, Lottermoser B G, Sedimentologicalproof and dating of the early Holocene volcanic eruption ofUlmener Maar (Vulkaneifel, Germany). Geol Rundschau, 84: 1995. 213-219