Can a single C?H?F?C hydrogen bond make a difference? Assessing the H?F bond strength from 2-D...

21
Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006 1 Supporting Information for Can a single C–H···F–C hydrogen bond make a difference? Assessing the H···F bond strength from 2D 1 H- 19 F CP/MAS NMR Gerhard Althoff, a José Ruiz, b, * Venancio Rodríguez, b Gregorio López, b José Pérez, c and Christoph Janiak d, * a Bruker Biospin GmbH, Silberstreifen, D-76287 Rheinstetten, Germany. b Departamento de Química Inorgánica, Universidad de Murcia, 30071 Murcia, Spain. E- mail: [email protected] c Departamento de Ingeniería Minera, Geológica y Cartográfica. Área de Química Inorgánica, Universidad Politécnica de Cartagena, E-30203- Cartagena, Spain. d Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D- 79104 Freiburg, Germany. E-mail: [email protected] Experimental Section General The C, H, N analyses were performed with a Carlo Erba model EA 1108 microanalyzer. Decomposition temperatures were determined with a Mettler TG-50 thermobalance at a heating rate of 5 °C min 1 . Conductance measurements were performed in acetone solution (c 5 × 10 –4 mol L –1 ) with a Crison 525 conductometer. The 1 H, 13 C, 19 F and 31 P NMR spectra were recorded on a Bruker AC 200E or Varian Unity 300 spectrometer, using SiMe 4 , CFCl 3 or H 3 PO 4 as standards respectively. Infrared spectra were recorded on a Perkin-Elmer 16F PC FT-IR spectrophotometer using Nujol mulls between polyethylene sheets. The starting compound [{(Pd(C 6 F 5 )(PPh 3 )} 2 (μ-Cl) 2 ] 1 was prepared by procedure described elsewhere. Preparation of complex 1 To a solution of [{(Pd(C 6 F 5 )(PPh 3 )} 2 (μ-Cl) 2 ] (300 mg, 0.26 mmol) in acetone (20 cm 3 ) was added TlCp (140 mg, 0.52 mmol). The mixture was stirred for 1 h at room temperature and then TlCl was removed by filtration through celite and the solution was concentrated to dryness under reduced pressure. The residue was treated with Pr i OH-H 2 O yielding a redish-pink solid, which was collected by filtration and air-dried.

Transcript of Can a single C?H?F?C hydrogen bond make a difference? Assessing the H?F bond strength from 2-D...

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

1

Supporting Information

for

Can a single C–H···F–C hydrogen bond make a difference? Assessing the H···F bond

strength from 2D 1H-19F CP/MAS NMR

Gerhard Althoff,a José Ruiz,b,* Venancio Rodríguez,b Gregorio López,b José Pérez,c and

Christoph Janiakd,*

a Bruker Biospin GmbH, Silberstreifen, D-76287 Rheinstetten, Germany. b Departamento de Química Inorgánica, Universidad de Murcia, 30071 Murcia, Spain. E-

mail: [email protected] c Departamento de Ingeniería Minera, Geológica y Cartográfica. Área de Química

Inorgánica, Universidad Politécnica de Cartagena, E-30203- Cartagena, Spain. d Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-

79104 Freiburg, Germany. E-mail: [email protected]

Experimental Section

General

The C, H, N analyses were performed with a Carlo Erba model EA 1108 microanalyzer.

Decomposition temperatures were determined with a Mettler TG-50 thermobalance at a

heating rate of 5 °C min−1. Conductance measurements were performed in acetone solution (c

≈ 5 × 10–4 mol L–1) with a Crison 525 conductometer. The 1H, 13C, 19F and 31P NMR spectra

were recorded on a Bruker AC 200E or Varian Unity 300 spectrometer, using SiMe4, CFCl3

or H3PO4 as standards respectively. Infrared spectra were recorded on a Perkin-Elmer 16F PC

FT-IR spectrophotometer using Nujol mulls between polyethylene sheets. The starting

compound [{(Pd(C6F5)(PPh3)}2(μ-Cl)2]1 was prepared by procedure described elsewhere.

Preparation of complex 1

To a solution of [{(Pd(C6F5)(PPh3)}2(μ-Cl)2] (300 mg, 0.26 mmol) in acetone (20 cm3) was

added TlCp (140 mg, 0.52 mmol). The mixture was stirred for 1 h at room temperature and then

TlCl was removed by filtration through celite and the solution was concentrated to dryness

under reduced pressure. The residue was treated with PriOH-H2O yielding a redish-pink solid,

which was collected by filtration and air-dried.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

2

Complex 1: Yield 83%; m.p. 209ºC (dec.). Calcd. for C29H20F5PPd: C 58.0, H 3.4.

Found: C 57.6, H, 3.4%. – IR (Nujol, cm–1): 770 (Pd–C6F5). – 1H-NMR (CDCl3): δ 7.34 (m,

15H, PPh3), 5.75 (d, 5H, Cp, JHP = 2.0 Hz). – 13C{1H}-NMR (CDCl3): δ 133.6 (d, Co of PPh3,

JCP = 12.7 Hz), 132.6 (d, Cipso of PPh3, JCP = 48.2), 130.4 (d, Cp of PPh3, JCP = 2.6), 128.0 (d, Cm

of PPh3, JCP = 10.8), 97.9 (d, Cp, JCP 2.6). – 19F-NMR (CDCl3): δ –108.1 (d, 2Fo), –161.8 (t, 1Fp,

Jmp 20.0), –163.8 (m, 2Fm). – 31P{1H}-NMR (CDCl3): δ 41.1 (s).

Spectroscopic characterization of compound 1

The IR spectrum shows the bands attributed to the C6F5 (1630, 1490, 1460, 1050, and 950

cm–1) 2 and a single band at ca. 800 cm−1 which is derived from the so-called X-sensitive mode 3 in C6F5 halogen molecules, which is characteristic of the presence of only one C6F5 group in

the coordination sphere of the palladium atom and behaves like a ν(Pd–C) band.4,5,6

Molecular structure of compound {[Pd(η5-C5H5)(C6F5)(PPh3)]}2 1:

Figure 1. ORTEP style drawing of the two independent molecules of 1, fully labelled,

hydrogen atoms omitted for clarity. Displacement ellipsoids are drawn at the 50% probability

level

In both Pd1 and Pd2 the Pd−C(Cp) trans to the σ-pentafluorophenyl ligand is the shortest. A

similar pattern has already been observed in a number of other structures of nickel, palladium

and platinum cyclopentadienyl complexes.7 Such M−C(Cp) (M = Ni, Pd, Pt) bond length

differences have been rationalized in terms of the trans influence of the σ-aryl ligand. Also

the variation in C−C bond lengths in the Cp rings of 1 is similar to other cyclopentadienyl

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

3

complexes of nickel, platinum and especially palladium7 and could again be attributed to the

different trans influence of the σ-C6F5 and PPh3 ligands. The Pd−C6F5 bond lengths are in the

range found in the literature for pentafluorophenyl−palladium complexes.8

Comparison of the two independent molecules (residues) in the asymmetric unit of 1

A comparison of the bond lengths and bond angles (Table 1) and a comparison of the

orthogonal coordinates of both molecules reveals a high degree of conformational similarity.

Table 1. Selected bond lengths [Å] and angles [°] for complex 1.

T = 100 K Molecule 1 Bond Lengths Molecule 2 Bond Lengths Pd(1)−C(1) 2.026(2) Pd(2)−C(30) 2.021(2) Pd(1)−P(1) 2.2306(6) Pd(2)−P(2) 2.2406(6) Pd(1)−C(25) 2.375(2) Pd(2)−C(54) 2.273(3) Pd(1)−C(26) 2.320(3) Pd(2)−C(55) 2.372(3) Pd(1)−C(27) 2.332(3) Pd(2)−C(56) 2.333(3) Pd(1)−C(28) 2.352(3) Pd(2)−C(57) 2.300(3) Pd(1)−C(29) 2.278(2) Pd(2)−C(58) 2.336(3) Pd(1)–C(Cp)a) 2.3314 Pd(2)–C(Cp)a) 2.323 Pd(1)–Ctb) 1.9929(12) Pd(2)–Ctb) 1.9900(13) Pd(1)–Cp(plane)c) 1.9928(2) Pd(2)–Cp(plane)c) 1.9894(2) ring-slippaged) 0.024 ring-slippaged) 0.046 C(25)−C(26) 1.393(4) C(54)−C(55) 1.421(4) C(26)−C(27) 1.458(4) C(55)−C(56) 1.380(5) C(27)−C(28) 1.393(4) C(56)−C(57) 1.439(5) C(28)−C(29) 1.436(4) C(57)−C(58) 1.390(4) C(29)−C(25) 1.438(4) C(58)−C(54) 1.416(4) C–C(Cp)a) 1.4234 C–C(Cp)a) 1.412 Bond Angles Bond Angles C(1)−Pd(1)−P(1) 93.23(7) C(30)−Pd(2)−P(2) 92.14(7) P(1)−Pd(1)−C(25) 123.41(7) P(2)−Pd(2)−C(54) 105.67(7) P(1)−Pd(1)−C(26) 157.84(7) P(2)−Pd(2)−C(55) 120.65(8) P(1)−Pd(1)−C(27) 149.32(7) P(2)−Pd(2)−C(56) 153.43(10) P(1)−Pd(1)−C(28) 116.42(7) P(2)−Pd(2)−C(57) 157.02(9) P(1)−Pd(1)−C(29) 103.61(7) P(2)−Pd(2)−C(58) 122.70(8) C(1)−Pd(1)−C(25) 131.54(10) C(30)−Pd(2)−C(54) 161.89(10) C(1)−Pd(1)−C(26) 104.39(10) C(30)−Pd(2)−C(55) 135.23(11) C(1)−Pd(1)−C(27) 105.83(9) C(30)−Pd(2)−C(56) 105.85(10) C(1)−Pd(1)−C(28) 134.65(10) C(30)−Pd(2)−C(57) 102.90(10) C(1)−Pd(1)−C(29) 163.14(9) C(30)−Pd(2)−C(58) 129.93(10) Ctb)–Pd(1)–P(1) 134.99(4) Ctb)–Pd(2)–P(2) 137.10(4)

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

4

Ctb)–Pd(1)–C(1) 131.64(8) Ctb)–Pd(2)–C(30) 130.74(8) Cpc)–Pd(1)–P(1) 135.64(11) Cpc)–Pd(2)–P(2) 133.28(13) Cpc)–Pd(1)–C(1) 137.76(13) Cpc)–Pd(2)–C(30) 138.95(14) T = 293 K Molecule 1 Bond Lengths Molecule 2 Bond Lengths Pd(1)−C(1) 2.033(4) Pd(2)−C(30) 2.026(4) Pd(1)−P(1) 2.2363(11) Pd(2)−P(2) 2.2423(11) Pd(1)−C(25) 2.370(5) Pd(2)−C(54) 2.265(5) Pd(1)−C(26) 2.310(5) Pd(2)−C(55) 2.346(6) Pd(1)−C(27) 2.317(5) Pd(2)−C(56) 2.284(7) Pd(1)−C(28) 2.348(5) Pd(2)−C(57) 2.295(6) Pd(1)−C(29) 2.279(4) Pd(2)−C(58) 2.334(5) Pd(1)–C(Cp)a) 2.3248 Pd(2)–C(Cp)a) 2.305 Pd(1)–Ctb) 1.999(3) Pd(2)–Ctb) 1.995(4) Pd(1)–Cp(plane)c) 1.9979(3) Pd(2)–Cp(plane)c) 1.9952(3) ring-slippaged) 0.050 ring-slippaged) 0.000 C(25)−C(26) 1.363(7) C(54)−C(55) 1.351(9) C(26)−C(27) 1.423(8) C(55)−C(56) 1.336(11) C(27)−C(28) 1.378(7) C(56)−C(57) 1.391(11) C(28)−C(29) 1.417(7) C(57)−C(58) 1.352(10) C(29)−C(25) 1.412(7) C(58)−C(54) 1.355(9) C–C(Cp)a) 1.399 C–C(Cp)a) 1.356 Bond Angles Bond Angles C(1)−Pd(1)−P(1) 93.42(12) C(30)−Pd(2)−P(2) 92.39(11) P(1)−Pd(1)−C(25) 123.94(15) P(2)−Pd(2)−C(54) 106.57(16) P(1)−Pd(1)−C(26) 157.66(16) P(2)−Pd(2)−C(55) 123.0(3) P(1)−Pd(1)−C(27) 150.30(17) P(2)−Pd(2)−C(56) 156.0(3) P(1)−Pd(1)−C(28) 117.46(15) P(2)−Pd(2)−C(57) 153.3(3) P(1)−Pd(1)−C(29) 104.63(14) P(2)−Pd(2)−C(58) 120.4(2) C(1)−Pd(1)−C(25) 131.32(19) C(30)−Pd(2)−C(54) 160.98(19) C(1)−Pd(1)−C(26) 104.22(19) C(30)−Pd(2)−C(55) 133.7(3) C(1)−Pd(1)−C(27) 105.35(18) C(30)−Pd(2)−C(56) 105.4(3) C(1)−Pd(1)−C(28) 133.98(19) C(30)−Pd(2)−C(57) 104.9(2) C(1)−Pd(1)−C(29) 161.94(17) C(30)−Pd(2)−C(58) 132.6(3) Ctb)–Pd(1)–P(1) 135.54(8) Ctb)–Pd(2)–P(2) 136.56(12) Ctb)–Pd(1)–C(1) 130.92(14) Ctb)–Pd(2)–C(30) 130.98(16) Cpc)–Pd(1)–P(1) 134.8(2) Cpc)–Pd(2)–P(2) 133.1(4) Cpc)–Pd(1)–C(1) 138.8(3) Cpc)–Pd(2)–C(30) 139.4(6) a) average values with range in parentheses for the two independent molecules for 1. – b) Ct =

ring centroid. - c) perpendicular projection of Pd atom on Cp (C5H5) plane. - d) ring slippage =

distance between perpendicular projection of Pd atom on Cp plane and ring centroid.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

5

100 K:

Comparison of Orthogonal Coordinates of Transformed Residue #I with those of Residue #J ====================================================================================================================================

Atom I XI YI ZI RI Atom J XJ YJ ZJ RJ Dist(Ang) Tnr

-------------------------------------------------------------------------------------

P1 8.218 -2.275 2.533 1.40 P2 8.187 -2.274 2.489 1.41 0.054 25

Pd1 9.254 -3.791 3.799 1.50 Pd2 9.287 -3.696 3.826 1.54 0.105 26

C1 8.144 -5.323 3.073 1.70 C30 8.238 -5.278 3.132 1.67 0.120 20

C13 7.099 -2.897 1.236 2.01 C36 7.190 -3.054 1.173 1.96 0.192 19

C6 8.391 -5.908 1.841 2.44 C35 8.502 -5.860 1.907 2.38 0.138 18

C14 5.882 -3.471 1.626 2.58 C37 5.944 -3.594 1.529 2.56 0.168 14

C2 7.117 -5.899 3.790 2.70 C31 7.208 -5.857 3.852 2.65 0.118 18

F5 9.382 -5.435 1.043 2.73 F10 9.515 -5.390 1.136 2.71 0.168 24

C19 7.168 -1.099 3.451 2.84 C48 6.987 -1.186 3.315 2.81 0.242 19

C7 9.462 -1.259 1.668 2.92 C42 9.372 -1.177 1.649 2.96 0.124 19

C18 7.444 -2.895 -0.113 3.05 C41 7.679 -3.264 -0.112 2.93 0.438 14

F1 6.778 -5.414 5.013 3.20 F6 6.864 -5.382 5.076 3.19 0.112 24

C8 10.469 -1.922 0.954 3.38 C43 10.461 -1.779 1.007 3.42 0.152 14

C24 7.170 -1.108 4.846 3.46 C53 6.926 -1.175 4.709 3.41 0.288 14

C29 10.761 -2.561 4.984 3.58 C54 10.849 -2.444 4.901 3.63 0.169 21

C5 7.670 -6.983 1.350 3.65 C34 7.774 -6.915 1.390 3.56 0.131 17

C28 11.551 -3.447 4.176 3.65 C58 11.570 -3.492 4.279 3.71 0.115 21

C27 11.240 -4.750 4.560 3.71 C57 11.107 -4.684 4.825 3.72 0.303 21

C26 10.299 -4.674 5.672 3.74 C56 10.175 -4.370 5.875 3.77 0.387 21

C25 10.072 -3.335 5.981 3.75 C55 10.069 -2.996 5.953 3.77 0.340 21

C15 5.045 -4.039 0.678 3.79 C38 5.230 -4.352 0.614 3.72 0.369 9

C3 6.380 -6.987 3.344 3.84 C32 6.474 -6.937 3.386 3.76 0.114 17

C20 6.356 -0.195 2.769 3.92 C49 6.089 -0.401 2.582 3.88 0.386 14

C17 6.598 -3.478 -1.056 4.13 C40 6.962 -4.038 -1.020 3.98 0.669 9

C12 9.480 0.135 1.722 4.13 C47 9.284 0.215 1.668 4.16 0.219 14

C4 6.664 -7.533 2.122 4.22 C33 6.765 -7.469 2.149 4.12 0.123 16

C16 5.400 -4.044 -0.661 4.42 C39 5.749 -4.588 -0.660 4.30 0.646 7

F4 7.966 -7.527 0.156 4.66 F9 8.063 -7.433 0.184 4.57 0.138 23

C9 11.447 -1.203 0.277 4.76 C44 11.419 -1.009 0.361 4.81 0.213 9

C23 6.378 -0.205 5.547 4.80 C52 5.978 -0.400 5.368 4.73 0.480 9

F2 5.412 -7.529 4.114 4.96 F7 5.493 -7.488 4.122 4.89 0.091 23

C21 5.580 0.713 3.474 5.14 C50 5.160 0.385 3.245 5.08 0.581 9

C11 10.479 0.847 1.068 5.32 C46 10.260 0.987 1.049 5.36 0.261 9

C22 5.591 0.707 4.865 5.50 C51 5.107 0.387 4.636 5.43 0.623 7

F3 6.020 -8.641 1.716 5.54 F8 6.085 -8.545 1.715 5.42 0.117 22

C10 11.453 0.184 0.338 5.58 C45 11.325 0.381 0.384 5.63 0.239 7

:: RMS-Fit = 0.305 Ang. (Note: Use Quaternion FIT for an accurate fit)

"vrr731s " PLATON-NONSYM Page 10

====================================================================================================================================

Molfit with Quaternion Transformation Method (see: A.L. Mackay, Acta Cryst.(1984), A40, 165-166)

====================================================================================================================================

Fit Rotation angle about (Pseudo)axis [l,m,n] = 179.98 Degree

Direction Cosines with Orthogonal Cell l,m,n = -0.001362 -0.999568 0.029361

Components in crystal system -0.001587 -1.000000 0.014655

Transf. Orthogonal Coord. Mol1 Orth. Coord. Mol2 with Resp. to C.G. Dist (A)

--------------------------------------------------------------------------------

P(1) 0.096 1.157 -0.039 P(2) 0.149 1.176 -0.058 0.060

Pd(1) 1.169 -0.267 1.302 Pd(2) 1.249 -0.247 1.279 0.086

C(1) 0.190 -1.880 0.563 C(30) 0.200 -1.829 0.585 0.056

C(13) -0.924 0.439 -1.368 C(36) -0.847 0.395 -1.375 0.089

C(6) 0.527 -2.471 -0.644 C(35) 0.465 -2.410 -0.640 0.087

C(14) -2.118 -0.204 -1.018 C(37) -2.094 -0.145 -1.018 0.063

C(2) -0.830 -2.506 1.248 C(31) -0.829 -2.408 1.305 0.113

F(5) 1.520 -1.951 -1.410 F(10) 1.477 -1.941 -1.411 0.044

C(19) -1.065 2.280 0.808 C(48) -1.050 2.264 0.768 0.046

C(7) 1.310 2.233 -0.872 C(42) 1.335 2.272 -0.898 0.053

C(18) -0.522 0.438 -2.702 C(41) -0.358 0.185 -2.659 0.304

F(1) -1.251 -2.020 2.445 F(6) -1.173 -1.933 2.529 0.144

C(8) 2.387 1.622 -1.529 C(43) 2.424 1.670 -1.540 0.062

C(24) -1.123 2.298 2.202 C(53) -1.111 2.274 2.162 0.047

C(29) 2.543 1.079 2.523 C(54) 2.812 1.006 2.354 0.326

C(5) -0.104 -3.599 -1.142 C(34) -0.263 -3.466 -1.158 0.208

C(28) 3.421 0.230 1.768 C(58) 3.532 -0.043 1.732 0.297

C(27) 3.176 -1.082 2.168 C(57) 3.069 -1.235 2.278 0.216

C(26) 2.185 -1.046 3.236 C(56) 2.138 -0.920 3.328 0.162

C(25) 1.861 0.282 3.506 C(55) 2.032 0.453 3.406 0.262

C(15) -2.877 -0.841 -1.988 C(38) -2.807 -0.902 -1.933 0.107

C(3) -1.477 -3.647 0.795 C(32) -1.564 -3.488 0.839 0.186

C(20) -1.902 3.117 0.073 C(49) -1.948 3.048 0.035 0.092

C(17) -1.287 -0.215 -3.667 C(40) -1.075 -0.588 -3.567 0.441

C(12) 1.239 3.626 -0.848 C(47) 1.246 3.664 -0.879 0.050

C(4) -1.106 -4.197 -0.402 C(33) -1.273 -4.020 -0.398 0.243

C(16) -2.463 -0.849 -3.311 C(39) -2.289 -1.138 -3.207 0.354

F(4) 0.278 -4.145 -2.311 F(9) 0.025 -3.984 -2.363 0.304

C(9) 3.346 2.388 -2.179 C(44) 3.382 2.440 -2.186 0.063

C(23) -2.000 3.161 2.849 C(52) -2.059 3.050 2.821 0.130

F(2) -2.441 -4.235 1.535 F(7) -2.544 -4.039 1.575 0.225

C(21) -2.763 3.988 0.725 C(50) -2.877 3.834 0.698 0.193

C(11) 2.218 4.387 -1.474 C(46) 2.223 4.436 -1.498 0.055

C(22) -2.813 4.008 2.115 C(51) -2.930 3.837 2.089 0.210

F(3) -1.661 -5.351 -0.811 F(8) -1.952 -5.096 -0.832 0.388

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

6

C(10) 3.262 3.774 -2.148 C(45) 3.287 3.830 -2.163 0.063

H(8) 2.462 0.674 -1.529 H(37) -2.448 0.008 -0.150

H(9) 4.059 1.966 -2.643 H(38) -3.653 -1.262 -1.693

H(10) 3.920 4.302 -2.585 H(39) -2.769 -1.676 -3.824

H(11) 2.171 5.336 -1.441 H(40) -0.728 -0.738 -4.437

H(12) 0.517 4.055 -0.402 H(41) 0.470 0.571 -2.919

H(14) -2.409 -0.202 -0.115 H(43) 2.508 0.723 -1.533

H(15) -3.685 -1.276 -1.742 H(44) 4.102 2.020 -2.643

H(16) -2.987 -1.289 -3.972 H(45) 3.944 4.360 -2.597

H(17) -1.000 -0.225 -4.572 H(46) 2.163 5.385 -1.469

H(18) 0.277 0.884 -2.954 H(47) 0.516 4.086 -0.441

H(20) -1.882 3.092 -0.877 H(49) -1.921 3.041 -0.916

H(21) -3.319 4.571 0.223 H(50) -3.480 4.375 0.201

H(22) -3.405 4.603 2.562 H(51) -3.566 4.380 2.537

H(23) -2.042 3.171 3.800 H(52) -2.109 3.039 3.768

H(24) -0.564 1.720 2.709 H(53) -0.501 1.747 2.665

H(25) 1.299 0.598 4.205 H(54) 2.845 1.923 2.108

H(26) 1.820 -1.803 3.678 H(55) 1.528 0.941 4.048

H(27) 3.582 -1.861 1.809 H(56) 1.677 -1.548 3.874

H(28) 4.052 0.510 1.115 H(57) 3.324 -2.107 2.002

H(29) 2.430 2.013 2.395 H(58) 4.205 0.051 1.070

:: Weighted and Unit Weight RMS-Fit = 0.21806 0.19656 Angstrom :: Warning: The Pairwise Atom Association is Tentative and may be Erroneous

"vrr731s " PLATON-NONSYM Page 12

====================================================================================================================================

Comparison of the Bonds of the Fitted Residues ==============================================

Resd#1 Resd#2 Dist#1 Dist#2 Diff Diff/Sig

=====================================================================================

Pd(1) -P(1) Pd(2) -P(2) 2.2306(6) 2.2406(6) -0.0100 -11.7851

Pd(1) -C(1) Pd(2) -C(30) 2.026(2) 2.021(2) 0.0050 1.7678

Pd(1) -C(25) Pd(2) -C(55) 2.375(3) 2.372(3) 0.0030 0.7071

Pd(1) -C(26) Pd(2) -C(56) 2.320(3) 2.333(3) -0.0130 -3.0641

Pd(1) -C(27) Pd(2) -C(57) 2.333(3) 2.299(3) 0.0340 8.0139

Pd(1) -C(28) Pd(2) -C(58) 2.352(3) 2.336(3) 0.0160 3.7712

Pd(1) -C(29) Pd(2) -C(54) 2.278(3) 2.273(3) 0.0050 1.1785

P(1) -C(7) P(2) -C(42) 1.824(2) 1.820(2) 0.0040 1.4142

P(1) -C(13) P(2) -C(36) 1.823(2) 1.827(2) -0.0040 -1.4142

P(1) -C(19) P(2) -C(48) 1.824(2) 1.818(2) 0.0060 2.1213

F(1) -C(2) F(6) -C(31) 1.359(3) 1.358(3) 0.0010 0.2357

F(2) -C(3) F(7) -C(32) 1.350(3) 1.344(3) 0.0060 1.4142

F(3) -C(4) F(8) -C(33) 1.344(3) 1.344(3) 0 0

F(4) -C(5) F(9) -C(34) 1.345(3) 1.344(3) 0.0010 0.2357

F(5) -C(6) F(10) -C(35) 1.358(3) 1.356(3) 0.0020 0.4714

C(1) -C(2) C(30) -C(31) 1.379(3) 1.383(3) -0.0040 -0.9428

C(1) -C(6) C(30) -C(35) 1.386(3) 1.382(3) 0.0040 0.9428

C(2) -C(3) C(31) -C(32) 1.388(3) 1.387(3) 0.0010 0.2357

C(3) -C(4) C(32) -C(33) 1.369(4) 1.378(3) -0.0090 -1.8000

C(4) -C(5) C(33) -C(34) 1.382(4) 1.380(3) 0.0020 0.4000

C(5) -C(6) C(34) -C(35) 1.385(4) 1.383(3) 0.0020 0.4000

C(7) -C(8) C(42) -C(43) 1.401(3) 1.401(3) 0 0

C(7) -C(12) C(42) -C(47) 1.395(3) 1.395(3) 0 0

C(8) -C(9) C(43) -C(44) 1.390(4) 1.388(4) 0.0020 0.3535

C(9) -C(10) C(44) -C(45) 1.389(4) 1.394(4) -0.0050 -0.8839

C(10) -C(11) C(45) -C(46) 1.386(4) 1.394(4) -0.0080 -1.4142

C(11) -C(12) C(46) -C(47) 1.389(4) 1.390(4) -0.0010 -0.1768

C(13) -C(14) C(36) -C(37) 1.400(3) 1.404(3) -0.0040 -0.9428

C(13) -C(18) C(36) -C(41) 1.393(3) 1.390(3) 0.0030 0.7071

C(14) -C(15) C(37) -C(38) 1.386(4) 1.386(3) 0 0

C(15) -C(16) C(38) -C(39) 1.386(4) 1.395(4) -0.0090 -1.5910

C(16) -C(17) C(39) -C(40) 1.383(4) 1.381(4) 0.0020 0.3535

C(17) -C(18) C(40) -C(41) 1.394(4) 1.392(4) 0.0020 0.3536

C(19) -C(20) C(48) -C(49) 1.393(3) 1.400(3) -0.0070 -1.6499

C(19) -C(24) C(48) -C(53) 1.395(4) 1.396(4) -0.0010 -0.1768

C(20) -C(21) C(49) -C(50) 1.387(4) 1.386(4) 0.0010 0.1768

C(21) -C(22) C(50) -C(51) 1.391(4) 1.392(4) -0.0010 -0.1768

C(22) -C(23) C(51) -C(52) 1.385(4) 1.383(4) 0.0020 0.3535

C(23) -C(24) C(52) -C(53) 1.391(4) 1.391(4) 0 0

C(25) -C(26) C(55) -C(56) 1.393(4) 1.380(5) 0.0130 2.0303

C(25) -C(29) C(55) -C(54) 1.437(4) 1.421(4) 0.0160 2.8284

C(26) -C(27) C(56) -C(57) 1.458(4) 1.439(4) 0.0190 3.3587

C(27) -C(28) C(57) -C(58) 1.393(4) 1.390(4) 0.0030 0.5303

C(28) -C(29) C(58) -C(54) 1.436(4) 1.416(4) 0.0200 3.5355

:: RMS Bond Fit = 0.0088 Ang.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

7

"vrr731s " PLATON-NONSYM Page 13

====================================================================================================================================

I------------I-----------I------------I-----------I------------I-----------I------------I-----------I

11.785=Max- x -

I Half-Normal Probability Plot I

I I

I Sample Size = 44 I

I CC = 0.8679 I

10.312 - Est. Intersept = -1.0800 -

I Est. Slope = 3.2049 I

I I

I I

I I

8.839 - -

I I

I I

I x I

I I

7.366 - -

I I

I I

I I

I I

5.893=Mid- -

I I

I I

I I

I I

4.419 - -

I I

I x I

I x I

I x I

2.946 - x x -

I I

I I

I x x I

I x x x I

1.473 - x x x x x -

I x I

I x xx x I

I x xx x I

I xxx xxxxx xxx xx I

0.000=Min- xxx xx -

I------------I-----------I------------I-----------I------------I-----------I------------I-----------I

0.020 0.619 1.219 1.818 2.417

Normal-Probability-Plot Analysis. See: S.C.Abrahams & E.T.Keve (1971). Acta Cryst. A27,

157-165.

Vertical: Experimental Data, Horizontal: Theoretical Data

"vrr731s " PLATON-NONSYM Page 14

====================================================================================================================================

Comparison of the Bond Angles of the Fitted Residues ====================================================

Resd#1 Resd#2 Ang#1 Ang#2 Diff Diff/Sig

===========================================================================================

P(1) -Pd(1) -C(1) P(2) -Pd(2) -C(30) 93.23(7) 92.14(7) 1.09 11.01

P(1) -Pd(1) -C(25) P(2) -Pd(2) -C(55) 123.41(7) 120.65(8) 2.76 25.96

P(1) -Pd(1) -C(26) P(2) -Pd(2) -C(56) 157.84(7) 153.44(9) 4.40 38.59

P(1) -Pd(1) -C(27) P(2) -Pd(2) -C(57) 149.32(7) 157.02(8) -7.70 -72.44

P(1) -Pd(1) -C(28) P(2) -Pd(2) -C(58) 116.41(7) 122.69(8) -6.28 -59.08

P(1) -Pd(1) -C(29) P(2) -Pd(2) -C(54) 103.61(7) 105.67(7) -2.06 -20.81

C(1) -Pd(1) -C(25) C(30) -Pd(2) -C(55) 131.54(10) 135.23(10) -3.69 -26.09

C(1) -Pd(1) -C(26) C(30) -Pd(2) -C(56) 104.40(10) 105.84(11) -1.44 -9.69

C(1) -Pd(1) -C(27) C(30) -Pd(2) -C(57) 105.84(10) 102.90(10) 2.94 20.79

C(1) -Pd(1) -C(28) C(30) -Pd(2) -C(58) 134.65(10) 129.93(11) 4.72 31.75

C(1) -Pd(1) -C(29) C(30) -Pd(2) -C(54) 163.15(9) 161.89(10) 1.26 9.37

C(25) -Pd(1) -C(26) C(55) -Pd(2) -C(56) 34.49(10) 34.10(12) 0.39 2.50

C(25) -Pd(1) -C(27) C(55) -Pd(2) -C(57) 59.05(10) 58.42(11) 0.63 4.24

C(25) -Pd(1) -C(28) C(55) -Pd(2) -C(58) 59.23(9) 58.53(10) 0.70 5.20

C(25) -Pd(1) -C(29) C(55) -Pd(2) -C(54) 35.92(9) 35.56(10) 0.36 2.68

C(26) -Pd(1) -C(27) C(56) -Pd(2) -C(57) 36.52(10) 36.18(11) 0.34 2.29

C(26) -Pd(1) -C(28) C(56) -Pd(2) -C(58) 59.10(9) 58.84(10) 0.26 1.93

C(26) -Pd(1) -C(29) C(56) -Pd(2) -C(54) 59.14(10) 58.79(11) 0.35 2.35

C(27) -Pd(1) -C(28) C(57) -Pd(2) -C(58) 34.59(10) 34.89(11) -0.30 -2.02

C(27) -Pd(1) -C(29) C(57) -Pd(2) -C(54) 59.25(10) 59.15(10) 0.10 0.71

C(28) -Pd(1) -C(29) C(58) -Pd(2) -C(54) 36.09(9) 35.75(11) 0.34 2.39

Pd(1) -P(1) -C(7) Pd(2) -P(2) -C(42) 109.32(8) 109.76(8) -0.44 -3.89

Pd(1) -P(1) -C(13) Pd(2) -P(2) -C(36) 117.16(8) 115.25(8) 1.91 16.88

Pd(1) -P(1) -C(19) Pd(2) -P(2) -C(48) 114.85(8) 115.65(8) -0.80 -7.07

C(7) -P(1) -C(13) C(42) -P(2) -C(36) 105.75(11) 106.27(11) -0.52 -3.34

C(7) -P(1) -C(19) C(42) -P(2) -C(48) 105.83(11) 106.18(11) -0.35 -2.25

C(13) -P(1) -C(19) C(36) -P(2) -C(48) 102.98(11) 102.91(11) 0.07 0.45

Pd(1) -C(1) -C(2) Pd(2) -C(30) -C(31) 122.51(18) 122.37(18) 0.14 0.55

Pd(1) -C(1) -C(6) Pd(2) -C(30) -C(35) 122.69(18) 122.30(18) 0.39 1.53

C(2) -C(1) -C(6) C(31) -C(30) -C(35) 114.8(2) 115.3(2) -0.50 -1.77

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

8

F(1) -C(2) -C(1) F(6) -C(31) -C(30) 120.3(2) 120.8(2) -0.50 -1.77

F(1) -C(2) -C(3) F(6) -C(31) -C(32) 115.9(2) 116.2(2) -0.30 -1.06

C(1) -C(2) -C(3) C(30) -C(31) -C(32) 123.8(2) 123.1(2) 0.70 2.47

F(2) -C(3) -C(2) F(7) -C(32) -C(31) 120.8(2) 121.4(2) -0.60 -2.12

F(2) -C(3) -C(4) F(7) -C(32) -C(33) 119.9(2) 119.2(2) 0.70 2.47

C(2) -C(3) -C(4) C(31) -C(32) -C(33) 119.3(2) 119.4(2) -0.10 -0.35

F(3) -C(4) -C(3) F(8) -C(33) -C(32) 120.0(2) 119.5(2) 0.50 1.77

F(3) -C(4) -C(5) F(8) -C(33) -C(34) 120.6(2) 120.9(2) -0.30 -1.06

C(3) -C(4) -C(5) C(32) -C(33) -C(34) 119.4(2) 119.6(2) -0.20 -0.71

F(4) -C(5) -C(4) F(9) -C(34) -C(33) 119.7(2) 119.7(2) 0.00 0.00

F(4) -C(5) -C(6) F(9) -C(34) -C(35) 120.9(2) 121.2(2) -0.30 -1.06

C(4) -C(5) -C(6) C(33) -C(34) -C(35) 119.4(2) 119.1(2) 0.30 1.06

F(5) -C(6) -C(1) F(10) -C(35) -C(30) 120.4(2) 120.1(2) 0.30 1.06

F(5) -C(6) -C(5) F(10) -C(35) -C(34) 116.3(2) 116.4(2) -0.10 -0.35

C(1) -C(6) -C(5) C(30) -C(35) -C(34) 123.4(2) 123.5(2) -0.10 -0.35

P(1) -C(7) -C(8) P(2) -C(42) -C(43) 117.95(18) 117.33(18) 0.62 2.44

P(1) -C(7) -C(12) P(2) -C(42) -C(47) 123.16(18) 123.62(18) -0.46 -1.81

C(8) -C(7) -C(12) C(43) -C(42) -C(47) 118.9(2) 119.0(2) -0.10 -0.35

C(7) -C(8) -C(9) C(42) -C(43) -C(44) 120.7(2) 120.8(2) -0.10 -0.35

C(8) -C(9) -C(10) C(43) -C(44) -C(45) 119.9(2) 119.9(2) 0.00 0.00

C(9) -C(10) -C(11) C(44) -C(45) -C(46) 119.9(2) 119.6(2) 0.30 1.06

C(10) -C(11) -C(12) C(45) -C(46) -C(47) 120.5(2) 120.5(2) 0.00 0.00

C(7) -C(12) -C(11) C(42) -C(47) -C(46) 120.2(2) 120.3(2) -0.10 -0.35

P(1) -C(13) -C(14) P(2) -C(36) -C(37) 118.38(17) 117.74(17) 0.64 2.66

P(1) -C(13) -C(18) P(2) -C(36) -C(41) 122.47(18) 122.59(18) -0.12 -0.47

C(14) -C(13) -C(18) C(37) -C(36) -C(41) 119.0(2) 119.3(2) -0.30 -1.06

C(13) -C(14) -C(15) C(36) -C(37) -C(38) 120.2(2) 120.0(2) 0.20 0.71

C(14) -C(15) -C(16) C(37) -C(38) -C(39) 120.5(2) 120.3(2) 0.20 0.71

C(15) -C(16) -C(17) C(38) -C(39) -C(40) 119.8(2) 119.8(2) 0.00 0.00

C(16) -C(17) -C(18) C(39) -C(40) -C(41) 120.2(2) 120.3(2) -0.10 -0.35

C(13) -C(18) -C(17) C(36) -C(41) -C(40) 120.3(2) 120.4(2) -0.10 -0.35

P(1) -C(19) -C(20) P(2) -C(48) -C(49) 120.50(19) 121.40(19) -0.90 -3.35

P(1) -C(19) -C(24) P(2) -C(48) -C(53) 119.90(18) 119.16(18) 0.74 2.91

C(20) -C(19) -C(24) C(49) -C(48) -C(53) 119.6(2) 119.4(2) 0.20 0.71

C(19) -C(20) -C(21) C(48) -C(49) -C(50) 120.2(3) 119.8(2) 0.40 1.11

C(20) -C(21) -C(22) C(49) -C(50) -C(51) 120.1(2) 120.3(2) -0.20 -0.71

C(21) -C(22) -C(23) C(50) -C(51) -C(52) 120.0(2) 120.3(2) -0.30 -1.06

C(22) -C(23) -C(24) C(51) -C(52) -C(53) 120.2(2) 119.7(3) 0.50 1.39

C(19) -C(24) -C(23) C(48) -C(53) -C(52) 120.0(2) 120.5(2) -0.50 -1.77

Pd(1) -C(25) -C(26) Pd(2) -C(55) -C(56) 70.60(15) 71.41(18) -0.81 -3.46

Pd(1) -C(25) -C(29) Pd(2) -C(55) -C(54) 68.38(14) 68.43(16) -0.05 -0.24

C(26) -C(25) -C(29) C(56) -C(55) -C(54) 106.6(2) 107.6(3) -1.00 -2.77

Pd(1) -C(26) -C(25) Pd(2) -C(56) -C(55) 74.91(16) 74.49(18) 0.42 1.74

Pd(1) -C(26) -C(27) Pd(2) -C(56) -C(57) 72.22(16) 70.63(18) 1.59 6.60

C(25) -C(26) -C(27) C(55) -C(56) -C(57) 108.9(2) 108.0(3) 0.90 2.50

Pd(1) -C(27) -C(26) Pd(2) -C(57) -C(56) 71.26(15) 73.19(17) -1.93 -8.51

Pd(1) -C(27) -C(28) Pd(2) -C(57) -C(58) 73.49(16) 74.02(17) -0.53 -2.27

C(26) -C(27) -C(28) C(56) -C(57) -C(58) 107.8(2) 108.3(3) -0.50 -1.39

Pd(1) -C(28) -C(27) Pd(2) -C(58) -C(57) 71.92(16) 71.09(17) 0.83 3.56

Pd(1) -C(28) -C(29) Pd(2) -C(58) -C(54) 69.14(14) 69.68(15) -0.54 -2.63

C(27) -C(28) -C(29) C(57) -C(58) -C(54) 107.4(2) 107.1(2) 0.30 1.06

Pd(1) -C(29) -C(25) Pd(2) -C(54) -C(55) 75.70(15) 76.02(17) -0.32 -1.41

Pd(1) -C(29) -C(28) Pd(2) -C(54) -C(58) 74.78(15) 74.57(16) 0.21 0.96

C(25) -C(29) -C(28) C(55) -C(54) -C(58) 108.8(2) 108.5(3) 0.30 0.83

:: RMS Angle Fit = 1.554 Deg.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

9

"vrr731s " PLATON-NONSYM Page 16

====================================================================================================================================

I------------I-----------I------------I-----------I------------I-----------I------------I-----------I

72.435=Max- x -

I Half-Normal Probability Plot I

I I

I Sample Size = 84 I

I CC = 0.7934 I

63.381 - Est. Intersept = -7.0439 -

I Est. Slope = 15.9719 I

I x I

I I

I I

54.327 - -

I I

I I

I I

I I

45.272 - -

I I

I I

I I

I x I

36.218=Mid- -

I I

I x I

I I

I I

27.163 - -

I x x I

I I

I I

I x x I

18.109 - -

I x I

I I

I I

I x I

9.054 - x x x -

I x x I

I x I

I xxxxxxx x I

I xxxxxxxxxxxxxxxxxxxxxxxxxxxx I

0.000=Min- xxxxxxxxxxxxxx -

I------------I-----------I------------I-----------I------------I-----------I------------I-----------I

0.010 0.668 1.327 1.985 2.643

Normal-Probability-Plot Analysis. See: S.C.Abrahams & E.T.Keve (1971). Acta Cryst. A27,

157-165.

Vertical: Experimental Data, Horizontal: Theoretical Data

293 K:

Comparison of Orthogonal Coordinates of Transformed Residue #I with those of Residue #J ====================================================================================================================================

Atom I XI YI ZI RI Atom J XJ YJ ZJ RJ Dist(Ang) Tnr

-------------------------------------------------------------------------------------

P1 7.099 2.344 -2.508 1.40 P2 7.160 2.346 -2.505 1.40 0.061 25

Pd1 6.162 3.857 -3.861 1.50 Pd2 6.075 3.782 -3.842 1.54 0.116 26

C1 7.236 5.398 -3.084 1.71 C30 7.115 5.366 -3.125 1.68 0.132 20

C13 8.169 2.971 -1.171 2.02 C36 8.164 3.097 -1.178 1.97 0.126 19

C6 6.892 6.034 -1.913 2.47 C35 6.822 5.941 -1.910 2.39 0.117 18

C14 9.397 3.517 -1.510 2.57 C37 9.406 3.642 -1.513 2.57 0.124 14

C2 8.330 5.917 -3.719 2.67 C31 8.145 5.946 -3.820 2.66 0.212 18

F5 5.821 5.611 -1.197 2.78 F10 5.799 5.468 -1.160 2.72 0.149 24

C19 8.180 1.127 -3.327 2.85 C48 8.354 1.254 -3.324 2.81 0.216 19

C7 5.794 1.372 -1.699 2.91 C42 5.959 1.254 -1.671 2.95 0.205 19

C18 7.781 2.993 0.158 3.06 C41 7.692 3.300 0.117 2.94 0.322 14

F1 8.778 5.376 -4.876 3.15 F6 8.508 5.472 -5.041 3.19 0.331 24

C8 4.771 2.037 -1.048 3.38 C43 4.871 1.849 -1.030 3.42 0.215 14

C24 8.236 1.065 -4.715 3.48 C53 8.445 1.243 -4.705 3.42 0.275 14

C29 4.709 2.659 -5.145 3.59 C54 4.565 2.564 -5.008 3.63 0.220 21

C28 3.899 3.561 -4.412 3.66 C58 3.815 3.465 -4.330 3.70 0.151 21

C5 7.588 7.111 -1.411 3.67 C34 7.545 6.988 -1.389 3.56 0.132 17

C27 4.276 4.831 -4.791 3.70 C57 4.185 4.689 -4.774 3.72 0.170 21

C26 5.265 4.717 -5.809 3.73 C56 5.122 4.511 -5.787 3.74 0.252 21

C25 5.467 3.397 -6.081 3.75 C55 5.275 3.196 -5.968 3.77 0.300 21

C15 10.212 4.081 -0.552 3.78 C38 10.136 4.349 -0.591 3.73 0.281 9

C3 9.054 7.012 -3.254 3.83 C32 8.880 7.003 -3.340 3.75 0.194 17

C20 8.964 0.267 -2.592 3.91 C49 9.230 0.442 -2.593 3.89 0.318 14

C17 8.609 3.567 1.115 4.13 C40 8.444 4.042 1.021 4.00 0.512 9

C12 5.725 -0.022 -1.759 4.13 C47 6.030 -0.126 -1.694 4.15 0.329 14

C4 8.664 7.591 -2.089 4.20 C33 8.569 7.527 -2.112 4.11 0.117 16

C16 9.813 4.107 0.755 4.41 C39 9.663 4.551 0.670 4.32 0.476 7

F4 7.196 7.696 -0.259 4.69 F9 7.239 7.499 -0.178 4.57 0.217 23

C9 3.732 1.354 -0.437 4.76 C44 3.919 1.090 -0.400 4.79 0.326 9

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

10

C23 9.060 0.133 -5.338 4.82 C52 9.386 0.476 -5.362 4.73 0.473 9

F2 10.109 7.489 -3.924 4.93 F7 9.883 7.554 -4.052 4.88 0.268 23

C21 9.768 -0.677 -3.220 5.14 C50 10.164 -0.336 -3.250 5.08 0.523 9

C11 4.671 -0.683 -1.157 5.30 C46 5.037 -0.887 -1.073 5.34 0.428 9

C22 9.803 -0.740 -4.586 5.51 C51 10.233 -0.325 -4.628 5.42 0.599 7

F3 9.301 8.701 -1.654 5.53 F8 9.262 8.587 -1.650 5.41 0.121 22

C10 3.685 0.003 -0.495 5.56 C45 4.001 -0.284 -0.429 5.60 0.432 7

:: RMS-Fit = 0.295 Ang. (Note: Use Quaternion FIT for an accurate fit) "vr731rt " PLATON-NONSYM Page 10

====================================================================================================================================

Molfit with Quaternion Transformation Method (see: A.L. Mackay, Acta Cryst.(1984), A40, 165-166)

====================================================================================================================================

:: FIT Resd 1 on Inverted Resd 2 gives the best fit

Fit Rotation angle about (Pseudo)axis [l,m,n] = -179.24 Degree

Direction Cosines with Orthogonal Cell l,m,n = -0.019630 -0.999214 0.034441

Components in crystal system -0.022821 -1.000000 0.017421

Transf. Orthogonal Coord. Mol1 Orth. Coord. Mol2 with Resp. to C.G. Dist (A)

--------------------------------------------------------------------------------

P(1) 0.118 1.158 -0.049 P(2) 0.148 1.169 -0.040 0.034

Pd(1) 1.159 -0.286 1.305 Pd(2) 1.233 -0.267 1.297 0.077

C(1) 0.164 -1.893 0.556 C(30) 0.193 -1.851 0.580 0.056

C(13) -0.932 0.458 -1.364 C(36) -0.856 0.418 -1.367 0.087

C(6) 0.528 -2.520 -0.613 C(35) 0.487 -2.426 -0.635 0.105

C(14) -2.122 -0.154 -1.004 C(37) -2.098 -0.127 -1.032 0.047

C(2) -0.890 -2.468 1.211 C(31) -0.837 -2.432 1.275 0.090

F(5) 1.563 -2.043 -1.349 F(10) 1.509 -1.953 -1.385 0.111

C(19) -1.019 2.319 0.776 C(48) -1.046 2.261 0.779 0.064

C(7) 1.354 2.195 -0.884 C(42) 1.350 2.261 -0.874 0.067

C(18) -0.562 0.446 -2.698 C(41) -0.384 0.215 -2.662 0.294

F(1) -1.352 -1.943 2.370 F(6) -1.199 -1.958 2.496 0.198

C(8) 2.405 1.584 -1.543 C(43) 2.437 1.666 -1.515 0.093

C(24) -1.060 2.391 2.164 C(53) -1.137 2.272 2.160 0.142

C(29) 2.558 1.005 2.557 C(54) 2.743 0.951 2.463 0.215

C(28) 3.408 0.144 1.821 C(58) 3.493 0.049 1.785 0.132

C(5) -0.112 -3.640 -1.096 C(34) -0.237 -3.474 -1.156 0.216

C(27) 3.110 -1.141 2.217 C(57) 3.123 -1.174 2.229 0.037

C(26) 2.130 -1.075 3.247 C(56) 2.186 -0.996 3.242 0.097

C(25) 1.856 0.234 3.510 C(55) 2.033 0.319 3.423 0.215

C(15) -2.917 -0.773 -1.945 C(38) -2.827 -0.834 -1.954 0.109

C(3) -1.556 -3.607 0.766 C(32) -1.572 -3.488 0.795 0.124

C(20) -1.861 3.126 0.044 C(49) -1.921 3.073 0.048 0.080

C(17) -1.368 -0.184 -3.638 C(40) -1.136 -0.527 -3.566 0.421

C(12) 1.344 3.592 -0.837 C(47) 1.278 3.641 -0.851 0.083

C(4) -1.149 -4.174 -0.399 C(33) -1.261 -4.012 -0.433 0.199

C(16) -2.535 -0.788 -3.257 C(39) -2.354 -1.036 -3.215 0.309

F(4) 0.297 -4.211 -2.249 F(9) 0.069 -3.984 -2.367 0.343

C(9) 3.395 2.319 -2.175 C(44) 3.389 2.424 -2.145 0.110

C(23) -1.928 3.280 2.790 C(52) -2.077 3.039 2.817 0.285

F(2) -2.572 -4.137 1.455 F(7) -2.574 -4.039 1.507 0.111

C(21) -2.710 4.029 0.675 C(50) -2.855 3.851 0.705 0.232

C(11) 2.350 4.306 -1.459 C(46) 2.271 4.402 -1.472 0.125

C(22) -2.730 4.102 2.041 C(51) -2.925 3.840 2.083 0.329

F(3) -1.728 -5.322 -0.816 F(8) -1.954 -5.072 -0.895 0.347

C(10) 3.364 3.671 -2.129 C(45) 3.307 3.799 -2.116 0.140

H(8) 2.448 0.654 -1.563 H(37) -2.433 -0.006 -0.174

H(9) 4.079 1.884 -2.630 H(38) -3.658 -1.179 -1.713

H(10) 4.029 4.167 -2.550 H(39) -2.857 -1.515 -3.832

H(11) 2.339 5.235 -1.422 H(40) -0.805 -0.680 -4.422

H(12) 0.663 4.037 -0.390 H(41) 0.433 0.576 -2.922

H(14) -2.390 -0.145 -0.111 H(43) 2.516 0.739 -1.514

H(15) -3.714 -1.180 -1.687 H(44) 4.093 2.009 -2.591

H(16) -3.068 -1.211 -3.890 H(45) 3.959 4.313 -2.538

H(17) -1.114 -0.194 -4.533 H(46) 2.225 5.331 -1.447

H(18) 0.227 0.857 -2.965 H(47) 0.569 4.061 -0.420

H(20) -1.862 3.068 -0.883 H(49) -1.875 3.087 -0.882

H(21) -3.263 4.582 0.171 H(50) -3.438 4.384 0.217

H(22) -3.292 4.712 2.463 H(51) -3.547 4.375 2.520

H(23) -1.963 3.316 3.720 H(52) -2.138 3.014 3.743

H(24) -0.507 1.844 2.674 H(53) -0.551 1.747 2.659

H(25) 1.310 0.558 4.188 H(54) 2.721 1.866 2.296

H(26) 1.741 -1.805 3.673 H(55) 1.527 0.727 4.088

H(27) 3.482 -1.919 1.870 H(56) 1.746 -1.670 3.707

H(28) 4.045 0.396 1.193 H(57) 3.440 -1.990 1.912

H(29) 2.476 1.923 2.433 H(58) 4.136 0.236 1.141

:: Weighted and Unit Weight RMS-Fit = 0.21412 0.18816 Angstrom

:: Warning: The Pairwise Atom Association is Tentative and may be Erroneous

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

11

"vr731rt " PLATON-NONSYM Page 12

====================================================================================================================================

Comparison of the Bonds of the Fitted Residues ==============================================

Resd#1 Resd#2 Dist#1 Dist#2 Diff Diff/Sig

=====================================================================================

Pd(1) -P(1) Pd(2) -P(2) 2.2362(12) 2.2423(12) -0.0061 -3.5944

Pd(1) -C(1) Pd(2) -C(30) 2.033(4) 2.026(4) 0.0070 1.2374

Pd(1) -C(25) Pd(2) -C(55) 2.371(5) 2.346(7) 0.0250 2.9062

Pd(1) -C(26) Pd(2) -C(56) 2.310(6) 2.285(10) 0.0250 2.1437

Pd(1) -C(27) Pd(2) -C(57) 2.317(6) 2.295(9) 0.0220 2.0339

Pd(1) -C(28) Pd(2) -C(58) 2.348(5) 2.334(6) 0.0140 1.7925

Pd(1) -C(29) Pd(2) -C(54) 2.279(5) 2.264(7) 0.0150 1.7437

P(1) -C(7) P(2) -C(42) 1.818(4) 1.825(4) -0.0070 -1.2375

P(1) -C(13) P(2) -C(36) 1.823(4) 1.826(4) -0.0030 -0.5303

P(1) -C(19) P(2) -C(48) 1.822(4) 1.814(4) 0.0080 1.4142

F(1) -C(2) F(6) -C(31) 1.353(6) 1.359(5) -0.0060 -0.7682

F(2) -C(3) F(7) -C(32) 1.337(6) 1.347(5) -0.0100 -1.2804

F(3) -C(4) F(8) -C(33) 1.352(6) 1.347(5) 0.0050 0.6402

F(4) -C(5) F(9) -C(34) 1.350(6) 1.350(6) 0 0

F(5) -C(6) F(10) -C(35) 1.357(6) 1.353(5) 0.0040 0.5121

C(1) -C(2) C(30) -C(31) 1.367(6) 1.371(6) -0.0040 -0.4714

C(1) -C(6) C(30) -C(35) 1.376(6) 1.376(6) 0 0

C(2) -C(3) C(31) -C(32) 1.393(7) 1.373(6) 0.0200 2.1693

C(3) -C(4) C(32) -C(33) 1.358(8) 1.371(7) -0.0130 -1.2229

C(4) -C(5) C(33) -C(34) 1.359(8) 1.364(7) -0.0050 -0.4704

C(5) -C(6) C(34) -C(35) 1.377(7) 1.376(7) 0.0010 0.1010

C(7) -C(8) C(42) -C(43) 1.383(7) 1.395(7) -0.0120 -1.2122

C(7) -C(12) C(42) -C(47) 1.398(5) 1.382(5) 0.0160 2.2627

C(8) -C(9) C(43) -C(44) 1.386(7) 1.371(7) 0.0150 1.5152

C(9) -C(10) C(44) -C(45) 1.354(9) 1.377(8) -0.0230 -1.9100

C(10) -C(11) C(45) -C(46) 1.371(9) 1.361(7) 0.0100 0.8771

C(11) -C(12) C(46) -C(47) 1.381(7) 1.397(7) -0.0160 -1.6162

C(13) -C(14) C(36) -C(37) 1.386(6) 1.397(6) -0.0110 -1.2964

C(13) -C(18) C(36) -C(41) 1.385(6) 1.393(6) -0.0080 -0.9428

C(14) -C(15) C(37) -C(38) 1.379(7) 1.373(7) 0.0060 0.6061

C(15) -C(16) C(38) -C(39) 1.366(7) 1.362(7) 0.0040 0.4041

C(16) -C(17) C(39) -C(40) 1.368(8) 1.366(8) 0.0020 0.1768

C(17) -C(18) C(40) -C(41) 1.389(7) 1.390(7) -0.0010 -0.1010

C(19) -C(20) C(48) -C(49) 1.377(7) 1.400(6) -0.0230 -2.4947

C(19) -C(24) C(48) -C(53) 1.390(6) 1.384(6) 0.0060 0.7071

C(20) -C(21) C(49) -C(50) 1.390(7) 1.382(7) 0.0080 0.8081

C(21) -C(22) C(50) -C(51) 1.369(10) 1.380(8) -0.0110 -0.8590

C(22) -C(23) C(51) -C(52) 1.371(8) 1.378(7) -0.0070 -0.6585

C(23) -C(24) C(52) -C(53) 1.391(7) 1.380(7) 0.0110 1.1112

C(25) -C(26) C(55) -C(56) 1.363(8) 1.336(15) 0.0270 1.5882

C(25) -C(29) C(55) -C(54) 1.413(8) 1.351(10) 0.0620 4.8414

C(26) -C(27) C(56) -C(57) 1.423(9) 1.392(14) 0.0310 1.8626

C(27) -C(28) C(57) -C(58) 1.378(8) 1.353(12) 0.0250 1.7334

C(28) -C(29) C(58) -C(54) 1.416(7) 1.355(10) 0.0610 4.9973

:: RMS Bond Fit = 0.0189 Ang.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

12

"vr731rt " PLATON-NONSYM Page 13

====================================================================================================================================

I------------I-----------I------------I-----------I------------I-----------I------------I-----------I

4.997=Max- x -

I Half-Normal Probability Plot x I

I I

I Sample Size = 44 I

I CC = 0.9734 I

4.373 - Est. Intersept = -0.0789 -

I Est. Slope = 1.8501 I

I I

I I

I I

3.748 - -

I x I

I I

I I

I I

3.123 - -

I I

I x I

I I

I I

2.499=Mid- x -

I I

I x I

I x x I

I x I

1.874 - x x -

I x x x I

I x x I

I x I

I x I

1.249 - x xx xx x -

I x I

I x I

I xx I

I xxx I

0.625 - xxx -

I xx xx I

I x I

I I

I x xx I

0.000=Min- xx -

I------------I-----------I------------I-----------I------------I-----------I------------I-----------I

0.020 0.619 1.219 1.818 2.417

Normal-Probability-Plot Analysis. See: S.C.Abrahams & E.T.Keve (1971). Acta Cryst. A27,

157-165.

Vertical: Experimental Data, Horizontal: Theoretical Data "vr731rt " PLATON-NONSYM Page 14

====================================================================================================================================

Comparison of the Bond Angles of the Fitted Residues ====================================================

Resd#1 Resd#2 Ang#1 Ang#2 Diff Diff/Sig

===========================================================================================

P(1) -Pd(1) -C(1) P(2) -Pd(2) -C(30) 93.42(12) 92.38(12) 1.04 6.13

P(1) -Pd(1) -C(25) P(2) -Pd(2) -C(55) 123.95(14) 123.1(3) 0.85 2.57

P(1) -Pd(1) -C(26) P(2) -Pd(2) -C(56) 157.68(14) 156.0(3) 1.68 5.07

P(1) -Pd(1) -C(27) P(2) -Pd(2) -C(57) 150.28(15) 153.4(2) -3.12 -12.48

P(1) -Pd(1) -C(28) P(2) -Pd(2) -C(58) 117.44(13) 120.4(2) -2.96 -12.41

P(1) -Pd(1) -C(29) P(2) -Pd(2) -C(54) 104.63(14) 106.56(16) -1.93 -9.08

C(1) -Pd(1) -C(25) C(30) -Pd(2) -C(55) 131.30(18) 133.7(3) -2.40 -6.86

C(1) -Pd(1) -C(26) C(30) -Pd(2) -C(56) 104.21(18) 105.4(3) -1.19 -3.40

C(1) -Pd(1) -C(27) C(30) -Pd(2) -C(57) 105.37(18) 104.9(2) 0.47 1.75

C(1) -Pd(1) -C(28) C(30) -Pd(2) -C(58) 134.00(18) 132.6(2) 1.40 5.20

C(1) -Pd(1) -C(29) C(30) -Pd(2) -C(54) 161.94(18) 161.00(19) 0.94 3.59

C(25) -Pd(1) -C(26) C(55) -Pd(2) -C(56) 33.82(19) 33.5(4) 0.32 0.72

C(25) -Pd(1) -C(27) C(55) -Pd(2) -C(57) 57.8(2) 56.6(3) 1.20 3.33

C(25) -Pd(1) -C(28) C(55) -Pd(2) -C(58) 58.2(2) 56.4(2) 1.80 6.36

C(25) -Pd(1) -C(29) C(55) -Pd(2) -C(54) 35.31(19) 34.0(3) 1.31 3.69

C(26) -Pd(1) -C(27) C(56) -Pd(2) -C(57) 35.8(2) 35.4(4) 0.40 0.89

C(26) -Pd(1) -C(28) C(56) -Pd(2) -C(58) 58.3(2) 57.4(3) 0.90 2.50

C(26) -Pd(1) -C(29) C(56) -Pd(2) -C(54) 58.23(19) 57.0(3) 1.23 3.46

C(27) -Pd(1) -C(28) C(57) -Pd(2) -C(58) 34.35(19) 34.0(3) 0.35 0.99

C(27) -Pd(1) -C(29) C(57) -Pd(2) -C(54) 58.40(19) 56.9(3) 1.50 4.22

C(28) -Pd(1) -C(29) C(58) -Pd(2) -C(54) 35.61(18) 34.2(3) 1.41 4.03

Pd(1) -P(1) -C(7) Pd(2) -P(2) -C(42) 109.28(15) 109.71(14) -0.43 -2.10

Pd(1) -P(1) -C(13) Pd(2) -P(2) -C(36) 117.20(13) 115.83(13) 1.37 7.45

Pd(1) -P(1) -C(19) Pd(2) -P(2) -C(48) 115.35(14) 115.77(14) -0.42 -2.12

C(7) -P(1) -C(13) C(42) -P(2) -C(36) 106.20(19) 106.04(19) 0.16 0.60

C(7) -P(1) -C(19) C(42) -P(2) -C(48) 105.59(18) 106.25(18) -0.66 -2.59

C(13) -P(1) -C(19) C(36) -P(2) -C(48) 102.2(2) 102.4(2) -0.20 -0.71

Pd(1) -C(1) -C(2) Pd(2) -C(30) -C(31) 122.2(3) 122.5(3) -0.30 -0.71

Pd(1) -C(1) -C(6) Pd(2) -C(30) -C(35) 122.9(3) 122.0(3) 0.90 2.12

C(2) -C(1) -C(6) C(31) -C(30) -C(35) 114.8(4) 115.5(4) -0.70 -1.24

F(1) -C(2) -C(1) F(6) -C(31) -C(30) 120.7(4) 120.5(4) 0.20 0.35

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

13

F(1) -C(2) -C(3) F(6) -C(31) -C(32) 115.3(4) 116.1(4) -0.80 -1.41

C(1) -C(2) -C(3) C(30) -C(31) -C(32) 124.0(4) 123.4(4) 0.60 1.06

F(2) -C(3) -C(2) F(7) -C(32) -C(31) 121.5(5) 121.9(4) -0.40 -0.62

F(2) -C(3) -C(4) F(7) -C(32) -C(33) 120.3(5) 119.0(4) 1.30 2.03

C(2) -C(3) -C(4) C(31) -C(32) -C(33) 118.2(5) 119.1(4) -0.90 -1.41

F(3) -C(4) -C(3) F(8) -C(33) -C(32) 119.4(5) 119.4(4) 0.00 0.00

F(3) -C(4) -C(5) F(8) -C(33) -C(34) 120.2(5) 121.0(4) -0.80 -1.25

C(3) -C(4) -C(5) C(32) -C(33) -C(34) 120.3(5) 119.6(4) 0.70 1.09

F(4) -C(5) -C(4) F(9) -C(34) -C(33) 120.2(5) 119.8(4) 0.40 0.62

F(4) -C(5) -C(6) F(9) -C(34) -C(35) 120.2(4) 120.6(4) -0.40 -0.71

C(4) -C(5) -C(6) C(33) -C(34) -C(35) 119.6(5) 119.7(4) -0.10 -0.16

F(5) -C(6) -C(1) F(10) -C(35) -C(30) 120.2(4) 120.3(4) -0.10 -0.18

F(5) -C(6) -C(5) F(10) -C(35) -C(34) 116.8(4) 117.0(4) -0.20 -0.35

C(1) -C(6) -C(5) C(30) -C(35) -C(34) 123.0(4) 122.7(4) 0.30 0.53

P(1) -C(7) -C(8) P(2) -C(42) -C(43) 118.9(3) 117.9(3) 1.00 2.36

P(1) -C(7) -C(12) P(2) -C(42) -C(47) 123.4(3) 123.8(3) -0.40 -0.94

C(8) -C(7) -C(12) C(43) -C(42) -C(47) 117.6(4) 118.3(4) -0.70 -1.24

C(7) -C(8) -C(9) C(42) -C(43) -C(44) 121.7(5) 121.1(5) 0.60 0.85

C(8) -C(9) -C(10) C(43) -C(44) -C(45) 119.9(5) 120.1(5) -0.20 -0.28

C(9) -C(10) -C(11) C(44) -C(45) -C(46) 119.7(6) 119.9(5) -0.20 -0.26

C(10) -C(11) -C(12) C(45) -C(46) -C(47) 121.3(5) 120.6(5) 0.70 0.99

C(7) -C(12) -C(11) C(42) -C(47) -C(46) 119.7(4) 120.0(4) -0.30 -0.53

P(1) -C(13) -C(14) P(2) -C(36) -C(37) 118.5(3) 118.4(3) 0.10 0.24

P(1) -C(13) -C(18) P(2) -C(36) -C(41) 123.0(3) 123.3(4) -0.30 -0.60

C(14) -C(13) -C(18) C(37) -C(36) -C(41) 118.4(4) 117.9(4) 0.50 0.88

C(13) -C(14) -C(15) C(36) -C(37) -C(38) 121.1(4) 120.9(4) 0.20 0.35

C(14) -C(15) -C(16) C(37) -C(38) -C(39) 120.0(4) 120.9(5) -0.90 -1.41

C(15) -C(16) -C(17) C(38) -C(39) -C(40) 120.1(5) 119.5(5) 0.60 0.85

C(16) -C(17) -C(18) C(39) -C(40) -C(41) 120.4(4) 120.9(4) -0.50 -0.88

C(13) -C(18) -C(17) C(36) -C(41) -C(40) 120.1(4) 120.0(4) 0.10 0.18

P(1) -C(19) -C(20) P(2) -C(48) -C(49) 121.0(4) 121.7(3) -0.70 -1.40

P(1) -C(19) -C(24) P(2) -C(48) -C(53) 120.2(3) 119.9(3) 0.30 0.71

C(20) -C(19) -C(24) C(49) -C(48) -C(53) 118.9(4) 118.4(4) 0.50 0.88

C(19) -C(20) -C(21) C(48) -C(49) -C(50) 120.8(5) 120.1(5) 0.70 0.99

C(20) -C(21) -C(22) C(49) -C(50) -C(51) 119.8(5) 120.3(5) -0.50 -0.71

C(21) -C(22) -C(23) C(50) -C(51) -C(52) 120.3(5) 120.4(5) -0.10 -0.14

C(22) -C(23) -C(24) C(51) -C(52) -C(53) 120.2(5) 119.3(5) 0.90 1.27

C(19) -C(24) -C(23) C(48) -C(53) -C(52) 120.0(4) 121.6(4) -1.60 -2.83

Pd(1) -C(25) -C(26) Pd(2) -C(55) -C(56) 70.7(3) 70.8(5) -0.10 -0.17

Pd(1) -C(25) -C(29) Pd(2) -C(55) -C(54) 68.8(3) 69.7(4) -0.90 -1.80

C(26) -C(25) -C(29) C(56) -C(55) -C(54) 107.1(5) 107.7(7) -0.60 -0.70

Pd(1) -C(26) -C(25) Pd(2) -C(56) -C(55) 75.5(3) 75.7(5) -0.20 -0.34

Pd(1) -C(26) -C(27) Pd(2) -C(56) -C(57) 72.4(3) 72.7(6) -0.30 -0.45

C(25) -C(26) -C(27) C(55) -C(56) -C(57) 108.9(5) 107.6(8) 1.30 1.38

Pd(1) -C(27) -C(26) Pd(2) -C(57) -C(56) 71.8(3) 72.0(6) -0.20 -0.30

Pd(1) -C(27) -C(28) Pd(2) -C(57) -C(58) 74.1(3) 74.6(5) -0.50 -0.86

C(26) -C(27) -C(28) C(56) -C(57) -C(58) 108.3(5) 107.9(8) 0.40 0.42

Pd(1) -C(28) -C(27) Pd(2) -C(58) -C(57) 71.6(3) 71.4(5) 0.20 0.34

Pd(1) -C(28) -C(29) Pd(2) -C(58) -C(54) 69.5(3) 70.1(4) -0.60 -1.20

C(27) -C(28) -C(29) C(57) -C(58) -C(54) 106.7(5) 106.7(6) 0.00 0.00

Pd(1) -C(29) -C(25) Pd(2) -C(54) -C(55) 75.9(3) 76.3(4) -0.40 -0.80

Pd(1) -C(29) -C(28) Pd(2) -C(54) -C(58) 74.9(3) 75.7(4) -0.80 -1.60

C(25) -C(29) -C(28) C(55) -C(54) -C(58) 108.5(5) 109.6(7) -1.10 -1.28

:: RMS Angle Fit = 0.946 Deg.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

14

"vr731rt " PLATON-NONSYM Page 16

====================================================================================================================================

I------------I-----------I------------I-----------I------------I-----------I------------I-----------I

12.480=Max- x x -

I Half-Normal Probability Plot I

I I

I Sample Size = 84 I

I CC = 0.9180 I

10.920 - Est. Intersept = -1.0710 -

I Est. Slope = 3.8034 I

I I

I I

I I

9.360 - -

I x I

I I

I I

I I

7.800 - -

I x I

I I

I x I

I I

6.240=Mid- x x -

I I

I I

I x I

I x I

4.680 - -

I x I

I x I

I x x I

I xx x I

3.120 - -

I x I

I xxxx I

I xxxx I

I xx I

1.560 - xxxx -

I xxxxxxx I

I xxxxxxxxx I

I xxxxxxxxx I

I xxxxxxxxx I

0.000=Min- xx -

I------------I-----------I------------I-----------I------------I-----------I------------I-----------I

0.010 0.668 1.327 1.985 2.643

Normal-Probability-Plot Analysis. See: S.C.Abrahams & E.T.Keve (1971). Acta Cryst. A27,

157-165.

Vertical: Experimental Data, Horizontal: Theoretical Data

Analysis of π-contacts:

Supramolecular interactions (π-contacts, hydrogen bonds) were computed with PLATON for

Windows.9

Despite the presence of ligand π-systems in the compound (η5-C5H5)Pd(C6F5){P(C6H5)3},

1 there are only few intra- or intermolecular π-π interactions 10 evident (Table 2). Noteworthy

appears the intramolecular π-interaction between the electron-poor C6F5 ring and a phenyl

ring of the phosphane (Fig. 2a and 2b). Particularly on the Pd2 molecule this π-stacking can

be viewed as strong and shows rather short centroid-centroid contacts (Cg···Cg < 3.8 Å),

small slip angles (β,γ < 25°) and vertical displacements (d[a] < 1.5 Å) which translate into a

sizeable overlap of the π-plane areas,11 although the ring planes are not coplanar.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

15

Table 2 Distances (d/Å) and angles (°) for the π-contacts in the crystal structures of 1 a

π-π interactions ring(I)···ring(J) d[Cg(I)···Cg(J)] b α c β d γ e d[Cg(I)···P(J)] f d[Cg(J)···P(I)] g d[a] h

_____________________________________________________________________________________________________________ low temperature structure intramolecular C6F5···H5C6–P on Pd1 3.928(2) 25.6 24.1 29.4 3.42 3.59 1.59-1.93 shortest C···C contacts C1···C14 3.262(3), C6···C13 3.331(3), C2···C14 3.478(3), C6···C14 3.504(3) on Pd2 3.654(2) 16.4 25.3 22.5 3.38 3.31 1.39-1.55 shortest C···C contacts C35···C36 3.183(3), C30···C37 3.266(3), C35···C41 3.389(3), C35···C37 3.438(3), C31···C37 3.480(3) intermolecular Pd1···Pd2 ring Ph-C13-18 to ring Ph-C30-35i 3.868(2) 21.9 32.3 15.7 3.72 3.27 1.06-2.07 room temperature structure intramolecular C6F5···H5C6–P on Pd1 3.944(3) 27.6 21.4 29.3 3.44 3.67 1.44-1.93 shortest C···C contacts C1···C14 3.268(6), C6···C13 3.401(7), C2···C14 3.432(6), C6···C14 3.574(7) on Pd2 3.700(3) 17.8 23.7 22.9 3.41 3.39 1.44-1.48 shortest C···C contacts C35···C36 3.229(5), C30···C37 3.289(6), C35···C41 3.441(6), C35···C37 3.482(6), C31···C37 3.496(6) intermolecular Pd1···Pd2 ring Ph-C13-18 to ring Ph-C30-35iI 4.013(3) 24.8 32.9 14.9 3.88 3.37 1.02-2.18 CH-π interactions C–H···ring d[H···Cg] i d[H···⊥] j γ e ∠[CH···Cg] k d[C···Cg] l _____________________________________________________________________________________________________________ low temperature structure, intermolecular contacts only Pd1···symm. rel. Pd1 Ph-C9–H9···Ph-C13-18iii 2.87 2.83 9.45 146.1 3.699(3) Pd1···Pd2 Ph-C14–H14···Cp-C54-58iv 2.77 2.69 13.59 135.8 3.511(3) Ph-C37–H37···Cp-C25-29v 2.86 2.76 14.91 137.3 3.615(3) Pd2···symm. rel. Pd2 Ph-C46–H46···Ph-C36-41vi 2.74 2.67 12.89 134.8 3.473(3) room temperature structure data can be added if needed a For a graphical depiction of distances and angles in the assessment of the π-contacts, see Scheme 1. Pyridyl rings of the terpy or bipy ligands are named by their nitrogen atoms. – b Centroid-centroid distance. – c Dihedral angle between the ring planes. – d Angle between the centroid vector Cg(I)···Cg(J) and the normal to the plane I. – e Angle between the centroid vector Cg(I)···Cg(J) and the normal to the plane J. – f Perpendicular distance of Cg(I) on ring plane J. – g Perpendicular distance of Cg(J) on ring plane I. – h Vertical displacement between ring centroids. – i H···centroid distance. – j Perpendicular distance of H on ring plane. – k C–H···centroid angle. – l C···centroid distance. – Symmetry transformations: i x, 1+y, z; ii 1–x, 1–y, –z; iii –1/2+x, y, 1/2–z; iv 3/2–x, 1/2+y, z; v 1/2–x, –1/2+y, z; vi 1–x, –y, –z.

Cg(J)

Cg(I)plane P(I)

plane P(J)

d[Cg(I)···Cg(J)]

d[Cg(I)···P(J)]d[Cg(J)···P(I)] β

γ

d[a](a)

C

Cg

Cg

d[H···⊥]d[C···Cg]

γ

(b)

H∠[CH···Cg]

d[H···Cg]

Scheme 1 Graphical presentation of the parameters used in Table 1 for

the description of (a) π-π stacking and (b) CH-π interactions.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

16

(a) viewed perpendicular P1–Pd1 (b) viewed perpendicular P2–Pd2 (symmetry related molecule, 1–x, –y, –z to

illustrate "enantiomorphous" relation)

Figure 2. Pictorial representation of selected π-interactions in Pd1 and Pd2 and the

enantiomorphous relationship between Pd1 and Pd2 (based on the low-temperature data set)

The different ring canting of this C6F5-to-phenyl π-contact (with respect to the Pd–P bond)

together with the direction of the propeller rotation of the phenyl rings of P(C6H5)3 renders the

molecules Pd1 and Pd2 enantiomorphous on the conformational level (compare Fig. 2a – 2b

and Fig. 3a – 3b). Yet, the space group Pbca is centrosymmetric, hence the other conformer is

generated by symmetry operations anyway. Therefore, the existence of Pd1 and Pd2 as

enantiomorphous conformers alone would not explain their crystallographic difference.

(a) viewed along P1–Pd1 (b) viewed along P2–Pd2 (symmetry related molecule, 1–x, –y, –z to

illustrate "enantiomorphous" relation)

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

17

Figure 3. Pictorial representation of the enantiomorphous relationship between Pd1 and Pd2

(based on the low-temperature data set)

On the other hand, the only close intermolecular π-stacking contact, which happens to be

between a Pd1 and a Pd2 molecule (Table 1), features already strongly tilted phenyl rings

(large dihedral, interplanar angle α) and the overall contact is quite irregular as can be seen

from the large variation in the slip angles (β,γ) and in the perpendicular distances from the

centroid onto the adjacent plane (d[Cg···P]) as well as in the vertical displacements (d[a]).

Altogether this π-interaction may be viewed as medium to weak in that it exhibits rather long

centroid···centroid distances together with, in part, large slip angles (β,γ > 30°) and vertical

displacements (d[a] > 2.0 Å) between the ring centroids. Other π-stackings were even weaker.

We do not see how this intermolecular π-stacking contact could be strong enough to provide

for a special interaction between Pd1 and Pd2. We also note that there is no π-stacking

between C6F5-rings, a feature that is otherwise often observed.

In terms of π-contacts the packing in 1 seems to be more controlled by C–H···π

interactions, anyhow.12 The intermolecular C–H···π contacts start around 2.7 Å for the (C–

)H···ring centroid distances (Table 1). As such, these C–H···π contacts lie at the short end of

the accepted distance range for this type of contact.12,13 However, there are C–H···π contacts

of similar magnitude between symmetry related Pd1 molecules, between symmetry related

Pd2 molecules and between Pd1 – Pd2 of different symmetry relations. Therefore, again we

do not see that such C–H···π contacts could explain the crystallographic difference between

Pd1 and Pd2 entities.

Analysis of C–H···F–C hydrogen bonds:

The C–H···F–C contacts are listed in Table 3 and are depicted in Fig. 4 for both the low

and room temperature structure of 1.14 There are C–H···F–C hydrogen bonds between

symmetry related molecules of Pd1, between symmetry related molecules of Pd2 and between

Pd1 – Pd2 of different symmetry relations.

We reason that the difference between Pd1 and Pd2, in being enantiomorphous

conformers, together with a "relatively strong" C–H···F–C hydrogen bond within such a Pd1 –

Pd2 "pair" gives rise to a racemic mixture of Pd1(R,S)–Pd2(S,R) pairs which build up the

crystal structure as crystallographically independent Pd1 and Pd2 molecules. The R,S (or S,R)

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

18

notation refers to the different ring canting of the C6F5···C6H5 π-contact with respect to the

Pd–P bond (Fig. 2) and to the different propeller scew of the phenyl rings when looking along

the P–Pd bond (Fig. 3).

Table 3 C-H···F hydrogen bonding parameters in 1

C–H···F a C–H [Å] H···F [Å] C···F [Å] C–H···F [°] sym rel. Δ(H···F)100–293 [Å] b

_______________________________________________________________________________________________ low temperature structure C6F5 on Pd1: (Pd2)C40i–H40i···F1 0.95 2.39 3.105(5) 132 i = 1–x,–y,–z (Pd1)C10ii–H10ii···F4 0.95 2.58 3.394(5) 144 ii = 0.5–x, –0.5+y, z (Pd1)C20iii–H20iii···F4 0.95 2.60 3.349(5) 136 iii = 1–x, –0.5+y, 0.5–z (Pd1)C18iii–H18iii···F3 0.95 2.74 3.468(5) 134 iii see above (Pd1)C21iv–H21iv···F2 0.95 2.79 3.305(5) 115 iv = 1.5–x, –0.5+y, z (Pd1)C8–H8···F5 0.95 2.79 3.679(5) 156 (intramolecular) (Pd2)C55–H55···F3 0.95 2.87 3.683(5) 144 (intramolecular) C6F5 on Pd2: (Pd2)C44v–H44v···F8 0.95 2.50 3.148(5) 125 v = –0.5+x,–0.5–y,–z (Pd2)C51ii–H51ii···F7 0.95 2.60 3.204(5) 122 ii see above (Pd1)C27ii–H27ii···F7 0.95 2.63 3.433(5) 143 ii see above (Pd1)C17iii–H17iii···F6 0.95 2.65 3.285(5) 125 iii see above (Pd2)C45v–H45v···F8 0.95 2.67 3.225(5) 118 v see above (Pd1)C12vi–H12vi···F7 0.95 2.75 3.092(5) 102 vi = x, –1+y, z (Pd2)C45iv–H45iv···F9 0.95 2.78 3.544(5) 138 iv see above (Pd2)C50ii–H50ii···F7 0.95 2.85 3.330(5) 112 ii see above (Pd2)C43–H43···F10 0.95 2.86 3.735(5) 154 (intramolecular) room temperature structure C6F5 on Pd1: (Pd2)C40–H40···F1 0.93 2.42 3.159(5) 136 i = 1–x,–y,–z 0.03 (Pd1)C10ii–H10ii···F4 0.93 2.67 3.472(7) 144 ii = 0.5–x, –0.5+y, z 0.09 (Pd1)C20iii–H20iii···F4 0.93 2.79 3.489(6) 133 iii = 1–x, –0.5+y, 0.5–z 0.19 (Pd1)C18iii–H18iii···F3 0.93 2.84 3.557(6) 134 iii see above 0.10 (Pd1)C21iv–H21iv···F2 0.93 2.85 3.445(6) 123 iv = 1.5–x, –0.5+y, z 0.06 (Pd1)C8–H8···F5 0.93 2.85 3.728(6) 158 (intramolecular) 0.06 C6F5 on Pd2: (Pd2)C44v–H44v···F8 0.93 2.58 3.224(6) 127 v = –0.5+x,–0.5–y,–z 0.08 (Pd2)C51ii–H51ii···F7 0.93 2.72 3.324(6) 123 ii see above 0.12 (Pd1)C27ii–H27ii···F7 0.93 2.73 3.495(6) 141 ii see above 0.10 (Pd1)C17iii–H17iii···F6 0.93 2.77 3.405(6) 127 iii see above 0.12 (Pd2)C45v–H45v···F8 0.93 2.74 3.301(6) 120 v see above 0.07 (Pd1)C12vi–H12vi···F7 0.93 2.83 3.193(5) 104 vi = x, –1+y, z 0.08 (Pd2)C43–H43···F10 0.93 2.88 3.739(6) 155 (intramolecular) 0.02 a ordered by increasing H···F length in low temperature structure with ordering then kept for room temperature structure; cutoff H···F < 2.88 Å. – b Difference in the same H···F contact between the structure at 100 K and at 293 K.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

19

low temperature data set (T = 100 K)

room temperature data set (T = 293 K)

Figure 4. Pictorial representation of the full set of C–H···F–C hydrogen bonds around the

C6F5 ring in Pd1 and Pd2 at the different temperature (cutoff H···F < 2.88 Å, symmetry labels

are not shown but can be found in Table 3).

19F{1H} solid state MAS NMR spectroscopy Tentative assignment:

The assignment is based on identifying F1 as the peak exhibiting the strongest dipolar

coupling in the PILGRIM spectrum. The other assigments can be derived using the RFDR

results. This allows a full assignment of the signals of one C6F5 unit. The other one could be

fully assigned if F8 could be identified unambigously by the PILGRIM experiment.

Unfortunately, the meta para couplings are not fully resolved for the second C6F5 unit in the

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

20

RFDR spectrum. The RDFR results indicate that the one peak which is not resolved is that of

F8. This peaks seems to appear at about–158 ppm.

peak /ppm site comment

-103.9 F1 (ortho) strongest coupling in

PILGRIM spectrum

-104.3

-107.5

F6/F10 (ortho)

-109.0 F5 (ortho) RFDR cross peak to

F4

-157.4 F3 (para) RFDR cross peaks to

F2 and F4

-157.8

-158.8

F7/F9 (meta)

-160.5 F4 (meta)

-162.4 F2 (meta) RFDR cross peak to

F1

References

1 R. Usón, J. Forniés, R. Navarro, M. P. García, Inorg. Chim. Acta 1979, 33, 69. 2 D. A. Long, D. Steele, Spectrochim. Acta 1963, 19, 1955. 3 E. Maslowski, Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p 437. 4 E. Alonso, J. Forniés, C. Fortuño, M. Tomás, J. Chem. Soc., Dalton Trans. 1995, 3777. 5 G. López, J. Ruiz, C. Vicente, J. M. Martí, G. García, P. A. Chaloner, P. B. Hitchcock, R. M. Harrison,

Organometallics 1992, 11, 4090. 6 J. Ruiz, M. T. Martínez, C. Vicente, G. García, G. López, P. A. Chaloner, P. B. Hitchcock, Organometallics

1993, 12, 4321. 7 G. K. Anderson, R. J. Cross, K. W. Muir, L. Manojilovic-Muir, J. Organomet. Chem. 1989, 362, 225; and

references cited therein. 8 J. Forniés, F. Martínez, R. Navarro and E. P. Urriolabeitia, J. Organomet. Chem. 1995, 495, 185. J. Ruiz, M.

T. Martínez, F. Florenciano, V. Rodríguez, G. López, J. Pérez, P. A. Chaloner, P. B. Hitchcock, Inorg. Chem., 2003, 42, 3650. J. Ruiz, M. T. Martínez, F. Florenciano, V. Rodríguez, G. López, J. Pérez, P. A. Chaloner, P. B. Hitchcock, Dalton Trans. 2004, 929.

9 A. L. Spek, Acta Crystallogr. 1990, A46, C34. A. L. Spek, PLATON Version 29-11-98; L. J. Farrugia, Windows implementation, University of Glasgow, 1998.

10 C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885. 11 π-Interactions between pyridyl-type ligands for comparison: V. Lozan, P.-G. Lassahn, C. Zhang, B. Wu, C.

Janiak, G. Rheinwald, H. Lang, Z. Naturforsch. B 2003, 58, 1152. C. Zhang, C. Janiak, Z. Anorg. Allg. Chem. 2001, 627, 1972. C. Zhang, C. Janiak, J. Chem. Crystallogr. 2001, 31, 29; H.-P. Wu, C. Janiak, G. Rheinwald, H. Lang, J. Chem. Soc., Dalton Trans. 1999, 183; C. Janiak, L. Uehlin, H.-P. Wu, P. Klüfers, H. Piotrowski, T. G. Scharmann, J. Chem. Soc., Dalton Trans. 1999, 3121. H.-P. Wu, C. Janiak, L. Uehlin, P. Klüfers, P. Mayer, Chem. Commun. 1998, 2637.

12 M. Nishio, CrystEngComm 2004, 6, 130. M. Nishio, M. Hirota, Y. Umezawa, The CH/π interaction (Evidence, Nature and consequences), Wiley-VCH, 1998. Y. Umezawa, S. Tsuboyama, K. Honda, J.

Electronic Supplementary Material for CrystEngComm This journal is © The Royal Society of Chemistry 2006

21

Uzawa, M. Nishio, Bull. Chem. Soc. Jpn. 1998, 71, 1207. C. Janiak, S. Temizdemir, S. Dechert, W. Deck, F. Girgsdies, J. Heinze, M. J. Kolm, T. G. Scharmann, O. M. Zipffel, Eur. J. Inorg. Chem. 2000, 1229.

13 N. N. L. Madhavi, A. K. Katz, H. L. Carrell, A. Nangia, G. R. Desiraju, Chem. Commun. 1997, 1953. H.-C. Weiss, D. Bläser, R. Boese, B. M. Doughan, M. M. Haley, Chem. Commun. 1997, 1703. T. Steiner, M. Tamm, B. Lutz, J. van der Maas, Chem. Commun. 1996, 1127. P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent, D. J. Williams, J. Am. Chem. Soc. 1992, 114, 193.

14 For an overview on C–H···F–C hydrogen bonds see G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond, IUCr Monographs on Crystallography, Vol. 9, Oxford University Press, 1999, p. 205-213; and references cited therein. J. D. Dunitz, R. Taylor, Chem. Eur. J. 1997, 3, 89. K. Reichenbächer, H. I. Süss, J. Hulliger, Chem. Soc. Rev. 2005, 34, 22.