Biocatalytic processes for the production of fatty acid esters

33
BIOCATALYTIC PROCESSES FOR THE PRODUCTION OF FATTY ACID ESTERS BREW-Symposium 11 May, 2005, Bioperspectives 2005 M. VICENTE, J. ARACIL AND M. MARTINEZ* CHEMICAL ENGINEERING DEPARTMENT. COMPLUTENSE UNIVERSITY. 28040 MADRID E-MAIL: [email protected]

Transcript of Biocatalytic processes for the production of fatty acid esters

BIOCATALYTIC PROCESSES FOR THE PRODUCTION OF FATTY ACID ESTERS

BREW-Symposium11 May, 2005, Bioperspectives 2005

M. VICENTE, J. ARACIL AND M. MARTINEZ*CHEMICAL ENGINEERING DEPARTMENT. COMPLUTENSE UNIVERSITY. 28040 MADRID

E-MAIL: [email protected]

GREEN TECHNOLOGY AND SUSTAINABLE DEVELOPMENT

• USING OF RENEWABLE RAW MATERIALS

• SETTING UP NEW INTEGRATED PROCESSES. USE OF SELECTIVE CATALYSTS. AVOIDANCE OF POLLUTANTS AND BY-

PRODUCTS

• NEW PRODUCT AND PROCESS DESIGN IN ORDER TO MINIMIZE WATER AND ENERGY WASTE.

PROCESSES FOR ESTER PRODUCTION

RAW MATERIALS

ESTER PRODUCTION PROCESSESGENERAL SCHEMEESTERIFICATION & TRANSESTERIFICATION: CATALYST1). ESTERS OF MONOALCOHOLS

- Reaction study for different catalyst systems- Proposed schemes for oleyl oleate production

2). MONOGLYCERIDES- Reaction study for different catalyst systems- Proposed schemes for glycerol monooleate and

monoricinolate production

RAW MATERIALSRAW MATERIALS

OILS

HYDROLYSIS230ºC and 32 atm

TRANSESTERIFICATIONwtih Metanol

50ºC and basic catalyst

CRUDEFATTY ACIDS

CRUDEGLYCERINE

METHYL FATTYESTERS

HYDROGENATION225ºC and 50atm

FATTY ALCOHOLS

TRYGLYCERIDES TO OLEOCHEMICALS

SEPARATION DISTILLATIONHYDROGENATIONFRACTIONAL DISTILLATION

REFINING REFINEDGLYCERINE

DISTILLEDFATTY ACIDS

SATURATEDFATTY ACIDS

FRACTIONATEDFATTY ACIDS

UNSATURATEDFATTY ACIDS

OIL SOURCE C14 C16 C18 C18:1 C18:2 C18:3

Olive 0-1 7-15 1-2 70-85 4-12 -

Pits of olives - 4-6 2-4 75-85 4-10 -

Peanut - 12-15 14-16 54-76 12-25 -

Almond - 5-8 - 75-80 2-4 -

Tea 0-1 7-8 0-1 83-85 22-24 -

Hazelnut 0-1 2-4 1-2 90-95 2-3 -

Soya 0-1 7-10 3-6 25-35 52-60 2-6

Corn - 7-8 2-4 45-50 40-45 5-10

Laurel fruit 20-22 1-2 - 60-65 12-15 -

Laurel cherry 1-2 6-9 1-2 70-75 12-14 -

Cashew nut - 6-7 11-12 74-75 7-8 -

High oleic sunflower - 4 3 70-80 15-20 -

High oleic rapeseed 2 - 2 70-80 15-20 2

COMPOSITION OF MAIN OILSFOR OLEIC ACID PRODUCTION

ESTER PRODUCTION ESTER PRODUCTION PROCESSESPROCESSES

BIODEGRADABLE PRODUCTS

NON-FOODAGRICULTURAL

PRODUCTIONOIL SEEDS

OILS

FATTY ACIDS

ALCOHOLS

TRANSESTERIFICATION

ESTERIFICATION

ESTERS OF MONOALCOHOLS

MONOGLYCERIDES

GLYCERINE

ESTERIFICATION

ESTERIFICATION

DIGLYCERINE

POLYGLYCEROLESTERS

TRANSESTERIFICATION BIODIESEL

GENERAL REACTION SCHEMESGENERAL REACTION SCHEMES

A.) ESTERIFICATION PROCESS

R1-COOH + R2-OH ⇔ R1-COO-R2 + H2OFATTY ACID ALCOHOL ESTER WATER

B.) TRANSESTERIFICATION PROCESS

CO-O-R1 CH2-OH CH2-OH CO-O-R1’ + 2 CH-OH ⇔ 3 CH-OH CO-O-R1’’ CH2-OH CH2-O-OC-R1

OIL GLYCEROL MONOGLYCERIDE

CATALYTIC SYSTEMSCATALYTIC SYSTEMS

Free lipasesImmobilized lipases

Anionic Exchange Resins: Oxides and Mixed Oxides(CaO-MgO)

Alkaline hydroxidesAlkaline alkoxidesCarbonates

Sulphuric acidChlorhydric acid Phosphoric acid

TRANSESTERIFICATIONPROCESSES

Free lipasesImmobilized lipases

Acid zeolitesStrong mineral acidsOrganic acidsIon exchange resinsMetal chlorides

ESTERIFICATIONPROCESSES

ENZYMATIC CATALYST

HETERO-GENEOUS CATALYSTBASIC CATALYSTACID CATALYST

CONVENTIONAL PROCESSES

ADVANTAGES OF ENZYMATIC PROCESSES

• SIMPLER PROCESS SCHEMES

• HIGHER SELECTIVITY

• LESS WASTE

• LOWER TEMPERATURE

• LOWER PRESSURE

• LOWER (DIRECT) PROCESS ENERGY REQUIREMENTS

1)1). . ESTERS OF MONOALCOHOLSESTERS OF MONOALCOHOLS

CATALYTIC ESTERIFICATION REACTION

CH3-(CH2)7 - CH = CH -(CH2)7- COOH

OLEIC ACID

+ R-CH2 - OH

ALCOHOL

CH3-(CH2)7 - CH = CH - (CH2)7 -COO-CH2-R

ESTER

H2O

WATER

+

CATALYST

OLEYL OLEATE PRODUCTIONOLEYL OLEATE PRODUCTION

R = CH3-(CH2 )7 - CH = CH -(CH2 )7- OLEYL ALCOHOL

COMPARISON BETWEEN DIFFERENT CATALYTIC SYSTEMS FORESTERIFICATION REACTION OLEIC ACID + OLEYL ALCOHOL

Molar ratio [AC]:[Al] = 1:1Constant temperatureConstant working pressureReaction time: 2h

BatchReactor

OLEIC ACID

OLEYL ACOHOL

VACUUM PUMP ∞

ESTER

WATER

60

160

579

P (mmHg)

95570ImmobizedEnzyme

470.60180Y-Zeolite

550.45164SnCl2

Ester yield (%)

Catalyst(wt%)T (ºC)Catalytic

system

95,5 94,9 95,6

30,5

88,1 90,7 92,01

51,7

0

10

20

30

40

50

60

70

80

90

100

LIP-IM20 LIP-IM50 LIP-IM LIP-10 SP-A SP-B NOVO SnCl2

Different enzymatic system comparison

51,71SnCl2.5H2OSnCl2

92,015Novozyme435NOVO

90,75SP-435-BSP-B

88,15SP-435-ASP-A

30,55Lipozyme10,000LIP-10

95,65Lipozyme IMLIP-IM

94,95Lipozyme IM50LIP-IM50

95,55Lipozyme IM20LIP-IM20

XAC%wt cat. CATALYSTREACTION

Operation conditions:- Molar ratio [AC]/[AL] 1:1- Temperature 70ºC- Pressure 60 mmHg(except LIP-10, P=710mmHG)- Reaction time: 2 h

COMPARISON BETWEEN DIFFERENT ENZYMATIC SYSTEMS FORESTERIFICATION REACTION: OLEIC ACID + OLEYL ALCOHOL

PROPOSED SCHEMESFOR OLEYL OLEATE PRODUCTION

UCM in collaboration with Dr. Michel Poulina (Uniquema)

OLEYL OLEATE PRODUCTION

Acid value <1Hydroxyl value < 30

Technical grade (90%)Technical grade (90%)

OLEYL OLEATEOLEYL ALCOHOLOLEIC ACID

RAW MATERIALS PRODUCT

PROPOSED SCHEMES FOR OLEYL OLEATE PRODUCTION

Immobized lipaseImmobized lipase

STIRRED TANKFIXED-BED

BATCHBIOPROCESS

p-toluenesulfonic acidTin chlorideZeolites

STIRRED TANKBATCHCONVENTIONAL

CATALYSTREACTORPRODUCTION

BATCH REACTOR130ºC, Patm

0.6%wt cat; 16 h

OLEIC ACIDtechnical grade

OLEIC ALCOHOLtechnical grade

NEUTRALIZATIONDECANTATION

WASHINGDECANTATATION

BLEACHINGClays

CATALYSTp-toluenesulfonic acid

DESODORIZATIONStripping

80ºC, 10 mbar

CENTRIFUGATIONACIDULATION

H2SO4 /ACID RECOVERY

STEAMPRODUCTION

DRYING

OLEYL OLEATE PRODUCTION BATCH_STIRRED TANKNon-enzymatic esterification: p-toluenesufonic acid

NaOH, solution

Waterphase

Water

Soap

OLEIL OLEATE

Waterphase

OLEYL OLEATE PRODUCTION BATCH_STIRRED TANKEnzymatic esterification: immobilized lipases

BATCH REACTOR60ºC, 100mbar1.5%wt cat; 15h

ENZYME RECYCLE

FILTRATION60ºC, Patm

Condensation

DEODORIZATIONStripping

80ºC, 10 mbar

DRYING

STEAMPRODUCTION

CleanEnzyme

OLEIC ACIDtechnical grade

OLEIC ALCOHOLtechnical grade

OLEYL OLEATE

WATER

DEODORIZATIONStripping

80ºC, 10 MBAR

DRYING

FIXED-BEDREACTOR60ºC, Patm

FLASH SEPARATOR

80ºC, P?

TANK

UNIT 1

STEAMPRODUCTION

TANK

OLEYL OLEATE PRODUCTION BATCH_FIXED BEDEnzymatic esterification: immobilized lipases

OLEIC ALCOHOLtechnical grade

OLEIC ACIDtechnical grade

OLEYL OLEATE

WATER

1. DEODORIZATION2. DRYING

1. FLASH DISTILLATION

60ºCAtmosphericpressure

IMMOBIZEDLIPASESFIXED-BED

1. DEODORIZATION2. DRYING

1. FILTRATION2. ENZYME RECOVERY

60ºC100 mbar1.5 %wt catalyst

IMMOBILIZEDLIPASESSTIRRED TANK

1. BEACHING2. DEODORIZATION3. DRYING

1. NEUTRALIZATION2. WASHING3. CENTRIFUGATION

130ºCAtmosphericpressure0.6 %wt catalyst

ACID CATALYST

REFINED PROCESSES

DOWNSTREAM PROCESSES

REACTIONCONDITIONSCATALYST

PROCESS COMPARISON – OLEYL OLEATE

� Conventional and enzymatic process designs are roughly comparable.

Outcome of energy analysis (including energy to produce the catalysts used):

ENERGY ANALYSIS – OLEYL OLEATE

ECONOMICS – OLEYL OLEATE

0

100

200

300

400

500

600

700

800

10 100Capacity in in kt p.a.

Bre

akev

en e

nzym

e co

st*)

Enzymatic, stirred tank Enzymatic, fixed bedLipozyme RM IM Lipozyme TM IM

Lipozyme RM IM

Other commercially available enzyme:- novozymes 435: 1500 EUR/kg

*) Breakeven enzyme cost: Enzyme costs below the broken line are economically viable.

Lipozyme TM IM

O:\WPs\WP3(Envir)\BrewTool\BackgroundTables\Enzymes\Oleyl_oleate_COMPAR_CAT.xls

2)2). . MONOGLYCERIDESMONOGLYCERIDES

CATALYTIC TRANSESTERIFICACION REACTION SCHEME

CATALYST

MONOGLYCERIDE OLEATE PRODUCTIONMONOGLYCERIDE OLEATE PRODUCTION

TRYGLYCERIDE + 2 GLYCEROL 3 MONOGLYCERIDE

2 TRYGLYCERIDE + GLYCEROL 3 DIGLYCERIDES

CATALYST

COMPARISON BETWEEN DIFFERENT ENZYMATIC SYSTEMS FORESTERIFICATION REACTION: OLIVE OIL + GLYCEROL

517

87

2

23

27

48

2

33

31

34

518

86

517

87

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Oil NOV 3h NOV 7h LIP 3h LIP 7h

Final product composition for different enzymes

Triglycerides Diglycerides Monoglycerides Fatty acids

877157Lipozyme IM

868153Lipozyme IM

34313327Novozyme 435

48272323Novozyme 435

877150Olive oil

TGDGMGFFAt (h)CATALYST

Reference: Martinez, M. Coterón, A. and Aracil, J.Reactions of Olive Oil and Glycerol over Immobilized LipasesJAOCS, vol. 75, no.5 (1998)

PROPOSED SCHEMESFOR MONOGLYCERIDES

PRODUCTION

UCM in collaboration with Dr. Michel Poulina (Uniquema)

MONOGLYCERIDES PRODUCTION

Glycerine(Refined grade)

GLYCEROL

Technical grade (80%)

High oleic sunflowerOleic acid > 80%

RICINOLEIC ACIDSUNFLOWER OIL

RAW MATERIALS PRODUCT

PROPOSED SCHEMES FOR MONOGLYCERIDES PRODUCTION

Immobilized lipasesImmobilized lipases

BASKET REACTORSTIRRED TANK

TRANSESTERIFICATIONESTERIFICATION

BIOPROCESS

KOHNaOH

STIRRED TANKTRANSESTERIFICATIONCONVENTIONAL

CATALYSTREACTORREACTION

35-60 MG35-60 DG1-20 TG1-20 Glycerol1-10 Fatty acids

90-96 MG1-5 DG< 1 TG< 1 Glycerol< 1 Fatty acids

LOW GRADE PRODUCT

HIGH GRADE PRODUCT

GLYCEROL MONOOLEATE PRODUCTION BATCH_STIRRED TANKNon-enzymatic transesterification: Basic catalyst

HOSO

GLYCEROL

MIXER

REACTOR (2 steps)1. Reaction: 180ºC, Patm

NaOH 0.2wt%2.Flash distillation: 100mbar

DECANTATION50ºC, Patm

CONDENSATION

WASHING50ºC, Patm

SHORT PATH DISTILLATION200ºC, P <1 mbar

KOH

To glycerol feed

From condensation

NaOH

GLYCEROLPURIFICATION

Water

DYGLYCERIDEResidue

MIXER

Waterphase

HQ MONOOLEATE LQ MONOOLEATE

HOSF

GLYCEROL

MIXER50ºC, Patm

BASKETREACTOR60ºC, Patm

1.5%wt cat, 2 h

CRYSTALLIZATION 160ºC-27ºC0.06ºC/min

CRYSTALLIZATION 250ºC-32ºC0.04ºC/min

CRYSTALLIZATION 345ºC-35ºC

0.02 ºC/min

TANK

HQ MONOOLEATE

LQ MONOOLEATE

GLYCEROL MONOOLEATE PRODUCTION BATCH_BASKET REACTOREnzymatic transterification: Immobilized lipases

GLYCEROL MONORICINOLATE PRODUCTION BATCH_STIRRED TANKEnzymatic esterification: Immobilized lipases

RICINOLEICACID

GLYCEROL MIXERBATCH REACTOR

60ºC, 100mbar3wt% cat, 4h

FILTRATION40ºC

CENTRIFUGATION40ºC

ADSORPTION40ºC

ENZYMERECOVERY

GYCEROLRECOVERY

CONDENSATION

Enzymefeed

DRYING

DEODORIZATION40ºC

Resins

GLYCEROLMONORICINOLATE

STEAMPRODUCTION

1.DEODORIZATION2.DRYING

1.FILTRATION2.CENTRIFUGATION3. ADSOPTION

60ºC100 mbar3 %wt catalyst

ESTERIFICATIONENZYMATIC CATALYSIS(Glycerolmonoricinolate)

1.DEODORIZATION2.DRYING

CRYSTALLYZATION(3 STEPS)

60ºCAtmosphericpressure1.5 %wt catalyst

TRANSESTERIFICATIONENZYMATIC CATALYSIS(Glycerol monooleate)

1. SHORT PATH DISTILLATION

1. DECANTATION2. WASHING

180ºCAtmosphericpressure0.2 %wt catalyst

TRANSESTERIFICATIONBASIC CATALYSIS(Glycerol monooleate)

REFINED PROCESSES

DOWNSTREAM PROCESSES

REACTIONCONDITIONS

PROCESSES

PROCESS COMPARISON - MONOGLYCERIDES

Outcome of energy analysis: analogous to oleyl oleate

ENERGY ANALYSIS - MONOGLYCERIDES

ECONOMICS – GLYCEROL MONOOLEATE

0

20

40

60

80

100

120

10 100Capacity in in kt p.a.

Bre

akev

en e

nzym

e co

st*)

Batch esterification Batch transesterificationLipozyme TM IM

Lipozyme TM IM

Other commercially available enzymes:- novozymes 435: 1500 EUR/kg- Lipozymes RM IM: 600 EUR/kg- Lipozymes TM IM: 75 EUR/kg

*) Breakeven enzyme cost: Enzyme costs below the broken line are economically viable.

O:\WPs\WP3(Envir)\BrewTool\BackgroundTables\Enzymes\Monoglycerides_COMPAR_CAT.xls

CONCLUSIONS

• KEY PROCESS ADVANTAGES: HIGHER SELECTIVITY, LESS WASTE; LOWER TEMPERATURE AND LOWER PRESSURE

• SMALL IMPROVEMENT POTENTIALS FOR ENERGY AND GHG EMISSIONS

• BREAK-EVEN ENZYME COST CAN BE REDUCED BY UP TO FACTOR 3 BY ECONOMIES OF SCALE

• ALLOWABLE ENZYME COST UP TO FACTOR 5 BY PROCESS IMPROVEMENT

• ENZYME COSTS FOR SMALL SCALE NEED TO DROP TO AROUND 100 EUR/KG,FOR LARGE SCALE A FEW TENS OF EUROS/KG

• SYNERGY OF WHITE BIOTECHNOLOGY AND PROCESS IMPROVEMENTS ���� SUBSTANTIAL IMPROVEMENTS ESP. IN IN ECONOMICS