An adjoint solution for the leak detection problem

26
Uncertainty quantification in the time domain pipeline leak detection Alireza Keramat June 2017

Transcript of An adjoint solution for the leak detection problem

Uncertainty quantification

in the time domain pipeline

leak detection

Alireza Keramat

June 2017

Introduction

Time domain model for leak detection in a noisy environment

Cramer-Rao lower bound (CRLB)

Direct differentiation method (DDM) for numerical computation of CRLB

Case study, results and discussion

✓ Time closure

✓ Sample size

✓ Noise level

✓ Correlation between adjacent leaks, resolution in localization

• Water hammer model (continuity and momentum equations)

• Method of characteristics

Leak detection in the time domain

T

1

T T

,1 , 1, ( ,..., ), ( ,..., , ( ,..., ), )L ei M MMmi mx A h hh h n n m m

h = + n nh h h

Reservoir

Q1 Q2

Qi-

Valve

Qi+

Qi

, , , 1,...,Li ei j ejx A x A j N h h

, 1,...,ej jA N m

h = h n

ej ej jA A x

Provides a lower bound for the variance of the fitted parameters

• Unbiased estimator

• The model is complete and correct

A measure for maximum precision

Cramer Rao Lower Bound

Assumptions:

wave speed,

friction factor,

and closure

time and

pattern τ (t) are

deterministic,

measurements

are random

T 11 1( , ) exp .

22 det( )M

p

m e m mh A = h h Σ h h

Σ

2

2

1ln ( ; ) ln(2 ) ln

2 2

ML M

e m mA h = h h

1

2

,

ˆCRLB : cov( ) ( ) ,

ln ( ; )i j

ei ej

I LA A

e e

e m

A I A

A hE

Cramer Rao Lower Bound in the Inverse Transient Analysis (ITA)

2 T

, 2

1ln ( ; ) .i j

ei ej ei ej

I LA A A A

e m

h hA hE

1? ?cov( ) ( )T

e e e e e eA A A A A I AE

1ˆcov( ) ( ) ,e e

A I A

Partial derivatives are calculated using Characteristic equations.

Cramer Rao Lower Bound in the Inverse Transient Analysis (ITA)

Each element of the Fisher Information Matrix (FIM):

h contains a, f, measurement location, time and pattern of valve closure, etc.

Direct Differentiation Method (DDM) to compute sensitivities

Steady state

1 10, 0,ei ei

h Q

A A

, 1, 1, 1,1

2, , 2,3,...,

k k k kk k

ei ei ei ei ei

Q Q f xQ Qh hk N

A A A A gDA A

, ,2

2

k

k

k

k k ek eko

ei ei ei ei

hQ Q A Ag h h

A A A h A

Reservoir

Q1 Q2

Qi-

Valve

Qi+

Qi

Direct Differentiation Method (DDM) to compute sensitivities

Transient state

C : ,k ap k pQ C h C

C : ,k an k nQ C h C

1 2 2 ,k k ek k oQ Q A g h h

0.5 2

2

2 2 2

 

? ? ? ? ?, with

?

2 ? ? 2 ? 2 ? 2 ? 2 ? ? ? 4 .

ek ek n an n ap p an p ap

k

an ap

an ek ap o n an n ap p an p ap an ap oo

A gA C C C C C C C Ch

C C

g C h gA C h C C C C C C C C C C h

p apk k n k k k an k

ei n ei p ei ap ei an ei ei

C Ch h C h h h C h

A C A C A C A C A A

9

2SNR

2010, 10 or SNR 10 log

L

L

hh

n ξ

Numerical case study

Gaussian white noise

Total measurement = 2T T closure=0.01T SNR=10 dx=50m

Increase time closure to 0.1T wave front = a . Tc = 400 m

Inaccurate size detection and localization

Measurements up to 4 periods

Inaccurate size detection and but good localization in 50 m

Increasing the number of measurements

Increasing the closure time

Increasing SNR

Tc=0.06s

λ=60m

ΔxMOC>a.Tc

NE<1000/60=16

CRLB does

not change if

ΔxMOC>a.Tc

Study the number of parameters (distance between leaks)

CRLB increases with increase in parameters (MOC nodes)

if ΔxMOC<a.Tc

a.Tc = 100 m

CRLB increases with increase in parameters (MOC nodes) but Fisher Information does not.

Correlation between adjacent leaks

,

cov( , )

ei ej

ei ej

ei ej

A A

A A

A Ar

Average CRLB trend with distance between two consecutive leaks

T=4 s

λmin=160 m

λmin=120 m

λmin=80 m

a.Tc = λmin = 40 m

CRLB trend with sample size and SNR

Tc = 0.01 T = 0.4 s

Thanks for your attention

Forward problem

CRLB trend with distance between two consecutive leaks

CRLB increases as distance between two consecutive leaks decreases

• Determine head and flow rate (state variables)

Inverse problem

• Given governing equations and main boundary conditions

• Transient flow generation and collection of the time series data

• Optimization

• Determine some system parameters

Fisher information matrix converge