A Hydrologic Model of the Bear River Basin - CORE

98
Utah State University Utah State University DigitalCommons@USU DigitalCommons@USU Reports Utah Water Research Laboratory January 1970 A Hydrologic Model of the Bear River Basin A Hydrologic Model of the Bear River Basin Robert W. Hill Eugene K. Israelsen A. Leon Huber J. Paul Riley Follow this and additional works at: https://digitalcommons.usu.edu/water_rep Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons Recommended Citation Recommended Citation Hill, Robert W.; Israelsen, Eugene K.; Huber, A. Leon; and Riley, J. Paul, "A Hydrologic Model of the Bear River Basin" (1970). Reports. Paper 416. https://digitalcommons.usu.edu/water_rep/416 This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected].

Transcript of A Hydrologic Model of the Bear River Basin - CORE

Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

Reports Utah Water Research Laboratory

January 1970

A Hydrologic Model of the Bear River Basin A Hydrologic Model of the Bear River Basin

Robert W. Hill

Eugene K. Israelsen

A. Leon Huber

J. Paul Riley

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management

Commons

Recommended Citation Recommended Citation Hill, Robert W.; Israelsen, Eugene K.; Huber, A. Leon; and Riley, J. Paul, "A Hydrologic Model of the Bear River Basin" (1970). Reports. Paper 416. https://digitalcommons.usu.edu/water_rep/416

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected].

Utah 11111 Unlnnilf

"1"'- VI,A 111l!

PRWG72-'

A Hydrologic Model of the Bear River Basin

Utah Water Research Laboratory/Col/Dye of Engineering

By Robert W Hill, Eugene K. Israelsen, A. Leon Huber, J. Paul Riley,

August 1970

A HYDROLOGIC MODEL OF THE BEAR RIVER BASIN

by

Robert W. Hill Eugene K. Israelsen

A. Leon Huber J. Paul Riley

The work reported by this project cOlTIpletion report was supported in part with funds provided by the DepartlTIent of the Interior,

Office of Water Resources Research under P. L. 88-379, Project NUlTIber-B-028- Utah, AgreelTIent NUlTIber-

14-01-0001-1955, Investigation Per iod-July 1, 1968 to June 30, 1970

Utah Water Research Laboratory College of Engineering Utah State University

Logan, Utah

August 1970 PRWG72-1

ABSTRACT

A HYDROLOGIC MODEL OF THE BEAR RIVER BASIN

As demands upon available water supplies increase, there is an accompanying increase in the need to assess the downstream con­sequences resulting from changes at specific locations within a hydro­logic system. The problem is approached in this study by hybrid computer simulation of the hydrologic system. Modeling concepts are based upon the development of basic relationships which describe the various hydrologic processes. Within a system these relationships are linked by the continuity-of-mass principle which requires a hydro­logic balance at all points. Spatial resolution is achieved by consider­ing the modeled area as a series of subbasins. The time increment adopted for the model is one month, so that time varying quantities are expressed in terms of mean monthly values. The model is general in nature and is applied to a particular hydrologic system through a pro­grammed verification procedure whereby model coefficients are evalu­ated for the particular system.

In this study the model was synthesized on a hybrid computer and applied to the Bear River basin of western Wyoming, southern Idaho, and northern Utah. Comparisons between observed and computed outflow hydrographs for each subbasin are shown. The utility of the model for predicting the effects of various possible water resource management alternatives is demonstrated for the number 1, or Evanston subbasin. The hybrid computer is very efficient for model development, and the verified model can be readily programmed on the all-digital computer.

Hill, Robert W. ; Israelsen, Eugene K. ; Huber, A. Leon; and Riley, J. Paul. A HYDROLOGIC MODEL OF THE BEAR RIVER BASIN Research Project Technical Completion Report to the Office of Water Resources Research, Department of the Interior, August 1970, Washington, D. C., 85 p.

KEYWORDS- -':<hydrologic models /':<hydrologic simulation/>:<computer s imulation/>:< simulation/ groundwater />:'watershed studies/ snowmelt/ evapotranspiration/ deep percolation/water yields/>l'hydrologic relation­ship/':<hydrologic research/>:'hydrology/hydrologic data/water yield improvement/ soil moisture/':'water resource planning and management/ >:'hybrid computer

iii

ACKNOWLEDGMENTS

This publication represents the final report of a project which was supported in part with funds provided by the Office of Water Resources Research of the United States Department of the Interior as authorized under the Water Resources Research Act of 1964, Public Law 88-379. The work was accomplished by personnel of the Utah Water Research Laboratory in accordance with a research proposal which was. submitted to the Office of Water Resources Research through the Utah Center for Water Resources Research at Utah State University. This University is the institution designated to administer the programs of the Office of Water Resources Research in Utah.

The authors express gratitude to all others who contributed to the success of this study. In particular, special thanks are extended to Mr. Daniel F. Lawrence, Director of the Division of Water Resources, Utah Department of Natural Resources. The Division supplied substantial financial support for the study, and in addition, Mr. Lawrence and his staff provided valuable suggestions and direction throughout the entire

project. In this respect, special acknowledgment is due to Dr. Norman E. Stauffer~ Jr. of the Division of Water Resources who made substantial contributions during the model verification phase of the study. Appreciation is also expressed to Dr. Robert R. Lee, Director of the Idaho Water Resources Board, and to Mr. Floyd A. Bishop, Wyoming State Engineer. Dr. Lee and Mr. Bishop and several members of their staffs were most helpful in providing needed data and constructive comments at various times during the course of

the study.

Sincere thanks are also extended to Dr. Jay M. Bagley, Director of the Utah Water Research Laboratory, and to Mr. Frank W. Haws, a Research Engineer at the laboratory. On the basis of their broad experience with the hydrologic system of the Bear River basin, these colleagues were able to provide valuable advice and direction through­out the entire proj ect.

iv

Robert W. Hill Eugene K. Israelsen A. Leon Huber J. Paul Riley

• T ABLE OF CONTENTS

Chapter I

INTRODUCTION

Chapter II

General •

Scope of Study

Objectives

Procedures Discussion

THE BEAR RIVER BASIN

Chapter III

Description of the Study Area.

Climate. Soil Mater ials Surface Flows Land Use Subbasins •

THE HYDROLOGIC MODEL.

Formulation of a Hydrologic Model

Mode 1 Req uirements The Conceptual Model The Hydrologic Balance. Time and Space Increments

System processes

Surface Inflows Interflow Groundwater Inflow Total Inflow Precipitation Temperature Snowmelt Canal Diversions Available Soil Moisture

2 2

3

3

5 5 5 5 6

7

7

7 7 8 8

10

10 12 12 13 13 14 14 15 16

v

Chapter IV

Available soil mois­ture quantities

Infiltration. Evapotranspiration

Effects of soil mois­ture on evapotrans­piration

Effects of s lope and elevation on evapo­transpiration

Deep Percolation. River Outflow •

THE COMPUTER MODEL •

Chapter V

APPLICATION OF THE HYDROLOGIC

. 17

17 17

19

19

20 20

• 23

MODEL TO THE BEAR RIVER BASIN 27

Chapter VI

Verification . Sensitivity Analysis Management Opportunities

Case 1 Cases 2 and 3

SUMMARY AND CONCLUSIONS

BIBLIOGRAPHY

APPENDIX A: Subbasin Input Data

APPENDIX B: Computer

APPENDIX C: Modified Input Data, Model Coefficients, and Output Data .

27 28 28

30 37

39

41

43

47

67

APPENDIX D: Management Opportunities. 79

Figure

2.1

3.1

3. 2

4.1

4.2

4.3

5.1

5.2

5.3

5.4

5.5

5.6

5.7

The Bear River basin and subbasins.

DevelopInent process of a hydro­Inodel

Flow diagraIn for a typical hy­drologic Inodel using large time increments

Two views of the hybrid COIn­puter facility at the Utah Water Research Laboratory

General view of the prograIn control structure •

A flow diagraIn of the subroutine interaction for program OPVER

COInputed and observed monthly outflow froIn Evanston subbasin 1954, 1955, and 1956

COInputer and observed Inonthly outflow froIn Randolph subbasin 1954, 1955, and 1956

COInputer and observed Inonthly outflow from Cokeville subbasin 1954, 1955, and 1956

COInputed and observed Inonthly outflow froIn Thomas Fork sub­basin 1954, 1955, and 1956

COInputed and observed Inonthly outflow from Bear Lake subbas­in 1954, 1955, and 1956

Computed and observed Inonthl y outflow froIn Soda subbasin 1954, 1955, and 1956

COInputed and observed monthly outflow from Oneida subbasin 1954, 1955, and 1956

LIST OF FIGUl~ES

Page Figure

5. B 4

9 5.9

9 5. 10

5.11 24

5.12 25

B.l 26

B.2

31 B.3

31 B.4

B.5 32

B.6

32

B.7

33 B.B

33 B.9

B.I0 34

vi

COInputed and observed monthly outflow froIn Cache Valley sub-

Page

basin 1954, 1955, and 1956 34

COInputed and observed monthly outflow froIn TreInonton subbasin 1954, 1955, and 1956 35

Management of Evanston subbasin, Case 1 • 35

ManageInent of Evanston subbasin, Case 2 36

Management of Evanston subbasin, Case 3 36

Flow chart of hydrologic simu-lation program OPVER • 49

Schematic diagram of operat-ing procedures for OPVER 50

Deck setup for typical OPVER run • 51

List of typical input data for OPVER. 56

Analog computer prograIn for uSe with OPVER 57

List of digital computer pro­gram OPVER with all sub-routines 58

Flow chart of subroutine HYDSM. 63

Flow chart of subroutine BASIC 64

Flow chart of subroutine SUBDAT 65

Flow chart of subroutine RESRV . 66

...

LIST OF TABLES

• Table Page Table Page

2. 1 Summary of water related land B.2 Preparation instructions for use in the Bear River basin (all BASIC data - group 2 cards 52 units in acres). 6 .

B.3 Preparation of subbasin data 5. 1 Sensitivity of Evanston subbas in cards - group 3 cards. 53

variables 29

5.2 Computer printout showing sum- B.4 Preparation instructions for mary of calibration process 30 pattern search specification 54

B.l Preparation instructions for OPVER option control.cards - B.5 Notation for OPVER and its group 1 cards. 52 subroutines. 54

vii

CHAPTER I

INTRODUCTION

General

Of the total precipitation falling on watersheds

throughout the world, an average of approximately

85 percent returns directly to the atmosphere through

evaporation and use by mountain vegetation. The

remaining 15 percent moves from the watersheds as

runoff and becomes available in the valleys to be

used by man for irrigation, industry, recreation,

and many other requirements. The very rapid

growth of these requirements in recent years has

led to an increasing need for additional usable

water resources.

Several grandiose and costly schemes have

been suggested to supplement existing water re­

sources in the western United States. The enormity

of the engineering, social, and legal aspects of

implementing one of these schemes certainly shifts

the realization of the proposed resource supplement

well into the future. However, the need for addi­

tional water resources protrudes from immediate

future requirements and refuses to d is appear even

though ignored. Alternative methods must then be

identified in order to satisfy or appease the imme­

diate future requirements.

Alternate methods of supplementing water

resources must be almost immediately applicable,

relatively inexpensive, and effective. Some of

the methods proposed to fill the immed iate need

include groundwater mining, conjunctive use of

ground and surface water, and more efficient use

of existing supplies. The research work described

in this report has focused on the efficient use of

existing supplies.

Efficient use of water in a dynamic system

implies that the system be described with sufficient

accuracy to quantitatively predict depletions re­

sulting from water use in the system. The next

step is to realistically alter the system parameters

and points of use to determine system configura­

tions which pr oduce increased benefits and / or

decreased water use. The ultimate result of this

method is to determine the system configuration

which maximizes the benefits per unit of water

resource depletion. Water use includes the con­

sumptive use of water and the addition of undesir­

able elements to the water. This report, however,

deals with the hydrology and consumptive use of

water in the Bear River basin.

System simulation is a tool currently employed

by many researchers to increase the definition of

dynamic systems. Since hydrologic systems, like

the Bear River basin, are certainly dynamic, the

tool of simulation modeling was employed to gain

increased system definition. The various processes

within the model are linked by the continuity of

mass principle, which requires a hydrologic

balance at all points. The computer is essential

for the solution of the time-dependent differential

equations of the model and for the selection of

coefficients required during calibration and testing.

Scope of Study

The scope of this study is limited to de­

scribing the hydrology of the Bear River basin and

demonstrating the pos s ibility of increased effic iency

of water use through selection of proper manage­

ment alternatives.

Objectives. The objectives of this research

project were as follows:

1. To simulate the complex hydrologic flow

system of the Bear River basin.

2. To demonstrate the applicability of the

simulation model to efficient water resources

planning in the Bear River basin by evaluating

various alternative management possibilities sub­

ject to selected constraints.

Procedure

To meet the objectives of this study the fol­

lowing procedure was followed:

I. Basic hydrologic data for the Bear River

basin were assembled and analyzed.

2. The Bear River basin was divided into ten

subbasins based upon the available hydrologic data

and the physical characteristics of the basin.

3. A simulation model was verified for each

subbasin. These subbasin models were then linked

together to form the model of the entire basin.

4. Three management alternative s were

applied to a single subbasin (Evanston) to demon­

strate the use of the model in selecting management

alternatives.

Discussion

Several problems were encountered during

the modeling of the ten subbasins. These problems

stemmed from the lack of adequate data required

to verify proposed model configurations. Deter­

mination of ungaged surface and subsurface flows

always presents a problem, but this problem can

usually be solved if other data requirements are

satisfied. Correlation techniques provide satis­

factory estimates of temporal and spatial distri­

bution of ungaged flows. Records of water diversion

for irrigation use were lacking in all of the sub­

basins. Irrigation diversions are important because

they alter the hydrologic system, and thus affect

stream depletions, groundwater inputs, evapo­

transpiration losses, and irrigation delivery

efficiencies. Records for other required inputs

were adequate for formulating satisfactory models.

The Bear Lake and Malad subbasins presented

the largest problem in the verification process.

The Bear Lake subbasin seems to have a large

an10unt of ungaged inflow and evaporation losses

from the lake surface are high. Flow records,

diversion records, and data for correlation are

lacking for the Malad subbasin. Because of this

2

problem the Malad model could not be satisfactor ily

verified. Fortunately, however, the subbasin does

not include any of the main stem of the Bear River,

and inflows of the Malad River to the Bear River

are gaged. All other subbasins could be satis­

factorily verified. Until sufficient data are avail­

able, the Malad subbasin will be deleted from

management studies.

Management applications were demonstrated

in the four upper subbasins by changing land use

patterns. Perhaps the most significant change in

land use would be the complete removal of phreato­

phytes and this alternative was demonstrated in

one of the management runs. Other possible

management schemes, not yet tested by the model,

might involve the constr uction of additional

re servoir s, enlargement of existing reservoirs,

alteration of reservoir operating rules, and various

combinations of reservoir operation and land use

patterns. Export of water from the basin could be

studied though, at present, there are no facilities

to perform sizable exports. The management

schemes shown are to demonstrate the capability

of the model to predict system responses to pro­

posed or desired changes within the system.

CHAPTER II

THE BEAR RIVER BASIN

The boundaries and subbasins of the Bear Riv­

er basin are shown in Figure 2.1, which also indi­

cates the location of the existing streamflow mea­

suring stations.

The Bear River (USBR, 1970) originates in

Utah but flows through parts of Wyoming, Idaho, and

Utah before entering the Great Salt Lake. This in­

terstate river is the largest stream in the Western

Hemisphere which terminates before reaching the

ocean. The river winds and twists about 500 miles in

a U- shaped course to cover the 90 airline miles from

its origin to its mouth. Included in the Bear River

basin are 7,465 square miles of mountain and val-

ley lands.

From its Utah origin the river flows for 20

miles down the n.orth slopes of the Uinta Mountains,

Utah's east-west mountain range. Near the Wyoming

border the river enters the Bear River Valley, the

first of five major valleys. The valleys are separa­

ted by narrow canyons or gorges which form ideal

locations for hydroelectric power generation.

The Bear River valley is the highest and long­

est valley in the Bear River basin. The va11ey is

narrow, five miles or less in width, and ex-

tends for nearly 100 miles along the western border

of Wyoming. However, a significant portion of the

valley lies in Utah and Idaho.

Near the Idaho border the river flows westward

to enter the Bear Lake Valley which is about 50 miles

long and 12 miles wide. The south end of Bear Lake

valley is occupied mostly by Bear Lake and Mud Lake.

Bear Lake is about 20 miles long and averages seven

miles in width, while Mud Lake, at the north end of

Bear Lake, is about three miles in diameter. Bear

River did not naturally flow into Bear Lake, but in­

let and outlet canals have been constructed north of

3

the lakes to facilitate hydroelectric power generation.

A combined active storage of these two lakes of about

1,450,000 acre-feet provides a complete control of

the flow in Bear River at that location.

The river flows northwest from the Bear Lake

Valley through several miles of hilly and broken graz­

ing lands and through a narrow channel near Soda

Springs, Idaho, into Gem Valley. In the narrow lava

channel are located the Soda Reservoir and hydro­

electric power plant. Gem Valley is a broad agri­

cultural area which was formed in the northern and

central portions by a lava flow plain. Originally, the

Bear River flowed north through Gem Valley to the

Snake River. However, lava flows eventually turned

the course of Bear River south toward the Great Salt

Lake. Gem Valley south of the lava flow is about 500

feel lower than the central portion. This drop is used

for power generation. The southern portion of Gem

Valley is also called Gentile and :/Illound Valley. At

the south end of Gem Valley the river enters the

Oneida Narrows, a canyon about 11 miles long, which

forms another power generation location.

From Oneida Narrows the Bear River enters

Cache Valley, one of the more highly developed val­

leys in the Bear River basin. The river enters Cache

Valley from the northeast, meanders southward, and

leaves the valley through a gorge into the Lower Bear

River Valley. Cache Valley is about 45 miles long

and 10 miles wide. Several tributaries enter Cache

Valley and combine with Bear River prior to leaving

the valley. The gorge followed by the river in leav­

ing Cache Valley forms a good location for power

generation.

The Bear River continues through the Lower

Bear River Valley and into the Great Salt Lake. The

Lower Bear River Valley is part of the generally flat

....... + + + +

42' YJ" ) .. i #,315

(

+

3 +

41"30' ----+ +

41·r!J'

I r 1 r +

I

I I I I I

~·so· II:!"IO' nN!l'

-'I.oo't + ~ STREAMFLOW MEASURING STATION

Name I I !

1 Evanston 2 Randolph ~c

3 Cokeville -1 4 Thomas Fork 5 Bear Lake

I 6 Soda I!~!!I'

7 Oneida 8 Cache Valley

9 Malad 10 Tremonton

Figure 2.1. The Bear River basin and subbasins.

4

Salt Lake Valley that drains toward the Bear River.

The Malad River enters the Bear River in the Lower

Bear River Valley from an origin some 50 miles to

the north.

Valley elevations range from 7,800 feet near

Evanston, Wyoming, in the Bear River Valley to

4,200 feet at the Bear River Bay in the Lower Bear

River Valley.

Climate

Wide seasonal and diurnal temperature vari-

ations characterize the mountain continental

climate of the Bear River basin. The high valleys

have long hard winters and short cool summers.

The climate of the lower valleys is generally more

moderate. The average frost-free season varies

from about 30-days in the valleys to over 150

days in the Lower Bear River Valley. Precipitation

is heaviest in the mountain sections with the majority

of precipitation coming as snow. About one-third of

the annual precipitation occurs during the growing

season which results in the irrigation water demand

on the Bear River and its tributaries.

Soil Materials

Soils in the Bear River basin have been deposited

by winds, lakes, and streams. The parent materials

ar e quartzite s and sand stones in the uppe r valleys;

limestone, dolomites. and sand stone in the central

valleys; and tuffaceous sediments, limestone, shale,

and basalts in the lower valley.

Surface Flows

The maximum annual flows normally occur

during the snowmelt period in Mayor June, but can

also appear in April or July. The maximum dis­

charge at the Utah- Wyoming border of 2,860 cfs

occurred on June 12, 1965. The maximum discharge

recorded at the Harer station near the lower end of

the Upper Bear River Valley was 4,440 ds on

May 7, 1952. The maximum flow in the Lower Bear

5

River Valley near Corinne was 7,200 ds on May 3,

1952. The InaxiInum flows result from melting snow

and spring rainstorIns. After the snow has melted,

the river flow drops to a low level and reInains fairly

constant through the reInainder of the year. MiniInuIn

flows have occurred in April, SepteInber, October,

and November. Local, intensity, summer

thundershowers cause high flows in tributaries but

seldoIn cause record setting flows in the main stern.

Diversion of water froIn the main stern of the

Bear River and its tributaries has increased since

about 1860. The consumptive use associated with

the increased diversions has affected river flows

throughout the entire basin. The average flow near

the upper part of the river near the Utah- WyoIning

state line is about 135,000 acre-feet per year. The

average annual flow at the Harer station ea'st of

Dingle, Idaho, is about 367, 000 acre-feet. Near

Corinne, Utah, the average annual flow of the Bear

River is nearly 1,174,000 acre-feet. The length of

records used to obtain these estiInates is not equal,

and the flows are partly controlled; but the compar­

ison does portray the relative Inagnitudes of flow at

successive downstreaIn points along the course of the

Bear River.

The quantity of water used consuInptively by

ir riga ted crops is usually Inuch les s than the total

quantity applied. Water used consuInptively by

evaporation and plant transpiration is lost to the

basin. Part of the water applied, but not used

consumptively, either percolates to the water table

or returns directly to the stream as overland flow.

These waters become available for reuse.

Land Use

The land use in the Bear River system ranges

from pasture and Ineadow hay in the upper reaches

through pasture, alfalfa. and grains in the middle

reaches to potatoes, sugar beets, and small truck

garden HeInS in the lower reaches. Pasture, alfalfa,

and grains are also grown in certain areas of the

lower subbasins. In addition, lakes, rivers, and

marshes occupy significant areas within the Bear

River basin. The water-loving vegetation which bor-

. ders these water bodies is classified into the general

category of phreatophytes. Because phreatophytes

deplete the water supplies they were considered in

the model. Municipalities and dwellings cover many ,

acres in the basin. Land use statistics are summa-

rized in Table 2. L

Subbasins

In developing a hydrologic model, spatial res­

olution is achieved by dividing the total area into

specific spatial increments or subbasins. Increasing

the number of subbasins within a particular area in­

creases the spatial resolution of the model, and there-

fore, its general utility. However, this trend also

increases model complexity, so that data and computer

requirements are also usually substantially increased .

The selection of the appropriate spatial increment is,

therefore, an important phase of hydrologic model-

ing, and is based upon many considerations, the

most important of which is data availability, land

and water use patterns, and the resolution required

in answering questions relating to basin planning and

management problems. In this study the Bear River

basin was divided into 10 subbasins, and each of

these is outlined in Figure 2.1. Only the valley

floor was included in the hydrologic model of each

subbasin with surface and subsurface flows to this

area being included as inputs to the model.

Table 2. I. Summary of' water related land USe in the Bear River basin (all units in acres}.

Alfalfa I 2599 1916 577 425 8959 2677 11873 52429 8006 17803 Pasture Z 8823 5518 9076 7435 12347 3703 5381 27563 7254 13750 Other hay 19835 40025 18982 13064 20121 6098 2367 6058 753 1158 Small grains 4 314 1213 510 319 10098 3022 7927 50020 5064 16645 Corn 5 42 36 ~469 182 6513 Sugar beets 6 1471 4827 137 8612 Potatoes 7 t363 289 91 7Z Orchard 8 392 2093 Peas 9 0 0 Tomatoes 10 3 507 Small truck II 46 466 ~')83 217 Idle IZ 0 0 Beans 13 l75 217

Total 31571 48672 29145 21243 51613 15500 30884 1,2008 21487 67387

Open water B 632 884 0 2g1 21283 848 597 7St5 lIn 934 Marshes, tules, cattails CI 60Q 214; 68 720 7307 0 0 158G3 1758 3092 Grasses, willows. cottonwoods C2 3523 76 ; 1344 1"9 3100 288(, IZ33 J ~7 71 2930 4525 Grasses & med. density trees C3 26 I 608 15 0 2636 0 0 577G 0 2698 Low water table~ light densit~· C4 2434 2073 803 924 8030 1890 1005 7775 it) 3 9506

Total 7459 6475 2230 2134 423S() :; b24 283? 52700 (,023 20755

6

CHAPTER III

THE HYDROLOGIC MODEL

Simulation is a technique for investigating the

behavior or response of a dynamic system subject to

particular constraints and input functions. This

technique has been applied by means of both physical

and electronic models. Physical models and analog

models consisting of electrical resistor-capacitor

networks have been used to investigate hydraulic and

hydrologic phenomena for many years. However,

This implies that it can be easily applied to different

geographic areas with existing hydrologic data.

3. It is capable of answering questions con­

cerning perturbations in the system or of accurately

predicting outputs resulting from varying input and

process parameters.

The general research philosophy involved in

the development of a simulation model of a dynamic

simulation by means of high-speed electronic com- system, such as a hydrologic unit, is shown by the

puters is a relatively new technique. flow diagram of Figure 3.1. In addition to predicting

The advantages of simulation include the fol- system responses to particular input functions and

lowing: parameter changes, the process of model develop-

1. The system can be non-destructively ment provides for improvement of system relation-

tested, which is of practical interest in the hydrologic ships.

design of structures such as large dams and flood

control works in a river basin.

2. Proposed modifications of existing systems

can be tested for improved performance, This is

especially desirable if the original system is in

operation, since operation time will not be lost

during testing.

3. Hypothetical system de signs may be veri­

fied at minimum expense, thus paying large divi­

dends if the proposed system turns out to be inef­

fic ient.

4. Simulation provides insight into the system

being studied and is thus a powerful teaching device.

Formulation of a Hydrologic Model

Model Requirements

The fundamental requirements of a computer

model of a hydrologic system are:

1. It simulates on a continuous basis all

important processes and relationships within the

system it represents.

2. It is non-unique with respect to space.

7

The Conceptual Model

The hydrologic model utilized in this study

is a modified version of that developed in earlier

studies involving the computer simulation of a com­

plete watershed unit (Riley et al., 1966 and 1967).

Simplification was achieved by including only the

valley bottom lands of each subbasin.

The basis of the hydrologic model is a funda­

mental and logical mathematical representation of the

various hydrologic processes and routing functions.

These physical processes are not specific to any

particular geography, but rather are applicable to any

hydrologic unit, including all of the subbasins located

within the Bear River basin. Experimental and

analytical results were used whenever possible to

assist in testing and establishing some of the mathe­

matical relationships included within the model.

Under a model ver ification procedure, equation

constants are established which calibrate or fit the

model for a particular drainage area. Average

values of hydrologic quantities needed for model

verification were estimated in one of three ways:

(1) From available data, (2) by statistical correlation

technique s, and (3) through verification of the model.

A flow diagram of the hydrologic system is

shown by Figure 3.2. As this flow chart indicates,

the total input to a subbasin is the combination of

surface and subsurface inflows of water obtained by

summing river and tributary inflows, precipitation,

and imports from other bas ins. Depletions from the

subbasins occur through evapotranspiration, muni­

cipal and industrial consumption, and exports. The

residual quantity is a combination of surface and

,.ubsurface outflow of water from the area. Sub­

surface flows may undergo various time delays as

they move through the system. Each parameter

and process depicted by Figure 3.2 is discussed in

some detail in the following sections.

The Hydrologic Balance

A dynamic system consists of three basic

components, namely the medium or media acted

upon, a set of constraints, and an energy supply or

driving force. In a hydrologic system, water in any

one of its three physical states is the medium of

interest. The constraints are applied by the physical

nature of the hydrologic bas in, and the dr i ving

forces are supplied by direct solar energy, gravity,

and capillary potential fields. The various functions

and operations of the different parts of the system

are interrelated by the concepts of continuity of

mass and m01nentum. Unless relatively high velo­

cities are encountered, such as in channel flow, the

effects of momentum are negligible, and the conti­

nuity of mass becomes the only link between the

various processes within the system.

8

Continuity of mass is expressed by the general

equation:

Input Output ± Change in storage

A hydrologic balance is the application of this

equation to achieve an accounting of physical, hydro­

logic measurements within a particular unit.

Through this means and the appl ication of appropriate

translation or routing functions, it is possible to

predict the movement of water within a system in

terms of its occurrence in space and time.

The concept of the hydrologic balance is pic­

tured by the block diagram in Figure 3.2. The inputs

to the system are precipitation and surface and

groundwater inflow, while the output quantity is

divided among surface outflow, groundwater outflow,

and evapotranspiration. As water pas ses through

this system, storage changes occur on the land sur­

face, in the soil moisture zone, in the groundwater

zone, and in the stream channels. These changes

occur rapidly in surface locations and more slowly

in the subsurface zones.'

In the course of model development, each of

the system processes must be described mathemat­

ically as completely as possible. The flow chart of

Figure 3.2 is a schematic representation of the sys­

tem processes and storage locations and their rela­

tionship to each other. In the model each box and con­

necting line is represented by a mathematical expres­

sion.

Time and Space Increments

Practical data limitations and problem con­

straints require that increments of time and space

be considered during model design. Data, such as

temperature and precipitation readings, are usually

available as point measurements in terms of time

Available Information

1

.. Hydrologic Data Computer Compo-nents and

and Relationships Modeling Techniques

f

Ir+- Specific Computer Design

Relationships Possibilities

Test and Modify

- Constraints: (1) Reg'd Accuracy (2) Time

-.0 Improved Hydrologic .. j Compute

Relationships Design

~ Synthe size Into

L.-

a System Model

Test and Modify

Management Decisions

Figure 3.1. Development process of a hydrologic model.,

~

I

1-1

Groundwater Storage, G

Inflow from other zones

Base Flow Direct Flow

Yes

Figure 3.2 Flow diagram for a typical hydrologic model using large time incr ements.

and space; and integration in both dimensions is

usually accomplished by the method of finite incre­

ments.

The complexity of a model designed to repre­

sent a hydrologic system largely depends upon the

magnitude of the time and spatial increments utilized

in the model. In particular, when large increments

are applied, the scale magnitude is such that the

effect of phenomena which change over relatively

small increments of space and time is insignificant.

For instance, on a monthly time increment, inter­

ception rates and changing snowpack temperatures

are neglected. In addition, the time increment cho­

sen might coincide with the period of cyclic changes

in certain hydrologic phenomena. In this event net

changes in these phenomena during the time interval

are usually negligible. For example, on an annual

basis, storage changes within a hydrologic system

are often insignificant, whereas on a monthly basis,

the magnitude of these changes are frequently

appreciable and need to b~ considered. As time

and spatial increments decrease, improved defi­

nition of the hydrologic processes is required. No

longer can short-term transient effects or appreci­

able variations in space be neglected, and the

mathematical model, therefore, becomes increas­

ingly more complex with an accompanying increase

in the requirements of computer capacity and

capabil ity.

For the study of the Upper Bear River basin

discussed by this report" a monthly time increment

and large space units (subbasins) were adopted.

Selection of the subbasins was based on hydrologic

boundarie s and points of data collection. It was

felt that the selection of the subbasins and the

monthly time increment would satisfy the require­

ments of a general planning-management model for

the basin.

10

System Processes

Surface Inflows

The basic inflow or input of water into any

hydrologic system originates as a form of precipi­

tation. However, for simulation models of valley

floor areas, direct precipitation input to the system

is greatly overshadowed by river and tributary

inflows.

Streamflow is defined as that portion of the

precipitation which appears in streams and rivers

as the net or residual flow collected from all or a

portion of a watershed. When unaffected by the

activities of man, such runoff is referred to as

"natural or virgin" flow. Except in headwater

reaches, no streams in the Bear River basin now

carry natural flows. Artificial diversions and

regulatory action in lakes and reservoirs affect

the regimes of every stream within the basin.

The surface water inflow component consists

of flow traveling over the ground surface and

through channels to enter a stream. At the stream,

surface runoff usually combines with other flow

components to form the total surface runoff hydro­

graph. Within the runoff cycle (Chow, 1964), sur­

face runoff begins to occur when the capacities of

vegetative interception, infiltration, and surface

retention are reached. Continued precipitation

beyond this point serves as a source for surface

runoff. Small basins have different runoff character­

istics than do large watersheds, and the character­

istic s peculiar to each bas in must be evaluated on

an individual basis.

For each subbasin in the Bear River basin, a

limiting rate of surface runoff exists for any partic­

ular time period. Surface runoff is assumed to

occur when the threshold or limiting rate of surface

water supply, consisting of snowmelt, rainfall,

canal diversions, or any combination of these, is

exceeded.

This concept of surface runoff is particularly

important when precipitation is considered as the

initial water input to the watershed. Riley and

Chadwick (1966) indicate that for particular condi­

tions there exists a limiting or threshold rate of

surface supply,

begins to occur.

at which surface runoff, S , r

This relationship can be written:

S wr

in which

S wr

R tr

(S ;:: 0) • wr

rate of surface runoff during a

particular time

(3. I)

W gr

rate at which water is available at

the soil surface

limiting or threshold rate of surface

water supply at which surface run<?ff

begins to occur

When consIdered for a model time increment

of one month, an average value of the threshold

surface runoff rate, R ,is probabilistic in nature, tr

depending essentially upon soil surface conditions,

soil moisture, storm characteristics, and rate of

available water .• W • gr

In this study only the valley bottom lands are

considered in the model, and it is assumed that no

surface runoff from precipitation occurs from these

relatively flat areas. Under this assumption, the

rate at which precipitation is available at the soil

surface at no time exceeds the threshold rate for

surface runoff to occur. Thus,

S = 0, (W ~ R ) wr gr tr

(3.2)

The model does provide for surface runoff from

agricultural lands due to irrigation application

rates which exceed soil infiltration rates. This

runoff quantity constitutes a portion of the irrigation

return flow.

11

Surface runoff from the surrounding water­

shed areas is con<!entrated in stream channels, and

therefore enters the model (valley bottom) as tribu­

tary flow. That part of the inflow rate which is

measured or gaged is designated as Q. (m). IS

Unmeasured surface inflows to the model are

estimated by a correlation technique which considers

three hydrologic parameters, namely a gaged tribu­

tary inflow rate, precipitation rate, and snowmelt

rate. Thus, in functional form:

Q. (u) =J[q. (m) , P ,W ] IS 18 r sr

(3.3)

in which

Q. (u) IS

q. (m) IS

P r

W sr

estimated rate of unmeasured

surface inflow

measured rate of surface inflow

from a particular tributary area

gaged precipitation rate in the form

of rain on the valley floor

estimated snowmelt rate in terms

of water equivalent

If empirical correlation factors are included in the

preceding equation, the expression becomes:

Q. (u) k q. (m) + k P + kbW IS u IS a r sr

(3.4)

in which k , k , and k are correlation factors u a b

relating ungaged surface inflow rate to,respectively,

a gaged surface inflow rate, precipitation rate, and

snowmelt rate. Each of these factors is established

through the model verification process for a particular

subbasin.

With reference to the measured tributary

inflow rate, qis (m), used in Equation 3.4, this

quantity might refer to either the total measured

tributary inflow or a specific stream within the

area. The main criterion for selecting the gaged

area is that the watershed exhibit the same general

runoff characteristics as that of the ungaged area.

The second independent term in Equation 3.4

refers to the rates of precipitation occurr ing on the

valley floor in the form of rain. Because it is

assumed that the influence of snow upon the surface

runoff is restricted to the melt period, only rainfall

is considered by the equation. Generally, a direct

plot of rainfall against runoff for individual storm s

yields a low correlation because of the variable

nature of the factors affecting runoff (Chow, 1964).

However, when mean monthly values of precipitation

and runoff are considered, many of the transient

proces ses are smoothed and reasonably good cor­

relation of runoff with precipitation is achieved.

The third independent term of Equation 3.4

considers the influence of snowmelt upon surface

runoff. Snowmelt rates on the valley fl'oor are pre­

dicted in the model by Equation 3. 9. This process

is discussed in further detail later in this chapter.

The total surface inflow rate to the model

(valley floor) is estimated by summing the measured

rate and estimated ungaged rate from Equation 3.4.

Thus,

Q. = Q. (m) + Q. (u). IS IS IS

(3.5)

in which Q. refers to the total surface inflow IS

rate, and the two independent quantities are as

previously defined.

Interflow

Interflow is defined as the lateral movement

Groundwater Inflow

Groundwater or subsurface inflow refers to

those waters which enter the model area or valley

floor beneath the ground surface. Much of this water

is subsequently discharged as effluent flow into the

main channel of the valley, and thus provides a

"base flow" for the stream. Discharge from the

groundwater basin of the valley floor also occurs by

way of spring flows, pumped waters, and consump-

tive use by phreatophytes.

Essentially, all groundwater is constantly

in motion though velocities may range from several

feet per day to only a few inches per year. This

groundwater movement is basically confined to

permeable geologic formations called aquifers

which serve as transmission conduits. Movement

and volume of groundwater runoff may be calculated

through application of Darcy's Law, providing ade­

quate data are available. However, subsurface flow

data are sparse within the Bear River basin. Time

and spatial distribution of groundwater flows in this

study were estimated by an empirical approach

through the model verification procedure. For the

steep watersheds near the headwaters of major

drainage divisions, groundwater inflows to the valley

floors were usually sufficiently small to be neglected.

As the study proceeded downstream to lower subbasins,

it generally became apparent through the time dis­

tribution of the water inputs to the model in relation

to the recorded outflow that groundwater inflow rates

of moisture through the plant root zone. The process were appreciable. Correlation procedures and

is discussed in further detail at a later point in

this chapter. Interflow rate, Nr' is not treated as

a separate identity in the hydrologic model of the

valley bottoms, but is considered as being a part

of the surface runoff from irrigation. In most

cases, small interflow rates are encountered in

flat lands. Furthermore, for a model time incre­

ment of one month, interflow usually produces an

insufficient delay time to enable this quantity to be

distinguished from surface runoff.

12

transport delays were then used to estimate and

simulate groundwater movement into the subbasin.

This water was then distributed with time through

use of long transport delay networks on the computer.

The required delay setting of these networks was

established during the model verification process.

Hence, the rate of groundwater inflow was described

as follows:

Q (u) = k q. Ig C IS

(3.6)

in which

Q. (u) 19

k c

rate of total unmeasured inflow to

the groundwater system

coefficient relating the rate of un­

measured groundwater inflow to a

measured surface runoff rate

rate of surface runoff (either total

measured tributary inflow or mea,.

sured tributary inflow or measured

inflow from a representative tri-

butary)

For some subbasins a subsurface outflow, as

groundwater movement under the outflow gage in the

streambed alluvium, was determined by the model

Precipitation

The ultimate source of water input to any

hydrologic unit is precipitation in one form or

another. Precipitation is considered to be any

moisture which emanates from the atmosphere and

falls to the earth.

Precipitation input to the hydrologic system

varies with respect to both time and space and it is

therefore necessary to convert point measurements

from climatological stations into an integrated or

averaged monthly value over a finite area. Common

spatial integration techniques include the Thiessen

weighting procedures and the isohyetal method (Lins­

ley, Kohler, and Paulhus, 1958). A modified iso-

verification process. The time and spatial distribution hyetal technique was used to estimate precipitation as

of this outflow formed a component of the ground­

water inflow or input to the adjacent downstream

subbasin.

Total Inflow

Total inflow rate to the valley bottoms con­

sists of the summation of the surface and ground­

water flow rates. The surface inflows for the most

part have already been summed and are concentrated

in stream channels as they enter the valley floor or

agr icultural areas. Gaged surface inflow rates are

available from surface water records published by

the U. S. Geological Survey. These records were

utilized wherever possible.

The remaining two components of total inflow,

namely ungaged surface inflow and groundwater

inflow, are estimated from Equation 3.4 and 3.6,

respectively. Therefore, the total inflow, Q., to 1

a given subbasin within the Bear River basin is

given by the following expression:

Q. = Q. + Q. 1 IS Ig

(3.7)

in which the terms Q. and Q. are given by IS Ig

Equations 3.5 and 3.6, respectively.

13

a function of time for each subbasin. Some precipitation

data are available for all subbasins adopted in this

study.

Two forms of precipitation, rain and snow,

are considered in this study. Air temperature is

used as the criterion for establishing the occurrence

of these two forms. This criterion is not an ideal

index for determining the form of precipitation since

no one temperature exists below which it always

snows and above which it always rains. However,

the surface air temperature appears to be the most

suitable single index of precipitation form now

available.

Based on investigations by the U. S. Army

(1956) at a surface air temperature of 3 there

is a 50 percent chance that precipitation will be as

snow, whereas at 3Zo

F the probability is 95 percent

of precipitation falling as snow. However, in this

study a double standard was used because average

monthly temperatures provided the criteria. Snow

was assumed to fall below about 350

F, and snowmelt

was assumed to occur above about 30o

F. This assulnp­

tion provided for the occurrence of snowfall and snow­

melt during the same month. These threshold tempera­

tures varied in the different subbasins.

A part of the precipitation falling on an area

is stored on the vegetative cover. Because most of

this water later returns to the atmosphere through

the evaporation proce ss. vegetative interception is

regarded as a loss. Interception losses which occur

obtain average temperature values for the valley

floor, or a portion thereof, within a particular

subbasin, requires that point measurements be

utilized for estimating an effective or average

temperature value for an area. One approach to

over a long time period, such as a month, are gener- this problem of spatial integration is to construct

ally expressed as a fraction of the total precipitation isothermal lines for particular time periods and to

for that period (U. S. Army, 1956). That part of the

precipitation which reaches the ground, namely the

difference between the total precipitation and the

interception losses, is generally labeled as "effec­

tive precipitation" for the area.

The magnitude of the interception loss is

basically a function of the type and density of the

vegetative cover within the area. Interception

losses for forested areas may be considerable, while

interception losses for sparsely timbered and grass

covered areas might be small. Since the model of

this study includes only the valley floors, which are

essentially flat, agriculturally oriented areas, inter­

ception losses are neglected, and all precipitation

is assumed to be effective.

Some of the precipitation which reaches the

ground is retained in depression storage. This

form of storage includes puddles and other depre-

sions in the soil surface. Water leaves depression

storage through either direct evaporation or as

infiltration into the soil. Thus, for models involving

relate these to selected index stations (Riley and

Chadwick, 1967). However, in this study average

temperatures for a particular area and a given time

period (one month) are estimated by an arithmetic

average of temperature measurements taken in the

subbasin.

Snowmelt

Although rational formulas which include the

various factors involved in the snowmelt process

have been developed, data limitations often prohibit

a strictly analytical approach to the process. Ration­

al models include fundamental processes, such as

those which relate to energy transfer, and require­

ments for input data are high. An additional restric­

tion to the analytical approach for snowmelt compu­

tation is a large modeling time increment such as a

month. Many of the short-term, transient phenomena

which occur within a snowpack cannot be represented

in a macroscopic model of this scale. An empirical

relationship was, therefore, adopted for this study

lar ge time increments, such as a month, abstractions mod el.

to depression storage need not be treated separately Riley et al. (1966) proposed a relationship

but can be assumed to be a part of the total evapo- which states that the rate of melt is proportional to

transpiration and infiltration loss from the total the available energy and the quantity of precipitation

precipitation quantity.

Temperature

Air temperature is an important parameter in

a hydrologic system because it can be utilized as a

criterion for establishing the form of precipitation,

and as an index of the energy available for the snow-

melt and evapotranspiration processes. Tempera­

ture varies according to both time and space. To

14

stored as snow. As a differential equation the

relationship is written:

d[W s (t)] =: _ k (T _ T ) RIs W it) dt s a b ~ s

h

in which the undefined terms are:

k a constant s

(3.9)

T a

surface air temperature in degrees

F

RI s

W s

the radiation index on a surface pos-

sessing a known and aspect

of slope

the radiation index for a horizontal

surface at the same latitude as the

particular watershed under study

snow storage in terms of water

equivalent

became the initial value for the integration process

over the following period. On this basis, and setting

the ratio RI/R\ equal to unity, the differential

form of Equation 3.9 becomes:

Ws

(l

J dWs'O - k (T -32) (I dt ---- saO

W (0) Ws ' s

(3.10)

assumed base temperature in degrees or

F at which melt begins to occur.

I~ this study Tb was taken as

equal to 32o

F.

Riley et aL (1966) report reasonable agree­

ment between predicted snowmelt rates from

Equation 3.9 and observed values. They used a

value of k s

equal to 0.10 based on studies using

data from several snow courses in the Rocky

Mountain area where average snow depths are high.

It has been found, however, that the value of k is s

somewhat inversely dependent upon snowpack depth.

In other words,. as the snow depth decreases pack

melt rates increase for a given energy input. Thus,

ks is relatively larger for areas of shallow snow­

pack depth and relatively smaller for areas where

depths tend to be large. The radiation index para­

meter allows adjustment to be made for variation

of the total insolation with land surface slope and

aspect. However, since only the valley floors are

included in the modeling area, it is assumed that the

topographic surface of the area is essentially hori­

zontal. This assumption simplified Equation 3.9 in

that RIs becomes equal to R\ and their ratio

goes to unity.

The independent variables on the right side

of Equation 3. 9 can be expressed as either continuous

functions of time or as step functions consisting of

mean constant values for a given time increment.

For this study a time increment was utilized and

integration was performed in steps over each

successive time period. Hence, the final values

of W (t) at the end of a particular time period s

15

W (1) = W (0) exp [ s s

(T -32)] a

(3,11)

Canal Diversions

Canal diversions profoundly affect the time

and spatial distribution of water within an irrigated

area. A portion of this diverted water is evaporated

directly to the atmosphere, a second part enters the

soil profile through canal seepage and infiltration on

the irrigated lands, and the remainder returns to

the source as overland flow. Some of the water

which enters the soil profile is lost through plant

consumptive use. The remainder either percolates

downward to the groundwater basin or is intercepted

by drainage systems. Irrigation practices, therefore,

alter the distribution characteristics of a hydrologic

system. The irrigation efficiency factor used in this

study includes both the conveyance and application

efficiencies. Thus, multiplying total diversions by

this factor provides an estimate of that quantity of

water which returns directly to the stream as over­

land flow and/or interflow. This composite irri­

gation efficiency factor is given by the following

expres sion.

Eff

in which

Eff

W 100~

W tr

(3. 12)

water conveyance and application

efficiency in percent

rate at which diverted water enters

the soil through seepage and infil­

tration

:::: total rate at which water is diverted

from the stream or reservoir

Records of water diversion to the agriculture

lands within each subbasin were found to be lacking.

Adjustment of these records was necessary in many

cases. to get a realistic application rate for the

irrigated acreage.

As already indicated, a portion of the water

diverted for irrigation returns to the streams as

overland flow and interflow. Although the large time

increment allows this water to be treated in the

model as a single identity. it is important to distin­

guish between the two components. Overland flow

(often termed tailwater) is surface return flow or

runoff from the end of the field resulting from the

application of water to the irrigated land at rates

exceeding the infiltration capacity of the soil. Inter­

flow is defined as that part of the soil water which

does not enter the groundwater basin, but rather

which moves largely in a lateral direction through

the upper and more porous portion of the soil pro­

file until it enters a surface or subsurface drainage

channel. Both the overland flow and the interflow

return to the stream channels in short distances

and times consisting of usually only a few days.

The distribution of canal diversion within the hydro­

logic system can now be expressed as follows:

or

OF = (l - Eff/lOO) W + N . r tr r

OF r

in which

OF r

total of overland flow (from

(3.13)

(3. 14)

irrigation applications at rates

exceeding infiltration capacity rates)

and interflow rates

N interflow rate r

All other quantities have been previously defined

under Equation 3.12.

16

It is pointed out that evapotranspiration losses

do not appear as such in Equation 3.13 and 3.14.

These losses are, however, considered because they

are abstracted from the infiltration quantity repre­

sented by W dr' The evapotranspiration process

will be further discussed in a subsequent section.

Available Soil Moisture

The usual definition of available soil moisture

capacity is the difference between the field capacity

and the wilting point of the soil. Water within this

range is available for plant use, and is termed avail­

able soil moisture. The field capac ity is defined as

the soil moisture content after gravity drainage has

occurred. Most of the gravity water drains rapidly

from the soil thus affording plants little opportunity

for its use. The Wilting point represents the soil

moisture content when plants are no longer able to

abstract water in sufficient quantities to meet their

needs, and permanent wilting occurs. Available

soil moisture can be expressed in several units but

in this report it carries the unit of depth in inches.

Sources of available water. Basically,

moisture in the soil is derived from infiltration,

which is the passage of water through the soil surface

into the soil profile. The water available for infi!

tration at the soil surface is derived from three

sources, namely, effective precipitation in the

form of rain, snowmelt, W ,and irrigation sr

water, W dr' As springtime temperatures rise to

the point at which melting occurs, all snow cover

on the land is assumed to melt and enter the soil

mantle through the infiltration process. In the

case of irrigated crops, the most important

source of available soil moisture is water which

is diverted to the agriculture lands. The rate

at which water from this source enters the soil

profile through canal seepage and infiltration

has been designated as W dr" Thus, the total

water available for infiltration into the soil, W I gr

can be written as:

W gr

Wdr

+ +W sr

(3. 15)

in which all quantities are as previously defined.

Available soil moisture quantities. The

maximum quantity of water in a soil available for

use by plants is a function of the moisture holding

capacity of the soil and the average rooting depth

or extraction pattern of the plant.

The basic forces involved in the absorption

of water by plants are osmotic, imbibitional, meta­

bolic, and transpiration pull (Thorne and Peterson,

1954). These forces basically define the soil mois­

ture tens ion or "pull" that must be exerted by the

plant to remove water from the soil. Of these

forces the principal one is the osmotic pressure

created within plant root cells. Opposing these

forces are those exerted on the moisture by the

soil particles. The forces exerted by the plants

vary with different plants, soils, and climates, but

the average maximum force which plants can exert

in obtaining sufficient water for growth is approxi­

mately 15 atmospheres of pressure. At field capac­

ity where water is readily available for plant use,

the average soil moisture tension is only about 0.1

atmosphere. However, the soil moisture tension

or "pull" plants exert in their quest for water is in

itself no indication of the amount of available water

contained by the soil. The actual amount of water

held by the soil at any given tension value is a

fune tion of the soil type.

Determination of the soil depth effectively

utilized by a plant is based on the average rooting

depth or the average moisture extraction pattern.

The soil moisture available for extraction depends

on the moisture holding capacity of the soil and the

extraction pattern. The typical agriculture crop

extracts 70 percent of its moisture from the upper

50 percent of the soil penetrated by the plant roots.

Average or typical rooting depths for various plants

are reported by McCulloch et al. (1967). lliustrative

17

depths include 4 to 6 feet for alfalfa, 4 feet for

grains and corn, and 2 to 3 feet for pasture. The

average available soil moisture capacity of the

irrigated lands was estimated for each subbasin.

Under norIDal circuIDstances, additions to

available soil moisture storage occur through the

infiltration proces s, Fr' Abstractions or depletions

frOID available soil moisture storage occur through

evapotranspirational losses, ETr' and deep perco­

lation, Gr' The assumption is made, however, that

deep percolation does not occur until the soil IDois­

ture capacity is reached. Thus, the soil IDoisture

storage existing at any time, t, can be stated:

M (t) = (F - ET - G ) dt . s r r r

(3. 16)

Each of the three terms on the right side of this

equation is discussed in the following sections.

Infiltration

As already indicated, additions to available

soil moisture occur through the process of infiltration,

F. Factors which influence the infiltration rate r

include various soil properties and surface character-

istics. A moisture gradient induced by the adhesive

properties of the soil particles also influences

infiltration rate.

In this stud y. the rate of infiltration into the

soil is given by the following equations

F W, (W ::, R ) • r gr gr tr

(3. 17)

and

F = R • (W > R ) . r tr gr tr

• (3.18)

for which all terms were previously defined. The

quantity W is Equation 3. 17 is given by Equation gr

3.15.

Evapotranspiration

The second term on the right side of

Equation 3. 16 represents depletion frOID the soil

moisture storage through the evapotranspiration

process, ETr

• Consumptiv.e use, or evapotrans­

piration, is the sum of all water used and lost by

growing vegetation due to transpiration through

plant foliage and evaporation from the plant and

surrounding environment such as adjacent soil sur­

faces. Potential evapotranspiration is defined as

that rate of consumptive use by activel y growing

plants which occurs under conditions of complete

crop cover and non-limiting soil moisture supply.

The evapotranspiration process depends upon

many interrelated factors whose individual effects

are difficult to determine. Included among these

factors are type and density of crop, soil moisture

supply, soil salinity, and climate. Climatological

parameters usually considered to influence evapo­

transpiration rates are precipitation, temperature,

daylight hours, solar radiation, humidity, wind

velocity, cloud cover, and length of growing season.

Numerous relationships have been developed for

estimating the potential evapotranspiration rate.

Perhaps one of the most universally applied

evapotranspiration equations is that proposed by

Blaney and Criddle (1950). This equation is written

A modification to the Blaney-Criddle formula was

proposed by Phelan et al. (1962), wherein the

monthly coefficient, k, is subdivided into two parts,

a crop coefficient, k c' and a temperature coefficient,

k. The relationship describing k is an empirical t t

one, depending upon only temperature, and is

expressed as:

k = (0.0173 T 0.314). t a

• (3. 21)

where is the mean monthly temperature in

degrees F. The crop coefficient, kc' is basically

a function of the physiology and stage of growth of the

crop. Typical curves which indicate values of k c

throughout the growth cycle of particular crops are

shown by Figure 3.3 which is for alfalfa. Similar

kc curves are available for many agriculture crops

(Soil Conservation Service, 1964).

Thus, the mod iried Blaney-Criddle equation

for estimating potential evapotranspiration rates is

written as follows:

ET cr

k k c t 100

(3. 22)

as follows: Because of its simplicity, low data require-

U = kf

in which

U

k

F

f =.!E.. 100

in which

t

p

(3. 19)

monthly crop potential consumptive

use in inches

m onthl y coefficient which var ie s

with type of crop and

monthly consumptive use factor

and is given by the following

equation:

(3.20)

mean monthly temperature in de­

grees F

monthly percentage of daylight

hour s of the year

18

ments (only surface air temperature is needed), and

applicability to the irrigated areas of the Western

United States, Equation 3.22 was adopted for this

study model. Since the time increment selected

for use was one month, the variables on the right of

Equation 3.22 represent mean monthly values although

these parameters could be expressed as continuous

functions instead of the ind icated step functions.

Thus, Equation 3.22 estimates the mean potential

evapotranspiration rate during each month.

The growing season was assumed to begin

and end when the mean monthly air temperature

reached a value of 3Zo

F. Evapotranspiration losses

from the agriculture area during the non-cropping

season were estimated from Equation 3.22. For

many crops it was neces sary to extend the k c

curves to include the non-growing season (West,

1959). Because the k c curve for gras s pasture

seems to represent a reasonable set of values for

native vegetation (Riley et al., 1967), this curve

was used as a guide in the development of a similar

k curve for phreatophytes. c

Effects of soil moisture on evapotranspiration.

As was discussed earlier, as the moisture content

of a soil is reduced by evapotranspiration, the mois­

ture tension which plants must overcome to obtain

sufficient water for growth is increased. It is

generally conceded that some reduction in the evapo-

transpiration rate occurs as the available quantity

of water decreases in the plant root zone. Recent

studies by the U. S. Salinity Laboratory in California

(Gardner and Ehlig, 1963) indicate that transpiration

M (t) s

quantity of water available for

plant consumption which is stored

in the root zone at any instant of

time

M cs

root zone storage capac ity of

water available to plants

Because they are differential with respect

to time, both Equations 3.23 and 3.24 are easily

programmed on the computer. In the integrated

form Equation 3.24 appe,ars as:

ET Ms(2} = Ms(l} exp[ M cr(t

2-t

1}]

es (3. 25)

in which M (I) and M (2) are the soil moisture s s

storage values at time tl and t2

, respectively.

occurs at the full potential rate through approximately Hence, when conditions are such that the available

the fir st one-third of the available soil moisture soil moisture storage reduces the potential evapo-

range, and that thereafter the actual evapotranspira- transpiration rate, the actual consumptive use rate

tion rate lags the potential rate. When this critical

point in the available moisture range is reached,

the plants begin ·to wilt because s oil moisture be­

comes a limiting factor. Thereafter, an essentially

linear relationship exists between available soil

moisture quantity and actual transpiration rate.

The actual evapotranspiration rate is expressed by

Riley, Chadwick, and Bagley (1966) in accordance

with the end conditions which accompany the two

following equations:

and

ET ET, [M < M (t) s M 1 r cr es s cs

(3.23 )

ET cr

M }. (3.24) es

in which

ET r

M es

actual evapotranspiration rate

potential evapotranspiration rate

limiting or threshold content of

available water within the root

zone below which the actual be-

comes less than the potential

evapotranspiration rate

19

can be expressed by combining Equation 3.22 and

3.24 to read:

{3. 26}

Equation 3.26 is programmed on the computer to

estimate actual evapotranspiration rate. The

equation reduces to Equation 3.22 when M >- M s es

so that

Effects of slope and elevation on evapotrans­

piration. In that they affect the available energy

supply, land slope (degree and aspect) and elevation

influence the evapotranspiration process. Riley

and Chadwick (1967) considered the effects of slope

by introducing a radiation index parameter. These

same authors also introduced an elevation correction

into Equation 3.26. This adjustment is necessary

for watershed studies since surface air temperature

becomes a less reliable index of the available

energy with increased elevation above the valley

floor. However, because the model of this study

was confined to the relatively flat valley floor areas,

the effect of both slope and elevation on the evapo­

transpiration rate is neglected.

Deep Percolation

The final independent term, Gr

, of Equation

3.16 represents the rate of deep percolation. Per­

colation is simply the movement of water through

the soil. Deep percolation is defined as water

movement through the soil from the plant root zone

to the underlying groundwater basin. The dominant

potential forces causing water to percolate downward

from the plant root zone are gravity and capillary.

Water is removed quickly by gravity from a satur­

ated soil under normal' drainage conditions. Thus,

the rate of deep percolation, G , is most rapid r

immediately after irrigation when the gravity force

dominates, and decreases constantly, continuing at

slower rates through the unsaturated conditions.

Because the capillary potential applies through all

moisture regimes, deep percolation continues,

though at low rates, even when the moisture content

of the soil is less than field capacity (Willardson

and Pope, 1963).

Because of a lack of data in the study area

regarding <;leep percolation rates in the unsaturated

state, and in order to simplify the model, the assuITlp­

tion was made that deep percolation occurs only

when the available soil ITloisture is at its capacity

level. In most cases, this assumption causes only

slight deviation from prototype conditions. Thus,

for this model, the deep percolation rate is

expressed as:

G F r

ET , cr

[ M (t) = M 1 s cs r

G 0, [ M (t) < M r s cs

in which all terms are as previously defined.

River OutfloW

(3.27)

(3.28)

Using the continuity of mas s pr indple

(Equation 2.1) the hydrologic balance is maintained

by properly accounting for the quantities of flow

20

at various points within the system. The appropriate

translation or routing of inflow water through the

system in relationship to the chronological abstractions

and additions occurring in space and time concentrates

the water at the outlet point as both surface and sub-

surface outflow. As mentioned earlier, active net-

work delays on the computer simulate the long trans­

port time necessary for groundwater inflows and deep

percolating waters to be routed to the outflow gaging

station.

Thus, the total rate of water outflow from a

subbas in is obtained through the summation of

various quantities as follows:

Q Q. o l8

in which

Q o

Q. lS

W tr

OF r

Q e

(3. 29) Q e

total rate of outflow from the

system

rate of total surface inflow to the

subbasin including both measured

and unmeasured flows

total rate at which water is diverted

from the stream or reservoir

total of overland flow and interflow

rates

rate of outflow from the ground­

water basin of routed deep per­

colating waters and subsurface in­

flows to the subbasin

rate of water diversions from

surface sources for use outside

the boundaries of the subbasin.

Exports to other drainage basins

fall within this category.

If subbasins are selected such that there

exists no flow of subsurface water past the gaged

outflow point, the hydrograph of surface outflow,

Qso

' is given by Equation 3.29. This situation is

assumed to exist at reservoir sites within the basin

because of construction measures taken to eliminate

subsurface flows under the dams which create the

reservoir. For this reason, whenever possible,

subbasins were terminated at the outfall of a reser-

voir. These sites thus enabled a check to be made

on groundwater inflow rates to the subbasin as pre­

dicted from verification studies involving models

for one or more upstream subbasins.

For many subbasins the termination or out­

let point was taken at a Geological Survey gaging

station, and in several of these cases groundwater

flow occurs in the streambed alluvium beneath the

surface channel. For these basins, the total system

outflow can be written as:

Q Q +Q to so go

(3. 30)

in which

Q rate of surface outflow from the so

subbasin

Q rate of subsurface or groundwater go

outflow from the subbasin

Surface outflow rates, Q so' can be compared to the

recorded values, but subsurface outflow rates,

Q ,are unmeasured and must be predicted or go

estimated. In this study it was assumed that the

subsurface outflow rates were directly proportional

to the total outflow rates, and Q was therefore go

estimated by the following relationship:

Q := k Q go d 0

(3.31 )

in which

a coefficient determined by model

verification representing the per­

centage of total outflow which

leaves the basin as subsurface flow.

Because of storage and permeability effects,

fluctuations in groundwater flow rates tend to be

much less extreme than in the case of surface

flows. The value of kd in Equation 3.31 was,

therefore, not maintained as a constant, but was

expressed as an inverse function of the surface

flow rate, Qso

' During the spring runoff period,

for example, the predicted increases in subsurface

21

outflow rate, Q ,from Equation 3.31 were con-go

siderably less extreme than the increases in observed

or computed surface flow rate, Q so' Relationships

expressing kd as a function of Qso

were developed

for each subbasin through the model verification

process.

N N

JANUARY FlllIUAltY MAltCN APltlL MAY JUNE JULY AUI;UST SEPTEMIIER OCTOIIER NOVEMIIER DECEMIIER

APIUL SaPTE •• IER OCTOSIER Nou.alER OKuau

Figure 3.3. Crop growth stage coefficient curve for alfalfa. (Adapted from U. S. Soil Conservation Service Technical Release No. 21)

..

.80

.60

.. CHAPTER IV

THE COMPUTER MODEL

A computer model of a hydrologic system is

produced by programming the mathematical

relationships and logic functions of the hydrologic

model as described in the previous chapter. The

model does not directly simulate the real physical

system, but is analogous to the prototype, because

both systenu are described by the same mathematical

relationships. A mathematical function which

describes a basic process, such as evapotranspira­

tion, is applicable to many different hydrologic

systems. The simulation program developed for

the computer incorporates general equations of the

various basic processes which occur within the

system. The computer model, therefore, is free

of the geometric restrictions which are encountered

in simulation by means of network analyzers and

physical models. The model is applied to a partic­

ular prototype system by establishing, through a

verification procedure, appropriate constant values

for the equations required by the system.

Electronic computers fall into one of three

general classifications, namely analog, digital,

and hybrid. The computing components of an analog

computer execute the basic operations of addition,

multiplication, function generation, and, most

impo rtant in the study of dynamic or time variant

systems, high- speed integration. By connecting

computing components through a program "patch

panel," it is possible to form an electronic model

of a differential equation or a series of differential

equations which describe the dynamic performance

or oper ation of a ph ysical system.

The purpose digital computer processes

information which is reported by combinations of

discrete or instructive data, as compared with the

--analog computer which operates on continuous data.

While the analog computer is a "parallel" system

23

in which all problem variables are operated on

simultaneously, the digital computer is ba sic ally a

"sequential" system performing step by step operations

at high speed.

The d~gital computer is useful in processing

large quantities of data or in solving complex mathe­

matical problems which can be converted to a large

number of simple arithmetic operations by the operator

or by the computer. The digital computer can perform

sequences of arithmetic and logical operations, not

only on data, but also in its own program, and is,

therefore, an immensely powerful device for pro­

cessing or manipulating large amounts of discrete

data and for performing precise arithmetic cal­

culations at high speed.

In analog simulation, the operator communi­

cates with, or controls, the simulation by means

of hardware controls, while viewing the continuous

problem solution. The digital computer programmer

communicates with the computer primarily through

"software" or programming languages. The design

of software has become of equal or greater signifi­

cance than hardware design. The development of

"higher- order" or problem-oriented languages, in . which one programming statement triggers a large

number of sequential computer operations, has

helped to simplify the interface problem between

the user and the digital system.

The hybrid computer combines the memory

and logic capabilities of the digital with the high

speed and nonlinear solution capabilities of the

analog. In addition, the high speed iterative solu­

tions and graphic display which are characteristics

of the hybrid computer provide close interaction

between the hydrologist and the model. These

features make the hybrid a very powerful computer

in the development and verification of simulation

The console of the digital unit.

A v iew of the analog unit showing the se rvo­set pots, digital voltrneter, program board,

and output devic e s.

Figure 4. 1. Two views of the hybrid computer facility at the Utah Water Research Laboratory.

24

"

..

models. Two views of the Electronic Associates

Incorporated (EAI) 590 hybrid computer available

at the Utah Water Research Laboratory are shown

by Figure 4. l.

The computer simulation model of the Bear

River hydrologic system was programmed on the

hybrid computer. The digital portion of the model

was coded in FORTRAN IV (EAI subset), and the

analog portion was programmed for the EAI 580

computer. Because an analog computer operates

within specific voltage limits, in this case.±. 10

volts, it was necessary to scale the analog compo­

nent of the model such that these limits were not

exceeded. The basic data were input to the digital

computer, which processed and controlled the

operation of the hydrologic mass balance model

programmed on the analog component of the hybrid

computer. Monthly values of input and output data

were printed as stipulated in the program by the

on-line printer as the simulation proceed ed.

Graphical output at various points within the model

was obtained by connecting the x-y plotter to the

appropriate terminals on the analog patch-board.

As mentioned earlier, the computer program

is general in nature, and is applied to a particular

prototype system by a verification procedure.

A general view of the program control structure

is shown by Figure 4.2. As illustrated by this

figure, the program contains several subroutines,

each of which is controlled by the main program,

labeled OPVER. Program OPVER performs the

following two functions: (l) establishes the various

options available for performing the hydrologic

simulation, and (2) controls the operation of the

modified pattern search for calibrating the model

for a particular subbasin. The five options avail­

able through OPVER are as follows:

1. Simulation of an entire system of sub­

basins without exiting from the simulation

subroutine, HYDSM.

25

2. Input only basic data which are considered

to be common for all subbasins that ITlay

be subsequently run.

3. Input and operate with data for a particular

subbasin. Option 2 ITlust have been pre­

viously selected.

4. Rerun the last simulation performed.

Options 2 and 3 must have been previously

selected.

5. Perform pattern search on subbasin data

presently in memory. Options 2 and 3

must have been previously specified.

The subroutine interaction is illustrated by

Figure 4.3. Program OPVER establishes the entry

and exit conditions for HYDSM, which in turn calls

the particular subroutines needec;l to perform the

operations specified by OPVER. OPVER also calls

the analog potentiometer subroutine POTST without

going through HYDSM during the pattern search

operation. A listing of the digital program, a flow

chart of the analog program, flow charts for OPVER

and the primary subroutines, program notations,

and general instructions for use of the model are

given in Appendix B.

OPVER MAIN-l

Figure 4.2. General view of the program control structure.

N

'"

OPTION 1 COMPLETE SIMULATION

SUBDAT CARDS-l

READ SUBBASIN DATA

OPERATE FOR ALL YEARS

FOR ALL SUBBASINS

OPTION 2 READ BASIC DATA ONLY

OPVER ENTRY POINT MAIN-l INPUT RUN OPTIONS FOR DATA SETUP, SIMULATION OK PATTERN SEARCH

OPTION 3 READ SUBBASIN DATA

AND OPERATE

SUBDAT CARDS - 1

READS SUBBASIN DATA

Figure 4.3. A flow diagram of the subroutine interaction for program OPVER.

~

OPTION 4 RERUN WITH DATA AS IS

HYDSM OPERATE AND

PRINT

OPTION 5 PATTERN SEARCH

SET UP BOUNDARY CONDITIONS, STEP SIZES AND ITERATION LOOP

COMPARE OBJFN ANO SAVE VECTOR OF LOCAL MINIMUMS AND VECTOR OF GLOBAL MINIMUM

OUTPUT BEST SOLUTION VECTORS AT END OF EACH OF ITERATIONS

..

CHAPTER V

APPLICATION OF THE HYDROLOGIC MODEL TO THE BEAR RIVER BASIN

Verification

The general hydrologic model discussed in

the previous chapter is applied to a particular

basin through a verification procedure whereby the

values of certain model parameters are established

for a particular prototype system. Verification of

a simulation model is performed in two steps,

namely calibration, or system identification, and

testing of the model. Data from the prototype

system are required in both phases of the verifica­

tion process. Model calibration involves adjust­

ment of the model parameters until a close fit is

achieved between observed and computed output

functions. It therefore follows that the accuracy

of the model cannot exceed that provided by the

historical data from the prototype system.

Evaluation of the model parameters can follow

any desired pattern, whether it be random or

specified. In this study, each unknown system

coefficient is assigned an initial value, an upper

and lower bounds, and the number of increments to

c over the range. The fir st s ele cted variable is

varied through the specified range while all other

variables remain at their initial value. The values

of the objective function (measure of error) for

each value of the variable are printed, and the value

which produced the minimum is stored. After

completion of the runs for the first variable, the

varia ble is reset to the initial value and the second

variable is taken through the same procedure.

After all coefficients have been varied, the set of

values which produced each local minimum is run

a nd the resultant obj ective function value is com­

pared with the smallest attained in all previous

runs. The vector which produced the minimum

objective function value is selected as the initial

27

vector for the next phase and the process is repeated

until a coefficient vector is found which produces a

reasonable correspondence between computed and

observed outflows. The algorithm used to implement

the many trials required for model calibration is

included in Appendix B as part of the digital computer

source program for the model.

It should be noted that the choice of the vari­

able vector for each phase is based on the judgment

and experience of the programmer. However,

selection of all variable vectors following the first

choice is tempered by the experience gained during

the first phase and subsequent phases of the pro­

cedure. Thus, model verification effectively uses

all previous experience, including that gained during

the verification

Calibration of the model of this study was

based on three years of prototype data. Model

output was compared to measured output by comput­

ing the sum of the squared deviations, which became

the objective function for the pattern search pro­

cedure described previously. The final parameter

vector that was selected to represent the system

was that which minimized the objective function in

the calibration procedure. The three years of

data required 36 solutions of the simultane-

ous system of equations in terms of water quantities

as a function of time. Ideally, calibration data

should cover a wide range of input values, such as

those corresponding to a dry, a wet, and an average

year.

Comparisons between the observed and com­

puted output values from the calibrated model are

shown by Figures 5. 1 through 5.9. The verified

model coefficients are shown in detail in Appendix

C. When values of the model coefficients which

produce acceptable reproductions of the output

function from a prototype system have been

established, the model is said to be calibrated for

that system. It is then assumed that the model is

capable of predicting realistic system outputs

corresponding to various input functions and sys­

tem parameters.

Sensitivity Analysis

A sensitivity analysis is performed by

changing one system variable while holding the

remaining variables constant and noting the

in the model output functions. If small

changes in a particular system parameter induce

large chahges in the output or response function,

the system is said to be sensitive to that parameter.

Thus, through sensitivity analyses it is possible to

establish the relative importance with respect to

system response of various system processes and

input functions. This kind of information is useful

from the standpoint of system management, system

modeling, and the assignment of priorities in the

collection of field data.

The computer model that was developed

under this study performs a sensitivity analysis

during calibration. The final phase of the model

calibration procedure sets out the most meaningful

sensitivity analysis since at this stage all parameters

are near their final values. Careful study of the

outputs from the verification procedure in Table

5. 1 reveals the results of the sensitivity analysis.

For example, a seven-fold increase in variable 11

reduced the objective function by about 40 percent,

while increasing variable two by something less

than double produced a four-fold change in the

objective function. On the other hand, a four-fold

increase in parameter 13 caused very little change

in the objective function. Therefore, variable 13

would be given a low priority for more thorough

scrutinization. However, variable two would be

given a high priority for additional study. Table

28

5. I shows the sensitivity of the variables for the

Evanston subbasin. Similar analyses were made

for each subbasin of the Bear River basin. Table

5. I also indicates the gradient of the objective

function for each variable parameter, or the rate of

change of the objective function per unit change in

any variable. This information is useful for

establishing parameter values which minimize the

objective function, and for estimating the sensitivity

of this function to changes in the variable parameters.

For each phase of the calibration procedure, initial

values of the gradient for each variable are set

equal to zero.

Table 5.2 is a printout from the computer

program and represents a phase of the calibration

process. The table presents the variable parameter

number, the terminal values at each end of the

range, the increment by which each parameter is

changed during the calibration procedure, and the

number of runs needed to cover the range. In this

case, the initial and final vectors are almost identi­

cal because they represent the last phase of the

verification procedure. Previous phases in the

calibration procedure would show more differenceS

between corresponding parameter values in the

initial and final vectors.

Management Opportunities

Opportunities for management of water in the

Bear River basin are widely varied and range from

a change in cropping patterns to water storage and

export. Actual implementation of a management

scheme will depend on benefits gained as compared

to the costs of implementation. The simulation

model developed under this study does not make

comparisons of benefits and costs, but does predict

changes in the system output associated with given

management alternatives. The management schemes

tested in this study do not begin to cover the possible

combinations, but do demonstrate the capability of

..

Table 5.1. Sensitivity of Evanston subbasin variables. 15.45 .75 .!H.'l0 • 38~) 1.000 .1IJ0~ .700 .1/l30 .000 32.000 24.11100

10.00 7.t:!0 11.C,0 .2i1l .00 .00 .era .00 .00 .(el0 2.5121 2.50

p L PAl( OBJ OBA GIolAD

1 1 .6111" 7.53027 .60905 .001300 1 2 .700 7.0165lil .5121651 -5.13577 1 3 .8C1!Cl 6.72995 .4e2H! -2.85648 1 4 .9t:'10 5.54957 .57975 -1.80375 2 1 .300 15.2517~ 7.rSSl24 • (1H1000 2 ~ .34(." lil.33:559 2.53776 -147.lil0411 2 3 .:.'I~~ 6.5947:5 .~7975 -58.52113 :2 4 .4:l!~ 8.31256 .321632 42.94525 2 5 .4~e 14.2240;'1 -1.5345(IJ 147.7851214 2 5 .5::'0 24.27461 -2.69550 251.26504 3 1 1.~,":' 6.46163 .5lil928 • (lJI2I000 4 1 .000 6.43422 1.47819 • (lJ000(IJ '5 1 .200 11.90HJ~ -3.66823 .021000 5 2 .3P!i'J 9.92734 -2.69560 -19.73664 "I ;) • "'iii.;) 8.451C1 -t.558lil1 "14.7633121 5 4 ."'11"21 7.28981 -,72883 -11.61198 5 5 .6Qja 6.56571 .39421 .. 5,24Ul 5 6 .70v.l 6.47435 1.44989 -1.91350 I! 1 .~20 6.24164 -1.55891 .00i100 6 :2 • 21'!.~ 6.MH78 1.47819 18.01357 5 ~ .040 7.97232 4.491']89 15:5.05401 6 4 ."~;:J 10.71584 7.38151 27<1.35217 1\ !5 .~61!! 15.002f1o 10.44792 425.71179 6 1'.\ ."7~ 20.46119 13.54362 54'.5.82373 7 1 .~~l/I 5.47415 1.45866 .~0000 8 1 :.o.l.i'II9i\.~ 6.39105 1.42936 .ih:h:l01il 8 :2 ~1.150i\! 6,392137 1. 41!H,i0 .00204 8 :; 32.11:1!~ 6.38694 1.4391;' -.(1)1025 8 4 32.51"'] 6.4l'5121 1.37~77 .12852 8 " 33. il(ll'l 6.34556 1.38053 -.21129 .., 9 1 23.l'1i11iil 8.45782 1.483<17 .liJ,,0IoHl 9 2 ~3. '5!H'J 7,19585 1.42440 -.2.52HI3 9 3 24 •• jiilil 5.44771 1.58073 -1.4lil828 9 4 24.5ClI'I 8.79396 1.55143 4.tH1251 9 OJ 25.1110111 15.29293 1.75651 12.9lilS03 g 6 25. tHHiJ 19.6~886 1.70768 8.73176 9 7 26.1?"0 1f:l.78175 .97526 .24578

IP, 1 10. "H'liil 6,48482 .80435 • (HH100 11 1 1 • Ii) (A eI 1".98001 -.113b~ .1iJ0000 11 :2 2.~'1!ii1 9.351578 .18913 -1.61322 11 3 ~.~V"i'\ 9.94tf3"i 1.<12448 ,57357 11 4 4.tH'''' 8,32565 '.47819 -1.151469 11 5 5.01'1" 6,9491e .46257 -1.37650 11 6 f..VlillI<J 6.54289 1.~098:3 ... 4~626 11 7 7 .\1:}'~ 6.52198 .71159 "'.02090 12 1 ~.'3!'1~ 7.~9265 4.59342 .00000 1'- 2 9.'-l;'lG'l 7.itS197 2.76725 ... 53068 12 :3 Hl.iHJ~ f'.5;5417 ?,42QJ57 -.46650 1'2 4 11. ~:'l\~ 6,42354 1.61003 -.27492 12 5 12.;tI~!'! 6.g5QSa -.17219 ,53933 13 1 • tl~11 6,65158 -.67n4 .flhJeJ00 13 2 • t ~,,\ 6.3792!'i .71.577 -2.7231e 1:!> :! .2"'01 t'.51555 .75055 1.36284 13 " .~t'!(ir 6.5~70~ 1.4921:14 .71543 1~ 5 .41:'16' 6.76384 2.23085 1.715745 14 .!2'00\ 6.60894 .91178 • eJ0Gl2J0 15 .000 6.51977 .95085 .1IJ0J1IJ0 16 1 • <I III PI f.37i'l89 1.94206 .0001(10

17 1 • i'H'y, 1i.5;;J15 4 1 1.74674 .00000 18 1 .!I\I!'~ 6.39482 1.702d0 .00"00 19 t .l1t"~ 6.37797 1.71745 • (Hll~~0 20 1 2.~"'l1! 5.6289~ • R4831 .0\HlI1J0 21 1 2. ~W<~ ".81523 .1:1671:14 .00000 21 2 2.5~J t'i.64:)24 1.2~288 "'.347;8 21 :5 3."('1"1 6.63~50 1.46354 -.(:'11349 21 4 3.5"'~ 6,71831 2.23991 .16563 21 !I 4."'e!l 7.Ql972P.l 3.;\7487 .75'776

29

Table 5.2. Computer printout showing summary of calibration process.

PQ NFl PH PL XIN 00

1 3 ,9~e .500 .9Ql~ .101'1 2 5 .500 .3111(11 .380 .04('1 3 1 1.11I1l1r1 1.t(i00 1.011\0 .~01i1 4 1 .iil00 • ""IH' .C'li1l0 .1'10[') 5 5 .7~0 .20~ .70~ • ll1Hj I'i 5 .et70 .02111 .""3~ , (110 7 1 .'Hll1l .1II0B .000 .0i11l-1 8 4 33.:Hl0 31.~~l('1 32.001'1 .500 Q 5 ?6.!1lHJ 23.1'l01?J 24.~HHl .!'if!!0!

'-"'I 1 10. ",Ii:'! Hl.t.'It1lZ 1l'!.~Ql0 ."100 11 6 7.000 1,000 7."'l1111 1.~100 12 4 12.iH'I0 11.01'1111 11.11100 1.000 13 4 .401'1 .£t1C!0 .200 .100 14 1 .0010 .(li0\!' .00111 • ~1 ~ \~ U5 1 • "1'10· .00111 .121111171 .IiJI'IVl 16 1 .;.1(.10 .r,I1ll" .00111 .~00 17 1 .7iillC'i .!ZItHl .11I01~ .0100 18 1 .iiJ1il0 .CQ!0 .kl(1) .~i!Vl 19 1 .io00 .00Qo .0~(il .iil1il0 2~ 1 ~.500 2.5"'0 2.500 • "v.. (1 21 4 4.00~ 2.000 2.'50111 .500

)(IN I

.9110 .g(ll~

II .38'" .360 3 1.QJe'!'I 1.~0(l1 4 .(>,(10 .000 5 ,700 .700 6 .1'31'1 .031'1 7 • (lIiHI .~0!'1

8 3::!.~01" 33.000 9 24.1110('\ 24.~0f'1

10 10.!'I~0 1iil.000 11 7."'0\'1 7.1210(' 12 11 • ~,~", 11.0I1"l17 13 , 2';;:~ .2"'''' 14 .Ql<olPl .0i?J0 1!1 .B~(I! .Q[ll0

Hi .!'IiHl .01'lC 17 • I;' \~ t'I .QI(liPl 18 .00l'l • [~[ll [?'

19 .<I:.1~ .00i!l 21'1 ~.5ePo 2.'5QI'l 21 ~. 5"~ 2.50\"J

the model to rapidly test many possible schemes.

It is again emphasized that a simulation model does

not of itself produce an optimum solution in terms

of management obj ectives. The technique doe s,

however, facilitate a rapid evaluation of many

possible alternatives. An analytical optimizing

procedure, used in conjunction with a simulation

model, could produce system optimization in terms

of a specific objective function.

30

The ability of the model to predict outflow

characteristics under various management conditions

is demonstrated for the Evanston subbasin. The pre- t

dicted total annual outflows under actual conditions

for 1954, 1955, and 1956 are given in Appendix C

as being 72,183; 92,544; and 150,918 acre-feet,

respectively. The computed outflow hydrograph on

a mean monthly basis is shown by Figure 5.1.

Studies were then conducted to investigate the

changes induced in this hydrograph by three entirely

different sets of assumed conditions within the sub-

basin.

Case

Conditions were changed in the model to

represent the removal of all phreatophytes from the

subbasin. In addition, it was assumed that sufficient

irrigation water was applied to support potential

evapotranspiration rates and to maintain available

soil moisture levels at no less than 2. 5 inches.

Precipitation, temperature, and stream inflow data

for the years 1954, 1955, and 1956 were input to the

model. The computed outflow hydrograph under

these conditions for this three-year period is shown

by Figure 5.10. The corresponding predicted total

annual outflows from the subbasin are 93,341;

113,227; and 163,983 acre-feet, respectively, as

shown in Appendix D, Evanston 1-1. The negative

surface outflow quantities in this case indicate

diversions of more irrigation water than was avail­

able in the river, and are, therefore, an indication

of the storage required to satisfy the water require­

ments during the irrigation season. In the restricted

case where irrigation diversions are limited to the

water available in the stream, the computed total

annual outflows are 111,313; 125,508; and 181,826

acre-feet for 1954, 1955, and 1956, respectively

(Appendix D, Evanston 1-2). Corresponding mean

monthly discharge values during this three-year

period are shown by Figure 5.10. It is interesting

to note that total outflow quantities under the

,\

80

.jJ Q,J Q,J

'+-I 60 Q,J ~ u ro

'+-0

VI Computed " ;;:. ro 40 Observed VI ::> 0

.s:::: .jJ

;;:. .~

3: 0 20

4= .jJ ::>

0

o 1954 1955 1956

YEAR 100

Figure 5.1. Computed and observed monthly outflow from Evanston subbasin 1954. 1955. and 1956.

80

60 .jJ Q,J

~ I

Q,J ~ u ro

'+- 40 0

VI Computed ""0 ;;:. ro Observed . VI ::> 0

.s:::: +> ;;:. 20 .~ . 3: 0

4= +> ::>

0

0 J D

1954 1955 1956

YEAR

Figure 5.2. Computed and observed monthly outflow from Randolph subbasin 1954, 1955, and 1956.

31

..., <Il <Il 80 "-I

<Il s.. U 11:!

"-0

III Computed -c 60 <::: 11:! Observed III ::> 0

..<::: ..., <::: .~ . 40 ~ ::;: ..., ::>

0

20

o J D

1954 1955 1956

YEAR

Figure 5.3. Computed and observed monthly outflow from Cokeville subbasin 1954, 1955, and 1956.

100

..., <Il (l)

"-I

<1.1 80 s.. u

'" "- Computed 0

III Observed " <:::

'" III 60 ::> 0

.r:: ..., <::: .~ . ~ ::;: 40 ..., ::>

0

20

o 1954 1955 1956

D J

YEAR

Figure 5.4. Computed and observed monthly outflow from Thomas Fork subbasin 1954, 1955, and 1956.

32

80

...., Computed QJ

Observed QJ ---"-I 60 QJ

s.. U ttl

"-0

til -0 r= ttl 40 til ::l 0

..c: ...., r= .~

~

~ 20 :;: ...., ::l 0

o J

1954 1955 1956 D

YEAR

Fi9ure 5.5. Computed and observed monthly outflow from Bear Lake subbasin 1954, 1955, and 1956.

80

...., Computed QJ (J)

"- Observed I (J) 60 s.. u

'" "-0

VI -0 r=

'" til 40 ::l 0

..c: ..., r= .~

:;: 0 :;: 20 ..., :::l

0

o 1954 1956

J 1955

D

YEAR

Fi9ure 5.6. Computed and observed monthly outflow from Soda subbasin 1954. 1955, and 1956.

33

80

+' Ql Computed <lJ 4-

I Observed ._--<lJ 60 s.. u

'" 4-0

til -0 <:

'" til 40 :::> 0

.r::. +' <: .~

15 <;:: 20 +' :::!

0

o J D

1954 1955 1956

YEAR

Figure 5.7. Computed and observed monthly outflow from Oneida subbasin 1954, 1955. and 1956.

100

80 ..... <lJ <lJ 4-

I Q) s.. Computed u

'" 4-0 60 Observed III -0 I:::

'" '" ::> 0

.s::: ..... <: 40

5 <;:: ..... ::>

0

20

o J

1954 1956 1955 D

YEAR

Figure 5.8. Computed and observed monthly outflow from Cache Valley subbasin 1954, 1955, and 1956.

34

200

160 ...., <11 <11 '+-

I <11 !- Computed u ttl

'+- 120 Observed 0

'" "0 <: ttl

'" ::J 0

..<: ...., .<: 80 .,....

;;: o.

:;::: ...., ::J

0

40

o J D

1954 1955 1956

YEAR

Figure 5.9. Computed and observed monthly outflow from Tremonton subbasin 1954. 1955. and 1956.

80

Observed 60 Res tri cted ••••••••••

Unres tri cted

D

1954 1955 1956

YEAR

Figure 5.10. Management of Evanston subbasin, Case 1,

35

+-' QJ QJ

'+­I

QJ s­U

'" '+­o

+-' QJ QJ

'+-I

QJ s-u

'" '+-0

Vl -0

'" '" Vl :::l 0

.s:: +-'

'" .~

.; 0

:;:: +-' :::l

0

80

60

40

20

o

80

60

40

20

o

Observed Restricted _ ........... Un res tri cted ---

D

1954 1955 1956

YEAR

Figure 5.11. Management of Evanston subbasin, Case 2.

Observed 'Res tri cted ••••••••••••

Unrestri cted -----

D

1954 1955 1956

YEAR

Figure 5.12. Management of Evanston subbasin, Case 3.

36

..

restricted water supply case appreciably exceed

those of the unrestricted case. Under the conditions

of restricted supply; water storage in the plant root

zone was considerably reduced, and average evapo­

transpiration losses were approxi:mately 20 percent

below potential.

Cases 2 and 3

Under Case 2 crop acreages within the subbasin

were reduced to 25 percent of the present area and

phreatophytes were reduced to 75 percent. For

Case 3 the cropland was increased to 125 percent

of the present area while phreatophyte acreage was

held at the present value. For both of these cases

the irrigation period indicate storage requirements

either by reservoir or in soil:moisture. The

operation of the model with 30 or more years of

historical strea:mflow, precipitation, and tempera­

ture data would provide a realistic estimate of

reservoir storage requirements to meet crop needs

within the subbasin. A study of this nature would

also facilitate the establishment and testing of

suitable operating rules for any proposed reservoir

or system of reservoirs within the subbasin. The

effects of water export on reservoir operation could

also be predicted.

The testing of various possible management

the :model was operated under the two assumptions alternatives for each subbasin within the Bear

of first an unrestricted and then a restricted irrigation; River model could be accomplished in the same

water sup~ly. Model output functions for the four :manner as has been demonstrated for the Evanston

conditions described previously are given by Appendix subbasin. Using the model, managem'ent effects

D and Figures 5.11 and 5. 12. as reflected in the output functions of a particular

For the conditions of unrestricted irrigation subbasin :may be traced throughout the entire Bear

water supply, the su:m of the negative flows during River basin.

37

CHAPTER VI

SUMMAR Y AND CONCLUSIONS

Increasing demands upon the available water

resources of the nation have produced a need for

the efficient utilization of these supplie s. Related

to good management practices is the evaluation of

various alternatives in terms of their likely down­

stream effects on both water quantity and quality.

Quantitative evaluation of these downstream conse­

quences is difficult because of the complex and

variable nature of the parameters which describe

a hydrologic system. However, the advent of

modern high-speed computers has made possible

the application of simulation techniques to complex

systems of this nature.

In this report, a general hydrologic model is

proposed and is synthesized on a hybrid computer.

The basis of the model is a fundamental and logical

mathematical representation of the various hydro­

logic processes. Spatial definition is achieved by

dividing the modeled area into specific space incre­

ments, or subbasins, for which average values of

space variable model parameters are applied.

Temporal resolution is obtained by selecting a

specific time increment over which average values

of time varying parameters are used. The ultimate

in modeling would utilize continuous time and space

definition. However, the practical limitations of

this approach are obvious. The complexity of a

model designed to represent a hydrologic system

largely depends upon the magnitude of the time and

spatial increments used in the model. In model

development it is, therefore, neces sary to select

increments which are consistent with time, budget,

and computer capability constraints, and at the

same time provide sufficient resolution to consider

the kinds of questions which might be asked of the

model.

39

Computer simulation of hydrologic systems

has many practical applications in the areas of both

research and project planning and management. As

a research tool the computer is valuable in the pro­

cess of investigating and improving mathematical

relationships. In this respect, the computer is

applied not only for its calculating potential, but

also for its ability to yield optimum solutions.

Simulation is also ideal for investigations of hydro­

logic sensitivity. Problems range from the influence

of a single factor upon a particular process to the

effects of an entire process, such as evapotranspira­

tion, upon the system as a whole.

In many ways computer simulation can assist

in planning and development work. Models can pro­

vide the designer with runoff estimates from the

input of recorded precipitation data. In addition,

simulated streamflow records from statistically

generated input information enable the establishment

of synthetic flow frequency distribution patterns.

In the area of water resource management,

computer simulation permits the rapid evaluation

of the effects of various management alternatives

upon the entire system. These alternatives might

involve such variable s as watershed treatment,

including urbanization, the construction of storage

reservoirs, and changes in irrigation practices

within a basin.

In this study the computer model was applied

to the hydrologic system of the Bear River basin of

western Wyoming, southern Idaho, and northern

Utah. To provide spatial resolution the basin was

divided into 10 subareas or subbasins, and each was

modeled separately. The submodels then were

linked into a single model of the entire basin. The

time increment selected for the model was one month,

and time varying quantities, therefore, were

expressed in terms of mean monthly values. The

model was calibrated for the Bear River hydrologic

system by adjusting model parameters until close

agreement was achieved between simulated and

corresponding gaged outflow hydrographs for each

subbasin. Data for one subbasin was inadequate

for satisfactory model calibration. The calibration

procedure was incorporated into the hybrid com­

puter program of the model so that this process was

implemented largely by the computer itself. Differ­

ences between observed and computed hydro graphs

were evaluated on the basis of the sums-of-squares.

This technique of model verification is accomplished

more quickly and is more objective than was the case

with the manual procedure used for previous studies

of this nature. The agreement achieved between

observed and computed outflow hydrographs from

each subbasin in the model is illustrated by

Figures 5.1 to 5.9, inclusive.

The utility of the model for predicting the

effects of various possible water resource manage­

ment alternatives within the Bear River basin was

demonstrated for the number 1 or Evanston subbasin.

For example, on the assumption that all phreato­

phytes were eliminated from this subbasin the model

predicted that the average annual discharge would

be approximately 139,500 acre-feet. This 'figure

may then be compared with the average annual

discharge of 107,500 acre-feet under present

conditions. Similarly, to meet the annual con­

sumptive use demands of "the existing crops within

the subbasin during the dry year of 1954 would

require an estimated 8,660 acre-feet of reservoir

storage. These and other management studies

are illustrated by Figures 5.10, 5.11, and 5.12.

Because of its fast turn-around and graphical

display capabilities and its ability to solve differ­

ential equations, the hybrid computer is very

efficient for model development and verification.

However, for operational studies many models,

40

once verified, can be readily programmed for solu­

tion on the more common all-digital computer. The

analog component of the Bear River model developed

under this study, for example, now could be repro­

grammed for general application of the entire model

on a digital computer.

In conclusion, it is again emphasized that a

model is limited by the availability of the field data

used in the verification process. As further data

become available, the mod el can be improved in

terms of both the accuracy with which it defines

individual processes and its time and spatial resolu­

tion. Modeling is, therefore, a continuous process,

with each phase providing further insight and under­

standing of the system, and thus leading towards

additional refinement and improvement of the model.

For each simulation study certain constraints

or boundary conditions limit the degree of achievement

during any particular phase of the overall program.

The most important of these limiting features are the

extent to which research information and basic input

data are available, the degree of accuracy established

by the time and spatial increments adopted for the

model, equipment limitations, and the necessary time

limit imposed upon the investigation period.

The model presented by this report represents

a particular phase in the development of a simulation

model of the hydrologic system of the Bear River

basin. Further development of the model will continue

and other related dimensions, such as water quality

and economics, will be added. However, the model

is now capable of answering many questions pertain­

ing to the management of the water resources of the

basin. The study has demonstrated the soundness

and validity of the computer simulation approach to

hydrologic problems within the Bear River basin, and

has provided a firm basis for extending the model to

include additional dimensions encountered in the

comprehensive planning and management of water

resource systems.

BIBLIOGRAPHY

Blaney, Harry F., and Wayne D. Criddle. 1950. Determining water requirements in irrigated areas from climatological and irrigation data. Tech.nical Paper 96, Soil Conservation Service, U. S. Department of Agr iculture. February. 48 p.

Chow, Yen Te. 1964. Handbook of applied hydro­logy, McGraw-Hill Book Company, Inc., New York. 1453 p.

Gardner, W. R" and C, F. Ehlig. 1963. The in­fluence of soil water on transpiration by plants. Journal of Geophys ical Research 68(20):5719-5724.

Linsley, Ray K., Jr., Max A. Kohler, and Joseph L. H. Paulhus. 1958. Hydrology for engineers. McGraw-Hill Book Company, Inc., New York. 340 p.

McCullock, Allan W., Jack Keller, Roger M. Sher­Inan, and Robert C. Mueller. 1967. Ames Irr igation Handbook, W, R, Ames Company, Milipitas, California.

Phelan, John T. 1962. Estimating monthly "k" values for the Blaney- Cr iddle formula. Pr e­sented at the Agriculture Research Service­Soil Conservation Service Workshop on Con­sumptive Use, Phoenix, Arizona. March 6-8, 11 p.

Riley, J. Paul, D. G. Chadwick, and J. M. Bagley. 1966. Application of electronic analog computer to solution of hydrologic and river-basin-plann­ing problems: Utah Simulation Model II. Utah Water Research Laboratory, Utah State Uni­versity, Logan, Utah.

41

Riley, J. Paul, J, M, Bagley, D. G, Chadwick, and E. K. Israelsen. 1967. The development of an electr onic analog device for hydrologic investi­gations and conservation planning in the Sevier River Basin: Utah Simulation Model I. Utah Water Research Laboratory, Utah State Univers­ity, Logan, Utah.

Riley, J. Paul, and D. G. Chadwick. 1967. Appli­cation of an electronic analog computer to the problems of river basin hydrology. Utah Water Research Laboratory, Utah State UniverSity, Logan, Utah. December.

Soil Conservation Service. Department of Agriculture. 1964. Irrigation water requirements. Techni-cal Release No. 21, Washington, D. C. April. 61 p.

Thorne, D. W., and H. W. Peterson. 1954. gated soils. McGraw-Hill Book Company, New York. 392 p.

Irri­Inc.

U.S. Army, Corps of Engineers. 1956. Snow hydro­logy; summary report of snow investigations. North Pacific Division, Portland, Oregon. 437 p.

U, S, Bureau of Reclamation, Department of Inter­ior. 1970. Bear River Investigations. Status Report. Salt Lake City. Utah. June.

West, A. J. 1959. Snow evaporation and condensa­tion. Proceedings of the Western Snow Confer­ence, Cheyenne, Wyoming. pp. 66-74.

Willardson, Lyman S., and Wendall L. Pope. 1963. Separation of evapotranspiration and deep perco­lation. Journal of the Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineers 89(IR3):77-88.

APPENDIX A

SUBBASIN INPUT DATA

43

!VA~STON I !Y~NS 7 I EV~NB 7 I !YANS B I

g. 3B line. 7111111

I I C1IlIX12F'.1l ITO 4221 I TO S 122 ITO B 2.2 (I'XI2'4.2)

832 10'

1100 I

2 00 2.

2

IgB3S 4

3S23 4 7g ••

•• ••

314

281 S 320' 24"

•• •• 242 247 4.8 .g7 ,.B 8S2 Sg3 S37 438 344 174 147 2.3 342 .73 S4g 821 83. S21 42. 22g 204 1.7 2S2 3SS 483 S8g 828 S8g S3I 3g7 223 18a

U • 5; ~4 7' I' 78143 III 18. 7. Ig 12g Its 137 lIS 128 3g 232 87 71 3B 2

Bg 142 73 40 B2 18' g4 14 B3

U , 57 U 4; I~ B 121 3S 7 (1IlIXI2F'.0'

I Ig,. S 492 I IgSS S 18S I US8 S 80s

(8XI2,8 •• ) 1-4 '4 1-' " 1-4 S8 1-' ,. 1-4 SS 1-4 S8 C8X12F5.1lI)

'20SS4 4.00 '2'SSS 284. '208S8 Sg8. 01;!Ii'4 III 01gSSS • 01 9"5 ~

(8X12f 8 .') '10SS. • 010SSS • 01""15 0 011". 234", 'IISSS I.S. 01 IS '15 21'0 0120S. 4g2 '12.SS 328 0t20'5 '00 '18.S. 4g2 0115~!I5' If" 0115""15 15.' 0170', 0 0I7e~, 0 '17.se 123

RANDOl-PH 2 RANOH 2 RAND ... 2 RAND'"

13. lP10€)

1

7 7 8 1

os I'. I

SSS 8et 2g70 1.3. 2'40 147 Ig4 3870 2.7. I8B. 488 2S8. 217' 372' 8S2

2.2 183 288

77 103 218

• o •

222' 172' 1830

S •• 3'S .3' SSS 1'7 '88

28

• 88

4;150 1S150

14S •• 23'0 1380 g8'

• 2S •• 1900 237.

S3a 387 8S2 881 Ig.

2!5150 18 I

• Sl8

2 ,. ••

I

10!524 3155~3 34202 11121:1 • 38g8. 41SgS 1128. • 21047 44728 171S4

12S2' gS10

1.880 2230 415150 201521

24'20 2874. '70;0

34'0 3570 3040

I.g. 333 ,

341150 37.7. '215'0

811. Bg8.

10780 14~0 2.7. 3720

S33 1100 2420

S38. 20$3. 3733.

1157tJ 3840 40150

1010 13e, 1S2.

lSa7, 33100 $0g13

1"0 349. 41:1150 2040 U8.

15',-8.

233 27.

'002' 4

'2 4000

715' 4 00

'"

1213

3B 13e

$1

• 8' •

S82 494

108. 2300 ~870

27'0 238 48. 410

77 103 21e

• 8

8.a S 3200 28,.

0A 20

7. 170 Ie. 7S 222 1080 e8 101 I4S

2831 2831 3187

a3 214

g

110 102 242

'27 718 SJ0

Ig70 2'10 2.80 3,. ... 4.7

70 7S a8

• • •

200. 200 2se 200

I.' 1.0.0002415"8.0002'15"8 (l.XI2'4.1) 2\11TR 4 218 2\11TR , 78 2WTR 5 193 (I.XI2'4.2) 2A 4 9~ 2A , 78 2A 8 1154 [10X 12".2)

2 19'4 , ~8' 2 19S5 S 39. 2 19sa S se7

[10XI2".2) 2 4 2 S 2 e 2 2 2 8

(8XIU8 •• ) ~25'~4 48;0 0215'!5!5 2480 021515'5 9400

C8XI2F15 .Ir.) 024121154 02411l~' 024"~5 02~~~4

02~0" 02301515 32115'4 021S~' ~21S!5e 0210154 0210!'1j, 021OS8 01gSS. 019'!5~ ClI19!5!55 A2A!5!54 02015155 Ql20~!515

209 29. ~B7 SAS JO' se7

28 12 ,.

SS2 4!157 088

• • • 40P1" 2(IJ40 ~980

11:1; 2715 418 !500 !li47 15415 ,;0 '28 4215 3.7 131 II' Ig7 ~!5P1 4715 1544 1521 1528 1522 428 2S7 215' 1015 2715 3915 15015 !5152 1540 ,71 ~2' 423 2'1:1 170

47 102 110 157 '8 9

S71 333 .87

19 10' 19' 1'0 217 1:1, 121 1;2 1:1; 215 17' 1'7 1815 1157 174 154 112 24' S331' 92 g8 S\ 3 127 Ig 113

702 8'~ 12150 1:1715 742 1515; 48; 39' 4415 1410 1:1150 15157 1542 417 8.3 2010 21:120 1;80 115150 1220 1010

2 •• $0, 3.0

8S lie, 14,8 1415' 83S 142

3S9 118. 120S

lOS 110 1$1

240 .. 8

048 0S2 ,4$

.38

.32 0S2

,157a 1~30~ 8430 3290 2100 61' 17g. 27150

48, 18'0 1440

228~ 2000 8300 4430 9313 5170 30010 17"'71" 40!530 3181:10

28S 2S3 2S8 S71 33' '87

10 17 SB

S8S 443 7e4

20

• , 3870 24Q1~

.e3"

340 28. 47. 702 39S 8'3

3" 2S

1'6 037 S31 ISS~

23" 1380 08'

.915P1 1!58P1

141500

IS! 2S8 217 843 .. e

2e1r 182 126 $42

2!56r I e3r, 46150 22M 4156e as.

12S2' 91510

14880

30' 2$1 28.

12," 1410 2920

231 SS7

2220 '49~ 7!52P1

114l5e 3"0 3870 ~040

241520 28740 157090

218 204 20S .78 06.

1980 304 2'8 868

1220 2840 2790 1870 3840 4A!5~ 15380

20~30

37330

17. 234 24. 742 8S?

ISse 1170 1430 1S8. e.7 01'

104P1 112

23 S31 8$1

'2' 131'

241 192 198 SSg

"2 122. 3eo 88. 82' SIS H8 688

e 8e

• 38 13e

57

3g8 78' S31

214 173 18' '8g 447

1'1' • 32 e

.74 >71 e30

• 2

• • • •

421:1 '11 '~15 15315 7'7 151S0

15215 1589 147 1'.0 8.; 24150

1154 220 114 284 120 22' 464 42; 443 431S ;615 7157

• 22 32 23 6 2'

715Q 1504 822 622 9a8 1521 110 1503 102 SgO 242 1120

63 '23 214 2010

9 13150

o • • 2.3.

2430 21g.

341 841

4" 158

108. 14S

• 231

1820 7600 3'20

44

COK!YI1.1.! 3 COK!V 7 3 COKEV 7 3 COKEV 8 2

40 315 200. 100

2 I S

(10XI2'4.1)

8B 3 100 '0

1100 20 I 1

13.4 4 2S 0S U 2200

3 1

3WTR 4 2\8 Igg 278 418 S00 S47 848 S90 sa '28 347 131 3WTR S 7B lIS Ig7 3se 478 S44 821 828 S22 '28 287 284 3WTO 8 Ig3 108 21$ 3g8 $0S S82 8 .. S71 S2S 423 24g 170 3S0TO 4 171 170 228 3.' '88 '32 843 S84 S2 ... 8 330 117 3S0TO S 81 87 le8 321 '87 '33 810 810 se8 '2. 231 204 3S0TO 8 \7' 182 213 373 se2 $10 837 Sg3 S41 420 24S 12g C10X12F'.2) 3A 4 22S 28 108 28 48 13S 4S tJ3 3' 87 lIS gg 3A S g7 1S7 31 7g 181 18g 81 218 1'2 87 184 201 3A 8 144 gl 33 79 247 liS g7 42 10 S2 24 203 [10XI2".2) 3 • 329 384 S80 1270 .gl '11 2se la8 le7 241 38B 2,. 3 S 287 2'3 33$ 23se 1370 12g. '2' 278 102 273 JOe 1320 3 5 745 415; 151;0 2415'" 21'0 780 ~;5 2;' U7 U~ 374 371 [10XI2".2)

3 4 3 S 3 8

3 4 3 S 3 8 (l0X12".0)

142. .78 80S 1077 10$1

1882 2"4 1037 S00

874 884 78S

3 4 ;2,0 ;8.3144158170772;;101';!5010410 '1510 .7150 15'70 77;0 7'10 3 S 70g. 7130 848.21S8024020322g011880 8.g. 81se 7800 80$012.80 ~ 151'21e.11115048710,,!5701540008448018740 ;330 15180 8'.0 1:17150 ;7;0 (8XI2,8 •• )

0320!5. 37e.0 3.01a 31520 8~150 3';~0 032.SS 373. 3"0 32se se0' 24247 1lI32121!55 4330 3570 4101Z1 1;4.0 '2.71 '270$4 32. 384 se. 1270 4g1 0270SS 2a7 2S3 33$ 23$0 1370 '270SB 74e 48. al.. 24se 2140 '28SS. 48g0 S870 103.0 8430 32g0 0215,!5, 24150 2280 2000 8~llIe 4.30 0215"15 SI.0P1 15170 30010 17070 '0'30

(10X12FI5.0)

24';" 201'1 stS7.

'11 1200

780 210. 0310

318g0

3GI S. 1228 Il4g 3287 3387 10e. 8S.

18073 Ise8S 2.8S2

2S0 420 3.8 810

17.' 278.

1048g •• 70

11018 la8 278 29S 480

18S0 1440

3GI S8 e.1 12,8 .11 2.31 108. 217g 108g 112. 3GI S8 leH 140a SS0$ '83410.01 7327 la24 1307

THOMAS !fORI( 4 TJoIFRK 7 • TJoIFRK 7 4 THFRK 8 1

80 3S 2001Z1 ~00

I I

428 2

2.1 2 100 00 800 !j!0

1 1

720 1.0 S 2111 01 i!l0 !50 00 00

2 I

31g

.24 320. 21S'

00 00

43a 337 1$3

2'3 00

1$3 IU8 g70 223B .g. 10\0

2400 2$0

2S0 3.0

I [10XI2".1) 'SRT~ • 171

.0001515.8;2. Pl0A'I5.8;2 .000'15 4 e;2

170 2215 31:1. 4158 !532 1543 '8, '20 '08 330 117 '8"TR !Ii 151 'BRT~ 15 174 C10XI2F'.2)

4 PR'4 194 4 P~" 182 • PR!5I5 301

(t0XI2F'.2) • 19154 , 72" 4 1;15' , 1570 4 U!5~ 15 915

[10XI2".2)

• • S

• 8 • • • S 4 8 [8X12'8 •• )

87 158 321 '157 1533 1510 511:1 '08 u; 231 20. 182 213 373 S02 S70 837 S.3 S41 427 24S 12.

.e 38' 2. .3 241 38 78 172 1S3 88 184 2'8 1315 115 ;, 308 I;; 202 2.15 181:1 270 "2 201 e3 188 187 12g .2 8 8 •• 4e 280

720 8S0 2320 2930 2000 122. 80. SS0 ,.. 13.0 23se 3370 ISS0 .30 88 .1 842 818 4SS 20S 121

770 770 720 !li80 710 7150 77'd ;70 .8 97 8S 88

1570 1540 til!! 1158 288 1081 812 181 228 338 9715 15153 204 223 300

0.41Z1!54 1213121 04'015' 81520 04'0!58 1Q1ZI00

1312~ 221 U 215290 322150 17151A 12250 7;150 '730 8151:1e ;91i10 ;440

C8X12FI5.0) 0.10'54 7715 "'4 I PI 15 15 !550 0'10156 11'0 038051 1:1781Z1 0380SS 7.9. 038""15 1'1210

[10XI2., •• ) .liI 15. 7315 'GI SS $12 4GI 1515 1.07

at 15 I/! 1:1930 25'150 2"Q0 31420 141150 104!50 73150 102g0 10~70 1!5000 1242' 4023. 78310\68.0, 038S. 22810 124$0 8000 113.0 11810 11210

718 S00 ess

1"'31:10 7130

111150

880 SSg

1470 1 !Ii 1 I5P.

8481Z1 487U

4270 I151P1

1793' 28120 21!1i150 !li4!570

7100 4120

1.13. 2g91O 2'020 84001'1

2810 415H !li970

141:1!5Q1 3221:10 84480

13,. 1700 2470

10410 111580 18740

801 704

1110 6'70 1150Z 81540

e0. 1332 200S 2038 13$1 672 43S 324 st0 ,.. S22 st. S3S 180S 220' 30.0 1083 610 '73 st0 S •• 1319 ;09 401219 4120; '715' '280 231515 8159 '23 1572 722 722

842 1800 8.7

7410 12980 .7.0

* See Appendix B for an explanation of the variables.

BEAR I.A"£ ~ BRI."E 7 ~ BRI."E 1 ~ BRI.Kf 6 I

20 .~ 1000 250

3 I

2 0. .~

I

7301 20 00

3100 4 2' 03 n 00 I

2636 , 3500 3100

00 00

I 42 II

.333H3H3 (10X12'''.0

2 100 • 100 100 100

MONfTR5' 235 23~ 277 'U 516 5.8 576 626 551 438 360 11. '22 MO~fT.~5 \38 12' 1~2 331 '95 55~ 639 66\ 5'2 "2 25. 2'1 MONH.58 230 115 251 .06 516 590 881 621 567 .39 253 193 Ll'TTR54 139 '~0 219 .31 529 568 686 624 560 '37 365 I" I.IFTTR55 136 125 I" 3H '95 576 663 661 5.3 442 232 253 Ll'TTR~6 22~ U0 <l67 '09 529 60' 561 622 550 ,35 270 203 LAKETR~' 277 0176 310 '52 520 5.8 670 624 559 'AS 310 216 L'KErR55 \7B 147 215 3.9 .9. 552 532 5'0 5.3 ••• 301 303 LAKETR58 261 157 293 '20 515 561 5'7 607 581 .. 7 288 23.

(10XI2".2) 5 'Re. 223 52 170 36 1.8 19. " 55 116 16' 137 !81 5 'R55 10' 185 •• !4~ 14. 154 9' 208 2'1 13 175 391 5 '.56 200 62 23 69 31 I 82 58 62 22 115 16 180

(8XI2FB.3) L.OGR5A 6839 !;57t50 1.0GR~~ 5320 461' LOGR5e 8~UI &~00

00XI2F5.2) 5 • 8 5 5 8

BRlKCNSA 8RlKCN55 BRLKCN56

(BX12FS.0)

88 •• \2530 2B260 17'30 12140 8800 5U. 804~ 29880 28800 1509. 10220 B200 22830 '9230 '1860 18920 12560

ISO 300 200

100 100 100

68'0 7370 8810

PESC5A 0481115 'ESC5~ ~823 PESt:5S 121552

5\80 9A50 1037. 389'0 '19'0 69190 52810 28620 700. 5<38 3800 180'8 11.29 30018 75045 42971 35.6. 8643 8858 I"" 28281 35872 3'843 70171 58506 26899 10121

(BX 12FS. 0)

3.e. 6191 9854 13J.I 15893 S8P7

HUE" 12130 13120 22110 28290 32280 1781~ 12280 7.'0 '730 H'RE', 8U0 8180 9930 US50 2'50. 31.20 1'180 10'80 7350 H.RE58 1.00. 12.20 .9n0 7UIUM000 936'. 22610 12450 8000

88;0 10290 IlJ90

.99. 9440 10370 18000 11610 11210

MONT54 "3 3ge 'U 1380 IU0 125. 152 '.2 480 MONTS5 3'0 305 3J2 825 \450 201~ 9'6 5n 42S MONB8 582 JO\ 859 3820 5030 271~ 1280 745 880

471 '81 ~98

• ,605._ 985.-10450-20820-26010-11510- 768- 2160- 2\90- 732-048085- 8020- e130- '''0-22980-1177.- 7390- 2880- 557.- le8.­• , •• 86 -13620- 8320 -393. 0-74 140-85 450-.7020-\0 850- 7130- '35-

4710-78J0-5180-J7J0 334111 3230

05958' 71 58 61 60 32540 38840 85770 53300 26120 .5958~ 12J 111 12J 119 99 •• 14780 70820 3.440 3407. 059856 182 B08 681 Hoe 451. IS74' 82860 '1790 20880

00>12'5.2)

SOO' SODA sao A. SOD'

20 Hl00

2

7 7 B 1 J5

100 I .5.

Cl0>12F4.1l HONTTR!54 23' HONTTRl55 138 MONTT~'B 230 GRACTR,4 1!51 GR4CTR', 13ft GRACTR56 14&

C10X12F4.2) 6 PR54 172 6 PR" A7 6 PR'15 210 C10U2F~ .2)

I

GEOR ~4 l~;,a GEOR ~~ 13~S

GEaR "1'5e C!0"2F~.21 6 19,4 4 • 1955 6 19'e. 4

C10X12F"5.2) • 1954 • 1217 6 19S~ 6 1128 6 1988 e 1840

0"12FS.21 8 19~U 3 :!!~4

8 1985 J .2' 8 1'~8 J 1228

(1"'12F!5.2)

28"

848 10e 600

235 277 124 192 115 2~7 261 2B8 IS' 23. 146 27p

'20 3H .06

••• 38. .17

3703 3

2888 23~

0' I

100

I~' 263 132 18' 29' 93 95 1'1 281 '25 84 23 93 290 7J

6096 •

189.

J022

31 00 00 00 I

100 ,IHJ99

174 2'1 193 213 25> 201

13 185 1&1 80 178 3. 59 258 \&. 1.5 15. 38. " 18 38 1.7 U 133

100

IJ3~ 1490 1470 !88. !PIe 19U In. 188~ 18'0 1550 1510 11.0 1300 12e~ 1~'0 20'0 2060 189. 1720 1720 14.0 1620 1320 I'Z. 16Be J29~ 297. 2390 2130 2.20 19 •• !1e~ 16'0

U0 700 300 50~ .0. o 1300 1100 1'00 .0.

1000 1600 1600 1700 100.

1200 2101 221' '023 '325 8085 .930 2986 1089 1005 1181 1259 1117 299. 183. 32'5 875' 38.0 35H 1276 1632 1943 142. 2933 '230 "3' 3749 6337 50'. 27 •• 1'37 1362 1493

58. 99. UJe 3378 3813 8!8J 473' 2H8 782 57. '2' 15BI 1128 2788 .705 J901 J19. g'l 711 1'88 260' 3.0! 3388 8He 5099 2815 10"

482 Ei70 99' 130J 78. 939

'* See A,:,pendix B for an explanation of the variables.

42P 3~8

4~e 5ge .0' 52'

79;'0- 5370 '630-10480 8380- 1350

714 155 tl590 841

825 3420

45

ONEIOA I ON£IO 7 I 11873 5381 2387 7927 38 1471 13e3 ONEIO 7 11 486 ONEID B 1 .91 3 1233 100' '0 6. 100 00 80 02 00 3200 2200 7B 2000 200 I... 450 700 50 300 00 00 00 00 .0 250 500 1 1 I I I I 1

I \00 .38713 .36713 Cl0X12~'.l)

GRACT.54 181 281 2SB ". 821 ~43 812 e27 588 • ., 388 213 GRACTR55 138 154 234 U' .91 583 "5 855 552 '80 288 255

(I;~i~~:::, 14B 146 219 '17 '20 590 85g 815 586 441 273 201

7 'R54 1'6 8. 223 112 139 250 82 \.0 I" 51 14' 2g 1 'R55 73 19 80 162 238 389 51 211 158 185 13' 322 7 PR5e \7B 11 23 7P 248 62 41 14 33 125 27 113

(10X12",,2' COTTON" 812 515 118a 3930 1150 '89 171 1.8 158 260 371 332 COTTON55 376 353 413 2380 '210 2020 3U 31' 182 185 363 1090 COTTON58 1070 117 2840 9100 '270 517 291 295 127 387 451 ~01

C\0XI2F5.2) 7 19" • 840 510 ~30 3J0 2.0 7 195~ • 280 7S~ 550 .90 280 7 1958 • .70 800 800 '80 Jl0

(10XI2F5.2' 7 1954 8 2'20 2443 380' '!8~ 4520 •• 4. 8910 8190 '3'0 239. 2380 2260 7 1955 6 22'. 2210 2370 '800 3090 J'7. 7830 48~0 '&00 2.30 3130 .030 7 1958 8 3510 2700 4'80 7090 5.'0 un 819. 6310 3910 2450 2270 J00e

(10X12'5.2' 7 1954 3 1.87 1443 2547 2952 4761 50.0 7040 5710 3470 1280 1200 1'00 7 1955 3 13'0 1.90 1340 37 •• 25'0 3950 7830 4510 '\00 1.90 1920 2250 7 1958 J 2230 1730 3210 580. 5550 '390 7340 6060 H8. 1700 1620 1770

(\0XI2'4.2) G.WATR5' 300 30. 3 •• 300 300 300 300 300 300 300 300 300 GRwn.55 300 3 •• 30. 300 300 300 300 300 300 300 J00 J00 GRWnR58 3"0 Joe 300 300 300 300 300 n0 300 300 30. 300

VALI.EY CACHE eieME CACHE CACHE 2~

10.0 8

7 1 52.29 2 27583 3 7 8 392 10 3 II 8 I 7515 2 15883 3 8. 100 00 80

8058 4 8B3 13

15771 • 17 00

50020 5 275

8178 5 3100 2500

7775 116 00 350 700 00 00 '3 00 00 00

1 1 I 3 • I 20 I •• .0000789'3.000078943

(10:.:12'11.0 PRES .. " 176 297 151 .91 587 610 230 680 803 PR!STR58 159 192 267 2'0 54' 813 895 710 801 PQ!ST.58 300 20' 368 457 871 6.J 70e 662 812 LEWITR5' 272 300 3'0 '86 58. 602 715 862 887 LEWIT.58 I" \6. 212 413 5'2 6.1 881 '01 5.5 I.€WIT"~8 2"8 19' Je7 410 570 630 898 855 598 _ICHT05' 298 JI5 363 '98 587 e07 132 687 825 "ICHTR55 167 215 308 .\9 5'2 613 897 128 811 R!CHTR58 31B 213 350 48~ 88~ 632 10. 679 827 1.0U!T~54 297 308 386 522 592 ~!! 741 898 625 1.0UST.55 175 208 30. U2 ~88 621 716 1J5 820 1.0U5T~56 3.9 208 37' 'B1 582 880 730 89' 8., I.~GATR5' 27. J00 382 '.8 586 603 725 685 812 1.0GAT"~ 185 1.7 292 '20 547 615 596 701 598 1.0GATR56 30. 2f! 38. "8 517 651 721 880 823

(10)(12F4.2)

484 405 2158 '98 3lB 299 '8' 3lJ 217 ." 400 250 47. 298 28. 478 308 215 '9' 427 251 508 33' 312 ••• 32. 2" '93 '18 287 512 318 H8 ~03 308 257 •• 3 '18 2~~ 500 330 3\. ••• 321 24~

8 PR5. 170 32 295 92 98 197 31 22 1'2 88 I'. 125 8 PR55 205 18' 100 211 188 221 2' 158 225 ,08 215 '1\ 8 PR58 303 88 9 88 3.3 89 '7 23 2! 1'& 71 17'

(ex 12F8.3) 1.0GR54 8830 5'80 8800 1253. 28280 174J0 121'0 880. 1.0GR" 5320 .8\0 5090 eo,. 29580 28500 1509. 10220 LOGR58 8010 8300 8200 2283e .9230 '1860 18920 12560

C10XI2'5.2' CA'(ALSS4 CANALS5!! CAHA!..556

t6X121"e:.",

ge0 550 6.0 40. 450 ... B00 IJ00 10n

3.0 J00 803

150 280 250

4827 1

6640 7370 &870

200 J00

5460 8660 7130

8E AR54 53P31t SE.tR55 53140 8EU561114{l!~

88850 8'.7. 91320 20330 la9. 46300 8'810115000 883'0 46200 ' •• 2011'30015820015280. 32JO.

2800 202. 41590 9880

10>30 9980

2130 '8'~ 883.

! ~89. 3502. 13;'80 380621

9;290 39830 8700 217. 6462 2720 8~90 2990

4~200 46950 59630105400 58810 67510

ECN!,.54 0 J .. 882 9". 881> €CNL5~ 0: • 0 • 5900 7010 ECNL58 r e 0 53! 5850 921' "ICN1.54 1720 1.50 26 17H 3827. 3455. WCNI.SS 1550 _eNI.58 1180

.2' .52 • 2!100 29710 97R 128 • 273 ••• 0890

(SU2F8.0) ONIO~" 2"140 24Ue ONIDS5 2237. 2~050 ONIDi56 348!0 2liHiIIBlJ 1.0GN!54 6830 57t1~

1.0GN85 8320 '810 1.0GN56 B0,. 8300 Bl,.FK511 59:!!" 440~ 8L't<,e 4Vi70 3f510 BLFI<5!5 1~A0 !IIU~ LB~P!54 ;'39~ 30e:0 L.eNP~!5 :f!!S6~ ~4~~ LBNP,!! 130~ 4540

3785. 2387. 44e00 680. 509. 8~0~ 5e3~ 4.30 7800 SIB' 368. 9590

'1850 41B.0 7065. 12SJ0 P0'0

22630 10280 7'20

20380 !l480 lJ9H 171'.

J9J80 268.0 5'B10 28260 298B0 4Q231i1

8560 151'~ 19290 .920

18!!40 1.170

41850 26190 28J.0 17430 28530 418621 5"3 74421

10770 1610 386\:'11 3:!2~

3903. '214. 401540

60190 87710 5B53. 121'. 18090 1892.

516" 5710 B580 1000 1180 ! '00

(10't12F3.2) GWAlER54 4~ GW!lE!rl55 43 GWATE~56 43

43 ~3 '3 4J '3 '3 .J ,3 .3 '3 '3 '3 '3 43 '3 '3 'J .J '3 .3 .J '3 43 43 43 43 43 43 4;' 43 43 4.$ 43

956 • a64~ ~!580

392'0 353.0 '08B0

56920 39820 55J ••

8800 10220 12860

4720 51i0 7340 82' 96'

10150

2~.U 11030 30910 13380 JI7.~ 16460

4001H'! 4297171 35183

7090 778. 962'tl 4290 4~90

63"~ '0~ ue~ .56

23750 241 ~0 24410

6640' 737~

tl870 424~ 4e5~ 61110 19~0 1~30

1840

533 2 3~ 0

424 0 5~6' 3180 5260 15J0 43421 3190

23450 3116. 22620

60'00 54i0 7640 4~1r.

433l-1 ~15!50

262~

28~~ 31~V1

22470 40\20 29850

54S0 B80. 713i1J 391" 6B30 !545-a 2340 il84:?i 3340

TRE"O~TON I 10 BAnE 7 1 17&03 2 13750 3 1158 • lee.e 5 5513 &e12 7 72 10 eRnE 7 S U93 10 507 11 217 13 217 10 BATRE 5 I 93. 2 30P2 3 ·ue • 2e;a e 9505

30 SS 100 00 •• II 00 3500 2800 III 2000 200 1000 100 e~0 00 0. 2400 1700 03 04 0S 250 se0

2 2 I I I 4 I .5 .S.n0117S'9 1 •• 0a0117~ 4g, 00011"49 1.

(UXI2~ •• 1l CORITR5' 307 335 358 SU 592 e2' 7'7 70S 5'3 512 4U 2P1 CORITR5S 155 2.2 322 .5& 559 e40 7\1 735 515 5e4 311 317 eORtfR55 31e 2 •• 3113 50& 510 e57 74S US U0 5\0 327 275 GoRL. fRS, .55 324 35e .90 599 523 755 700 ns .DS .31 291 G.RL. TRS5 1.5 20e 3.e '22 ee9 52' 723 731 Sli '9; 301 27; G'RL.TRe5 312 197 374 481 e5e 553 743 590 530 e05 322 251

(14U2r ••• ) 421731 1954 152 70 201 34 115 75 18 15 225 29 ID' 113 1253 421731 IDee 315 14. 63 IS; 145 21e IS 12e 103 43 !D4 2D4 18!8 421731 1955 330 30 1$ 150 223 75 57 00 00 127 1\ 153 1172 423122 19!J4 105 '7 173 55 e3 UD e2 16 172 70 UP 101 1120 423122 IDse \41 185 D0 84 12. 222 09 229 120 38 77 129 1'44 423122 IPSS 2'1 '5 .8 &2 ID. 48 13 01 09 59 5' 113 S73 (8X!2~5.0) 10109054 5830 5750 5n0 12530 2825. 17430 121.0 U.0 7.9. ti540 5000 5450 nlu.!$ 5320 4510 50P0 S040 2P68. 2850. 1509. \022. n00 737. 849. ass. 10109.55 801. 630. U00 22530 4P23. 'Iee. 18920 1255. pe2. 887. 7540 713. (10XI2".2) \0 1ge. • e0 D80 P •• 1010 \0\0 650 27. 120 S5 10 1ge5 • • 58 • 1e0 1080 910 770 330 110 10 195e • 0 e80 1040 105. 1.40 1P0 400 I •• es (a~12F8 •• '

8RC05' 7~2U 7249. 9275.10'200 3104. 21140 7e •• e:970 20510 .4.\0 5e210 55520 BRC055 n1l7. 5S0\0 95.00127100 1179'0 5587. 7280 10360 15.9. 45820 8837.111100 aRC05UU5.0 1954.12"001 S55.0U2500 • 4120 1S9 • 140 •• 1515. 4682. 6415. 78PIl0

(8XI2F5.01 8EAlS4 5303. e5550 54~1. 9132. 20330 128~0 280. 2130 1589. 35020 .5200 4e9'0 BEAR55 e3740 483 •• 84810115000 &83'. 45200 2.20 4U. IU80 3805. 59830105400 8,,0e8111400 7092011730015S ... le2U" 3239. 469. eS30 9290 3D830 56810 8151. Hl-'O'. 3S7. 53S. au. a250 11l9. 1480 1420 128. 1280 1890 2510 327. HlA.O!l~ ng0 2980 51&0 5980 3.9. 2480 un 1420 1320 U7. 3410 4120 "LAD58 .910 3.60 1520 ;H190 251. 1350 1120 11.40 1050 1350 2150 302. ECNL54 0 0 0 582 0050 8810 9880 11550 5700 2170 ~33 2 ECNL~5 0 g 0 0 e900 '.10 10030 8640 54!0 2720 ~5 0 EC~L5e e 0 0 Ut 55~. 9210 ggeo 9580 U90 29D0 424 e WCijL~' !72~ 148. 28 P50 38270 345S. 3n30 3924. 2S910 11030 5050 ~18.

WCNL'~ I~S. P24 452 o 21100 29110 42140 353401 30910 1H80 526. 1530 WCNL.5! 1150 978 720 o 21390 408P0 401540 40880 311D0 16480 434" 31D0

C!.n2~3.2l

11: See Appendix B for an explanation of the variables,

46

APPENDIX B

COMPUTER PROGRAM

47

APPENDIX B

USER INSTRUCTIONS FOR THE HYDROLOGIC SIMULATION PROGRAM, OPVER

The computer program titled OPVER is a main driving program for linking the various subroutines required for simulating the hydrology of a river bas­in. In addition, a pattern search algorithm is incor­porated within it. A flow chart of OPVER is shown in Figure B.1.

The operating instructions for OPVER are sum­marized as follows:

1. Load OPVER with the core image loader. Upon loading, the teletype should type MAIN I and the computer should be in

mode.

2. the card reader, line printer, and computer. Insure that the proper

patch panels are in place on the analog computer, and that a properly set-up card deck is in the read hopper.

3. Place the analog computer in SP and DIG MODE and ~et logic mode to R and time se­lector to 10 • Insure that counter 0 is set to 1 for FAST operation (line printer out­put only) or 10 for SLOW operation (x-y plotter output).

4. Push RUN-SINGLE-RUN (RSR) buttons whereupon card reader should start and option selected will be performed. For options 1 and 2, go to step 5. For option 3, go to step 7. For option 4 go to step 9, and for option 5 go to step 11.

5. Teietype will type HYDSM 1 and computer PAUSES.

6. Insure proper data for option specif ied is in card reader and RSR. For option 1 and Z, BASIC data (Group 2 cards) should be read by the card reader.

7. Teletype will type CARDS (I) for options and 3 and MAIN 1 for option 2, and then PAUSE. Insure that data for subbasin I (Group 3 cards) are in hopper and RSR to continue for option 1 and 3. For option 2, return to step Z.

8. Teletype will type RESET DB. Set SSW D if desire reruns each year, SSW B if de­sire reruns each subbasin, and SSW C if desire acre-feet table.

48

9. Push RSR and analog computer will oper­ate for specified time after which teletype will print MAIN 1, CARDS (HI), or RESET DB and computer will PAUSE. For MAIN 1, CARDS (HI), and RESET DB return to stpes 2, 7, and 8, resepctively. Set or reset SSW D, B, and C as in step 8 and set SSW E if desire to use re­corded inflow for QRIV and QGLI rather tha than upstream subbasin simulated outflow for these inflow values. (When using SSW E option, all inflow data must be acre-feet. )

10. Analog computer will operate for specified time and teletype will respond as in step 8. Follow appropriate option outlined in step 8 to continue.

11. Card reader should have input the informa­tion necessary for the pattern search oper­ation of the program (Group 4 cards) and upon completing all phases specified tele­type will print MAIN 1. Return to step 2 to continue further operation.

The operating procedure is shown schematically in Figure B.2. The input data necessary for a run may be classified as:

1. Control cards for OPVER specifying the desired option.

2. Basic data consisting of labels for row and column headings for printed output and other data that is common to all sub­basins that may subsequently be run.

3. Subbasin data needed to define the specific simulation desired.

4. Boundary conditions and options necessary to control the pattern search.

The deck set up for a typical pattern seach run is shown in Figure B. 3. Detailed instructions for pre­paring the cards for each of the four groups of data are given in Tables B.1, B.2, B.3, and B. 4 respec­tively. Notation used in the program is given in Table B. 5. A list of input data for a sample problem is shown in Figure B. 4. Input data for each subbas­in is listed in Appendix A. Representative output may be observed in Appendix C. The program for the ana­log portion of the model is shown as Figure B. 5 and a listing of OPVER and all of its subroutines is given in Figure B.6. Flow charts for the major subroutines HYDSM, BASIC, SUBDAT and RESRV are also in-

cluded in Figures B.7, B.8, B.9, and B.lO respectively.

PERFORM NPH PATTERN SEARCHES SELECTING BEST PARAMETER VECTOR AT END OF EACH PHASE OUTPUT VARIOUS INTER­MEDI ATE RESULTS

lTY SPECIFIED OPVER OPTIONS

INPUT ALL DATA

IF ITY ~ 1 MAKE A SIMULATION RUN THRU ALL

SUBBASINS - OUTPUT RESULTS - RETURN

~ 2 INPUT DATA COMMON TO ALL

SUBBASINS - RETURN

~ 3 INPUT DATA FOR ONE SUBBASIN -

SIMULATE - OUTPUT RESULTS - RETURN

~ 4 REPEAT SIMULATION USING DATA PRES­

ENTLY STORED IN MEMORY - RETURN

~ 5 OPERATE IN ITERATIVE MODE USING

PATTERN SEARCH TO CALIBRATE THE

MODEL - CONTROL REMAINS IN OPVER

XIN ~ INITIAL - VECTOR OF HYDRO­

LOGIC PARAMETER

SPECIFICATION OF PPTTERN SEARCH

CONTROL AND BOUNDARIES

NPH ~ NUMBER OF PATTERN SEARCH .5. 5

NPR ~ OPTION WHICH ALLOW INPUTING

AN INITIAL PARAMETER VECTOR IF

, 0, OTHERWISE START AT LOWER

BOUNDARY CONDITION VECTOR

PL ~ VECTOR SPECIFYING LOWER BOUNDS

PH ~ VECTOR SPECIFYING UPPER BOUNDS

NP ~ VECTOR SPECIFYING NUMBER OF INCREMENTS

Figure B. 1. Flow chart of hydrologic simulation program OPVER.

49

- - - - - - - - - - - - - - - MAIN 1

READ CARDS AND PERFORM PATIERN SEARCH

- - - - - - - - - - - - - - HYDSM 1

TIY TYPES CARDS I AND PAUSES

PUSH RSR TO READ SUBBASIN DATA

= 2

- CARDS I

TIY DB - - - - - - - - - - - - - RESET DB

SET SENSE SWITCHES

o FOR RERUNS EACH YEAR B FOR RERUNS EACH SUBBASIN C FOR ACRE-FEET .. TABLE E FOR READING QRIVE & QGLl

RATHER THAN US I NG Qsa & QGO FROM UPSTREAM SUBBASIN

NO

LAST YES r-----(SUSBASIN ?>-....:..:=-----l

Figure B. 2. Schematic diagram of operating procedures for OPYER.

50

\J1 ......

f>

PATTERN SEARCH BOUNDARIES AND INITIAL VECTOR

PATTERN SEARCH OPTION

2

HYDROLOGIC DATA FOR EVANSTON SUBBASIN

EVANSTON TEST 0000

SUBBASIN DATA AND OPERATE

BASIC DATA GROUP

6 10 1954 3

BASIC DATA OPTION

Figure B.3. Deck setup for typica.1 OPVER run.

/0 .. GROUP 4 CARDS

. .... GROUP 3 CARDS

G ROIJP 2 CARDS

U1 N

Table B.l. Preparation instructions for OPVER option control cards - group 1 cards.

Column Fornlat Mnenlonic Des_cription

1-5 15 ITY OPVER option spec ifiction: if ITY ::: 1 sinlulation

::: 2 read basic data only 3 read subbasin data

and operate for period

::: 4 rerun last subbasin 5 perfornl pattern

search

Table B. 2. Preparation instructions for BASIC data - group 2 cards.

2

3

4

5 -1

61-6

7

Fornlat Mnenlonic

( 515) INP lOUT

NSB LYRO NYR

(13 (lXA3)) Vk

(20A4) VARLB. 1

(l2F5.3) PDLk

(lOX12F5.2) WKCj

k

(10X12F5.2) PKCj

k

Description

Input device nUnlber for subbasin data Output device nUnlber for sinlulation

output

NUnlber of subbasins First year of sinlu1ation NUnlber of years of sinlulation

13 e1enlent vector of colunln headings for output tables; i. e. JAN., FEB., ANN

20 e1enlent vector of row titles for output tables. Must correspond to e1enlents as shown in sanlple output shown in Figure

Vector of proportion of daylight hours for nlonths in the sanle order as vector V

Array of consunlptive use coefficient for crops for nlodified Blaney­Criddle equation. Fourteen cards required, one for each crop. j is crop, k is nlonth

of consunlptive use coefficient for phreatophytes. Seven cards

required, one for each phreatophyte. j is phreatophyte, k is nlonth

'" w

k

Table B.3. Preparation of subbasin data cards group 3 cards.

Card

1

2>((

3':'

4'-'

5

6

Format

(10A4,415)

(IOXIOF7.0)

(10X3F7.0)

(IOXIOF7.0)

(IOX7(B, FlO.

Mnemonic

BASID. IRES

MANG

JRES

JCONV

R

CTM

CMS

BAREA

(1 OX7(B, Fl 0.0) II., DCA. J J

40 column page >0 specifies reservoir

operation option of HYDSM >0 management option

of HYDSM > 0 specifies reservoir operation

on canal diversions - not presently implemented

> 0 conversion factorS to be read from card for converting input data to inches

10 element vector of reservoir operating parameters. Needed only if IRES> O. See Table B. 5-C for detailed element breakdown.

Temperature for management of canal diversions Management parameter for soil moisture storage Base area for which the model parameters were developed. Needed only if MANa> 0

10 element vector of canal reservoir parameters. Needed only if JRES > O. Not implement at present

Vectors of cr numoer and area in acres for r u crop corres­ponding to WKC'k' Exactly 2 cards are requi.J:!ed. If DCA; = 0, neither punched

nor DCA, need be J

Vector of phreatophyte no and area in acres for phreatophyte corresponding to jth phreato­phyte in PKC 'k' One card re-' quired J

::' These cards are required only if an option parameter for them is greater than zero.

Table B.3. Continued,

Card Format

7 (12F6.2)

SKAL

SKF

8 (12F6.2)

9 (815) NI

10* (SFlO.2)

11l*-llS* (10A4) FMTI

Description

10 element vector of digital med el parameters. See Table B. 5-A for detailed element breakdown. Scale factor for soil moisture phase of analog simulation Scale factor for channel phase of analog simulation. If SKF is read as 0, it is set to 2.0 by the program

12 element vector of analog model parameters. See Table B. 4- B for detailed breakdown

Vector of the number of stations with NYR years of data of type I which are to be read in and used by the program. Data types correspondence is as follows: 1 " 1 temperature stations

2 precipitation stations 3 stream correlation station 4 canal diversion stations 5 gage outflow stations 6 gage river inflow stations 7 subsurface inflow stations 8 minimum monthly outflow

stations (used only if IRES> 0)

Vector of conversion factors to convert input data to inches. Needed only if JCON > O. If JCONV = 0, program assumes that all input flow data is in acre-feet

40 character format specification card followed by (NYR* N

I)

cards of input data for type I above. A set of these cards for a particular type data are included only if Nl 0

en

*"

Table B.4. Preparation instructions for pattern search specifiction cards - group 4 cards.

Card ForITlat MneITlonic

(315 ) NPH

NPR

NWC

2 (12F6.2) WR

3 (9F6.2) PLI

4 (9F6.2) PHI

5 (915) NPI

6 (12F6.2) PHl

7 (12F6.2) P PHl

8 (1215 ) NPl

9'~ (9F6.2) XIN1

10':' (12F6.2) XINl

Description

NUITlber of phases to be run during pattern search. 1 .::: NPH .::: 5 Option specifying initial search vector If NPR = 0 start at lower

boundary > 0 Input initial vector

froITl cards Option specifying ITlonthly weight­ing coefficients for calculating OBJ = :E W R (DIFF R)2

If NWC = 0 use W R = 1. 0

> 0 Input W R froITl cards

Vector of ITlonthly weighting coefficients for calculating OBJ Needed only if NWC > 0

Vector of lower bounds for the digital paraITleters. See Table B.5-A for a detailed description 1 = 1 to 9

Vector of upper bounds for the digital paraITleters. 1 = 1 to 9

NUITlber of steps for each digital paraITleter. 1 = 1 to 9

Vector of lower bounds for the analog paraITleters. See Table B. 5-B for a detailed description. 1 = 10 to 21

Vector of upper bounds for the analog paraITleters 1 = 10 to 21

NUITlber of steps for each of the analog paraITleters 1=10to21

Vector of initial digital para=eter 1 = 1 to 9 needed only if NPR > 0

Vector of initial analog paraITleters 1 = 10 to 21 Needed only if NPR > 0

'.' These cards are required only if an option para=eter is greater than zero

Table B.5. Notation for OPVER and its subroutines.

A. Digital paraITleters, DIG(I). Input by SUBDAT.

MneITlonic Description

1 KS SnowITlelt rate exponent 2 CIR Irrigation efficiency (deciITlal) 3 CKC ConsuITlptive use coefficient (= 1.00) 4 Cl Precipitation ungaged inflow coefficient 5 C2 SnowITlelt ungaged inflow coefficient 6 COR Sur~ace streaITl ungaged inflow coefficient 7 PTH Precipitation threshold for runoff (inches) 8 TS Snowfall teITlperature (OF) 9 TSM SnowITlelt teITlperature (OF)

10 SNW Initial snow water content (inches)

B. Analog paraITleters, PH(I). Input by SUBDAT.

I MneITlonic

10 KG

1 1 DTA

12 MCS 13 QGTIC 14 QG2IC 15 QH

16 QM

17 CGH 18 CGM 19 CGS 20 MES 21 MIC

Description

SITloothing coefficient for groundwater inflow (.::: 1. 0) Cropland groundwater return flow delay tiITle (ITlonths) Soil ITloisture capacity (inches) Initial cropland groundwater return flow (inches) Initial groundwater inflow (inches) Threshold separating high and ITlediuITl Groundwater outflow ranges Threshold separarting ITlediuITl and low groundwater outflow ranges Fraction groundwater outflow, high range Fraction groundwater outflow, ITlediuITl range Fraction groundwater outflow, low range Critical soil ITloisture level (inches) Initial soil ITloisture storage (inches)

U1 U1

Table B. 5. Continued.

C. Reservoir operation parameters, RES(I). Input by SUBDAT when IRES> O.

D.

I

2 3 4

5 6 7 8

9 10

Mnemonic

STI

STMN STMX ER

CA C1 C2 STB

C3 C4

Initial storage volume in reservoir (acre-feet) at time 0 Minimum usable storage (acre-feet) Maximum storage (acre-feet) Desired accuracy level for successive area computation Reservoir area at STMN = 0, (acres) Constant in area equation one J;;lq),Qnen.t in area equation one Break storage between area equation one and two (acre-feet) Constant in area equation two

in area equation two

Subbasin hydrologic input data, DUM(J,K,L). Input by SUBDAT. J is the year, K is the month, and L is the data type.

L Mnemonic

1 TEMP Subbasin monthly temperature data tF) 2 PPT Subbasin monthly precipitation data (inches) 3 QCOR Surface streamflow data for correlating

to obtain monthly ungaged surface inflow (acre -feet)

4 QCNL Subbasin monthlv canal diversions (acre-feet)

5 QGAG Subbasin monthly gaged surface outflow to be used for verification with OPVER (acre-feet)

6 QRIV Subbasin measured monthly surface inflows (acre-feet)

7 QGLI Subbasin measured or estimated monthly groundwater inflows (acre-feet)

8 QR Minimum monthly outflow values for the reservoir when IRES> 0 (acre-feet)

Table B.5. Continued.

E. Labels on tables of printed output, OUT(K. L). K is the month and L is· the data type.

L

1 2 3 4 5 6 7

8

9

10 11 12

13

14

1 16 17 18 19 20 21

Mnemonic

TEMP F PPT QRIV QUNG QCNL QSIT

QIGS

QGLI

SNW SNMT ETPH

ETP

ET

MS DP QTO QGO QSO QGAG DIFF OBJ OBA

Description

o Monthly temperatures ( F) Blaney-Criddle F Monthly precipitation (inches) Measured surface inflow Monthly unmeasured surface inflow Monthly canal diversions Surface water available for transfer through the basin Surface water applied to soil moisture storage of the agricultural area Monthly measured or estimated ground­water inflow Snow storage at end of month Monthly snowmelt Evapotranspiration from the phreato­phyte area Potential evapotranspiration from the crop area Actual evapotranspiration from the crop area Soil moisture storage at end of month Monthly deep after delay Total monthly outflow from basin Groundwater outflow from basin Surface outflow from basin Gaged surface outflow from basin Difference between QSO and QGAG 2 Sum of squared differences (DIFF) Algebraic sum of annual differences

2 INITIAL. DATA IN :::J- GROUP 1 CONTROL CARD 15 15 10 1$I~4 ~

JAN n:B MAR APR MAY JUN JL.Y AUG SEP OCT NOV DEC ANN TEMP F PPTQRIVQUNGQCNL.QSITQIGSQGL.I SNWSNMTETPH ETP ET /1& OF' ClTO QliO QSOQUG

815 57 83 110 101 102 104 SlI5 84 78 66 113 AI AL.FA 1 113 74 811 SIll 112 119 110 105 99 110 7S1 5e A2 PAST 2 ~~ ee 81 8e 102 99 93 Sll 87 80 74 58 43 1I0HA 3 55 ee 81 94 10S1 115 110 U5 Sl5 84 7" 82 A4 SMR 4 29 29 28 74 118 127 73 40 lSI 22 2S1 aSl A5 CORN 5 29 29 28 22 60 73 93 1015 USI 1IS1 21l iU 1115 sueT 5 29 29 28 22 58 SIS 1015 \20 IIi 102 29 U A7 POTA 7 :il1l 29 28 22 30 42 88 131 134 22 29 29 A8 DRCH 8 ('14 74 Be ge 108 113 111 10e gSl Sl0 78 155 GROUP 2 CARDS-BASIC DATA All PEAS $I READ BY SUBROUTINE BASIC A10 TOMAI0 29 2S1 28 45 50 75 101 $17 83 40 211 U A11 Sf'1TRl1 29 29 28 37 52 n 82 78 e1 40 211 2SI A12 IOL.EI2 Al~ BEAN13 29 29 28 22 /l7 111 U 75 20 25 2S1 2S1 A14 81.AN14

~CI f'"' , 18~ 18' 185 185 IS5 185 18~ 185 185 185 185 185 C2 HWGW 2 II~ ~e0 113 13/l 141 142 142 141 135 125 102 75 C3 M~GT 3 515 .~3 53 55 III 58 77 82 83 81 75 159 C4 I.WGT 4 ~~ ~3 ~~ 34 38 42 48 ~1 51 50 47 42 B 1 (\,jPWT 5 101 130 14S1 155 155 151 144 141 138 1~7 128 112 UR URBN 6 Bl DPWT 15 100 11'10 U0 11110 100 100 100 100 100 100 101il 100

~ SUBBASIN DATA IN OP AND PRINT ::::J- GROUP 1 CONTROL CARD EVANSTON 1 EV.ANS 7 2599 2 8823 3 19835 4 314 1 EVANS 7 I EVANS 8 I 532 2 1509 3 3523 4 2151 5 2434

90 38 100 00 70 79 00 3200 2400 15S1 2000 200 1000 700 IU0 2111 00 00 00 00 00 00 Ufil 250

1 I 1 2 2 5 [10XUF4. n ITR 4 221 242 247 4015 497 548 552 1593 537 438 344 174 IT II 5 122 147 203 342 4n 549 1521 530 521 420 22$1 204 lTI'I 15 U2 107 252 355 48~ 1589 15215 569 5~1 ~1I7 223 11515 CUX12F4.2l 14 4 159 34 75 14 78 143 111 160 70 U 142 73 lA 5 57 81 49 19 129 115 137 115 128 40 82 180 1A 5121 ~!5 7 39 232 157 71 38 2 114 14 83 C10XI2F5.0)

1 19154 5 492 555 881 2970 14~0 2040 202 n 53 70 170 1/i0 1 1955 5 les 147 1S14 ~870 2070 1880 1153 103 52 75 222 1080 1 1956 5 545 488 25e0 2170 ~720 552 2115 216 4~ 158 101 145 C8X12F15.~) 1-4 54 1'1 II! 1'1 101524 35833 34202 11129 3394 251110 21531 " 0 1 .. 4 155 111 0 " " 36964 41595 11280 55!!1 2781l 2631 ~ 0 1-4 !!15 0 til

'" III 21047 447215 17154 5157 21S7 3157 " II

1-4 54 GROUP 3 CARDS 1-4 55 SUBBASIN HYDROLOGIC DATA, 1-4 1515 READ BY SUBROUTINE SUBDAT C8XUF/l.II)

0205154 40"0 3870 49150 125211' 24520 5380 /l154 ~8 0 153 423 18il0 0205515 21540 2400 158~ Sl510 28740 201530 424 135 til 214 20U 78i10 0213558 5980 41130 14500 14880 157090 37330 13 !ill 57 til 9 13521 27150 0195!!4 13 20 2350 220111 3415111 1870 112 0 111 110 503 3S12 0195155 111 0 1380 41551ll 357111 3840 23 lit! 2 102 51lSl 8 13195515 111 III 984 2050 3040 4050 531 0 0 242 1120 0

(ex 12F15 .111) 0105!!4 0 0 0 54 10S/0 1010 1280 5152 545 427 110 0 Q11~5!!5 0 " 0 0 333 1350 1210 494 778 718 0 0 01055e 0 0 0 ~ 0 152!!! 1550 10150 5~5 530 0 0 13115154 2340 222111 251'10 71515e 341150 15157~ 6120 2300 22013 1970 11130 20~0 011!!55 19!!0 1720 1900 33150 37470 3~100 6740 3R70 2010 2010 20150 24~0 011~55 21S0 18~0 2~7111 151100 52640 5091!! 114150 2750 1420 21!8i:! 2200 21S10 0120~4 492 500 536 2250 6110 1540 431 238 293 354 3815 341 1'12055 328 305 3157 802 6950 3490 5S7 4t10 314 404 458 541 1/1 12il515 1500 43111 552 2t!150 107 BI' 49150 1527 410 272 407 4"~ 440 01150154 492 555 e81 21170 1430 2040 21il2 77 53 70 173 1158 13115055 1155 147 194 3870 2070 1880 1153 103 152 715 222 1080 011511155 e>4S 4e8 2560 2170 3720 552 2156 2115 43 68 Iill 145 "'17054 0 26 181 758 1533 80 21 0 " 0 0 0 0170515 II ~ 0 743 14011 233 5 Ii 0 0 0 231 0170156 123 8e 548 1320 2420 273 0 0 0 0 0

5 OPTIMAL. VE~IFICATION OP ONL.V ~GROUP 1 CONTROL CARD 1 1 110 30 100 00 20 02 0~ 3100 2~00 9 I!! 50 10111 o I!! 70 07 0~ 3300 2600 3 5 1 5 5 1 4 15 GROUP 4 CARDS-PAITERN

100~ 100 800 00 00 00 00 00 00 00 2!!0 200 SEARCH SPEClFI CATIONS 100~ 7~~ 1200 40 00 0~ 00 00 00 0e 250 400 READ BY OPVER

1 I; 4 1 1 1 1 1 1 1 4 g0 38 1~0 00 70 03 00 320D 2400

100111 70~ 1100 20 00 00 il0 00 00 0\', 250 250

Fi gure B.4. List of typical input data for OPVER.

56

U1 -J

-I

-ETP SKAL {O

-QGO SKF SKAL

(ai

I

... 1, 1.......1'---1 II I ,_/

'T" L--------.{8'~OI.--.. , ,-". '" ~

MES SKAL

,-, _J 161

- " .I'

~:~:~----:I~ Ts~ ... ,

FB (12,,' ,_, /a" , -- .. 112, 1 I '-_ ,_ '., ...

I

I FB IL -------1 - - "--

QGAG

... -, -@-SKF SKAL

--4121 '-' ,-,

---.... 14 , ,

,-, ,-, -----l151-- _ .. J 151 ,_.... '-"

Figure B.5. Analog computer program for use with OPVER.

+1

QGTIC SKAL

DELAY SEQUENCE

-

QG21C SKF SKAL

- QGLI SKF SKAL

QSIT SKF SKAL

* NOTE: INTEGRATORS 00, 01 MODE CONTROLLED BY AND GATE CIRCUIT ON THE LOGIC PATCH PANEL. TH~RUTH TABLE FOR THIS CIRCUIT IS AS FOLLOWS: ~

ANALOG MODE @ @ ® I I 1

OP

IC

HD I 0.'.' 0 0

o 0

WHENEVER THE ANALOG GOES TO AD MODE, INTEGRATORS 00, 01, 30, AND 31 GO TO IC MODE.

OPTIMAL VERI~ICATION ~! "OOIFIEO PAnERN SEUCH - OPVER IfE!!" MIC,KS,MES COMMON W~C 04,121 ,WK (121 ,POL. (121, N tal, 00 (12) ,FHT t 10), CVR (8),

I v (13), ACU1, BASIO (101, Pv (!Sl,OUM ( 3,! 2, 81 ,PKC (7 ,121, SWKC 021, UPKC 021,11 (14), OCHI4), CAC (141, PCA (14), PAC (71, PPA (7) ,OUT (13, 21l 3. DIG tU) ,RfS (U1,RUC tl0), ROUT (4 ,13,2), Xl" (ilil 4, MIC, MS, EHS2, SKlL,SK., <IN (8,211, PH (211, PL (211, OR (21), NP (all

COMMON %NP, lOUT I HS8 / t ¥~o t NVR, IRES, lUNG, J~E&, eTM, CONV, CONV 1, CONPV 1, MES, SKAl.l. SIUL2,$l( At3 ,SPAt, SCAC, N¥8 t W (12) ,eMS, BARE'"

CAL.L OSHVlN(IERR,8U) CAL.L QSCC\,IUR) 00 Oil 1..-1,12

IH5 W{!.)-1.0 I TVPE 20"

200 FORMAT (8MMAIN III OCT 2S000

lee 'O~HAT(18Ie) READ (8,100) IT! 1F(ITV1g~,gg,2 GOTO (S,IJ,7,8 pst) t ITV IH'I OPtRiTE AS ORIGINAL PROG.AH RETURN AFTER 30

2 INITIAL. DATA ONLV 3 SUBBASIN DATA IN DP AND PRINT 4 OPERATE ANO PRINT S OPTiMAL VERIFICATION OPERATE ONLV

e: IENT-l IRET-; J .8e

6 IENTal IRE1·l J .80 IEf·n·2 UlET -2 J .S0 IENT'3 IRET_:a: J .ee REAO NO OF PHASf! (NPHI ANO OPTIONS FOR REAOlllG XIN (NPR1 ANO WEIGHTING COEFFICIENTS (NWC) REAO (!, U0,NPH tNPR, NWC IF NWC • 0 READ MONTML.V WEIGHTING CDErFICIENTS fOR 09J IF(NWC .GT. 0) REAO(6,10\l(W(L),L'ld21

INPUT OIG BOUNDS ANO LEVEL.S REAOC8,UI) (PL.(Ll.L'I,9) READ (S,10I) (PH(L1.L'I,9) A'EAP ce, U'0) CNP (\.) ,L a 1, g)

10) 'ORMAT(12F8.2) INPUT BOUNDS FOR ANALOG:

11 REAOCe J ut)(PLCL1,L a 10,2U R!:AO ee, 13U (PH CL) I Lal0, 21) REAO ee, 100) (NP CL), L.10,'2l)

COHPUTE INCREMENTS D020L a i,21 :(L-NP ell U"CL)·PLCL) XIN(\,U,PLCLI

200RCLI'CPH(LI-PLILII/XL IF NPR GT {II INPUT XIN'(1,L)

LA NPA A /0 OCT 027407 J .13 REAO US,10ll eXIN 0, L), LU, 9) "EAO C6,1"0 (XIN (1, L), L-10,21) SET XIM AT INITliL VECTOR 00 14 La ltU

14 l<IHCL)aUN(1,L' 13 WRITEce,102)

102 F'Oi?HAT(1Hl,~X,3!HPR NP PH PL XIN OOIli) 00211.-' ,21

21 WRITE (e, U:!)L, t.lP fL) IPH (L, j PL (U, UN C 1,Ll JORCL) 103 FClRHAT('X,2Id,4FIJ.3)

WRITEt8,IM) I" rORMAT C\I<1l

POBJa!5IU'1I'1!J0.0 R08Aa~.0

00 FOR' EACH PHASE 25 00101(t:1,NPH

St:T ALL PARAMETERS TO INITUL LEvEL ANO OPERATE OIGITAL

00 27 L-t,; 27 OIG (Ll aUtHI( J L)

ANALOG 00 28LI10,21 VALaxtN(K,Ll CALL POTSTCL,VALl

28 CONTI,UE OPERATE WUH PHASE INITIAL OATA

CALI.. HYOSH(3,3,08J,OIU} 1,,110 Fnll"" 4T (t )010, F10. 2 ,F"ti.:2', 9F7 .. 3)

WRITE {!, \(U) 08J I OIU I (X I N (X, I.) ,L-t,~) ~RITE Ui ,10U CUN (K, L) ,L .1~, 20 WRITE(!, 104)ROBJ, R08A, CXIM(L} ,L-l,9) ~FlITEC6, 100 CUM (U ,L a 10,21'

CMECl<. ROBJ AG.AINST OBJ OF XINCK,L) IF(08J-ROBJ) I~e ,170, 170

US0 ROBJ a08J ROBA_OBA J .IS"

170IF(I<-1)171"'1,1 15 17) ROSJ'OBJ

ROBA_OSA J ,180

17~ 00 1715 Lat,U 1715 XIN(K,LlaXIHCL)

Figure B. 6. List of digital computer program OPVER with all subroutines ..

58

RU!T PUAKfTERS TO XIM. OIGITAL

00 11, L-l,g In OIG(Ll.xINCK,LI

ANALOG DO l7a L'\0,21 VAL_XIN ('<fL.) CALL POTST (L.VAL1

178 CONTINUE OPE RUE WITH 8EST VECTOR

\60 WRIT! CSdeSI CALL "YO~MI3,2,.OBJ,ROU1 MRlT~ (4, it".) ROeJ, ROSA, CXI N (K ,L} ,1.-1, liIl •• nEcad011 CXlNCK,L),LOle,2!l

U8 'ORHAT (I H04XIHP4XI"L5X3HPARI3X3HOBJI ~X3HOUI ~"HGRiOI) .RIT! (8. 10&)

00 FOR EACH PARAMETER 3' 00SU'I,21

XltHI(+l. n -UN (K, Il PAR'PL Cil NT'NPCO+l IF CNP 01.LE.11 ~T'I 00 FO. EiCH L.EVEL

:)8 00 50 J-lfNT IF U ... 9)40,40,41

4e1 OUHnaPAR J .4!!!

4! CALL POlSTel, PAR) 4!!! CALL $oi'lOSM(:),:S,08J,OSA,

IF(J-t1SS.SS.,e ~!5 I'HI .. 0.9.I.

POBJ'OBJ 08J )'OBJ GO TO '7

sa GRAO- COBJ-OBJIl/DR (I) ODJ laOBJ

57 WRITEC!,U7)I,J,PAR,OBJ,OBA,GRAO 137 IC'ORMATCtX215,P'U,..:),~F181!S)

CHEC~ OBJECTIVE FUNCTION IMPROVEHENT IF (OBJ-P08J) 4a, 4",48

48 '08J'OBJ P09.UOBA XIN(I(+l,I)aPAR

CHECK OBJ AGAINST MINIMUM R08J IF(06J .. F!OBJ) 140,48,48

140' ROSJ_OBJ ROe-UOaA 00 1~0 LI1,21

150 XIM CL).XINIK,LI XIH CI)aPAR

48 PAR_PAR+ORCI) S0 CONTINUE

IUSET PARAMETERS IFeI·9'52,~2,53

S2 OIGC!)'XIN(',!) J .83

53 VALaUN (I(, I) CALL POTSTO.VALI

8e CONTINUE WRITE (8, USI

7e CONTINU. END OF ALL PHASE! OPERATE AtlO PRIN,. LAST TIfo!E

I(aNPM+1 sET ALL P,OAKETERS TO INITIAL LEVEL 'NO OPERATE OIGlTAL

00 127 Lat,; 121 OIG(L,UTN(.,Ll

ANALOG POU8L. a ll1l,21 VAL.sXHHI(,I.) CALL POTST (L, VAL.1

128 CONTINUE OPEIUTE AND RETURN OBJ

CALI. HVOSM{3,3.0BJ,OBA) WR ITE (6, 10")OBJ. DeU, (UN (to::, L) , Lilt, 9) WR ITE (S, 100 C<IN (tc. L},L -10, 2l) ~"ITE(6, 104j~('IaJ,ROSA, (XIMe!.) ,Lal,9) WRTTEte,100 CXIM(L) ,1..U",211 IF tOBJ-008J) UO, 240, 20e

20& 00 2C19 L -1 ,:21 289 XINCi(,!,.)aXZH(L} RESET PU'HETER$ TO XIH

OIGlTAL 00 227 LllllJ~

227 OIGeLI"INC',L) ANALOG

00228L a 10,21 VALal<IN(t(,U CALL POTST(L.VALI

229 CDNTl,uE 21100 WRITE(6,108)

OPEIUTE ANO PRINT WITH F'INAL DATA CALL HYOSMC3,2,OSJ,OSA) WRITE 05,10"') 08J, DBA., [XIN (j(, L) 1 L..1,~) I!IIHTEC6, 101) (:tIN (I(, L) ,Ltl10,21,

"RITE OUT XIN TA8L.E WRITECa,20tl

201 FORHATC1Hl/:)21r,3HXIN/10x,~H II) NPPaNPH+l 0078 tal,2l

18 \li'RITE{e,2132)%,eXINCL,I),L a l,NPP) 202 FORHATOilX,I3 t 6F1.:n

J .1 8~ CAI,.L. HYOSkfIENi,IRET,OBJ,CBA)

J .1 19 STOP

ENO

HYOROLOGIC S1HULHION HODEL - SUBROUTINE KYOSH SUBROUTINE HYOSH (lENT .I RET ,OBJ ,OBA) R!.tl. MIC,HES,KS,KG,MS,MCS,NE1PM COMHON ~KC (14, 12) ,W' (12) ,POLII2) ,N(8) ,00(!21.FMTCU) ,CVRU),

I V CIS) ,A(10) ,BUIO (10) ,PV (Ul ,OUH( S,I2,8], POC (1,12),8~KC(U), 2SPKC (12),11 Cl", DCA 0'), CAC ()4), PCA (I') ,PAC C11 ,PPi (1) ,OUT CI S, 21) S ,DIG (10) ,RES C!0) ,RESC C 10), ROUT(4t1S ,2), XIH (211 .. ,HIt ,tiS ,EKS2, SI(AI.., $KII', X!N CO,U) I PH (21), PI.. (21) ,OR (21), NP (21)

COMMON I NP, lOUT, N$B, L YRO,NY~f IRES, HANG, JRU, CTHt CONY, CONY 1,CONPV l,IUS I stcAl..l t SK.4!..2 t SUL;' ,$PA', SCAC ,NVe, \II (12', CliS,aARE,t.

DIMENSION P (181, VARLS C21l OAr. PO I, P (2).P (S) ,PC",P (8) ,Pcel, P (1),PCB),P(gl. P (12) ,P C! I),

1F' C121,P (13), PC 14), P OS), V.tR!..8 OU) /AHP010, 4MP011, 4HP012,4HP013, 2t4HP2l14, 4HP1Il15, 4HPeu, "'HP017, 4HP018, 4HP019, <4HP,,:U, 4HP021 f 4HP02:2, 34HP~23, 4HP02"* f 4HOIFF I

OPT vER EXTRACT NL.L.:21 GDTO(1,a,l!1),lENT

1 TYPE 510 510 FORHAT(1HKYDS.-!1l

OCT 2e000 00 2: 1-b10

2 '0)' •• ClLI.. QWBOlR(A,0,e,IERR) CAL~ CSTDA· CAll QRSAOR{A,0,10,tt!:MR,

C INP IS INPUT DEVICE, lOUT IS OUTPUT DEVICE, NSB IS NO 0, SUS-e BASINS ~YRO IS THE BEGINNING VEA" OF SI.ULlTlON AND NYO IS THE NO C OF VURS CaR

CS.

CSR

CA~L BASIC (VAALS)

WRITE (e, 201) IF ex RET. EO.l 'RETURN INITULIZE ORIv AND CGlI OPT VEO EXT.ACT

S 00 3 J'l,NYR 00 1 hlt12 OU HCJ,K,e).0 .. OU HCJ 1 1(,1)U,. CONTINUE REPEAT PROCEDURES FOR EACH SUB-BASIN 00 30 t-l,Nee

24 CllL. sueou CFt,V,lRLB, I) CSR

WRITECIOUT,201) 201 FM~!TC!HIl

IF SSw B ON 00 ALL NYR YEAR! efFORE PARAHETER CHANGES 9yPl$S ssw .,0 AND r; IF SS. 0 ON PAUSE EVER V YEAR TO A~LOW lETTING n. A ,OR RERUNS SN W210IG(10) [H52_MIt

!' TYPE 2" 24:5 FORM.lT(eHRESET 08)

OCT 2800" ENTRY POINT FOO OPT vEO

1!S P~IC'.I11C*SK"ll PMES ... HES.SIUll CAL.1.. 01olJ01RtPHlC,11I4,IERA) CALL OWJOUCPHES,08,IER.,

INITULIZE OBJECTIvE FUNCTION 08J'0 .. 0 08"'21 .. 01 SET A .. ~OG TO INIfUL 'ODE CALL OSIC ClEO') QEPEAT PROCEOURES FOP fACt; niR 00 12!1 J'~JY8,NYR IFFlrt SNW1.OIGCl~) [HUIMS IF SSIf [) ON PAUSE EVERY 'fEU TO ALL.OW SETTING SSw l, c., AliO E IF ssw B ON IGNORE SSw D OCT ~2SS00 OCT ~~S4~0 J • I~e

ue fORMAT C'M5ET 1) TYPE 10~ OCT .2~~f0

HIe JJ-LYR~+J"l INI'!'UlIZE ANNUAL VALUES 00 23 l-l,2"t

23 OVTCi3,1.l10. STORMM_0 .. 0 REPEAT CAlCULA.TIO"JS FOR EACH MONTH CO 213 K1 1, 12 TEHP10UHCJ,K,ll F'PTICU~(J,K,~, QCOlhOUH(J,K,3) r.JGA.G10UHCJ,K t " QRIV.OUH(J,K,fJ) t;lGLhOUHCJ,K,71

___ I.~

EKh.017~HEMP".UI1 IF CEKT.l. T ... 3) EKTI.3 ET'I!KT.OUT (K, 2) .O!!i (3) ETPIS"'KC (It) .ETF

.SPKC CK ,.ETF NETPHle- .(SPA CH) RP"ITI0. RF'SMIPF'T 5NMTI0. IFCTE'P.GT ,DIG (8) )GOTOg OIG (101 .01 G (101.PPT RPSl'IlqI.

9 IF(TE"P,LT,OIGC9))GOTOI~ !NHT'O I G (101' (I.-EXP (-DIG CI)' (TeMP-O I G (91 !ll IF (DIG (l0l.L T •• ""Tl .NHhOIG (101 DIG Ctel.OIG C!01-SNMT

1!Ii RpHTIRF'SIo4+SNMT

Figure B. 6. {cont'cl}

59

MANAGEMENT STUDY CANA~ OIVERSIONS PUT LEACHING IUTER REOD IN OUH(J,K,.4)

~A HANG A 10 OCT 021410 J " QCNLIOUl'ItJ,K,~)

J .8 .4 !'1PIIE1P

NLLI19 On'.TEMP-CTM L, OT_ SKP J .35 J .n

3' ETP1.e.0 se ETNO!TP1-RPMT-CHS-CMS)

III' (ETN.LT .0.)ETNI". ClCNL10UH(J,K,.4) .ETN/OIG (2) PC' CRPSM-O I G (1) )*OIG (4) !FepC.LT.0.! pcoe SC-OIG (~, *SNHT QUNG_SC+PC+OIiHe) .. ceCR QINIQRIV+GUNG WAOIQIN-N£TPH IF nUNG.L 1.2) GO TO 81 I' OIAO.L T. 0.) WAOII:0. IF (OCNL.GT. W,O) GCNL,WAD

81 OOlvoOIGC21'OCNI. ClIGSaRPMT+QOIV QSlToWAD-OOIV '(ll.-GIGHSKALI A (2) -·ETP*SK.,1..1 A (3) --QGl 1 *SKAL3 .. (.4) -QSIT*SIUL3 PGAGI QGAG-SK"L 3 CALL GWJOAR(PGAG,0e,IERR)

TRANSFER OATA II'ROH OIGIT"L TO ANALOG C .. LL QWaO.,R(A,00,4,IER;t, CAL~ CSTDA TEST SENSE LINE TO PROCEED COMPUHTIO.S

11 CAL~ ORLee (!TEST ,IE •• ) 1"(1TEST.EO. '200) GO TO 11

12 CAL~ Q"L"8 (!TEST, IERR) t'UTEST.N!.'2e0) GO TO 12 CALL OSOP (IERR)

13 CALL ORLBS (ITUT ,IERR! 1'(ITE5T.EO.'200) GO TO IS CALL QRSAOR CA,0,', IERR) CALL aSH (lEU! TRANSFER .E$UL1$ SACK TO OIGIUL QTOU Cn*SKAL2 QGO_"A (2) *$1I;"L2 ET .. A eS)'SOAL OP ..... (4) .SKA!.. HSI.AUn*SKAL GSO.OTO-QGO I, IRES OT 0 OPUnE RESERvOIR LA IRfS A I. OCT 0:2'7.410 J ~33

J .S' 33 CALL RESRV(J,K,QSO,ETF,IFF)

OUTPUT THE RnUL1$ O. U'ULAnON CALCULATE OUTPUT .. RU IN INCHES ACCUMULATE SUMS I"o;t ANNUAl. VALUES

3.4 CALL OOIJT(OUT,l(,l,TEHP, C .. LI. OOUT(OUT,K,3,PPT) CALI. OOUTCOUT,K,~,QRIY~ CALI. O!'lUT(OUT,1<,S,QUNG' CALI., OOUT(OUT,l(,e:,QChlL' CALL 00UT(OUT,K,1,GSlT) CALL. 00UT(OUT,K,8,QIG5' CALL OOUT(OUT,K,9,QGLn CALL OOUT(OUT,K,U,OIGt10)' CALL DOUT(OUT,K,ll,$NMT) CALL t'OUTtOUT,K,12,ETPM' CALL OOUT (OUT, K, 13, ETP, C"LL O:OUT(OUT,K,14,ET) CALL O:CUTCOUT,K,l!5,HS) CALI. OOUT(OUT,K,le,OP) CALL DOUT(CUT,K,17,Q10) CAI.I.. OOUT(OUT , K,U,Il!iO) CALL DOUT(OUT,K,U.QSO) CALL O:OUT(OUT,K,20,QGIoG) OHIQSO-OGAG CALl. O:OUT(OUT,K,21,DU) ouT (13 ,2) -OUT (13,2)+0I)T (I(, 2l

CALCULHE OSJ OBJ I08J+OuT (K,211tOUT (K ~ 21).W (K) IF ,ssw 0: ON KEEP QRIY AND QGI.I UNCHAf>lGEO IF SSw e ON DO SAM.E OCT 02S~0_

J .26 J .20

Z6 OCT 02312_ J .21 J .2" IF 5$101 E 0"-1 USE UCOROEO INFl.OW FoR QRIV AND -:lGl..l

21 OCT 0'2,410 FOR NEXT nASIN J .Z2 Outl(J,K,e)_0.0 OU~(J,K,nle.0

J ,20 22 OUM C J, K ,61_aSO_CoNV

DUM (J lit,"'} IOGO·CONY 2~ CONTINUE

OUT C! 3.ll'OUHI3,1l112. OUT (13r 10) .OUT C12, lG\'

OUTC!3,15).OUTO~,1!1 OUT (13, 21l00UT (I 3,1~1.OUT CU, 2m) OBAoOU+OUT( I J, 211

8KIP PRINTING If O'T VER I~ (IRE' ,EO, 31 GOT07S 1..\.-1

1e WRITEee,2UlUAUO(""I.0 ldl),JJ 21e ~ORMAT (lXlaU,8lSl 225 ~ORM" (IH0,1X3HV",", 7 C1U3»

WR I TE (! OUT, 22 S) (vex 1 ,K 01 ,6) us 00 8111 L_1,NLI.. 2U ~ORM"(1XA4,7f!0.21

B0 WRITE (lOUT ,226> VUI.B CI.), COUT CK ,1.1, Kol ,6) WRITECIOUT,U!) CV (Kl ,.07 ,13) 00 8! 1..1,NLL.

85 ;~m,\~~~~ :W~~ .~~e ~~) , (OUH" ,I.), K 07,m WRIT! ce, 209l0BJ, DBA

2:: :~~;~ ~i~G~~ '~;~0, 10W, 4HOBJ· ,F20.3/HI , 10X, "MOU., F20 .3)

11"1'-2 CAL.L. RESIlY(J,K,aSO,!TF,IF'F) I~Fol IFCLL)1!5,15 f '1 IF sew C ON OUTPUT ACRE-FT TABI.E

11 OCT 0U"0 J .1! 1.1.-9 00 ,. L..3,NL.L. 00 7& K-1,13 IFCI. ... U)82,S1,32

S1 OUT CK,L)-CONPYtOlJT(K,L) J .1&

82 OUT(K,I..,-CONV*OUTO(,I.' 78 CONTINU!

J .1e IF ssw A ON ENTER 'ARAMETER VAI.UE C.UNGES ON TTY

IF ssw e ON AND J I. T NY. SUP CHAIIGES 1! CONTINUE

I' (J .EO. NYR) GOTO" J .12!

79 NYlhl WICoEMsa ~S·e:I1S2 0IGCI0),SNW2

RETURN POINT 'OR OPT YER 20e IFCIRET,GT"l)RETURN 12! CONTINUE 3a CONTINUE

CSR

RETURN END

HYOROI.OGIC SI"UI.AnON OUTPUT ARRAY ALI.OCnOR SUBROUTINE OOUTCOUT,K,L,OU) OINENSION OU1(13,20 DUT(K,Ll_DU OUT <13,LhOUT (13 ,t.J +OXx RETURN END

J ~EI.O(e:t!~e)%NP,IOUT,NS8.LVROtN,(R I.~ 'ORHATCle15) 11~ FORH'TCIHU'311

REAO[e, 110) (Vel) ,1*' J 131 111 P'ORMATC221AA)

REAO (~,1111 (VARL.B (1),1-1,20) lQt2- 'OPl'uTtI2F!5.3)

REAOCe;,t\'l2) CPOL.OO,Kal,UJ READ UH COEH'lCANTS DO !5~ I a l,14

"2 FtEAOt$/2'.:9I) (WKCCI,J),J-l,12) 220 FOIUHT(l0xt2F!I.2j

00 53 1-1,1 !53 RE i OCe,22Q1)(PKC(1,J),JU,U')

C WRITE INIUAL DATA W~ITEC!,2U) WOIT!C!,t101 (V(I),I'I,I3) WOIT! C5 .Illl C .. 01.8 Cllt 1 0 1 ,201 WRITE tfl, 102' (POL (K) ,Kat, 12) 00 !5QiVl 1* 1,14

!S00 WRIT!Ce,~2el ~WKC(l,J),J'1,12) 00 !5~1 I«t,'

,"I CSR

IiIR IT! (e ,~20) ($liKe el, J) ,J 1 l, 12)

2015 !fORtlAT ClXHUA,U') RETURN END

Figure B. 6. (cont'd)

60

caR

SUBUIIN DAU INPUT _ sue~OUnN! SUDon SUBROUTINE SUBo'HP, YULB ,I) RIAL M:IC,I'fS,MES COMMON WKC(j4,12) ,W~ (12) ,POI.(12),N(8l ,00(12) ,F"Hlil ,cvR cel,

1 Y (13), A (10) ,eAUO (l0l ,PY ClSl ,DUM ( 3,12,8), PKC C7, Ul ,SWKC (12', 2!PKC (12), 11 (I~). DCA( 14). CAC (14) ,PCA(14), PAC t7l ,PPA C71,OUH!3, 21l 3,010 (10) ,R!! (10, ,RESC (10) ,ROUT (0,13,2). ~ 1M (21) 4, MIC,I"S,!MS2, SKAL ,4k', XXN Ut21l, PH (21) ,PI.. f2 \), OR (21) I fliP (21)

COMMON: INP, lOUT, HSB, l. Y RO, NYR, I RES, MANG, JRES, CT M; CONY, CON 111, eONPY 1, MES, SKALl J SkAt..2, SI<AL3,SPAC, SCAC, Nye, 1( (12), eMS, BAREA

DIMENSION PCI~),VARLe!211

24 TYPE 202,1 202 ~OR"'TCeHCAROS-, 13/)

OPT YER EiTRACT OCT 25~00 NVS.t

201 ~o.MATCI,u,8151 O.T VER nT.ACT READ (e, 20J) (USIO CI.l ,1.01. I",IRES, HANG, JRE!, JCONV l' IRES GT a INPUT RES PA.'METERS IF (lRES.GT .0) RUO C8, 3Sa) (PES Cl.l ,Lol, 10l IF HANG GT a RHO MANAGEMENT 'ARAHETERS I F (M"~G .ST .,' REAO ee, 3e:0) CT"I, CHS,j;...iFtU IF JRE! GT • READ CANAl. RESERVOIR .A •• METERS H CJRES .GT .alOfAO C3, 3S01 CRESC (I.) ,Lold al

350 'O'HliT(1ll1X10".e, 215 '00HAH3'10.2)

INPUT CROP ACREAGES ~oR aASIN 00!54Jlll,14

!54 CAe (J) we. III 2211 ~~~~;~ ~i 0'1 X , 13,F7 .O, I3t" .0, 13," .0, 13, ''1.0,13,'',0,13, F7 let

"UO (e, 220 (II CJl ,0CAtJl, Jol. 14) SCAe-0.0 00155J-l,104 lol1 (Jl IF (L,I.E .O) GOTO!! CAe el.) ooCA (J) SCAC-SCAC-CAC (I.)

55 CONTINUE COMPUTE CROP POOPORTIONS

~, 00 e0J.l,14 e0 PCA(J)oCACtJl/SCAC

IN!D'UT PlojREATOPHVTE lCREAtiES 00 el J-1,1

!1 PAC (J)00 •• ReAD ce ,221) Cl1 tJl. DC' (J) ,J'I,n SPAC-"'." 00 \!I2 J a t,'1 1.011 (J) IF (I..I.E .0)GOT062 PACCU-OCACJ) SFl.C-SPAC.'Ae (l)

e2 CONTINUE CONVaSCAC/12. CQNV1 1 12./SCAC CONPVwSPAC/12. COH,.UTE PHREATOPI1YTE p.qOPORTIOtiS 00 ee J1I1,"

e:! PPA(J).PACtJ)/SPAC COMPUTe: 'JIII£tGHTEO USE COfF .. CROPS 00 .,'" J11, 12 SCkC I 0,0 00 &01.. 1 1,14

eg SCiCC-SCKC·;.I;q::O.,JltPCA(L.) 70 $WKC (J) ISCKC

"HRE AT OPHVTE S 00 72J 1 l, 12 5I:KC Il"',0' CC 111..1,1

7t SClq:.SCKC+PKCCL,J) ."PA(I.) 72 SPKC eJl'SCKC 13 REAO U" U4} [01 G Cl), I.. 11,10) ,SIUL. SKF

IF (SlC'F .I..E.0.'SKF I 2.e 10' 'ORK" Cl2Fe.2)

REAO (8 I 11.1., (PH CL) ,1..110,21) "'XC.PHriO HEhPk(20) "H! 5-1 e ... ME a-$I< AI.. LA CU4!!$ SKP J .3e Rk! S. SK AL, .. PH C 12) I.... RI'\ES SKP J .3. J .31

30 RI1ES1l1 "'._MES TYPE 105,PH(12) ,SIUL,RHES

105 P'ORl"lTtllH $1(.'1. EQROR,;H'10.51) OCT 02~.~~ J .1;'

31 "',aHlt REAP CC!!, 100) (N 0 .. ) ,1.11 ,8) OPT VER ElCTR1CT WRIT! ce, 20&) (BAUO 0.),1.. -l,l0) OPT YEA' El(TIUCT ieRnE U, 100) IRES I H1NG; JRES, JCONV

UQI 'ORM1T O!l1Sl IF {1 QES.GT .0)1<11011 TE (6, ~24) [RES (L) f !..-1 f 10) IFCHANG.EQ.U GO TO 32 BCONY_SU,Ei/SCAC-o IG (".0 IG C') tS"CONV

on UI'OIG (5) .aCON. PH(l5I'PH (U).BCONY PH (le)IPH (le)'BCONV PH (17 )IPH (1)'BCONY PH C! e "PH (U).BCONY PH (U) 'PH (U).BCONY MRIT!(e,2IS) crM,CH.,U~U,BCONY OPT .~R EXTRACT

U l~ (JRES .GT .0) MRITE (5,22<) (RUt (L.l ,L'I, 10) 20e rOR"AT (!x!0.~,8151

WRIT! ClOUT ,222) celC (J), J-', 14) t SCAI: 222 /fORMAT t1X'If~.f!I/1XB'9.01

wIUT! O:OUT, 22:5) (PC A (J) ,J_1, 14), CONV 22;' FOIlHATOX"';,e/l X,rg.en

WRIT! (lOUT ,222) !PAC CJ), J.!, 7), SPAC WRITE (lOUT .223) CPP ACJ).JI!, 7) ,CONP. WRIT! (lOUT ,22~) (SMKC (J). J'I, 12)

22~ rOR"AT(lXI~r8.21 WRIT! (lOUT, 22') (SP~C (Jl ,J'I d2l WRIT! CIOUT, 224) (DIG eLl ,L-l,101, SI(4t.., S!(' WRU! (e, 22') (PH (Ll ,1.110,21) INlTlAl.lZE DUM ErCEPT ~OR gRIV AND OGI.I 00 Sel U.l,NVR 00 &e JJ-1, 12 OUHCII,JJ,S)U1. DO 815 Jel,S

ee OUHCIl,JJ,J).III. READ OnA 'OR 8'$IN I IF JeONV GT 0 • R€AD CONVERSION FACTORS FOR INPUT eATA I' (JCONV .OT .0)~UO C8, 21 5) (CVR (J), J'I, 5)

ue 00 g,. J-t ,$ NN.N CJ) IF (J-5)2U,232,2~5

2~a I~CN.)97,g7,n 235 CVRS'CONV I

III' (J .ECI. I!I)CVRS.l d'l IF(NN'IH,lil,D2

92 REAOCfS,201) (FHT(I",l,L-l,10) 00 gA ""as ,"IN OOg:UI-l,NVR RUe 0 NP, .HTl (OOCJJ)' JJ'I, I2l DOgSJJ-l,12

g:5 OU'1 Cll, J J ,J) _OUM (I I, JJ I J' +00 CJJj 93 CONTINU. 94 CONTI NU!

IF(J-3)15,17,11 OPT VEo F.XTR.CT

18 YC.FLOU (NN) CVRth1,/YC: GOTO'0~

l' CVRS_C:ONY1 IF CJ ,Eta.!!) eVRS -1.0' OPT VEO E~T~ACT IF JCONV OT e • uSE CO~VER!ION 'ACTORS RE.O ON INPUT

400 I If (JCONV • GT .0) eVR S-CVR CJ j SCAI.E INPUT DATA TO INC"ES

~1 OOOUt-l,NVR 00300JJa1,12

302 OUMCII,JJ,J)-OU"i{11/JJ,J).CVRS OPT YfR EXTRACT IF!sW £! ON PRHlT INPUT onA 1..-\.YRO"U"l

2313 'OJiMATCtVI2,I!l.UI'G.2) WRITe (lOUT, 230) J, 1.., (DUM 01, J J, J); JJ-j I UD

95 CONTINUE g' CO"lTINUE

Ui2- SKALla1.NJIU\. SIU\.2I1SJ(fI'dKAL 5KAL3al,/$KAL2 DETERMINE POT YAI.UES CALI.. P1')TST(22,h:') 00 l!_ La 10,21 VA!..-PHCL.) eAI.L POTST(I.,VAI.)

10 CONTINUE WUT!(15,303)

303 FOJiHAT (41H0POTS 10 THRU 24 SHOUI..O BE SET A$ FOI..LOWS) WRITE C~,302) (PV(I.) ,1.'1.15) ;I!?ITfce,301) e'I.L QSPS OE.R) 0051.-1,15 PAORap (l' CALL QIHR (PAOR, PVA1., IERR)

:5 PV(1.)_PYA1. KlUTE (5. 30~) (PV (1.) ,L- 1,15)

301 .ORHH(SSH0POTS 10 THRU 2' ARE SET AS 'OI.LOWS ) 302 'ORMATtlXe'8,e,

eSR RETU~N END

PoTENTIOI'tETER SETTING A1.GORlTH~ _ sUSROUn"lE POTST SU8ROUTINE POTSTOXP,XV, 0EA\,. ~IC,I'tS,HES COiolMON wI( C ct4J U) ,;II( (2), POL. (12) ,N cal, 00 (12' ,FMi C "') ,CVR (lI),

IV (t3l, A (10) ,BA$10 C U) IF'V (l!1j ,OU~C :3, 12f 8) ,PKCC1, 12), Siri!(C tU), 2SPKC (12),!1 (14) ,OCAOA) ,CAC:(14) ,PtA (14) ,PAC(7) ,PPAC" ,OUT (13,21) 3, OIG (to), RES (10), RfSC (10) , ROUT (4,13,2) I X1H (21) 4 ,MIC f I'tS, EHU, 5K ,1., SICF, X IN (e ,21) , PH (21) ,PI.. (21) ,OR (21) t Np (21)

C051HOt-; INP, lOUT ,NS£!, L. VRO/li/VR, IRES, MANG, JRES I Cil<!. CONV, CONV l,COI'1PV 1 ,MES, S:KAL.l ,SI(AL2, $1UL.:3,SPAt; SCAC, NV8 OI"E~SION PH!!) OATA Pi (1), PT (2), PT(:31, PT C 4) , PT (!ll , PTr6) ,PT (7) I PT (t,. PT(9), pT (10),

IPT (! I) ,PT Cl2l, PT (n) ,PT (1').PT CIS) 2 /4HP010, 4MP01l, 4MP012, 4HP013 t 41<!P2 14 t 4HP~ 1 !I , 4HPe 18, 4\'1PU' I 3 4HP0 18, 4HP01Q, 4HPil2S, 4HP02 1, 4HP022 , 4HP023, 41'1 1'0 ~41

ITS_np_9 GOTOO.'!, u, 1:!,20, 25,:30,:3S,40, 45, 50,55,50, 710, ITS

s: PVAL._I,/XV

Figure B. 6. (cont'rl)

61

10

IS

20

25

ae

35

.0

.S

50

55

80

7_

100 lSI

pv CllI.VAI. PADR·PTtI) CALI. Q.PRC"DR,PVAL,IE~R) PV(10·PV.1. PAOR.pTell ) J .100 PVAL-l .1 C 1. e_xv .. xv, PV (2) .PVAL PAOR •• TU) CALI. QWPRCPAOR,PVAL,IER.) PVAL-1.1 (4.lI.hXV) P.C~).PVAI. ·AOR'PT(3) CALL QWPR (PAOli! ,PYAL, I!RfP) 'VALal.1 (l,e..-xV) .V CSl.PVAI. PADRIPHS) J .Ieo pVAl.a~V/SKAL

'VC.),PVAI. PAD~.P" (4) J • lee _VAI.·rVI$.AL PV(~l·PVAL P100<PT(5) J .100 PyAL.- XY 1 {SKAL .. SIC F) pY C&) .PVAL. PAO •• PTlS) J .100 PVALaXYI UKF*SJ(.ALl PV (n _PVAL. PAOlhflT(7) J 0100 PVAL.-XVI (SKfI'''SKAL.) PV(U).PVAI. PAOR-PT oe, J .101J11 PVAL. -xv PV(l2).PVAI. PAOR'PT(12) J .100 PvAL-XV PVCI3),P.AI. PAORapT(13) J .100 PyAL._VV PVC14)-PVAL. PADlhPT(14) J .100 PVAL·0.t"-SXAL./1.V _y(l5)IPVAL PAO"PT(8) J .100 e:~52_XY ''is·YV MICdV J ,101 opno~ f1'OR SUING POT 18

P1OL_l./VV PV on _'VAL. PAOlhPT U) CA1.L QWPR(PAOR,PVAL,IERR) RETURN END

II!!SEJiVOI9 OP!!UTI0N ALCORITHM .. $UBROUTIN! AESRV S.UBROUTINE R!SRV(J,K,QSO,ET',Ilfll'l REAL. MICtHES,K!i.KG,"'S,HCS COMMON WICC (t •• 12) ,WIC C 12) ,POL. (t2). N (e l ,00 (12) , ,.MT (10) I CYR (3) I

1 v (131,' (10) ,UHO (10) ,PV C 15) ,DUM ( 3,12. e) ,PKC (1,12) • S.KC (12), 2SPke (12). II (14), OC' (1') ,eAC (14l ,PC' 0') ,pAC (7). PPA (7). OUT (13. 21l :3 ,DIG (10) I RES Cl~) ,AESC C1~) ,ROUT (4,13,2), VIMUt) 4, MI C, HS, EHU, 5U1., SIC', VIN (&, 21l f PH (21) t PL (21), OR (21) ,NP (21)

COHMON I NP flOUT, ~SBfL '1111'0, NVR I IRES, HANG, JAES, ClM, CONY ,CONV1 ,CONPV 1, I1ES,Sl(AL.1, 5KAL2 f SKAt,.3, SPAC, SC AC, ",V8

J IS HAR,I( IS MONTH,taO :U SUBe:ASIN SURFACE OUTFLO., ETfI' IS MOO. e-c EVAI' TE~lP. "ACTOR IFF.! OPIRAH REnRVOIR RULES IFfI'III2 PRINT JTH YEAR DnA RETURN I" UtES _0 I.A IRES A 10 OCT 027410 J .S J .gg IfI'''-l OPERATE

L.... I" S 12 oe T 02' 402 J .1~ IF lST MONTH OF 1ST YR INlTIAl.llE RESV AND EXTRE"ES JJ-K"J L.A JJ S 12 oei ~2'4U J .1 sn.RESCl) SM.U_STI 5MHalSTI JMN_1.yRO"l JMX.JMH l(HN_12 \(M~.12

IF 1ST 73 IF UT MONTH Oil' ANV YR INlT ANNUAL TOTALS

7 L.A I(

S 11

OCT nH!0 J .D 00 e Lal,4 ROUT (I.. f 13,2) a9.0

e ROU1CI...13,0-0.0 SET UP INITIAL MONTMLV VALUU QINaQSO*CONV QRaOOMtJ,K(8) SlaSTI IC a• EVAP_ET'.Pt<C (1. I() DCSaOUM (J,IC ,2) -!ViP

OPERATE R!SERVOIR nERATlON 111' IC-It:.l

CALL ARE A< S! • AR, RU) II OThQ!N.QR+OCSUR/12.0

51w8I+015 CM!CK EO~ ST UA!NST SfHU ANO STH!~ !~ (ST .GT .RES(31)GOTOI3 I~ CST.L T .RES(2» GOTOI' CRhQR J .20

13 gRRoaR+ST'RES(3) ShRE5 (3) J .20

I' aOH.RES(2)·n QOo_ClR_OOM InaOO.L T .0.0) GOTOIS QRRaQOO SToRE! (21 J .20

!S QRRa".0 STaRES (2) +000 III' CRE! (S) .LE ,e .13) ST.e, e COHPUTE AYERAGE STORASE ~OA HONTH

20 U'(STI+ST1I2.0 COMPOTE AVE AREA 'OR HoNTW CA.!..!.. AREA (SA, AT J RES' CMECK "AINST GUESSEO AVERASE ER'Rf!U) ACa(AT-AR)/1R AjUAIU!(iC) AC_ER.AI( LA At SKP J .21 J .25 CHECK ITE!UTIONS

21 ICC'IC-30 LA ICC SKN J .23 51-SA J .10

2:5 WRtTECe,lBOHlt,SA,ST IC BCEEOS 30

100 ~ORHAT(\2H EXCESe n£R,3~20.3) SET UP 'OR NEXT MONTH

2' ClR-altR QSC.aR/CONV COM PUT! OUTPUT AJUh Y 0 .... ST/12.0 CALL RSOUT(l,K,l,ST,OA,IItOUT, OM-ST-Sn Cll.l R"SOUT t2;K.l,Otl,OH,ROUT) OM_EVAPHR/12.0 Cll.l. RSOUT(3,Kr1,OM:,OM,IitOUTl OM-OUM: (J, IC # 2l*AR 112.0 CAl.I. R"SOUTU,Ktl,OH,OM,ROUTl CHI. R"SQUtCl,K,:2,CllN,QIN,ROUTl CAl.I. RSOUTC:2,K,:2,QR,OR,ROU'l CAI.L R$OUT (3,': ,2,EV 1', [VAP ,ROUT)

INITIAL-HE NEXT HONTHS Sf Sn-ST

CHECK EXTREMES EMhST-SMAX 1.1 EM. SKP J .30 SHAhST JHhl. YP.O+J-l ICHX.': J .3~

30 EHJhSMIN-sr I.A EM~ SKP J .33 SMH':aST JM~"'l 'fRO+J-' KH~IIC

33 I:I'ErURf'oI

Figure B. 6. (cont'dj

6Z

IFF02 PRINT RU OnA 70 JR'LVRO+J-!

WRIT! C8, 102) (8AS!0 CLl, L'I, 10), JR 102 'ORM'T(l'UA4,I~/II\0X,22HR!URVOIR OATA CAC,'Tl)

WRITE (S, 103) (VlL) ,L'I ,e) 103 'ORHAT (I'X5HMONTH.1 C1XA311

WRITE (8,104) (ROUTe 1 ,K,I) ,Kat. e) WR!T[ CS, 105) (ROUT (2. K.I) ,Ko" Sl WRIT! Ce, leSl (ROUT(3. K, 1) ,K'I, S) WRIT! (8, 107) (ROUT(~. K, 1) ,KOI. S) WRITE C!, 108) (ROUT CI ,K, 2), .01,5) WRlT!U.10G) [ROUT(2,K,21,Kol,!) WRIT!(e,!l9l CROUT (3 ,x, 2), Kol. e) WRlT! (e, 1031 Cy eLl. L'7, 13) WRlT!(8I1U) CROUT CI. K, 1). K." 13) WRIT! (S, 105) (ROUT (2,K.1l ••• 7,13) WRlT! (S.10S) (ROUT (3,K, II ,.",13) WRITHe, 1011 CROUT(' •• , I) , •• 7.131 WRlT! (e, 108) (ROUTe 1 , •• 2) ,K".131 .RlTE C!, 1 U) (ROUT C2, K, 21 ,K", 13) WRlTE C!, 110) (ROUT (3. K. 21"",13)

104 I'CRMUCl2X8HSTORAGE ,I2XSHAT I!:OM ,1FI0,0) 105 FORMATCl2XBHCHANGE .12X8HIN nOR .7'U.0l 10! ~ORHAT (i2X8HEVAP .12UHYOLUHE, 7~ 10.0! 101 FORMATU2X8HPREcrp ,12X8HYOLUM! .1~19.01 ua ~ORMAT(12XSH rl2X8HIN~LOW ,Hle.e) U19 FORtlAT Cl2XSH ,12UHOUTFL.014 , 1F U. 0) 11 A ~ORMAT fl2UHEVAP , IU8H (INCMU), 1~10. 2/)

J.NVR WRlTE ExTREMES JE_N'fR_J LA JE • 10 OCT 027'10 J .1ei WRtT! Cei, 120lJ ,$fUlC, Ii CI(HlC) I JHX WRtT! ee, t21)J ,SHIH, V eKHN) f JHN

at! 'ORMAT C/ 11t!X115HHAX STOP.'! FOR, %3, 1H Y!ARS., '10.e"tUC-FT, 2XA3, IS) 121 FORHAT (1110X115HHIH STOR.GE FOR, U, 1H 'ftARS.,F10.0, ,HAC.FT f 2XA3, I~) 1~ LA JRES

A 10 OCT "21'10 J .;; WRHEC8,t25l

125 ~ORMAHIMtl 9g RETURN

ENO

RUEqYO!R OPERATlO" OUTPUT AARAy ALLOCATO. SU'8RQUTINE RSOUT (I.,i( I N ,OM ,0. ,ROUT) DIMENSION ROUTC4.13,2) QOUTCL.,IC,N)aOH ROUT Cl, 13,~) It:lOuT (I., lJ, N, +0. RETURN ENO

RESERvorR SUR. ACt AREA ALOO~HHM • IUUOUnNE A~EA SUBRouTtNE AREA(SI"U,RESJ OI"ENSrON RESO.) IF (SI.L T .0.0)GOTOI. rnS!.L T .RES(8)) GOTOI C2.RES (10) lR_RES (P) *St*.C2 J .12

1 C:2-RES (1) AR_RES (8) *StuC2+RES (5) J .12

10 A •• RES C51 12 RETU."

['0

r-------I I I I I

I­I I I I

I

I I IL-I L

r-­I I I I

I L __

OH

DUM (J, K. 1) PPT DUM (J, K, 2) QCOR • DUM (J. K, 3) QCNC = DUM (J. K. 4) QGAG • DUM (J, K, 5) QRIV • DUM (J. K, 6) QOL! = DUM (J. K, 7)

Figure B.7. Flow chart of subroutine HYDSYM.

ON

RETURN TO OPVER

I F SSW B ON - DO AlL ~YR YEARS ALLOWING ANY PARAMETER CHANGES -TEST ON SSW 0

IF SSW 0 ON PAUSE EVERY YEAR TO ALLOW SETTING SSW FOR YEARLY RERUNS

IF MANG > 0, AND TEMP> CTM, COMPUTE CANAL DIVERSIONS FROM POTENTIAL ET MINUS (RAIN AND SNOWMELT) PLUS LEACHING WATER REQUIREMENTS

IF TONP , CTM DIVERT ONLY LEACHIHG - WATER REQUI REME~TS

CALCULATE POTENTIAL ET FOR CROPS AND PHREATOPHYTES USING r;:)DlFlED BLANEY-CRIDDLE METHOD

QIGS (RAIN + MELT) + QCNL*CIR

QSlT QIN - QDIV NETPH

TRANSFER Kth MONTH DATA TO ANALOG COMPUTER AND SET ANALOG IN OPERATE MOOE

TRANSFER RESULTS FROM ANALOG TO DIGITAL (OTO, QGO. ET. or, AND MI) SET ANALOG

IN HOLD

63

NYB·j

IF SSW 0 ON - RECYCLE EACH YEAR

I F SSW B ON - RECYCLE AFTER RUNNING ALL YEARS OF STUDY

IF SSW E ON - SET UP OUTFLOW OF SUBBASIN AS INFLOW NEXT SUBBASIN

RESET INITIAL SOIL MOISTURE AND SNOW STORAGE

BASIC (VARLB)

READ INP, lOUT, NSB LYRO, NYR

READ ROW AND COLUMN LABELS

READ PROPORTION OF DAYLIGHT HOURS

FOR EACH MONTH (POL; ;=1, 12)

READ CROP CONSUMPTIVE USE COEFFICIENTS

(WKC; j' j = 1,12, ; = 1,14)

READ PHREATOPHYTE CONSUMPTIVE USE COEFFICIENTS

PKC;,j j = 1,12,; = 1,7

WRITE BASIC DATA

RETURN

INP = INPUT DEVICE NO. 4 IS HSPT READER 6 IS CARD READER

lOUT = OUTPUT DEVICE NO. S IS HSPT PUNCH 6 IS LINE PRINTER

NSB = NO. OF SUBBASINS

LYRO = BEGINNING YEAR OF SIMULATION

NYR = NO. OF YEARS TO BE SIMULATED (::3)

INSURE THAT SUBSCRIPT ORDER FOR CROP USE

COEFFICIENTS IS THE SAME AS WILL BE USED IN SPECIFYING

CROP ACREAGES IN SUBROUTINE SUBDAT

INSURE THAT SUBSCRIPT ORDER FOR PHREATOPHYTE USE COEFFICIENTS IS THE SAME AS WILL BE USED IN SPECIFYING PHREATOPHYTE

SUBDAT. SUBSCRIPT NO. & MUST BE

RESERVED FOR FRESH WATER IF RESRV IS CALLED

Figure B. 8. Flow chart of subroutine BASIC.

64

Fi.gure B. 9. Flow chart of subroutine SUBDA T.

>----,:-----<JRES > 0 1»-----,

COl-f'UTER CROP PROPORTIONS PCAJ J ,1, 14

- - - - - -,.-------~ "L ' NO. OF STATIONS WTTH DATE Of TYPE L TO BE INPUT

65

YES

NO

IC QIN QSO*CONV QR < DUM (I, K, B) SI RES l

IC < IC + 1 CALCULATE SURFACE AREA, AR, AND CHANGE IN STORAGE, IJTS, AND END OF MONTH STOR­AGE, ST .

NO

YES

SET UP FOR NEXT MONTH -CALCULATE OUTPUT ARRAY OF STORAGE AT EOM EVAP LOSS, RELEASES. AND CHANGE IN STORAGE

Figure B. 10. Flow cha rt of subroutine R ESRV.

INITIALIZE STORAGE AND

INTlAlIZE EXTREMES SMAX· AND SHIN

INITIALIZE ANNUAL TOTALS

66

J < YEAR K < MONTH QSO < SURFACE OUTFLOW ETF < F FACTOR FOR MODIFIED BLANEY-CRI DilLE EVAPOTRANSPIRATION MOOEl IFF I FOR RESERVOIR

OPERATION 2 FOR PRI NTDUT

RELEASE EXCESS, QRR, AND SET ST < STMAX

ER < RES,. THE ALLOWANCE PERCENT ERROR FROM FIRST APPROXIMATION TO AVERAGE SURFACE AREA FOR MONTH K

CHECK FOR EXTREMES AND RESET IF NECESSARY

END OF COMPUTATION PART OF SUBROUTINE

APPENDIX C

MODIFIED INPUT DATA, MODEL COEFFICIENTS, AND

OUTPUT DATA

67

APPENDIX C

MODIFIED INPUT DATA, MODEL COEFFICIENTS, ANDc

OUTPUT DATA

This appendix includes modified input data, mod­el variable values for each subbasin, and model out­put for each subbasin. The first printout page lists the modified input data and the coefficients for the subbasin. Modified data includes the input data from Appendix A but in a scaled and summed, where nec­essary, form. The next three printout pages list the subbasin outputs for the three modeled years. Four printout pages are listed on one page of text in this appendix. The modified input data and the output data for one subbasin occupies one page of text.

The modified input data pages list the name of the subbasin on the first line and indicate the use of program options on the second line. The third and

fourth lines list the acreages of the crops in the sub­basin according to the land use table and the total crop acreage. The fifth and sixth lines give the frac­tion of the total crop acreage for each crop. The seventh line lists a conversion factor for converting inches over the total crop area to acre-feet. The

68

eighth line lists acreage for each phreatophyte. The ninth line gives the total phreatophyte acreage. Lines ten and eleven list the fraction of total phreatophyte acreage for each phreatophyte and the conversion factor from inches over the phreatophyte acreage to acre-feet. Lines twelve and thirteen give weighted values for crop and phreatophyte consumptive use coefficients. Lines fourteen and fifteen are the veri­fied values of the model variables. The next twenty­four lines represent the input data for the years of modeling, in this case 1954, 1955, and 1956. The in­put data beginning with number one are temperature, precipitation, streamflow for correlation purposes, canal diversion, gaged outflow, gaged river inflow, groundwater inflow, and reservoir storage or a dum­my variable for any desired data. The last two groups of data are the calculated and actual potentiometer settings. The variables listed on the output data printouts are defined in Appendix B and are given here in units of acre-feet. The variables are given for each month and an annual summary or average.

EVANSTON

• • 0 0 2599. 9923. 19U5. H •• B. 0. e. .. .. 0. 0. 0. 0. 0. 31571.

.08232 .279.& • &262& ~000'U .00000 .000R11l1 .1lI0000

.I2IN"!l11I ,0f1000 ,1210000 ,00~Q10 ,121001210 .000013 .UiI0W! '283R1,;16

832. 600, 3523. 281. :u:u. .. .. 7.,9.

.0eH2 .0&18' ,.7231 •• 349; .32831 ,00000 .000021 821,58325

,55 .88 .80 .91 1 •• 7 t .10 I •• ' 1.00 .112 .82 .75 .'. .81 • n .g. 1 •• ' 1.07 1.10 1.12 1.13 1.12 I.I~ 1.03 .92 ,90 .38 1,10 .00 .7. .19 .00 32.0. 201.00 I.,g 20.00 2.00

10,1110 1,00 11,0121 • 20 .0. ••• ••• ..0 ••• .00 2,50 2.50 1 195. ~2,U :U,2'" 20.70 010 1 el1l .P.10 S".8121 85.2. 51),3~ 53.70 '3.8. U.<B 17 .'. I 1P~' 12.20 1 ... 70 211!.30 U.2B .. 1,30 '''.D0 82.10 63.0. 52.1. "2.01121 22.90 20,<110 I 195& 20.2. tl2l.70 25.n 35.5. o1S.31 58.9. U.8. '8.tH' 53.1" 39.7. 22.3. 18.8. 2 195. ,89 .3' • 7~ .1' .78 1 •• 3 1.11 1.e0 .70 .U 1.42 .73 2 19" .57 .81 .'. .19 l.ag 1.15 1.37 1.15 1.28 ••• .82 1.150 2 Ig5& 1.21 .3e .07 .39 2.32 .81 .71 .38 .02 .94 .1' .83 3 19,. .18 .21 .33 1.12 .e. ." .01 .02 ,02 ..2 •• 8 .0. 3 19'5 .08 .05 •• 7 1.47 .78 .71 .18 .03 •• 1 •• a •• 8 .'1 3 1958 .2' .U .97 .&2 1,41 .2< .Ie .08 .01 .02 •• 3 •• 5

• 1ge. . .. ..0 .00 ".O0 1",00 13.00 •• 23 1.29 .9S t.00 ••• • •• • 19" .00 ••• •• 0 ••• 1".121" l5,81 •• 21 2.10 I •• e t.00 ••• .0~

• 1958 .0. • •• .00 •• 0 7.99 17 ••• 6.52 1.i6 .81 1.U ••• .0 • 5 19,. l.e2 1.<7 2.11 tI.SSJ 10.83 2." .29 •• 1 .... ..6 .39 .83 5 1955 l.n .91 1.12 5.38 12.31 9.28 .18 ,.8 ••• .12 .99 2.i5 5 1958 2.27 1.83 5.88 e,"3 22.es 15.12 ,89 .02 ••• ..9 .g, I •• ' 5 19!. 1,25 1.25 I.'S 5.20 18.08 1.73 3.04 1.20 1.17 1 •• 7 .9a .96 e 19es .92 .f2 .93 3.33 te,a3 15.22 3.29 1.87 1.19 1.21 1.03 l,5e 8 1958 1.29 1.e7 2.33 4 1 95 28,.3 22.11 •• ee 1.81 .aa 1.11 1.e" 1,05 7 1954 .Of .0. ,.~ , .. ••• .00 ••• ••• • •• • •• • •• • •• 1 1'" .0e ••• ••• ,00: ••• .00 ••• ,00 • •• .0 • • •• • •• 7 1.5a .00 •• 0 .~. ••• ••• . 0. • •• ••• • •• • •• • •• • •• a 19,. ••• • •• ••• .00 .00 • 00 .00 ••• .0. ••• , .. • •• 8 195t1 , .. .0" ••• , .. • 00 ••• .00 • •• ••• .a. • •• • •• 8 1958 ••• .0e , .. ••• • 00 ••• , .. ••• • •• .0. ..0 •••

POTS 10 TH~U 2. !~OU"O RE SET AS FOL.L.ONS ,10000 .0127! .03571 .5~99. ,O1000 .0100910 .001219121 .Dln80 ,eil2l00P .00000 • 10000 ,0100er ,1'10001'1 •••••• .19P;9

poTS 1~ THFHJ 2<11 ARE SET AS FOL.LO~S .H10A9 • 01275 •• 3084 .e4SH56 •• 0 ••• .11I00A~ .e0000 .02374 .49915 .f'!00210 .t.'I' • {'00 121 111 .03.00 .'-'0?00 .79~e8

EVANSTON 19S5

V'. HN '[e MOR APR ~AY JUN TfHP l2.2::\ 14 .7'" 20.3. 3.,20 41.30 54.il0

• ." . • ge 1.6e 3 •• ' •• 77 5.5g PPT 1499.e2 2lJl •• 4 1289.14 '9 •• 87 3393.88 3025.55

Q1HV 24.49'.99 2111.99 2'6' •• 9 8114.99 '&232.97 A00!2 tSJe QUNG 13P.34 1115.12: 153.25 7845.0'3 153S.19 1485,19 ~CNL .00 .0~ .0. •• 0 3&.63 •• 9 41594. .. g8 03 IT 245111.80 2121.33 2300.91 18018.2' 34206.55 23304.96 ~lGS .ee •• r , .. 1339.54 17<4 •• U US;U.64 OGLI .'. .. ~ • 00 ,0. .00 .00

SNW 3,42~ .19 5551.2:3 «5S40.3e • 70 .0~ .0' $NI1T .'. ••• ••• I5S39.61 ,70 .0' !TPH 122.54 1I5e.79 313.21 «501.81 1815.89 2437.11

ETp 352.07 51'.31 1015.64 2234.47 «5806.,02 H~394.72

ET 3156,11 52e.e. 10'1.9~ 22e1.38 aS40~e:3 10392.83 "8 12801,3(! 12293.88 11214,19 16345.88 26 •• 3.'. 28gS7.6121 Dp 38,53 12.8' 12.84 12,84 12.84 19.26

OTO 2421,94 2e93,04 22e0,94 159'5.05 34145.39 23277 .'4 CGO 25.6. 64.23 51,311 38.'3 2'.5~ 25,69

C'C 24<2.2' 202 •• 71 2209.55 15918.52 3'119.6. 23251.70 OGAG 2~39 .99 23g9.99 295 •••• 14169.99 324019.9& 2435:11.99 OIFF "231.74 -37 •• 28 "'50,44 114.6,53 \7 ••• 1. -1118.24

V .. J"' AUG np OCT NOV OEC 4NN TE'1P 112.10 e3.0e 52.10 42.00 22.9. 201.40 37.17

~ 6.'0 e.04 '.37 3,27 I. 'I 1.28 39.88 ,0T 3600.35 3"'2~.55 3361,51 1052,36 2S".35 4735.64 2!H81.ge

r.IIUII 81514.99 4932:,gg 3153. g. 3208 •• 9 272~.99 4381.99 131227.87 I)UNG !2 •• H 81.36 41.01 59,24 115.31 853.1g 127,,4.83 QCNL 11'."59. ;9 0~5., 9. 2788 ••• 263 •• 99 ..0 •• 0 1.078~ •• 3 ~S!T H~;:7,05 ... 411.64 333,08 1337.28 2614 ~21?! !UI13.74 SJ0386.:HI ~ISS 1883, S,5 '\3 •• 93 442:7.39 20~2.1' ••• .00 6310IJ.el8 OGI. I .'. .~e ••• .. ~ . .. ,8. .0.

SNW .. ' ••• ." .0~ 21~7 .3~ ~893.00 156g:3.00 SN!1T ... • ~0 ,0~ ,00 ,01'. ,00 15840.38 ETP,", 3421.91 :)3115,63 1802,17 a9.18 291.17 221.45 1!5246,17

fTP 135'9.73 124P'0.38 6244.:)1 2~43.;;'14 904.S~ 616.74 !58037.26 ET lJ5e12.Bt 123~6.60 6215.40 2941.79 PJ1.3e1 6.2:1.46 58212.87 "5 2333~.20 1/S~44.99 14245.51 13366.el4 12448."~ 118e1ob.68 11851.68 OP 89.92 263.3. 449,61 1520.46 732,23 809.31 3083.10

QTe 1 I O~. I 6 "192,e9 732.23 19215.94 3314,33 !578Z1.82 92878.53 QGe 38.53 2e1.e:9 .'.23 38,ts3 !I 1.36 51.38 501.00 QSO 1117.62 "218.38 688.00 1888.4. 32152, tilts 5729.'3 92377,53 oG~G 4415.99 215,9. 2.e0 315.~. 2608.99 7807 ... !il0347.P2 OIFF 157Q1,!2 -'3'.38 us •• e 1'72.40 653.;5 -'2078.el6 2kl2).i51

69

EVANSTON

vAR JAN TEMP 22.10

~ 1 •• 5 PPT \8\5.n

QRIV 3323,99 QUNG 318.61 QCN" ••• QSIT 3490.89 QIGS ••• QGU •• 0

SNW 50pe.018 $NMT , .. ETP~ 221.08

ETP 837.78 ~T e?9.01«5 HS '908.31 OP 571.85

QTO ,,"e8.03 DI;O " •• 7 QSO U30.95

QGAG :t9$SJ.99 DH~ -e9.03

VAR JL! TfMp «5t1.20

~ 8.78 PPT 2920.31

QRlv 5012.9SJ QUNG 159.51 gCN" H 128,99 aSIT oa.ee: GIG! 71.4;,33 GG"l . ~.

SN" ••• SNHf • n ETPH U52.a9

ETP 15220,51 ~T 15222,e::s ~s 20381,33 OP 314.73

GTO 33 •• 00 aGO e.,23 GSO 2e;9.77

CCtli; lee.gO O!~' -<1198.22

eBJ' DBA"

EViNSTON

VI" JAN T!~P 2~.2.

~ 1.33 p,r 3U! •• " Q"IV 3'17 •• 9 QUNG 509.5A QCN" • 00 as!T 372 •• e .. OIG3 •• 0 OGI.! ••• !N. 1021115,4.21 SN"T • 0' !TPH 22'2.90

ETO 562 .~, H 623.04 "5 112615.17 OP 8e2.8;

OTO 44'~.'0 CGO 3e.'3 Q!O 4431,95

oGAG 5979.99 I)H'F .. 15,41.03

Y4R J"¥ TEMP 82.8J

F e:.!'l PPT lee? ,~5

CR!Y 12002.99 OUNG 2:1~,U at),!!,. 17153,99 Q!IT 2Ug,7e ~IGS 83tse,46 OGU .. '

SN. .00 !NI"T ••• ETPH 3 494,132

fTP ~3e14,22 ET 13U9.~l HS 23!547.21 OP 2 .... 7

OTO 2'.2.25 oGO 51.38 oso 23!5I,l1,SI5

QG'G 1840 •• g elF. ~09,ee

~~e MAR 2 •• n 201.10

1.&2 2.IS 6Q.o1,S! 1973.18

H00.99 .007.9; 1233.27 3225.38

••• .0 • "2S9.U1 89.2.17 IllS •• 6 3813.38

•• 0 .0. 5757,53 '117.33 1135,48 3813.38 2,..'8 381,18 848.33 \J08.78 809.31 1342.'3

8352.48 eeu.n 552.38 ~20.27

A1eS.De 7U9 .... e'.23 e'.23

<701 .73 7U5.22 3880,fil9 7U9.99 111.73 2e.22

AUG 8H 5P.3P 53.7. 5.69 •• '1

.2119,"«5 18'1.«5" 3178.99 3090.99

8 •• 12 "1.8e 3393,g9 209.9; .iH5.35 231,80 s.gg. U 27111 .!<

••• .00 • 0. • •• •• 0 ,ij0

2Ie ..... ' 1 •• S •• 8 1010'.18 e739.~e 1.720.21 8189.2' 15171.". 1 125;.75

237.85 211.9& .106,154 35 •• a.

25.e. 11,01 -132.23 282.al

3e,00 ••• -71 •• 23 282.al

./Sge

.7.'

FEB MAR HIl,111! 2!5.20

.71 2.0!it .20.82 1&4. \8

2833.99 8129.9~ 38'.51 7l'H.3!!1

, .. • 00 30~e.1l 12932.45

.Be 7314.22

••• ••• lQl9~7,22 3197.18

••• 13&',22 121.421 3ee. &g 375 ... 1335.27 38'.3& 1348.85

1 •• ~ ••• e l6.e3.5.

"'" 92 &1 ... 42

:se15.3" 1303 ••• e ~1.38 '1.38

37&3,9' 13.81,5S 4829.99 1'·.~ •• 9

-1.ae •• 4 -19))5.41

AUG $EP 55.;0 n.10

5 •• a 4.45 999,14 52.81

4435.99 2289,9. 110.83 33.97

51,55,99 215l!:.99 58.14 .. 40e.ts5

29'P • • ~ &12.27

."~ ..0

.0e .0.

••• • •• 2'.8.23 1690.815 9616.43 1S5!51.62 9673.24 S!H54.44

U8e0,73 11208.31 253,34 321.10 282.tn .,187.03

114,23 t'2.84 218.38 "'17;.13'

57.0PJ .00 11l1.3e "170.84

8.3;2 1.062

IgS.

APR ~H JUN 01121.60 .;,70 'o1.ae

3,6:!!! S.B! 5.58 388.32 2052011 3782.213

13891.99 "3322.Q.! 2033;,;" 5228,.2 IIU.7. 1811.59

10523,99 315&32,PII 34201.98 13998,l9 aeSU •• 7 e52&,71

8 .. eo1,77 18048." 18758.98 .80 .00 ,00 , .. .me , ..

.117.32 ••• ,00 P:201,P0 1837.87 2"26.05

3'34.08 7" •• 16 10347.55 3"o1P,:U ".8.30 10380.51

13728.2' 2200i5.ee: 28428,79 017S.31 '23.92 386.11

1.'13.51 a'D5:!!! •• g e8'fiI.S'U!I 31.53 38.53 !5l.3e

U374.91 28918.95 a&0e.'2 1<719.99 27989.99 12"g.IU) -3.'.01 SJ048.Qe -HI."

OCT NOV DEC ANN AJ.8e ;U,A0 11.AiI .0.82 3.'1 2,21 1.09 043.18

23'1.51 3135.90 lSJ22.i55 2713'.07 2&2.,99 2S1'.$9 2528.99 1102&7 .. 19 ".n IH.29 125.39 133Q5.31 2830.99 • 00 ••• 101212.92 83A.3' 2275.;. 2488.5. 68'25.lf!

3JAI.2P 3135.ge •• 0 nesa.oa .0. ••• • •• .e. • •• • •• 1920.88 ua •• ee

••• • •• .e. n88.1S 1042.13 "31.39 lSa.aa 16301,23 330e.u 135".18 528,05 a2180.'9 3320.15 131.,55 552.3a U317 .25

1\3\1.1' Utl1 .... 5 13181 ••• 1316t.i)a 134," ag.g2 5",23 n83." 012.e& 2200."8 2~92.11 72.~3.28

51.38 '1.38 8'.23 sel,ee 8150,10 224a.0 • 2.27.9. 11"25,25 112.99 1.25.9. 2191.g. 8g33 •• g3 eS7,10 1222.0g 23'.;' 209 •• 31

19S~

,Po ~AV JUN 35.S. 415.30 58.9. 3.19 ",87 8 •• 0

t0215.0! ~5103t72 1782.71 1303g.SJg e9!S!S".S'le 'e311.98 .372.22 2.38.a. '15 •• 7 ••• 21 •• ~ •• g "A12!!1.il8

161157.21 e219".32 311gJl.I!IIJ U23,09 101.1.1. 18751.5a

.0 • ... " .

.12 .00 .u 3797,04 .12 .00

825 •• 0 l106,ee 26ilIJ,21 232 •• '1 718e.33 12385.91 2325.11 720&.15 1237\5,il5

19"41).25 2!'18.3~ 2'987,621 S52.38 423.92 321.15

17278.23 • 3152.2. 3919~.9 • eA.23 '1.38 25.69

11214,00 63100,,68 3.168.28 189U.99 8012 •••• 41379,ilS

284,O0 2910,il0 -2211.70

OtT NOY DEC ANN 39,70 22.30 18.6. 37.'9 3.~P 1.47 1,\5' 'iI.21

2.,3.05 388.32 2I83.ee 21128.2. 3084" 99 2149.9Q: 277.,99 ua612.87

~3. 71 19,18 11 4 .. '4 16'75.41 31~15.gIJ ,.' ..0 93397.92 II'S.48 2548.2. 210~.34 1'8521.62 3672.72 ••• .00 809S ••• a

••• .02 ,.0 ,30 .'. 368.32 2551,98 2~'1.98

••• ,0. . .. 111.1.38 793.59 283.54 183,20 15175.41

2513.e0 881.10 ~.1.86 'SH'l5.P7 2e130.11 9121ts.66 :526.159 :58289.pa

1232ts.Og 11465.29 10951.86 10P:57.815 31515.11 3ge.2~ 43e .17 5:S52.43

1464,47 2918.1" ~.~'. g, 15144.4.66 11.01 51.3e 54,23 603,71

13f;7.39 2864.71 3.31.71 1'.·4 •••• 2!50 t gg 2 .. 70. gp 2749.gg: 132112.81 1136.3~ 364.11 281.72 -1211.9a

RANDOLPH 0 0 0 I

IllU. 5518, 41210:215. 1213. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 'U72.

.03113& .11337 .8223. .02'P2 .12112101210 .1111210130 ,0I2101!10

.0000121 .000~0 .00000 .00000 .0e000 ,12I001i'" .00000 S4Bee,2IIlIQJ

as4. 21415 • 'e!!l, 808. 2013. 0. 0, 154715.

.t3(11!52 .33121 .1181' .0P3U .3Ule .011'0130 .0121000 S311.SS325

.s. .8e .111 .P2 1.05 1.13 1.07 1.01 .Q2 .82

.Sll 1.02 I.lQ 1.2ll 1.32 1,32 1.32 1.31 1.211 1.24 1.30 •• e 1 tee .00 .e0 .02 .00 32,00 28.e0 I.U

Uti!'" 1.40 14.00 .00 ,00 40.00 1.00 .00 I U~1!I4 2t.80 U.ge 21.ee 41.80 50.00 !s4 t 10 e4, 1S0 I IPS! 1.80 11.50 U.10 3S.00 41.&0 SA.4\!! 02.121 I 1958 Ill.30 10.80 27.50 3~.e0 50'.50 U.20 84.00 2 IllS' .P3 ,47 1.02 ,II \.05 1.9'- 1.:1:0 2 Illes .78 1.10 .81 .28 1.75 1.51 l.ee 2 IPS8 1.&4 , .. .el .53 :S.14 .92 ,;8 31954 5.U S,71 7.02 6,43 12.50 i.78 ,. ,42 3 U55 3."0 3.30 3.115 4.'$ 14.10 i.80 •• ,7 3 IPse 5.67 4,61 8.43 20.10 ap.20 U.S0 15.'" 4 II,. .00 ,00 .00 2.00 U.S0 3.5G 1.0e • IllS! .0. .00 .00 5.021 20.00 u.e0 3.S0 4 IGS8 •• 0 .0~ .00 3.00 U'.00 12.05 8.00 5 Ill,. 1.20 1.39 2.53 2.P? .81 .SI .te S 195e .81 .58 .4i 2.0' 1.0Qi 2.29 ,44 5 IP58 2.:)1 1.62 1.39 4.2~ 9.99 1,Oe: .88 6 IPS' 1.34 1.31 2.29 4.t5! 8.,114 2 •• e .87 6 IPe! .1l3 .. ' 1.03 4.10 10.39 , .135 .G. 8 IPe8 l.i4 1.57 4.5e e.0! 1&.96 11.85 1.54 1 1154 ••• .01 .~0 .00 .00 .00 ,00 1 IPe5 .00 .00 •• e .00 • 00 .0 • .00 7 1058 ,00 .00 .00 .00 .00 .00 .00 8 US. .00 .00 .0. .00 .00 ,00 .00 • 1gee •• 0 .0~ .00 .00 ,~ . .00 .00 f!; use .00 .0" .00 .00 • 00 .0 • .00

POTS 10 THOU 24 SHOULD 6E sn AS 'O .. LO_S .10.U .31e87 .118" .6G99G .00000 .00'000 1.130000 .11904 .500.£ .02500 .10000 ,0'0000 .19999 .29999 .'G999

POTS 10 THOU 24 ARE SET AS FOLLOWS • 09GP7 .00000 .09Q4a

RANDOLPH

va T~~F ,

PPT ORIV ClUNG QCNL OSIT GIGS DGLI

SN_ $N~T

ETPf' ETP

ET .$ OP

GTO eGO oao

GGAG OlFF

VA~ TEMP

F PPT

GRlv GUNG GCNL OUT ~IG" QG" !

SNW SNHT ETPH

ETP n HS OP

DTO Q~O

CSO QG'G 01"

,:11IH8 .17191 .89g5 • ."00015 .99835 .11877 .499159 .024915 .B00Be. .IGIge ,2U914 .1GG68

JAN FEe MU , .a~ lI.e0 19.10 .'1 .71 1,83

3163.61 44("1.59 21l1.et 3788.91 3442. DD 4IP0.911 31!.3. 281.8G 320,42

.00 .00 .0e 40~1.17 3S52.e' 4U4,44

.00 .0~ .0~

.00 .0~ .0~ 1119.11 11040.71 143~a.23

.00 .00 .00 74.U US,14 316,ge

342.43 813.08 IS89.20 318.28 6~3. S~ 1&04. \1

18447,19 158S3.65 142eg.27 !D.41 49.51 31;.60

398~,74 3'2~.23 4158.P6 1148.67 1168.41 911 .01 2.3~.~1 2358.15 3241 .98 2419,99 2219.9G 1999.99

352.01 18.18 1247.97

JLV AUG SEP 82.1. 52,n '2.20 8.45 8.02 4.;U

7544.15 8~61.91 1057.n ~nl.9~ 241I,P9 1224.P9

532.G5 439.61 362.60 14U~.g9 2109,11 1297.PI -~1J7J'1.e8 -1343.88 .. 19',el3 13~32.35 7317.02 7641.513

• 00 .~0 .00 .0a .00 • 0. .00 .00 • 00

34;7,6:5 330e •• u 1199.01 21341.21 19228.118 IHl1e,ee 213'll.35 U230,3!1 !U!lIU.40 4G4U,8g, 37:5:59.e!ia ;'5~0D,.80

I U!8.~7 15e313.e2 455.50 5~e •• Pi '834.2G .. 41~.89 118,.47 1A89.25 19.a~ 44US.44 3~4!S.03 -435.10 l1ag.g,~ 184!J.9!J 7~3,1iH;

282&." • 1~9~.1I4 -119!i). '10

3.912 2.61~

1955

,PR 35.00 3.1'

t054,5!S 1~"U.P1 1~40t19

20280,00 14382.11 24'38.se

.00

.22 143:S1.00

5e2.e9 3!S!6.U lest,..e.

35112.92 49,~1

14298.98 2931,019

\lU1.811 62I1P.98 3081.110

oCT 42.80 3.33

21901.23 1l'26.99 359.36

.00 "21,14

2190.23 •• 0

••• .0 • 953.81

414'.58 4112.92

3U84.10 -308.17 ~74. 33 211.26 291,07 446,1;9

"l49.g::2

.20 .30 5g.I!!ra 152.8£1 82.e0 152.221 57.10 52.50

2.11 .Ge 1.51 1.14

.51 ,03 S.5i 4.09 '.Ai ••• 7

12.20 10.10 .48 .38 .52 .32 .45 .e2 .11 .01 .IS .16 .3e .13 .42 .29 .80 .30 .13 ,.5 .00 .00 .00 .00 .00 .00 •• 0 .00 .00 ,00 .00 .00

~AY

41.e{ll 4.U

70U,00 421~3.P2

1I'3.110 111lg,ga e044.u

43802.2e .00 .0~ .22

1740.40 101S3.g~ 10823.28 e.8IG.84

Pll.n '0811.8~ 1.89.25 "000.~4 4429.9; .429.44

NOV 2'.70

1.8P 4542.71 3913.D9

353.68 .0e

4018.2' .02 .00

4542.11 .0e·

311, 41 1559.14 1594.27

31410.23 116.24

40!HiI.e!i1 :.190.23

310~.33 1~39.1;0 1569.33

.1S .60 1.13 ,P8

20,01i!l 2,O0 2,!!I0 2,00 42.&0 ;)4.113 13.10 42.80 2!!.79 2ti.40 42.3il1 24.IU 17.00

1.21 l.i2 .Q; .54 1.12 2.4'

1.27 .Ill 1.13 4.e .. 4,21ii •• 11 4.43 A.M: 6.36 9 ,ee 1.51 8.e0

.00 .00 •• 0

.00 .00 .00

.00 .00 .,.

.IS .21 ." .11 .31 1.81 ,20 .&0 .e. .38 .8& .ae ,37 .i1 2.86 .S! 1.01 1.05 .00 •• 0 •• 0 .00 .00 .00 •• 0 .00 .00 .00 .00 .00 • Oil .00 .00 •• 0 •• 0 .00

JUN 54,40 e.,.

e3e1.liH 28621.gS

17 •• 75 .,.49.'1l 5138.31

a7~40.:Z3 .00 .00 .00

2490,06 151339.40 le.41.19 e88111,6' 'UP.41

10813.3e 2231.92 &575.42 933i.9a ,,'345~~

OEC ANN 26.40 37.33 1.66 3S;."9

P037.19 62502.G2 1~498.i8 122201.1~

'IS.i2 12"32.13 .00 1 •• n2.e3

107~B.g0 44857,68 .0' 12b762.07 .0 • .00

1447".91 1447;.11 .0' 14358,23

28 •• 11i 15558.51l1 1231.31 •• 707.31 1247 .6~ !l1l!i)72.82

30192.24 311H12.24 178.24 2J2ea.A!

10852.g6 611D1,2~

2251.73 1~2S9.21 8595.23 "ie8.08 1599.118 4219!IJ.!l1 99S.2' 9111.18

70

RANDOI-PH Ill!'

VAR JAN ~!B ~AR APR ~AY JUN n~p 21.80 U.1l0 27.em "i,1UI !!H1I.00 !!I4.70

~ 1.43 1.33 2.a 3.76 5.05 e.57 PPT 3172,O1 11l08.31 4137.11 770.n '2es.1ll 78&$.153

ORIV !!I.eI51.g0 i5340.~U~ 11328.ll8 18455.P1 34244.P4 gfHI !!I ,IU QUNG 474,!!I15 41!13.1Q 1202.P8 2770.11 1014.00 7111.13 OCNL .00 .00 .00 8112.00 82881.11g l4e81.03 oeIT S7211.lll !!I!5IH.".4 1808S.8P 18.P1.08 .'H!III"g8 t 880 ,10 oIGS .00 .00 132&1.04 85g4.1S 32e4Q.3Q 14421.u QGU .80 .00 .00 .00 .00 .00

eN. 113g7.3!!1 13303.&1 4113." 4 .00 .00 .00 SNHT .00 • 00 13281.0' 4113,7 • .00 .00 !TPH 207.3S 221,74 444.01 U1g.21 UH.38 2!!124.!!I3 np 1lS? 01 1080.P0 2228.411 57P2.eg 122e0.83 182&1.33 IT 712.38 772.38 211;.10 5822.51 12259.10 16259.«54 "8 1406.1J5 8014.11 118S3.;2 2088S.Q; '0Q85.;; 3Q\04.35 DP '9.51 4;,51 49.51 'Iil.41 !5P,41 !U;; •• dl

GTO '703.7S es25.50 18081.80 18431,89 41liH .36 1'83.511 G~O 1227.89 1148.S7 3287.77 338.,79 10eg.4' "53." GSO 4415.85 431;5.63 12193.82 U071.0P 380I.PI IBI0.n

OGAG .as"."" s5611.9p 102119,Q8 842i.iH! 3U9,iG 20Pg.pg Ol~~ .. 414.13 -1293.15 2.93.64 4UI.10 511.GI -1089,P5

VAP JLV AUG UP OCT NOV OEC ANN

TE"' 64,ee fUi,00 e2.n 42,60 34.10 1:3.10 40.21 , 8.11 e,u 4.43 3.32 2.U .62 42.11 PPT 6eS4.00 e8~1 ,S! 3353.19 41107.'S 11e'.51 401:S.43 ~8163.00

QRtv 3~~3.99 1721.119 1176.99 1550.Q9 230~!.g:g 3456.0g 060t57.HI QUNG t501.U 453.40 3ge.t51 378.3G 348.00 333.40 15221.02 OCNL 4258.'9 t94f5.e, 1541.21 .00 .00 ,00 03207.IH5 GUT -ues.lile ·lS42.e3 -911.12 1161.00 2228.e2 3659.39 83313.65 GIGS 8000.4! ge77.e1 454e.77 4907.'5 "81.51 .00 lIU7!52.42 GGL! .u ,00 .00 ,00 ,00 .00 .00

eNw .n .00 .00 .00 ,00 4015.43 401!.43 $NMT .00 • 00 .00 .0 • .00 .00 11440.19 ETPH 3845.40 2842.00 1851.81 iUtS.30 420.41 130.99 16e01,37 np 23483.17 U!2t5.2t llP59.17 Aeas.e .. 2\08. I' 610,09 05902.25 !T 23418.28 18S46.61 9;;91.45 4e93.71 2U9.10 653.5e 9S5e8.09 MS 23775.'2 useS3,49 lI.e1.01 11134.2' 17436.02 16804.27 1880'.21 OP 4Q.~H !5~.41 '0.41 4G.51 49.'1 ~g.41 6'3.~~

GTO "'11523.98 ·UJU.', -1010.03 Pi'0.42 2198.32 362'.25 521116.12 QGO ... 4'5,50 ... 435,70 ·211,215 ,435,113 75a." 1188.28 119'2,22 QSO -!l88,47 -1128.&8 ... ,32," 534.12 1445.74 243e.91 4eG15.8G

QQAG 1509.99 41r;.Qr; 395.119 1527.r;J 868.99 IUG.Pll 39502.8P Ol~' "1178.47 -1808, •• -112 •• 71 -Q:5.21 5e8.7' 6 !s.Q7 1472,Q9

08JII 2.381 OB .. ,363

RANDOLPH 115&

VAR JAN FE8 H,R APR M'Y JUN TEHP 1$1,30 10.15111 21.50 3P.8. 50.5e e&.20

~ 1.21 ,11 2.n 3.58 5.10 5.13 PPT 151!r5t .33 10415.87 365.03 214P,81 1213e.83 3731.51

QRlv 7891,98 0318,$1$1 184ge.g8 241558.96 n13lS.87 47282.;2 QUNG 4l50,9~ 318.83 9211.09 4825.08 alee .. 10 1&.&.17 QCNL .~0 .00 .00 1218e.00 e48g~.9D 4.67 •• 7P OUT 8U58,315 1837,10 272ee,eg 229fH.13 48\45.83 i411e.23 DIGS .0~ .00 I1t1!4.!il 14014.42 41939.03 2S12'.I8 QGL\ .00 • 0. .0 • .00 .00 .0"

!Nti 21131.1~ 23018.e3 8359.15 ,00 .00 .00 !N"iT .0. .00 11004,51 83.11.1' .00 .00 nPH 183.57 118.1 I 442.415 »21.30 2038,74 :Z'liHL.21

ETP 841,:31 S8e.!" 2218.'2 4g71.49 12587.56 17312.112 ET 81H.30 514.n 2231.G2 15010.56 12e7S.;1 114H.02 MS 211330.74 U8"5.52 43609.92 52&10.38 5eeUi.$4 5e61P.54 OP 49,'1 19.50 49.!:H 4P.51 14015.,25 125"15.01

aTO 811P.92 ee'5.1 e 21211.64 22$1'3.53 49551.32 36838.61 aGO HH53.eg !3e&.32 5'~5.'0 4e93.71 9941.95 1367.34 aso 64se.:u 5188.82 211~5.93 1825i.G2 32eeg,37 2;211,32

OG'G P3GP •• S 6189.99 3000G.ll' 110e9.g1 40529.92 3t889.g4 tU" -2P.3.85 .. gal.U! .33~4.02 H6D.9' -920.'8 -26 I 8 •• 2

v" JLV AUG SEP OCT NOV DEC ANN TEMP &4.00 ".10 ez. !S0 42.30 24 .. "0- 17.00 ~S." , S.6!:l 5.48 '4.4t 3.2P 1.15. \.01 41 .. 22

PPT 3U3.75 20e&.5~ 121.61 5151.11 110.63 4583.27 44169.79 ~~Iv e25P.<)~ 29&8.P9 1829.99 2250.99 4101."" 42P1.911 Z03334.!U aUNG 1281.35 939,155 81G.31 183.61 614.01 535.39 2384".2' GCNI. 2433e.09 182'.19 2109.11 .00 .00 .00 154209,0'3 ~SIT ... 11"4.33 532.1e -125.15 210&.41 4414.34 4e63.38 141711.00 CU! 1oUJ44,9!5 2389.89 1010.18 51st. 11 ,0' .00 1226811.84 DGL! .00 .00 • 00 ••• ,00 .. " .00

$N" .00 ,00 .00 .00 170.83 5353,91 "3e3.11 5"1Io1:T .00 ,00 .00 .00 .00 .00 23443.63 e;TPH 3760.43 2822.'4 1825.35 g2&.! 9' 301.12 I.P.99 16018.72

!TP 220.,.n 1'25~110 9816.8. UP7.111 1~t0.61 792.89 93482.17 ET 22983,33 1~259,41 0842,02 ~e:t4.49 1'94.21 611.g~ 93834.60 H5 '8139,33 38 " •• 52 27898.8S 282fH .28 2873&.3. 2,P2',33 2!5g:24,33 DP 14531$.64 ~099110 -PO,02 ·148.5;' 325,11 168.33 J4U3.57

GTO 7301 t !U ~5841 92 ":211.:2e 19a1.2e 4e!i94.6a 41 13.el 11481'.37 GGO lt1l23.g& 1326.91 IP.8. 732.77 9P0.23 10u.a3 36262.38 QSO ~e83.r;4 425e.00 "'291.0' 116e.41 38"4.4~ 31il3.047 ~3Be13.00

CG'G 27:59,00 1439.P9 !$30.09 848.!Ji 24'51.99 3410.951 148a9.82 01" 2923.94 28 U. 00 .. 828.I-HI 3U.47 1144.45 283,48 -aI8.84

COKEVILLE COKEVILLE U54

• • 0 ! 571. g07t1, U.S2. !510. 0. 0. 0. V •• J.N ~EB H'R 'PR MAY JUN

0. 0. .. 0. 0. 0. .. 2IH4!S. HHP U.,U5 18.45 25.10 40.413 4P.40 53 •• 5 .01!if1Q • 31140 .e512. .0114Q .00UHJ • 00~00 .00000 ~ 1.a .. 1.23 2.08 3.55 ..,OS 5,5. .1!0C1!f!0 , •• 000 ,.un .a0000 ,1300'210 ,130000 .000'00 PPT 5464,,5& 880 1 04 U23 •• 4 680.04 lU!5.1D 3213.81

S242&.15. QRlv 89U.08 ~4!53. 1& 145.8 •• 8 1801;. Dr 3&11.,.5 21100.06 .. 88, 1344. 15. 8133. . . •• DUNG 3 •• ,52 456.31 838,35 4!5!52,,44 6.2,13 ",go. 10 2230. QC"l ,0. ••• ••• ••• 121.43.15 34106,82

,,00000' .ilJ04!if .5.259 • 00672 .360m! .00'000 •••••• OSIT .285.14 gS64.U 15243.55 22385,31 34"5.88 1 .. eli.'3 185,83331 QIGe ,00 ••• 402.3' 12120.81 543g.63 15425,2"

.54 ,85 .8. .91 1,07 1.10 1.04 • g. ..1 .81 • 15 .6 • QGLI 1221.09 1148.9 • 3286.gg ;nes.SUJ 1.68 •• 9 853.99

.72 .81 ,&9 ,93 .. ' •• 9 1.02 1."4 1.04 1.02 .95 ,64 ,N" 9253.53 .9H,58 12054.2. 23,52 .00 • •• ,4. ,35 leU ... .25 • M ••• 33 •• 0 25.0. 1.56 21.06 2.00 SNHT .0 • ••• 4.2.3~ 1221421.115 23.52 .n

20,e0 1.00 11.00 .20 .2121 22,O0 e.00 •• 8 •• 8 •• 7 2,!50 S,2121 ETPH !H.7e SI5.U 103,61 247.1. 48e,8g 533,1<4 1 UHI4 U,4S 18.4' 25.121 40.150 .9,40 ~3.9S 64,4<4 S8.10 52.4. 41.1O 33.85 12.40 ETF 511.88 '90.04 1218.P5 3145,4 i 12112.23 913 •• a4 I 19515 e .. ~s 10.10 18.2' ;"3,'15 41,115 53,aS fH.S5 151.90 151.'21 .2 •• 21 24,421 23,421 ET '10.5a 510.15 1232.15 31g3,g!'J '.10.52 P 12'.37 1 1958 18.3~ 1;",40 24,lC2I 33,415 521,35 5e.80 83.85 58.20 ~3.321 42.1~ 24,121 14,.5 "e 118(51.37 11050,90 10322,17 1.885.P8 18311.01 24'511. " 2 1015. 2.2' .28 1.08 .28 .48 1.3' .45 1.33 .34 .57 1,lS ,P9 OP <410,91 10S.84 12.<415 12,45 24,;:21 2lC,g" 2 1." .9' 1.51 .31 ,1Q 1.81 1.15~ .81 2.18 1.42 .87 1.S. 2.01 OTO ;agg, .0 101546.91 1540;,0'1 2.458.35 315683,84 18438.75 2 19,a 1.44 ,.1 .33 .19 2.41 1.15 .. , .42 .10 .'2 .24 2.03 QGO 722.22 112,e2 1319.92 202104,78 2938,eO 1:)4<4.82 3 19'4 3.29 3.e. 5.89 12,10 ",01 4. !! 2.5. 1.88 t,e1 2.41 3. a8 2.54 DeO 9171.ts 9174,88 1511P •• P 2248:1..5e 337<45,15 15.91.U 3 1955 2.8' 2,53 3.35 23,!S0 13,721 12,921 4.20 2.18 1 •• 2 2.73 3 •• 8 13.2. QGAG 0;2<4.,.98 98.2,,,6 I,Ue1.08 11018 •• 7 29;219,g& 14glC~.~8

3 I 95~ 7.45 4.8. 81.9. 204.'121 21.40 1.521 3.pa 2.'15 1.97 4.03 3,7lC 3.11 DI~~ ";2,80 -158,0~ 111.!! '385.58 313',U 14l,;" 4 19,. .. " .P0 ... .. ' 5,00 14," 9.1a a.14 5.33 ..' ••• .. ' 4 19~5 ••• ••• .00 .0' 8,05 10.71 10 .!'J1 6.64 3,52 .00 .0. ,.' V'R JLY AUG SEP OCT NDV DEC 'NN 4 1958 .. " ••• .00 .00 U.fS2 20.94 1 •• 31 1.65 5.154 •• l ••• .00 TEMP 4 .... 4 !SS,10 52.4 • 41.10 33.8~ 12.40 39.20 e 1954 3.8. 4,12115 5.95 1.0~ 12.31 8.15 .4 .28 2.30 1.95 2.7. 3.2. 3.'5 F 6,10 5.63 ..43 3.~!5 2.23 .18 Al.Te 5 1955 2.fU 2.P3 3 •• 9 6,.87 9.66 13.29 4.e. 3.33 2.53 3.12 3.31 5.34 PPT 1092.93 3230.23 825,17 1821.28 21.3.08 2 • .:1.,45 25148.17 5 1958 8.28 4.59 2e.0!5 22,"15 34,153 34.18 1.11 3.64 2.15. 3.~H 4.01 4.0'3 QRlV 18932.ge 1113!!1.ge "98.98 59~8. 99 55.8.99 8043 •• 9 170952.88 5 1954 3.57 3.89 5 •• 7 1,.4 1~.9:) 11,115 e .91 4.58 3.5. 2.45 2.26 2,048 DUNG 303,eQ 204.01 21212.8121 2"2.!!Ie 444 .. 88 308.~!5 PI US.30 8 1.55 2.6~ 2.29 2.29 6.44 12.31 18.38 1.44 4.;e 3.41 2.27 2.55 5.88 QCNl 23104.59 ItS:!!" .11 12.45.23 .0. • •• .0. gPI1IZ1.1!5 6 1958 '.95 4.24 18.59 18.04 3 •• 11 34.151 g.80 5.25 3,64 2.88 3.14 3.31 QSIT 1913.19 4841, lC2 3185 •• 1 !'J99S1 .14 5U5.15 5315.8. 1"0826,34 ,. 19!54 .50 .4' 1.35 1.38 .44 • 28 ••• .0' ••• .11 .31 .48 QIGS .38P .54 895 •• 65 535a.8. 1821.2a 2'93.06 .'. 522.5.!O 1 1955 .38 .4" .3' 1.2. .44 .89 • 44 .48 •• 0 013 .39 .92 QGL! ••• .00 ••• .315,'519 1!52,g~ 1181,9. 13130.97 1 1956 .89 .51 2.28 1.9' lC.ll 3.1211 .8a .53 . 0' • 3! .4. .41 SN • •• 0 ••• • 0' .eo .0 • 2.~4,4e 2lC0,c,46 8 19,. ••• .00 ••• ,PJ0 .. ' .00 .0. • 0. • 0. .. ' ,00 .0 • eNMT .0. .0 • .'. ,0 • .0. ..0 12558.82 8 1955 •• 0 ••• .. " •• 0 •• 0 .00 •• 0 ••• •• 0 ." .0. ..' nPH 102".17 110,15 50'.214 2!S1.91 118.72 38.19 42.8.09 8 1958 .0. . 0' •• r • 00 ••• .0. • •• ••• •• 0 .0' ••• ••• ETP 13'&8 ,1 l' 9553.41 5180.52 2832.29 122'.18 342,8a '.,10.1'''

ET 13580,32 9575.85 51P'.21 28'2.29 12151 •• 3 381.11 ' .. &16.34 POTS 10 THRU 24 SHOULD BE SET AS FOLLOWS HS 221'21.26 1pn~.98 U481.28 184&'.12 20035.~0 10730.33 U130.33

.,,15e00 ,,152021'0' .2~000 ,52380 .009~2 Dp 24. fijI'! 12.45 H.9. 24.90 12.45 31,35 72a._lC

.011l~A0 .52380 .laa88 • '0000 .14285 QTO Sl01!5,:B 5518.21 4111.44 6338.11 6263.3; 6;13.16 152112 •• 0 • 05.~0 .06000' .0821'021' .010210 .83.99 _GO 1572.41 423.31 410.91 413.11 ""3.11 560.34 1211$.88

Qeo 8342.89 5092.90 3180.53 ~e64.g3 "00.21 a412.82 14216ge.12 pors 10 TH.U 2' ,RE SET U FOLLOWS ClGAG U409 .ge eaUl,gO 47S;,!il9 ea8P. il9 7189.9~ '."9.;9 138""7.71

.. 0·025 • &2483 .2494' ,52US •• 093il OIP'F -20'67.21'8 .151',218 -900.,46 -700.210 -1"00,7' .. 997.18 2648.40

.000A0 .5233' .1859~ ,.0969 • 1423S1

.21'5047 .2'5\1 .. 4 ,O1928 .0693; ,83947

OBJ- 9,312 01)._ 1.090

COKE V IlLE 19!'J15 COKEVILLF. 1958

VA. JAN FEB H._ APR "AY JUN VA_ JAN FEB ... APR "H JU" n"p 6,915 1''-10 18.2~ 33.~~ .1,15 53.85 TE)o!P 18,35 13 •• 21 2 •• 4. U •• ' e~.35 $15.60' F .45 .57 1,151 3.01 4,76 !5.,O • \ ,21 .89 2.22 3.,45 15.21'8 5.71

FPT 231515.8& 3813.13 152.91 lPII.11 4396 •• 3 41214.58 PPT 3ol1n .39 2210.15 801,48 1918.11 59.9.01 27S13.06 QRIV 8478.'9 5562.9. "64.99 H5649.Sla 30 •• a.98 3914~.il4 ORIV 14415,98 103.8.P8 4.29il.il4 38P69,94 951<&0.&9 84228.8' QUNG 324" 23 3., .23 408.81 5109.10 It3g,SI' 1568.5S liUNG 905.92 !5t5!i1.5. 7~15.9' 8.21,U 2811.03 922,"2 QCNL .0' •• 0 ... .. , ig~!$I. 43 2151~1.63 QCNL .00 ••• ..0 .00 .'223.32 150358.01 OUT 15182.13 5859.61 591" •• 2 2(;11521 t .35 24312.a8 31522.11 Q81T 15333.08 10&31.11 "7115,13 4581 •• 21 &1.18.30 86838 •• P lUGS • 0. ••• .e. 10940.01 I US44.08 132e;9.7Sl QXGS .0. .0. ..0 1110e1.36 2U00,24 20593.38 QGLI a9V.99 1201.99 Ol0.S!9 2930.pg 1.88,90 21'8. g9 QGU 1M'.P9 14.5.P9 ~l5'2!".90 4633, 99 1021021.ge 1326. PP

SNW 41~H~:.J. 8573.48 932e.39 30 ••• g .04 ••• S .. 12'48.08 115058.2" IUap.13 13.01 ••• .0 • ~N"'T ,0. ••• .'. 9021,30 305,04 ..4 lIINl-tT , .. , .. .00 15186.55 '3.01 , .. ET'PH 18.49 3 •• 11 16.36 15' .72 431.25 530.20 ETP," 48.8" .0,75 100,18 211 .80 1511.33 113.41

ETP 162.82 323.Ql0 8S,4,8lC 2iHJ1.14 6210 •• 6 V0U.2e1 UP 482.12 .25:.54 1183,01 2893.58 13.4.38 1PJ268.20 IT ~II,6' 335.2. 9 ..... 20\14.18 6213.69 ;102 •• , ET 1504.:'" 43'.82 1182.94 21£2.1. 13S •• 0S 10272.91 "S 19531.32 Ig232.24 18311.211 2610V.72 215153.30 26134.82 M, 22924.28 22525.82 21330,42 2e;!53.30 261~3. a. 26f34.52 OP 12.4' 24.90 24.9~ 24.00 1220.30 4488.01 OF 12.45 12.45 31.13 535.05 9a21.115 la921.43

QTQ 7!5Sl!5'.17 8113.93 &898.45 2104O.151 21294.91 371560.3" QTO 16148.05 12290.20 49982.e1 49534.01 95457.a8 e8.9 •• 28 QGO 810.1~ 535.43 535.43 18.5.5' 2215.47 3013,40 QGO 13e9.12 9:f!l,"!5 4009,151 3991.11 5884.93 5341.g. QSO 698~ ,152 152:U.49 8383.01 20135 •• 2 25018 •• e 34S6e.;g QSO 15~".32 113158.15 .e013.10 45836.89 89592.1. 81648.32

QIi.G 10M.9" 1129.99 8.79,99 21~l5g,O' 2401$1.96 322Sg.$I5 QGlC; 152'9.98 11159_98 48109.93 ~"5I5g. 1:13 831HIP.S9 84"79.$10 01" -104.31 -8Sll.49 -21115.01 "1'24.$14 1068.53 2217.03 OIFF I.S.34 2"'8.7t11 -213&.83 "8933.213 55.2.8' -2831.51

VU JLY AUG SEP OCT NOV OEC ANN V" JU AUG SEP OCT NOV OEC ANN TE"MF 61.55 61,93 151,50 42 •• 0 24.40 23.40 36.24 TE~P e~.8!'J 58.20 53.30 42.1 !5 2'.121 1 •• $15 38.22

~ a.H ei,!i»4 4.32 3.30 1.81 1.47 3a,lfl F e.elC 5.58 4.lI1 3,28 1.53 .94 41.211 PI" 1481.!53 '294,61 34.118.82 182'.28 44151.8" 4881,78 385~4.23 PPT 2355.S6 1020.1£11 212.81 1282.514 582.89 d3.6'.3S 21814.86

1RI V le~' •• 97 12095.98 8300.9P !5!529.9~ IS ISH5 ,99 IJiA~.98 167'30.11 OR!V U8~1.91 121!52,98 .332.98 1011.99 7633,99 UId",,,g 352155.31 DUNG 51f .. 03 335.18 233.1' 331.52 48e.89 Its02.g1 12'947.615 QU~G 4U.S9 315&.24 23&1 .. 23 4851.39 45 •• 17 450,53 21926.13 QCNt. 251511.8& Ie 125,80 a:UIf,19 .eo .. ~ .S8 ge~!57.11!3 QCNl 2!5U5.13 1851g.93 13698.1.4 .00 .. ~ .00 1!5354'.53 QSIT S15821,69 !!QU.151 5058.e. lH5!i11.7!i 0591.30 15283.52 ~42317.1!i QSIT lo4460.IU !5854.05 4250.55 1241.88 82101.53 861!l7.1l) 318038.43 GIGS 121 466,69 1.939.08 6 441 .. 04 1821.26 •• e .0. 85217.P6 Q!U 11111.03 7523,04 5031.22 UU.i2,94 ••• .00 65193.20 QGL I I P S8.99 1128.99 .U 336.99 969.99 2237.99 14W31.'" DGU 1623.99 Uel5.99 .00 1~2.99 989,99 Ul6ii,.;9 36239,;3 S~W .~0 .e0 ... ••• 4468.99 9353.66 g3~0,153 s." .'. .H . M ... 582.89 5513.2a ~~13.26

SN"'T . ,. ••• .CS •• 0 ..0 ••• 9326.3s) S~!MT .00 ••• .0. .'. .00 ..' l~a'9.13 ETPH ~19.l~ 816.22 483.32 2e3,7~ 8'.58 6g •• 3 4~A1.2e I:.fP); 1¥!A4.e3 7P54.1" 5~1. 21 2Sg.49 86.63 .U,JI5 ~302.85 ElP 12146,59 1.889.28 ~531.9' 2155.04 883.14 641 •• 2 51531.615 ET. 1325> .26 n'!'J.29 15034.31 27H.$4 894.0~ ·13.31 55117.<.

ET 121'9,415 10870.61 5641.11 27tU~35 909,00 659.96 51682.38 ET 13261,047 9~7e:.41 612139.26 2714.55 !teo ,0~ 435 •• 2 55218.18 MS 2~05S1,82 2~H 1!5.8~ 26105.8. 24918.62 241 u •• e 23.16.14 23416.14 He 24e:36.A~ 22!J:i! •• 67 21828.50 20396.~1 Ig481.51 190eg.12I4 19089 •• 4 OP ~148, 07 e:59.S)e: 6.22 74.71 24.90 12.45 10322.77 O' 9189.83 Uig9.70 -49,8e 138,97 37.35 2.,90 3.610,0e

QTO 1At'!21.I.H 1994.23 IHU.152 63153.211 1298.92 U5349,58 1662116.43 QTO 29257.313 11!'J3A.63 6893.45 Q! 52.2t!I 9.63.S8 988b. !HI 381322.\2 QGO 1103.23 e22,60 473,17 413,17 572. HI 131:;, g2 13286.37 QGO 23.".99 8 4e,74 547 .89 872.41 122.22 7 47.12 21362.13 QSO 12!H2,81 '37 1.83 5828.34 5869.83 6724.12 1502;:,68 1621124 •• 6 QSO 2894&.31 10a83.89 .35.,58 13 479,87 8741.36 lJ139.83 359940.00

QGAG 1 H!7g.98 8089.99 8149.99 1~99.99 804;'\.99 12~19. il8 155119.71 "GAG 18'39.91 9~29.9' 81' •• 9P e~3g,99 97<19.98 978".98 3604".31 O!FF 1232.82 .. 118. 3~ ·521,64 -111\11.15 -132!1.85 2IUs).68 "219!1 ,65 OIFF 62215.33 L3!13,OI} 110.51 -60.11 "1008.152 .650.15 ·!H9.28

47 •• 28 -.021

71

THO~A-S FORK TI-IOHA-S rORK Ig5' e • e I

012'. 7'3e. 1305 •• 31g. 0. e. e. VAR JAN ~!B HAR APR HAY JUN 0. e. .. 0. 0. 0. e. 212'3. TEMP 17.10 17.00 22.5. 3g.,e 48.80 '3.20

.• a •• .3.ggg • e1491 .01~01 ,.0 •• e .00000 ,00000 F 1,12 1, !~ 1,87 3,5' 4.Sl2 5,42

.0B00~ 11 00000 •• 00 •• ,O0000 ,002100 ,00000 ,00000 PPT 343'.28 l!iSl~,22 57H.75 513,37 U48.33 42e4.30 S!77 •• 2'. QRIV I.",.gg Ille,," IU'8.gg 3238'. " 3700'. gg 117" .gg

291. 12O, 10i. O. '2'. 0, 0. QUNG 127.'5 127, .8 l7e8,81 2077.71 '18,11 35g.g& 213 •• QCNL ,ee .00 ,e. ,00 5310,7' 1\850.87

.13835 .3373' ,09325 ••• e •• .432g8 .00000 .001!00 QSIT IM25.'& 1115'.51 1762'.8g 3'134,37 3.g'3,2' 13131011 111,83331 QIGS .ee .e • ngl.71 8848,44 3,e5,27 8411 ,,~

• 5. .8' .8. .gl 1.08 I.og 1.03 .gg .91 ,81 .7e ••• QOLI 7~4,,,; 608.9g 1331.gg 2004.$10 2937,99 13'5.9g .P5 1.13 1.32 1.'3 1,4' 1,44 1,'2 1,'1 1,38 1.3' 1.22 1,015 ,." 173'.SlO 932~,2l 8335.25 .18 .ee ,00 .80 • 35 1.00 ••• .20 .01 ,00 32,0~ 21.5 • 2,43 24,00 2.~. SNHT • Oil .0. 17'1,71 933~ •• 7 .18 ,.0

215,00 3 •• 0 8 ••• ,'. .5e .00 ,.0 .0. ,00 , .. 2,:!'0 3.B0 fTPH 51.ea 88.'3 132.ge 333,32 tl1e:.e:Q 841.82 I lIl154 17 .1. U' ,0~ 22.80 ;;U.40 4e.I50 S:!.20 t4,30 :1:8.40 52,015 40,80 33.00 11.1O ETP 3;28.2' 3Sla.83 7,g.ge Ugg. ,e "3e.51 5381,42 I IgS5 6.1. i.7. UJ,e0 32.10 4~."0 e3.30 81.00 81.9. 50.80 .U.90 23.10 20,40 Er 342.2" '25.21 63',9g 2105,82 4941.10 53".!8 I US8 17.4. 16.2. 21.30 37.30 50,20 SF .00 83.1" 5',30 S4.10 42.10 24.S0 12.9. "S 4PSP.20 4S84.'" 11S8S.till lJ9~H.48 12$40.42 1:)1;1151.46 2 19S4 1,P' ,ge 3,8' ,29 .g3 2.41 .3e .78 1.12 1.S3 ,&& 1.a4 OP 31.l1 10.37 10.3' U.lI 3",15 1005.13 2 1055 1.82 2.'8 1.35 1.le .95 3.08 1.99 2.02 2.415 1,S!lI 2.70 5.42 QTO 11451.5' lu!u.:rr 184S!lI.IU 3!5305.,g 37042.9g 1:1:SI;3.14 2 1"6 3.O1 2.IH .e3 I,U 1.e1 1.29 .92 .08 .08 .99 .'6 2.5O QGO 25.93 ~H .85 SI.68 2e.t3 2'.93 25.g3 3 19S. 7.20 7,20 8.'0 23.2. 29.30 20,g. 12.2. e.00 1.10 1.70 7.20 5.80 QSO 11435.74 11902.'0 ta431,22 3521P.e8 37017.08 1 ,g47 ,&0 3 US5 5.1O S,50 5,40 13.90 23,50 33.70 15.50 Sii.:!0 ".10 1.50 1.70 Ij ,1O OGlO 1212'.9g 13119." 22109,99 2826g.99 32U9.U 11600.;0' 3 19S8 g.,~ e.8£' P.10 84.20' 81.80 "5.~0 20.e:0 12.10 9.St: 9.1" e.sa 8,8a 01" ",e;4.25 -1211.4a .3S72." 5989.85 4151.01 -15ftZ.18

• 1ge4 .O0 ,0. .00 ,~0 3.00 e.70 5.'0 1.15 1,88 .00 .e0 ."0 4 1ges .0. ,ea .00 .0. 2.88 10,61 tJ.12 1.81 2.28 .00 .00 •• 0 VAR JLY AUG SEP OCT NOV DEC ANN 4 1"6 .0" ••• .00 .00 3.38 9.78 8.53 6.0A 4.23 •• 0 .00 ••• UHP e4.30 !SB,"0 !52,e0 '0.e0 :U.00 11.70 38 .1~ S 1954 8.85 7.41 12.4. 15.98 18.22 9.9' •• 92 4,4; 3.23 A.P0 e.54 5.33 F 6.as s.n ',n 3.18 2.11 .73 40.80 S 19.5 •• at! 4.82 5,80 14.09 13,aJ 11,14 1.SlP 5.00 4.U' S.81 ~.&, e.'7 PPT 637.28 134S.38 3iIJ44.&2 2108.48 1~~7 .81 3251.2S 30802.33 S 1908 10.73 7.01 27.80 44.23 S9.81 '2.90 12.11 7.03 4.:51 6.43 6.67 6.33 ORIV 1!7~g.99 .3U.9~ '21Q.g9 1170.99 83g1.gl; 8051.ilO 11183g.~0 8 195' !S.9S 8.27 g.08 18.29 20.00 10.03 8.84 3.58 2,98 '.05 4.14 4.S4 aUNG 21S.g7 141.82 138.30 136.321 127.4' 102.ti1 e7g •• 4B 8 1905 4.33 •• 31 !S,10 13.~e 1«$,O5 20,84 1,SS '.05 3.83 4 t Sg S.0t1 8.34 QtNL 9!S!SQ,34 20~3. 48 2Q1.4.01 •• 0 •• 0 , .. 311~e,27 6 1958 9,24 8.18 28.34 40.015 5e.2S ~H,09 1l,98 5.08 4.11 5." 6.01 6.03 OSIT 1215.53 41~4.~5 3144,gl 100i.S4 8317 .SI 8113.1" 180"9.00 7 1954 .'1 .4' .75 J ,13 1.5S .18 .31 .2' ,18 .2e ,2g .2g QIGS 3983.08 20t4.11 40815.13 2708.48 1557.81 , .. 42gS2.16 7 lOSS .32 .28 .30 1.01 1,24 1.59 .51 .34 .28 .28 ,31 ,7' QGLI 571,Oi 434.99 323.QQ S09.Qg ,u.Og e21." 121~ •• 9P 7 IQ'8 .7P .51 2.28 2.28 3.2' 2.98 1.33 ,.8 .20 ,31 .4. .40 aN" .00 .00 •• 0 .00 .00 32S7.25 32~7 .2' 8 190:4 .00 • 0. .0 • • 00 ••• .Q0 .00 .0 • .0a .e0 , .. , .. SNr-T .0. .e0 ,0. , .. ,00 ,00 18128.'8 e 19S. .. ~ .e0 .00 .0. •• 0 .00 .0. .00 .0. .0. .0. •• 0 !TPH 13".'8 982.32 630.48 297.76 141.03 41,41 '5eS.PI 8 195e .00 .eo .0" .~. .00 .00 •• 0 .00 .00 .0~ .00 ••• ETP 9781.61 8880,23 4125,8' 180'.41 811.52 235.SI 38521.31

ET 91il!5 A U 6e90,29 3'78.'3 1830.7S 881.5e 2!S4.12 3808&.03 POTS 10 THRU 2. 8HOULO 8E SET AS FOLLO.! HS 8183,94 3"8.S3 4018.41 "000.94 '8 •• ,'3 "481.08 '481.08

.0!!1000 • 0t'! 044 .08333 .33333 .~0000 DP 1285.4~ 1158,91 111. Q4 394,1' 12Q.65 15.18 S222,5S

.00833 .00000 .OSS'S ,39999 .0e000 QTO U022,48 1iH4.44 '341.ee 8e61.89 90e8,ge 8648.11 1783gS.03

.~''''00 ~ 0000~ ,00000 .0000'e .9S999 QGO 'l.ee 64,&2 '1.8e 2!5.Q3 2!S,93 !51.86 419.13 Qao 9910~ e2 e949.61 e290,00 9025.78 90t3.02 8506.2' 117015.28

POTS 10 THOU 2' ARE SET 'S ~OLLOWS CGAG 122~9.gg 1949.09 5129.9~ ueO.9P 9989.Q~ "31>.99 1"579.87 .0492' .06"9 .082!U .3329' .03000 OlifF -2289.37 -HH'~,38 "43Q.9S1' ... ee4.23 ,925.01 ,e43.74 -168'.51 .008315 .00000 .05487 .3P~1S .0e000 ~049 19 .e:~0"'0 .0000~ • ~0000 .9"SI'04

08J- 31.319 08A- •• 9'~

THOMAS FClfi!( 1955 THOMAS FORI( 1956

V'. J'" FEe H'. 'PR .AV JUN VA. HN HS M'R APR MAY JUN TEMP fS.U 8.1\' IS.8a 32.10 46.70 !5J.3~ TEMP 11,40 16.20 21 ,30 31.30 !i0,U ~1.00

F ,.0 .'8 1.39 2.88 4.11 5.'3 • 1.14 1 •• 6 1.76 3.3. ..01 5.81 PPT 3~21.85 4:590,21 24~1,'3 20!53.48 US1.'3 54S2.38 P'T '328,4!S 3558,20 Ille.25 2974.el 3310.36 2283.62

QRlv 7~Sg,l)g 7829, 99 9038.99 23189.9g 28430.0g 3889g.9O ORlV In~9.g9 12014.~Q S011Q.gSl 124g9,Oe 10312g,99 9~0I4g.0e

QUNG 10",90 91.:515 9~. !ig 2U5.S4 420 1 t0 '96.51 i)U"IG 18e.17 110,31 181.09 5421.~2 1448.39 80',46 ~CNL ,00 .. ~ .00 .00 ee.2.g1 18182.3. aC"L .e. ,e0 .00 .0" 5983,44 11211.63 riSfT 77' •• 2' 1692.08 903S.1Q 2'84'''.2i 2643'.3' 30e7l."9 OSIT 16459.28 120S9.e1 5~215,8\ 77631.12 101168.23 8'201.62 OIGS .00 ,00 .0O 1.301, .0 3'78.11 12026.lg OIG! .00 .e0 .e0 24390,14 5'08.20 8330.19 QGL! 571.99 509.99 534.99 le04.90 2203." 2g99.P9 QGLI 140fS.1;9 ge&. D~ '0e8.99 4008.99 57!54,9g 527;.l;g

SN. (5.47i.11 10889.33 l3278.81 22.96 ,.0 .". S"' 16753.30 ~0311.50 21 426.7' 1,63 .00 ,00 SN\1T • 0~ ,02 .00 132~3"Ql 22.96 ... !NMT ••• ,00 .00 2 i 012:5 .. 12 1.6:5 .00 ElFK 2""jI$4 3'.28 9S, '9 221.61 603.20 851.64 !TPH '8,88 6S.89 125.2e 28 4 ,,37 121.ge lOa8.83 n. 111.10 2(1l3.08 '9d..e;1 1396,18 4402.18 6411.e8 ET' 334,f'! 378.18 753,98 179l,~1 5312.2' 1!\8~,64

!T 1301.84 217 •• 2 '91.23 1"1".3' 4408.33 842r5.fSl ET 342.29 383.itl! 1151.19 1830,7' 5321.12 7582,33 HS ~362.e:1 'IS'.16 451 4,29 13961.48 130AfS.e1 139.,.39 "5 l3:l101.e3 12861.1S 1212e,SI 13961." 139!58.84 13981.48 O. '.18 5.18 20,74 31.11 321.'4 Ul1l5.151 OP 25g, :51 280.0' 280 t e, 39'.15 237'.31 S030.89

aTO 6233.~1 6194.32 9555.71 28631.5' 280144.80 3282g.I' QTO 11711.14 13393.!5t1! ~20".31 80!\t14.U 10b205.25 93 404,87 OGO 5t .8t1! '1,86 !51.86 '1.86 2'.93 51.86 aGO 151,86 11,79 2 •• 93 90,15 38.89 90.15 aso 8181.~5 81012.4' 9'03.85 2tl'7g.e;1 28A1S.81 32177.28 Q50 HI5'!a.21 1331'.11 520U.31 800113.2' 1015166.31 93314.12

I1GAG 6619.9' 8119.99 9929.99 2e"g.99 2449g,gg Jl419.~9 I}GAG Ug99,99 12419.99 .922g.i9 18339,,9& 10.999.98 93649.i8 01" -43l!,ts4 "31,'4 .. 426.14 29.e8 3~18,87 13S7.28 01'. '1340.71 89'.'1 2788.38 21~3,2e 166.37 -33'.8fS

v .. JLY AUG !EP OtT 'OV OEC ,,"N VAR JLY AUG SE' OCT NOV DEC ANN TEMP ts1.~0 61.90 '0,e0 40.90 23.10 20.'0 3'.14 TEMp 63,10 '9,30 !54.10 42.12 24.!\Z 12."0 38.04

F 8.34 ~.94 4.2& 3.19 1.'2 1.28 37,97 F e,e2 '.&9 4.'4 3.33 1.61 .81 4~t86

.PT 3522,19 351!5,9'" 4354.81 33'5.11 .n9.67 9!594.15 48380.91 PPT 1828.32 141,152 141.e2 1752.'" 849,11 46~2,e4 27686.60 QRIV 13319.99 e912,99 e7a~.gg 8303.g9 8856.P9 14119.~Q 113228.84 ,.IV 21200.99 ,.'79,99 7289.99 96.9.0_ 10e48.gg 10686~99 4149;'10 6 '5 nU"IG 214.3i 164,63 12~.e8 132.76 725.22 l7! .71 •• 03.29 CUNG 352.90 214,20 173.'8 171.11 2f12.32 1"2,24 9491.a8 QCNL 10833.92 3204.1' '.36.16 .0ij ,00 .00 41Q19.~0 QCNL 1~10P.22 131592.30 14ea.l' .00 .O0 .00 56541.76 Q!IT ae69.3' 5584.43 49~01.92 6136.9S 9483.&15 1487P.39 1~9838.68 DSIT J4Q~.33 8232.11 41 6",98 9483.93 10535.94 10793.'1 3988\114.43 Qll'tS 7:5J4.e1 4S91.:U 5167.41 3345.77 2949. S' .00 50188'.13 DIGS 8913.10' 3863,02 2762.41 17~2.54 109,26 •• 0 '41'8."3 DGi.l 1""2.99 609,99 472.9g SeQ.99 "9.99 1318.99 13180.09 OGL! 2354.99 858.99 a22.99 671.92 721." 721.g9 21241.97

S"Ijo; .00 .0B .0e •• 0 1830.10 114201.85 11424.85 SN' •• P .00 ,00 ,00 14e.45 4743.10 01743.10 SNKT .. " ••• ••• .00 2949.55 .0O 15225.'3 SN~T .00 .00 .00 .00 709,26 .00 22136.01 E TiJH 1193," 1131.'3 5904.10 299.81 P9.35 12.30 5221,65 £TF')1 1324.41 1019,16 S9S.6. 337.11 \0 •• 31 45,72 ~7.e.51

ETP S81e.~, 1e92,115 3888, '11 1317.89 609.43 41(1.1501 3153155,81 ETP 9~e4. 3!! 1211.34 4559.90 2048.06 545.:11 259.67 40'34'.31 Er ee:09.22 'IU3,!S1 3g0:!',25 1335,94 611.98 .:1.25.2' 364159,; 1 Er 0553.12 7 141.:U~ 4~'4.2P 2079,89 5S3.41 2'9.31 4",478.90 "S 12a6'.89 2480,'1 11378.6g Ug08.!54 Il9U.U; ,3572 •• H~ t3512.4g .S 11~37.20 8137,21 8310.88 !5laJ&.82 6169.43 ~850.12 ~85'012

OF 116~.33 221 4 .54 t9&1.1!5 1338.~8 6'3.09 28~.05 9620." OP :58iSi.~0 4(59&.16 282e.:l:2 110'.ea 114.09 -243.1' 22'.4,0. DTO 1 e:?6'." 1051'.11 7913. lUll 103e7.12 10639.32 15941.80 1SlJ.:5&.2~ OTe 241S4.4& 13ge4.05 9050,a5 12011.06 120g.15.99 11500.57 44671U~43 QGO 2!'.9:) ~1.68 2'.93 25.93 '1.86 25."3 41;2.59 QG~ 25~ 9:5 77.1g 25.'~ '1.8e 11.19 25 •• 3 681,25 O!O 12239.51 104e3.31 1941.91 10281.79 h',e1.46 15921.87 18eS4!.53 OSO 2,,!e.~! 138&6.26 '"2'.12 12019." 12~19.221 t 14701,64 446049,18

QGAG 141:59,99 U449.99 7349.99 U2R9.99 10309.99 14999.1;9 li68U~.87 OGAG 22600." 12449 •• 9 799 •••• 113.',9. lL80Q.99 \ 1209,1.19 4:55;H~.81

DIFF ... U)2~,3e 13.3! 59'.97 -8.19 411.46 .21.87 4~2:5.e6 ~1'F 212e.S! 1436.2& 10:2'4.12 62 •• 20 209.20 264.64 99tl".J.1

72

a~AR LAK~ a~~R UK~ 1ge. 0 0 0 1

8!HI9. 12;'4' • 20121. 100:08. 42. 0. 0. VOR JAN ~Ee H~R APR MAY JUN -. -. 0. .5. 0. 0. 0. 51513. TEMP 21.70 lU •• .:) U.S6 0.63 e2.13 !!lS •• & • 17;,\S! .231)22 • 3eU4 .19" • .000et .01211300 .00000 F 1.·3 1.70 2.39 3.92 5.28 '.1515 .0(1000 .00000 ,00liH' 0 ,00121159 .00011'" .001U10 .001500 PPT "'''l,U a35." 7311.&3 1'46,31 6365.60 6172.05

'.301.083 QRIV 301n.1J7 3123.97 2153.95 37lg,97 55059.51 53931.51 21253. 7307. 3100. 2536. 6030. 0. 0. QUNG 70S0.:n 'U5.al 7019.35 17882.9a 21516.15 1799a.26 .2355. QCNL .00 .00 .00 .00 57131.59 3"'1.55 .502n .17201 .07318 .05223 .1890S .00000 .1110000 OSIT 1!117t!1,IHI eOll.55 0'83.18 1210e.32 41039.94 35335.07

13529.855 OIGS .00 .00 .00 2e292.25 3020.,02 21U2.ae .01 .80 .11 .58 1.09 1.14 • ge • 8e .7& ,71 .51 ." GGLI .00 .00 .00 .00 .00 .00

1.2; 1.37 t •• e 1.'2 1.53 1.03 I.n 1.53 1.51 I.n 1.43 1.34 SNW HI2!5S.08 18<9 •• 50 20&08 •• 9 2052,oa 30.11 ,22 .20 .40 1.00 .00 .20 .24 .00 3'.00 31.00 1.'15 20.00 1.00 SNMT ,00 ,00 ,00 2:3743.'hll 2032.47 U.U

!B.00 2,50 8,091 .40 ,00 .00 .00 .00 .00 .00 2.50 3,00 nPM 19'5,40 2478,13 3720.le 9295.53 HI?'1,8 .. USlI,I3 I 1954 21.70 25.43 28,815 .43.ts3 52.13 00 •• 5 e;7.73 (!I:Z •. u IUS,ee 44.~0 30.00 10.40 ETP $1147.23 IUI.15 2207.e. ee22.a4 1.552.5S 17931.03 1 1955 15.05 13.20 20.23 33.75 'SI.Ae 55.10 54.13 55.39 !U.'9 44.25 25.'~ 25.06 ET Ute." 1323.0& 220'.14 564&.93 1.e27 •• S 17~35. P I IPse 24.00 13.40 21.23 .1.15 ,a.B13 B.15 e:e Il 6361.66 55.n 44.03 27.35 21.16 H8 14133.92 12831.U 10n5.59 2'U4.20 258!4.20 2'''S.c,20 2 19" a,,23 .5a 1.70 .35 1.d: 1.90 .47 ,50 1.1& 1.54 1.37 1.81 OP 1122. I I 1407.09 861,0e 388.!52 80S." 4e41.30 2 1$55 1.04 1.8e .9; 1. 40 1.49 1.'4 .g4 2.0S 2.41 .73 1.70 3.01 eTO ;8aa,,6. 1938.52 5247.91 12411.81 41740.2' 4290S.52 2 !pee 2.00 .62 .23 .n 3. II .n ,5! .52 .22 1.15 .16 1.50 0;0 u.eH't 21.00 42,00 31,50 21.00 42.00 3 IP" S.S3 !!,76 ~.U 12.53 28.25 17 .43 12.14 8.se 7.09 e.154 e.00 !!.46 060 ;ee1.54 7917.52 520'. ;0 12380,3! 411'HI.24 42853.82 3 19" 5.32 4.e1 5.U 8,O. 20,51 28.50 1'.09 10.22 , ,7a 1.31 6,,4; 6.85 OG.G 483; .Sle: el59.ge ;941,93 10U9,~2 3eg3;.73 4U3;,70 3 1956 8.01 6.3e 8.20 22,53 .;.23 .1.86 18,;2 12,56 ;.62 8.81 7.6.c 7.13 Ol~' 41h~7 ,e7 2757.55 -3744.02 2010.35 4779, '0 ;2A.10 4 U'4 .00 .00 .00 ,00 15.51 8.01 2.el l.e0 1.3!5 .00 .00 .00 • 1055 .00 .00 .00 ,00 15.;5 12.14 4.411 1.22 2.35 .00 .00 .00 VlR JLY AUG !!P OCT NOV DEC ANN 4 10" .00 .0~ .00 .00 15.U 18.15 1.02 3.90 3.0' 1 .. 021 .00 .00 TEHP 51.73 62"US 55.55 A4.021 35.'0 19 .. 46 42,7!5 5 195' 1" 12 1.19 2.31 2. 4 1 8.5e g." 15.0& 12.23 5.5' 1.62 .92 1.43 F 7.e4 e.oo •• al 3.43 2.'0 1.22 45.16 5 1955 1.35 1.25 .83 4,19 2.5e e.91 1',AA 9.SJO a, l' 2.00 2.22 3.10 PPT 2021.50 235'.59 4g89.25 70'3.77 5e02.48 17S4.00 55333.41 o 1955 2,;. 1.'9 3,59 6,'7 8.34 &.28 15.31 13.13 6.2' 2.35 1.50 2.05 O"IV 74621,45 59551.51 31517 .17 aU0.;4 3202.91 .c~82,,;e 3045.0.1S 5 \95' .71 .,. .'0 .65 12.90 12.n 11.61 13.5< 7.34 1.90 .74 1.06 CUNG 12531.51 9083.58 7318.72 5854,20 5193.'5 5635.13 132803.l2Ie 5 1955 .71 ,57 .55 1.04 5.51 g • .tO 19.28 9,27 0.34 1.50 2.50 1.38 GCNL IIU5,n 6UI.13 !580e:.A~ ,00 ,00 ,00 125505,54 5 1955 1.56 1.23 2.52 2.59 7' .013 11.17 11.68 13,45 6.63 2.33 1.11 1.81 OSIT 519'0.39 411523,25 20309.55 6~34.3e 5521.2. 1455.51 2.5932." 7 1$54 .00 .00 .00 .0~ ,00 .00 .00 .00 .00 .00 .00 .00 OIG! 6'12.05 5118,28 7311.83 1053.77 S892.48 ,00 114417.32 7 1955 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 OGLI .00 .00 .00 .00 .00 .00 .01 7 1955 .00 .00 .00 .00 .00 .00 ,00 ,00 .00 .00 .00 .00 S~W .00 .00 .00 .00 .00 71'.,e, 11a •• 8S 5 1954 .0O .00 .00 .00 .00 .00 .00 • 00 ,00 .00 .00 ,00 SNHT .22 .00 .00 .00 .00 ,10 2560e.~ •

1955 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ~TP" 32112 •• 0 24159,51 1126 •• 35 8tel.1S 3se8.28 1"0 •. 41 141599.05 19S1 .O0 .00 .00 .00 .00 ,00 .00 .00 .00 .00 .00 .00 !TP 25539.12 11581.65 10298.01 41.8.10 2205.00 671.10 U40SSJ.16

n 2.150.52 111'.57 '103.33 3501,23 2104.64 ;03,O5 .t024 .... POT! 10 THF!U 24 SHOULO B! SET AS ~OLLOWS HS 173;. "8 4053.2e e394.91 97&e.54 135.,.59 12584.83 1268 .... 3

• 1021Pl:0 ,1V!0A0 ,10011\0 .29999 .02000 OP 8421,,'5 &006.03 4ge5.82 1121.12 53.0e -325.'2 32,17.55 ,2111'10021 .00000 .0e61e 1.00~00 .2100091 GTO 8e284" 46 49133$,2:2: 25191.15 8673.57 "23.36 5033.U 217011.15 .10000 .00000 .0000O .00000 .79999 QGO 13.50 42.00 31.:50 42.00 52.50 21.00 441,02

QSO ee2U.91 4$096.21 2!!U59,S5 5e31.'1 5470.eo 8012.02 21737'.15 POTS 10 THRU 24 'RE SET os ,eLI.OWS QG.G 69189. '0 52609.13 28619.80 1001$,95 3;88.91 ~190.9' 216806,03

.0991)1 .099~HJ .0;97; .29974 .0UHS' OIFF -8976.55 -3813.41 -3"6113.14 1622.61 1481.83 152! .0~ '18.80 ,00000 • ~.000 t 0eJ,07 .090015 ,013000 .0;';97 ,0~000 ,000~0 ,0"0021 • 7g043

oeJIl 10.1'3 oe.· .132

SEAR l..l1<E 1955 8EAR l..l)(f 19'6

V" JAN FEB MU APR MAY JUN V.R HN 'E8 HAR APR MAy JUN TEHP 15.06 13.20 20.23 33.16 o1g.46 56.10 TEMP 2 •• 00 13.40 27.23 41.HI 52.00 '9.11

F .09 .B8 1.51 a.03 4.gg e.72 F 1,5& .n 2.25 3.70 S.2S e.03 PPT .473,12 7051.130 U56.0' B02I. 'I 5408.el 6623.515 PPT 85U.15 U65.B7 Oe:O.2. 3827.oe 133715.315 352S,88

CRlV 3072.91 24eJs.oe 2844.;1 4513.;15 2416;.53 40519.11 ORIV 6723.9' '29',91 1130;.91 11179.91 3111101;.1; .e0H.6B OUNG 5491.52 41S6.71 525 •• 20 10591.22 340'7.25 29'05.10 OU_G tU:8,31a 5503.23 114etl.!!2 297e7.09 '1166.55 43224.80 GeNL .00 .0e ,00 .0" 12903.34 547;5.18 OCNL .e0 ,00 .. ~ .00 58731.29 781.01.55 G81T 7199.Sl8 5938 .54 5491 ,52 10!h'HI" 43 1 A.cIiHh5e 25030.05 C!lT UBIB.12 1,"03.!U 15254.75 3302' tG3 37712.ee 35533.31 GIG! .~0 ,00 .00 12O'Sg.28 '25e5.S9 26g1!!.53 GIGS .eo ,00 .00 35163.2' 451521.4; 3'U2.03 OGLI .00 .00 .0. .00 .00 .00 ~GLI .00 .00 ,0. ,00 .00 .00

5Nw U2SB.0B 2021'.08 24413. u: 17!53!5.30 43e,43 2.8t SNW 332214.35 35671.02 3see0.26 U24.;15 72.35 .2' !tiNT ••• .0. ••• 12950.26 1709S.94 433.55 $/II'-T .00 .O0 .00 322135,30 47!52.el 72.0g ETP~ 13e".51 IU5.15 2607.55 469a.7!5 14!&5.l7 20311.'3 ETPH 2t'~' '2 1305.001 3509. B6 1922,01 16053.31 23228.03

ETP 557 .66 !85.6! 1541 .35 3487.27 127'0.ge 1644'.10 UP HI"7.e3 596.07 20112.5g 5!42.g3 101.4118.28 21024.24 ET 593.0' 693.,,4 1522.10 3406.12 12'47 •• 3 18491.71 ET 861.05 5"0.03 1323.06 "12.&e 14511.9' 21022,36 M5 1204",20 11361.7' 9U;.6. 19342.26 2!58!4.20 25884.20 "! 819Q1.53 7139.00 e394.g1 25884.20 25U4.20 25684. ~0 Op -169.01 105.00 180.0'1 178.51 483,03 540 I .e6 OP ·"4t.e:! "2.0'0 252.51 252.51 lIeg.12 8g1~.08

GTO 1S97t,45 '953,89 5628.37 IA595.19 14816.47 33423.59 OTO 123Sg.S1 10"&9,18 16.4".07 33203.17 39555.10 45557.00 QGO 6~.~0 52.'0 63.00 21.00 52.50' 21.00 aGO 42.00 21.I!I~ 31.50 42.00 21.001 42,O9 050 69~ •• " S001.38 5565.36 105'4.19 147!3.97 33402.60 QSO 12327,41 104"&.18 le412.57 331&1.17 39535.09 .'615.00

QG1G 5e2~. ~5 5435,;6 3599.97 18045.8' 1142&.91 3.017.78 QGAS 126!!I.g1 e&55.95 154!58,e:O 28260.80' 3'8'1.74 35642.74 01'" 1086.49 4!5.42 1965.39 -1.71.5. 3335.04 3364.00 OI'F -3U.10 3592.23 053,6e .900,37 3153.35 9072.25

V4R JLY AUG SEP OCT NOV DEC IN. V" JLY AUG SEP OCT 'OV DEC ANN TEMp 5'.13 I •• n 54.'9 44,26 2!.!le 25.55 39.11 TEMP 65,83 61.as 55.93 44 •• 3 2' .36 21.15 41.06

f' 15.S6 6.2' 4 tee 3. '" 1.75 1." 41.13 ~ 6.82 5.92 4.e9 3.43 1.80 1.33 43.15 PPT 41i'43.fI1 894!,25 t 03t5'. 6(1\ 3139.19 7526.U 1107',29 86838.81 .'T 2494,62 25~e.11 04t5,23 4946.24 le8.17 ""1.94 52413.1.

ORI \f 112955."2 39892.11 40U4.71 5480.95 10735.02 5906.95 264134,015 QRIV '507 ••• 1 "a, •• 5. 26524.50 10031.92 4718.00 '8~8.;4 297623.16 GUNS 15577.37 10549.159 !030,gS 7607.75 619 •• 35 9145.81 IA",0.03 GUNG UIJ311!,40 129S5.18 9930.33 9156.1' 7sse.46 '36Z,01 214U5.15 CCNL 18967." 524' .32 1015 •• 55 .00 .00 .00 162084.68 QCNL 30U~,,59 1177'.21 13116.30 4301.0S .00 .00 2!U21.U OSIT ti2220.78 20593.86 281558.34 5334.115 14824,50 12113.84 216424,2' aSIT 53l'~.15 40Al1,O!! 16'4;.39 935!.25 9924.52 1326!!,60 2&;582.1& QIGS 11833.00 110".1' 144:?~.63 3139.79 .0~ .0. 134841,4tJ OIGS 1"'~.32 93'5.35 6103.!5~ 156615.157 .00 .0" 153135.62 QGLI • 0' .0. ••• • 0. ••• .00 .0 • QGLI .0' .00 .0" .0. .0~ .0 • .00

$NW • 00 .M .0. .00 7521'5.89 241502.19 24602.19 SNW ••• .03 ... .0D 1588 s 11 8433.12 .430.12 SNMT 2.87 .0D ••• ••• .00 .00 304;4.56 S,HT .25 .0" .00 .00 .00 .00 36860.25 ETP"H 28 724,81 21149.81 1~409, 12 8233.96 2660.7. 2386.SJ3 1304'3.93 [TPM 303!5e1.1!15 24098.12 U458.42 e S 17.3' 2140.90 19.3.35 13641ti,18

ETI' 22!514.33 1952'.5~ 9813.49 48215 .115 1~19.38 1188.89 ;701'50.;e ET. 23'92.52 t7~43, 11 10428.a. 4157.82 1'6'.13 94 1 .23 103'08.64 !T 22'34.'8 18082.15 9251.e. .8'1.31 1522.60 1071.07 ;4;1'5& ,23 ET 23668.07 te1::U.0g "'9.52 3969.25 1407.0; 777.05 ;8496.45 "S 14!il!~4,g8 79;1.02 IJt99.36 11~2g:, 7~ 10011.e~ 9030.0. g030.50 HS 15e54. A!iI 92~3.11 15713.9; 102159.61 8511 ~,ze- 81551,03 8159.03 01' 123~9.31 133~5.87 e;67.~8 31~7.24 "'1,02 .150;,0 4 4"4511,42 OP 15803.53 usee,03 130~9.e:S 3958,76 388,52 .093.04 56116 •• 6

QTO 7.11481.39 33885.72 31~150,O!5 9003.12 15205.0. 120~4.151 2600' I. 09 OTO 6.603.51 ~~!532.f5~ 2e14~,:i!~ 132B2.31 10227 .57 IZ'31.82 3445166.58 QGO 42, 0~ 52. '0 21,00 e3.00 42.00 21.00 '14.03 QGO 42 ,~a 42.00 21.00 42.00 42.00 42.00 430.52 QSO 74'39.39 33833.21 37~39.!iI!5 9440.12 151~2.09 12033.79 2'9055.05 QSO I5I!1S:21.51 5559 •• 55 2672'.2S 13220.33 1018,.e6 12495.82 344S38.12

OGAG 75044,415 012916,60 3S063.70 ee:4'2.0::S 9!i~3.Sl3 133~2. 90 2580915,12 QG'G 7et7A.50 5e~0S.150 215&98.80 101:20.92 6892.9' 88;5. g3 314227.62 OIn -605.08 "9143.41 2416.21 7!H.18 e60g.06 "13251,11 570.44 D1FF -1348.97 .. 914.94 "P4.!5!5- 3090'.44 32gZ.71 3!5SJ8.88 30J10.~0

73

500A 500' 1954 0 0 0 I

2077 • 3703. e0n. 3022. 0. 0. 0. v'" J.N rEB M,. 'PR M'~ JUN

0. 0. 0, 0. 0. 0. 0. Ise00. T[MP 1~.30 24.80 2$.2:5 43.521 51.30 '4. I!! , .17270 .238g0 ,30341 • 1~4ge • 000P1121 .0000121 .00000 r 1.27 1.ee 2.34 3,01 e.23 e.5. ,~m000 .00000 ,00000 .00000 .00000 .00000 .00000 PPT 2221,ee 1343.33 33P' .U 1704,00 2118.33 H;7.4g

U201.eee a.lv 83e7.07 8482.IH 1142s.e. !!B3g.37 38lJa',55 43&28.88 848, ~. 2eeo. 0. 1890. 0. ., OUNG .128.37 U41.gg 1'774.28 13050.33 7.75.45 7648.'2

'1524. QCNL .00 .00 .00 .00 2'83,33 P041 ••• .150H .00000 ,51315 .0021013 .33 •• 5 .00000 .00000 OUT 12332.12 13lg4.14 2 •• 53.15 24025.28 43g88.33 4e448.U

4.e ••••• 2 01"8 .~0 7A2.U 428A,38 4823.78 30815. ee 59.2.32 .51 •• 0 .71 .59 1.0g 1.14 , .. .88 .78 .71 .57 .5' OGLI .00 .00 .00 .00 .00 .00 .90 .98 1.05 1,01 1,11 1.13 1.15 1.17 1.1. 1.15 I.e; 1.00 ,NW 3409.;9 40'0,52 3183.22 e4.43 .24 .00 .2. .35 1.00 .00 2,30 .31 .00 3e.00 24.0' .92 25.00 2.40 !NMT .a0 102.~U 4284.38 3l18.78 154.18 .24

10.00 1.fte •• 00 .00 .00 .00 .00 .00 .0' .00 2.50 3.0O ETP~ 1.2.21 230.71 34e.8t1 &73.41 U'U,4$1 !B.4.35 ! 1.54 U.~0 24,80 25.25 43.50 51.80 54,55 e7.40 e2.e, 55.15 44.25 31.40 1t1.3' fTP '-53.2' 387.40 .'P.D! 19:7i1.~1 .311 •• 2 515'.74 1 1955 13,&0 13.90 21.30 34.'5 'P.~0 5'.40 64.20 55.80 55.20 "'.10 27 tee 24,80 ET 2.'.18 3U.30 588.17 1978,81 .312.38 5119.5; I 1!)5e 115.00 13.05 25.80 '1.15 51.a0 SO.00 58.se 61.8S 56.6' 44.00' 2l5.e0 1$1.70 M8 3t534.U: 3049,,13 "80.47 71el,50 553D.53 1185.4' 2: 10S4 1,72 1.04 2.63 1.32 t .t54 2.94 .'3 I.e, 1.81 .80 1.15 .3' 0' . Ig.70 1~.10 lS.'S '17 .a3 He$l,e" 6 .. :l t P' 2 1955 .87 .g3 .;e 1.91 2.81 4.25 • 8g 2.5 • 1.&4 1.05 1.5. 3.80 aTO 12317.4$1 13188.93 2882 •• 82 243g&.48 45141.24 .n.I.54 2 1958 2.10 .84 .23 .D3 2.90 .73 .55 .15 .38 1,47 .32 1.33 aGO 28.3' 41,30 41.30 41.30 31,84 31,$4 :3 US .. 15.3' !3.n 14.0'0 14,10 18.80 19.IB 19.10 18.30 15.80 18.40 15.50 15.1B OSO 12210.11 13121.83 28782.51 24351.17 451.3.3g 4I923.79 3 1955 13.80 11.80 13.00 12.80 IS." 20.40 20.50 18.00 11.2121 11.20 I •.•• 18.20 arar; 13.U.85 13103 •• 14 2'2!1 •• g 25471.80 482;42.51 4t1113.87 3, lSl'Se 14.50 13.20 14.20 18.80 32.;0 29,70 23.g0 21.30 20.20 u.e0 11.0" 1S.S0 OI~~ -18$19.73 -871.81 2583.'2 -1120.11 ~S3;.11 ·271~e.01

4 19,. .00 •• R .B' .0f 2~00 ".00 3.00 5.00 4.210 .00 ,'B .00 4 IP55 .B. • 00 .0 • .-- .00 13 •• B It .00 I' .00 4.00 .0. .B0 .0B VA. JLY 'UG SEP ocr NOV DEC AN" 4 195. .0~ .00 .00 ,00 1".00 1 •• 00 1!!I.0'0 17.00 10,00 .00 .00 .00 TEMP 81.40 82.85 ".85 44.25 37.40 19.35 42,42 5 Ig,. 10.63 10,57 18.1' 19.72 :HI.80 38.48 54.15 43.87 26,S9 9.69 8.9' 10.50 r 1.210 8.01 4.eo 3.4!5 2,4e 1.21 44.84 5 1955 10.03 I I .20 9.94 28.51 UI.28 2&.87 .0.10 34.52 31,42 H.3:!5 14.~2 17.2; PPT )l42.!iJ1 2131.;24 2337.!H 774.iiI; 2213.33 430, te :23482.48 5 1958 18.37 12 •• 7 2 •• 10 31 1 e4 39.45 33.36 :5 I!! .39 44.)1:2 24 •• H' 12.18 12.12 13.28 QRIV 112110,11 154415.14 30288.10 &843.8ii1 :5540.3e: 1701.33 29.'09.50

• 1954 4,93 e.01 8.84 •• 1. 30.04 33.93 e5,02 42.12 23,44 5.69 4.2a e.96 QUNG 7!!141.ge 13:21.82 67:25,iiI$I .566.82 520 •• 45 .04 •• 28 97746,04 5 19,e e.e~ e.10 3,1)1 14.95 10.03 24.81 eg •• 6 34,11 28,.6 8.81 8.U I I .5; QCNL 3874.99 e458.33 5185,56 .00 .00 .00 27124. iii iii 5 1gee 10.91 5.32 13,O15 23.17 30.30 29.88 58.15 45.37 22,38 9.73 15.80 8.315 aSIT 14121,14 55935 •• ' 33530.93 143(IJ7,11 11323.38 13574 •• 1 3706Q:4.00 1 1954 .0" .00 .00 .00 .00 .00 •• 0 .00 .00 .00 .00 .00 QIGS ng9,1 • 4391.88 4J4e.24 774.~9 2273.n .0. 33725.39 7 1955 • 0" .00 .00 .00 .00 .. ' .00 .00 .00 • 00 .00 .00 OGLI .00 .00 .00 .00 ••• .00 .00 1 1955 .00 .0. .00 .00 .eo .00 .00 ,00 .00 .00 .00 .0. o·w .~0 .0. .00 .00 .00 439.18 439.16

• 1ge4 .00 • 0A .00 .0 • .00 •• 0 .00 .00 .00 .a0 .00 .00 SNMT ,.0 .00 ,00 .00 .00 .00 8150. '1 8 1955 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 e;TPH 3241.28 2~4e •• a 157'.82 843,150 423,43 113.01 13gell1.7e 8 195. • 00 .00 ,00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ETP 15\5.88 5321.eg 3120,12 144;,19 11',2 • 2e0,.Q 31228.03

ET 14ii17.40 '312.38 3003.5. 14S8.48 117.41 21t.U 30044,80 PoTS 10 rH~U 2' SHDULD BE SET AS FOLLOWS MS 2589.79 2fS72.!51 3823,59 3181.38 4738.10 44713.06 4'70.06

.1000" .f§2~00 .25000 ,23.;9 .001300 OP 323.23 250.1. 7,33 23,155 ;23.65 19.70 346 ••••

.000910 •• 0000 .16658 •• 16e. .00000 era 74378,01 157141.08 33.89.9. 143' 1.'9 112~5.75 13~41.3!5 373821.00

.100". ,0~!U0 • 000i'!0 •• 0000 .9P9.P a"o 37.14 31.14 58.70 18.92 55.75 31,84 4g1.iil4 Qeo 1434 •• 17 57103.24 33433.21 14332.'7 11239,00 135~9.SI 373129.00

pars I" rHRU 2' .RE SET AS FOLLOW! es.s 8;944,25 58858.01 3434S.t!7 12511.55 1115152.90 13515.04 ~72032.00 .0g997 .t52475 .24957 .2395. .00006 Olrf 43;5.91 43e.11 .912.'6 lel!.02 -313.00 -65,53 1091.01 .00006 .000010 0I8S.5 .41638 .00'06 • !BU8 .000010 •• 0000 ,,000~0 190622

OBJ. 2:5.HI4 OU- .849

500> 1955 SOOA 1.55

V .. J.N FE8 "l. AP. HAY JUN VA. J'. rEB HAR lP' MAY JUN TEMP 13.80 13.90 21.3' 34,15 '9.30 ".40 TEMp u.g~ 13,05 28.391 41.15 51.80 59.00

F .91 .93 1.75 3.12 •• g7 s.es F 1.24 .87 2.22 3.10 5.23 •• 01 ppr 1123.1A 1201.24 1227.08 2'.'.08 3U9.5! S48Q.e:a ppr 2712.49 UH54,iilQ :29'.08 1201.2' 3"5.83 942.0 l

ORtv 7112.59 6591.e. 4895,67 193:22.31 12$165.83 32046.76 GRIV 140$1~.30 Sl72.61 15873.97 29931.11 3;13s,89 39'98.65 GUNG 5405,,62 4644.83 5205.41 1&24 •• 21 7885.71 8179.4' I)UNG 5806.03 5285.'9 14700.72 I8H1.06 !3581.14 118;3.S8 aCNL .00 • 00 .. ' ••• .0. 16791.68 OC"L • 00 .0 • .00 .00 12Qu.ee: 20686.66 "SIT 12462.22 111 13,:54 9840.68 31094.22 U452.03 32411.!51 GSIT 19739.48 13336.t57 31245,78 41529. IS 46590.7. '0ne.20 GIGS • 00 .00 .0' 5706.03 '317. !0 11371.42 elS! ••• .0 • 3ii119.48 62!3.45 843'.11 8116,89 aGLI .00 • 00 .0 • .00 .00 ,00 GGLI .00 .00 .00 .00 .00 ,00

SNw 1562.91 21f§4.lfIi ';91.2' 752.2. 4.71 ,01 eN. 77'8.713 ae:43.70 5221.30 16 •• 10 ,6S .00 $NMT .'. .00 •• 0 57ee.0:!: 747.'2 4.7e !NMT .00 .00 391;,48 5052.20 168.45 .6! EfPH 115,98 12 •• 34 261,40 477 .251: 139;.!0 1$131.152 ETPH 1~8.8~ 121.'3 328 .90 74Sl,fl3 1!SU ,4$l 2262. P6

ETP la! .09 217.13 490.02 10751:.23 ~7!i18.t56 'HI.86 ETP 246,Iil2 203.6S 1516.~~ 1e:g,~,03 4311,62 t5273.tU n 193.1~ :228 .. t52 4915,61 1080.06 3807,83 !S380,152 ET 2.~. 16 212.86 .34.63 171216.82 43:24,21 15283.31 '5 4298.62 407$l.S1 3598 •• 1 7715~. 4!S 17.~ .. ~ 77el.e0 "5 7!5S3. J7 7323.9t5 '76~.4~ 17.1.5. 7765,4!!i 716!.45 OP lSl,1'" 19.70 19,.70 19.70 382.35 U43.'5 OP 416.Sle 13m .08 382.35 2131.11!1 432'.21 3819.65

GTO 12431.A2 11097,09 981)1. g,3 31056.~6 1111161.78 3'0~0.8' oro 20179.12 1340:5.44 31~6 •• 5B 50216.03 !S1!I878.26 447S1.3S

or." 31.e4 18.92 31.84 18.~2 37.84 31.84 aGO 37.8' 18.02 37.84 28.38 37.84 28.38 OSC 12393-.18 1t078.11 9782.0Sl 3112137.6' l$1743.Sl4 339.2.99 aso 20141.28 133IU.!52 31531.66 5U87,e:!5 50840, '2 44728,Sl1

OGiG 1296~.83 \4411.62 12839.39 344150.6;2 2103S.00 372951:.77 OGlG 21t491~4 163&8,22 33713.47 48521.89 50ge6.78 430;3.01 DIFF .~n .65 "3393.44 ... 30:57 .29 2'71.'1 -1291.0! _3336.1' OI~F "1~06.66 .2981.69 ·218 1.81 1~.S.7. .. U8.3!5 163!S. 9~

V'R JLY AUG SEP OCT NOV DEC ANN VlR JLY 'UG SEP ocr NOV DEC ANN TEl1P 154.20 65.80 !!~120 45.10 27.!50 24.80 3!i1.2~ TElt1P 6 .... 61. 8~ 56.65 44,00 26.80 l!i1.7111 40.47

F 5,67 6.31 4.63 3.' I 1.81 L .56 41.&9 F 15.8!§ ~.93 '.75 3.43 1.76 1.2' 43.30 ppr 162.3& 3306 .66 2376. e6 2!5U.14 2040.83 4ii1118.33 310el.64 .PT 110.41 21iHi.615 49O,83 J,898,74 4lJ.33 t7!1.g1 1!S422.40

QRIV 17"7\'-.'" 4484\11.18 3617\ .02 1t391.08 11 448.5e 1497'.38 279501.00 GRIV 12~30. 53 56610,64 28908.1f§ 12575.02 8193.32 121793.36 339019.75 OUI.jG 8248,59 1!561.87 6887 .. 16 6887. U 832$1,18 8500.e5 95990.15 QUNG P~69.95 8'28,lI6 8088.41 7601.91 7214.71 &606.87 111211.00 aCOL \4208.33 18083.32 51llll,ee .00 .0~ .. " 5424g.giil GC~L Ullee,lI8 219~8.32 12SHlI.lI6 .0' .. ' .00 89124,g8 OS IT 774~9.13 43214.82 40~22~07 17390,43 19497.2. 2325l1.18 3434\'.43 GSIT 11183.40 !eg8~ .14 30740.44 193~2.13 1573:4.651: 11224.0. 411257.87 OIGS 5735.00 9l135.82 4164.99 2~18. 7 4 1027 t 38 875.56 45432.07 QIGS 794;\.14 7S02 •• 8 5011.e6 1898.14 177 .2~ .00 49708.3ii1 OGLl .00 .00 .00 • 00 .00 .. " ,.0 ~GLI .0" .0" ,00 .03 ,00 .0 • ,.a 5·" .00 .AO •• 0 , .. 1013.44 50'5,21 504 •• 21 SN. .00 ••• .00 ••• 236.09 19:)4.01 1954.01

SNMT .01 .. ' .00 , .. 1027.36 815.5. 83.1.28 $NMT ••• ,00 .00 .0. 177 .23 .~. 9318.0\ ETPH U86.79 2864.04 152' .15 887.80 280.41 221.74 13'89.76 E'TPH 3BI3.7') 24e8.g!5 1735.89 e~0.80 213.33 176.14 13779,13

ETP 67&2.g3 5084.91 3031.22 1~2'5.13 '13.11 333,7. 292.g.I' ETP 7245.87 ~159.29 3232.59 l421.20 4l1l.07 265.12 31139,90 ET 6767.67 ~995.!S~ 3035.22 1~37 .32 480.90 338.gg: 293.2.86 ET 12~ •• 95 e115.65 3240,20 1426.95 465,13 215 •• 2 31262,83 HS 6724,80 1165.4. 776~. 45 77l11.50 1761.!S0 7761. S0 77U.50 M5 n&:!5.4:!5 i76S,4e 77l15,4!5 77l11.'~ 1481.63 722~.41 7225.41 OP 435&.115 1328.4. \89 •• 03 1f;ieg,~2 922.3. &S4.34 12e21.81 OP 2"8~.24 1245,82 224 •• 85 1713.8' 1507 t04 85.72 199U.30

GTO 71492.81 44483.00 42061.12 1901~.49 20358.33 23859.23 351467.12 Qro i3791 t 46 !'I8200 .. e~ 32931.80 21017.32 16300,3' 17274.7e: 430,g1,~1 ,. aGO 2e.38 eca.22 37 184 37,84 47,30 28.38 435.16 aGO 31.e4 • 8.22 18.9 • 47.:S0 18 .92 47 ~ 30 425.71 OSO 11464,48 444te .78 421!123.28 18g71.6~ 20321,03 23833.85 351031.93 050 137S3 •• 2 !58134.42 32$112.88 21040.02 H1:281.42 11227 ••• ~3015!.00

QGlG 7153'.10 '4~98.e. 4111S81.21 14e:t'ii .02 le7.9.08 22333.88 351652.25 QG'G 71840.81 ~e024.42 '1 ~8e. 9g \a~17,64 156~ •• 5& 17161.34 42~I5!i1g.g3

o !F'F - 1&9 •• 1 .182. "2 1435. il7 '310.62 I !.I .94 1495.97 -.20.29 OIFF 912_'4 11111.0P1 IJ25,8g 4~22. 37 625.86 5f5 .12 44156.04

74

ONEIO'

• • • I 11873. 5381 • 2351. 1;21. 36. 11111. 1353.

o. .. .. '8a. .. •• o • 30!84 • .384.3 .17.23 .01664 .. :i!,ee1 • 00118 .041tS2 .0.413 .00£100 .000~0 .00000 .01508 .00000 .0000£1 .00000

-:A 12873.888 !5)11. .. 1233. O. 1008. •• •• 2838.

.,2lRSa • 1210000 .. 43492 .00000 ,3e44; .00000 .921000 236.2'''00

.48 • '5 .83 .81 1.014 1.12 .9' .87 .77 .67 .'9 • 5 •

.99 1.08 1.14 1.18 1.20 1.22 1.23 1,24 1.23 1.22 1.17 1.08 .'. • 8. I ••• ..0 .5 • • 02 • •• 32 •• 0 22 ••• • 18 2 •••• 2.0"

10 •• " 4.5i! 1.00 .5. :SJ1II0 • O, ••• •• O ••• •• 0 2,50 5.00 I 19~" 1~.H'I 25.10 28.80 44.41 5a. !0 84.30 151.20 152,70 56.621 .U.10 38.80 21.3. I 1988 13.80 1'.40 a3.4. 35.4B 4'. !0 S~.3. 64,5" 155.50 ".20 46.00 28,1521 2!5.50 I 1.88 l4.8111 lA,e0 27.'0 41,1111 52 ••• 59,00 (15,90 151.50 56.60 44.10 27.3B 20.121 2 19~' 1.415 .89 2.23 t .12 1.3' 2,521 • 62 1.A2I t.e4 .'1 1.4g .2 • 2 IIS5 .73 .19 .80 1.152 2.38 3,80 .S0 2. !7 1.58 1,66 1.34 3.22 2 1988 1.78 .11 .23 .7P 2.48 .82 .47 .I' .33 1.2S .27 1.13 3 198. 5.U 5.H 11.80 39.3O 11.8. 4,eo 1,11 1.48 1.58 2.8O 3.71 3.32 3 19" 3.78 3.'3 4.73 23.80 42.10 20.20 3.26 ;'.14 1.82 1.8' 3.83 U,.1Ili0 :5 uee 10.79 8.17 28.40 91.el1! "2.70 15.37 2,g7 2 •• 5 1.27 3.87 4.51 5.07

• US. .00 .0" • 00 .00 15 ... 0 '.10 !!I,30 3.30 2.40 .O0 .O • .OO 4 19" • 00 .0B .00 .00 2.80 , ,50 '.5. 4.00 2.6B .00 .00 .0 • 4 1058 ... .0B ••• .08 ",70 8.00 a ••• A ,ella :!!.10 .O. .OO .0 • S Ig,. Q ... 38 P ..... ! '.72 15,18 11,,,,1 19.12 28.75 23.111& H!:.80 9.25 1>.13 8,74 5 lOSS 8.51 8." Q,17 18.58 11.;6 13.43 2111.'3 18.04 IB.SS 9.40 12.11 1S,501 5 19S8 U.S8 10."" l' .34 27 .. 44 23.03 14.'8 26.28 24."2 15.13 1>."8 8.78 11 •• 1

• 1984 '.ts7 5.58 0.86 11,42 18.43 19,151 27,25 U.10 13.43 4. illS 4.e4 5.'1 8 I'" 5.18 :5,7e S.18 14.32 g.83 15,2P 30.31 1'.4' 15.81 S.16 7.'3 8.'1

• 19se 8.!3 8.e9 12,42 22.4S 21." 15.1119 28.41 23.4e 12.31 8.58 15.27 6.85 7 19, .. 3.010 3.00 3.~0 3.~~ 3 •• 0 3.130 3 •• 0 3.0. 3.0101 3.010 3.0O 3.00 1 19" 3.00 3 ••• 3 ••• 3.~0 3.Cl0 3.00 3.00 3,O0 3.001 3.00 3 •• O 3.00 7 19S6 3 ••• 3,(\0 3 ••• 3"liH'! 3"O0 3.0. 3.0. 3.001 3.010 3.010 :!!,00 3,O0 8 19" • eo .00 .~O .0 • .ee .00 .0. •• O .00 •• 0 .0. ..B 8 1955 .0. ..~ .00 .0O .0. .a0 .00 .OO ••• •• 0 ••• ..O 8 1'" . '. •• O •• 0 ,~0 .00 , .. ,00 ••• .00 .00 ••• • ••

POTS 10 fIo;rW 24 SHOULO BE SET .s FOLI.OWS ,100210 .l'I30~t$ ."S55~ , 34999- .0250. ,01S00 .0~0Q10 "31~3 .S •••• .02121021 .121000 .13013"'21 .0000. .0B0.0 .711111199

POTS 10 THRIJ 24 "RE SET AS FOLLOWS .09g91 • 03134!5 .e5517 .34924 .02'5' .014a7 •• ~ •• B ,O3711 .49ge9 •• 000 • •• U99 ,,2121000 •• 0000 ••• ~0 • .7P.7 •

ONflO' 19!5

.• v •• JA" FE" HAR APR MAY JUN TEMP 1:.'1.8a \5.40 23,421 35.40 4g.10 !!S!5.30

F .. , 1.O3 !.~ • 3.27 ... gS 5.84 POT 1819,77 2033.19 2058.'3 '18P.33 612'.32 P2.5.! I

Olilv 13351.00: 14e<4S."1 133"1,O0 Hiel5 •• eg 2'301.11 3P3'ei.'~ aUNt; 1.3.53 IS! .7" 16n.81 J127.20 2173.07 1039.78 aCNI. . ~~ .B • ••• .BB 72.8.28 U302.49 aslT 13.uU~.',5 14 •• 8.15 14878.S' 39721~.12 22<4€1~,93 2115S.42 01 GS .. ~ ••• 2'80.29 19U.21 10"151.11 208415.6g QGI.! 7720.P9 7720,1119 1720.g9 1720." 1120.gg 712c.'Hl

SN" 2525.13 4618.33 3836.98 I2.B9 .0~ •• 0 SNMT .0~ •• 0 288 •• 29 3824.87 12.'. .0O ~TPH 63.g8 79.04 158.06 2&8.77 7~S.49 1045.38

ETP 341.12 442.79 P53,83 al78.83 1145.46 104~2l64 FT 3154.43 464,96 t01 t .152 2218.02 11,50, .. 15 U4"2.S»!5 MS 12943.13 124g1.33 J4 432.aa 18008.12 1&006.12 18020,eg OP 1155.57 377.ro 11:3.10 5.28 6.28 314,16

OTO 2171!.30 22'915.04 224!!i15,74 4712S.21 29858. '0 355!H .28 QGO ~ii'I.2e :50,26 2'.13 5O.28 5 •• 28 5111.215 Oso H8.5.04 22145.18 22431.51 47074.Q6 29808.28 3!!~01.00

I)GAt; 22318 •• e 22.,9.18 23813.33 47824. '7 3~781 •• 0 34573.10 OIFF -~'3.U 126.~9 -1181,11 -74P.5. -978.72 11127,Q0

vAR JI. Y AUG SEP OCT ~ov OEC 'NN TEMP 64,,~0 e~.,~ ~!5.20 46.00 28.S. 25 ~!!0 3P.S9

F 6.113 5.28 ",53 3. sa 1.88 1.60 42,41 PPT 128~.e3 !!584.e5 •• \4.91 4272.2' 34 .. &.11 15281.20 15242'.'6

ORlY 18 C1 13.e1 44Q35.01 4't'8!50.0' 148"5.'1 19129.78 22411.71 31532615,152 OUNG 167.8" 16t ,62 93,68 9'.22 1788 .. 1' 3'"!!i .. !J6 14480.IIIS aCNl 141~!5.1!5 12810.96 8691." ••• .00 .a0 ~99H •• 1 as IT ~811Q,06 315013.82 3150'8,3' 14439,42 20160.88 2e06~.!5' 334838.75 Ql GS 917;.92 13t!51,4~ IB29.83 4272.28 32.2.6. 1542».02 87047, 4~ OGL I 7720.99 7720.99 7720.~9 7720,99 n20_gg 712a.P9 1112551."8

SNw • 0'" .. ' .' . .0" 2415. U? 2U4.28 2U4.28 SNM'i' .0" .O0 .0. .ec 3202.8. 6429.212 16348.89 £TPI-< 1569.29 1'16.29 870.48 51H.32 151.214 123.73 712 •• P2

ETP 13281':.6(1 11577.24 ~g37 .37 2geS.4. 870.157 62:5.41 5b794.~3 ET 13283.03 11573.9S ~94".06 ~022.29 911,08 641-1,90 07027.82 "8 14S39.70 t 15110 .. 34 18033.2' 1802 •• 69 18026.91 1 •• 20.6. 18020.69 DP 111S,43 2135,34 2789.81 2!i145.89 2701.84 2324,S4 IS601.59

OTO 7671!i1,SQ 45604,-ee 46320 ••• 246M,Sg 30P26.72 35S155,44 43!i1797.87 OGO ,e •• 8 !513.26 50.26 37 I 70 75.40 S •• 2. 590.63 050 16869.152 15554.3!i1 4152121.10 24819.29 30851.32 3,81S.l7 '39207.t 1

OGAG 1602e1.!il8 46429.!59 41824.41 24211.14 31165." 401~2.63 4469S0.37 DIFF 648.63 .. S75. 1 ~ -1~'3.77 6~8. I' ,,334.22' -4337.45 -n~2.18

75

ONno.

VAR JAN TEMP 15. !0

f • 00 PPT 37" .. "

auv U8!8.35 CUNG ~15.01 QCNl • O • O!IT 14881.3' QUS ••• QGl.l 7720.pg

S •• "&5.01 ,NMT .0. ETP • 7 •• 01

ETP 313.91 ET 3s;.ee HS 12'''3.80 OP 1313.22

OTO 237012J.8!5 QGO 2~, 13 QSO 23tl7!!1.11

OSAS 2,u1t,!!I~ DIFF -435.78

V4R JI. Y TEMP 157.20'

F 6,98 PPT 1:5111l'.87

a.IV 7.142.5e OUNG 88.011 QCNL 13e,u~.,u

QSIT e:"3U.tl8 QIG! ;nO.92 aGLI 712 ••• 9

SN. • 0. SNHT •• 0 nPH 1736.22

!TP 1.8.2.84 n 1488'.22 MB 131115.21 OP 202~. S2

QTO 8PB33.31 QGO 5O,25 OSO 8111763.04

OGle: eeS41.31 OIFF 93~.'"

08J'" OB'w

ONf'.IOl

VA. JAU TfMP 14.80

F •• 7 PPT 4581,12

OR! v 22218.48 QUNG 55111.76 QCNL .~. OUT 22700.!5Q OIGS .0. ~Gl.l 1720,1>9 IN. SeS' •• 1

5111"'1 .'. !TPH 8 •• 81

ETP 38 ••• 8 ET 311 .P0 "S 17888.25 OP 2123.77

Q10 32298.,," OGO 5'.26 QSO 3224l5.23

QGAG 34P11.5" 01", -2725.41

V" JL' TE"'P 65,90

F 6.85 PPt 120 •• 82

~Rlv 73131.89 auN" 152.87 OC"1. 2~1j89133 aSlT !!I927g.~fl QIG$ 13'83.21 QGL! 772~.9g

SNW .OJ:IJ ,st.lMT ."' e:TPH 1~51.7S

ETp 13Q?8,ga fT 1~98t1,77

"S 1780S.98 OP 2489.3~

OTO 892.'.98 QGO 5P1.26 QSO 89154.71

QGAr. 1'17e51.10 01" 1!10~.01

08J­op;u

FE8 MAR 2&.10 28.8.

1.1 • 2,39 2290.58 5739.27

t "37'.23 25318.88 3'42.98 40.1.83

• •• • •• 17788.22 291&9." 80;2.95 552£1.88 7720,;; 7720.99 1 sea .. 82 oiIU.0t 8492.18 8820.58

133.98 U4,!5. 150.45 1173.7O 765.51 1185.7O

11.08.12 15008 .12 U31.52 1112.15

2551S.50 31715.58 S0.28 37.7.

28'85.S3 37737.89 243121.715 37000.8g

2154.78 -182 •• 9

AUG UP 152.70 5e.8~

6.01 •• 75 38.3.13 JOe3 ...

5e81H. U 3'573.1O 715.18 81.32

e.g3 ••• 6176.7; S05BO.88 3.O22 •• 8 8898.9; 7861.'2 1120.$;S 772 •• P'

••• .0 • •• 0 ••• 1365." 925.28

1.'28.P9 15318.00 1043 •• 38 533111.1111 11 .. 151.14 12792,1113 2387,57 2483.137

603~8 •• 0 3P.82.2. 0 •• 25 25. !3

603(111.73 39037.01 61573.84 43241.28 "13515. g~ _33134,22

S.111 -2.22'

fEB H" 14,50 27.93

.P7 2.3! 1821.30 !!Su.; ..

17238.73 3U82.!1 420.53 8884 .33

.00 .00 17'82.33 31318.<48

• •• e24A.g9 1720,glll 1120.;111 8512.71 85;.1515 .0. 824",gg

74,;<4 te8 •• ! • ' •• 79 1137.02 439.83 11152.42

11241.83 115008.12 2073.'1 1019.28

21119.00 .8U3.83 5 •• 28 5 •• 28

27058.73 .8773.38 26P'01,,26 44838. !7

sa1,48 2137.IP

'UG sEP 61.80 515.150

!!i.Pl 4.15 360,31 849.3~

-e"37~.3P' 3Hi1l3.'1 151.84 65.37

123'3.5; 7918.3~

518~g.51 28035.18 7712,46 5635.32 712~.99 7720,~9

• OO .' . , .. .'. 1308.5' 926.28 ggt! ,12 6318.~0

.9P0. S5 e33Q.91 15413,e9 14734.49 2~3G'!.'11 22£19.11

61790.6~ 35802.60 37.7e: 62,83

81752.91 3'730,7S 62869.2' 3a9!!7.01 -1116.34 .. 3211.24

19!'

APR MAY JUN 44.4I~ 52.10 '4.30 3.g; 5.26 '.!3

2882.5 • 3571.3Q U3'.18 29412.0' <11143'.8; 50215.88 22e3.37 "7.12 241.4.

.0O 16411 •• 8 1312'.8g :u 1&a.18 3121 •• 77 <I11e.a,12 3383." 134512.33 14380." 7720,g; 77212.gp 7720.111;

.08 .00 .n "e0.'" .08 ••• 5"8.8' 870.35 PQa,8!5

3822.38 8318.98 P957.3S 353a.Be 8331.7" 9PP0.'"

175158.28 18033.a, 1802B.89 1137.28 1313.22 l!!1Ii1!5.91

;';773,70 46031.92 !!Ieal1.!!!! ' •• 25 50.28 2'.13

39723,42 4S'81.86 506015.21 41th11.1il1 45034.71 <119211i1.3. -1.23.71 045.05 uIs.a?

OCT NOV DEC ANN ..... 70 38.80 21.3. '2.87 3."8 2.'! 1.3' ".n

1312.56 3a3'.7e 7,.e,:!!! :!!P737. ;,,1 127S3.19 119' •• 11 13$;·48,80 3816.a.87

133.83 UH!I,Oe 17 •••• 11'''8.82 .0. .0e .0. 87.07 •• 7 12422.!0 1181113.37 1 .. eU.3" 3S1035.87 1312.S8 38:!IA.7e ••• 7e742.P3 7720.Q9 1720.1>1> 772'0.gl> 926'1.9.

••• ••• , .. e.36 7'''',38

• •• • B0 • •• 137P .... 4 ~:t"'.·H 253.7. 103.:5e\ 7127.01

278&.47 1"08 • .515 02i.40 50118 •. 18 2171.2' 1420.0" '4B.38 8ea7a.17

113ee t 821 13185.10 13283.03 13a83.a3 223 •• 5. 1815.S. 1282.15 1919 •• 41

22142." 211"",821 227,.'.78 ,.e0620.83 '0.26 50.28 5 •• 28 ~15.i3

22.92.31 2 UP9. S3 228P5.SI 4801.'.61 23812.1513 235!3.8P 22~!7. 35 4"83B ••• -1720.2P "241A.l~ 178.15 -572 .. , :s~

19S6

.PR "AY JUN 41.7. 52.0~ 5t;.2121

3.'!!' 5.al!! e.u 21f33.19 5331.21 15~5.87

~7787 •• 1 '52~7.04 07311.48 8113.74 21'115.217 327.88

.0. 120~8.23 20'U.33 e:24'",'" 49382.28 31U81.:n 2892.'3 13589.27 13~'P.28 1120.;; 772 •• 9P 77a ••• ;

.32 •• 0 ••• 8S; .33 .32 .OO 4215,'9 875.08 1226.'1

J220,15f5 8~218,S1 12282.11 322g,84 82St .'" 12277 •• ~

171015,,52 1!02e.g1 U020.I5P 1912.1111 2088.07 22"S».,,4

71;31 •• ! 88925.39 4Yl:226.10 81.1116 87.96 50.26

11844.00 see37. "2 4017S.83 1el540'.13 'P282.42 J8060'.31

1233.2& "444,98 2115.'2

OCT NOV OfC ANN .14,10 27.30 20.10 "0 t .. a

3.43 1.8' 1.26 43,32 3211.08 a1ll4.88 2;~8124 26199.111

18937.83 15140.13- 1163!!.21 44416g.!!a 199.2~ !531.88 C611.IIHi l'!!IS3.41

•• 0 • 0F· ,0 • 7360'6.84 18669.20 18'28.73 177ge.70 408126.5e

3217.O8 611.48 .0. 6;"76.64 1720.!iI9 772O.99 '112~, 99 92651.86

.00 83.4. 2991.6' 2!i11111.6' ,0' 611.48 .." 9716.13

447.82 14!i1.9" 97 .~3 7442.31 2e69.~8 131.1" 492.97 'P96~.03 '676.71 e41.97 ~15.23 601J!;.23

1!5293.11 I S086. 35 1451:19.97 14589,1>1 1891.29 1413. '15 917.37 23971.32

26050.83 25397.3. 2618'.08 521758 •• 6 :50.<li 25.13 75.40 67&.60

28.'0.58 2~312.22 2.1IJ •• ' S2107 ••• 3 24410.41 22516.98 2989(1.29 5206U.12 1590.1~ 27'!5,24 -3718.63 191.32

CACH[ V AI-LEV 0 0 0 1 ~242;. 27S83. 88S8. S0020. 14851. 4827. nil.

3112. 0. 3. 583. .. 41'75. 0. 1~2008.

.3U5I. .18132 .nlles .321108 .082U: .03175 ,tlIIUU

.00257 .02111'''11' ,02111'211 .21'",-0411) .00000 ,011'180 .00000 112 •• ',33

TeIS. 188e3. 157'1, S778. 777 •• 0. 0. S2700. .1425P .3I'U'" .2gg25 .Ug50 .147.3 .013011'0 .11'00011'

I43PI •• n .'. • u .SII .80 I ••• 1.13 .U .81 ,71 .8. • 81 •• 11 1.11 1.10 1.14 1.15 1.15 1.IP 1.18 1.13 .2. .50 1.00 ,n • 80 .17 .021 :5;1.00 25.00 1.18

10.210' 3.'0 7.11'0 .00 • 00 .43 .00 .00 ••• •• 0 I U~4 2~"0 30.40 3 •• 83 40.Sg ".11 ~0.5S 52.as U.IP U.04 1 IPSS 1~.40 111 •• 8 211.2~ ~U.2' S4.1g et.2!!! eg.!!IQ 11." ee.2i 1 IPS8 30.48 20.48 3'.0'4 47.1P S7.37 1S4.3! 71.17 51.3g 8a.0S a 111'4 1.70 .82 2.9:5 .92 .lIe l.g7 .31 .22 1,42 2 U" 2.e! 1.84 1.0'0 2.11 1.88 2.27 .24 1 •• 8 2.2S 2 US~ 3.03 .~8 .0P .a. 3.03 •• 0 .47 .23 • 21 3 10 .. 5.83 S.78 e.lSe 12.53 28.28 17.43 12,14 e.80 7.011 3 10~' 8.32 •• 81 '.09 8,214 2~.e8 28.'0 lS.0a 10.22 7,78 3 IgS~ 8.01 5.30 8.20 22.n 4g.23 41.88 18.i2 12.515 0 •• 2 4 Ig,4 .00 .0~ .00 .0. g •• 0 S.S" 8,4111 3.40 1.'0 4 IgS, .00 •• 0 .e. .00 4.tIe 4.'0 8.00 3.00 2,S0 4 IOS8 .00 .00 .00 2.00 8,11121 13.210' 10.00 !!.1lI0 2.50 , IgS4 '.Il 8.37 S.~3 7.40 '.34 4.44 4.06 4,1212 3.82 • 10'S 4.3~ 3.88 8.13 ;.07 '.10 e.'4 4.27 3.8' 4.00 • I'S. •• U '.81 ;.31 12.'3 14.S7 IS.!H 4.38 4.e4 3.7. 8 1ge4 3.11 2.1I~ 4,37 !s.QQ ~.40 S.27 5.10 e.82 4.12 e U'~ 2.701 2.S~ 2.88 8.12 1.12 s.n 7,08 4.41 4 •• ' ~ U,. 4.S2 3.40 !!I.S2 10.32 10.8~ 8.5~ •• 110 ~.02 4.1a 7 IIIS4 .43 ,43 .43 .43 .43 .43 ,43 .43 .43 7 lOS' .43 .43 .43 .43 .43 .43 .43 .43 •• 3 7 1955 .43 .43 .43 •• 3 .43 .43 •• 3 .43 .43 8 1054 ••• ,00 .. ' ••• .0. ••• .00 .00 • 00 8 IPS! •• 0 .10 •• 0 .00 ••• .00 ,00 .90 • 00 8 Illse •• 0 .00 •• 0 ••• .00 .00 .0. .00 • 00

POT! t0 THRI,J 24 8HOUI-D BE SET ~8 FOLLOWS .U000 .!!!!te2 .01142 • ~IIII'; .00e00 .0000. .02l150 .04751 • '0000 .00e00 .100010 .000mtl .0!000 .00000 .3P09!i1

POTS 10 THRU 24 ARE SET AS FOI-LOWS .Ugg1 .0'03' •• 7.SS • ~;0S6 • 00000 .02111 .046Qg .490!!7 .09!Ue ,O0000 • !II 0

J00!3 .'00 ••

CACHE V'lLEV

VA. TEMP

F PPT

QRlv QUNG QCNL QslT QIGS QGLI

SNW 'NHT ET"H

ETR ET HS 0.

QTC QGO QSO

QGAG oln

VAR TEMP

F PPT

eR!\I QUNG QCNL aSH QIGS OGLI

SNW SNMT ~TPH

ETP ET MS OP

aTO QGO QSO

OGAG OIF~

JAN 16.4~ !.U

259615.02 3431;.8; l1'SI5.33

.00 441514.82 .'. 5'415,Q5 30'.7.18

•• 0 11~1.4. 19115,48 1!i148.34

3819e:.'19' "'1014,453

49'Pl.f!2 123.7.

'9857,32 !5528Sl,82 -5822,51

JLV 8Q.'. 7.2.

3r/l4~,1!5 89889.73 324;S.S.

UI:ue.e!! J7824,e7 ~370P.415

5446.901 .eo .e.

33591.21 76.u~128 78480.2e !'!608P,1Il2

7344,94 !'!044Q1,4e

1".63 502601,84 541&9,82 .. 3903.PQ

08J­OS"-

FES 19.sa

1.31 23307,58 32719.80 0.27.3.

.00 41103.91

.00 5~u6,;5

62115,!/I!5 .0 •

lS'0.25 21533,21 21559.154

3~183.'3 -2\8.48 '~203.'.

"1.85 415141.7" A!il223,8!5 "3082,12'

AUG 71,!!I7 e.S7

21281.11 55963.82 22008.21 3S001.011 2.,8 • .1 ~ 4"262.10 5445.9~

.0~ • 00

~3'04 .88 .S5~4.0& e'!594,26 30S7st.71 1174.S'

38070.03 123.10

379.6.32 4lHH9.85

.. 10813.!52

.00000

.0000 •

.39;';

!OSS

.,R APR MAY 20.25 36.:21 S4.7g

2.42 3.44 5.S3 12M7.33 28728.045 21281.11 3e:54Q.88 77~S;.76 002411.71 45!5'2.71 41231.~3 ~S7I6. !8

.0. .00 'U.0.32 78833 •• ' IIU87.87 1 U045,01 43227,10 S~.2'.I. 4151158.11

!!44(5.9!5 5446.;5 S.415.g~

3216&.27 22.8.22 S,82 .3221.10 208;'.0' 22S2,4Q1

:5aS8.!il9 e823.2. 175eed6 552(5.01 12220.18 473113.31 553~, 77 122~2.IO 4730".201

73882.4S 8872~.U 8872~ .'8 -lS4,e3 P2.77 11132.88

83778.81 11'323.2. 120240.58 1014.83 61.8~ 123.70

831524.17 1182151.4111 12011 •• 118 8S2~1.73 11,.,p.as 11533;,84 -\&37 .'~ 32el.7~ 4777.33

SER OCT NOV 150,2; 4",83 31.;0

15,O15 3.85 2.10 281501 t4g 13.8~.11 2'234.7S !5e41!~.a2 3.I3P.88 4482P.8!! le7~3,80 1!S8'0.8; U01!!,ae 31eee .32 ••• •• 0 ~8182.08 4334ti.3e1 55024.80 4433~.e5 135813.11 27234.7S

"45.9!!1 !"~ •• 5 S44~.'~ .. ' .. ' .0. .e • .'. .00

111157.37 1~8e4.Al 2881.O0 33253.'3 1782P.21 .5145.08 Ua4e.SS 17813.43 4546.13 41951.2!! 378 ••••• e0630.52

55301,,", 33' •• 01 14 •••• 1 4!i1011,a6 519~5,8e ~28'6.26

1!!4,S3 123.7~ 81.8' 48853.24 '1832.14 62'94.42 ,o7 4g. 84 '4ISP.82 6~124.a", _1888.150 -2321.68 -253 •• 37

••• .48 1.03 .11 •

10 ••• 2.0 • 2.50 3 •• 0 4S.77 41.27 n.n 4P.e3 H.P0 30.!!I4 47.40 31.48 24.04

.88 1.9; 1.2!!l 1,IU 2,1' 4.11 1.4 • .71 1.74 e •• 4 e.00 !!I.45 7.37 8.4~ 8.e8 8.87 '1.8. 7.13 .0. .00 .00

.00 .00 .00

.00 .00 .00 3.80 4.00 3.11. 4.27 '.14 e.44 4.5& 5.01 !!!I. 58 2.88 2,84 2.~1I J.U 3.'3 •• u 3.25 3.01 3 •• 1 .43 ,43 .43 .43 .43 .43 .43 .43 .43

••• .00 .00 .0 • .00 ,.0 .0 • ••• • ••

JUN 8!.2S 6.24

287~'.83 8~!il8g, 19 81377.8' !!I1002.;g 7~0'3.43 e72~2.1'

54415.5S .00

'.82 23812.71 451a08.;(5 .72.2.42 7SS1!!. ~7

5303.82 855501,2"

123,70 85541. ~g 82111;.73 2~21.8S

OEC ANN 30.S4 "4,401

1.112 '7 .. 1 !!I '2082.72 284'08 ••• e5S4;.7; ~87e8l.37 '~.7&. 98 383331.87

.00 21SUI1.2!5 Iln2~.7. 77e!5g~, 37 ~"870.5' 42 •• ".~8 S446.PS 8':353,3!i1

I11P2,1" 17U2.14 3481~. '7 11.252.92

22 ••• lIe ISS281.se 3'1' •• 7 338031 1 00 ~SS~.S0 338238.7S

8S72~.;8 SS"2e.~8 218.33 31077 .58

IIS8!8.2S a11i161.37 18 •• SS 1453.52

!1'~32.88 8721507.81 10e929.e7 863005.00

a703 .. 01 -12&U.13

76

CACH! VALLEV UU

VAR JAN ~E5 H'R APR H.V JUN TEMP 25."11' 30.040 35.83 "p,ap 5',11 80.55

~ 1.7 .. 2.03 2.P' AIAP 5.78 8.le PPT 21S34.48 103.7.21 37388,&2 HeS3.P4 1218.,83 240SA.8A

QR!V 3g4e~.87 37ADO,48 .54';.82 ,,,130.75 SI0S;.75 887811.78 QUNG 211815.11'7 32357 ••• U130.U 28148,'0 ee4e •• ,43 37.34 •• 7 aCNI- .00 .00 .00 • 00 llUUO., • 8"870.31 QUT SP328.3S 87A88,e8 7~117.118 P211S.'4 803513.21 48217.8S QIGS sa.7.5. 2.P.2.27 48727.1 II 13111.22 7.2.11'.1511' '"78P.8B QGLI 5448.11. ' .... e.g' 5448.11. S4lUS.OS S4.15. gS !!!I445.P!!!I

SNW 27381.01 12825.;4 14157.37 10,01 .01 .00 .N"T 81!1.7.!!4 2411'2.27 IUS8.57 1457,21 U,fil7 •• 1 [rPH USD.54 un." .072. u 111172.71 1114111 •• ' 232'1,31

ETP U83.4. 4218&.43 15~214.S5 2S12S.!S 52'28.82 155524.45 fT 3123.S3 '113.17 8ag8.'2 2'2S1.18 SiS43.44 .S.SS.10 HI 43822,28 un •• " .8728.;8 715121.15 88728.08 828D7,40 OP ;2.11 77.31 el.IS 8P8.85 2878.12 4e38.~1

QTO !1233.e7 7"~3.00 8001S.82 ;eI2~.'1 58'01.31 '.130.87 QGO u.as 123,70 81.85 123.7111 123.70 U.es oeo t5U11.12 71430,U 7i~U3.1r5 08004.81 U371.~e '80U.02

aUG '4rAg,7; 881011.78 84007.7S U7el.71 57t54i.19 '~2.1I.82 Ol~~ .3~77 .De: 33211." -4U3,77 4243 •• 11 727.11 _180.80

ViR JLV 4UG SEP OCT NOV OEC ANN TEHP 82.S!! 68.1; U.0. 48.'7 41.27 41'5_82 47.35

F 8.'3 e l S4 '.12 3.80 2.72 1.~2 411.se PPT 3P2~.e7 278.,81 17087.8. ea!!.78 2'207,U 15534.1e 1II241 •• e,

QRIV 78480~7' 712.a,7e ~2288. 82 3." •• 88 3~0711.S8 3. PII. 80 6.'03 •• S0 eUNG 28142.82 180'0.32 1'257. !il2 142P •• 87 12~20.157 13873.82 30.87S.81 aCNL 8107 •• P0 430~8 .112 100"".~0 .n .0. .eo 33.;50.113 QUT 377 .. 3.88 38&7 •• 54 3U03.31 407110.28 UU7.80 4,IIU.21 e46281.87 O!GS .. ,ue2.32 24321.2~ 27488.10 •• 13.78 2S2.7.118 2311'.01 38214~.P3 OGI-! !!4 .. e.D5 '445.0!S S44~. ;. "d.oe S44~. liS '44a.IIS 8!!383.:U

8N. • 0. • •• .00 .00 •• 0 13439.14 U.;,g:.14 SNMT ••• .00 .0. ,.0 •• 0 23PS.01 451010.78 tTPH U3S3.23 2g:U4.0~ 111732.U 10088.41 4;72. ~S IP44 ••• 1.51154.0;

ETP .;711','2 !!I8!!115,:)~ ;'42e2,Q1 18868.32 1704.801 2;72.32 337581.31 tT e;U8.3; S8S27,~4 J2e88.IP 13838.41 7437,72 2QP!iI,83 332'54.81 "S 81.U.1I2 3H52 •• 3 24343." 2334g:.20 412011.03 407\4.21 '.714.21 OP 5721.32 !!53!!.71 42~3.2~ 2~7S.10 1281.Q7 340.18 2'48' ... 7

aTO 4&170.48 4!i14!i1&.24 47~!4.53 48"01,48 5082:8,03 SI'~3.81 732886,75 QGO 123.10 1'4.83 123.70 123.70 1'4.83 112.77 UU.82 QSO 48~48." 4!HS43.e1 47780.82 48e48.'!S !!0471.3$1 51481.03 731~e •• 87

OGAG SIS011.83 S2I920,84 4'UgQ.5!!1 4~2U.8S S01752.13 '0131.84 734702.25 OI~F -28eJ.08 -138e.22 ·'tg,02 426,90 -321.43 13U.U -3145.37

09J- .4SI 09," -.248

CACHE VALLEY I;e.

VA. JAN FEB HAR ,PR H .. JUN TEMP 30.45 20.48 31,04 41.19 157,37 e4.31 •

~ 2.IU 1.37 3.07 4.24 •• 711 6 ••• PPT 38382.90 8360,43 1140.'5 108;3.11. :58:562.0P' 11273.1i!2

offlv 8720;.82 43111;1,88 eO'89.7~ 1307;;.80 1:514!i1g.~6 84309.7S QUNG .4684;.84 13'88.7 • 3'2 •••• S 50648.72 108038,;6 g0143.a6 gCNL .'. .00 .0. 2'33'.~' !0U3&.~' le4~75.31 oelT 1'11I~1.l4 S!50'S. '6 1.27e!.8~ 1'8410.1S 173!Se.7e •• 338.'. ~IGS 37 •• '.113 .00 25849.el 25g56,!!14 &9070.87 93811 ••• QSI-I S •• 8. gS S411S,O!! !5'46.gS 544~.IIS 54445,;S !!4'6.9!!1 'N. 18'73.21 2.'H.85 2423,00 28.S' ••• ••• !lNMT :57e00.93 ••• 241509,75 239S,:51 28.!!!4 .04

ErR. US ••• 2 1el1.0; 44113.;~ 133~! .82 197121.40 2677~.88

ETP 3515Q1.00 27S4.U 782 •• 14 211'4,15111 ~3117 ,P6 7!5~75.03

ET 315~2.89 281'.27 7~8'.13 21741.05 ~31.0.ll '015111'8.85 MS 8a72S.1)8 8Sg!il0.01 8872 •• '8 8812&,9& 88726,pa 887.2.'S OP 112.77 2'52.42 .7S7.3& 9788 .11 114'6.12 13350.07

OTO 117313." e3151.10 J 147315,84 17:5495.43 1 S!U24 •• 1t 8~rH~~,2~

OGO g2.77 .!.8S 123.70 123,10 123.7~ u~,!S!S QSO 107220.70 63080,2' 11'.12.12 173371.71 160100.'1 8381i3g.73

aG~G II 2S7 ••• S 7Ug7.'!5 118027,152 1588321,50 ~ e!583Q.'3 a2480.7~

OI~F -!!3~8.85 -U08.!52 _341~.40 140141.21 38151.26 UI •• P8

VU JLV AUG UP OCT _OV DEC <.N TEMP 71.11 57.3&1 62,O5 4' •• 0 31.48 24.0' '6.70

F 1,A0 15.47 &.21 3.159 2.e7 1.51 '!lI,43 PPT 'O!!3.e, 2;13,.118 2ee0.13 1&1.7.15. 811;3.80 22041.15 le.7.2,1S

QRIV 87429,13 11534;,715 S2025.83 412!0.87 3"009,88 4SHiII,e!5 864802.7e QUNG 411'743.19 21"'.28 29!7te.14 191U .015 UI"~2.32 11535 4 ,11'6 483112&.43 QCNI- 12eS7:5.31 "33315.85 316~8.U .00 •• 0 .00 513.26.93 QSIT 29'41.84 A213'.32 3~3.7 .99 !!I09!5~,52 5261~.11 '~323.4e '261'~.~2 QI~S 159290.29 34581,80 18494,30 I ~7.7 •• 4 8993,80 .~H!I 42140e.52 QGU 014'6.9' 5.445.95 ~,U8.95 5.48.55 5446.0! ~'45.9~ 6S~.3. 311

SNW . '0 • e • .' . • 00 .0 • 2201111,15 22041.1S !J<4HT ••• • P0 .e • • 00 • •• ••• 83113'.57 ETP~ 353P4.41 269;3,40 20539.81 9381.40 2643,O1 !S1I1.45 le40!5$,21

ETP ~.3.0.8' 55P05,50 3e~.3.8O IS~5 •• 77 44!!!5.el 2'81.41 3150128.12 ET 8OHS •• ' e.III •• 4; 301155' .19 I'S19.53 4484,28 2814,27 3~.4!2.7S HS 77'17.~9 !!!5450.50 38383.62 41319.12 A8033.50 43203. '6 432.3.7. OP t~!U2.40 u,e31.24 14442.4; 10406.63 !59~g.1S6 2~13.25 ue2SI.S4

OTO '0.81.S8 B4~3S. " !e0stp.!ilA 65~e3.ag ~38.3.32 ~7202. 421101 ~18.'0 QGO 81.1' 1 ~4.ti3 92.11 ~I.&S IS4.63 et .65 1295 t 89 eso '.~26. e3 &4180,92 5e007,17 61S!!22.04 837313.69 S714 •• '~110031 •• 1S

QGAG 5531'19,12 '88ell.52 47669.85 5920;.82 ~3513.U 706gP. 78108:5106. 7~ D1" .. 44583,70 5~91.10 8337.31 7222.22 16'.!S -3e50.22 IS212.;3

TRE.MONTON 1954 TREMONTON 0 0 • 1 VAR JAN 'EB HU ,PR MAY JUN 1780~. 1~"'l. 1158. 166 4,. 551'. 8612, 72. TEMP 29.e:0 32.95 ;51'.7A 50.75 5;.55 52.~5

209~. P. 507. 211, 0 • 217. 0. fi7~87 • F 1,Q5 2.2. 3,12 4.~6 6,01 6.35 • 26~40 .20~'A .A1713 .24621 .09535 .12142 .01H06 PFT 151Q,05 3204.86 10532,30 2534.51 4159.25 582~.37

.0~096 • 0~00!3 .0075. .00321 .00000 ,O0321 .00000 aR!V 68420.01 13460."0 89938.01 9'R12.01 60640.01 51130 • .,0 !., $5632. ~~p: QuNG 2851.16 4289.46 I1t50.22 143&,55 3108.66 1;17.30

0:14, ~092. 4!525, 2698, 9505. .. 0. QC~L .00 ,00 ,0" 2815,12 551;5,03 50590.25 2.755. our 7"44~ ,82 7e:654,03 89!98,!54 91111.5; 33551 ,3~ 21165,il4 ,fa4!il\\e ,I4n1 .21~HH ,12999 ,45801 ,00000 ,00000 OIG! 5249.55 9U9,l57 1~0.2.81 4229,131 35117.22 33109.041

11129,583 GGLl , .. ,00 .00 .00 ••• ••• ." .50 .55 .11 .~8 1.08 .95 .81 .18 .12 .53 .45 5WW .~21. 11 2616.36 145.79 .15 ••• •• 0 • 81 .95 1,0~ 1.16 1.18 1.18 1.18 1. IS 1,HS 1.13 1,04 .91 SN"IT 5249.55 9139.57 2530.55 145.53 .15 •• 0 .3. .55 1.0'0 ••• .40 .l! ••• 3&,00' 28,0'0 I. I! 20.00 2.O0 fTP'" 821.34 109:5,42 1999,$1 5188,0tS 8833.45 10002.52

10,210 1,0~ &,00' .00 .eA 24,00 17.0'0 .03 .04 .05 2.'~ 5.~0 ETP 1411.n 1860.32 ~3B~.4~ 10433.~8 23902,10 29140,42 I 1954 2~.8il 32,9!5 37.10 50,15 !59.55 52.35 7'. \5 7O,215 62.45 50,50 43,20 2~.10 ET 1512.56 1B~1.!5e 33e2,t54 1042:2,;6 23898. !5 29128.81 I 19" 15.10 21.35 31.35 44,021 56.AID 63.:20 72.05 73.30 51.35 '0.1' 30.60 29.80 ~s ~3358.~1 33~45.22 3334'.22 21198.1. 333<15.22 33345,22 I 19!55 31.40 21.05 38.35 49.45 5P,1!5 6$,50 74.55 58.75 6~,00 50.80 32,45 26.8' OP 82.5. 2221.59 "'54,O6 1114.J!l9 11!0.07 3g73.~2

2 1954 1.33 .58 1.81 .45 .B' 1,213 .34 .17 1.9' .49 1.e5 1.09 GTO 1037!5,6J' 78763,48 911556,18 99219,40 35256.56 25sn.63 2 19!~ 2.28 1.84 .18 1.21 1.32 2.18 .12 1.11 1.11 .40 1.35 2.11 aGO 3520.15 412'.18 4125,18 4070',18 1925.05 1315,O6 2 1985 2.85 .38 .11 1.16 2.06 .62 .~5 .00 ." .98 .32 1 .. ~3 050 5685!5.45 74638.31 92431.59 95209.21 33331.47 2422B,!i1 3 1954 1.21 1.02 1.20 2.22 5.01 3.09 2.15 1 ,~6 1.25 1.17 1.01! .96 OGAG 7~220.el 12490.i'1 92150.00 104200.01 310421.00 2114~.00 3 1955 .94 .81 .90 1,42 5.25 !.06 2.81 1.81 1.38 1.3O l.les 1.51 DI~F -5364.5' 2148.2g .. :518.41 ... egg\ll.19 2291.47 3088.58 3 1966 1.42 1.11 1.45 4,tH 8.1A :7 .43 3,35 2.2~ 1,70 I.H 1.3' 1.26 4 1954 .00 .. " .00 .50 9.80 9.00 10.10 10.10 6.60 2.7' 1.2' .56 V •• JLY AUG SfF OCT NOV DEC ANN 4 1955 .00 •• 0 ••• .00 5.80 :7 ,e0 10,80 ~.10 7.7. 3.30 1.10 . .. TEfiP 75.15 70.2~ 62.45 50.50 043,20 29.10 150.29 4 1~55 .0. .0. • •• .00 6,80 U • .t0 10,50 13,40 1.9. A.00 1,00 .66 , 1.81 5.74 5.24 3.93 2 f8!! 1.83 ~2,6e

• 1954 13,00 12.87 16,4e la, !Sa 5,!5t 3,75 1,33 1.23 3,64 7.81 9,81 9.85 FFT 1914.915 957.48 11208.11 2;S; ,;6 9321.31 5le1.31 66625.59 5 1955 11.35 10.10 11.11 22.61 \7.39 9.91 1.29 1.84 2.PO 8,13 12,13 19.12 GRIV 32930. e0 52190.00 4916",00 49910.00 53303,01 53'02 •• 0 1e76~1i\,152

5 1956 23.17 14.12 22.1" 29.40 28,85 7.94 1.36 2.'8 2,158 e .31 11.49 13,66 CUNG 1335.40 968.20 179.9. 730.40 6~0.00 1293,0111 21131.0; 5 1954 12.14 13,04 15.96 11.22 12.36 10.2' 9.39 9.26 &,83 B.8e 9.'6 111.48 CeNl. ~6885.71 5688!5.7~ 31172.84 1 !52e; .0; 6758.69 371",28 28532;,152 6 193!5 10,34 9.28 18.16 21.4121.02 15.16 9.83 '.92 0.24 ~ •• I 12.16 19.82 QSIT 7187.78 9421.25 21g92.92 37935,'0 4800~.53 51762.99 560162.12 5 1P~e 2A,se ta,3; 22.29 28.~. 33.'- 14.88 10,O1 10,153 8.85 10,18 11.151 13.08 QIG! ~32.2 •• 9 3224~ * e:l 31653,23 11151.B5 13038,6~ 377i.~8 225575.81 7 1954 .0. • •• .00 • 00 • a • ••• •• 0 .a~ .00 ,00 ••• .00 QGLI ••• • 00 .0 • .00 .00 .00 .00 7 1955 .V:0 .00 .00 • 00 •• 0 .00 ... • •• .00 .. " .0" .00 SN" .Ml • 00 .0. .00 • •• .4433,82 4433,82 1 1956 ••• • •• .00 • 0~ ••• .00 • 0. • •• .0. .00 .'. .0 • SNMT .00 • 00 .0 • .00 .00 1133 •• 8 187.9.18 8 1904 .00 .00 .'0 •• P .0. . ~. •• 0 ••• .00 .00 •• 0 .00 ETPH 1519 •• 4B 12UQ.61 U"I.g! 434l.01 2240,18 868,48 117~2.25 9 1~55 .e. .00 .00 .00 .00 .00 .00 • ~o .00 .0. .00 .00 ETP 41264,72 3011 •• 21 17849.01 90215,93 3734,154 l42t5.87 174235.31 9 19~5 .00 .0. •• 0 .. " .00 .00 .00 .00 .00 .0111 .. ' .' . fT 41279,:52 3P11B8,a3 1784B j 28 9047.90 37e17.515 1457.55 17~412.11

H! 2~314.81 2"418.71 33345.22 33345.22 :S334~. 22 33303.97 33303.~7

POTS 10 THRU 24 SHOULO BE SET '5 FOLLOWS OF A ~~!!i 119 673.77 453.77 5857.15 5382.73 5731.19 463;~3,30

.1t:J~~0 .6250. .25000 ,2999g ,O0000 ~TO 11550.51 995~ .44 2227:5,98 4~~44.42 ~3269.8' 58357.58 60488i.25 ,"'0000 .59999 .18es. .50000 ,42499 QGO 715.03 605.02 1237.55 2255. I. 2005.12 3052.63 29&11.32 .11 ••• .03000 .04000 .0500. ,79999 QSO 108315,48 9350.41 21038,4::5 41389.33 504e4.13 553aA.9' 575078.00

GGAG 7540 .0;11~ 6970.00 2~510. 00 '4010 ••• ~!52"70.00 .::s5520,00 !58415!i1l1.62 POTS I" THRU 24 'RE SET AS FOLLOWS DIFF 3295.4' 2380.41 '28. A2 -2e20.67 -4805.2f> "21~,05 ·;581,58

.1219961 .6241!i .249'" .29986 .~.006

.000Cl10 • !!ig9!!i4 .18501 ,4;993 , 424.fHI

.09997 .02978 .U979 .04949 .1Q9~8

"BJI 5.915 DeAl -1,701

Tr;E~ot.jTON lil56 TREHO'lTOt.: 1955

J" FEB H •• '.R "'.0\'" JU~ VA" J" 'EB ."14:( APR r~ A 'f JUN 31.4j} 21.fI!~ 38.35 4li1.45 59.715 fi6,5~ T£"IP ~ '.13 21.3~ 31.35 44~e0' ~6l4e 53.2~

F 2.07 1.41 3. !& 4.45 6.23 6.78 • l,e3 ~ ,,43 2.6~ 3.96 5,6~ &,44 PPT 1b080.01 2240,25 547.70 6~33. 40 1163~.59 3491.99 PFT 12869.6& 9265.04 43eS.67 1843.18 74fl2,7Z 1230'6,46

CRlV 111493,O1 75~58 .01 12~54S.33 162621.03 188350.03 83fU3.i:1 :lRTV !58280.01 ~22~4«01'! 91042,O1 12~980.01 118430,O3 8~"'~I1.'H

au's 7290.64 6Q3,0@ 5172 ,:.H~ 2&89,3& 5415.62 4!S04.6Z, QU'IG ~8'.20 507.1. e38~.U 5358.17 H~I.~9 313!5,00 aCNL .. ' .00 .0. .0@ 36299.23 58575.39 /)CNL .eo ... .00 .00 3154~,!59 42805.09 GlSlT 123009«35 75351.18 128618 ••• 1 t.l0656«78 11537!H5 .. H3 4455&.07 QSH ~8429.,e 52201.31 9795l5.81 122181.46 Y6~55.03 54653.24 QI~S 16223.85 .. ' 11323,15& 7033.61 326g!S,0~ 3~708. 45 alGS .0. .0' 19514.71 18052.61 249:03,O4 35849.21 QGLI ,;13 .00 .02 .00 .". .0. QliU .0. .00 .0. .20 .00 .0~

S •• 9036.73 11178.98 501.0. .80 .00 .00 s,. 1;'03,51 25588.56 11302.45 93.01 .01 .0. SN"IT 16023.aa .. " H615.9& ~"0.20 .80 .'. SNI".T .'. .0. U~57 "'.77 11209.43 92.9g •• 1 ETPH 871.29 599.81 2101.78 48~3.58 8905.94 11611!.07 !TP,. 433.154 109.18 1414.99 3566.67 7129.63 !~H3.i1

ETF l'e1.85 12el.24 3556.23 ~751.28 24098.&5 34698.19 ETP 783.93 1~18.35 2495.70 7113_12 20915.83 3e'725.60 n 159ts.07 133~.e0 3602,6' 9762.93 24118.'7 347i 3.28 ET 797.53 1333.80 2343.815 7171.81 20928.42 30118.se "$ 33345.22 32148. ~2 33H5.22 30608.85 33358,91 33345.22 "5 3~33~.94 31378.89 33345.22 33358.97 33345.22 33343.22 OP 69a2.80 10361.P5 3431.63 4248 t 93 2062.59 4~9' .68 OP 3321.5' 453. i7 2032,~9 12114,28 11021.98 5197,73

QTO ne55~.29 a~583,79 13195O,84 16475~.81 163639.84 485157.14 OTO e:l~51.73 "l2l!H.31 9P829.42 1347~!5.96 107522.2" 59671,b4 QGO 5280.23 4482,69 3252.73 5142.72 51<2.72 2667,fil OGO 3190.14 289!5.11 4015.11 4730.20 4427.6li 313:5,13 QSO 125318.0e 81101.2Q 12669B.10 159811 ,06 16\114:97.09 43899.~3 nso 584e7.59 49502,19 95814.25 IJa025.16 1~3014.56 66542 .50

QGAG 1~~50a.03 79540.131 12 4500.01 1536 ••• 23 16250~*03 44720.0Z OGlC 539n.1'1 569113.01 g6409.IH 121100.01 9'970.01 !):Ja1~ .00 OIFF ... 5121.97 t5~ 1.08 21ge.09 -5982.93 -2002. ~2 1179,S2 OlFF ... 3~02. 42 -1407.31 .. 585.17 232~.14 5H14.5A 612.~0

VA. JLV 'UG SEP OCT 'OV 0,,0 ANN VA' JLT .UG 5Ep oCT NOV Oi,C AN" TE"1P 74.35 68.'5 63.00 5 •• 8. 32,45 26.8' 4a.57 TE"4P 72.2'5 73.30 51.35 30.15 30.6t' a.8" 45.17 , 1.15 6,&\"1 ~t29 3.96 2, l4 1.69 51.37 F 1 .. 4g 7.03 '.15 3.91 2.'H 1.a7 48.b6

POT 19i1 ,28 28.1. 253.45 ')'19.60 ts30.48 749<1.89 ~7517.81 PPT 134.P.3 Q997,24 6279.95 nBI.0e 753\ ,6lol 11912.2" 11661.93 ORlV 56430.U: 6003~.01 4812E1.00 60650.02 6513A.01 7312~.\O t 118690,50 ORIv 5!S4291.~'2 5~240.03 52010.01 558J0 •• ~ S8!535.01 t 115.5~ .03 9202'U.152 aU~G 2"81.20 1381.80 1058.19 975.10 131;.P~ 784.30' 30'26.51 QUNG 1!'!59 .. 89 1124.19 855.80 8U.10 2361,21 :!.54t1.63 31651.72 Qt:"ll. !j9138,ea- ~8575.39 444!i4.7§ 22329.0. 5632.25 3717.28 290SHH .81 QCNL 60828.28 512S3.A6 43368.32 11l'86.42 15 ,95 .. 47 .00 25'577.59 Q5IT 104a5,45 11362,13 17~3t. 33 44827 ~ 4A 6285l,27 71fi5d.45 g2tH~4.62 QSIT 9308.58 942..:1.2l 21311.86 42153.88 58398.2~ 1143e1.26 7A5393.87 Qr~$ 34497.51 3224'.81 24125.56 17910.55 444&.5t 2\:)44.53 2186~';.75 QIGS 341.59 • .57 3811Hi.64 30132.!52 12$03.$8 7!54(l .. 78 6433.09 221332.61 OGLI .0. .02 .H .00 .20 .0. .20 QGLI .'" . ~~ .3" .2. ."~ ..' .00

$ •• .~~ •• ? .0~ .0~ .; 81 ~ 70 1)1:72.59 7972.59 5"' • 0' ." .0 • .02 3.:198.41 598'1.32 8980.52 SNI-lT ." ••• .0" • •• 1348.11 .00 285",g.tH $"iHT ." .02 .0e ••• 4133.27 64J0,09 41440.58 ETPJ.! l$499.52 11833 ••• 8274.7'; 4401" 2il 1164,S9 .~1.30 711383.23 ETPk 14315.7~ 1315~~59 7761,57 42154.28 1~gS,48 889.31 6533_.73

ETP 40504.3$ 28524,6t5 18228.75 9163.75 t~42, 01 1316.34 174663.6a ElF 3741e.g~ 332153.40 17:;'98.26 88ri6.39 1831.3? l4151.19 16::5243.g0 ET 404!54.28 28t5U.1t: l82]4,S3 9254.16 1993,83 1::541.55 175141.53 ET 37429.1~ 33248.96 17174.51 8S92.89 1897.58 l5:53.a 1 163687.25 "S 21~0a,i1 31035,1'2 33::543,22 33343.22 33358,g1 33343,22 3n45,22 "S 301!55.08 33358.97 3::53~8. 91 33::545.22 33345.22 333,5.22 33345.22 OP 231~.10 131. 5~ 453, i1 4372.69 1384 •• 1 3327,6 4 49123,42 OP 4083.93 1012.54 3327.64 GG'7.93 !5147 t i5 3013,9i 53417.81

aTO 121578.01,11 113~3.25 11270.7. 49089.67 7004'.59 74858.31 968455.37 QTO 13255,3a 1 ~:!'67. 9!5 24448,511 51922.3~ i2~!i3.1" 1l9245.28 8~6913.2' aGO 715.03 933.04 93~. 04 2475.10 3520, i 5 3981.67 4053!5.1g Q~C 825.03 605. ;:12 137~. 05 ~750.12 36e.!5.15 4861.11 363.1.50 Qec lIQ63.02 115418.22 1533!.72 45614.~6 5~525.43 ;Pl87a.64 927918.62 OSO 12430.!5!i 9762.93 2:!~1J.!i2 491 i2.17 68368.23 ll43i1,55 1701511.152

~GAG 1690.01: 14000.0~ 15150.00 46820.00 641~0.at 7699'.01 932159.~0 OGAG 7280.00 1035," .CQi 11549~ .0~ 4'820.00 6'3310.01 111100.03 758259.67 01 F'F' 4113 •• 2 24l8,22 118~, 72 -205.44 1775.43 -6119.3; ... 4840.P0 OIFF 5t~e.54 -~17.M 6sa3.5:2 3352.17 -1.98 3271.54 123~H.82

77

ONElOA 19~4

ONEteA

• 0 0 1 VAR JAN FEB MU APR HAY JUN

1187:5. ~l81. 2387. 7~21. 38. 1411. 138:5. TE"''' 1~.10 215.10 215.80 4.".40 '2. Ie ,..3. 0. ~. o. "1515" 0. 0. 0. 3121884. • .99 1.'04 2.30 3.iO S.2S ~.~:5

.38403 .17.423 ,,07 15154 .2See1 .0011e .12141152 ,,121"'413 PPT 31S1.SS 22~0.S5 S139.21 2882.S. 3S11.3~ eA3A.115

.00000 .'H!10~PI ,0121"0121 ,,12111508 ,,012112100 .00000 .01210'00' QRIV 14815.35 10311.23 2S31e.66 290412,,1/15 .c'4;'J!I,,8g !UI21,.ea S2S73.eee QUNG 3115.1211 31542.9~ 0001.S3 ue3.37 eUil7.12 201.00

S91. -. 1233. 0. IBe!!!. 0. 0. QeN. .00 .00 .00 .00 18011.08 1312,.ep

283'. QUT 14e6t.3S 11158.22 29119.84 31186.1S 3127131.77 ·1~82.82

.2HH58 .00000 .43492 .00000 .35440 • ''''1000 • 00000 QIGS .00 5492.9' SU0.n 3333.'S 13430.33 1430i.e5 235.2S000 QGLI 1120.ili 7720, PO 1120, 9~ 7720.00 7120.9; ',21a"P;:

.48 .~8 .33 .31 1.04 1.12 .~S ,81 .77 • 07 .S9 .'0 ,NW :5785.01 IS82.82 461,01 ,05 .0 • •• 0 • 99 1.~8 1.14 1.19 1.20 1.22 1.23 1.24 1.23 1.22 1.11 1.08 'NHT ,00 8492.15 8U0.ae 480'.0 • .06 .00 .40 .50 1.00 .00 ,S0 .02 .00 32.00 22,0121 ,19 20.0121 2.1210 ETPH 70'.01 133.~5 10".54 S08.88 87G'.35 9;8.18

10,,210 4.'. 7.J10 .'0 3.00 .00 ,00 • 00 .00 .00 2.S0 8.0 • ETP J73.IH 15121 .... ' 1113.70 3822.35 8315.98 0987.35

1 19'4 l!!1.U 26.1A 25.80 44.40 '2.10 ',.::U 47.20 42.10 S6 ••• 44.113 :)8.813 21.3" ET 380.S8 1es,~1 115&.1. :)832,U: 83;U.1' ~000.515

1 19" 13.80 1'.40 23c.40 36.'. 49.10 55.:)13 64.e0 6,.S. !515,20 46 ••• :28,813 2!5.513 M, 12'03.e9 15005.12 1&001.111 11868.28 16033.2' 181320,50

1 19155 14.813 14.60 21.00 41.70 !52.00 5~,B0 4!5.00 61.60 '5.5a ,404.10 21.30 20.10 OP 1313.22 1237.82 1112.1' 1137.28 1313.22 1!50',01 2 1954 1.4S .89 2.23 1.12 1.3~ 2.5. .32 1 •• 0 1.,4 .51 1.4; .2; OTO 23700.88 26e15.80 3117'.58 39713.113 460~1.02 '0831.35 2 1~5e .13 .1~ .80 1.52 2.36 3.60 .80 2.17 l.e8 1.66 1.34 3.22 aGo 25.13 50.23 37.70 S0.26 50.2S 25.13 2 1956 1.78 .71 .23 ,79 2.46 .62 .47 .14 .33 1.25 .21 1.13 GSO 2331S.11 25"45,53 31131.S0 39723,42 .e9U.86 150613e, 21 3 1954 e.l'" '.115 l1,e0 39.30 11.60 4.4P' 1.71 1.46 1.!58 2.60 3.11 3.32 QGAG ~4111.5!!1 2'310.1e ~1000.80 41647.14 4S034.71 ';2Il1.34 3 1085 3.715 3.S3 4.13 23,50 42.10 20.20 3.25 3.1' I.U 1.8' 3,63 10.90 OIFF ·'3'.18 2150.16 ·162.~~ ·1023.11 046.015 1385.81 3 1985 10.7. S.11 28.40 91.t0 "2,113 5.37 2.;7 2.05 1.27 3,81 4.81 !5.01 4 1954 .00 .03 .00 .00 6.'. e.10 e,30 3.30 2.40 .00 ••• .00 v;'R JLY AUG SEP OCT NOV ate ANN

4 19" ,00 • 00 , .. .00 2.80 1.ee !5,e13 4.00 2.60 .00 .00 •• 0 TEMP 61.2. 32.7. 'S.SR "4:,10 u.n 21.30 42.81 4 1955 .A0 .0. • 00 .00 4.10 8.013 8.00 4:.80 3.1 • .0. ,00 .0. F fI:,98 5.01 4.1' 3,4S 2,156 1.34 4e,es !5 19!54 0.35 0.4:4 1'.12 18.18 17.49 19.1226.1e 23.96 16.80 0.2S 9.13 8.14 PPT 1'9'.81 3603.13 3iHJ3.'4 1312.56 3130.78 14S.35 31737.39

5 19" 3.67 8.5!5 9.11 18.S8 1I.~6 13. A3 2~.'3 16.04 U.~8 SiI.40 1:2,,11 15.50 OAlv 70142.56 S6nl.19 34e13.l0 121'3.19 l1Si1~e.l1 13g48.113 3116gl.11 5 1~55 13.58 10.4e 17.34 21.44 23.03 14.18 26.2a 24,42 1~.13 SiI.4a 8.18 11.61 QUNG al.eH 18.18 81.32 133.83 190.08 110.19 11108.62 e: 1954 !5.41 5,58 9.86 11.42 U.43 19.51 21.2' 22,10 13.43 4.05 4.e:4 5.41 at'L 138Aa.<42 84;3.00 e116.19 .00 .00 .00 e:1"01.~1

6 1 ~!515 S.II S.73 5.18 14.32 9.83 18.29 30.31 11 ,4e IS.81 ~.75 1.43 8.11 QUT 5m315 t ms S0505.8e 30022.UI 124:22.60 11903.37 14016.34 35103S.81 6 1~55 8,63 5,69 12 .. 42 22.'5 21.48 16.09 28,.41 2a.4:e 12.31 6.53 e,:!7 6.as al"S 9179.92 8898.99 156~.'2 1312,'15 38a4,16 .110 1S7'2.93 1 lSi1!54 3."0 3 •• ~ a .~0 3.el!l 3.00 3.l!I0 3.00 3,00 3.00 3.0. 3.00 3.00 OGLI 1120.s)O 1120 t gO 1120.~9 1120,9:!ili 1720.!ili0 7720,g9 na51.111

7 I~" 3.U 3.00 3.00 3.t0 3,~0 a.00 3.00 3.00 3.00 3.0. 3.0. 3,00 SN. .00 .00 .00 .0" .00 1~e,3e 74S.:U

7 19'5 3.00 3.A0 3.0~ 3.00 3.00 3.a0 3.00 3,O0 ;'.00 3,O0 3.0'0 ;',00 SNMT ,00 .00 .00 .00 .00 .110 U7S14 .1' 8 lSi154 .00 • 00 ••• .00 .00 .00 .00 .00 .00 .00 .00 .00 £rPH j13e.22 13e,.e4 926.28 .. 15 ... 41 2S3.10 10a,3~ 782' 10' 8 19:155 .00 .00 .00 • 00 .0B .00 .00 .00 •• 0 .0 • .00 •• 0 [TP 14S02.5' U42S,P'SI 8311.00 21158,'" 1"05,55 S22.481 50S"',.15 8 19!56 .eo •• 0 • 00 .0 • • 00 ••• .00 .00 .00 .00 .00 .00 ET 146S4.22 10030.38 e330.!ilil 2171.24 U20."'4 '''''',36 5067:1,1 ,

"S 13115.21 11461,14 12192.03 11365.50 U18S.10 13283.03 1328hl3 POiS Ul np'W 24 'MOULO BE SET AS FOL"O~8 OP 2029.'2 2391.61 241!13,07 2230.'; 1815.8; 1282. ;S IIIU;,OI

.10000 •• 3086 .0!5S!5!5 .3499Q .02S.0 aTO !!ISleJa.31 60n8.00 agge2.20 221 42.S1 21U~.80 221.,.1& <50620.113

.011500 • 0t:!0 I,H'l ,.37M • e00~0 .0000. OGO 80.25 50.25 25.13 513,25 :50.26 80.25 518.23

.10000 .00000 .00000 .00000 .. 1POgSl QSO 151:1183.04 503~1.H 3g!ll31.131 22092.31 UI!I!II8,'3 22egS.!51 460ta8.51 aGAr, 588".31 51873,154 4a241.28 2a812.150 2a513,SO 221511.35 46'830.00

POTS 10 T""U 20 ARE SET AS FOLLOWS DIP'F 9a~.14 "13S5.0" .330 4.2:2 .. \120,2; .241<.15 pa.le ·"2 •• 30' .009:07 .03.45 • Ql15 !511 .34924 .02AIHS .Ql1.421 .0000. .03711 .49959 .1i!I0000 .09.99 .0000P] •• 0000 .00000 • 7~Q7 4

08JI S.111 08h .2 .. 224

ONEIOA tQ5S ON!.lnA 1056

f VA" JAN FEB MAR APR "AY JUN vu JAN FEB MAR APR MAY JUN TEMP 13.80 1!5~A0 23.40 31$.40' 4~.10 se.:n TEMP 14,80 14 ,60 21.921 41,10 '2.00 5Si1.00

F .~I 1.03 1.Q4 3.27 4.~S !5.SA F .91 .97 2.31 :S.1e '.25 6.01 PPT 1318.11 2033.19 2!iH58.9:3 416;.33 6128.32 Q215S.U PPT 41581.12 1821.30 591.0" 2033.19 e331.21 15;5.57

GRIV 133151.00 148A'.!51 13351.00 3eae4.69: 25307.11 ;Sg3!55.!55 QRIV ~:22U.':5 17238.13 319&2.81 '7187.91 5521111.0' "3130.48 !lUNG 193,53 181.1~ 1683.61 3121.20 2113.07 1039.15 aU'G !5!50.16 420.'3 55U,n 5113,14 2U8,01 321.88 QCNL. .. ' .00 .00 .00 7206.25 IQ302.'9 QCNI.. .0. ••• .00 .0 • 12005.23 221560.a3 QSIT 13480.55 14048.15 14815.55 3Q703.12 22400,9:3 21168.42 OSIT 22700.59 t1ee2,33 37318,4& 82414.7< 49:362,25 30481.33 QIG8 .. ' ••• 2~80.29 19:04.21 104U.11 208415.6111 alGS .00 ,00 U~"4.'HI 2192.53 1315811>,21 lJ~40.2e:

QGLI 1120.09 112 •• 9~ 1120.99 1120.Sl111 1128.00 7120.99 QGLI "2~,IUi! 7120.0Q 1120.g; 1120.P9 1720.SI!iI 11.0.90 aN, 2628.13 46e8.33 3836.96 12.09 .. ' .00 aNW 5585.111 1512.71 159.88 .32 .00 ,00

5NHi • 0~ .0 • 2880.29 3&24.e1 12.0; .. " SN"'i ... .00 U".99 8eH~.3;) • 32 .2 • ETPH 83.98 19.0 A 158,06 2ae t 71 1e5.A9 1,040,38 e::TPH 58.51 i 4 .!i4 188.46 4U.89 815.08 )225,41

ETP 341.'2 AA2.1g ~'3.63 2118,63 114~.4e, 104e2.t!A €TP 36S.4S "U.79 tl31.1112 3220 .. 158 821a.!1 12262.11 F.T 354.43 464.96 101 t .e2 2218.02 1180.4' 10U2.g~ ET 3",Pl0 439.83 11152,42 322S1~e4 8281,.' 12211.6!i1

"8 121'3,n 12491.33 14432.88 ts003.12 180.8.12 1!02~~eg "' 11358.2S 11241,83 18008.12 17706.S2 18026.!il1 18020.5. DP 1156.157 317 •• 0 113.10 IS .28 6.28 atA. i6 OP 212a.11 2013. !!11 n19.26 1912.Q7 208e.07 22Ag ....

QTO 211t15.3~ 22798.04 22455,14 41L25.:U 29858.3e 3""1.28 aTn 3229~.'9 27t19.00 .4U23,eJ 71g;'1, ~!5 5802S.39 42225.1. QGO !lLI.'5 !Hl.21S 25.13 50.215 S •• 26 !5~, 2& aGo !51'1.2t!1 e0.2! S0.25 81.9:e 81.IHi 5~, 26 Q!O 21665.04 22145.78 2243l.6t 4107<.96 2!il808.28 35!501 .. ~0 aao 322415,23 21088.13 A!5173.3e 118".00 88831.42 AtH7!5.83

OGAG 22318 •• 8 220 U. 18 23613.33 41824.41 30781.0. 34513. L0 CGAG 34$;1'1.154 26S101.25 .. 636.17 10t5.4Ia.1a !5g:l82.42 3'060.31 01 FF .. fII5a.0A 725.SQ -n8t .11 ., .. iiI .e0 -~11.12 g2'. ge 01" -2725.41 1151.415 2137.19 1203.28 • .444,98 21115.52

VAR JLY AUG UP OCT ~OV D.C ANN VA. JLY AUG SEP OCT NOV DEC AN" TEMP 154.150 615.!5((1 515.20 46.00 28.50 25.150 39:.89 TEMP 65.Q. 151.15G!1 515.&0 .u.10 21.30 '~.I. 4121."6

F 6.10 8.28 4.63 3.S8 1.88 1. e. 42.47 F 5.85 S.91 4.75 3. '3 l.a. 1.26 43.32 PPT 1'2815.83 !!584.8!S 4014.91 01\272.28 a448.11 8287.213 82428.56 PPT 12B9.62 360.31 649.30 3211.08 &5,14,88 29;()8 t 24 26Ug,.gl

OR Iv 78?;13.67 44Q35.07 4M80.01 1484e.!H 19:12g,78 22411.11 35325e.e2 ORIV 13131.59 5'31~.30 31893.71 169::rr.8::5 ll!ll40,15 17635.21 44416g:.S6 OUNG 167,SA 1 &1.62 93.68 9'.22 17ee.l~ 3715.55 14480.g5 OUNG 152.87 151.84 es.a7 199.~. 5~7,U 2&",9& 155f5~.4" QCNL 14155.16 12:5 1 0.!iII'l 66!iI1.!53 .0~ .'. •• 0 59966.41 aCNL 200U.33 12a5::5.59 1918.3~ .00 .0V .0' 131!106.84 QSIT 1'!81UI,Ql6 3'013.62 36.58.35 144a9.41 20160.88 2&06".55 334638.15 eSIT :592:79.fIIA 51S.9.81 2'.35.15 15680.20 11!1528.13 171913 t 10 A.,8126.!51!1 OIGS 9719,92 13!81.4~ 8.02~.83 4272 .28 3202.6. 1!142».02 8713 41."5 QIGS 13563.21 1112.46 5'35.32 3217 .0S 6, 1.48 .. ' 6SlA7&.6A OGU 772'.9Q 1720.99 77201~9 772O.99 7120 .. 99 7723. ,,9 92651."8 COLI 172:"'.99 112~.99 7120."9 7720.&19 i721ll.!il9 712t1.99 926'1.P'S

SNw • f1IGl .0~ .0 • .0~ 206.10 21~H,2B 2U4.28 SNW .iHi .0. .0. .0a 83.41(' 2991,65 2P91.6e SNHT .0' .00 .00 .. ~ 3202. e. 6.c129.02 !6.).cI8,89 !iN"" .0. ••• .0. .0' 811.49 .". 1116.13 ~TPH "69.29 1'16.2Q 870.48 501.32 l51,04 123.1~ 7128.92 ETPH 1651.18 ! a~81!S" 926.28 .1147.82 l A9.90 97.53 7A42.3t

ETP 13~8~.es U:577.24 59:)7,37 2988.48 117&,67 62~.41 56794,~3 ETp 13918 ••• 99~1,U 6U6,.!i'l0 286~. '8 .31.10 492 R 97 599&5.03 or lJ283.0'l 11 513. Q~ ~)I4.c14a6 3022.29 911.08 64~.g0 57027.82 ET '3.8~.17 .990. " 5339.91 2&16,71 841.91 ~15.23 6.119.23 HS 14!539~10 161ta.54 18~33.25 16020,$9 18026.91 18020.69 18020.e9 '5 P6B8.~8 15413.09 14134.49 1~293,71 IS086.~8 14589.91 14S19.01 DP lU8~ 43 2135.3' 27S9.st 2946.&9 21fat ,84 232 4 ,84 156.1.59 OP 24S9:.3" 250 •• 71 22~9 .'11 lUl.2Q l.c113.1~ 917.37 23"77 .32

QTO '&119.89 4860', e6 '6320.96 24S56.99 30~26.12 35865,A4 439791.87 OTO 69~'iA.98 61790.691 35802.eo 26050.83 25~97 .36 2<189.06 521158.08 QGo t'i1'l."6 513.26 50.2' 31,10 75.40' 5 •• 2. 5S111.63 aGo 5¥'.26 31.7e 62.83 50.2~ 25.13 15.401 678,68 eso 76669.15:2 45584.39 48210.73 24819,29 30852.32 35815.17 A39207.18 eso 69154.11 81152.91 3:5739.1& 2e000.'6 25372.22 2611J.66 821071.43

QGAG 76020.98 46.429 .. :59 47624.A1 24211.14 311115.54 401152,63 4A695Si1.37 QGAr" 67651,70 e2869.2e 38951.01 2AA10 •• 1 22616.98 29:890 .. 2; 520888.12 01" $48.63 ... a75.1~ "1553,11 6~8.15 -334.22 -4337. A~ .7752.18 !')tFF 1503."1 "1116.34 .. 3211.24 15Qe.t5 2755.24 -3718.63 191.32

75

CACHE VA"LH U'4 CACHE VALLEY 0 0 e I VAR JAN ~EB MAR APR MAY JUH '24211. 27!!183. 8.'8. 50020, !i4e~. 4821 « 280. TEMP 25,40 30,410 35.83 4a,ao 51.11 e0.S'

392. e. 3. 1S63, e. 21S, e. IS2008. ~ 1.14 2.03 2,g1 A,AR S.7e e.!! .344110 .15132 • ~3i8' .32'08 • e822i le311S .001i0 PPT 21'34.45 103&7.21 3731$8,82 1I8'3.U Ulee.53 24"''',1$4 .00251 .00000 .00001 ,01344; .001n0 .00180 .00000 OUV 30 A00.81 :)'.IUI.e. 5,.50.82 ?'SlUI'S 81080.75 ee1eD.1!

1!2851.n GUNS 21785.07 32357.ee 23730.28 2& 148.!li0 1$081$4.,43 37S34.51 7'15. 15183. Isnl. 5118. "",. 0. 0. eeHL .00 .00 .00 .00 IU13P,h 8"510.:U

52100. CUT 8P328.35 8H58.'1 78117.i5 02115.5' e0313,21 4UI7.8' .1425; .UU' .205125 .10g8e .14153 .00000 ,O011100 eIGS as.7." 2.5142.21 41127.10 13111.22 14240.1$0 50710.10

143511.8e8 QSLI 5441S t Ill' ! ... e,g, 5445.515 5"5.PS S44e.oe 544e.os .48 .12 .'51 .10 1.12115 1.13 .n .e1 .71 .ae .SB .48 8NW 27311.01 12825,;4 1457.37 !B.BS .01 .e0 .51 .n 1.01 1.10 1.1A 1.ll!! 1.18 1.151 I. t8 1.13 1.03 .pe IHMT 1847.14 2.042.27 113'5.'7 1451.25 10.07 .01 .2e .50 1.00 .00 .80 .17 •• 0 31.80 2S.00 I.le 10.00 2.130 !TPH 115'0.515 23Q1.41 4072.13 I U72.71 Ig4pl.0S 232SI.31

10.00 3. '0 '.00 .00 .00 ,43 ,00 ,00 .Be .00 2,50 3,1321 ETP 3eU,4e 4088.43 e~04. 88 2'12'." '2'2e.52 1551524.4/5 I !IIS4 28.40 30.40 35.63 4P.80 '7.11 eO.85 52." !le.lIa' CU.e .. .6.77 Al,27 2',n !T 3123.S3 4113.17 e6p8.'2 282'1.16 52'''3" 44 15SIH'e.10 I 19S5 1«5.413 151.58 2~.21!1 38,21 ' .. ,10 51.25 651.651 71.'7 G0,20 40.83 31.510 30O,'" M8 43522.28 e4n6.'7 88728.1$ 18121.0e 8811HI.l!)e 828!n,AII! I IPse 30.45 20.48 l7 •• ' 41.19 '7.l1 54.31 71.17 tlt'.;'; ea.'5 47.4. 31.48 2 •••• DP ~2,1' 11,;U 151,.5 606.65 2ea .12 463a.pl 2 1o" 1.70 .62 2.PS .02 .ps 1.~7 .ll .22 1,42 .68 1.gg 1,Z5 aTO 81233,157 71563.00 80005,82 51"21.51 18"1.31 515133.81 2 10'S 2.0' 1.84 1.210 2.11 l.ea 2.21 .24 l,15e 2.25 1.06 2.IS 4.11 GGO 81.8' 123.70 61.es 123.10 Ul.7' fll.85 2 loe6 3.03 .88 .0P .ae 3.03 .8~ .47 .2l .21 1.48 .71 1.7' Q80 81111.82 7143P.2P ?P94l.06 g8004.81 6n77.6e 'tH~e:;.02 3 IpS4 8,83 5.76 8.80 12.53 28.215 11.43 12.14 6.6. 7.051 ft.154 8,00 S.48 eUG 84140.7; e8100.1' 84001.7S 513751.71 87840,10 '6Up.82 3 loes 5.32 '.61 S.0P 8.04 2P.86 2e.S0 15.130 10.22 7.18 7.37 8.40 8.&8 DI'~ -3'71.08 :5320,50 .4lS3.71 424l.0~ 727.81 -1813.151:'1 3 IPS6 a.01 e.,e 8.2. 22.6l 49.23 411.815 18,02 12.'15 51.82 8.87 7.64 7.13 4 IPS4 .00 .00 ••• .0. U,80 5,50 I5,Ae l.40 1.513 .00 .0. .00 VA~ JLY AUS SEP OCT NOV OEC AHN 4 IpSS .0~ ••• • 0. • 0 • 4.e0 4,513 e.Be 3.00 2.5 • .0. • •• .00 UMP &2.8S 66.IP 61.04 4ft. 71 '1.27 2'.82 47.35 4 U'8 .0e •• e .00 2.00 8,O0 13,O0 10." '.00 2.50 .00 .00 .00 ~ 6.53 6,54 5.12 3.80 2.72 1.82 A~.56

S 151'4 S.1l 5.37 8.53 ,. ,40 5.34 4,·U •• U 4,O2 3.82 3.80 4,00 3.pS PPT U28.87 2788.81 11a81,«50 8813.78 25201.98 1!S834.1t5 IU'U.5' 5 IPS' 4.35 3.ae 5.73 51.07 \).121 6.54 •• 27 l.6S 4.00 4,21 5.14 e.44 QR!Y 7un,1' 11266.76 S22C56.e2 35S1p,ee 38070,18 3417e.89 65S03'.50 5 19,e 8.81 5.67 P.3I l2.n 14.87 8.SI 4.315 4,8'- 3.78 4.88 S.01 5.08 QUNS 28142.82 18050.32 IS257.p2 14298.67 125120,87 13873.82 30067'.&1 5 10,. 3.11 2.518 4,37 5.5151 8,40 5.27 s.u 5.62 4.12 2.88 2~ 84 2.89 QCNL 61070.510 43081.92 151000.5151 ,00 .00 .00 338980.03 o lOSS 2.70 2.58 2.68 6. !2 7,12 '.20 7.06 4.41 4,45 3.01 l.'3 S. t8 CIU 37143.88 :se"0.!54 38303.31 4010O,28 44027,eo 485100.21 545281.87 8 1958 4.52 3.40 S.S2 10.32 10'.85 8.65 8,00 5.02 4.10 3.25 3.07 3.81 QIG8 44482.32 24321,28 27488.le 8813.78 2'207.518 2395.111 362148.93 , 19,. .43 .Il .43 .43 .43 .13 .43 .'3 ,43 .43 .43 .43 onl 5448.51' 54Ae.05 544e~05 '4AS,05 "48.ps I!IAA6,OS 65le3.:U) 1 19S5 .43 .43 .43 .43 .43 .43 .4l .43 .13 .43 .d .43 8NW .00 .00 .00 .00 .00 \3439.14 l343S;;.14 7 15158 .4l .43 .43 .13 .43 .43 .43 .43 •• 3 .43 .Il .43 8N"T .00 .00 .00 .00 .00 230'.01 40110.78 6 10,. .00 .00 .0. ... .00 .00 .00 ." .00 .00 .0e .00 UP" 2e3'3.23 2U14.09 19132.04 10018,47 45112 .6' 104 •• 50 Issp5'.0p 8 IpSS .00 .00 .00 .00 .00 .00 .00 .00 .00 .e0 .00 .00 ETP e010S,.12 5e!Ue .35~ 34282,01 1&888.32 77.4.80 2072.32 3375IH.:H 8 1958 .00 .00 .00 .00 .00 .0e .00 .00 .00 .00 .00 .00 ET 501186.39 S852' .64 32eee,80 13838.41 ,. 437,12 20510.33 332754.81

M8 878U.Sl!2 3341U,03 28343,'7 2334~.2a 4120 •• 0l 421114,21 40114,21 POTS 10 THFlU 24 8HOULO 8E 8ET A8 FOLLOWS OP '721.32 S5l' .17 4283,28 257' .10 1287,97 340.18 284'" .... ,

.1000. .05102 .01142 .699pP .0000111 QTO 467113.41$ 49698.24 41004.53 48110.4f! ~0e25.03 51S53.81 732686.7'

.0'Gl030 .021!S0 ,041&1 ,513000 .11121000 QGO 123.10 !S4.83 12l.70 123.70 US4.83 02.77 13251.82 • 10i!l00 .2113000 .00000 •• 0000 .lp99p QSO 4&8415.15 49543,61 41180 t 12 41U54fS,15 5i!l411.30 st461.03 731~58.81

GG.I;G 51500,83 50;;29.14 4UpP.S' 48210.8' 50792.83 S0131.84 734702.25 POTS 10 THRU 24 ARE lET AI FOLLOW8 OIFF -2163.1118 -1388.22 -7IP.02 428.i0 -321 .4l 13251.18 -3145.31

."on, •• 503' .010!H5 .8PPS6 .00000

.000PJ0 .0'2117 .11I4S00 ,49051 .0'000'0 .09U5 .00000 .i!lIil}H~0 .00000 .3119~P

OBJ. ,451 08h -.248

CACHE Y_I.LEY U55 C_CME VALLEY 1958

VA. JAN FEB HAR "R HAY JUN V'R JAN FES MAR APR "AY JUN 'TEMP 16.4~ 1".S8 29.2" :58.21 5'.751 "1.2e TE'MP 30.U: 20.46 3'.04 41.19 57 .37 81.31 .y

F 1.08 1.31 2.42 3.44 5.5l 6.24 F 2.£11 1.37 3.07 4.24 5.79 1.58 FPT 2SP85.'2 23301,a8 12867.3l 26728.0& 2t281.U 28154,83 PPT 383a2.l!0 83«50.43 1140.05 108P3.90 3"382. 0~ 11273,P2

a_Iv l4llp.8P 32119.ao 3634a.88 1 1 e~"~,,. 6 1102451.71 8SP6~.7P QRIV 5;~69.8Q: 4311P.68 6996~.18 13075151.80 1374g~. 5. 84309,1e QUNG 1145S,33 0921,38 45542.11 '1231.33 5"t6.!8 61377.85 CUNG 46849.84 13e61!1.70 372&6.05 e0648.72 108036.1116 90143.26 QeNL .00 .00 .00 .00 5086 •• 32 S7002.Pp QCNL .00 .00 .00 ~5334.66 10I338.5S 18487S.31 CUT 44514.082 4111'8,91 78633.80 1125181.87 11304e.07 152153.43 CUT UU61.14 1551117'.48 102761.8S 158419,115 173158.78 85338.45 OIGS .0' .00 43221,10 58625.10 4&888.17 '7262.15 ~IG5 3;0012.93 .0' 25649.81 2SP58.54 8901P •• , 93611 •• 0 CSLI 5.U8.9' e44S.0!5 !5446.0lS 5446.95 '448.IIIe '5448.1115 0;"1 544S,g5 54.415.0" s .. e.p, 54'6,g, "4415,11115 S448 •• S

SNW 351407.1. .2715.0S 321".27 22S8.22 5.62 • 0' IN • 18513.21 2811133 t8" 2423,00 28.551 .04 •• 0 SNMT ••• .00 43227.10 20.1117,214 22S2.4~ 5.82 SN!'!T 370012,93 .0. 245"".15 23"'.31 28.e4 .04 ETPH 1161.40 U4Pl.29 l258.9p !J823.20 17"86.16 23812.71 £'TPH 2\5 •• 52 1611.051 "n.p8 13361.82 Ui710.40 26116.156

ETP 19115.48 2e:33.21 5525.01 12220.18 473~3.31 S7208,08 ET. 3!56Q1.00 21e4.31 7S20.14 217 4'. e4 53111.~e 7e57S.03 !T lP4lt.:U 28eo,84 5'3'.77 122&2.IP 413!i1'.2! S1202,42 ET 38f12,8Q 2814.21 788e. \3 2\741 •• 5 S3100.11 7e!J~8.85

"5 38796,;11) 38113,53 73882.45 88126,08 U128.~8 7881'. P "5 88728.118 851111110.01 88728.98 88126.118 88726.516 88142.45 OF -1$4.&3 -215.46 -154.83 p2.n 1il32.e8 .303.82 OF 512.71 27S2.42 675; ,3' 1'88,11 114S8.12 13350.01

eTe 4971U.1i'2 46203.'0 83718.81 118323.U: 12024 •• 68 8586S.2P eTO 11217313.5' e3t51t 10 11473e.e4 11341115.43 le~824.4e 83.515.29 OGO 123.70 t5l l a5 \54.63 61.815 123.70 123,70 OGO 512,77 8! .85 123."11 123.70 123.7~ 185.S' 010 49667,32 '61'1.14 83624.11 116281.'0 1201 te,lll8 &55'1.e~ Oso 101220.1111 63089.2' 11'812.12 113371.11 18;;700.71 838kl!ll,13

OSAS "289,82 '9223.85 85261.13 11495151.55 115330.&4 82Plg.73 OSAS 1 t2510,e~ 'lfHi1.76 116027.82 158830.50 1856351.43 S248Q,15 DIFF -~622,51 -3£182. t!l' -1537.58 3261.,e 41'11,33 2&21 t8!! OI~F ·'358,8& -8808. !!2 -34IS.40 14!!41.21 3861.26 UIp.08

VU Je Y lUG SE. OCT NOY DEC ANN ViR JLY AUG IEP OCT NOV DEC ANN TEMP e9.~g 11.51 10.2P 40,83 31.510 3 •• 54 44.4!! TEMP 11.11 61.351 62.05 41. '0 31 •• 8 24.04 46.10

F 1,24 6,81 5,U 3.88 2. \0 1.02 47.1e F 7.40 8,41 5.21 3.89 2,01 1.51 49.43 FPT 3\l140,1~ 21281.11 26'01,'9 13880,11 2;234." 52082,12 284'''8,08 PPT ';53.6' 2;13.48 28&0.13 18747.e4 8Q!II3,U 22(1:41.1 e 169;42.15

ORIY 8~869.13 "51&3.62 5S419.U 38130.8S 44820.3e1 65e49,10 e87S8I.H ORIV 67429.73 1e:3d,78 52025.83 41219.87 390e9,88 457751.6. 864802.15 QUNG 32405,!!0 22Be8.21 le7'3.80 15870.551 1391e.88 4e~15,08 383331.81 QUNG 40743.U 271U1.26 2al1e.14 10Ul.IiHI 18452.32 11535',06 483025.43 QCNL 101338.8' 38001.519 31688,32 .00 .00 .00 2781581,25 aeNL U.e73.31 "3338.85 31688.32 .00 .00 .~0 51302e.p3 Q5IT 31824.87 2"68. IS ;)8182.08 43348.3e :I,g'2".6Q 11032~.'P 776Sgl,37 QSlT 20441.84 4273S.32 3e38;,09 e0g5g.~2 528\0.11 ~HJ323,46 5128159.82 OIG! ~3109"U 40282.10 4433'.6' 13ti80,71 27234.75 348'0,!!1 4200Q!5.6& QIGS 89290.29 34'81,S0 18'94,30 U141.64 8993,80 .160 421406.82 OGLI !!4415.9!! S44&.9!5 5445,1" 15448 ,I;) !! 5'46.95 5,U5.l1e 85313.351 eGLI 5'46.05 544$.95 S446.9S !.Uf5,95 !!446.gel SU8.9' 65383.3.

SNW .00 .0~ .00 .00 .00 171.2014 17U2.14 5NW .00 .00 .00 ,0" .n 22041,1" 22041.15 SNMT .0" .00 .00 .00 .0' 3487a.S1 110252.512 SNHT .0. .00 .00 .00 .0. .00 63Si3'.~' fTP" 33895.21 334"",88 10151.31 1~&f54.41 2881.00 22!UJ.oe 155281.~6 !TPH 35304.41 28!Hli3,40 20S39.81 93tH.40 2843.07 18116,45 154055.21 np 1aUS.28 65584.06 33283.'3 176251 .21 4515.08 3'15.01 338031.00 ETP ft0309.85 565105.60 35883.851 15050.11' 4".,51 27.7.4 I 36012&.12

ET '1480.2' 55594.215 33245.55 17813.43 4548,13 :5SSe:.50 338238.'1' ET 8031'.07 '69U.49 35$51,19 1561P.S3 4484.U 2814.21 360412,;5 ·S ~8089.02 30679,11 41$1:!H,25 37860.00 613630.62 88126.n 881215,98 "S 771\1.29 e54150.50 3&383.82 '131$;.12 46033.50 1320l.76 43203. ;6 OF 7344,94 1114.85 51535." 3340.01 14S;g.01 218.33 311177 .S8 OP 15~42.4g 168:38.24 14442.4Q 10406.83 59g9.ee 2613.25 1102!51.!5'

OTO !50'.4f1.46 38010.03 APOP.88 '!P6S.S6 6265tJ.28 1I,818.2S 8111181.l7 QTO !5e6S7.88 64635.55 56090,94 6a583.8p 63aP3.32 6'202. 421101618.50 aGO 154,63 12:!.10 H14,63 123.70 11.65 18S.'5 1453,52 eGO 81.85 UH.8! 92.71 61.85 1S4.83 61.8S 1298,89 Q~O !50285.34 31945.32 '8883.2' 51832.14 62S!i4,42 IIS832.88 8705'7.87 Q80 5082&.03 15448"',92 58001.17 65522.04 63738.19 &1140.561U031g.75

!2G'G ~4189.82 48&151.85 !!I014l11.84 "1551.&2 6512'.8~ 105.2P.07 U:3008.00 OG'G 55339,82 588811.82 47169.65 59290.82 63573,81 10 6QSi .18108 51 66 ,15 nIH .. 3903,98 ... 10""3,52 -1.888.80 -2321,68 -253fl.31 8103.131 -\2'U.U OIF' _4883.'0 !lS91.10 8337.31 7222.22 164.88 -l559.22 IS2!2.P3

76

TR£.MONTON 1954 TREMONTON 0 0 0 I 'AR JAN FEB MAR APR HAY JUN 17e0~. n1es". 1\~ •• 16645. • '13. 81512 • 72. TENp :2g.150 32,~5 31,70' ~0,15 ~P.~5 62.35 20g~. P. .~, . 217. 0. 217. 0. 61581. • 1,g5 2.20 3.12 4.56 6.U 6.35

,26340 ,:20344 ,01713 .24621 .0963. .1214:2 ,001015 PPr " IP.0!5 32g4 , 66 101532.3e 2534, es1 4759.215 38:2g 1 37 .0~0IHj .M000 .A0150 .00321 ,00\H~0 ,00~:21 ,00000 QRI' 684:20.01 134150.pm 89938,01 97012.01 eg6A0.01 57130dH~:

" $5632.'-5'" QUNG 2851.U 4:2!s!~. 415 11521.22 1436.~' 3U8.51! lPI7.30 g:\4. 309:2. <52 •• 269S. 95015. 0. 0. QCN" .00 .00 .00 2816.t2 551~6.03 '0690.2~

20115!5. QSIT 10441:,1.82 '66'4.03 895g8,154 91111,5P 33"7.3~ 2118'."'4 .04!'100 .148g1 .21801 .12999 .4S8111 .00000 .0210021 QIGS .249.66 9139.6' 13052,81 4229,01 3!5111 .2:2 3370P.00

$1129.'83 QG"I .00 .00 .0. .00 .00 .00

," .50 • 56 .'1 .98 i .08 .9~ .87 .78 .'2 .~3 .46 sww 8~U.17 2e16.35 14 •• n • I' .00 .00 .81 .9' 1.09 1.16 1.18 t.18 1. IS 1.18 1.16 1.13 1.fJ4 .91 5NNT '24g.66 9139.51 2530 •• 6 14',53 .1' .00 .30 .55 1.00 .A0 .40 .11 .00 3&.021 28.00 1.1t :2O,00 2.00 ETPH 821.~U 109'.42 1999,67 ~18a.tn ee33.45 10002.62

10.0'0 t.0~ &.00 .00 .00 24.00 17 .. ~0 .03 .04 .05 2.50 '.521 ETP 1471.ga 1-880.3:2 3383.44 104J3.&la 23$)132 .. 10 2g]40.42 I Ig~. 29.60 32.9' 31.70 ~0.75 59." 62.35 7~.!5 '0.25 52.lIS '0t!5~ 43.20 20.10 ET 1512 •• 6 UH,1.58 3382.64 10422.11:6 238ge," 29728.81 I 1955 15.70 21.3. :U.3S 424.130 56.40 63.20 12,0' 73.30 61.3' 50.15 30.60 29.80 MS 33358.97 333111!!.22 3334!5.22 21198,70 333'5.22 J334'.22 I 1956 31,40 2! .0' 38.3!5 4$).45 59,,715 65,50 '4.'5 68.7. $3.00 50.80 32.4' 26.85 O~ 82.50 2221.59 't34.0& 7114.eQ 1780.07 Jg13.g2 2 Ig~4 1.33 .58 1.87 .'5 .8' 1.O3 .34 .17 1.99 •• 9 1.65 1.0P OTO '0375.6a 18163,48 985~6.,a 99210.40 352'6.56 25603.e3 2 195' 2.28 1.64 • 76 1.21 1.32 2.18 .12 1.77 1.1 I .4 • 1.35 2.11 000 3520. IS 412'.18 4125.18 4070.18 192'.08 1375.0& 2 19S6 2.85 .38 .tt I.U 2.06 .62 .3' .00 .04 .98 .32 1 ~33 Oso e:e:&55.4!5 '4638.31 92431.'9 95209.21 33331,4' 24228.~7

J 1954 1.21 1.02 1.20 2.22 !5.01 3.09 2.15 1.'6 1.25 1.17 1.06 .96 OGAG 73220.01 724g0.01 92750.00 104200.01 31040.00 2U4 •• 00 3 195. .g4 .81 •• 0 1.42 '.28 5.08 2.e? 1.81 1.38 lf 30 1.15 1.57 01" -S364.5!5 2148.29 .318.41 -89P0.1g 2291.A7 3088,!56 3 1056 1.'2 1.11 1.4~ 4.01 &.74 ,. .43 3.35 2.2J 1.70 1.57 1.35 1.28 4 1954 .0O .O0 .~0 .50 9.a0 9.00 10.10 )0.10 6.&0 2.70 1.2' .~& VAR J" V 'UG SEP OCT NOV OEe ANN 4 19'~ .00 .00 .e0 .00 S.~0 7.60 10.80 ~.u 7,70 3.30 1.10 .00 TEMP 15. IS 70,2:5 52,45 ~'.S0 43.20 29.10 ".2g 4 1918 .00 .00 .OO .00 ~.S0 10,40 10.50 10,40 7,g0 4.00 1.00 .8& F , .81 IS ~ 7 4 :5.24 J.93 2.815 l.a3 "2.6& I 19,. 13,O0 12,a1 16.46 18.50 3.!51 3.7~ 1,33 1.23 3.154 , .81 P,81 9.85 PPT 1!H4.!H\ 957,48 11208,17 27e7, g6 9321.37 6167.31 6~825. '9 , Ig., 11.35 10.10 17.1 I 22.157 11.39 9,91 1.29 1.84 2.~2 8.13 12,13 19.72 OP!V :52!1130.A0 :521S10.00 4~HJ.0,00 49!H0.00 !~~03."1 53402.0'0 71576g4.e2 I 19.8 23.1' 1'.12 22. I. 29.40 28.S:5 1,94 1.36 2.48 2,ea B.31 11.49 13,56 OUNG U3~,40 9~8.e0 779,90 130 ••• 1550,210 la'.09 21131,0:7 6 1954 12d 4 1~.04 1'.9~ I' .22 12.36 10,24 9.39 9.26 8 .8~ a.88 9.48 g.48 QCN" :56883,11 !568B'.71 3'112.84 1 :5201 ,07 15758.651 3'17.2a 28"29.62 & 19.1 10.34 g,25 18.16 21.47 21.02 1!5.16 51 ,83 e .92 9.:24 9.91 12.18 19.52 CSIT '18' .'. 9421.25 21992.92 3193:5, !50 460'0:5.53 SP82.99 560162.12 6 1956 2".a~ 13.~' 22.29 28,90 33.44 14.8B 10.01 10. tI,5 8.85 10,76 11.67 1~ •• 8 OIGS 33:202.09 32244.51 JI8~3.2J 111.1. S' 13038,55 37".98 22'~7'.81 7 1914 .e. • •• .00 .0. •• 0 .00 .0. • 0~ .0. .00 .00 .0 • OG"I .0O .00 .00 .00 .00 .00 .0 • , 195. .Q!0 .O0 .00 .00 .A0 .00 .00 .00 .~0 .0. .0. .00 eN" .0'21 .0. .00 .0. .00 4433.82 1433.82 7 1956 .0. •• 0 .00 .00 .00 ,00 .00 .00 .00 '1~0 ... .00 5NMT .0' .00 .00 ,00 .00 1133.48 11571:,10.18 8 19~4 .e0 ,00 •• 0 .eo .00 •• 0 .00 .00 .0. .00 .00 .00 ETPH IIHP.48 12.44g.61 81Al.91 4~41 .01 22'0.18 868.48 '1132.21 8 19.1 .0. ..0 .'H~ ... .00 •• a ••• • ~o .O0 ." .00 .0 • ETP 41284,72 30116.27 11848,01 g02:5. !il3 3134.64 1'26.8' 174235.31 8 19.6 .0. .0' .00 ... • 00 ••• • 00 .0 • .~0 .. - .0' .0. ET '1279.32 JA16S .83 17 e48. 28 9041.90 3787.6! lA57~56 174412.11

"5 2:5314.$1 21418.71 33345.22 3334'.22 3334:5.22 33303. Q' 33303.97 POTS 10 THRU 2' 8HOU"0 SE SET AS FOLl.OWS OP 44:5:5.19 e1~.'" 4!!3, ;7 :5851,15 5~82.73 613' .79 463~3. 30

.1IlJr"J0 .152'0" .2!5000 .29999 .00000' QTO !l~5A.Sl 9~!I!5. 44 22275.93 43644.42 153269.8:5 !583!11.58 604689 .. 25 ,Pl00091 .~9999 .166&8 .50.00 .42499 OGO 11S.0J 6~!I.02 1237.55 2251.10 200'.12 3.52.83 29811.32 ,1~000 .~3.00 .04000 .e:5~00 .79999 oso !08~5.48 93:50.41 21038,43 413Sg,33 50464.73 ~!5304.9!5 !57!J07a.~0

OS'S '!S40.0l3 69'0.0' 20,510,00 44010.00 515270.00 3:5520.00 584!i15~,62

POTS UJ TKRU 24 A~E SET AS FOLLOwS 01" 3295.47 :23813.41 528.'2 -2620.87 .. 480'.2b ·215 •• ~ .9'81.68 .M967 ,~241e .249:51 .29986 .,00006 .00013"" ,!!lItP:!4 .let5l-'1 • '9993 .42485 .099\t7 ,O2978 .039'9 .04949: .79988

1j8J. '.915 DBb- -1.701

TJiEt10NTON IQ58 TREMONTON t 95'

VA. JAN FEB ... AP. HAY Jl>' ,U JAN FEB "',AR 'PO 1':4'1' JUN TE"iP 31.42 21.(';5 38.35 49.45 59.75 66.5. TfMP 15.'. 21.35 ~I .3~ 44.€0 ~6.,U 63,213

• 2.07 1.41 3.18 4,'5 6.03 6.78 • 1.03 1.43 2.691 3.9& 5.&9 15.44 PPT 160U.07 2140,215 647.70 61533.40 11830.19 3.091,99 PPT 12869,58 9255.04 4308 .. 6; ~843.18 14ti2.1:2 12305.415

ORlV 117490.01 75359.01 12!5548.33 182821 •• 3 188350'.03 8~8'0.Cl :)PIV 5828e.01 ~2204.0~ !111~42,01 120980.01 118430.33 3S4Il1tl."1 QUNG '290.64 693.00 5172.39 21589.315 541' .62 4504,,60 QUNG 15815.20 507.10 8389.80 536e. t1 ~3e 1.09 313,5.00 QC"I!.. .ee .00 .'. .00 38299,28 58575.39 QCN!.. . " .0' .0 • .0. 31540.59 42805.09 QSH !23909.35 ;5351..18 1286~3.6~ 160656.'8 15379S. il3 445:58.07 QSlT 58429.56 152NH e 31 9'956.81 122181. 46 98655.03 54658.24 crGS 18023.86 ,r.p U323.5e: 1033.'31 32606.00 35708.45 alGS .0 • .SA 19514,17 160!52,61 24903.04 3,5849.27

CG"1 .'~ • 00 .'. .0 • •• 0 ... OG"I .0O .0. .00 .00 .0' .. -SN. 9236.73 11176.98 5et .0'0 .80 .00 ••• SN" 17'\03.51 28568.56 lpe2.4~ 93.01 .01 .00

SNMT 18~2J.e6 .00 ~ 1I575. 98 ~~0 .20 .60 .~. SN"'T ." • .0 19574.77 112V9,43 92.99 .<1 ETPH 81! .29 699.81 2101.71! '8'~.58 0905.9' J 157~~07 !TPl'l 435 ~ 54 109.18 ~474.99 3366,e7 7729.83 12333.g7

ETP 1~67 .66 12el.24 35515 ~ 23 Q76l,28 24098.8!5 34698~ 18 ~TP 7&3.9~ ~~U,315 2495.70 '173.12 209!~.83 32725,50 ET l!i9!i.~7 1333 .. 80 36"'2.t.i~ ;)7152.Sl3 24118.57 :54775.28 ET 19' .53 1333.80 254:3, 85 1171.81 20928.42 3~718.85 H, 313'5.22 32148.g2 3334!5.22 30608,85 333S6.P' 33343.22 "$ 32~3!:\.94 31378.89 3334!5.22 33!56.9' 3334!i.22 33345,22 OP 69212.80 10367.95 3437 .15~ 4248.93 2062.19 4~97 .58 OP 3321.54 453.77 2062.59 12114.26 ! 102' .98 !5197.73

oro nee!i~.29 65163. '9 1 319!50 .84 16475g .81 165839.84 48:5157.14 Qro 151 e;57 .1;s. '2IQ' .~I 9982g.42 13475!5.~15 10'502.2' 59677.b4 aGO !i280.2~ 4482,69 5252.73 5142.72 !5142.12 2667.td OGO 3190.1 4 2895.11 4015. P 4730.20 4427.69 313!i,ll QSO 12!i31a ,315 8111H.0g 125~98 .. 1I!J 15gep.08 16(?J497.09 45899,53 050 58467 ,~9 4~502 .1I~ 9~8 14.25 lJ\1I025.Hi 103074.5e. ~1554,2.~e

QGAG 1~05a0.03 79~40.01 124500.01 Ui5600.03 16250~.e3 44720.00 QGAG !5397" .?1 ~~.PH0.01 ;)64111'21.01 127100.01 975170.01 !I~81~,00

1)1" .. !S121.97 15'1.0. ?198.09 .. !!982,9!i ·2002.92 lPg .52 I')t'F "!i'02.42 ..7437.el .. ~85.17 a325." 5104.,54 672.50

YAR JLY AUG $EP GCT t.Ov DEC ANN y" Je' 'UG SEP OCT NOV OEt ."N TE;!o1P 7A.!I!i 68,75 63.00 '0.8" 32.45 26.8!! 40. ~7 TE'1P 72.0.5 73.31!! !51 ,35 50.15 30.6e: 29,8e 4!i.'"

F 7 t7.5 ~.6~ 5.29 3.96 2.14 1.159 !ill ;P • 7.49 7.k'3 5.15 1.91 2 .~11 1.&7 -48.b6

."r 1911,28 28,\6 233. 45 ~51~."' 1830.46 149-'.89 !57617.87 PeT '''4,~3 '9991.24 6279.95 2281,>a15 1&3! .89 0!'12.20 916eU.93 :}P!V 56430.00 ~0033"el 48'20.0Z 8Mse ••• 657~'.01 13720.£11 l118690,50 QRlv 5,542?~¥1 5~24V.. 00 ,5<01~.01 ~S.J0 .0~ 6853,5.~1 L1l6~~,e3 920ee0.~2 OU"IG 2ft81 ~2(} 1381.6Z lC!i8.19 975.70 1319.9~ 7134.30 3"26.51 GlUNG 111159.89 112.4.19 855.80 810.70 2367.21 3546.63 Jl6SI.'2 QCN" 5913&.82 ~a575.39 44494~'6 Z25'H,.ae 5632.25 J717.28 290981.8' QCNL 60828.28 51253.46 43368,32 '~588 •• 2 6195.47 .00 254577 .'9 QSlT 104,1j~.45 17362.13 17031.33 .:14827.44 62651.27 71651).45 921104.52 GUT 9308.58 9424.21 21311.lS6 421.53.88 66396.2\\ \l4301~26 74'3a~.a7 >'ltr;s 3 44 91.!51 32244.151 2 4725.'6 1791\l1.55 4446.S1 2044.,50 218654.7,5 t:tGS 3A159.57 38186.64 ~0 I ~2. 52 125e3.S8 1540.78 64j~.09 2273~2 •• 1 QG!"! .0~ .00 . . " .. ~ •• > ... .0' OGU ." ." .e. .00 .0' .e • .00 s'< ."'2 ," • 0' .02 481. 1~ 7972.59 1972.59 SNw .00 .00 .00 .00 3498.41 698~.52 6980.52

SNMT .00 .. " ••• .00 1348.77 ." 28~40~61 S~~T .0' .0e' .. " •• 0 4133.27 5433.09 4144a.58 ETPH 1 ~4!119.52 11933.~0 8274.74 44~1.29 1164,8li 8~1.33 '1'83.2~ ETPH 14315.7' l3750.59 775i.!57 4284.28 I a98. 48 889.37 8633 •• 13

E TP 405134.36 28624.65 18228." ~163.7!5 1\142.01 1316.54 114663.68 fTP 31410.95 ~3263.40 1' .... 26 a866.!9 1831.31 1461.19 It.3243.P0 ET 404!54.28 281528.7~ 1827 4 .55 92~41 l! 19P3.S3 I~" .55 1751'1.'~ ET 31420,15 33248.96 I1l".~1 ~e~2. 89 1891.S8 1513.81 163887.2' "5 21~0&l7! 31035.12 33345,22 33345.22 33358 •• , 3334:5:.22 33345.22 "5 30155.08 33158.97 3335&.97 33345~22 33345.22 3334'.22 ~334'. 22 OP 2U0dI'J J37.!5e. 453.71 4372.69 7384,217 3327.64 49103*42 OP 4083.93 1072.54- 332 7 .6 d 9921.93 5747 .75 50 73,97 63417.81

QTO 126' •••• 11351.26 17270,76 4900Sg.61 '0041.59 7 485S, 31 9564!5!5,37 aTO 13255.58 1 f1357 .95 24448.,,e !!11922. 3~ '2353. IF 119245.28 8369!3.25 CGO 715.03 93~.04 935.214 24".10 1520. IS 3g87,157 40536.7g OliO 82S.03 1505.02 ~37!5,06 ?7S0.12 36E'!5.16 4867.71 36301.60 QSO 11953.02 16418.22 16~3S.72 40614.56 66525,43 7"S7a .64 927918.62 9$0 t 2430.'5 9762.;)3 2J"".52 491'2.17 68315S.03 114377 .56 "0&11.82

QGAG 7.90.0~ 1400~.0~ 15150.210 4eS20.0!1l 647!50 .. (le 1699.:1.01 932'59.5. OGAG 72a~100 1038P1.0P le49A~0~ 45S20.0~ 15!!;370.01 11S10i'1.03 '58259.87 01,:oF 4~73 _Ql2 2418.22 1185.1. -205.44 1775.43 ... 6119.37 -4840.90 01" 5\521.54 -"H7.PI5 6583.52 3152.1 , "1.98 3277.54 12~51.82

77

APPENDIX D

MANAGEMENT OPPOR TUNITIES

79

E'V1NSloN tUF 1 -1 ~ 0

2.!I\pi .. .0~?32 .0f,~3~

$2~30.!Hjlj .. R~c~.

". .2791116

31571. it' 19£13:S.

P. .o;2l;r~

.!'JC\~n;,

1.!"I\1 3141.

" . .. ~09fl4

.. O.

.0''''''~0

0 • .. .0C~02

.~"9'\'IPI .0"00~ • 0\~000 • e0000

0. ~. .. .Q1~"'0;' .~g00A .:.'1~ers.., .t"0'JPA .00030 .0lli000 .a~~~o .55 .0r. .9€

10.91'" 1 19~4

! !'~5 I 1955 2 19~4 2 1955 2 19~1'I 3 l!}!1!1 3 U)!,!'i 3 195~

" t9~o1 4 U!1"1 4 lQ'!"i

19!)4 1S1~~ lQ!}~

19!14 1955 1.S' 1954 Ui~!'i 19~ti' 19~4 t9~5

l~l'I"

.l5fi ,5'"

.~Q .. t1'f!

.Jb i ."'0 ., • PI;~ 1 I .. V. " 2j!:.Hl ~4.~i'

1~.2" 14.70 ~r,,'C' 1('1.70

.~9 .~4

.'7 .f'1 1.21 .35

.. loS .21 .. ~"" .~,~ .24 .18 ,lit? ,(lti .1?'~ .~p!

.t\.l .~0 1.~' 1.47 1.el'l .'" 2 .. ~1 1.(;3 1,Ze: 1.25

.:;2 .A:? 1.~Q 1.;'17

.pC! .. U.§

.C:V;l • .')r, .,.q .. (In

.~l(i .. I<la

.fl(l' .p?

.;1~ .~~

.91

.~0

."IP.

.2" 24.7P 2~.3e 2~,2t'.

.15 · ~. · ~I" • ~3 .1" •• 7 .00 . "" .Up,

2.77 1.12 5.65 i ,~5 .93

2.33 .~;1

.(1('

• ¥Ii' .. ;~C!: .. fa .~e

LPI ."n .n .00

4~.€O

3<1.2~

)'5.!5Cl1 • I ~ • I' .30

L12 1. 47

.8' .0. .. '

.'-'r. ~ • .59 5.3" 6.Ai3 ~.2A 1 .. 33 .1.QS .eo .on • roc: .r.'\<1 .:':01

."

1.1f1 .'iH' .7' .or'

4Q~70

47 .3~ l\e.3~

.78 1 .~9 2.3,

.54

.18 1.41 .~~ .00 ."'3

1e.03 12.31 22.8!5 16.46

'" .33 2~.43

• i~P. ~tl~ .i13 .3. .').iI .!~~

1.04 .. " .. 'ill!! .'0:.1

:54.80 54.90 ' •• ?0

1.43 1.H5

.01

.71

.71

.24

.00

.00 .. ' 2.75 g.25 1~.72

7' .73 15.22 22. it}

.{\l'!

.00

.!J0

.;,:;,

.,\A

.A" itlPIl it4 ~HuULn toE Sr:T A;i. FOLLI'JI'iS

.C]~7~ .~3!'7t .~4UQg .!!IV1e2 .V'?il.HfH· .. :12~Br" .~OIl~\)C .'HHh1~

.1"(:'''1)\ • ii'!3ZP I' .~f'lPO:: .:!I~t:':'I~ ~7;}~':.)O

POTS 1'" TW~'!J ?4 UF SET J;S FOLLOio/S .0q9~7 .n2~; .r.3~~~ .549\l17 .3;;,176 .iH\II"~iI .~ ~U~i! • ..,23"15 .49~7~ .~~flIiHI .'39 0 48 .t~~n1:Z" .'j('!:"::::-::: .~:'::;v~ .799J7

l.ih': .3iJ

32.1:l~

.~" 65,2") 6~ ~ 1\1 62.150

1.11 1.:.\1

.11

.li7

.e6

.10

.$0

.e:~ • "0 .7.9 .1'; .60

3 .. 1114 3.2Q 4.$6 .~0 .J0

."" .00

.f!:;

.~iJi;

.92

.00 24.011

.00 5!l.J~ 63 .. '10 ~15.9~

1.60 1.1 ~

.36

.02

.~J

.06

.~~

.CI~ • ~:6 •• 1 ,0a •• 2

, .2~ 1.81 1.66 .00 .~d .00 .30 ,,~I\I

.'0

0. 3. 31571.

.e'Vl060

.0t'~110

.62 • 2C

1.!JP .aki

53.7~ ~2, 10 53.10

.70 l.a8 .e2 .02 .0 , •• I .0iJ .~.,

••• .0. .a. .00

1 .. 17 1.19 ."6 ,ItJ .~!d .@" .0~ .~H?!

.00'

'.

• I~

••• 20.00 2.~0 J~.8e

4".~0 ~O. 7C .d. .4.,

.04 .. ~

.~2

.13«: •• 2 ,'q'l! .'!I~

.. aJ

.12

.09 I.el 1.21 1.17

.. ~u:

.>a0

.30

.. ~i1

.. ~'1

.0t

.6~

.~0

2 • .:1'" 2.~~ J4 • .4fd <2 •• ~ 2~.30

1. ~2 .82 .14 .06 .08 .@3 .~0

."" .0"

.39

.~. •• 4 •• B

1.03 1.04 .. " .0. .00 .0~ .. -.~0

17 • .4;' 211). <40 16.60

.7; 1.80 .83 .06 • ~1 .~5 .00 .00 .. i1kl: • 83

"'.~6 1.~4

~gtt

1.66 1 •• 5 •• 0 .00 .00 .0. •• 0 ...

EVANSTON CAsE 1 -1

V<\R JAN TE~P 22.U

r 1.4!$ PPT 161~. 3<3

QRtv 3~23.99

QU"C 38~.67 ClCNL • 0~ QS1T' J712.flI7 QIGS .I1!O QGU .,1:4~

sr~.. 590! .,43 !NIoiiT ,,"'11

!:T'PlI .. "'''' £TP l'I~7 .1~

E'I :5'3.~4 11~ ~Q~P. ~!~

I'lP ~!5'.:'Jr:1 QTO 42~fi.4? oGo 154.23-(l~(I 4Jf.I::!.1!)

vt.p JLY T'E~P "'5.~.~

J." ~.7a p~"r ??2!!'1.32

CRlv i"~1~e9:)

atl"r; t so. ~7 !lCNL ~2lli'>&."5 ns!T' -41;JA.,S (H~S 1~1g7 .. 45 QGU .. I:!t. S"4~ .~{~

5;.(1'11':' .~t' ETDI-' .t'lJ

€TP t!)~2n.57 FoT t !5197.1 ~ ... s 6J).12.Q~

np ~!)!i.46

GIlt.' ... 3J1"~.72 o~n ,5,59 Qt:./j -3.!l92."~

See Appendi x B for defi ni tion of the var-i ab' es

r..Sn

-\

JUJ 1~.~Q)

~ It,,, 1 J9tl~ (II,}, ~44:t .. !ij

l:)~.:t.1

.~.' ¥fj1~.34

~ "'.J .iiI1'"

:,s":!:"l.lO .''':1

"'!ii<.V7 37;).!':I4

812fj.~~ ;:,HI.5"'

?-;6".~!)

.ILY fIi~.1 I.

f,. 4~;

V5~·4.3~

~"1 ~."9 t:?,q.1"l

~~"'~ • .oI' "'1 ~H .15 I 3 ,,>:Ui .~7

.:-1,

.:",1 n, 1 :.'I'\1·'f.7~ J 3:;3~ .Q¢

<,/lj~':: .~I'I

1?26 "11lid.7"

2:"'.~9 ... t22'~.3Q

"Erl 1 d ~ 7~

.'l!: 2131.~Ai 2Pl.9~

115 .. 1~ 9,..1:-

~2fiB.l£ .. ' • .:"tl

~"551.2)

."

.~l"

~ 15.31 ~?¥j~5P

7'}17 .3~ 32.' !

':1"3.7; 5! .JP

2;:"2. J ?

~~:;

n~. ;0;­t'..~4

~·~2~.~~ i1~~:? 40

P·l.~1i

~<l!5~2. 09 ... ~~;.U.7b 12374.5"

.:'Ir·

.:1["

.;'1 ....

l';~'A~. 3::: I ~.ul. 61 :56~5.:1!:'

·~~.ll -4~!'A.6;'

~5.63 .. <l3F?.:57

HAR

"'''.3;;'1 1.53

12a9".1A 245C.Q~

'53.25 .n3

2fJP.2'5 • a,;; ...

6641.1.:\J;

.cz 11!'?!).5<t l~~!>~S~ 6'5~"5 ~ 7 5

!2.8<l 2"'d2.1-2

")4.2}; ~~ i:'", SO;

H,' ~2.1.~

';.31 330:7. ::i7 :31 ')3. ~~

4l.VJ7 7 <l t ~. 2<l

:~ 1!). ! 1 '31"\5. ~,~

.~~

.~, ,1

.:1"

.~" i5l4J .,"1 <i'l3t".44 O~~..!. 71

32.11 J.1/').8 i

17 ~:'i7 25g .. l?

1915

,0. 34.2~

3.t'l7 49~.e:1

'774.99 7t14!).f.ec

.id'" 1~o2:J.i!6

733~.~4 .90 .7"

5S3S1.61

."13 ?234.47 2207.3:\

11722.22 i5;"U

1';~8d.!>:l ;:~.t;.g

i. 5 .)'5-' ~ 0 'I

',CT 42.€1" 3.2'

t ~~2. 3(i :}2~ti. 9.:):

~~ ~::!4

'9~J:\. 57 1jEo 1. 9'" ,:?~36. tit:

.:-:i'

.f':' • fI(~ ,tlit

?9'.~.:\4 2941.7li >S~H2'."j~

:~.~;.\

13:$1.7:,.\ 51.39

1S1&.31

:~A Y 47.J" 4.17

339:3.J!:!' 48232.'" 163~.79 ._0

4llt:)S8.71 :n:Q4.!l:J>

.00

.r'H~

.H

.02 5!H'!i.<3Z o.,J, L .J1 5J3C::.6~

3".11 4~O;A3. ,,~

:)~.;lJ J98?'.:J. JSo

/o,Iuv 22.g,

1.51 21" .3~ 27:!Q .g~

17:>.;.\7 .~;:­

;::J'U!'.;"]

.3'

.. ZI'II 2157. ;)!)

,Jl:' !l~4.",!!'

~47 .e~ 570/.91

32.11 i!0'1I1'1.41

b4.23 oed"v.11

JON '54"a.v

5.5S1 ~C2$.~!5

",a0t". ge l.1e").19

i477!J,«I3 3'9~<. 53 aIS41.2~

• 0~' .0" .0" .''0

1~;,\94 .. ;2 1,141'-.32 55;;.15

,Hi. 5.' 35\:lJ);.32

251. ()~ '5~7;_$3

2". 1.23

4135.5' 43M 1, Ifli ~5~.1~

~12.i1. 77 442:;.Q';

8,),..1.31 .\1~

d8:}j.0~

.3';

.fJ" £11'>.74 571.6.

$;}09.86 J2.11

4.1i\9.1l 51.38

4361.13

Ai'IIN 3] .17 3g.dB

2g7IH.!il6 131221.67 127~4.8'}

80181.07 113471.51 ~S21a.11

.0" tidw3~0e t64J.38 ...

5a~J7. 26 :H:l065.14

6059.86 ~S9 .. 69

11322' .03 !55Z.38

11:t6'14 .. ti4

80

E',/At~STON C.A:~ 1 -1

J;.J 2~1, 2,) 1.33

3133.4..'; 34P.v;i "~~9. "'4

13"'~.3!> ;,\42~ ~ 1 ~

o;·n.4:! .~.;

.. :".)

.f':' ~"1~.;:i

"~? .. 3~ 6"2':.Q"'

JP. "I ~ ''\>\1'1.1'"

!'-1,3J ;nf."I.12

Jc\ 1'=2.fIIV!

1".51 1 ~ti'. C)"i

12 .... r':??~ ~~r.1J

~~ ... 4 ... 4~ l ,,,, ~ T,..

• JlI:;;. ,'.!'

.' , . ~ \ " 1:V'14.';'} , 3A<1'~.l'1 ~5:":} .. :7t

'''.11 1 t:7 .1'1

17 .. n en .«"

FES 24.20 1.6'

8Y4.!H 33e0.9g 1233.27 .. ~ '534.21 t \35.41')

• 00 5751.53 ! lJ!5 .. 41i

.f1~ S.S .33 8"9.31

15:)78,17 525.69

'.22.89 64.23

49!'i,\.":~

<\llG :59.JIlI 5. ~9

42jl~.46 3176.90

0«.32 !/036.ge -32:!>!S,19 10683.4$

.0t?>

.00

.M'i ,r.~

1;'7i'9.18 '~~lJ8.tHI 6M~9.4V1

237.65 "3e':44 .. !56

"4.23 .. jH19.7 0

FH 1 :71 ~ 7·;"1

.7 ; 92J.S2

,!A~3,,9lt

3aS.!>1 1.4~3.6~ ;;t5f,7.12 ~52.jq

.i'lfl t.'913:' .2'

.;"I~

.("I'rl 37!).'1P 35H!.23

6224.('11 3B.!'I3

2,tj45.33 ""1. :!oEl

'-5;'4.9.11

It u~,

~':;.::H

01; .4f 994.7"

44,~.o9

11=1 .6~ :-211 \I'i. 44 ... 4963.05:2' ~~7i:."'1

• t. ~~ .?i .,:!:"! .:"1"

96'1"i.43 0'1\1'\ .. :::\ ""5;)8.1:'1

:!2.11 .. dl~H!:5.11

~!i*6!i "~11:\.J;r

au 24.70 2.~~

1973.18 40!l1,99 '\2~S.J'

.0~ 73~J.35 ~~13,3"

.30 'l!7.3~ H'J.3~

.~~ 1306.7! 12.,7,47 otill •• 3

5j)0.:!7 7771 ,:Q~

2:5.69 7146.:'ii'i

.E? !53.7r.l

4.51 loAI.!)A 3"'i".~"l

41.51') 12804.32 -ln2.77 t5727~2~

.0~

.'\0 ~ 32 .'1f'

1i739~40

i\14" .. ~9 663:).t'1~ 21l.96

·1~3~.7a !H.35

"16~7 .15

SEP 5':\. tli'

4.4\; 52. :i1

226 Q .g.O 33 .. }7

17~~.1. 3~ .. Jt.J3.57

"i.,.1C.

40. 41'J.60

J.6!5 366.32

136g1.!aQ "5221:1.42

.00 1892"0 • .42 44e~.6~

•• 0 .0~

~111.J2 .Ji1

3434. "8 .$!5Jt1.or" 9769.!56

475 .. 31 'nn.53

?'.69 I'HI •• '

QCT 4;~ .$/:'1

3.41 '.341.tH 2'\20 ~ qQ

55.2. 23'2.:3,4 U74~8~

:'\243."~ .~,

,,~II)

.30 • ~0

33!'!0.1J1 3:.'1~l1~49 6504.44

123,46 2:)63.24

77.'(:7 logl.17

AP~

3ti.~f,

,s" 19 HHHi.~!\

1:'\0:\1i.9!J ,J7 ,;!.22

,\IJ'? 1'412.22 4e~3 • ..e9

• J'f' .12

~~"'J7 • (~o4 ~ :?,,'o"

(.'?;~. :3' ?4:;J.:>,\

14"5;;J.JJ 3<J.!'\j

174;10. ~9 ":i.~!J

!1Je i .~QI

weT :l~. 7~

3.&19 ~47,).,·HS

301<oI*!t9 !'-3*'1

.~~

~ \313* i'1 '" 413. ~~~ . \~.~

.<t:'l .. },'

~ ;,v 2:>13. !:!l~ 15~4.2; Sti!!"g,,42'

25.69 '.'\121 .. 64

e4 .!?J: 3J!!7.41

"lY 4v.1C 5.01

2252,11 43~22. ga

112!i.7kJ 5~61.75

41Q'O.;J3 4!547,tiJ5

.0 •

.0' · ..

.00 1740.16 77 46.3; 66~q. 4"-~1l •• 6

.423~2.'7 2'5.59

42277.A7

NOV 34.41:1! 2.21

37.'5.9\'1 2518.0 •

134 .. ~9 .01"

2713.29 373O; .. 9"~

.~9

.0'

.~~

••• 1359.16 13 A8 .. 115 8953.86

le9.19 214~.U

3a.~J 2;U~56

MH 4a.3~

4.81 61?3. '2

<5q")~~.'Hi

21~I}.ur.

7 21'H..b~ ~l,;}J.g~ · ~~,

.~~

.12

.t-:> 7 P .... ,,3J 7~\:l5. 7~ IJ4~$.~1

3'.:!.ll 7'.115:1 ~ ~ti

":"Il.,sb 7 2~" 1. ~7

~IOV

22.3;; 1.47

3".32 27A}.9:1 ]~.n

.et' 2"1:l29 ~;re

• ;J~.

.~t'

dSl.hi ;'}O,1 .. 47

';)"'~d .. 1b 3t1: .. ~3

2~e!J.t~ 51.3101

<7"'li .. H'

JUN S4.8Z 5.S8

3762.23 20J39.iillt 1611.5.

11245;.33 1!539..e.3!5 U'J315.013 .. '

.~. ... .. ' 10341.55 1;','S15.'5 el5~g. 40

3Ati .. 6.4 le:69r:1.14

034 ~23 1!5-633.!H

JEt 17.41ll 1.0~

1~2~.~J5 2S2~.:Qft

120 • .}~ . .. 2655.39

•• q .~e

1923.~6 .. i'16 .. -525.O1!5

5<5.69 ii4ti~.69

64.23 2be4,137

b4.23 26,B.63

JUrl 5lJ.liP 6.".1

1762.71 "$311. gg

tl S.d7 :1766.26

!!~11!>.b7

SAn.ali •• ~& • L1 ~I • iii] .klC

~·.n5:".'J1

12441.01 :55(\,J.21

33 .. 53 :i'h',7l. ~jj

3'3,:33 j;:p1B.42

0t::C 10.6£'

1.iI.1 Z18J.66 2774.n·

114.34 20111 .. )2 1971.5J,

;,qe .. :)3

.![li ~5S1 .. 1a

.":0

~41.a" !)j~. 3lt

f;i'!oQ~oti

3'?11 1!J52.53

~1. 3;,

1:JJ1.2ol

ANN 40.82 A3.16

27&35.07 1102&7.81l

13395.31 88334.110 90115.g~ 63654.92

.00 1~22.58 SU66.18

.00 6ue3 t 69 f!:2k196.87 !46~.tig

3879.S1 .3J4!.00

5g~. ~2 .112751d.07

A~N

~7 .49 AIll.27

211<1.24 l::lM12.&1

lo:i75.41 o.:iSt113.32

1~d21)7 .. 62 '56367.tl9

.00 2.:35.' ~9"

lilt! ~ .;)d .00

58171e:.rn ~e;.hf4.b"

b1f)6li.06 411.00

Ib3!;(!'2.65 ~'.$.0a

Ib34~4.56

EVANSrl)~l :::a.SF' 1 ~ ? Ii

~5.kH~ 25Q9.

r.. .Oe23~ .t'lnA~C

'2~3"".SHf') ~.IJ "

O. .270M, " (lr,.':."1!~

r.. ~.

.~\l~-:lf" .0~~~o:e .¥lfli'th"! • ~5 ~'5!' .~Yl ~ ~rJ

la.etC' ! \954 1 1~!'I5 t 1956 2 1954 ~ I Q<\II)

:;. 195'; 1954 lQ5'S-19h~ 19~4 1 Q~!i lOS'" 1 O~.1 19.,~

t9!iS lQ!j,1

1 Q~5 1 Q~.:; 19'54 1 Q5"i 115~

1~5..!1

1"5,\ 19~,o;

• ar .3_ 'Y.?!I: :>~.lQ

1 ~."A ~:1.2!1,

POTS 1 ~ T'1I(I,.' .1~Y "V .~f\I1:t.,.

.1P.r-;\v

3157~.~f1 In35.

" . L.~A

;H4. o. .. 0. ~.

.'2e2e 0.

.r.;).J:~H • J:)~':'J • :};)~I",.l

.'Ht:HJil .~"~rc • "",J!'I';'It'l • -,tI(9,l11

".

1.07 .0t'1 • 1:::1 .pt: 4L6~

:\4."O 3~.!)" ...

.l9

.~(j

t.l2 1.47

.S>

.r~

.f''''

a.

1.H: .,v,i:! • 7. .. I1IL~

A~.7Y;

A1 .3~ 4~.3Z

.7' 1.29 2.32

.54

.7' 1.lll

1.04 .a • ." . ."" 5.1*30

S':.9t'! 53.!H1

t ,43 1.1:5

.57

.77

.71

.<4 ,. !"~' • ~I~ .:1J .'(!~

• ,--a .(h~

1~.';':S 2.75 I~ .31 "'. ~u 22.n5 1:;.72 1'5 • .16 7.73 18.13 15 .<:~ 21' oA;\ '-2.1';

.. ~l o·?l0

,,~'.1 .I~t' .~f1 .P.i~

.nri .IH~

.l.~!. .~~

• ,HI) .'11" ~;:T A~ Flll..LDw.5 • "'I1Qo,,) .=,1j·q" .. !1 .. tl~~i' .. ~.':f~,., .tl"'.~i":" .7y:9QO

1 • ,,~, .,1J

.l2.l1w • n

n5~20 62.10 6e.~tl

t .11 t .. ~7 ,1' •• 7 .. ';:f'i

.1 >

.ull­

.:l~

.:J~

0.

.92

.0" 24.0 iA

.~f1 59.3<l 53.:Hl 515 " 9!Jl1 1,.0 , .IS

•. 'HI .;;l2 .03 .·8 .0. .>. ... ~.., • ~1 .w. .0!

i .2~ i.37 L .~~ .00 .0. •• 0 .~3 .0~ .~.

POTS 1~ TH'H' :t.,: ,tt'E' ~:; F'I)LU"'~'$

.~Or:"'7 .~"'Ir,"; .54~~1 .':'I',}g'Y':'

.I'?rq,.~ 41t??'" .:";2,H:>5 .4~;}7':: •• i';UUI7; ~1019il·1i4 .... ',tl.'~$ .,"~p~.' •• I):,~r' ./~'1!1

: 4. • C:.

21~1. ; . .: <~?!.;~

11·'j..1t: 777. "i,:,

H)~.2. ~~ 71'45. d~

21~: .2 ,'7..1

J ·~7,'\. 2 3

2~\. ,\~

1. ~>~ 12~9.! A ~~f>~'. ~;

lj.3. ~5 Dlb.43 .i'l13.2:5

5;11. ~J.

.;.i:il ! ~'7 :; • ,c; C In'il.tl} 5f1~i:!.YH

l~. ?.I; ?1"\f.7.)

~!::p

52. !~ 4.:;':0

3.l~7. 57 ,~1 ""~. ~~

41 .!~ 7 'P5~~7 ~ ~ "I.' • oJ "I iI!;'1\.7r'

• !~ !

.~~

.tH~

f'j~t.4 •. '1 :'\!;'!!i.<l'i J"I'f! .1-19

?!) .~" ! 1~5.4"

7'7 .:~n ': t-t I! .4.,

.'1P-?

J4 .. 2~'>; 3. ~:7

.:I ~~~.:i;' d174.tJ 7645.(':6

.. ;,~ 1662i.i .. ;:!~

7;.DY.!:i4 ,!'oJ • 7,-

"i63>J .. e.7

2~34. ·1" ~::'2·"i.! "

1 ~'540. ),'" :>.'>. bf'

l~c.a,.;:)

vcr ~2*\q,'

:\~?7

\Y'~2~;)~

32.:1'·.<1" !)i~ ;:'4

,2~b~~1j

: ~'.o:!; ~ t7 ") 2'J,~ .:)4

~ \0"

.r". .('0"

~~~J. ,;1.1 t ;~ ~ • : ; 43711.1 !'!

.')('411 :::. (.: ~ ~;:.;:.

... ~ .;)10\

i J!'S.t.;

'. O. J1571 • .~?~\'11i.1 .~~~~~

~.

.7S • ":6

" ".tl3 2.5 • ,1,j. :\~ 42. ~lJ }!)* 71)

,a1 .40 ,.' ,4< *~, ? .lJ2 • i1~

• W" .IIHI .!~ b .12 .~?

t. t? 1. (oj? 1.19 1.21

.,,5 j oil _"iii .. ..-;~ .03 .",; .(/IQ .Oa .\I~l .00 .¥I;'l • a .. ' .!HI .Q3

~ti~

.. ~J 2.6" 2.5i! J,4 4 Ae

22.9" 2;!.3~

1.42 .82 .14 .'6 .". .03 .~0

.:.10

.'oJ~ • J9 .flS • ~4 .go

t .143 1.~4 ...

.;1;; ... . '. • ,h3 .,;l(l

17 .40 20.A~

Hi.50 .73

1.8.} .. a3 .06 .41 4~5 . .. .O"iltl ... .93

l.Y5 1.\}4

,06 t."ilS i .~:i ..'

.Il'ti .. ' ...

.' . .. "

JUN 54.!!;)

5.51 3~:2!'l.:':

41.::"". ~t1 14ri!;l.hl:

177~2.SI) J4b~l;: .\l~

1711.S7 ,~ • .1

• oQ~' • \J~ .dJ

t'.:3~4.72

IJ4S:$.~.? 'S.la;".~4

1:. i! ~.J1H.~.'J

SR. ::)3 H'3!j.3!

lJiC 2:!.4.;

i ~ 28 "'33.~4 4331.3'1

t":).l.l'l 41 llJ.~4 Jt.17 .A.:;j. 11'1,7.101 · ,~.'

,.' .. ; ,1J,1

61.5.70:\ ('..;:03 • .,:;";

oi' 10 0 47 ,}o.5j

:;4"''':' .t16 ~4 .~J

.\,,),tD • .':'

a.NN 31.17 ;\~.6R

.i97~1.9b !,.'ll227.07 1.21~jA.6J

47al1~~S lijH2.17 42:fc~.ij7 .. "

6oG.l.Z'<'l tH~o.IJ. 3R

• ~0 'j~~j7.26

,j4rl~7 4 '(11 6-tlS.47

Jl1'l.3S 1~:>to!::S.06

:;!;.;.J.15 l;:'S;'j4!.!h~

81

1ff,'fJ JAN TE'MP 2i.1.,

F' ! .4;, P""T 1a1!"1.~3

l)I\'lV J32-3.9~ ~U'lr. M~ .F.7 aC;~L .@\'!

,}SIT 3:"1t! .~,. ::Hr.s .1A\:\

nGll .f''''' S'I:~ !iQ"'~.;1,'!

:;". ~\ T .17,1 to ~~l

1131 .7~ 62'9.4'S

VkU JL 'f TE4p ti5.2,i

oiL 7l'1 P~T :?"H.:-'l

I",f'<lv ,(~t;:.;l:g

!~UII": t:sn. '17

~C/'.jL.. b\l2.57 ~5 T T :;'1~"'. <19 rnt';); tl~"~.tlr,l "l Gt..l .. ~.~ ,\

Sill:! .~.,

"~~I ~ T .":1 ET,,""l ......

CTD t .... .,;)Q.~1 £T l'H'i''::;.'q Mit, ,3 ~It$'l.~2 (';1' ,"101 .. 11

ern 5011l.~" 3~.51

54!7?!il

FEg 24. :2'('

1.62 eQ4.51

3:H,0-.99 12~~. 27

.M 4~34.'27 11~~.4~

.';W '}7~7 .5~

1 i ;:;5.4';

1140.33 3!\9.~i

5378.17 !'3!}.!'i4

~Hl~2. Sf> 64.2~

4!i5B.6'"

Lut; ~q..32

5.69 [email protected] 31 1!'.~"

t"IJ.8:;: 3-23-7.82 20~7. 4~ ~A3?~3

.(.l~ · .~;

.:n' · ~., I .. 7~' ~. i <!t

~1 77.'1.1 ;:J1A.3:\

,,44.1'17

2t ~"'.~~ ~1.~P-

71 J~.4"

F'fl;

1 ".?~ .7;

9;t"l~ 32 <S~3. ?O :}~~.!i j

13:';'.~~

:J712.r.r. 0;;:7 • .::

• ~r ,:.\007.2?

· "~1 • ~;r

37'i.f ,. 37:' o~4

"'22'::.1'" :'li.!.G:

?!:,n.7! 38. :oj

S ~Q ~ 7 ~ d4;t5. ?",

t /"".6:'. 4!1 :~.;:;. fi .. ~P-:--f:;.1 ) '// >:- ... ;7

" ~o 7-'1 ... " 4"\.1~. !:II Z~ \ 1. 7~

:\, ~ 1 1 ;::,.13::.:';:

P~. "'l.o ;!! I '.3~

t{Ai<

24 .. 7~ 2 .. ~!i

l!ol73.1 S .1007 .~? ~22!')",'~

,00 732~.3' ~o13.;;t,8

.1,jU

4117.3'1 3f.in.3A

4 .~'" l3t1c.7" 1,3.n. 4 ;;t, 86S".b~

'110.27 7791 .F;~

S4.?3 77;;3. 4~

SEP 53 4 il~

'.51 1AlI\. 54 ~~iJ,l. 99

41 .. 136 31.52.d" 194".,.)7 :SoJ32. ~ 3

.~iI

.(I~

.3Z

.:1" "'73 J .H: "~'~~.~"i 31\01" .. 7;: 211.$~

2C!F, ~ .",,1

31.?li' 2;}2~. 71

"A'" t!'> • .r:r'

2 • .0 0

1&4 .. tf: 612 0 • QO

? t ;-'1. 15 • 'l'.~

13321. :.~ 73,1'04.:2

.o.:i~ 37£17.1 ,: . 7 J~<1. 2:.1

l·r~ ').;!, 134.0::. <:;;r.

I ~:.!p~.~"

! }<',:<S.6'; ;; I.,)~

j ~?1I..1.5 '

ifD ~3. t:~

".4 ... ~2.$t

~?,f:1 a !)~.

~3. ?1 2J":;~. ',1'" :: 11":>13 • .1(' )~~ . ~ ':

.. ~:.. I • ~j;: \ 7!l~. 0.\ \ 4~ I .n?

"'S. ",0..1

1 .. 1'1','.24 r)~.7 'i

D~t;~ ·~1

~p~

AJ.o(1 3.~5

J~8. 3~

136:1' .:19 52;?d.42

.'·:iil 1~P::?~ • .:12 4485.55 . ~;',

.Y!1\ .tl11.32

.Oy, 3.r34.\.t~

"l44'J .. 2? ~73;.47

4",s.::it; t'i34f'1.48

2!i.I5Q 1:;tJ21J.1 Q

,J"

~, A 'f 49.1., 5.01

21'l52.11 43322 .. !fP 11iH~. 1~ 6d52.27

4\\l~4.S2 4513.97

.Qi(:\

~~H; ... .1"11'.

17<10. )0 /741'.31' 6635.>19

417 *ot' 4~J15.\H

3;'.53 Atl".':;1

t_iiV

:34 .. 4r" 2.~7

3735.9t', ¢~1t.9\1

DlI.2;1 ~ tI~

V};J.2:1 ~;J~.9~·

.~, . ~\~

.~" .'W 1:\:-;).!6 1194.l<;) lUt'.33

1)Q.l>:t 2749.1<;1

5t .3R: ~';!i7 .11

.\""> •• \~ . (~,. • ..l\

J~!l

54 • .sa :).5"

316'2.2-' 7."q3~'1 .. ~1.l 1611.~~

II 177.72 15424. 0~ h'l2!i9.74

.~n ~ !II'~

.ose

.' . 1'1347 .5~ 1.~33~ ,d2 5~>}ci .56 J46"SJ

151J6.0l! 114.23

,567,.15

au: 1l.43

1.·)9 192"\. j~ 25l~.,;t~

126.J9 .i:hl

It;~~. 3Y .~)I

.0J 1:,l2·'.5S

• <.Ie . ,~, :'·2~. OJ'') ;4'5.9i)

65oi~. 4~ ti4 .. 2~

26511.17 25.6 Q

~5JJ. ,,,

'\ ;'!';?7t "'~J" j • :;,,~

:.~ 1 ;J."'9 ~!:I<I'.'1. ;}7

: J~' J / • ~ :> ;:'J.::!J.ll

')". ~J

~:".:lJl .'"'' ~ l.,j.,

'>"i~6 '. ~7

C:i,15.':';l :!77,'I.n ;!i • .1.;

..:~;;._., 51 1 J ~ I • ~);:

>11.1" •• ;L .. : ~ .. ;:;} .!'.,

.-lJ

l .~,j ;.::iJ

"iJ ? 3~

AliN 4<t!.o2 43.16

27 dd:;j.. 07 ll"'2~7 ,69 13';'9~.31 41249.56

1 a Slif 2:8 • 39 45772.50

•• 0 1:.12". :::16 tict,6.1a

.~" ;J~ I u-J • .tl9 401~5.e4 i'bo6.48 31t~0.90

1 tlJl(: .. 93 '5;,5.23

11 ... 747 .1~

11:..\ V.,F'l .. ~~ ~J

~; 120.24 ; 3>.;~.£.;, 7

I r:!l;;".<l1 J~f):. 7. ~{)

l~;-' l~'" • .)4

",::>j " • .15 .~.

~::'!)l. 9'! j 11;\).3;1

.06'.-' ')~ ~ .\~.~;

.1) '5&.l.~n

::lJ ld. 35 t'.! 1 J~I". C!~

\ 7 ?. 71' i 0 ll:l(:~. 1 L .'l , ';'.~ .. .o!2.'" 1

17 :o.~!.l 1 J1 1$,3.01

EViNSTON' CiSE " -I EViNSTON CASE 2 -I In4 0 I 0 • 3~.~~ :!.~t'I 31<511.('IV! 3 •• 9 VAR JAN FEB MAR .PR HAy JUN 6!,~. 2~.~, 495g. 79. J, 0. ~. 'e:~IP 22.10 24. 2~ 24.7\'1 49.60 4g.1e 5A.ti0

0. " 0. 0. 0. 0. 0. 1'8!.14. F l •• ~ 1.ti2 2,.5 3.15:5 5,01 5,58 .P'!!234 •• P'?45 .62BI9 .01000 ,3n000 • 0000~ • G~00A PPT 4!53.9t. 223.1515 4g3.37 Q2.09 513.1. g40.70 .~0~00 .nt'~~~ .}'J0~00 .00000 .a"'I.HH~ .0000O .0m~jd,0 QRIV 3~2~.99 33"0.$19 4097.. g? 13591,99 43322.97 ~033!).g!)

6:)7 .83325 DUt.'G 3U.ft' 1233.~7 322:5.3f5 5228.42 1120.70 U)ll.,g 4' 4. 4!HI. 2t!46. PI'. IB2'. 0. .. QC"I.. .'~ • 00 .a • .00 P0g.8!5 4447,32

5~P'. Q5IT .354(11. H; 4328.31 7037, '4 18226.92 42424,98- 18442.36 .08411 .01!15'" ,.7292 ,03 48!> .3Ul'l" .00t100 .ZCH~0~ O!~S , .. 283,9\ 903.IIl9 lUt.S9 I 152.8~ 2830,83

4i5e.2~"HH' OS!..! ,.~ • 0Q .0' •• 0 ... .0 • .!5' .88 .1i!'0 .91 1.07 1,1~ I.@' 1 .. 00 .92 .82 . " .60 SNW 14P9.BS 1439 .. til 1029,49 .0. .0. .0 • .81 .g. .Q9 i,IU: 1.~" 1.10 1 .12 1.13 1.12 1.1Z 1 •• 3 .9, SiNH! ••• 2£3.91 ~e3. ~~ 102!t,4P • 00 ,0 • .9. .38 1.S!0 ••• 2.79 • 7~ .0:1 32.00 24 •• 0 I.~' 20.tl0 2.lHi ETP~ 1~ •• 4' 2.~. 90 28S.1iI1 693.4. 1377 .9, 1819.21

10.00 1.0r. 11.1/110 .2" .rli" .'. .'i':3 .0. ,0~ .~~ 2.5. 2.50 fiTP 159 ••• 212.11 327.23 858.64 1S13:5.315 25B7.32 I 190~ :!2.10 24,2~ 24.70 4O,60 4g.70 ~".a0 fiS t 20 ~9.3i! ~3, 70 43 e lH, .54.401 17 .40 E" Hi" .39 'Z~'2 .. 36 335.66 878.89 1981.85 2~8'.11 I \905 12.2. 14.1~ 2~.3. 3.1 ."A 47 .3~ ~4.90 62.10 53.0B 52.1. "2 .. 0~ 22,9. 20.40 "S 1504.8~ 1~Ci4.,.!t HO •• I .. ~4p'.0a 18"1.21 lh41.1!.o1 I U~6 2~.:?~ 1?it7~ 25.2" 3S.~3 4S.3fd '9.90 02.60 5f1).9111 53.10 39,7. 22.30 18.8. OP 134.pg 13~,3. 13v.08 117 .2' 104.39 88.72 2 190. .69 ,3' .75 ,14 .78 t .43 1.11 I ••• .7. ,811 1.42 .73 OTO 3e:158.HI 4448.12 71'6.'0 18340.915 2f5310'!)1 18S07,98 2 1955 ,57 ,81 .4. .19 1.29 1.1S \.31 1.15 1.28 .40 .82 I.B. ;)GI1 6.42 15.42 5.42 9.83 9.63 22,4a 2 1958 1.21 .3" •• 7 .39 2.32 ,., .71 .3B .02 .9' .14 .83 Q,sf.1 3~61.7~ 4442,30 11~0.~8 183Jl.31 2d3e! .28 1848~,49 3 195~ ." ." I. ~3 4.51 2.17 3.1" .30 .!! .08 01_ .25 .24 3 195"'i .2' .22 , 29 5.'~ 3.14 2 .. 8!i .24 .IS •• 7 .. I .33 1.84 V,. J!..¥ ,UG SEP OCT (JOV OEC ANN 3 Ig56 .?R ," 3.89 3.29 5,65 .,9 ," .32 ,08 .to .I~ .32 n.Mp S5.~ • ~9.3l'1 ~3.7e: J3.h: J4.4f1 11.40 40'.82 4 \954 .~. • "HI) ,,,. , .. .0. ,na .GO .. 0(1 .. " .0' .0. ." F 6.1~ !!.0!5!l 4.51 3.41 2,21 I.J9 43.115

• U5~ .P~ .. ' .00 .t7~ , .. .". .~ki .~i.1 .!!0 .0e ,0. ... PPT 73 •• ;9 1~S2.53 AM.AB 585. " 934.12 480.21 69'9.81 4 lQ56 .e0 ."~ , .. ~~c ,'. .",0 , .. • •• .0~ ... .00 .~. ·:):I<Iv 6~12.9!1 3175.99' 3t'190.!.19 2820.99 2578.99 2::128,99 110287.6' ~ 1954 6.08: !). Of 11.1 I 22.37 42.51 ! 1 .. 02 1.lei .05 .'. .26 1.56 3.33 aUNt; 15.Q.!57 150. A2 41.86: 55.29 134 .. 29 126.39 13395.31 5 1955 4.iH ;\,54 4.41'1 21.54 49.26 37 .. 04 •• 7 .32 .~0 .46 3.96 1 I .86 ~C:1\IL IH19fi.82 42~9 .. 63 321 '.05 tl90.29 ... .0~ 22411 ,1#1 5 19S6 ' .. 2"9 ,. ,34 23.'1 25,73 !il:1.4~ 62.910 2.1. .0B .0. .38 3.1/5 4.18 aur 221)8,71 .. ~~9.~2 4~2.81 [email protected] 2~A5 .. 26 ~!llJ.73 102870.25 6 l Q 54 5,l1! 5.~1 6.22 2P' .el 65.8S 30.91 '2.H 4,82 4.69 4.28 3.92 3.84 ''HGS J8VA4 .. 7~ 2511.19 1881.82 8.47 .'~ Q34.12 .~0 160'2.15 6 tq~~ •• 7 \ 3.30 :5.:7 4 1~.3~ 13.32 5A.90 13. I 8 7.4g 4.79 A.87 a.US (5.,156 QGL! .r.C .0" • 0~ , .. .Be .09 ,0Q 6 1 95~ fi.U 4.;"~ 9.~1 t9.82105~"4 1i\P.,64 18 .. 24 ~. 74 3 • .115 4.61;10 4.18 4.21 ••• .. ' • 0r ••• ,~. .. " .B •• 'I 41"'.21 7 19:54 .~rtl $1'io:11' .k:?: ~ ~d1! ,00 .a~ .C!0 .00 .'Hl .2i1 •• 0 .00 SNIH ." ... ,~. .Id::! .0~ .'" ,~. 2216.89 7 1955 .. ~'6 ." .0. .l'r~ ,00 .~0 ,00 .0" ... •• 0 .€0 .00 ETPK ~fl~H>.~~ 214 11 .1 Q 14~8. 71 1al.15b 328.03 1'1.86 122g5.3S 7 U5~ .'. ~t:'i~ "e?' .r0 .~e .~c .0~ ,il0 .~VI .tiiJ .00 .00 ETP 3BVl7 .. 92 ae1' .et 1585.03 82::i.29 339.83 131.52 15547.37

• U):54 ... .;;q .0. .i10 .11I~ . .,. .Be • .;'J16 •• 0 .00 .'" ,_.

Er ~e!2.n 2f';~::!.V.6 1712.~3 841. :iti J4.'.6fi 144.54 15614.g,J 8 ,95'S .. ' .G~ ... ••• .PI;) ,Oll ... ,J0 .0~ • •• .0. .0. Mg 1551 ••• 1~4i.'9 1622"tl9 163"4.94 2229.16 2ua.1:<: 2108.72 • 195111 .~~ ." .. cr. • toO ••• ,.~ .00 ,ao .. ~ .0. .0~ ••• QP 73.B7 5'1.42 52.99 32,d2 27,1. 15.e6 1168 .. 4A

Qrn 22190.93 .. .d81.81 4"5.02 1858.'. 2396. am 25U.26 81418.48 POTS '" TJ.IPLI ~4 $kQtlLO BE SET AS fOl.lO;.lS QGO )6.t'fi ti.42 19.27 12.8. 9.53 ifj.0f.) 141.33

.10000 ,. A12' 5 oc3571 .. ~UQ9fi .e10ee o~~ ~'~A.R7 .46~.2J .46,3.75 tB4.).?3 ~;,tl,t:I.!i7 2~d2.20 17337.15

.01l11!~itJ .rfNH? .J12~1;4.0 .!)"fl~'" .0''''111-3(;1

.10e~@ .2;?C'l02- .;A0t;'\~~ "Vi0?Pt', .79;::99

POTS 1~ THRu ~4 t~E SET-AS fOl.l.OWS ,,099~7 .Clt?'" .A3i540 ,"~A!1Q17 .00976 .. ~a?",~ .Vtr.r'IJ~ .;'231;8 • .tgs:t15 .~0A!II!'l ."9~A8 ~QjeT~jI .~HH~:;'\n .iH'I';IJIIO .79937

EVAI.fSTO'l CASE ~ -I 1!~'5!:! eVt'J$TnN f.AsE ~ -; 1:#56

v,· J" FEO HAR AP, 'l.n- JLi"- V •• JAN FEo ", APk j'"y Juri TF,lo!p ,;{. 2 i~ j 4, 70 2~. 3C' 34 .. 2~ A7 .3~ :)4.g0 TE'MP :2'. ~I'l\ 1~. 7\,\ '2:;.'211, 3'.511l 46.31l 58 1 9"

F .~Itl .9' 1.6a J,n .4.17 5,59 F i .33 ,71 2.09 3.19 4. !!7 6,,~P! PPT 3111.9R 53?.84 322.3,' 124.98 848.6'" 756. ~0 PPT 'Q~.~" 23!3.2 4 46."H; 2515.~5 1~2ti.11 44~.074

.1~Iv ~442.99 217 I.. 9~ 246J.9Q 871';. 9~ 40232.91 4~:.162. 9ft IJR!V 3/11 7. Q~ 28~.~.Sl9 6129,~9 1.~~3",99 6C1:)5!i.90!5 ~S311,"9a -'uNr; , '!IV'. 'Ai 116.12 t!5J.?"} 7b45. '!#'I l63~5.79 14&3.19 OUNG ~~P.5d ~~~.51 71 Qt, ~~ 4312.22 2;.13!:1 .. 89 !)15.~1 O:Nt .,,;: • ~VI ... .0~ ... 37!)6 .. ~8 ~CNL :n3.!lI" J5@:.79 • Jl1 ~~~ • "co . :!2;7;:i.34 ¢S!T ~A~1.44 21";3.05 237Q.3~ 181(,8,82 ..!t1051.12 J!!271~915 GSIT .~ -:; 4a. !i:1 ?9~1)~ 17 13~a." LS9.d~~!i8 71"19.1,1 5=:1.£11J.94 Q!GS .\!){'\ .!,!P .b~ 1~·l5, !1 8..!e .78 2199.21 OIG5 12~.81 t31.39' 1 !!o46. 34 12~5.Q6 1526 .. 2!' 127S .7B QO"! • i}~' .0(.! .. - ." .00 .. 0C QGL I .. 0 1., .'~ , a" • tJ~ .11~ .H

StJ", 8~5" 15 ! :!8e.-.1'lo;? l?'13.36 .17 .~f.j •• 0 SNh 2!\ I Q. ~t.~ 2149.74 !fd9. A4 ,k:3 .2~ ,"~ SI~~T ."'" .~~ .0" 111l'l.28 • 17 •• n $N"T .CH" ,' . lIldf>.J4 9049.041 ,,1$3 • ~2 c: TIlJ'i ~1.?" 125 ~ e1 2:U.9i'\ A~1.24 1211.154 li:!27.!H ETP;. 152 .1~ 91 .~3 ~'l.fI.7i 4G8.Oil! 1219.1. 2174.1"

E-:TP ~!l'.~3 li8_8011 261:1,94 1)56.10 17~1.1!O i5.J1I.11 F.TP ! 4~ .1:-' q~. 78 333.6'1 5eJ.22 1197 • .IS 3.9!,~9 ~ T ~3. ::5 131.59 ~13.\:I': 566.93 11~~.61 4!:)\l8.~o; fT '3~.; : ~ 1. ~4 ;'\;\~.6~ 51!-1. 3~ 1839:.31' ;}\!?J,,22 ,> 2tJJ1'!!: .3rt UH~3.I3P 1"1"9.25 ?lSB1.23 2a4d.A9 1646.18 ". t~l \ .21l 15~~.H, 3073.;.15 37! r\ .:\1 J457.1Q 1647.79 o· Q ~ ~3 9.63 ~ -~;, 4.81 S.03 6. A2 Q> -.'" 8 ,113 9.63 9, ~ 3 8.03 6.03

qfr:. 2 4!:!t' .~~ 2155~31:' 237a.:il 16172.l'!f 2,,:Z&4.41 "6290(1.64 ~!I!4~.4~ 2981.2:3 13V!12'.17. 19927.64 26~gl..l.aJ a53Hl.9'1 n(;r· 12 .. U g.41 Hi.21 12.611 ;.1 .. 63 1 .... 9.~3 12.84 1>.<1,2 12.1;4 9.63 22. ~s QSn ?41Z .re 21 48.87 =!3~1.C!~ 1'.Jl5~.9~ 2iU74.7d 2~'.).77 .~!.I ;.Hi:;~.a5 2974.38 13i-J..I~.6q 1~~t4.79 2";;G1i i ,,2~ 2152138.43

". J, , AUG :.>t:P uc T _a, Otc .hN VUi JlY .l-ut=. 'lI!Q ',leT .~;) ~ JEC 'NN T€"1,. ~':?1 II 53.~'" fo2.U 42. lilt' 22.9r 2~. 4~ 37.17 TE"'? 62.61tl ~6, FH'! 53.U 3 Q.7Cl 22.11;j 1 S,b" 3/,49

F 15 .43 ~.OA 4.:37 3.21 1.51 1 ,2~ !9 .88 F ~.!h ~. ~'f 11,4':; ~ • .-.:9 1. ~, 1.04 '~.21 PPT QQ, • 2~ 7~6.3t· 0,112 ~V4::! 2~3 .13 Cj39.42 1134.~9 74A6 .. 66 'PT i./;7. ~15 2A9.97 13.!. 616,Jfi .~ •• 9 S46.~i\ ~2a2.39

g",tv 8t'.14 ~ Q'J 4~32.9g :'\!53 .. 9~ 32~16.~9 27;{9.~!I 43cl ~. 0;9 13 li21 .9a oQRtv i 2t~~2.:;0 4435.)19 2209.l9 30~4.99 274g.99 c77 4.,a 1606U.&4 !iU'JG 12ft.7'5 (ll.3t' 41.01 !'I':I.?101 17~.J1 35J.lg 127~4.S3 DuNG 21~.D I TO, 63 3;;.'77 53.71 7::1 .n : 14.54 1851>.'1 :':Ie'll ~53Q~6q 61M,.21 i;.l54 .. '!J 123'.52 .i\~ 5';9. ~3 201 ••• 12 nCNL 7 q::r2. ~,,, ~fi&7 ,61 425P.~? t. 2 4 . ~~ b3:t .$2 21222 t 89 ~SIT :,\?d8.\?'4 l Q7. 42 ~ l36.75 229Q.~9 :?6A? .{H" 486t.3L 12 41:t!lg.17 "SIT ~';0"-.!!3 5"'4.21 .. 7'2.S~ 2:543.07 26t7 dJ 2552,03 l77743 .. 31 ::I If-50 3:\f'6.iW ,H~a6.1t! I l540.7Q 732.63 ." .e0:;:./" 138-43.6S O!SS ~.4!', ... e ~ "ill \ .31", lo3l.~t 6 L8,03 ,0" ;lfl2.Jt5 144J2-.~1 /lGLI ."1' •• H· .!10 .,"0 our, ,£ll • '0 ;)ljl! • P:, o il'J ~ .?In .~p. .0· .~~ .1'0

C;"JW .11;! .~H1 .. ;,~ . ~~ 539,42 17<'.~2 1723.~2 $k,,: .(" .. , .0r .0' .7", Q2 .. ~Q e:~tI.\:iiI b3G.09 ~N~T ... ~,,' • !~.' • <'It' .:hi ,3" .~. 171 &.36 !\"WT .:~e • Z.4 .'" .1'1' .~l· 2795.7)1 ~ TP~ 2!'i7f'1-. JIt ':,) 14e7 .d~~ Ij~~.55 6,!>.':!:!) 218,.37 ~QJj.J9 11433~23 ETPH 2~:::~.!l3 19011: .. 03 1 illS .~7 ::l!f!.i.l;J Zl<.6~ 13!1.15 113'0,l!

fTp 33f\1.lJolil )1~".d6 1 =:161 ~':4 735~t)4 i:!215.22 l54.23 145~ 1.:U np 3':'5A.t}j 2419.4\:1 t15Jc.2d 1iJ'8.41 22~.30 12f).48 1A528.77 ! T J.:H>& .74 30i?Q.1'!~ 1557.1i5 1;}!'\,,!IIJ11'i 2/1'8.78 l3!:1.11 14.497.70 ET 34411 .g"! 241 A ..... " 1u34.94 oS?~ .3~ 2~2 .j'; 117. ,c'; 14434.a~

"5 1"~9,.3 It'i59.0~ 1647.7~ 1 oS4~.il9 143-1!:I. 7~ ,5)7. 7~ 1511.70 " 165~.~t lfj51.9J~ t65 i1 .21 16!'i9.Pl3 t~42.2~ ,,3 •• P7 15J6,g7 OP n. ~~ 8.t'lJ d.J3 o.,,~ ~ .63 B .103 96.36 OP 4,IH 3,? \ 4.31 4.:n 8 _>-13 •• 21 10,30

OTO 3"42.~"5 180,51 113;}.15~ 2001.05 25B!i.29 4aS6.6!5 9lt452"e6 0'" 6!)97 .~i1! 49d .~~ .. 7H .. ':\ 2531.11 2'514.62 <!~!S,h3e 1.,;,-,,\7 .15' Qr;r1 1!.1.21 12.Ad ! 2.84 ~.63 9,63 n~8.4 15~.ga oso 19.27 12. A4 ~.42 15.~6 9.61 15.36 lj.,P OS') 372(:.7::1 17'6,116 I \ l1,a~ ~~tl,1 • .4 2 ~67~~oi5 ·H;4~.dl Si03t1\ .0'9 ::l~r 5~7ft.3.) 481.~1 .. 74&. A1 ~515.C!i 2 <S!'I 4 • 9;1 ,,~3'.32 te~06J.48

82

EVANSTON CASf' -? '-1 2 n

35 .I'!f~ i:!. 5 ~ 1'151"1. ??'Voli.

0. ~. .1l82:\4 .27945

~1571.L10 41)59. . .

.~:2"'1 !l

.~~"r0

J .!i9 70. o.

.'" !~0A

."~0~0

o. • 1.

.~(lI.Hhl

.ra~"'02

o. 0 •

.00~~~

.000ra0

o. " . .tH~0I!J~

78!).4 •

• "'I"1"I0P1 .11!l"~'" .00~"~ 6!'!7 .8~32~

.474. 5595.

.~8.471

1824. 0 •

466. 2~HHH' • 55 .fifi .80 .81 .00 .99 .91l .38 !.~~

.01 1.~.4

.~~

.~IA

~4. 70 21A.30 ?5. ~r.

1.07 1.1~ t.~7 I.HI 2.79 .79

1. illll 1.12

."

.0' 54.8[1l

1.0~ 1.13

32.ef'

.02 1.12

24.1'1:1

.62 1.1~ 1.59

I~.L'I~~ 7 ."~ 11.\II~ I 19~.4 22. U'I :i!4.2f1 I 195~ 12.2~ 1.4.Hl 1 l'i56 2n.20 1";.7~ 2 tQ!l4 .1'i9 .~.4

2 1955 .~7 .Al 2 1955 1.?1 .~~ ~ IQ51\ .7.4 .R~

3 1~55 .2!"! .22 ~ IQ5(1! • 'HI .74 4 19~.4 • ~)y. • ~CI 4 1955 .~~ .~'j1 4 1951"i .t"t': .PI~

19"i4 6.08 5.91 1955 .4.{'\1 3.6.4 19~15 9.~9 7.34 t9~4 5.1lI!'! 5.C1 195~ 3.71 3.J~ lQ~~ 5.19 .4.3~ 1954 .r!'" .0(.1 ! 9~5 .~~ .tH' IO~15 .f~QI .e~

lQ54 .00 ."0 lQ~5 .~I'! .~~

1 Q55 .PI~ .I:'~

.75

.4 0

.W17 1.33 .29

:\. R9 .ii\e

.k;" . "~ 11.11

4 • .49 23.53

1:1. '2? 3.7.4 9.31 .~~

."0

.0" . ". . ~~

.~0

• PI I" .0'" .4f1.l'in 49.70 34.21-4 .47.3I!J 35. ~'" 48.:\1cl

.1.4 .78

.19 1.29

.39 2.32 4.!'il 2.17 5.8!J 3.1.4 ~.29 5. ti5 .~OI .L'I~

• 110 .~0

."'1' .~" 22.37 .42.51 2! .~.4 .40.:::6 2~.73 91.40 2Q.81 65.~5 13.33 73.32 19.B2105.7.4

.~(' .~0

• ~~ .OI~

.[lli' .~~

.N' .~e

."" .L'l1cl • !:Oil! .VI~

54. !.l0 58. !l0

1.43 ! .1~ .57

~. 10 2. B5 .0, ."' ." . ."'''''

11.A2 37 .~4 ti:t.913 J'3.91 6i?l.9t3 B6.6.4 .. ~

.O~

.0" . ~,~ ... • ('!~

.00 6~.2~ 6?,I IA

62 .~" 1.11 1.37

• 71 .:\0 .2' • 40 • ~'0 ,{1"1 · ..

1.16 .ti7

i:!.ID 12.18 13.18 16.24

.0.2 ...

.~~

."" .'1~ • ~1~'

POTS IV! THRU ~.4 SHO'JLO 8E SET AS FOLLOwS .I~~"I" .~11?7t1 .11~"\71 .~.4~99 .L'lI!1I~0 .~0r7,P, .r.~~r.... • .... ~38L~ .5(',PPlI? .r,r:~(,<!~,

.ll'1io1!112 .('<!0001C .l:I"I;H~" • ~eHH~ .7999!i

POTS t·z TI-l~U 2.4 .A~E SET .6.S FOLL[.~S

.r.9~"7 .1"1257 .r:3".4~ .~"'9(~7 .r·i?l976

.~~rl'i!~ .C'(ilv.~~ • .A23tiB .A9~7~ .r~~H~"

.r,~94B .~PlN'~ .M'r~~ .piii'!r.~1l .799~7

V.6.P TPIP

F PPT

J "'~ I:? 2~

.JOvJ

;;i 4. ~I) ~4<1;?99

I~? .34

." ?481.li4

.~,l

."'1 g~~. 18

.pI'

91.90.: b~. C3 C)~. 1:>

c: 1 ~ I .".i7 14.15

~I\~~. 93 1?F4

,i470.rll

JLY 6;". I'~

' .• 45 ~'!" I .? 3

Hfi711.0;; I?!? 7~

"~J3. II JB64.5) "~,,.O. A I

• \~o · ~;­• ~r~

=' "I7n."~ 3Jn.'H' 3'!)7.l9 15!'II'i. ~.l

3.:?1 38~,,1. 91

10.~7

3F.4t. f;4

FE" 1.4.7C

• pp. 5:!2.@1I

~ 171. ~9 115.12 · ,.

?1t=-3 .~~ .I:'? · ['~,

IM8.~t! .0. I::!S.217 128. B.4 13 t .5~

'~'~5. 94 fl. ~3

?1"iR.5 t 12.11.4

21"S.M

Al:r. fl3.O'n

1';.('4 7~f'i .~~

49~:?qu

e I .~" ,,526.9Z 15f./j .0'59 17\ oS, 74

.iJr':

.('1\" · "'~, ?Je7.43 ) lr~ • .4fi 2:\14. ~!': I C-1 6.62

15.112 I ~ ~7."~

f'i,.42 15~1. 113

1",Ai< ~0. 3J

1.68 :\~2. 033

246~ .g;l 1!'.3.?"}

• Ii?]

::!379.35 .0 171 .11,'

171 ;.\.35 .~PI

234 .!H~ 268.!il4 ~7o .2::';

17 2 ~,27 O. ~~3

~37 3.72 5 • .42

2M7.3:"

SEP 52. tr1

4.37 R42 • ..i2

3153. 'JI:i

o\! .~7 IP43.52 11,,2. 9~ 15.:2. J6

.~e . ~~; • ~i~·

1351. 5~ 1 "'61.24 11&3.1j~

13d~.22 o •• ~3

11:!7 .~7 16.~1';

11 ~ 1.01

1955

'P' J.4.2~

3.J7 1~4. ~8

11774. ~Q 7E145.~b

.17 171P..18

4til.2.4 ~~8. 71:' 573 .. '5

?Qp'''.:n 11.~' 3

1617.2. tll~ t 2.84

151~Q.~5

CCT 42.0': 3.27

2!i~.P J2~'Ij.q9

59. ~II I ~I ~.!i7 1/'1411.3'­

fOGl.21·.

.1."1'"

.I:l~

.i:i\1 69b, A!') 7J5.6.4 711:\ • .44

16':::17. tic. 8. ~3

t 834.139 5.112

1827.(,7

.00 59.30 6:\.~~ 5f'l.9~

, .6'J 1.15 .3' .11 .15 .32 ... .0. .0. .~5 .32 ...

4.82 7 • .4!i &.7d .~0

."0

.r.~

.~i:l

.~r.1 .. ~

."H~ 53. 7~ 5~ .10 5~.10

.7" 1.28

.02

.08

.07

.'16

.~~

.~" .". ."0

.~0

.~. ".159 .4.79 3.45 ... ."0 .~0 .f1~ . ".~ • \1\ ~1

"AV 47 • 3~"

.4.77 iJ48.!'iIi:

482~2.97

I I';J~. 79 .3[;

IIl'JG57.12 8.4B.78 ...

.~~

.17 1;?11.o.4 17~1. 7B 1737.73 211;;. 3~

8.e;3 t:1:i31"'. ~n

Q.o<:1~ 263r:.2E1

Nn\o 22.9(:

1. 51 :J39.42

27 ~Cj,. 950 175.37

• ~~ r 2687. M~ · ~,-

• "0 :JJ9.42

• PI\' 2H!, J7 226.2L C!40. 9~·

14~.! • .46 ~. 012

2082.0B 16. ~'!'

~otc. ;:C!

~.

.75 1. ~3

2~.UI:1 2.51:) .43.BvI 42."'El 3~170

.dO .4.

.94

.1"

.11

.1.

."' .OJ

.iH:I

.26

.46 .3. ".2ti .4.87 4.tid

.00

.00 .'. ...

.0 •

."'

.60

.02 :.!.~0 2.50 34.4~

22.0~ 22.30

1.42 .82 .14 .25 .33 .15 ... .0. .00

1.~~ 3.96 3.76 3. g2 4.15 4.18

.0" • "0 .~" .~0

."0 • ':11:)

JUN 5111.ge

5.59 75b.tI't,

.4(3\'l60:! .!olB 148t1.19 ~6::!3. Je

J8343.dl 213J.315 ...

.~C

. -" 1827. :51 2S9J. II 2624.2t! 102'''.119

tI.013 ~c;2·'l.d • .41

2)..48 ~626t.~3

17.40 20.40 16.6~

.73 1.130

."3

.24 1.6.4

.22 .-.

.~0

.00 3.33

11.86 4.18 3. B4 6.156 4.21

•• 0 .0. .00 .0 • ... ...

DEC 2 .... 4~

1. 28 IIRII.~9 11381.S9 a53.19 5~2, iJ,

o:077.9.1l I ~I. II

• .11(' 1723.:)2

ANN

3' .17 :!a.l:I!!

71146.66 lJI~~7.93

127;1.4.83 161:i1l5.79

1,,6174.10

• ~j;l

1rj6 • ..,9 154.213 10,). & I

1492.dli: ·l. fi ~

4~6~. ~It'

~. 42 4IHJ.!. (',.9

l~::i;d. 70'; .0. 172J.52 17110.36

1111~3. 23 1 11 ::)11.31 1333!ii.75

14 ~2 .11" ~6 .36

i}172.4.84 147. 7 ~

~IJ77.09

83

EVANSTON CASE '- .. 2

VAFi JHl TEMP 22.1~

F 1.45 PPT 4~;'.~{II

QRTV 3'l2~.9~ t'JUN(, :\88.67 QCNL .00 QSIT 3"'l41!i.t9 ~IGS .r.n CGLI .r.O

SNW 1.49Q.85 S!IIt1T • "'ill ETPH lb6 • .4~

ETp 159 • .4fi ET t57.3S1 MS 1~i1r..c:!'3 OP 1M.Il

QTr; 3671 • .40 aGe ti.4'2 CSt:' 36(1;4.97

V.AFi' JLY TEMP 65.?~1

F 15. 7~ PPT 73A.19

{}RIV ~(II1~.90

CUNG 1~9.!'I7 tJCNL 528~.22 f1SIT 3275.8[1l CIGS 2737.82 QGLI • ~fII S~w • \lin

SNMT .PI~

ETPh 2~89.~5 ETP 38~7.92

ET :\16~.89 ~t~ 123!!.~~

tH' 7:\.87 QT[l 334~'.~5 QGO 11'i.l"t! usc 3~~.4.49

EV.6.~C;TON CASE' -2

ro OTO "r,C aso

H.I~

2~ .2.) t.:- ~

7Q!'i .97 341". ;; (j~0. ~4

4~1. ~H ~1'i2? ~-:'l

1:52. ~7 .0\(:':

2"'19.5;)

1 tl2 .16 ~ II 0<;. 7 !Ii ! 38.11

I o;::"4.9~ o.lIj~

31;13 .~/1 H: • .,t\

3''"7.52

JU fi2.~3

tie ~1 4f:7.Pf'i

l'''In.QO ?1;:.13

7~5E. c:3 56~[Io. 9~

~~~;::O. ~~

• i'O

.!"? ?" o;q .• 101 ~~

3 .. 54 .... ~ ~ ... 44.95 ll'i~1 .,;l:1

3.21 6597 .~~

lQ.V b~7P. 3.'

FE6 24.21l!

1.62 ?23.6fi

3300. 9~ 1~33.27

."'~ .4~~S.37 ?83.91

.00 1439.61

2E3.91 205. Q'" 212.11 2C"2.3t!

1594.79 t36.!'il

4".42.3e 115.~~

.1.426.24

AUG ~9.30

5.1'i9 le52.53 3176.99

60.8:2 1089.1'i3 675.57

1.466.5!.l .~. • o !.'I .~I"

21.4f1. 1 S 2677. f.l 1736.12 978.~7

~O. 4:;:: 725.92

12.8 4 713. ~\P,

"" IPl.7P' .71

23~ .24 2a33.~~ 3~5. ~ 1 367. fi9

29~B.7~

13!o'.72 .t1',!,:,.

?749.7.4 • p ....

!i 1 • ~,~ 93.78 91.5.4

1 ~t-O. ~~ Q.~3

298" .6£ 9.53

297\ .17

.AUf. 5~. SZ

5.4(1; ~49. 97

44·'5. 0 !)

17~ .fi3 ~l3tiOC .'i~

1":')2. "'7 12r'1i2. 9~ · ~':'

• ~l · ~(:\ 1 Q41 • r.~ 21119.11£ 1679, ~b 1l'48.7.:

g .r.~ 11541.37

fi.42 16;\11, '!I 4

"A' 24.70

2.0!!1 .4!ii3.37

4097.99 3225.3"

.~0 7037 .~4

903 • .49 .~2

1029.4Q 9e:3.49 285.61 :\27.23 32 4 .41

2172.915 1~0.IH~

71415.86 16.06

713I!J.tI~

SEP 53.7'l1

4.51 .4f,0 • .48

:!090.9Q 'l.ijti

167.4.15 1~37 .~7 Ui96.o6 ...

."0 • ~r.

1458.71 1685."3 1~31.07 1~43.~t!

-';2.99 t072.8~

9.6:-' H 1ti3.19

"" 25. 2~J

2 •. '9 46.1t!4

1512:.1.99 7191.35

."ll? t3Z29.7~

11!146.:U .oJ~

YJ,Q.44 1 d"b. 34

291.6", 333.a5 335.60

1tH~.9"i

1.4.45 1:\024 .Q€

15.42 P?'IA.tl4

SEP ".i~. lZ

.4.41) 13.15

22f\9.!i9 33.9l

6~5. R~

~.49. 25 .j4~. 79

.r-Ij

."' .2',l 1.418. J1 163P •• \~ 786. Ii"i ~13. 50;?;

4.131 54~. &4

19. ,27 S23.51)

1954

,PP 40.6'"

3.fi5 !il2.~9

1315!i11.9P 5228.42 .."

18221!5.92 1121.59

."0 .ee 1029.'!i 693.49 8!58.15" 862.4.4

'.;4.42.7f1 117 .2.4

18321.66 12. B4

11!o3Q1t1.83

CCT 43.80

3 • .41 58:J • .47

28~PI.Q~

55.29 2~194.73

1298.73 1 J~ 1.47 ...

•• 0

.0" 761.5f> 62:'.29 7~3.d.4

1724.69 33.72

1316.95 12.84

13e4.11'1

19.'56

iopJ;

35.51:1 3. 1 ~

256.55 11~~~.9~

43/C! .22 • rap.

1t!9.4J.!IB 12~~.9ti .I'i-

• ~13 9li9.41 468.1S2 !)8~.n

5r:l1.~B 3714, ,~

9.fi3 169~;;'I.F!)

22.4B 1 J;Q\:I:I. 36

OCT 3Q .7l)

:\. ~9 616.Jfi

·h"@4.99 53,71

254~.5~ I ~7 7. Z:, 15.-:.;. JI

.,,·r

.llr

595.lti 620. 4 7 4fi.4.14

17 112. 5~ J.d

1 ~64 .2~ 6.42

1557 .6~

"" 49.7(' 5.01

513.1'" .4332:2.97

1129.7C 11542.23

4245~.157 1137.15

.ele

.00

."~ 1377 .94 1935.315 19.41.7~ 1649 • .4e

11"15.99 2631~.91

9.63 26;'01.28

~IOV

34 • .4~ 2.27

5134.12 2578.9S-

13.4.2!.l

."'~ 2~1I~.2f ~34.12 ...

.or ••• 328. ~~

339.8~ 342.~o

'2:32S.n 27 .3~

2396.2I? .. 12.84

2383.36

r., ~e. 3C

4.87 I S2c.l;-

1)~:;'5~.0f.

2~~tI.lj/..

.0~

7121:.'1.14 1526.20 . ~~ .0.

.~3 127!1.7"" 17g7.311 1~01.97 3457.;' ;..

9.1'l3 2"~!.Ii>. Soli.

1;.b.4 26277.!l9

h)v 22.3('1

1 • .47 ~t:. ~a

27 .. ~ .:.19 79.7A

.1:1,,", 2517 .1:5

• or

~~.l'1!J .~r:.

212.65 ~?~ • J:~ 213.6 1'

1 5~fI. 5E 6. 4~

20 t 1.41 12.'U

25g8.!)t,

JUN :54.80

j.58 94I!J.713

2033~.9Q 1611.59 43;i:<:0.~3

lB49ot.56 2:!18:2.~13

.00

.0 • ... 1819.21 2~B7 .32 C!:S84.11 1659.03

91.54 18575.43

22 • .4/:1 1&5!l2.:.15

DEC 17.4r

1.0!i .48~.21

::!~i:!t:I. 99 125.39

.1210 251J.73 ... ...

480.21 .~,

1.41. 6~ 131.52 131.69

2211.51 1 o.~6

2~lci.26 16.~15

.2!)t.2.2~

JJ~

5:1 .9~ ..,.\;~

4.4".74 :;I!IJ 11.!tb

:J1.).07 ~~lJ:i. 34

:>jb 14.~4 t C:7t1. 7e

.M • till .!i:L'

2174 • .:\7 J"'GrI.ij.~ ~I.l ~8. ~ .. 10'10. l,j

." .. 2 2';~11..'1 I

t~t C

15 .~'" 1 ..... 4

:;'.40. "'~J ·;;7".~"iI

IH,f.4 27 J.!lll

2~4ci .J'? 1 !~ ~. 9 50

I5Jd. ~') .t.'"

I Jj. I ~ 125.11/1 I1J./j.4

153J.76 1. II?

'fl43.5J 0.42

26.}7.11

ANN 40.82 43.16

69S~. 87 11~2a7.85

133iit5.31 1610.4. ~I

1~52fi7 .07 136.45.32

.00 .48I!J.21

2216.89 12296.38 15547.37 13181:).75

2C! 11.51 !JF.;2.89

1i9d3:.l.35 163.81

8!167~.~4

.U~"I

.U,.4~

4J.27 tI;;::n2.39

IdI:!61C!./111 1I:tl7:;' • .41 17 2,~ 11.77

17 ~27itl.21 12:iH'J .63

.00 6Jo.~~

c!795. 7~ 11 Je-J. 1\ 14 ~~8. 77 \ 29t1.4.3..1

I ~3.!.76 Jl.tllI

h~.4753.I:JJ

1 "ill .g6 1~4t1\\2 .!lI6

EV4NSTON CASE :\ -I EV4NSTOt~ CASE 3 -I 19~4 • I ~ ~

3'.0A Z.30 31371.0? .a. VAP JAN FEP "AR AP. MlY JUN 3230. 11 "'2P. 2419A. 3.3. 0. 0. 0. TEMP 22.1Q1 2'4.20 24.10 40.e" A~,7e ~S4.e0

0. r'. -. 0. 0. 0. 0. 3g'66. F 1.4' 1.62 2.0' 3.6S '.~I •• 58 t~8234 .2194' • e2823 • 009g~ .00iHH' .·~00. .00000 PPT 2269.'9 !l18.Z0 2466.62 460.4~ 2!56S.215 4703.03 .0~q~0 .00000 .aa0Q1~ .00000 .000'00 .00000 .00000 ORlV 3323.99 33C0.IHI '097 •• 9 13!91.99 'H22.9B 2P133Q.~~

$3288.833 GUNG 3 ••• ~7 l2~3.27 :S2~5.315 '22ij. '2 1129.70 J611.'9 632. 61!l9. 35~.3. 261. 2.3 •• .. 0. -oCNL. .00 .00 .00 .0" 835 •• 13 21A73.'1

74~Q. aUT 3'90.69 42'9.69 8942.17 17995.'1 3.'J8.9~ 11~65. :5$1 .~8472 .0tHfliA .47231 .03499 .32631 .00Q00 • f0000 OIGS .0 • 1419.41 4516.99 !l\607. ~9 "'1.38 121:i62.96

~21.5832' OGLI .'. .00 •• 0 .00 .0e .00 .55 .66 .B0 .91 1."7 1.10 1.04 1.0. .92 .62 .75 .6. SNW 749(1.153 " 91,:32 .1.e.95 .0. .0~ .e0 • 81 ... ••• 1.04 1 •• 7 1.1. 1.12 1.13 1.12 I.a 1.03 .n SNt'\T .M 1419.41 "Ie ••• 15145.9,5 .0. .00 ... .3P I.~~ . "- • '6 ,19 .0. 32.A~ 24.00 I ••• 20,0'21 2.00 ETPH 221 •• 8 214.58 ~e 1.18 924."0 1837.6'1 242(1.0!5

1'.00 7 .'i'I~ 11."~ .20 .0~ • tH~ .0' .0e •• 0 .00 2 ••• ,.::'0 ETP ''17.27 1060_ 48 le~I5.0e .(\292.84 .~75. 77 12Y35.22 I 19~4 2?lA 2'.20 2.11 .10 A~.tlPI ./IQ.70 54.80 65..20 59.30 ';:,711l 4~.U 34.4121 17.-421 ET 71e.17 1011.'ItJ 1678.13 4311.77 9683.42 12895.17 I 19.5.5 12.20 14.10 2 •• ~0 :.54.2101 oiI1.30 54,90 62.10 6~.fJ~ 5~.10 42.U 22,,91d 2O,40 "5 1A61.32 7913.11 10807 •• 4 121'6.47 6294.311 82~8.14 I 19.56 20_2~ 1 •• 7~ 2'.2" 35.~. 4a.:5"~ ~8.90 62.e0 56.!ilI!! '3.! 0 39.7. 22.30 Ui,e0 OF e'0.~2 1566.43 650.~7 586.14 521.9il 4'1.67 2 19.56 .5. .~4 .75 .1' .78 1.43 1.11 1.6111 .70 .69 1.oU .73 OTO 4U1.!::!4 486~_80 1e131.55 18~1:5.'4 39922.06 1115.5.00' 2 1S1:'1j5 .57 .81 ••• • if.! 1.29 1.15 1.31 1.15 1.28 .. ~ .12 1.80 OGO 96.3' ~2.11 80.29 96.35 ' •• 17 48.17 2 1958 1.21 .~. • 07 .~ . 2.~2 .67 .71 .36 .22 .9, .1' .83 050 4'H4.es 4833.es 14!H .2& 18419.39 39873.&3 l!70e,.~ 3 19,4- .1' .I~ • 26 .g • .43 .82 .26 •• 2 .01 .02 .05 •• 4 3 19:55 •• 5 •• 4 .05 1.17 .52 .57 .04 .03 ,fl .02 •• s • 32 V' • JLY AUt:: SEP OCT NOV OEe ANN 3 105e .10 .1' .77 .65 1.13 .1. .0S .05 .~I .~2 .0~ .04 TEMP 65.20 59.3~ :53.70 43.80 3 •• 40 11.40 40.82 4 1954 ... .0~ .00 .~0 ... • 0. , .. ... • ~0 .0 • .0 • .0. t 6.78 5.69 4.~H 3.41 2.27 1.09 45.16 , 1955 .~. .a. .'. •• 0 ..' .00 .0. • 00 .00 "e~ ••• ••• PPT ~6"" .60 52e2.U 2302.11 2927 .0~ 4670,14 2H0.84 J479.5,82 4 19511 .0~ ,00 , .. .0!! ••• • 0. .0. ••• .00 . ~. .00 .0. QR!V UI2.9 • 3176.9' 3090.90 2821d.9Q 2578,99 2526.99 110281.1ij)0 5 1954 1.21 J.le 2.22 4.47 &.~0 2.2" .23 .01 .00 •• 5 .·31 .66 aUN!'! 1.5g.~1 €0.82 41.'" 55.29 134." 126.39 IH95.JI 5 1955 .a. • 7? .9' '.30 ..a. 7.40' .13 .06 .0~ .Og .1. 2.37 GCNl. 404SQI.81 21'254. 8~ 16090.6e 2965.53 .0 • .00 110'93.64 5 1$1:;'6 1.S1 I.·US 4.70 5.! • 18.28 12.68 .~5 .u .~0 • *" ,16 .8~ QSIT .. U0Si .ti!'l -770~. , • ,,49215.J$4 701. 2~ 221!5.li0 24(16.5U 65260.41 6 1954 I.~I 1.PIll 1.24 4.16 13.17 ~.II 2 .. 43 .96 .93 ,.5 .76 .7~ t;J1G! 19P!21.!t3 13338.91 .'16.53 40~3 .• g6 4151~" LA .00 191549.18 6 1Q55 .7' .66 ,74 2.66 14.156 12.U 2.63 1.49 .95 ,.7 .63 1.33 OGl! .00 •• 0 .0' .0'tl • 00 • 0 • ••• 6 195~ 1.03 .B6 1.815 3.96 21.15 11.73 3.64 1.34 .69 .95 .83 .50 SNW .". .or •• 0 ••• .00 24Q10.84 24.0.U 7 1954 .0. •• 0 •• 0 • 0" .00 ••• .0. ... .'. .. ~ .00 ,~0 5~HT .0" ,'0 ••• .. " .0~ .. 00' 11083.36 7 1955 .0' .0. .ri~ .~o .00 • l0 .0" , .. .. " .e0 .~0 .00 ET.p1ol 3A52.89 2B~4 • .111 1~45.M 1042, ~3 431.39 US,a8 163~7.25 7 19515 .". .. ~ .~'" .00 .00 .0. .00 .M .ro . ~~ .~0 .0. ETP 1.0~~.0' 133e7.15 ~424./H5 4126.22 11599.~t'i 557.59 77730.~' ~ 1954 ... • ~l0 .'. .00 ••• .~~ .0_ .00 • 00 .3 • •• 0 .M ET 1905~.71 13433.1oil 8J9111.15P 3 •• 8.62 18e8.1. 1590.52 776U •• 6

19~5 .. ~ • ~if~ .Vi0 .00 .£G .. ' • "i/o .0~ ,1i'·0 .0i!! .0~ .00 .,S 8?7A.2::t 8250.11 82g4.3' 63!515.f.i~ 11441.86 1"'1.3. )Q 10743.:50 lQ56 • V:f" .0 • .~"" .~0 .e'·0 .~HI • 00 .~il .00 ,0~ .0 • .00 OP 383.'3 297 •• ' UI4.!il!5 176.8' 136.049 8 •• 2~ 4922.00

QTO .. H.727 .23 .. 7451, :5:i .. 47!'l3.39 818.g • 2344.S1 2A13.04 159389.67 POTS 1" 'rHQU '-:4 Sf.lOUI.D ee: $<T AS FOL.L.OWS eGO ~~.11 32.11 32.11 !'0.29 64.23 .0.29 722.64

.1~0~0 .21275 ."357 ! .::4Qr"S ,'HeBe GSO -IC'I'59.36 ·749;:."~ _"85.,e 738.71il 2280.34 2392.7. Sa661,23 .000rM .p'0e0f, .';23ae •• 0000 _~0IHJ0 .1APlI".I1 .P.I'!!~BI~ • ~00f0 ."",£aH~ .19;:199

POTS 1 ~ THP.U 24 AtoIE SET '5 FOLLCWS .1'99~7 .£12~7 •• 3 ... ~ ~.H~07 .2',"9715 .0~r~e .r;lA~~t' • ~2355 ~ 49915 .A"H~0~ .C'10948 .1Z00tH~ , ~~~~0 .vPllItr ,.,g931

EVAf,j5TlJt<I CASE ~ -1 1955 EVANSTON: CAS!:. , -, 19'i6

V'. JAN FEP ",. AP" H,V JuN VAS JAN FEI; " .. ••• M" .lUll. TE"IP 1~. 20 14. ,,, ~0, 3'" 34. ;Z? 47.321 54. ~~ TEMP 2~.?~ 1~. 7'l 2:5,23 35. :is 48. 3~ J6.9~

F .IH1 .~6 1.15:8 3.~' 4~77 ::i.59 F ! .3" .71 2.3 Q 3.19 4.&7 6.00 .'T lR74.63 2&6~. ~, 1511.52 1524.87 4242.5? ~7 82.1 ~ .P' 3Q79.4" 11'I.f9 :l'3?i.21 '232. &4 1630~(jJ9 22~3.~1 Q·nv 244,-.g~ 2t7I,g9 246Pt.99 877 4 ~ 9Q 48232.ge. ~0062,~~ Qr-Tv 3 6 17.99 2P~3.99 ti129.9g 1·10~9.9!} 69'ti9.ge. S'~ll •••

QUNG 130.34 II ".12 1 S~.25 784!J.ejlj 163'.7~ 1'65.\9 QUI<lG ~~9 .~4 ~S5.51 7191,35 4312.22 293A .68 51'.07 DCNL ."~ .ee .~~ .~;., .'0 U 4 73.71 QCNl 2 P07 .~4 1609.2" •• a .ar .38 122\38.67 QSIT 245O •• , ;:U~ t .33 23(1!~. g7 HHH6.'24 48ol52.tI~ '20r.1.~6 OSP' 2961.85 2463.19 12932.4. Hi787.21 73792.18 ~H;8a"Ui nlGS .Qv, • 1l\~1 .0~ )1'174.95 4;til3 •• U 136.2.1 • Ql~S 762.711 534.3" 9230.81 5029.21 1~30.24 6842.81 r.lGl1 .. ' .00 .J0 .'S .. aj .30 'lGLl ." .'~ ... .0" .. " ••• S'" il21~.4fi 6939.43 fi~5;a.g~ .80 .e;o, .0' SNlo: 125Y~.2? 137il7.31 4746.7~ .15 . ~~ ." . SNHT ... ,00 •• 0 ~5~".~~ .. 8t . ~. $"JMT .~ . .'~ ~230.81 4746.57 .1' .3C I:TPM 122.S<t 166,7. 3\3.27 br.l.8! 161S.89 2431.11 ETPjoj 202.9C 121.40 388.89 6<!5.00 1706.66 28!l;l,,27

ET" ,U0.12 64<l.11 1344.~1 2793.23 e5Q8.03 12~9".19 ET" t2~.7.' 468.$9 1889.1~ C!100.31 63a~.-i5 154~&.33 n 4'.57.157 ti$il2.49 13511.11 27{\5.39 d119.9t' 131' •• ae ~, "1"111: .41 46'~7(1' 1711.B ;ae2,9B 9233.76 1556:;'.93 "S Jl'293 .. fII5 QJl:51.31 82~4~34 141~O.11 io'.Iil14.1~ fU'37.4U w.; 7~B'1 ~ ifi n,ctii'l.48 152~5.95 1~H7 • .27 1'537.5~ 5125.72 OP n.2~ 4S.17 48.17 40.1 il 32.11 3.2.11 ,')~ 12.2< 40.17 48.17 48.17 48.11 46.l7

nTC; 2413 .. ~d 21 i!.3~n 22.8.2~ 1597".415 ilAU2.32 ~2.21.1. .=T(l ~9~4.B1 2H6.9. 1i~0t1.23 1574;'.1.'28 7~e35.1~ '1211,30 OGn 64.?3 ".2. ~4.2;:! 32.11 32.11 82 •• , Q.;r 64.2 ) ~4. 23 46.1' 4d. l7 64.23 32.1 \ OSD ;:'Av!jiI.e t 2Q13q .. 4~ 21«3,9; 1~946.;U 04816~.2V! 319~a.a!5 i;lSC :.!3Iiiio1.57 2'92.75 1 (fiHi3 .06 1 ~1r:, 1. I.~ 7~771l1.n 5117!.1. :i!:i

vA" JL' ~I.JG ~EQ OCT ,Ov I)I::C 4"111/ VA< JLY ALIt; .'IF.P eCT "ov DEC AI-1N TEHF f.2.1J 63. 0~ ~2 .I' 42 _0\0" 22.~0 2~, 4e: "1.17 TEMP iS2.61:l 5~.ge· .'.I~ 3~.n 22.3~ 1~.6~ 3/. 49

F fi.4~ 6 •• 1011 4.37 3.27 1.51 1.:1:& 39.sa , IS.!-l ~ ~ Hi 4.4'; 3.~9 1.47 1.24 40.27 pp, o1"1r.~.7,"' 37132. t ~ 4.1!~9. 7fli 1 ~'H 5.53 2o~6.e4 ~!il1 iI.89 3722:a1.57 oPT 2'3~.!lI7 124g.1~ 65.77 1091.50 4 I!': 0. 43 ~7<'. 73 26,0,. ~Z

QF\IV 8'-:74.QQ 4932.<;I!j 31".99 J2"'6.99 2120;,.99 '3d1.99 131227.87 ~~!V 12~~2.;~ 4435.9<;1 ~2~9*Q-9 JO~4 .!I9 2749.9~ "17 4. ~9 1.0612.84 DUNG 1;,;:8*7ti ~ I.~S -11.P 5!L24 17~. 37 6~';d9 12704.84 t'lt)t..!t; 't' .13 17t.53 33.Q~ 53~ 71 7~ .7e 1 \4.54 16~7!i. 41 nCNL 332V,2.7Q 30112.9'" 9421.M 63.46. ill \2~.n 3Z21.58 101~'5.31 QCNl 39~~iL~J 2'3.2 ••• :U!i~6.13 :'i1315.87 147. 9~ 28';1.41 ji16S.3.21 asn .. 7241.~1 .. QQ73~3~ -,1';7.1" -'104. ~7 ~5~D.l< 30". ti3 g:~'d 9~. 53 ~~ IT .. 6'11.~9 "'''1'~.7J .. 77"1Q.23 ?~ 911. t () Z490.ii3 16';3. o. 14072of}.78 Olr.:S 1;t 12?7>'j 1 3453."JI, 77:\9.71 3727.17 48.17 1l4a.2~ 6Q5t'!i.!5~ rH~S !7:'i6~ .. 2t'l ~2~?3.fl:O 823'.1. 32J8~51 56.2R \1'I7'.9:J 73127.87 QGL.I .u .~r .3' .0~ .0~ .a~ .0~ QGL.I .ev .iH' .30 .Q" • e~ ." . .Ge

s·~"" *iI:A .~. .t'!0 .0t 209'3.34 tic: 1~~ 14 tolo.74 S'..j~ .12 .?If< .00 .3(' 46~.43 31:)"'.16 319';;',16 S~I~T .t':P .N~ . " .;3" . .It? t 0~' 655<.06 !)t-t'-l'j .p> .::1~ .oe .. w .~;iI .~~ 1~'77 .53 fTP ... 31127.11 331:';."3 lH:"'2.17 9?~.1e: ~;1 .17 «:21.4;' 1~246.17 ETP ... 3UA.a? 2'8-.23 1"9~.B! 7Q3.5~ .183.54 18).2\1 1~175l4t

, TO 16'l3Q."8 15~vl.2!5 11)(15.71 367u.9~ 1131.Z'''i 77~~91 125l)0,~3 E'O 172~8.71 12~9ti. if S)89.93 )142.1ij 11~t .43 627.36 126J7.71 E' H!OC9.?1 1!15~<.9~ 7908 .. 93 37fj~.77 1172 .2E 786.i17 732J3.82 E' 17231.(14 \?14~.4<l 8.;e2.H 5243.86 I<f7'.93 ~>}'" 52 73332.2~ H$ a~7r.2!1l 823".14 1l173.a~ d173.9'" 7313~Sb 1il!l9.29 1459.29 1lE, A<:'4.34 U73.9(" 8125.72 ';165.87 7146.14 7581.16 75'$7.76 DP 4~.14 48.11 4l:f.17 4/j.l1 48.17 48.17 5~4.02 o. 4(' .14 4~ .14 48 .. 17 32.11 48.17 4;).14 "'2.01

wTn -72~~.5!) .. 1~0?4 .6f\ -2232.15 "'96.35 25:S7.2e. 38~4.1\' 6g832.~7 QTr .. 6 ~43. 2.1 .. 3134.14 -78'U.,S 21.03.;19 2473.04 t6~i .93 14:::l460.90 QGO 32.1: ;')2.11 32.l! 32.1 ! 8~" 2);1 Q4* 23 b26.29 DGI~ 3'. \I 3,.1 I 64.23 96,3!} 64t~3 64.23 014.46 Q~{l .. 1~9"'.ti7 ·1~~3e.7? -22,.4.28 -12tJ.47 .2456.9J.l 37t1Q.86 692~6.37 CSt: .. ~'!I75.'2 .. A~H5.~5 .. 79~e:. 7fi 20 A7.63 ,.408.61 1 :'57 .. bS, lJ91lll.43

84

EVANSTON C"SE :, -2 EVM~STON CASE 3 -2 U;04 e 2 ~ • 3,.e. 2.5(11 31571.30 .80 VAR JAN FEe MA~ A •• MAY JUN H!e. 11~2P. 24794. 393. ~. e, 0. TEl'll' 22.1~ ?4,21!J 2 4 .70 A0.f)0 4~.71il 54. b0

e. '. ~. .,

~ . e. 0. 3946ei. F 1.45 l.e2 2.0! 3.65 5.01 !. !8 .. 0a234 .2794_'5 .~2e23 " ~09g~ .00 ••• .~0.e0 • "1i:l00k! PPT 2't5g.~q 1116.2 • 2466.62 415il.43 251'!05.26 47~3.03

.. 0¥'lltH!!0 .01'100~ 1~0"'''?'I • 00A0A .~0U0 .ee~",,, ,0000" I)RIV 3323.99 33f.l(ll,!iH~ 40g,.gQ 136!t11.g9 43322.g8 20339-'~9 S;}28a.5;}3 I)UNG 3~" .e, 1233.21 322'.38 !22 •• 42 1129.1. 1.11.~9

532. e0~. 3823. 21H. 2434. 0. ., QCNL .00 , .. .00 ... g;}g3 ~!5Y1 1.~2', '3 l' 4:59. OS!T 34~A.eg 4".,eg 61i142.17 P •••• 'I 3g045.46 121~5.83

.08472 • 081liw ,41231 .~349g .32631 .~000~ .00030 QIG5 .0 • 1419.41 4518.99 '16k!7 .3~ 6134.52 12122.13 821.!5S;}2!i OGLI .'. •• 0 . .. • 00 .00 .~ .

.!! • 8. .'. .91 1.0' 1.1~ 1.04 1,A0 .92 .92 ." ••• S" • 7498~~3 'U1.32 514 ••• 5 .0" .1"0 .A@

.~I ••• .Qg 1.214 1.07 1.10 1.12 1.13 1.12 \ .10 1.03 .92 SNJofT .0. 141~.41 4!1i5,9r: ~HAI5.ll!5 .0S ... .90 .~8 I.PlA .0" .~6 .'. .0. 32.00 24.1'10 1.159 20 •• " 2.00 EfPH 221.96 274 •• & ~IH,U 924.9~ 1037.87 2426~ 05

10.01'1 ,. .. i2I~ 11."'~ .2. .0' .00 • 0" .00 .00 .0. 2.~0 2.50 ET. '~7 .'27 Hl60.4& 1"38.05 42g2.84 9675,77 12~J!:t.4'2 1 1954 22 .1" '-4.20 24.7P- .40 .a~ 49.70 154.&0 6!.20 ~g. 30 5:).70 43.80 ;U.40 17,40 rT ,se .B' U75,Sl3 1848.75 401l4'a.24 9715.154 121598.09 1 I.!~ 12.2r3 1.4.70 2:3.30 34 .~0 47.30 ".9. .2.10 63.01(} 52.1" 42.3~ 22.9. 21!'.40 "5 7467.32 '.fiIA4.7!!' to!142.~7 11153.03 I:H Sg. 96 7844. 7~ I 195! 20.2. 1~.70 25,2r. 35.!3 48.30 !l6.9~ 62.b0 !55,.w13 .3.\" 39.'. 22.30 16,50 DP eP,2.49: 6156.43 6"0.~7 ~94.17 1537 ,!If) 4e~. 70 2 H I54 ••• .34 .75 ,\4 .16 1.43 1.11 1.63 .'0 .8. 1.42 .'J OTo 4!'1ff4.9S 4e5!5.~e 7499.43 18!15.14 39472.41 12411 .65 2 1955 •• 7 .81 • 4. .1 • 1.29 1.15 1.37 1.1! 1.26 .43 .S> 1.80 oGo 32.11 54.23 64.23 80.2. 48.1' 8il.2. ~ 1958 1.21 .3!5 .. , .39 ".32 •• 7 .'1 .38 .02 .94 .1' .83 O~O 4Slit-.ee 4SV'1.!H$ 74315.20 1"43~.44 35t424.24 1?397.35 3 1.!4 .1 4 .16 .2. .9~ .43 .62 ,~IS .02 .01 .02 .'~ .04 J 19,! .~, .. ' .e! JoI7 ,.2 .~7 .04 .03 .01 ,.~ .08 ,32 VA. Jl v A, \It; SEP otT tlOV !)EC ANN 3 U!li8 .19 .14 ,n .f! 1.13 .19 .08 .011 .01 .02 .'3 .04 HMP e,.~. 59.3" 53.,R 4J.8ti 34.401 17.411 4~,82 4 19~4 .. ' .0 • . ". ... .0. .0. .02 •• 3 .00 .0. ..0 .0. , 8.7e 5.6. 4.51 3.41 2.27 1.09 43.16 • 19~! .'. .'. • 0. • •• .'. ••• .00 .0~ .00 .8. .0. . .. .'T 3e5A.tt~ 5262 .13 2302.18 <.21.0. 4e7~. 14 2A'~a.d4 34,g5.32 4 19.8 .r-. ..0 ... .00 .00 .'33 .00 .00 • 00 .00 ••• .00 Q"l y ~HH2.~Q 3116.99 ~;,q0,99 282~.99 2578.99 252a.~9 110287.90 ! 1954 1.21 1.lS ~.~2 A.C,7 8.5;.'!' 2.20 .23 .01 .0" ,.5 .31 ... QUMG 159.57 60.62 41.117 55 .. 29 134.2Y 126.3" 13395.Jl ! 1955 .80 .72 .9. 4.30 9,85 7.40 • 13 • •• .00 ••• .'. 2.37 QCNL 4319,e8 313.3~ \ 187 .80 1834.16 .0. 1141.01 37775.03 5 1958 1 .. 61 1.4~ 4 .. 70 5.l4 18.28 12.58 .5~ .01 .. " .. ' .7~ .83 osn 21'!o7S,20 2~1.4' 136.'3 1131.11 227~.ge aJ2.02 92!i31.45 ~ 1954 t.~H I •• ' 1.24 4.1e 13.11 6,13 2,43 ,98 ,.3 .85 .'. .18 O!G~ 5292,;16 'A1'4."0 2153.5' 3tl':4.IU 457~.14 433.58 !51g16,'2

• 1955 ." .65 .14 2.66 14.tH5 12. \8 2.83 1.49 ,9, .~7 .83 1.33 aroLl .1!~ .. " .0" .0~ ... ... .0e 6 U58 1,.~3 ,85 I.gs 3.91i 21.15 t1.73 3.1$4 I.J4 ... .93 .53 .04 SNh .0~ .e'$ .00 ,0t' .~e 1!4'aZ.64 24e!~ta4 7 IQ5' ,'. . .. •• 0 .e~ ,0. .0. .~" .. " ••• • •• • •• ." ~NMl .0a .". .0 • .~:! .~il .(le 110a3.:U 7 195~ ... ~ t'I~ .~0 .70 .A0 .00 .. " .00 .0. .00 .00 .0" EiPH 3A"2.89 2B1i4.47 1945." 10'2.1~ 43" ~ 3i1 1 ••• 0S 18'9'.23 1 19sa .0\1 .. ' .00 .~(3 ,.0 ••• ••• ••• .~0 ... .'. .0. ETP 19P3A ,"('1 '3381.1~ 34 24,615 4126.22 169r;.05 b57.59 '''3~,:)!5 8 [954 ." .;'\!.' .?t'I .00 ." .. " .~. ••• ..0 .. 0'a .00 .00 f,'i '~357.e9 '026.38 :Ug!5.59 191H,19 t429.22 714.61 '31~4. 4' ~ j955 .~. .0. . >. ." . .0. •• 0 • 00 • •• ••• ,'. • •• .00 MS 2834 5 31 3227.801 2834.37 4512.5" 178B.49 '~63 .67 11563.15' 8 tq!Sfi ... .~r. .t'I~ .r." .'. •• 0 .. " • •• ••• • •• .". ..0 OP 3513.43 297.08 2154.g6 168,51 L56.49 .i.29 Ai;38.~1!i

OTn 3 •• 2, 9~ 4f';!\.'0 9! 5.34 1252.!iR 2328 .. 51 2t11.57 ?bg52.15 POTS li~ T",l'fu 24 SHrhJLO BE SET .AS FO~LO.S QGO 32.11 e~ .2" 1!14.23 64.23 64.23 04.23 736.'"

• 1000t1 .lZt 275 .~J511 .~.49gg .':U~3q QSO 21J1~. 8G ::U5.A1 /351,11 l1A8.34 2264.2e 2~d'. 34 il6224.04 .00E!00 ,e(l!?~~· .~238i"1 • 500'H~ .'3fd0A0 ,1ANH~ • [~0{'1~~j .\l00A0 .00~0? .7999g

POTS I~ THqlJ 24 A~E !ET '5 FnLLOws .QJ9Q67 .lt12'5" .~3S~13 .~4'!:l"" .~''.\il'l'$ ,00~t'l0 .. ~t'lv~~ • .:1236& .. 49g75 • 1~0"0q ,A99 6a .~000;i1 .",001Hl • P.I~~~0 .79,3'

EVANnO.N C.tSE 3 -2 Ig,~ EVANStON CASF 3 -2 1956

V'. J"" FE? :Hk .,. MH JUN V" JAN FEB HA. AP. M" JON TEMP 12.2;' 14.1~ 20.3' 34.2!ll: '17.30 54,90 TE~P 20.2,} , 0.';:' 25.2" 35 ••• 48.3~ 5'.ge • .8', .9" 1.6S 3.01 4.17 :i.59 F 1. 3~ .11 2~09 3.1.9 4.87 6,(lVI

PPT lR74.63 2~83.9~ 1611.152 624 •• 7 424?,5P 3'"2.15 pPT 391~ t4$ 1151.~9 230.21 1282.154 763~.0!f 22(13.51 ~Pl\" 2U?.q~ 2171.?9 24S~. gg 8714.g9 '8232."! 40"62. gg Q~Tv :U17.9? 28;'.99 5129.99 n~39.9Q 5QS59.~8 5£)31 t .~a QUNr; t3V..34 116.12 153 .. 25 '845.915 Ib35.'9 148~.19 ljlJ~H~ 3P!).'54 38 •• 51 71"1. 3~ 4372.22 2~3S.~8 ;15 •• 7 QCNL 113:!.6!". 9~3. 10 11548,13 .e. .0. 22192.58 nC~L 3124.64 30190, i1 .0" .tJ0 .0t'1 12b4i5.1!J QS1T 17?2.39 1743.9~ 1674.tH' 1~.18.24 .e252. ';8 3BB77 .~d :lS!T ":.H-:!).U 1.2'.83 12g32.4! 1i57a7.2l "~792.1B 5116.,". Q!r;S ~~B •• I'~ :"",38 625 .l!~ 9174.95 42043,47 12215.33 GIGS 141'5.315 1111.28 9230.81 6'29.21 "63~.24 5911.28 OeL! .'. • f;\l': .,PI?' •• 0 .'<i0 .il. Doll .1") .~p .l:l!J .:1"" .~~ ...

iP.Jj,o,I 4'.75.48 69~9.43 8'550.95 .8a .~" .'. S.- 12'596.2i! 13147.31 4746. '2 .1 ~ .e· .t':ll'l 'i"JI-lT .~~ •• 0 ,CI~ >l!5!1i¥'l.08 .S" .1.!0 5t>.!H .~1:l .00 923~.81 4''15.57 .15 .~0 ETPH 12,".54 155.19 313.27 601.81 l'l~ .89 2437.11 ~'!'PI"I 'f\~.g~ 1~1.4~ 38a.89 62!5.Od~ 17\')6.66 ~89~.2'

ETP 4Af'.1 Ii! 64.4.11 1 )44 .. t'il 2'93.2!5 85." .~3 129~4.19 £TP 7213" '.; 4SS,B9 1569.,a 2g9l0.87 tI~"5.95 154;5t1.J3 ET 433.511 6~JO.37 \136. '2 2Ye6.63 6ei!5S.66 13.,4'.13 FT 594.11 A~' .fi7 1718.26 30~" .22 9! 5~. 49 IS,S2.g. "~ "1!44. t'rI 1~~5.79 "0P.~7 133C4.51 51'\1;'0.93 !:Il41.7$ 115 nallS.SlIlI 75ti7. '6 15157.40 16130.3> 16""''''.13 8115::1.87 OP 7"2.~;; 45.1' 4~~d 4 J2. 1 1 4Wi l 14 3,.11 OP AR.17 '18.17 48.17 4R.I' dR.P o4\~. 14

alt'"! 1791' .!lP- 1718.2B 11)31.99 1'9~4.!1 A6.!4~ • .4g jii\62-4.IIlA DTn '2~~.34 l!Hi1.99 1292'.29 1~7~~.28 7~dl~.0!:) ~1131.Z7 ~;;(i C,1l.17 32.11 1)46~:\ 32.11 31.\ 1 32.1l OGo 48. t 1 32. I t 80.211 1t0.29 ti4.2l 64.23 QSO P~i1.-i'" 1 ~RI'5. t ~ t '51·~ ~ Hi 159152.43 .S2ild .3' M~5~1.92 Q$t1 2?~'.le 1818.87 12a47.?>~ 1661)8.9!l 7e754.B!5 ::)1rJS6.63

VA" JL' A'Je 5EP OCT ,OV OEC ANN VA< JL'( ""JG SEP r:i!:r NOIf i.H.(. -.N TEM!=' e2.1 ~ 63 .~rt 52.11" 42.00 22 •• 0 2~.'I0 37. i 7 TEMP tlf'.6.t. 5fi .3(' 5:>.1~ 39.7;;') 22.3~ 1!li.6A 3'.49 .,.- 6.45 6.r.4 d.37 ~.2' 1.51 t ,2& :>.9.86 , 6. '1 S.o46 4.4S 3",'<1~ 1 .. 47 1.04 4oJ.21

PPT 4'j~!). 7;} j7t2.15 A2"i'1~. 'oj 1315.53 2696.84 5511 ::1.89 37229.57 pO, 233".~7 12~1j. 75 fi5.77 3'-1!H.51.' 463.43 27;lll.73 26439.3~ ~QI \I 81574.99 -l932.tl9 3153. a~ J2M.99 2129.99 4381.99 131227.8" ')Pl'; 12",l1!? ~9' o443~. 9:9 '269.~9 3~fl4.99 2749.99 2774.99 1801)12.84 OUt~r; 12~ ~7o'j 81.36 41. ~7 59.24 175, .!I 7 953.19 12H4.84 ~U:vG 211.1~ \ 70. 53 33.96 53.71 79.78 114.54 I.S75.41 QC~~ 5;'75.1;4 1!:'iC7 .!'~ lJ~:t * iJY' 2331.06 2514.21" !'HHJ.7C, '14997.75 ';iC"'L S11l:.'. 3~ 2~18 .Ar '13.10 1!345.112' 2d:4b.2ti 27f.l~ ... H ~612~.00 051 T 3:n3.?o2 10~2. 'I" J;~.!I. 59 144~. ~~ 16U,.eo :>j ,48.51 111$U7.39 flS!'!' 5~~5. :.-., 12~1.4" '''.12 14!i3. !i7 157e.5' 1679 .19 15752" .18 OH~'i 6~4q~5Z 4421 ~21 ':73~. ~H' 22;.'13. ~l 993.H Hlol\5 t 22 48112.~2 01 GS ~lio4l1. ~,.? 2~l!L74 22<.75 .'\982.6C, gS7.57 l\t;?Y. tl5' 4632t.48 DOll .'H'! .~o? .ldli: . ~" • '.ill: .. ' ... OGLI .. Ct~ ."r .. ' .~~ .~O • fl~ ... SN~'l .;'!' .~~ .~:.1 .". 26r;ti .ao4 6611:).74 aeS6.74 SN~: .rt.1 .~. .V?, 4",,'.43 319;,\. I!) 31it~.15

Sf'.l!':T .P.I

3310::; .. " .~H .0~ , ~i~ 8!l50,\l6 !WHl ~'J .. ' .ee .or .£;,1 13971.~3

f"l'PH :>427.~1 18~2.P 9~9. !8 Z9l.!7 221.45 t!lil'lti.17 £1'I)H 3494.11:2 le90.'~ 7}<j~ 5l:J 203.54 1601,211 15175."1 ETP lfi9JB.olJe 1~!5~1.2ei 78"'~~ n J670.9' 1131~M< 77~~fJ7 725~~.53 ETO 17256.' 1 Sl~fJ.93 j142.16 lUH.43 027.Jf5 72631' .11

ET tY1'9"'e.12 5700.1l5 32$9.92 ?e07.34 778.84 ~b2 .35 50207.69 ET 1;l!17".:\3 1292.72 U',5.93 1)14.45 4';1. c,5 4c,o,47.18 ;,Is :l7g7.89 25c,5.31 JdlfJ.07 4287.eR AaS8.71 592~.61 5.25.57 ., :'3!if1'.~'1 7&1i.8 1 :V:>~~b6 'Ii 19.07 4137.:>3 4137,33 0<- C,0.14 48.11 <18.17 48* \7 4~.17 ~8.17 545.99 OP iH". t4 >10.14 41t.}7 ;"2,11 32,11 5,"1.~~

I~Tr. 329~.04 IV.<ll.61 8M>.AS t.12~*22 U~~.a7 30~Y.33 11131 •• 28 Oln 5J70.4i;lj 2~4.a2 lU5~~H! 1557.59 lb54.0!) 1673J~,09 o!';u 95.35 54.23 64 .. 2:! 80.29 134.<:3 ~'I.23 674.46 Ij~C· 15>1.21 g~.3~ 48.17 Fa.29 5 i .. 2J 756.67 Ijsn 31':)~559 919. ~fi 77".62 tJ40.9& i :)41. 64 3\:3!o. H~ 110644.61 iJ5r· 5·H!IJ.1lS 128.47 139/.11 t '171. 4[: 1!58~.81 156013.21

85