Training Vibrasi

of 91 /91
TEORI DASAR ANALISA VIBRASI Oleh : DARYANTO Predictive Maintenance – CRM PT KRAKATAU STEEL - CILEGON

Transcript of Training Vibrasi

TEORI DASAR

ANALISA VIBRASI

Oleh :

DARYANTO

Predictive Maintenance – CRM

PT KRAKATAU STEEL - CILEGON

TUJUAN MONITORING GETARAN

1. Menentukan kondisi mekanis mesin.

2. Merencanakan jadwal pemeliharaan.

3. Memeriksa hasil repair/overhaul.

4. Menghentikan mesin untuk mencegah gangguan serius.

5. Lokalisasi gangguan.

6. Pengesahan aspek keselamatan.

What Is Vibration Caused By ? Imperfections in the Machine:

Design Assembly

Manufacture Operation

Installation Maintenance

What Are Some Common Machine Problems? That Generate Mechanical Vibration:

● Misalignment ● Unbalance

● Worn belts & pulleys ● Bearing Defects

● Hydraulic Forces ● Aerodynamic Forces

● Reaction Forces ● Reciprocating Forces

● Bent Shafts ● Rubbing

● Gear Problems ● Housing Distortion

● Certain Electrical Problems ● Frictional Forces

What Are Some Common Machine Problems That Amplify Mechanical Vibration (But Don't Cause It):

• Resonance

• Looseness

The Resulting FFT

The Raw Signal

The Actual Signals

Used To Generate

1x rpm w/ amplitude of 1.8 (pk-pk),

'+' peak on y-axis

2x rpm w/ amplitude of 0.45 (pk-pk)

3x rpm w/ amplitude of 0.05 (pk-pk),

'-' peak on y-axis

FFT Analysis

AMPLITUDE – How Much movement Occurs

FREQUENCY – How Often The Movement Occurs

How many “cycle” in a period of time:

a second or a minute

PHASE - In What Direction Is The Movement

Relative To Other Locations On The Machine

At A Given Moment In Time

What Vibration "Characteristics" Do We Measure ?

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

0,32

0,34

0,36

0,38

0,40

0,42

0,44

0,46

0,48

0,50

0,52

0,54

0,56

0,58

0,60

0,62

0,64

0,66

0,68

0,70

0,72

0,74

0,76

0,78

0,80

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07

M

(2955,00 / 0,43)

f [cpm]

v rms [inch/ s]

RPM : 2953 (49,22Hz)

M(x) : 2955,00 cpm (1,00 Orders)

M(y) : 0,43 inch/ s

AMPLITUDO

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

0,32

0,34

0,36

0,38

0,40

0,42

0,44

0,46

0,48

0,50

0,52

0,54

0,56

0,58

0,60

0,62

0,64

0,66

0,68

0,70

0,72

0,74

0,76

0,78

0,80

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07

M

(2955,00 / 0,342)

f [cpm]

a rms [g]

RPM : 2953 (49,22Hz)

M(x) : 2955,00 cpm (1,00 Orders)

M(y) : 0,342 g

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

1,25

1,30

1,35

1,40

1,45

1,50

1,55

1,60

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07

M

(2955,00 / 1,378)

f [cpm]

s rms [mils]

RPM : 2953 (49,22Hz)

M(x) : 2955,00 cpm (1,00 Orders)

M(y) : 1,378 mils

English or 'Imperial' Units: Mils (1 mil = 0.001")

Metric Units::Microns (1 um = 0.001 mm)

Conversion::1 Mil = 25.4 um

English or "Imperial": Inches per Second (ips -or- in/sec)

Metric: Millimeters per Second (mm/sec)

Conversion::1 ips = 25.4 mm/sec

English or Metric - G's (1 g = force of gravity)

English Units:

Displacement = mils

Velocity = in/sec

Acceleration = g's

Frequency = cycles/min

Metric Units:

Displacement = um

Velocity = mm/sec

Acceleration = g's

Frequency = cycles/min

Displacement = (19,231 x V) / F Displacement = (19,231 x V) / F

Velocity = 0.000052 x D x F Velocity = 0.000052 x D x F

Acceleration = 0.00027 x V x F Acceleration = 0.0000107 x V x F

Displacement, Velocity and Acceleration

Vibration Amplitude Measurement

The following definitions apply to the measurement of mechanical vibration amplitude.

Root Mean Square Amplitude (RMS) is the square root of the average of the

squared values of the waveform. In the case of the sine wave, the RMS value is

0.707 times the peak value

Average = 0.637 Peak Amp.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

0,32

0,34

0,36

0,38

0,40

0,42

0,44

0,46

0,48

0,50

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07

M

(2955,00 / 0,43)

f [cpm]

v rms [inch/ s]

RPM : 2953 (49,22Hz)

M(x) : 2955,00 cpm (1,00 Orders)

M(y) : 0,43 inch/ s

FREQUENCY

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0 5,2 5,4 5,6 5,8 6,0 6,2 6,4 6,6 6,8 7,0 7,2 7,4 7,6 7,8 8,0

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

0,32

0,34

0,36

0,38

0,40

0,42

0,44

0,46

0,48

0,50

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07

M

(1,00 / 0,43)

Orders [-]

v rms [inch/ s]

RPM : 2953 (49,22Hz)

M(x) : 1,00 - (2955,00 cpm)

M(y) : 0,43 inch/ s

Frequency Unit

Cycles / Second (Hertz)

Hertz x 60 = Cycles / Minute (CPM)

Order

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

0,32

0,34

0,36

0,38

0,40

0,42

0,44

0,46

0,48

0,50

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07

M

(49,25 / 0,43)

f [Hz]

v rms [inch/ s]

RPM : 2953 (49,22Hz)

M(x) : 49,25 Hz (1,00 Orders)

M(y) : 0,43 inch/ s

Displacement Units: < 600 cpm (< 10 Hz)

Velocity Units: 300 - 120,000 cpm (5 - 2,000 Hz)

Acceleration Units: > 60,000 cpm (> 1,000 Hz)

Recommended Frequency Ranges for Different Amplitude Units

Lines of Resolution : 200, 400, 800,1600, 3200, 6400, 12800

Spectrum Resolution = Max Frequency (Fmax)

# of Lines of Resolution Fmax = # Lines / Time Sample Fmax [Hertz] = 800 / 0.1 seconds = 8000 Hz Fmax [CPM] = 8,000 Hz x 60 = 480,000 cpm

Frequency Name Calculation Frequency

4-Lobe Rotor Speed 3580 x 48T/36T 4773 rpm

4-Lobe Pass Frequency 4773 x 4 19092 cpm

6-Lobe Rotor Speed 4773 x 4T/6T 3182 rpm

6-Lobe Pass Frequency 3182 x 6 19092 cpm

Bull Gear Mesh Freq: 3580 rpm x 48T 171,840 cpm

Pinion GMF 4773 x 36T 171840 cpm

2x GMF 2 x GMF 343,680 cpm

3x GMF 515,520 cpm

Contoh Perhitungan Frekuensi

Compressor Schematic

Motor Speed = 3580 rpm

Standar ISO 2372

Standar ISO 10816-3

Standar ISO 10816-3

The Velocity Probe

Velocity Transducer

The Accelerometer

Piezo-Electric Accelerometer

The Proximity Probe

VIBRATION TRANSDUCERS

Accelerometer Tranduser

Prinsip Kerja

Gambar diagram sederhana dari tipe accelerometer dengan sebuah penguat didalamnya. Apabila tranduser ini

ditempelkan pada bagian mesin yang bergetar, maka getaran mekanis tersebut diteruskan melalui Case insulator ke

bahan piezoeletric, sehingga bahan tersebut mengalami tekanan sebanding dengan getarannya

Bahan piezoelectric tersebut mempunyai kemampuan untuk menimbulkan muatan listrik sebagai respon terhadap

gaya mekanis yang bekerja terhadapnya. Getaran mekanis yang menghasilkan gaya akan mengenai bahan

piezoeletric dan bahan tersebut akan menimbulkan muatan listrik yang seband¬ing dengan besarnya percepatan dari

getaran tersebut. Muatan listrik yang ditimbulkan oleh bahan piezoelectric tersebut sangat kecil jika dibandingkan

dengan output velocity tranduser. Karena muatan listrik yang ditimbulkan langsung oleh bahan piezoelectric begitu

kecil, maka di dalam tranduser ini dibuat rangkaian penguat electronik untuk memperkuat muatan listrik yang

dihasilkan oleh bahan piezoelectric, tersebut. Besarnya muatan yang dihasilkan langsung oleh bahan piezoelectric

biasanya dalam picocoulombs per g. Sedangkan besarnya sinyal yang dihasilkan setelah melalui penguat,

mempunyai sensitivitas 50 mv per g

PENGAMBILAN DATA VIBRASI

RUANG LINGKUP PENGUKURAN VIBRASI

1. Kelompok penggerak mula (prime mover) –

mesin-mesin yang mampu mengolah daya sendiri.

Contohnya: Elektric Motor, Steamturbin, Gasturbin,

Hydraulic & Pneumatic Motor dll.

2. Kelompok sistem transmisi – peralatan untuk

memindahkan daya. Contohnya : Gearbox,

Coupling, V-Belts dll.

3. Kelompok mesin bukan penggerak mula –

peralatan produksi yang harus digerakkan oleh

penggerak mula. Contohnya : Compressor,

Centrifugal Pump, Hydraulic Pump, Fans,

Reciprocating Pump, Cooling Tower Fans, Rolling

Machines dll.

Persiapan untuk pengukuran vibrasi

MACHINE DATA SHEET

1. Plant Name

2. Train Name

3. Machine Name

4. Machine Description

5. Machine Sketch

6. Position

7. Direction

8. Measurement Units

9. Point Identification

10.Coupling Type

11.RPM

12.Number of Gear Teeth

13.Bearings (Type, manufacture, Number of

balls/Series Number)

MENENTUKAN ARAH PENGUKURAN

Horizontal machines Vertical machines

ANALISA DATA VIBRASI

Following is an example of forcing frequency calculation for a gear-driven machine:

Let us assume that the motor/gear/fan components have the following element counts:

Machine Component

Elements of Component

Number of Elements

Motor Cooling Fan

Fan Blades

11

Motor Rotor

Rotor Bars

42

Drive Pinion

Gear Teeth

36

Driven Gear

Gear Teeth

100

Fan

Fan Blades

9

Let us assume that the motor is again running at 1780 RPM.

Divide the drive pinion tooth count by the driven gear tooth count:

or

Next, multiply this ratio by the motor shaft RPM to find the fan shaft RPM;

We would now say that the fundamental frequency of the motor is 1780 CPM and

the fundamental frequency of the fan is 640.8 CPM.

Motor Shaft Elements Forcing Frequency, CPM

Rotation

1

1,780

Motor Cooling Fan

11

19,580

Motor Rotor

42

74,760

Drive Pinion

36

64,080

Fan Shaft Elements Forcing Frequency CPM

Rotation

1

640.8

Driven Gear

100

64,080

Fan

9

5,767.2

Formulas for Calculating Belt Frequencies:

You can calculate belt RPM with the following:

3.14 x PS1 x PD1/BL = Belt RPM

- or -

3.14 x PS2 x PD2/BL = Belt RPM

Belt Length = 1.57 x (PD1 + PD2) + 2(SD)

PS = Pulley rpm (PS1 = Driver Pulley Speed, PS2 = Driven Pulley Speed)

PD = Pulley diameter (PD1 = Driver Pulley Dia., PD2 = Driven Pulley Dia)

SD = Distance between shaft centers

BL = Belt Length

Spectrum Interpretation

(Troubleshooting chart)

The following pages are designed to provide typical examples of the vibration

spectrums that will result from different problems a machine might experience.

They are probability based and field testing should always be performed

regardless of how "sure" you are of the diagnosis.

Remember: EVERY diagnosis made from an FFT interpretation can be characterized as:

An ASSUMPTION based on an ESTIMATE

Typical Radial FFT Generated By Unbalance Single Plane Unbalance

Unbalance

Two-Plane Unbalance Typical Radial FFT Generated By Unbalance

Typical Axial FFT Generated By Unbalance

Overhung Rotor Unbalance

Typical Radial FFT Generated By Unbalance

MISALIGNMENT

Typical FFT Generated By Angular Misalignment Definition: Shaft Centerlines Intersect But Are Not Parallel

Typical FFT Generated By Offset Misalignment Definition: Shaft Centerlines Are Parallel But Do Not Intersect

Angular Misalignment

Offset Misalignment

Misalignment

Belt-Drive Problems

Pulley Misalignment

FFT Typical Of Pulley Misalignment

This Condition Often Results

In High Axial Vibration At Both Components 1x RPM.

Belt/Pulley Wear, Improper Tension & Belt Resonance

Typical FFT Showing Belt/Pulley Wear Problems

Pulley Eccentricity / Bent Shaft (Near Pulley)

Typical FFT Showing Pulley Eccentricity / Bent Shaft Near Pulley Eccentricity Causes High Vibration

At 1x RPM Of The Problem Component.

Bent Shaft Near Pulley Causes Same Symptom

Typical FFT Generated By Shaft Bent Through The Bearing

Bent Shaft @ Bearing

- Bearing / Shaft (Bearing Looseness)

- Bearing / Housing (Bearing Looseness)

- Internal bearing clearances (Bearing Looseness)

- Adjacent, fastened surfaces (Structural)

- Areas of the base (Structural)

Mechanical Looseness

Housing Distortion (Soft Foot, Pipe Stress, etc.)

Typical Axial FFT Generated By Housing Distortion

Typical Radial FFT Generated By Housing Distortion

Soft Foot Or Other Housing Distortion Such As

Pipe Stress Can Cause Bearings Within A

Component To Misalign And Can Throw Off

Normal Clearances

Structural Looseness

Typical Radial FFT Generated By Mechanical (Structural)

Looseness

Looseness Allows Movement In

The Direction Of The Looseness

Bearing Looseness

Typical Radial FFT Generated By Bearing Looseness Bearing Looseness

Rolling Element Bearings

Earlier Failure Stage Symptoms

Typical Enveloping Plot Showing Impacts At Bearing Defect

Frequency

Typical Velocity FFT Showing Early Stage Bearing Defect

Defect Causes Impacts

At A Frequency Equal To The

Component Multiplier x RPM

Two Frequencies Are Produced. The Frequency Of The

Bearing Assembly Resonance Affects The FFT Plot While

The Frequency Of The Impacts Affects The Enveloping Plot

Rolling Element Bearings

Later Failure Stage Symptoms

Typical Enveloping Plot Showing Impacts At Bearing Defect

Frequency. Amplitudes May Actually Decrease As Bearings

Continue To Worsen

Typical Velocity FFT Showing Early Stage Bearing Defect.

Amplitudes Can Be Very Low In Early Stages. It Should Be

Noted That The Acceleration Spectrum Will Show The High

Frequency Peaks Far More Clearly Than The Velocity Spectrum

Hydraulic Problems: Recirculation & Flow Related Problems

Typical Spectrum Showing High Vane Pass Frequency ("VPF" = # of Vanes x RPM).

Symptoms normally in the radial directions but may also be seen axially

Cavitation

Typical Spectrum Showing Cavitation (Random, Very Broad Haystack-Like Appearance).

Symptoms normally in the radial directions but may also be seen axially.

Cavitation - occurs when there is insufficient flow into or pressure out of a pump.

This causes the fluid entering to literally be torn apart. Vacuum pockets are created and

then implode. This occurs in a random, unpredictable manner and can be extremely

destructive to the impeller and internal pump components

Flow Turbulence

Typical FFT Showing Flow Turbulence. Occurs In Compressors And High

Pressure Blowers When Surging Or Load Variations Occur That The Machine Is

Affected By. Often, A Reservoir Or Surge Suppressor Can Be Used To Eliminate

This Feedback

AC Induction Motor Problems: Elliptical Stator, Stator Weakness & Winding Shorts

Typical Spectrum Showing Indications Of Variation In Air Gap,

Winding Shorts, Stator Weakness

Elliptical Rotor

Typical Spectrum Showing Indications Of Eccentric Rotor. Similar

To Eccentric Stator. Some Cases May Exhibit The Sidebands

Seen Here; Others May Propagate Strictly At 2x Line Frequency

Motor Construction Winding Construction

FLine = Electrical line frequency - 60 Hz(3600 cpm) or 50 Hz(3000 cpm)

2 x FLine = Torque Pulse Frequency

P = # of poles on the motor

FSynch = Synchronous electrical speed = 2 x FLine / P

Fslip = Slip frequency = FSynch - rotor RPM (actual speed)

FPole = Pole pass frequency = P x FSlip

WSPF = # Winding Slots x RPM

RBPF = # Rotor Bars x RPM

Phasing Problems

One Possible Spectrum Caused By A Problem With

A Short In One Of The Phases Or Feeder Cables

Another Possible Spectrum Caused By A Problem With

A Short In One Of The Phases Or Feeder Cables

Loose Rotor Bars

Spectrum Showing Pattern Of Peaks Separated By 2xLine

Frequency (Sidebands) In High Frequency Range (30-90xRPM)

Winding Slot Pass Frequency or WSPF = # windings slot x RPM

Loose in Winding Slots, Iron, End Turns And/Or Connections

Velocity FFT Showing Pattern Of Peaks Separated By 2xLine Frequency

(Sidebands) In High Frequency Range (30-90xRPM)

Envelope Plot Showing 2xLine Peak And Harmonics.

This Indicates Impacts Occurring At 2xLine Frequency

RBPF = rotor bar pass frequency = #Rotor Bar x RPM

DC Drives Problem

DC Drives Problem

"Normal" FFT Taken On DC Drive

Full-Wave Rectified Velocity Spectrum w/ Drive Problems

Half-Wave Rectified Velocity Spectrum w/ Drive Problems

Spectrum on DC Motor w/ Speed Fluctuations

FSCR : Freq. Silicon Controlled Rectifier

Gear Problems:

PROGRAM PREDICTIVE MAINTENANCE

1. Data Collection

• Pemantauan getaran terjadwal (mingguan, bulanan, online)

2. Analysis (diperlukan Software)

• Domain frekuensi (harus tahu anatomi mesin)

• Domain waktu

• Frek. eksitasi getaran, database bantalan, gearbox dll

3. Diagnosis

• Prakiraan sumber masalah

• Dibantu oleh Software

• Human Interface (Tergantung pengalaman)

4. Langkah Perbaikan

ANALISA DATA VIBRASI

1. Trends Data

20/ 07/ 2009 07/ 09/ 2009 26/ 10/ 2009 14/ 12/ 2009 01/ 02/ 2010 22/ 03/ 2010 10/ 05/ 2010 28/ 06/ 2010 16/ 08/ 2010 04/ 10/ 2010 22/ 11/ 2010 10/ 01/ 2011 28/ 02/ 2011 18/ 04/ 2011

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BA4\ 101 Ov erall v eloc ity >600

M

(01/ 06/ 2011 19:06:29 / 0,51)

date

v [inch/ s]

RPM : 0

M(x) : 01/ 06/ 2011 19:06:29

M(y) : 0,51 inch/ s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

0,32

0,34

0,36

0,38

0,40

0,42

0,44

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BA4\ 103 Mac h. spec tr. >600 01/ 06/ 2011 19:06:44

01/ 06/ 2011

03/ 11/ 2010

19/ 09/ 2010

24/ 08/ 2010

17/ 07/ 2010

02/ 06/ 2010

04/ 05/ 2010

16/ 04/ 2010

M

(2955,00 / 0,38)

f [cpm]

v rms [inch/ s]

RPM : 2953 (49,22Hz)

M(x) : 2955,00 cpm (1,00 Orders)

M(y) : 0,38 inch/ s

2. Waterfall Trends Data

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,28

0,30

0,32

0,34

0,36

0,38

0,40

0,42

0,44

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BA4\ 103 Mac h. spec tr. >600 01/ 06/ 2011 19:06:44

2

(5910,00 / 0,06)

3

(8865,00 / 0,14)

4

(11820,00 / 0,04)

5

(14775,00 / 0,02)

6

(17730,00 / 0,01)

D

(20685,00 / 0,01)

M

(2955,00 / 0,38)

f [cpm]

v rms [inch/ s]

RPM : 2953 (49,22Hz)

M(x) : 2955,00 cpm (1,00 Orders)

M(y) : 0,38 inch/ s

D(x) : 20685,00 cpm (7,00 Orders)

D(y) : 0,01 inch/ s

3. Single Spectrum

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 36000

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 250 Env elope Spec trum Ac c eleration 29/ 11/ 2011 16:50:04

2

(5904,00 / 0,264)

3

(8856,00 / 0,094)

4

(11808,00 / 0,018)5

(14760,00 / 0,031)

6

(17712,00 / 0,033)

D

(20664,00 / 0,030)

M

(2952,00 / 0,797)

f [cpm]

a rms [g]

RPM : 2953 (49,22Hz)

M(x) : 2952,00 cpm (1,00 Orders)

M(y) : 0,797 g

D(x) : 20664,00 cpm (7,00 Orders)

D(y) : 0,030 g

4. Kondisi Bearing

Enveloping Signal Processing(ESP) & High Frequency Domain(HFD)......SKF/DI

Spike Energy(gSE) .............Entek/IRD

Peakvue ..............................CSI

Enveloping Spectrum .........Pruftechnik

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

-0,70

-0,65

-0,60

-0,55

-0,50

-0,45

-0,40

-0,35

-0,30

-0,25

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

Stand No.5 - E1.455\ Gear Box Std.# 5\ GV6\ 211 VXP Mac hine t ime signal >120 16/ 01/ 2009 10:10:05

D

(299,26 / 0,54)

M

(207,28 / 0,45)

t [ms]

v [inch/ s]

RPM : 870 (14,50Hz)

M(x) : 207,28 ms

M(y) : 0,45 inch/ s

D(x) : 299,26 ms

D(y) : 0,54 inch/ s

5. Time Signal/Time Domain/Time Trace

-0,040 -0,035 -0,030 -0,025 -0,020 -0,015 -0,010 -0,005 0,000 0,005 0,010 0,015 0,020 0,025 0,030 0,035 0,040

90°

270°

-0,040

-0,038

-0,036

-0,034

-0,032

-0,030

-0,028

-0,026

-0,024

-0,022

-0,020

-0,018

-0,016

-0,014

-0,012

-0,010

-0,008

-0,006

-0,004

-0,002

0,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

0,016

0,018

0,020

0,022

0,024

0,026

0,028

0,030

0,032

0,034

0,036

0,038

0,040

Strip Dryer - J1.470\ Fan/ blower Dryer \ BV3\ 285 Orbit 17/ 06/ 2009 18:35:06

M

(-0,04 / 0,021)

Y1 [g]

Y2 [g]

6. Orbit

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

-0,050

-0,045

-0,040

-0,035

-0,030

-0,025

-0,020

-0,015

-0,010

-0,005

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

Strip Dryer - J1.470\ Fan/ blower Dryer \ BV3\ 285 Orbit 17/ 06/ 2009 18:35:06

M

(90,00 / -0,037)

[°]

a [g channel A]

RPM : 47897 (798,29Hz)

M(x) : 90,00 °

M(y) : -0,037 g

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

-0,050

-0,045

-0,040

-0,035

-0,030

-0,025

-0,020

-0,015

-0,010

-0,005

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

M

(90,00 / 0,021)

[°]

a [g channel B]

RPM : 47897 (798,29Hz)

M(x) : 90,00 °

M(y) : 0,021 g

Pola orbit pada rotary machine yang mengalami unbalance

Pola orbit pads rotary machine yang mengalami misalignment

A

M

P

L

I

T

U

D

O

MESIN &

SPESIFIKASINYA

POSISI &

ARAH PENGUKURAN

LOKASI / AREA MESIN

PUTARAN

POROS

KESIMPULAN

Type

Spectrum

TERIMA KASIH