Teori Dasar Penguat Operasional

30
Teori Dasar Penguat Operasional 1. Penguat Diferensial Sebagai Dasar Penguat Operasional Penguat diferensial adalah suatu penguat yang bekerja dengan memperkuat sinyal yang merupakan selisih dari kedua masukannya. Berikut ini adalah gambar skema dari penguat diferensial sederhana: Penguat diferensial tersebut menggunakan komponen BJT (Bipolar Junction Transistor) yang identik / sama persis sebagai penguat. Pada penguat diferensial terdapat dua sinyal masukan (input) yaitu V1 dan V2. Dalam kondisi ideal, apabila kedua masukan identik (Vid = 0), maka keluaran Vod = 0. Hal ini disebabkan karena IB1 = IB2 sehingga IC1 = IC2 dan IE1 = IE2. Karena itu tegangan keluaran (VC1 dan VC2) harganya sama sehingga Vod = 0.

Transcript of Teori Dasar Penguat Operasional

Page 1: Teori Dasar Penguat Operasional

Teori Dasar Penguat Operasional

 

1. Penguat Diferensial Sebagai Dasar Penguat Operasional

Penguat diferensial adalah suatu penguat yang bekerja dengan memperkuat sinyal yang merupakan selisih dari kedua masukannya. Berikut ini adalah gambar skema dari penguat diferensial sederhana:

Penguat diferensial tersebut menggunakan komponen BJT (Bipolar Junction Transistor) yang identik / sama persis sebagai penguat. Pada penguat diferensial terdapat dua sinyal masukan (input) yaitu V1 dan V2. Dalam kondisi ideal, apabila kedua masukan identik (Vid = 0), maka keluaran Vod = 0. Hal ini disebabkan karena IB1 = IB2 sehingga IC1 = IC2 dan IE1 = IE2. Karena itu tegangan keluaran (VC1 dan VC2) harganya sama sehingga Vod = 0.

Apabila terdapat perbedaan antara sinyal V1 dan V2, maka Vid = V1 – V2. Hal ini akan menyebabkan terjadinya perbedaan antara IB1 dan IB2. Dengan begitu harga IC1 berbeda dengan IC2, sehingga harga Vod meningkat sesuai sesuai dengan besar penguatan Transistor.

Untuk memperbesar penguatan dapat digunakan dua tingkat penguat diferensial (cascade). Keluaran penguat diferensial dihubungkan dengan masukan penguat diferensial tingkatan berikutnya. Dengan begitu besar penguatan total (Ad) adalah hasil

Page 2: Teori Dasar Penguat Operasional

kali antara penguatan penguat diferensial pertama (Vd1) dan penguatan penguat diferensial kedua (Vd2).

Dalam penerapannya, penguat diferensial lebih disukai apabila hanya memiliki satu keluaran. Jadi yang diguankan adalah tegangan antara satu keluaran dan bumi (ground). Untuk dapat menghasilkan satu keluaran yang tegangannya terhadap bumi (ground) sama dengan tegangan antara dua keluaran (Vod), maka salah satu keluaran dari penguat diferensial tingkat kedua di hubungkan dengan suatu pengikut emitor (emitter follower).

Untuk memperoleh kinerja yang lebih baik, maka keluaran dari pengikut emiter dihubungkan dengan suatu konfigurasi yang disebut dengan totem-pole. Dengan menggunakan konfigurasi ini, maka tegangan keluaran X dapat berayun secara positif hingga mendekati harga VCC dan dapat berayun secara negatif hingga mendekati harga VEE.

Apabila seluruh rangkaian telah dihubungkan, maka rengkaian tersebut sudah dapat dikatakan sebagai penguat operasional (Operational Amplifier (Op Amp)). Penjelasan lebih lanjut mengenai hal ini akan dilakukan pada sub bab berikut.

 

2. Penguat Operasional

Penguat operasional (Op Amp) adalah suatu rangkaian terintegrasi yang berisi beberapa tingkat dan konfigurasi penguat diferensial yang telah dijelaskan di atas. Penguat operasional memilki dua masukan dan satu keluaran serta memiliki penguatan DC yang tinggi. Untuk dapat bekerja dengan baik, penguat operasional memerlukan tegangan catu yang simetris yaitu tegangan yang berharga positif (+V) dan tegangan yang berharga negatif (-V) terhadap tanah (ground). Berikut ini adalah simbol dari penguat operasional:

Page 3: Teori Dasar Penguat Operasional

  2.1. Karakteristik Ideal Penguat Operasional

Penguat operasional banyak digunakan dalam berbagai aplikasi karena beberapa keunggulan yang dimilikinya, seperti penguatan yang tinggi, impedansi masukan yang tinggi, impedansi keluaran yang rendah dan lain sebagainya. Berikut ini adalah karakteristik dari Op Amp ideal:

      Penguatan tegangan lingkar terbuka (open-loop voltage gain) AVOL = ¥-

      Tegangan ofset keluaran (output offset voltage) VOO = 0

      Hambatan masukan (input resistance) RI = ¥

      Hambatan keluaran (output resistance) RO = 0

      Lebar pita (band width) BW = ¥

      Waktu tanggapan (respon time) = 0 detik

      Karakteristik tidak berubah dengan suhu

Kondisi ideal tersebut hanya merupakan kondisi teoritis tidak mungkun dapat dicapai dalam kondisi praktis. Tetapi para pembuat Op Amp berusaha untuk membuat Op Amp yang memiliki karakteristik mendekati kondisi-kondisi di atas. Karena itu sebuah Op Amp yang baik harus memiliki karakteristik yang mendekati kondisi ideal. Berikut ini akan dijelaskan satu persatu tentang kondisi-kondisi ideal dari Op Amp.

Page 4: Teori Dasar Penguat Operasional

 2.1.1. Penguatan Tegangan Lingkar Terbuka

Penguatan tegangan lingkar terbuka (open loop voltage gain) adalah penguatan diferensial Op Amp pada kondisi dimana tidak terdapat umpan balik (feedback) yang diterapkan padanya seberti yang terlihat pada gambar 2.2. Secara ideal, penguatan tegangan lingkar terbuka adalah:

AVOL = Vo / Vid = - ¥

AVOL = Vo/(V1-V2)

= - ¥

Tanda negatif menandakan bahwa tegangan keluaran VO berbeda fasa dengan tegangan masukan Vid. Konsep tentang penguatan tegangan tak berhingga tersebut sukar untuk divisualisasikan dan tidak mungkin untuk diwujudkan. Suatu hal yang perlu untuk dimengerti adalah bahwa tegangan keluaran VO jauh lebih besar daripada tegangan masukan Vid. Dalam kondisi praktis, harga AVOL adalah antara 5000 (sekitar 74 dB) hingga 100000 (sekitar 100 dB).

Tetapi dalam penerapannya tegangan keluaran VO tidak lebih dari tegangan catu yang diberikan pada Op Amp. Karena itu Op Amp baik digunakan untuk menguatkan sinyal yang amplitudonya sangat kecil.

 2.1.2. Tegangan Ofset Keluaran

Tegangan ofset keluaran (output offset voltage) VOO adalah harga tegangan keluaran dari Op Amp terhadap tanah (ground) pada kondisi tegangan masukan Vid = 0. Secara ideal, harga VOO = 0 V. Op Amp yang dapat memenuhi harga tersebut disebut sebagai Op Amp dengan CMR (common mode rejection) ideal.

Tetapi dalam kondisi praktis, akibat adanya ketidakseimbangan dan ketidakidentikan dalam penguat diferensial dalam Op Amp tersebut, maka tegangan ofset VOO biasanya berharga sedikit di atas 0 V. Apalagi apabila tidak digunakan umpan balik maka harga VOO akan menjadi cukup besar untuk menimbulkan saturasi pada keluaran. Untuk mengatasi hal ini, maka perlu diterapakan tegangan koreksi pada Op Amp. Hal ini dilakukan agar pada saat tegangan masukan Vid = 0, tegangan keluaran VO juga = 0. Apabila hal ini tercapai,

 2.1.3. Hambatan Masukan

Hambatan masukan (input resistance) Ri dari Op Amp adalah besar hambatan di antara kedua masukan Op Amp. Secara ideal hambatan masukan Op Amp adalah tak berhingga. Tetapi dalam kondisi praktis, harga hambatan masukan Op Amp adalah antara 5 kW hingga 20 MW, tergantung pada tipe Op Amp. Harga ini biasanya diukur pada kondisi Op Amp tanpa umpan balik. Apabila suatu umpan balik negatif (negative feedback) diterapkan pada Op Amp, maka hambatan masukan Op Amp akan meningkat.

Page 5: Teori Dasar Penguat Operasional

Dalam suatu penguat, hambatan masukan yang besar adalah suatu hal yang diharapkan. Semakin besar hambatan masukan suatu penguat, semakin baik penguat tersebut dalam menguatkan sinyal yang amplitudonya sangat kecil. Dengan hambatan masukan yang besar, maka sumber sinyal masukan tidak terbebani terlalu besar.

2.1.4. Hambatan Keluaran

Hambatan Keluaran (output resistance) RO dari Op Amp adalah besarnya hambatan dalam yang timbul pada saat Op Amp bekerja sebagai pembangkit sinyal. Secara ideal harga hambatan keluaran RO Op Amp adalah = 0. Apabula hal ini tercapai, maka seluruh tegangan keluaran Op Amp akan timbul pada beban keluaran (RL), sehingga dalam suatu penguat, hambatan keluaran yang kecil sangat diharapkan.

Dalam kondisi praktis harga hambatan keluaran Op Amp adalah antara beberapa ohm hingga ratusan ohm pada kondisi tanpa umpan balik. Dengan diterapkannya umpan balik, maka harga hambatan keluaran akan menurun hingga mendekati kondisi ideal.

2.1.5. Lebar Pita

Lebar pita (band width) BW dari Op Amp adalah lebar frekuensi tertentu dimana tegangan keluaran tidak jatuh lebih dari 0,707 dari harga tegangan maksimum pada saat amplitudo tegangan masukan konstan. Secara ideal, Op Amp memiliki lebar pita yang tak terhingga. Tetapi dalam penerapannya, hal ini jauh dari kenyataan.

Sebagian besar Op Amp serba guan memiliki lebar pita hingga 1 MHz dan biasanya diterapkan pada sinyal dengan frekuensi beberapa kiloHertz. Tetapi ada juga Op Amp yang khusus dirancang untuk bekerja pada frekuensi beberapa MegaHertz. Op Amp jenis ini juga harus didukung komponen eksternal yang dapat mengkompensasi frekuensi tinggi agar dapat bekerja dengan baik.

2.1.6. Waktu Tanggapan

Waktu tanggapan (respon time) dari Op Amp adalah waktu yang diperlukan oleh keluaran untuk berubah setelah masukan berubah. Secara ideal harga waktu respon Op Amp adalah = 0 detik, yaitu keluaran harus berubah langsung pada saat masukan berubah.

Tetapi dalam prakteknya, waktu tanggapan dari Op Amp memang cepat tetapi tidak langsung berubah sesuai masukan. Waktu tanggapan Op Amp umumnya adalah beberapa mikro detik hal ini disebut juga slew rate. Perubahan keluaran yang hanya beberapa mikrodetik setelah perubahan masukan tersebut umumnya disertai dengan oveshoot yaitu lonjakan yang melebihi kondisi steady state. Tetapi pada penerapan biasa, hal ini dapat diabaikan.

2.1.7. Karakteristik Terhadap Suhu

Page 6: Teori Dasar Penguat Operasional

Sebagai mana diketahui, suatu bahan semikonduktor yang akan berubah karakteristiknya apabila terjadi perubahan suhu yang cukup besar. Pada Op Amp yang ideal, karakteristiknya tidak berubah terhadap perubahan suhu. Tetapi dalam prakteknya, karakteristik sebuah Op Amp pada umumnya sedikit berubah, walaupun pada penerapan biasa, perubahan tersebut dapat diabaikan.

 

2.2. Implementasi Penguat Operasional

Rangkaian yang akan dijelaskan dan dianalisa dalam tulisan ini akan menggunakan penguat operasional yang bekerja sebagai komparator dan sekaligus bekerja sebagai penguat. Berikut ini adalah konfigurasi Op Amp yang bekerja sebagai penguat: 

Gambar di atas adalah gambar sebuah penguat non inverting. Penguat tersebut dinamakan penguat noninverting karena masukan dari penguat tersebut adalah masukan noninverting dari Op Amp. Sinyal keluaran penguat jenis ini sefasa dengan sinyal keluarannya. Adapun besar penguatan dari penguat ini dapat dihitung dengan rumus: 

AV = (R1+R2)/R1

AV = 1 + R2/R1

Sehingga :

VO =1+(R2/R1) Vid

Page 7: Teori Dasar Penguat Operasional

Selain penguat noninverting, terdapat pula konfigurasi penguat inverting. Dari penamaannya, maka dapat diketahui bahwa sinyal masukan dari penguat jenis ini diterapkan pada masukan inverting dari Op Amp, yaitu masukan dengan tanda “-“. Sinyal masukan dari pengaut inverting berbeda fasa sebesar 1800 dengan sinyal keluarannya. Jadi jiak ada masukan positif, maka keluarannya adalah negatif. Berikut ini adalah skema dari penguat inverting:

Penguatan dari penguat di atas dapat dihitung dengan rumus:

  AV = - R2/R1

Sehingga: VO = - (R2/R1)

Vid

Teori Op-Amp. 

Operatinal Amplifier atau lebih dikenali sebagai Op-Amp adalah sejenis penguat yang berprestasi tinggi dengan mempunyai masukan Inverting dan Noninverting.

Page 8: Teori Dasar Penguat Operasional

Kebiasaannya ia dihasilkan dalam bentuk litar bersepadu. Prinsip kendalianya adalah sama dengan prinsip kendalalian penguat Differential amplifier. Dengan

menyambungkan beberapa perintang kepada IC Op-Amp, kita dapat mengubah gandaan voltan, lebar jalur frequency serta galangan ( Impedance ). Kini terdapat lebih 2000 jenis

Op-Amp yang biasa boleh didapati dan kebanyakanya adalah berkuasa rendah.

 

 

Op-Amp 741.

 

Pada tahun 1965, Fairchild Semiconductor memperkenalkan µA709 , IC pertama yang menggunakan keadah monolithic op amp. Walaupun ianya boleh dikatakan berjaya,

penguat op amp ini mempunyai banyak kelemahan. Kemudian ianya barulah diperbaharui dengan nombor siri µA741, dianatara kelebihanya ialah lebih murah dan lebih mudah digunakan. Kini banyak pengeluar yang mengeluarkan IC tersebut dengan

nombor siri 741. Sebagai contoh Motorola mengeluarkan MC1741, National Semiconductor mengeluarkan LM741, Texas Instruments mengeluarkan SN72741.

Kesemua penguat ini adalah sama disebabkan oleh ia mempunyai specifications yang sama.

 

 

Sifat - sifat Op-Amp ( Op-Amp Chracteristics ).

Diantara sifat yang dimiliki Opamp adalah :

 

Input Offset Voltage.

Adalah perbezaan voltan yang perlu dibekalkan pada masukan inverting atau noninverting supaya output offset voltage adalah kosong. Nilainya adalah sangat rendah sebagai contoh IC LM741C mempunyai nilai 2mV ( Input Offset Voltage boleh jadi negative atau positive ).

Input Bias Current.

Adalah arus purata yang mengalir pada punca masukan inverting dan noninverting nilainya adalah sangat rendah sebagai contoh IC LM741C mempunyai nilai 80nA.

Page 9: Teori Dasar Penguat Operasional

Input Offset Current.

Adalah perbezaan arus pada punca masukan sesuatu penguat Opamp. Nilainya juga adalah kecil sebagai contoh LM741C mempunyai nilai 20nA.

CMRR ( Commont Mode Rejection Ratio ).

Adalah salah satu sifat paling penting kelebihan opamp. CMRR boleh diibaratkan sebagai nisbah kebolehan opamp itu menguatkan isyarat yang berbeza voltanya diantara noninverting dan inverting berbanding isyarat sama voltan. Kebiasaanya ianya menpunyai nilai yang tinggi contohnya LM741C menpunyai nilai 90dB pada frequency rendah.

Ac Output Compliance.

Adalah nilai maksima voltan keluaran opamp tanpa herotan.

Short-Circuit Output Current.

Adalah nilai maksima arus keluaran pada opamp semasa litar pintas. Sebagai contoh nilai maksima IC 741C adalah 25mA, katakan anda melatakkan nilai perintang lebih kecil daripada galangan keluaran opamp maka janganlah harap ia dapat mengeluakan voltan keluaran yang besar walaupun penguat yang anda hasilkan mempunyai gandaan yang besar dan nilai voltan masukan yang berpadanan kerana arus keluaran maksima pada IC 741C adalah 25mA.

Frequency Response.

Adalah frequency penerimaan sesuatu penguat opamp.

Slew Rate.

Adalah sejenis herotan yang berlaku pada penguat Opamp.

  

Simulisasi Litar penguat Op-Amp. 

Simulisasi menggunakan Electronics Workbench EDA 5.0,

   

Simulisasi untuk f input = 100Hz dan Rf = 10K ohm.

Page 10: Teori Dasar Penguat Operasional

 

Rf = 10 Kohm, Vin = 100mVpp= 0.0354 Vrms dan f = 100Hz

 

 

Gambarajah disebelah menunjukkan jadual keputusan ujikaji secara simulisasi untuk litar penguat kendalian seperti dalam gambarajah diatas.

Page 11: Teori Dasar Penguat Operasional

Jadual keputusan ujian.

 

 

 

Simulisasi f = 100Hz dan R f = 100K ohm.

 

Rajah dibawah menunjukkan litar pengujian peguat Op-Amp dengan perbeazaan nilai Rf = 100K ohm

 

 

Rajah dibawah menunjukkan keputusan statistik ( Analog ) ujian.

Page 12: Teori Dasar Penguat Operasional

Keputusan ujian statistik.

 

Rajah Keputusan gelombang ujikaji.

 

 

Page 13: Teori Dasar Penguat Operasional

Analisa keputusan lebarjalur penguat adalah seperti dalam rajah dibawah. 

Graf frequency Vs Gain semasa Rf = 10 KHz.

 

Dari gambarajah frequency cutoff ( Break Frequency ) ketika gandaan menyusut sebanyak -3dB ( 0.707 ) adalah lebih kurang 10 Khz

 

  

Manakala analisa perubahan fasa pula adalah  

Page 14: Teori Dasar Penguat Operasional

Jadual keputusan analisa perubahan perbezaan fasa malawan frequency.

 

Op - Amp (Operational Amplifier) 22.10.08 | Elektronika, Rangkaian | 1 komentar Operational Amplifier atau di singkat op-amp merupakan salah satu komponen analog yang sering digunakan dalam berbagai aplikasi rangkaian elektronika. Aplikasi op-amp yang paling sering dipakai antara lain adalah rangkaian inverter, non-inverter, integrator dan differensiator. Pada pokok bahasan kali ini akan dipaparkan beberapa aplikasi op-amp yang paling dasar, yaitu rangkaian penguat inverting, non-inverting differensiator dan integrator.

I. Pengertian Dasar Op-AmpOperational Amplifier atau di singkat op-amp merupakan salah satu komponen analog yang sering digunakan dalam berbagai aplikasi rangkaian elektronika. Aplikasi op-amp yang paling sering dipakai antara lain adalah rangkaian inverter, non-inverter, integrator dan differensiator. Pada pokok bahasan kali ini akan dipaparkan beberapa aplikasi op-amp yang paling dasar, yaitu rangkaian penguat inverting, non-inverting differensiator dan integrator.

Pada Op-Amp memiliki 2 rangkaian feedback (umpan balik) yaitu feedback negatif dan feedback positif dimana Feedback negatif pada op-amp memegang peranan penting. Secara umum, umpanbalik positif akan menghasilkan osilasi sedangkan umpanbalik negatif menghasilkan penguatan yang dapat terukur.

Op-amp idealOp-amp pada dasarnya adalah sebuah differential amplifier (penguat diferensial) yang memiliki dua masukan. Input (masukan) op-amp ada yang dinamakan input inverting dan non-inverting. Op-amp ideal memiliki open loop gain (penguatan loop terbuka) yang tak terhingga besarnya. Seperti misalnya op-amp LM741 yang sering digunakan oleh banyak praktisi elektronika, memiliki karakteristik tipikal open loop gain sebesar 104 ~ 105. Penguatan yang sebesar ini membuat op-amp menjadi tidak stabil, dan penguatannya menjadi tidak terukur (infinite). Disinilah peran rangkaian negative feedback (umpanbalik negatif) diperlukan, sehingga op-amp dapat dirangkai menjadi aplikasi dengan nilai penguatan yang terukur (finite).

Impedasi input op-amp ideal mestinya adalah tak terhingga, sehingga mestinya arus input pada tiap

Page 15: Teori Dasar Penguat Operasional

masukannya adalah 0. Sebagai perbandingan praktis, op-amp LM741 memiliki impedansi input Zin = 106 Ohm. Nilai impedansi ini masih relatif sangat besar sehingga arus input op-amp LM741 mestinya sangat kecil.

Ada dua aturan penting dalam melakukan analisa rangkaian op-amp berdasarkan karakteristik op-amp ideal. Aturan ini dalam beberapa literatur dinamakan golden rule, yaitu :

Aturan 1: Perbedaan tegangan antara input v+ dan v- adalah nol (v+ - v- = 0 atau v+ = v- )Aturan 2: Arus pada input Op-amp adalah nol (i+ = i- = 0)

Inilah dua aturan penting op-amp ideal yang digunakan untuk menganalisa rangkaian op-amp.

II. Karakteristik Dasar Op-AmpSeperti yang telah disebutkan sebelumnya bahwa pada dasarnya Op-amp adalah sebuah differential amplifier (penguat diferensial), yang mana memiliki 2 input masukan yaitu input inverting (V-) dan input non-inverting(V+), Rangkaian dasar dari penguat diferensial dapat dilihat pada gambar 1 dibawah ini:

Gambar 1 : Penguat Diferensial

Pada rangkaian diatas, dapat diketahui tegangan output (Vout) adalah Vout = A(v1-v2) dengan A adalah penguatan dari penguat diferensial ini. Titik input v1 dikatakan sebagai input non-iverting, sebab tegangan vout satu phase dengan v1. Sedangkan sebaliknya titik v2 dikatakan input inverting sebab berlawanan phasa dengan tengangan vout.

Diagram Blok Op-ampOp-amp di dalamnya terdiri dari beberapa bagian, yang pertama adalah penguat diferensial, lalu ada tahap penguatan (gain), selanjutnya ada rangkaian penggeser level (level shifter) dan kemudian penguat akhir yang biasanya dibuat dengan penguat push-pull kelas B. Gambar-2(a) berikut menunjukkan diagram dari

op-amp yang terdiri dari beberapa bagian tersebut. gambar 2 (a) : Diagram Blok Op-Amp

Page 16: Teori Dasar Penguat Operasional

gambar 2 (b) : Diagram Schematic Simbol Op-Amp

Simbol op-amp adalah seperti pada gambar 2 (b) dengan 2 input, non-inverting (+) dan input inverting (-). Umumnya op-amp bekerja dengan dual supply (+Vcc dan –Vee) namun banyak juga op-amp dibuat dengan single supply (Vcc – ground). Simbol rangkaian di dalam op-amp pada gambar 2 (b) adalah parameter umum dari sebuah op-amp. Rin adalah resitansi input yang nilai idealnya infinit (tak terhingga). Rout adalah resistansi output dan besar resistansi idealnya 0 (nol). Sedangkan AOL adalah nilai penguatan open loop dan nilai idealnya tak terhingga.

Saat ini banyak terdapat tipe-tipe op-amp dengan karakterisktik yang spesifik. Op-amp standard type 741 dalam kemasan IC DIP 8 pin. Untuk tipe yang sama, tiap pabrikan mengeluarkan seri IC dengan insial atau nama yang berbeda. Misalnya dikenal MC1741 dari motorola, LM741 buatan National Semiconductor, SN741 dari Texas Instrument dan lain sebagainya. Tergantung dari teknologi pembuatan dan desain IC-nya, karakteristik satu op-amp dapat berbeda dengan op-amp lain.

Operational Amplifier - bagian kedua (analisa rangkaian op-amp

popular) Written by Aswan Hamonangan    Sunday, 18 January 2009 02:12

Operational Amplifier atau di singkat op-amp merupakan salah satu komponen analog yang popular digunakan dalam berbagai aplikasi rangkaian elektronika. Aplikasi op-amp popular yang paling sering dibuat antara lain adalah rangkaian inverter, non-inverter, integrator dan differensiator. Pada pokok bahasan kali ini akan dipaparkan beberapa aplikasi op-amp yang paling dasar, dimana rangkaian feedback (umpan balik) negatif memegang peranan penting. Secara umum, umpanbalik positif akan menghasilkan osilasi sedangkan umpanbalik negatif menghasilkan penguatan yang dapat terukur.

Op-amp ideal

Op-amp pada dasarnya adalah sebuah differential amplifier (penguat diferensial) yang memiliki dua masukan. Input (masukan) op-amp seperti yang telah dimaklumi ada yang dinamakan input inverting dan non-inverting. Op-amp ideal memiliki open loop gain (penguatan loop terbuka) yang tak terhingga besarnya. Seperti misalnya op-amp LM741 yang sering digunakan oleh banyak praktisi elektronika, memiliki karakteristik tipikal open loop gain sebesar 104 ~ 105. Penguatan yang sebesar ini membuat op-amp menjadi tidak stabil, dan penguatannya menjadi tidak terukur (infinite). Disinilah peran rangkaian negative feedback (umpanbalik negatif) diperlukan, sehingga op-amp dapat dirangkai menjadi aplikasi dengan nilai penguatan yang terukur (finite). Impedasi input op-amp ideal mestinya adalah tak terhingga, sehingga mestinya arus input pada tiap masukannya adalah 0. Sebagai perbandingan praktis, op-amp LM741 memiliki impedansi input Zin = 106 Ohm. Nilai impedansi ini masih relatif sangat besar sehingga arus input op-amp LM741 mestinya sangat kecil.

Ada dua aturan penting dalam melakukan analisa rangkaian op-amp berdasarkan karakteristik op-amp ideal. Aturan ini dalam beberapa literatur dinamakan golden rule, yaitu :

Aturan 1 : Perbedaan tegangan antara input v+ dan v- adalah nol (v+ - v- = 0 atau v+ = v- )

Aturan 2 : Arus pada input Op-amp adalah nol (i+ = i- = 0)

Inilah dua aturan penting op-amp ideal yang digunakan untuk menganalisa rangkaian op-amp.

Inverting amplifier

Rangkaian dasar penguat inverting adalah seperti yang ditunjukkan pada gambar 1, dimana sinyal masukannya dibuat melalui input inverting. Seperti tersirat pada namanya, pembaca tentu sudah menduga bahwa fase keluaran dari penguat inverting ini akan selalu berbalikan dengan inputnya.

Page 17: Teori Dasar Penguat Operasional

Pada rangkaian ini, umpanbalik negatif di bangun melalui resistor R2.

gambar 1 : penguat inverter

 

Input non-inverting pada rangkaian ini dihubungkan ke ground, atau v+ = 0. Dengan mengingat dan menimbang aturan 1 (lihat aturan 1), maka akan dipenuhi v- = v+ = 0. Karena nilainya = 0 namun tidak terhubung langsung ke ground, input op-amp v- pada rangkaian ini dinamakan virtual ground. Dengan fakta ini, dapat dihitung tegangan jepit pada R1 adalah vin – v- = vin dan tegangan jepit pada reistor R2 adalah vout – v- = vout. Kemudian dengan menggunakan aturan 2, di ketahui bahwa :

iin + iout = i- = 0, karena menurut aturan 2, arus masukan op-amp adalah 0.

iin + iout = vin/R1 + vout/R2 = 0

Selanjutnya

vout/R2 = - vin/R1 .... atau

vout/vin = - R2/R1

Jika penguatan G didefenisikan sebagai perbandingan tegangan keluaran terhadap tegangan masukan, maka dapat ditulis

…(1)

Impedansi rangkaian inverting didefenisikan sebagai impedansi input dari sinyal masukan terhadap ground. Karena input inverting (-) pada rangkaian ini diketahui adalah 0 (virtual ground) maka impendasi rangkaian ini tentu saja adalah Zin = R1.

Non-Inverting amplifier

Prinsip utama rangkaian penguat non-inverting adalah seperti yang diperlihatkan pada gambar 2 berikut ini. Seperti namanya, penguat ini memiliki masukan yang dibuat melalui input non-inverting. Dengan demikian tegangan keluaran rangkaian ini akan satu fasa dengan tegangan inputnya. Untuk menganalisa rangkaian penguat op-amp non inverting, caranya sama seperti menganalisa rangkaian inverting.

Page 18: Teori Dasar Penguat Operasional

gambar 2 : penguat non-inverter

 

Dengan menggunakan aturan 1 dan aturan 2, kita uraikan dulu beberapa fakta yang ada, antara lain :

vin = v+

v+ = v- = vin ..... lihat aturan 1.

Dari sini ketahui tegangan jepit pada R2 adalah vout – v- = vout – vin, atau iout = (vout-vin)/R2. Lalu tegangan jepit pada R1 adalah v- = vin, yang berarti arus iR1 = vin/R1.

Hukum kirchkof pada titik input inverting merupakan fakta yang mengatakan bahwa :

iout + i(-) = iR1

Aturan 2 mengatakan bahwa i(-) = 0 dan jika disubsitusi ke rumus yang sebelumnya, maka diperoleh

iout = iR1 dan Jika ditulis dengan tegangan jepit masing-masing maka diperoleh

(vout – vin)/R2 = vin/R1 yang kemudian dapat disederhanakan menjadi :

vout = vin (1 + R2/R1)

Jika penguatan G adalah perbandingan tegangan keluaran terhadap tegangan masukan, maka didapat penguatan op-amp non-inverting :

… (2)

Impendasi untuk rangkaian Op-amp non inverting adalah impedansi dari input non-inverting op-amp tersebut. Dari datasheet, LM741 diketahui memiliki impedansi input Zin = 108 to 1012

Ohm.

Integrator

Opamp bisa juga digunakan untuk membuat rangkaian-rangkaian dengan respons frekuensi, misalnya rangkaian penapis (filter). Salah satu contohnya adalah rangkaian integrator seperti yang ditunjukkan pada gambar 3. Rangkaian dasar sebuah integrator adalah rangkaian op-amp inverting, hanya saja rangkaian umpanbaliknya (feedback) bukan resistor melainkan menggunakan capasitor C.

Page 19: Teori Dasar Penguat Operasional

gambar 3 : integrator

Mari kita coba menganalisa rangkaian ini. Prinsipnya sama dengan menganalisa rangkaian op-amp inverting. Dengan menggunakan 2 aturan op-amp (golden rule) maka pada titik inverting akan didapat hubungan matematis :

iin = (vin – v-)/R = vin/R , dimana v- = 0 (aturan1)

iout = -C d(vout – v-)/dt = -C dvout/dt; v- = 0

iin = iout ; (aturan 2)

Maka jika disubtisusi, akan diperoleh persamaan :

iin = iout = vin/R = -C dvout/dt, atau dengan kata lain

...(3)

Dari sinilah nama rangkaian ini diambil, karena secara matematis tegangan keluaran rangkaian ini merupakan fungsi integral dari tegangan input. Sesuai dengan nama penemunya, rangkaian yang demikian dinamakan juga rangkaian Miller Integral. Aplikasi yang paling populer menggunakan rangkaian integrator adalah rangkaian pembangkit sinyal segitiga dari inputnya yang berupa sinyal kotak.

Dengan analisa rangkaian integral serta notasi Fourier, dimana

f = 1/t dan

…(4)

penguatan integrator tersebut dapat disederhanakan dengan rumus

…(5)

Sebenarnya rumus ini dapat diperoleh dengan cara lain, yaitu dengan mengingat rumus dasar penguatan opamp inverting

G = - R2/R1. Pada rangkaian integrator (gambar 3) tersebut diketahui

Dengan demikian dapat diperoleh penguatan integrator tersebut seperti persamaan (5) atau agar

Page 20: Teori Dasar Penguat Operasional

terlihat respons frekuensinya dapat juga ditulis dengan

…(6)

Karena respons frekuensinya yang demikian, rangkain integrator ini merupakan dasar dari low pass filter. Terlihat dari rumus tersebut secara matematis, penguatan akan semakin kecil (meredam) jika frekuensi sinyal input semakin besar.

Pada prakteknya, rangkaian feedback integrator mesti diparalel dengan sebuah resistor dengan nilai misalnya 10 kali nilai R atau satu besaran tertentu yang diinginkan. Ketika inputnya berupa sinyal dc (frekuensi = 0), kapasitor akan berupa saklar terbuka. Jika tanpa resistor feedback seketika itu juga outputnya akan saturasi sebab rangkaian umpanbalik op-amp menjadi open loop (penguatan open loop opamp ideal tidak berhingga atau sangat besar). Nilai resistor feedback sebesar 10R akan selalu menjamin output offset voltage (offset tegangan keluaran) sebesar 10x sampai pada suatu frekuensi cutoff tertentu.

Differensiator

Kalau komponen C pada rangkaian penguat inverting di tempatkan di depan, maka akan diperoleh rangkaian differensiator seperti pada gambar 4. Dengan analisa yang sama seperti rangkaian integrator, akan diperoleh persamaan penguatannya :

…(7)

Rumus ini secara matematis menunjukkan bahwa tegangan keluaran vout pada rangkaian ini adalah differensiasi dari tegangan input vin. Contoh praktis dari hubungan matematis ini adalah jika tegangan input berupa sinyal segitiga, maka outputnya akan mengahasilkan sinyal kotak.

gambar 4 : differensiator

Bentuk rangkain differensiator adalah mirip dengan rangkaian inverting. Sehingga jika berangkat dari rumus penguat inverting

G = -R2/R1

dan pada rangkaian differensiator diketahui :

maka jika besaran ini disubtitusikan akan didapat rumus penguat differensiator

…(8)

Dari hubungan ini terlihat sistem akan meloloskan frekuensi tinggi (high pass filter), dimana besar penguatan berbanding lurus dengan frekuensi. Namun demikian, sistem seperti ini akan menguatkan noise yang umumnya berfrekuensi tinggi. Untuk praktisnya, rangkain ini dibuat dengan penguatan dc sebesar 1 (unity gain). Biasanya kapasitor diseri dengan sebuah resistor yang nilainya

Page 21: Teori Dasar Penguat Operasional

sama dengan R. Dengan cara ini akan diperoleh penguatan 1 (unity gain) pada nilai frekuensi cutoff tertentu.

Penutup

Uraian diatas adalah rumusan untuk penguatan opamp ideal. Pada prakteknya ada beberapa hal yang mesti diperhatikan dan ditambahkan pada rangkaian opamp. Antara lain, Tegangan Ofset (Offset voltage), Arus Bias (Bias Current), Arus offset (offset current) dan lain sebagainya. Umumnya ketidak ideal-an op-amp dan bagaimana cara mengatasinya diterangkan pada datasheet opamp dan hal ini spesifik untuk masing-masing pabrikan.

-selesai-

Operational Amplifier Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil. Op-amp memiliki simbol seperti yang terlihat pada Gambar 1.  

 Gambar 1. Simbol Op-Amp.

 Secara garis besar, terdapat 4 pin utama dari Op-Amp, yaitu masukan inverting (tanda minus), masukan noninverting (tanda plus), masukan tegangan positif, masukan tegangan negatif dan pin keluaran. Di samping pin tersebut terdapat satu pin untuk adjustment. Beberapa penerapan Op-Amp diantaranya adalah penguat inverting, penguat noninverting, penguat penjumlah dan penguat selisih. 

Page 22: Teori Dasar Penguat Operasional

Penguat InvertingRangkaian untuk penguat inverting adalah seperti yang ditunjukan Gambar 2. Penguat ini memiliki ciri khusus yaitu sinyal keluaran memiliki beda fasa sebesar 180o.  

 Gambar 2. Penguat inverting.

 Rangkaian pada Gambar 2, menggunakan sumber tegangan simetri yaitu +VCC, -VCC dan ground. Jika rangkaian tersebut (dapat juga diterapkan untuk konfigurasi yang lain) menggunakan catuan tunggal yaitu +VCC dan ground, maka dapat menggunakan rangkaian seperti pada Gambar berikut. 

 

 Gambar 3. Penguat inverting menggunakan catuan tunggal.

  Penguatan rangkaian penguat inverting adalah berdasar pada persamaan berikut:

Page 23: Teori Dasar Penguat Operasional

  

Vout = -Vin(R2/R1) 

  

  Penguat Non InvertingPenguat noninverting memiliki ciri khusus yaitu sinyal output adalah sefasa dengan sinyal masukan. Rangkaian ini ditunjukan oleh Gambar 4. 

 

 Gambar 4. Rangkaian penguat non inverting.

 Penguatan dari rangkaian penguat jenis ini adalah berdasar pada persamaan berikut:  

Vout =Vin ((R1+R2)/R1)  Penguat PenjumlahPenguat penjumlah memiliki ciri khusus yaitu sinyal keluaran merupakan hasil penguatan dari penjumlahan sinyal masukannya. Pada bagian ini dicontohkan penguat penjumlah berdasarkan rangkaian penguat inverting. Sehingga sinyal keluaran adalah berbeda fasa sebesar 180o. Rangkaian ini ditunjukkan oleh Gambar 5.  

Page 24: Teori Dasar Penguat Operasional

 Gambar 5. Rangkaian penguat penjumlah.

 Penguatan dari rangkaian ini dihitung menggunakan persamaan berikut:  

Vout = (-Vin1(R5/R1))+(-Vin2(R5/R2))+(-Vin3(R5/R3))  Penguat SelisihRangkaian ini berfungsi untuk memperkuat sinyal selisih antara masukan satu dan dua. Rangkaian ini dapat dilihat pada Gambar 6.  

 Gambar 6. Rangkaian penguat selisih.

 Nilai penguatan dari rangkaian di atas, dapat dihitung menggunakan persamaan berikut:

Page 25: Teori Dasar Penguat Operasional

  

Vout = (Vin2 - Vin1)(R2/R1)dengan catatan, R1=R3, R2=R4