Soal Uas Mekanika Fluida

3
Soal UAS kelas D 1. Tentukan jenis aliran 2 dimensi dari persamaan di bawah ini ! u = 2x 2 + y 2 - x 2 y; v = x 3 + x(y 2 - 4y) 2. Tentukan jenis aliran 2 dimensi dari persamaan di bawah ini ! u = 2xy - x 2 y; v = 2xy - y 2 + x 2 3. Tentukan jenis aliran 3 dimensi dari persamaan di bawah ini ! u = x 2 + 2y + z 2 ; v = x - 2y + z; w= -2xz + y 2 + 2z 4. Tentukan hubungan dari koefisien A sampai J agar persamaan ini termasuk dalam persamaan aliran incompresible ! u = Ax + By + Cz v = Dx + Ey + Fz w = Gx + Hy + Jz 5. Assume that flow in the converging nozzle of Fig. P4.2 has the form V = V0[1 + (2x)/L]i. Compute (a) the fluid acceleration at x = L and (b) the time required for a fluid particle to travel from x = 0 to x = L. 6. A two-dimensional velocity field is given by V = (x 2 - y 2 + x)i - (2xy + y)j in arbitrary units. At (x, y) = (1, 2), compute (a) the accelerations a x and a y , (b) the velocity component in the direction = 40°, (c) the direction of maximum velocity, and (d) the direction of maximum acceleration.

description

soal uas mekanika fluida teknik mesin ub

Transcript of Soal Uas Mekanika Fluida

Soal UAS kelas D 1. Tentukan jenis aliran 2 dimensi dari persamaan di bawah ini ! u = 2x2 + y2 - x2y; v = x3 + x(y2 - 4y)2. Tentukan jenis aliran 2 dimensi dari persamaan di bawah ini ! u = 2xy - x2y; v = 2xy - y2 + x23. Tentukan jenis aliran 3 dimensi dari persamaan di bawah ini ! u = x2 + 2y + z2; v = x - 2y + z; w= -2xz + y2 + 2z4. Tentukan hubungan dari koefisien A sampai J agar persamaan ini termasuk dalam persamaan aliran incompresible !u = Ax + By + Czv = Dx + Ey + Fzw = Gx + Hy + Jz

5. Assume that flow in the converging nozzle of Fig. P4.2 has the form V = V0[1 + (2x)/L]i. Compute (a) the fluid acceleration at x = L and (b) the time required for a fluid particle to travel from x = 0 to x = L.

6. A two-dimensional velocity field is given by

V = (x2 - y2 + x)i - (2xy + y)j

in arbitrary units. At (x, y) = (1, 2), compute (a) the accelerations ax and ay, (b) the velocity component in the direction = 40, (c) the direction of maximum velocity, and (d) the direction of maximum acceleration.

7. Flow through the converging nozzle in Fig. P4.2 can be approximated by the one-dimensional velocity distribution

u = V0(1 + ) v 0 w 0

(a) Find a general expression for the fluid acceleration in the nozzle. (b) For the specific case V0 = 10 ft/s and L = 6 in, compute the acceleration, in gs, at the entrance and at the exit.8. Consider steady, incompressible flow through the device shown. Determine the magnitude and direction of the volume flow rate through port 3.

9. Fluid with 65 lbm/ft3 density is flowing steadily through the rectangular box shown. Given A1= 0.5 ft2, A2 = 0.1 ft2, A3= 0.6 ft2, 1 = 10ift/s, and 2 = 20jft/s, determine velocity 3.

10. Consider the steady flow in a water pipe joint shown in the diagram. The areas are: A1 = 0.2 m2, A2 = 0.2 m2, and A3 = 0.15 m2. In addition, fluid is lost out of a hole at 4 , estimated at a rate of 0.1 m3/s. The average speeds at sections 1 and 3 are V1 = 5 m/s and V3 = 12 m/s, respectively. Find the velocity at section 2 .