Slide Informasi IEE 802

download Slide Informasi IEE 802

of 26

Transcript of Slide Informasi IEE 802

  • 8/12/2019 Slide Informasi IEE 802

    1/26

    Informasi IEE 802.11n

    Rincian teknis tentang standar WLAN baru

  • 8/12/2019 Slide Informasi IEE 802

    2/26

    Agenda IEEE 802.11n

    Tujuan Desain IEEE 802.11n

    Perbaikan Physical Layer IEEE 802.11n

    Perbaikan MAC Layer IEEE 802.11n

    Bagaimana Menganalisis IEEE 802. 11n

    Pengukuran Throughput

    Gambaran Standard WLAN & Tipe Frame

    Kompabilitas dengan IEEE 802.11a/b/g

    Masa Depan IEEE 802.11n

  • 8/12/2019 Slide Informasi IEE 802

    3/26

    Tujuan Desain IEEE 802.11n

    IEEE 802.11n merupakan amandemen standard jaringannirkabel dari IEEE 802.11-2007

    Meningkatkan kecepatan transfer lapisan MAC hingga minimumthroughput Data 100 Mbps

    Kompatibel dengan IEEE WLAN seperti 802.11a/b/gMeningkatkan tingkat transmisi lapisan PHY diatas standardsebelumnya, seperti 802.11a /b/g dengan High Througput (HT)pilihan.

  • 8/12/2019 Slide Informasi IEE 802

    4/26

    How the goals are achieved

    A combination of technical functions at PHY and MAC layers are

    added to the existing 802.11 standard:

    Increasing the physical transfer rate with new modulationscheme and timing up to 600Mpbs

    New multi-streaming modulation technique using MIMO(Multiple input, multiple output antennas)

    Joining two adjacent channels with channel bonding

    Support for frame aggregation A-MPDU & A-MSDUNew Block Acknowledgments

  • 8/12/2019 Slide Informasi IEE 802

    5/26

    PHY layer improvements

    Modified OFDM

    The number of OFDM data sub-carries is increased from 48 to52 which improves the maximum throughput from 54 to 58.5Mbps

    Improved forward Error Correction

    FEC is a system of error control whereby the sender addsredundant data to allow the receiver to detect and correcterrors. coding rate is improved with 5/6 boosting the link ratefrom 58.5 to 65 Mbps.

  • 8/12/2019 Slide Informasi IEE 802

    6/26

    PHY layer improvments (cont.)

    Shorter Guard interval (GI)

    The GI between OFDM symbols is reduced from 800ns to 400ns

    and increases throughput from 65 to 72.2 Mbps

    Channel Bonding

    Doubling channel bandwidth from 20 to 40 MHz slightly morethan doubles rate from 72.2 to 150 Mbps

    Spatial MultiplexingSupport of up to four spatial streams (MIMO) increasesthroughput up to 4 times 150 to 600 Mbps

  • 8/12/2019 Slide Informasi IEE 802

    7/26

    Short Guard Interval (GI)

    OFDM carries the bits in so called symbols, the gap between thesymbols in the Guard Interval.

    Short Guard Interval can be used, if the multipath delay is lowand symbols from streams do not interfere.

  • 8/12/2019 Slide Informasi IEE 802

    8/26

    Channel Bonding

    802.11n supports bundling of two 20 MHz channels

    Select a control channel # and the channel offset Both channels

    must fit inside allowed frequency range A-Band does not allowto select channel # manually

  • 8/12/2019 Slide Informasi IEE 802

    9/26

    Channel Bonding 2.4 GHz Band

  • 8/12/2019 Slide Informasi IEE 802

    10/26

    Channel Bonding 5 GHz Band

  • 8/12/2019 Slide Informasi IEE 802

    11/26

    Channel Allocation 5 GHz Band

    Some channels only allowed for inhouse use

    New stricter FCC DFS2 rule valid off July 20, 2007

  • 8/12/2019 Slide Informasi IEE 802

    12/26

    Multiple-Input, Multiple-Output (MIMO)

    802.11n Supports Multi-Streaming Modulation

    MIMO is the most difficult aspect of 802.11n to understand.

    In MIMO, the transmitting and receiving stations each havemultiple RF chains with multiple antennas. The 802.11nstandard mandates at least two and up to four spatial streams.

    Multipath (RF signal reflection between transmitter andreceiver) is normally the enemy of perfomance, but with MIMOit is used constructively.

  • 8/12/2019 Slide Informasi IEE 802

    13/26

    Spatial Multiplexing

    A signal stream Is broken down into multiple signal streams,each is transmitted from a different antenna. Each of these

    spatial streams arrives at the receiver with differentamplitude (signal strength) and phase.

  • 8/12/2019 Slide Informasi IEE 802

    14/26

    MIMO Combinations

  • 8/12/2019 Slide Informasi IEE 802

    15/26

    Modulation Coding Scheme (MCS)

    802.11n Introduces a new MCS

    802.11 b/g adapts to channel conditions by selecting the highest

    of 12 possible rates from 1 to 54 Mbps.

    The 802.11n standard will allow some 77 possible MCS somecompulsory, some optional.

    MCS selects, based on RF channel conditions, the bestcombination of 8 data rates, bonded channels, multiple spatialstreams, different guard intervals and modulation types.

  • 8/12/2019 Slide Informasi IEE 802

    16/26

  • 8/12/2019 Slide Informasi IEE 802

    17/26

    MCS Rate Chart

  • 8/12/2019 Slide Informasi IEE 802

    18/26

    How to analyze 802.11n

  • 8/12/2019 Slide Informasi IEE 802

    19/26

    HT Capability Announcement in Beacons

  • 8/12/2019 Slide Informasi IEE 802

    20/26

    MAC layer improvements

    Frame Aggreation Mechanisms

    Aggregate-MAC Service Data Unit (A-MSDU) wraps multiple

    Ethernet frames in a 802.11 frame up to 8Kb

    Aggregate-MAC Protocol Data Unit (A-MPDU) allows bursting802.11 frames up to 64Kb

    A-MPDU is performed in the software where as A MSDU isperformed in the hardware

    Block Acknowledgment

    Block ACK effectively eliminates the need to initiate a newtransfer for every MPDU

  • 8/12/2019 Slide Informasi IEE 802

    21/26

    MSDU Aggregation

    Multiple Ethernet frames for a common destination arewrapped in a single 802.11 frame

    More efficient than A-MPDU as only one radio-and 802.11 MACheader is applied

    Whole frame must be retransmitted if no acknowledge

  • 8/12/2019 Slide Informasi IEE 802

    22/26

    A-MSDU Analysis

  • 8/12/2019 Slide Informasi IEE 802

    23/26

    MPDU Aggregation

    Multiple Ethernet frames for a common destination aretranslated to 802.11 format and set as burst

    Elements of an A-MPDUs burst can be acknowledge individuallywith one single Block-Aknowledge

    Only not-acknowledged A-MPDUs are retransmitted

  • 8/12/2019 Slide Informasi IEE 802

    24/26

    A-MPDU Analysis

  • 8/12/2019 Slide Informasi IEE 802

    25/26

    Block-Acknowledge Mechanism

    Rather than sending an individual acknowledge following eachdata frame, 802.11 introduces the technique of confirming a

    burst of up to 64 frames with a single Block ACK (BA) frame.

    The Block ACK even contains a bitmap to selectivelyacknowledge individual frames of a burst (comparable toselective acknowledges to TCP)

    The use of combined acknowledges can be requested bysending a Block ACK Request (BAR)

  • 8/12/2019 Slide Informasi IEE 802

    26/26

    Block-Ack Mechanism (cont.)