Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

17
i Klasifikasi Status Mikrosatelit Pada Sel Kanker Gastrointestinal Menggunakan Algoritma Convolutional Neural Networks Laporan Tugas Akhir Diajukan Untuk Memenuhi Persyaratan Guna Meraih Gelar Sarjana Informatika Universitas Muhammadiyah Malang Muhammad Rifal Alfarizy 201710370311219 Bidang Minat Data Sains PROGRAM STUDI INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH MALANG 2021

Transcript of Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

Page 1: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

i

Klasifikasi Status Mikrosatelit Pada Sel Kanker Gastrointestinal

Menggunakan Algoritma Convolutional Neural Networks

Laporan Tugas Akhir

Diajukan Untuk Memenuhi

Persyaratan Guna Meraih Gelar Sarjana

Informatika Universitas Muhammadiyah Malang

Muhammad Rifal Alfarizy

201710370311219

Bidang Minat

Data Sains

PROGRAM STUDI INFORMATIKA

FAKULTAS TEKNIK

UNIVERSITAS MUHAMMADIYAH MALANG

2021

Page 2: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

ii

LEMBAR PERSETUJUAN

Klasifikasi Status Mikrosatelit Pada Sel Kanker Gastrointestinal

Menggunakan Algoritma Convolutional Neural Networks

TUGAS AKHIR

Sebagai Persyaratan Guna Meraih Gelar Sarjana Strata Ⅰ

Informatika Universitas Muhammadiyah Malang

Menyetujui,

Malang, 26 Juni 2021

Pembimbing Ⅰ Pembimbing Ⅱ

Agus Eko Minarno, S.Kom., M.Kom.

NIDN: 0729118203

Yufis Azhar, S.Kom.,M.Kom.

NIDN: 0728088701

Page 3: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...
Page 4: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...
Page 5: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

viii

KATA PENGANTAR

Dengan memanjatkan puji syukur kehadirat Allah SWT. Atas limpahan rahmat

dan hidayah-NYA sehingga peneliti dapat menyelesaikan tugas akhir yang berjudul

“KLASIFIKASI STATUS MIKROSATELIT PADA SEL KANKER

GASTROINTESTINAL MENGGUNAKAN ALGORITMA Convolutional

Neural Networks”

Di dalam tulisan ini disajikan pokok-pokok bahasan yang meliputi pengaruh

model yang diusulkan, teknik augmentasi yang diusulkan dan modifikasi

penempatan dan jumlah layer dropout terhadap klasifikasi data status mikrosatelit

sel kanker gastrointestinal dengan menggunakan algoritma CNN.

Peneliti menyadari sepenuhnya bahwa dalam penulisan tugas akhir ini masih

banyak kekurangan dan keterbatasan. Oleh sebab itu peneliti mengharapkan saran

yang membangun agar tulisan ini bermanfaat bagi perkembangan ilmu

pengetahuan.

Malang, 26 Juni 2021

Muhammad Rifal Alfarizy

Page 6: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

ix

DAFTAR ISI

HALAMAN JUDUL

LEMBAR PERSETUJUAN ................................................................................... ii

LEMBAR PENGESAHAN ................................................................................... iii

LEMBAR PERNYATAAN ................................................................................... iv

ABSTRAK ...............................................................................................................v

ABSTRACT ........................................................................................................... vi

LEMBAR PERSEMBAHAN ............................................................................... vii

KATA PENGANTAR ......................................................................................... viii

DAFTAR ISI .......................................................................................................... ix

DAFTAR GAMBAR ............................................................................................ xii

DAFTAR TABEL ................................................................................................ xiv

BAB Ⅰ PENDAHULUAN ........................................................................................1

1.1. Latar Belakang ..........................................................................................1

1.2. Rumusan Masalah .....................................................................................4

1.3. Tujuan Penelitian .......................................................................................4

1.4. Batasan Masalah ........................................................................................4

BAB Ⅱ TINJAUAN PUSTAKA ..............................................................................6

2.1. Studi Literatur ...........................................................................................6

2.2. Microsatellite Instability ...........................................................................7

2.3. Convolutional Neural Networks ................................................................7

2.6.1. Input Layer .........................................................................................8

2.6.2. Convolutional Layer ..........................................................................8

2.6.3. Batch Normalization Layer ................................................................9

2.6.4. Pooling Layer .....................................................................................9

2.6.5. Dropout Layer ..................................................................................10

Page 7: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

x

2.6.6. Fully Connected Layer .....................................................................10

2.4. VGG19 ....................................................................................................11

2.5. Pengujian Klasifikasi Model ...................................................................11

BAB Ⅲ METODE PENELITIAN .........................................................................14

3.1. Tahapan Penelitian ..................................................................................14

3.2. Lingkungan Kerja ....................................................................................15

3.1. Dataset .....................................................................................................15

3.3.1. Pembagian Dataset ...........................................................................16

3.4. Preprocessing ..........................................................................................16

3.4.1. Augmentasi Data ..............................................................................16

3.5. Hyperparameter Tuning ..........................................................................17

3.6. Model Arsitektur .....................................................................................17

3.7. Skenario Pengujian ..................................................................................19

BAB Ⅵ HASIL DAN PEMBAHASAN ...............................................................20

4.1. Augmentasi Data .....................................................................................20

4.2. Hyperparameter Tuning ..........................................................................21

4.3. Pengujian Data Sel Kanker Usus ............................................................24

4.3.1. Skenario 1 Model Usulan .................................................................25

4.3.2. Skenario 2 Model Usulan + Augmentasi .........................................27

4.3.3. Skenario 3 Model Usulan + Augmentasi + Dropout APL ...............28

4.3.4. Evaluasi Hasil ..................................................................................30

4.4. Pengujian Data Sel Kanker Lambung .....................................................36

4.4.1. Evaluasi Hasil ..................................................................................38

4.5. Perbandingan Hasil .................................................................................40

BAB Ⅴ KESIMPULAN .........................................................................................43

5.1. Kesimpulan ..............................................................................................43

Page 8: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

xi

5.2. Saran ........................................................................................................44

DAFTAR PUSTAKA ............................................................................................45

LAMPIRAN ...........................................................................................................50

Page 9: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

xii

DAFTAR GAMBAR

Gambar 1. Proses Konvolusi ....................................................................................8

Gambar 2. Max Pooling ...........................................................................................9

Gambar 3. Average Pooling .....................................................................................9

Gambar 4. Proses Dropout .....................................................................................10

Gambar 5. Struktur Model VGG19 .......................................................................11

Gambar 6. Grafik AUC-ROC ................................................................................13

Gambar 7. Diagram Alur Penelitian ......................................................................14

Gambar 8. Sample Data Sel Kanker Usus .............................................................15

Gambar 9. Sample Data Sel Kanker Lambung ......................................................15

Gambar 10. Source Code Augmetnasi Data ..........................................................20

Gambar 11. Hasil Augmentasi Data ......................................................................20

Gambar 12. Source Code Hyperparameter Tuning ................................................23

Gambar 13. Source Code Parameter Pengujian Model COAD .............................25

Gambar 14. Source Code Struktur Model Skenario 1 COAD ...............................26

Gambar 15. Source Code Struktur Model Skenario 2 COAD ...............................28

Gambar 16. Source Code Struktur Model Skenario 3 COAD ...............................30

Gambar 17. Source Code Grafik Akurasi dan Loss COAD ..................................30

Gambar 18. Grafik Skenario 1 COAD, (a) Grafik Akurasi dan (b) Grafik Loss ...31

Gambar 19. Grafik Skenario 2 COAD, (a) Grafik Akurasi dan (b) Grafik Loss ...31

Gambar 20. Grafik Skenario 3 COAD, (a) Grafik Akurasi dan (b) Grafik Loss ...32

Gambar 21. Source Code Model Evaluate COAD ................................................32

Gambar 22. Source Code Confusion Matrix COAD .............................................33

Gambar 23. Hasil Confusion Matrix COAD .........................................................33

Gambar 24. Source Code Classification Report COAD ........................................33

Gambar 25. Source Code Grafik Nilai AUCROC COAD .....................................34

Gambar 26. Grafik AUC Skenario Dataset COAD. (a) Skenario 1, (b) Skenario 2

dan (c) Skenario 3 ..................................................................................................35

Gambar 27. Source Code List Callbacks ...............................................................37

Gambar 28. Source Code Grafik Akurasi dan Loss STAD ...................................38

Gambar 29. Grafik Skenario STAD, (a) Grafik Akurasi dan (b) Grafik Loss .......39

Page 10: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

xiii

Gambar 30. Hasil Confusion Matrix STAD ..........................................................39

Gambar 31. Grafik Nilai AUCROC STAD ...........................................................39

Page 11: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

xiv

DAFTAR TABEL

Tabel 1. Penelitian Terdahulu yang Sejenis ............................................................ 6

Tabel 2. Confusion Matrix .................................................................................... 12

Tabel 3. Detail Pembagian Dataset ....................................................................... 16

Tabel 4. Parameter Teknik Augmentasi ................................................................ 17

Tabel 5. Parameter pembanding untuk Hyperparameter Tuning .......................... 17

Tabel 6. Rancangan Arsitektur Model .................................................................. 18

Tabel 7. Hasil Hyperparameter Tuning ............................................................... 23

Tabel 8. Rangkuman Hasil Klasifikasi Dataset COAD ........................................ 35

Tabel 9. Rangkuman Hasil Klasifikasi Dataset STAD ......................................... 40

Tabel 10. Perbandingan Penelitian Data COAD ................................................... 40

Tabel 11. Perbandingan Penelitian Data STAD ................................................... 41

Page 12: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

45

DAFTAR PUSTAKA

[1] D. A. Chistiakov, B. Hellemans, and F. A. M. Volckaert, “Microsatellites

and their genomic distribution, evolution, function and applications: A

review with special reference to fish genetics,” Aquaculture, vol. 255, no. 1–

4, pp. 1–29, 2006, doi: 10.1016/j.aquaculture.2005.11.031.

[2] M. Bistro, D. Arango, A. Karhu, and L. A. Aaltonen, “Candidate driver genes

in microsatellite-unstable colorectal cancer,” vol. 1566, no. May 2011, pp.

1558–1566, 2012, doi: 10.1002/ijc.26167.

[3] G. Yang and Z. Zai, “Correlations between microsatellite instability and the

biological behaviour of tumours,” J. Cancer Res. Clin. Oncol., no.

0123456789, 2019, doi: 10.1007/s00432-019-03053-4.

[4] S. Velho, M. S. Fernandes, M. Leite, C. Figueiredo, and R. Seruca, “Causes

and consequences of microsatellite instability in gastric carcinogenesis,”

World J. Gastroenterol., vol. 20, no. 44, pp. 16433–16442, 2014, doi:

10.3748/wjg.v20.i44.16433.

[5] C. G. Kim et al., “Effects of microsatellite instability on recurrence patterns

and outcomes in colorectal cancers,” Br. J. Cancer, vol. 115, no. 1, pp. 25–

33, 2016, doi: 10.1038/bjc.2016.161.

[6] Y. Fu et al., “A qualitative transcriptional signature for predicting

microsatellite instability status of right-sided Colon Cancer,” pp. 1–9, 2019.

[7] A. Echle et al., “Clinical-Grade Detection of Microsatellite Instability in

Colorectal Tumors by Deep Learning,” Gastroenterology, vol. 159, no. 4,

pp. 1406-1416.e11, 2020, doi: 10.1053/j.gastro.2020.06.021.

[8] T. Wang, W. Lu, F. Yang, and L. Liu, “MICROSATELLITE INSTABILITY

PREDICTION OF UTERINE CORPUS ENDOMETRIAL CARCINOMA

BASED ON H & E HISTOLOGY WHOLE-SLIDE IMAGING Hepatology

Unit and Department of Infectious Diseases , Nanfang Hospital , Department

of Radiation Oncology , Nanfang Hospital , Ten,” pp. 1289–1292, 2020.

[9] O. J. Skrede et al., “Deep learning for prediction of colorectal cancer

outcome: a discovery and validation study,” Lancet, vol. 395, no. 10221, pp.

350–360, 2020, doi: 10.1016/S0140-6736(19)32998-8.

Page 13: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

46

[10] L. Wang, Y. Jiao, Y. Qiao, N. Zeng, and R. Yu, “A novel approach combined

transfer learning and deep learning to predict TMB from histology image,”

Pattern Recognit. Lett., vol. 135, pp. 244–248, 2020, doi:

10.1016/j.patrec.2020.04.008.

[11] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H.

Greenspan, “GAN-based synthetic medical image augmentation for

increased CNN performance in liver lesion classification,” Neurocomputing,

vol. 321, pp. 321–331, 2018, doi: 10.1016/j.neucom.2018.09.013.

[12] Y. D. Zhang, C. Pan, J. Sun, and C. Tang, “Multiple sclerosis identification

by convolutional neural network with dropout and parametric ReLU,” J.

Comput. Sci., vol. 28, pp. 1–10, 2018, doi: 10.1016/j.jocs.2018.07.003.

[13] M. Macenko et al., “A method for normalizing histology slides for

quantitative analysis,” Proc. - 2009 IEEE Int. Symp. Biomed. Imaging From

Nano to Macro, ISBI 2009, pp. 1107–1110, 2009, doi:

10.1109/ISBI.2009.5193250.

[14] Z. Wang et al., “Plasma-based microsatellite instability detection strategy to

guide immune checkpoint blockade treatment,” J. Immunother. Cancer, vol.

8, no. 2, pp. 1–8, 2020, doi: 10.1136/jitc-2020-001297.

[15] U. Blazhko, V. Shapaval, V. Kovalev, and A. Kohler, “Comparison of

augmentation and pre-processing for deep learning and chemometric

classification of infrared spectra,” Chemom. Intell. Lab. Syst., vol. 215, no.

May, p. 104367, 2021, doi: 10.1016/j.chemolab.2021.104367.

[16] Y. S. Perl et al., “Data augmentation based on dynamical systems for the

classification of brain states,” Chaos, Solitons and Fractals, vol. 139, p.

110069, 2020, doi: 10.1016/j.chaos.2020.110069.

[17] I. Kandel and M. Castelli, “The effect of batch size on the generalizability of

the convolutional neural networks on a histopathology dataset,” ICT

Express, vol. 6, no. 4, pp. 312–315, 2020, doi: 10.1016/j.icte.2020.04.010.

[18] W. Zhang, L. Jin, E. Song, and X. Xu, “Removal of impulse noise in color

images based on convolutional neural network,” Appl. Soft Comput. J., vol.

82, p. 105558, 2019, doi: 10.1016/j.asoc.2019.105558.

[19] M. Zarie, A. Jahedsaravani, and M. Massinaei, “Flotation froth image

Page 14: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

47

classification using convolutional neural networks,” Miner. Eng., vol. 155,

no. January, p. 106443, 2020, doi: 10.1016/j.mineng.2020.106443.

[20] T. Shanthi, R. S. Sabeenian, and R. Anand, “Automatic diagnosis of skin

diseases using convolution neural network,” Microprocess. Microsyst., vol.

76, p. 103074, 2020, doi: 10.1016/j.micpro.2020.103074.

[21] S. Jahan, “Deep Indian Delicacy: Classification of Indian Food Images using

Convolutional Neural Networks,” Int. J. Res. Appl. Sci. Eng. Technol., vol.

6, no. 3, pp. 2653–2660, 2018, doi: 10.22214/ijraset.2018.3428.

[22] J. Wang, S. Li, Z. An, X. Jiang, W. Qian, and S. Ji, “Batch-normalized deep

neural networks for achieving fast intelligent fault diagnosis of machines,”

Neurocomputing, vol. 329, no. xxxx, pp. 53–65, 2019, doi:

10.1016/j.neucom.2018.10.049.

[23] D. Macêdo, C. Zanchettin, A. L. I. Oliveira, and T. Ludermir, “Enhancing

batch normalized convolutional networks using displaced rectifier linear

units: A systematic comparative study,” Expert Syst. Appl., vol. 124, pp.

271–281, 2019, doi: 10.1016/j.eswa.2019.01.066.

[24] S. Fan et al., “On line detection of defective apples using computer vision

system combined with deep learning methods,” J. Food Eng., vol. 286, no.

November 2019, p. 110102, 2020, doi: 10.1016/j.jfoodeng.2020.110102.

[25] M. Yani, B. Irawan, and C. Setiningsih, “Application of Transfer Learning

Using Convolutional Neural Network Method for Early Detection of Terry’s

Nail,” J. Phys. Conf. Ser., vol. 1201, no. 1, 2019, doi: 10.1088/1742-

6596/1201/1/012052.

[26] Z. Liu, J. Du, M. Wang, and S. S. Ge, “ADCM: attention dropout

convolutional module,” Neurocomputing, vol. 394, pp. 95–104, 2020, doi:

10.1016/j.neucom.2020.02.007.

[27] U. M. Malang, “Klasifikasi COVID-19 menggunakan Filter Gabor dan CNN

dengan Hyperparameter Tuning,” vol. 9, no. 3, pp. 493–504, 2021.

[28] Z. Fang, J. Liu, Y. Li, Y. Qiao, and H. Lu, “Improving visual question

answering using dropout and enhanced question encoder,” Pattern

Recognit., vol. 90, pp. 404–414, 2019, doi: 10.1016/j.patcog.2019.01.038.

[29] A. Ben Khalifa and H. Frigui, “Multiple Instance Fuzzy Inference Neural

Page 15: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

48

Networks,” no. January, 2016, [Online]. Available:

http://arxiv.org/abs/1610.04973.

[30] A. Das, H. Yenala, M. Chinnakotla, and M. Shrivastava, “Together we stand:

Siamese networks for similar question retrieval,” 54th Annu. Meet. Assoc.

Comput. Linguist. ACL 2016 - Long Pap., vol. 1, pp. 378–387, 2016, doi:

10.18653/v1/p16-1036.

[31] C. Bai, L. Huang, X. Pan, J. Zheng, and S. Chen, “Optimization of deep

convolutional neural network for large scale image retrieval,”

Neurocomputing, vol. 303, pp. 60–67, 2018, doi:

10.1016/j.neucom.2018.04.034.

[32] W. Setiawan and F. Damayanti, “Layers Modification of Convolutional

Neural Network for Pneumonia Detection,” J. Phys. Conf. Ser., vol. 1477,

no. 5, 2020, doi: 10.1088/1742-6596/1477/5/052055.

[33] K. Deeba and B. Amutha, “ResNet - deep neural network architecture for

leaf disease classification,” Microprocess. Microsyst., p. 103364, 2020, doi:

10.1016/j.micpro.2020.103364.

[34] I. Düntsch and G. Gediga, “Indices for rough set approximation and the

application to confusion matrices,” Int. J. Approx. Reason., vol. 118, pp.

155–172, 2020, doi: 10.1016/j.ijar.2019.12.008.

[35] S. Qummar et al., “A Deep Learning Ensemble Approach for Diabetic

Retinopathy Detection,” IEEE Access, vol. 7, pp. 150530–150539, 2019, doi:

10.1109/ACCESS.2019.2947484.

[36] Y. S. Chen, P. P. Chong, and M. Y. Tong, “Mathematical and computer

modelling of the Pareto principle,” Math. Comput. Model., vol. 19, no. 9, pp.

61–80, 1994, doi: 10.1016/0895-7177(94)90041-8.

[37] H. B. Harvey and S. T. Sotardi, “The Pareto Principle,” J. Am. Coll. Radiol.,

vol. 15, no. 6, p. 931, 2018, doi: 10.1016/j.jacr.2018.02.026.

[38] S. Pandey, P. R. Singh, and J. Tian, “An image augmentation approach using

two-stage generative adversarial network for nuclei image segmentation,”

Biomed. Signal Process. Control, vol. 57, p. 101782, 2020, doi:

10.1016/j.bspc.2019.101782.

[39] P. L. Neary, “Automatic hyperparameter tuning in deep convolutional neural

Page 16: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...

49

networks using asynchronous reinforcement learning,” Proc. - 2018 IEEE

Int. Conf. Cogn. Comput. ICCC 2018 - Part 2018 IEEE World Congr. Serv.,

pp. 73–77, 2018, doi: 10.1109/ICCC.2018.00017.

[40] M. P. Ranjit, G. Ganapathy, K. Sridhar, and V. Arumugham, “Efficient deep

learning hyperparameter tuning using cloud infrastructure: Intelligent

distributed hyperparameter tuning with Bayesian optimization in the cloud,”

IEEE Int. Conf. Cloud Comput. CLOUD, vol. 2019-July, pp. 520–522, 2019,

doi: 10.1109/CLOUD.2019.00097.

Page 17: Klasifikasi Status Mikrosatelit Pada Sel Kanker ...