Jobsheet Praktikum 1 - Teknik Elektro – UM

166

Transcript of Jobsheet Praktikum 1 - Teknik Elektro – UM

1

Lab Teknik Digital

Jobsheet Praktikum

REGISTER

A. Tujuan Kegiatan Praktikum 1-4 :

Setelah mempraktekkan Topik ini, anda diharapkan dapat :

1. Mengetahui fungsi dan prinsip kerja register.

2. Menerapkan register SISO, PISO, SIPO dan PIPO dalam rangkaian

elektronika digital.

3. Mengetahui operasi dan aplikasi ring shift counter dan Johnson shift

counter.

4. Mengetahui konsep three-state (logika 3-keadaan) pada komponen

elektronika digital.

B. Dasar Teori Kegiatan Praktikum 1-4

Register merupakan komponen elektronika digital yang berfungsi untuk

menyimpan secara sementara sekumpulan bit. Bit data yang dioperasikan dalam

sistem digital kadang-kadang perlu disimpan, dipindahkan, atau digeser ke kiri atau

ke kanan satu posisi atau lebih. Register geser dapat menangani perpindahan bit

data paralel dan serial, serta dapat digunakan untuk mengonversi dari paralel ke

serial dan serial ke paralel.

Ada 4 macam register geser, yaitu:

1. Serial-In, Serial-Out (SISO)

2. Serial-In, Parallel-Out (SIPO)

3. Parallel-In, Serial-Out (PISO)

4. Parallel-In Parallel-Out (PIPO)

IC 74LS164 merupakan register geser 8-bit serial-in, parallel out. IC ini

mempunyai 2 masukan seri yaitu A dan B yang secara sinkron dibaca oleh clock

yang dipicu pada tepi positif (CLK). Selain itu ada kaki Master-Reset ( MR ) yang

me-reset kedelapan flip-flop ketika diberi logika LOW. Setiap pulsa clock tepi

positif akan menggeser bit data 1 posisi ke kanan sehingga bit data pertama yang

dimasukkan akan dikeluarkan pada Q7 setelah delapan pulsa clock. Kaki 7

dihubungkan ke GND dan kaki 14 dihubungkan ke +5V. Susunan kaki IC 74LS164

dapat dilihat dalam Gambar 4.1.

2

Lab Teknik Digital

Jobsheet Praktikum

Gambar 1.1 Susunan Kaki IC 74LS164

IC 74LS165 merupakan register geser 8-bit serial/parallel-in, serial-out. IC

ini mempunyai kaki masukan seri SER dan 8 masukan paralel yaitu P0 – P7 serta 2

luaran serial Q7 dan komplemennya Q7 yang merupakan luaran flip-flop paling

kanan. Untuk memasukkan 8 bit masukan secara paralel, kaki PL harus berlogika

LOW. Selain itu terdapat 2 masukan clock, yaitu CLK1 yang dipicu pada tepi positif

untuk menggeser bit data 1 posisi ke kanan dan CLK2 yang merupakan clock enable

aktif-LOW untuk memulai/menghentikan operasi geser dengan meng-enable atau

men-disable clock. Kaki 8 dihubungkan ke GND dan kaki 16 dihubungkan ke +5V.

Susunan kaki IC 74LS165 dapat dilihat dalam Gambar 4.2.

Gambar 1.2 Susunan Kaki IC 74LS165

IC 74LS373 merupakan latch oktal yang terdiri dari 8 D-flip-flop dan 8

buffer (penyangga) tri-state yang digunakan untuk menahan data 8-bit. Komponen

ini mempunyai 8 masukan, yaitu D0 – D7 dan 8 luaran, yaitu Q0 –Q7. Selain itu

ada juga masukan LE (latch enable - aktif-HIGH) yang dihubungkan dengan

masukan clock flip-flop dan masukan OE (output enable - aktif-LOW) untuk

mengijinkan buffer tri-state agar mengeluarkan data pada luaran. Kaki 10

dihubungkan ke GND dan kaki 20 dihubungkan ke +5V. Susunan kaki IC 74LS373

dapat dilihat dalam Gambar 4.3.

A1

B2

Q03

Q14

Q25

Q36

Q410

Q511

Q612

Q713

CLK8

MR9

VCC14

GND7

74LS164

SER10

P011

P112

P213

P314

P43

P54

P65

P76

CLK12

CLK215

PL1

Q79

Q77

VCC16

GND8

74LS165

3

Lab Teknik Digital

Jobsheet Praktikum

Gambar 1.3 Susunan Kaki IC 74LS373

D. Lembar Praktikum

1. Alat dan Bahan

IC 74164 1 buah

IC 74165 1 buah

IC 7414 1 buah

IC 74373 1 buah

Resistor 10K Ω 9 buah

Resistor 220 Ω 8 buah

Resistor 100 Ω 1 buah

Kapasitor 0,47 µF 1 buah

LED 8 buah

Project Board 1 buah

Power Supply DC 1 buah

Pinset 1 buah

Dipswitch 1 buah

Push Button 1 buah

Multimeter 1 buah

Jumper secukupnya

D03

Q02

D14

Q15

D27

Q26

D38

Q39

D413

Q412

D514

Q515

D617

Q616

D718

Q719

OE1

LE11

VCC20

GND10

PIN74373

4

Lab Teknik Digital

Jobsheet Praktikum

2. Kesehatan dan Keselamatan kerja

(a) Periksalah kelengkapan alat dan bahan sebelum digunakan.

(b) Pelajari dan pahami petunjuk praktikum pada lembar kegiatan

praktikum.

(c) Pastikan tegangan keluaran catu daya sesuai yang dibutuhkan.

(d) Sebelum catu daya dihidupkan hubungi dosen pendamping untuk

mengecek kebenaran rangkaian.

(e) Yakinkan tempat anda aman dari sengatan listrik.

(f) Hati-hati dalam penggunaan peralatan praktikum !

5

Lab Teknik Digital

Jobsheet Praktikum

3. Langkah percobaan 1

1. Rakitlah rangkaian seperti Gambar 1.4 pada project board. Hubungkan

kaki SER pada luaran rangkaian DIPSWITCH.

2. Ukur catu daya DC sebesar +5V. Matikan catu daya dan hubungkan ke

rangkaian.

3. Hidupkan catu daya. Cek luaran rangkaian DIPSWITCH, catat sisi

saklar ke sebelah mana yang mengeluarkan tegangan +5V (logika 1)

serta tegangan 0V (logika 0). Matikan catu daya.

Catatan: - LED nyala berarti logika 1 dan LED mati

berarti logika 0.

- Kondisi luaran rangkaian push button:

1 jika dilepas, 0 jika ditekan, saat ditekan,

saat dilepas

Gambar 1.4 Rangkaian untuk Percobaan Register Geser SISO

4. Beri logika 0 pada kaki CLK2 dan logika 1 pada kaki PL dan hidupkan

catu daya.

5. Beri logika 1 pada kaki SER, tekan push button, dan catat kondisi LED

pada kaki Q7 dan Q7 pada baris pertama Tabel 4.1.

6. Ulangi langkah 5 sesuai dengan logika lain seperti yang tertera dalam

Tabel 4.1 untuk baris 2 dan seterusnya.

SER10

P011

P112

P213

P314

P43

P54

P65

P76

CLK12

CLK215

PL1

Q79

Q77

74LS165

3 4

B 74LS14

1 2

A 74LS1410k

100

0,47uF

SW-PB

+5V

1

0

Input

220LED

Output

6

Lab Teknik Digital

Jobsheet Praktikum

Tabel 1.1 Data Hasil Percobaan Register Geser SISO

MASUKAN LUARAN

SER CLK1 Q7 Q7

1

0

0

1

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

7

Lab Teknik Digital

Jobsheet Praktikum

4. Langkah Percobaan 2

1. Rakitlah rangkaian seperti Gambar 1.5 pada project board. Hubungkan

kaki P0 – P7 pada luaran rangkaian DIPSWITCH.

Gambar 1.5 Rangkaian untuk Percobaan Register Geser PISO

2. Ukur catu daya DC sebesar +5V. Matikan catu daya dan hubungkan ke

rangkaian.

3. Hidupkan catu daya. Cek luaran rangkaian DIPSWITCH, catat sisi

saklar ke sebelah mana yang mengeluarkan tegangan +5V (logika 1)

serta tegangan 0V (logika 0). Matikan catu daya.

Catatan: - LED nyala berarti logika 1 dan LED mati

berarti logika 0.

- Kondisi luaran rangkaian push button:

1 jika dilepas, 0 jika ditekan, saat ditekan,

saat dilepas

4. Beri logika 0 pada kaki SER dan hidupkan catu daya.

5. Beri logika 0 pada kaki P0 – P7, logika 1 pada kaki PL dan CLK2.

Tekan push button, dan catat kondisi LED pada kaki Q7 dan Q7 pada

baris pertama Tabel 4.2.

6. Beri logika 10101011 pada kaki P0P1P2P3P4P5P6P7, logika 1 pada

kaki CLK2 dan logika 0 pada kaki PL . Catat kondisi LED pada kaki

Q7 dan Q7 pada baris kedua Tabel 4.2.

220LED

SER10

P011

P112

P213

P314

P43

P54

P65

P76

CLK12

CLK215

PL1

Q79

Q77

74LS165

3 4

B 74LS14

1 2

A 74LS1410k

100

0,47uF

SW-PB

+5V

0

InputOutput

8

Lab Teknik Digital

Jobsheet Praktikum

7. Ulangi langkah 5 sesuai dengan kombinasi logika lain seperti yang

tertera dalam Tabel 4.2 untuk baris 3 dan seterusnya.

DATA HASIL PERCOBAAN

Tabel 1.2 Data Hasil Percobaan Register Geser PISO

MASUKAN LUARAN

P0 P1 P2 P3 P4 P5 P6 P7 PL CLK2 CLK1 Q7 Q7

0 0 0 0 0 0 0 0 1 1

1 0 1 0 1 0 1 1 0 1 X

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

9

Lab Teknik Digital

Jobsheet Praktikum

5. Langkah Percobaan 3

1. Rakitlah rangkaian seperti Gambar 1.6 pada project board. Hubungkan

kaki A, B dan MR pada luaran rangkaian DIPSWITCH.

Gambar 1.6 Rangkaian untuk Percobaan Register Geser SIPO

2. Ukur catu daya DC sebesar +5V. Matikan catu daya dan hubungkan ke

rangkaian.

3. Hidupkan catu daya. Cek luaran rangkaian DIPSWITCH, catat sisi

saklar ke sebelah mana yang mengeluarkan tegangan +5V (logika 1)

serta tegangan 0V (logika 0). Matikan catu daya.

Catatan: - LED nyala berarti logika 1 dan LED mati

berarti logika 0.

- Kondisi luaran rangkaian push button:

1 jika dilepas, 0 jika ditekan, saat ditekan,

saat dilepas

4. Beri logika 1 dan 0 pada kaki A dan B, logika 1 pada kaki MR . Biarkan

push button dalam kondisi tidak ditekan, dan catat kondisi LED pada

kaki Q0 – Q7 pada baris pertama Tabel 4.3.

5. Ulangi langkah 4 sesuai dengan kombinasi logika lain seperti yang

tertera dalam Tabel 4.3 untuk baris 2 dan seterusnya.

A1

B2

Q03

Q14

Q25

Q36

Q410

Q511

Q612

Q713

CLK8

MR9

74LS164

Input

3 4

B 74LS14

1 2

A 74LS1410k

100

0,47uF

SW-PB

+5V

220LED

Output

10

Lab Teknik Digital

Jobsheet Praktikum

DATA HASIL PERCOBAAN

Tabel 1.3 Data Hasil Percobaan Register Geser SIPO

MASUKAN LUARAN

A B MR CLK Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 0 1 1

1 0 0 1

1 0 1 1

1 0 1

1 0 1

0 1 1

0 1 1

1 1 1

1 1 1

0 1 1

1 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 0 X

0 1 1

0 1 1

0 1 1

11

Lab Teknik Digital

Jobsheet Praktikum

6. Langkah Percobaan 4

1. Rakitlah rangkaian seperti Gambar 1.7 pada project board.

Gambar 1.7 Rangkaian untuk Percobaan Register Geser PIPO

2. Ukur catu daya DC sebesar +5V. Matikan catu daya dan hubungkan catu

daya ke rangkaian.

Catatan: - Logika 1 diperoleh dengan

menghubungkan pada +5V sedangkan logika

0 diperoleh dengan menghubungkan pada

GND.

- LED nyala berarti logika 1 dan LED mati berarti logika 0.

3. Cek kondisi saklar, catat arah switch untuk menunjukkan logika 0 dan

1.

4. Hidupkan catu daya.

5. Beri logika 0 pada kaki OE .

6. Beri logika 1 pada kaki LE, beri logika 01100000 pada masukan D0–

D7 dan catat logika luaran Q0-Y7 dalam Tabel 4.4 baris 1.

7. Beri logika 0 pada kaki LE, beri logika 10011111 pada masukan D0–

D7 dan catat logika luaran Q0–Q7 dalam Tabel 4.4 baris 2.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

SW-DIP8

1 2 3 4 5 6 7 8

16

15

14

13

12

11

10

9

RESPACK3

D03

Q02

D14

Q15

D27

Q26

D38

Q39

D413

Q412

D514

Q515

D617

Q616

D718

Q719

OE1

LE11

74LS373

+5V

220 ohm

INPUT

OUTPUT10k ohm

12

Lab Teknik Digital

Jobsheet Praktikum

8. Ulangi langkah 6 dan 7 untuk kombinasi logika lain seperti yang tertera

dalam Tabel 4.4 untuk baris 3 - 10.

9. Beri logika 1 pada kaki OE

10. Beri logika sembarang (0 atau 1) pada masukan D0–D7 dan kaki LE,

serta catat luaran Q0–Q7 (dengan LED) pada baris 11 Tabel 4.4.

11. Cek luaran Q0–Q7 dengan logic probe dan catat hasilnya dalam baris

terakhir Tabel 4.4.

DATA HASIL PERCOBAAN

Tabel 1.4 Data Hasil Percobaan Register Geser PIPO

MASUKAN LUARAN

OE LE D0 D1 D2 D3 D4 D5 D6 D7 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

0 1 0 1 1 0 0 0 0 0

0 0 1 0 0 1 1 1 1 1

0 1 1 0 1 0 0 0 0 0

0 0 0 1 0 1 1 0 1 0

0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1

0 1 1 0 0 0 1 1 1 1

0 0 1 0 0 0 1 0 0 0

0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

1

1

TUGAS

1. Tuliskan tabel fungsi IC 74LS164, 74LS165, dan 74LS373 beserta

penjelasan tentang prinsip kerjanya.

2. Jelaskan tentang ring-shift counter dan Johnson-shift counter beserta

operasi kerjanya.

3. Sebutkan jenis-jenis latch berdasarkan pemicuannya dan jelaskan

perbedaan diantara jenis-jenis tersebut. Berikan contoh untuk masing-

masing latch tersebut.

4. Desain pengonversi serial ke paralel 16-bit.

13

Lab Teknik Digital

Jobsheet Praktikum

Analisa

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

14

Lab Teknik Digital

Jobsheet Praktikum

Kesimpulan

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

1

Lab Teknik Digital

Jobsheet Praktikum

ADC-DAC

A. Tujuan Kegiatan Praktikum 5-6 :

Setelah mempraktekkan Topik ini, anda diharapkan dapat :

1. Mengetahui prinsip kerja ADC dan DAC.

2. Mengetahui toleransi kesalahan ADC dan ketelitian DAC.

3. Memahami spesifikasi ADC dan DAC yang diberikan oleh data book.

4. Mengaplikasikan ADC dan DAC dalam rangkaian elektronika digital.

B. Dasar Teori Kegiatan Praktikum 5-6

Analog-to-Digital Converter (ADC) merupakan peranti yang mengubah

besaran kontinyu (suhu, tekanan, intensitas cahaya, dan lain-lain) menjadi besaran

diskrit (digital). ADC0808 adalah peranti CMOS monolitik dengan konverter

analog-ke-digital 8-bit, multiplekser 8-kanal dan logika kontrol yang kompatibel

dengan mikroprosesor. ADC ini mempunyai toleransi kesalahan ½ LSB serta

dapat mengonversi dalam waktu 100 s dengan luaran yang ditahan oleh buffer

tri-state.

Gambar 1.1 Susunan Kaki ADC0808

IC ADC0808 mempunyai 8 masukan analog (IN-0 – IN-7) yang dapat

dipilih melalui alamat 3-bit (ADD-A – ADD-C). ADC akan memulai konversi

dengan kecepatan sesuai dengan frekuensi CLOCK yang diberikan setelah sinyal

START diaktifkan. Setelah konversi selesai, maka sinyal EOC (End of

Conversion) akan aktif untuk menandai bahwa data pada kaki luaran (2-1/MSB – 2-

8/LSB) dapat dibaca dengan bantuan sinyal OE (Output Enable). Komponen ini

GND13

VCC11

IN-026

msb2-121

2-220

IN-127

2-319

2-418

IN-228

2-58

2-615

IN-31

2-714

lsb2-817

IN-42

EOC7

IN-53

ADD-A25

IN-64

ADD-B24

ADD-C23

IN-75

ALE22

ref(-)16

ENABLE9

START6

ref(+)12

CLOCK10

ADC0808

2

Lab Teknik Digital

Jobsheet Praktikum

mempunyai 2 kaki untuk tegangan referensi yaitu ref(+) dan ref(-). Sedangkan kaki

13 dihubungkan ke GND dan kaki 11 dihubungkan ke VCC. Susunan kaki IC

ADC0808 dapat dilihat dalam Gambar 5.1.

Digital-to-Analog Converter (DAC) adalah sebuah peranti yang

mengonversi dari besaran diskrit (digital) ke besaran kontinyu. DAC0808

merupakan IC DAC monolitik 8-bit dengan ketelitian relatif 0,19% sampai

0,78%. IC ini mempunyai masukan digital 8-bit (A1/MSB – A8/LSB) dan satu

luaran yaitu Iout. Sebagai acuan, diperlukan tegangan referensi Vrf(+) dan Vrf(-).

Selain itu ada pula kaki COMP untuk menghubungkan kapasitor kompensasi

dengan VEE. Catu daya yang diperlukan untuk IC ini ada 3 macam, yaitu kaki 13

untuk VCC, kaki 3 untuk VEE dan kaki 2 untuk GND. Susunan kaki IC DAC0808

dapat dilihat dalam Gambar 5.2.

Gambar 1.2 Susunan Kaki IC DAC0808

D. Lembar Praktikum

1. Alat dan Bahan

IC ADC0808 1 buah

IC DAC0808 1 buah

LM 741 1 buah

Resistor 10K Ω 8 buah

Resistor 5K Ω 3 buah

Resistor 220 Ω 9 buah

Resistor 100 Ω 2 buah

Variabel Resistor 1 buah

Kapasitor 0,1 µF 1 buah

LED 9 buah

Function Generator 1 buah

GND2

Vcc13

Iout4

msbA15

Vrf(-)15

A26

A37

Vrf(+)14

A48

A59

A610

COMP16

A711

lsbA812

Vee3

NC1

DAC0808

3

Lab Teknik Digital

Jobsheet Praktikum

Multimeter Digital 1 buah

Power Supply DC ±15VDC (simetris) 1 buah

Power Supply DC (non simetris) 1 buah

Project Board 1 buah

Push Button 2 buah

Dipswitch 1 buah

Pinset 1 buah

Jumper secukupnya

2. Kesehatan dan Keselamatan kerja

(a) Periksalah kelengkapan alat dan bahan sebelum digunakan.

(b) Pelajari dan pahami petunjuk praktikum pada lembar kegiatan

praktikum.

(c) Pastikan tegangan keluaran catu daya sesuai yang dibutuhkan.

(d) Sebelum catu daya dihidupkan hubungi dosen pendamping untuk

mengecek kebenaran rangkaian.

(e) Yakinkan tempat anda aman dari sengatan listrik.

(f) Hati-hati dalam penggunaan peralatan praktikum !

4

Lab Teknik Digital

Jobsheet Praktikum

3. Langkah percobaan 5

1. Rakitlah rangkaian seperti Gambar 1.3 pada project board.

Gambar 1.3 Rangkaian untuk Percobaan ADC0808

2. Ukur catu daya DC sebesar +5,12V. Matikan catu daya dan hubungkan

ke rangkaian pada VCC dan Vref(+).

Catatan: - LED nyala berarti logika 1 dan LED mati berarti logika 0.

3. Set frekuensi function generator pada 10kHz. Matikan function

generator dan hubungkan ke rangkaian pada kaki CLOCK.

4. Hubungkan multimeter pada luaran resistor variabel untuk mengukur

Vinput.

5. Hidupkan catu daya dan function generator.

6. Set resistor variabel untuk memperoleh Vinput sebesar 0V, tekan push

button pada kaki START/ALE, lalu lepaskan.

7. Tekan push button pada kaki OE, baca logika pada LED output. Catat

hasilnya dalam Tabel 5.1. Lepaskan push button.

8. Ulangi langkah 6 dan 7 dengan Vinput yang lain seperti yang tertera

dalam Tabel 5.1.

GND13

VCC11

IN-026

msb2-121

2-220

IN-127

2-319

2-418

IN-228

2-58

2-615

IN-31

2-714

lsb2-817

IN-42

EOC7

IN-53

ADD-A25

IN-64

ADD-B24

ADD-C23

IN-75

ALE22

ref(-)16

ENABLE9

START6

ref(+)12

CLOCK10

ADC0808

INPUT

VCC

OUTPUT

CLOCK

100

100

VCC

VCC

P1

Vref(+)

Vref(+)

5

Lab Teknik Digital

Jobsheet Praktikum

DATA HASIL PERCOBAAN

Tabel 1.1 Data Hasil Percobaan IC ADC0808

fCLOCK

(Hz)

Vref(+)

(V)

Vinput

(V)

OUTPUT (Praktek)

Biner

OUTPUT (Hitung)

Biner

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8

0

0,4

0,8

1,2

1,6

2,0

2,4

2,8

3,2

3,6

4,0

4,4

4,8

5,0

5,1

ANALISIS DATA HASIL PERCOBAAN

1. Gambarkan kurva transfer Analog-ke-Digital (kode output A/D (biner)

fungsi Vinput) dalam Gambar 1.

2. Hitung kode output (hitung) dalam biner untuk setiap Vinput dan

masukkan dalam Tabel 5.1.

Rumus: 256)()(

)(x

VrefVref

VrefVinputN

dimana N = kode output dalam desimal.

3. Gambarkan garis linier untuk kode output (hitung) fungsi Vinput dalam

Gambar 1.

4. Hitung toleransi kesalahan untuk masing-masing data dan buatkan tabel

toleransi kesalahannya.

5. Hitung toleransi kesalahan keseluruhan untuk ADC0808.

6

Lab Teknik Digital

Jobsheet Praktikum

4. Langkah Percobaan 6

1. Rakitlah rangkaian seperti Gambar 1.4 pada project board.

Gambar 1.4 Rangkaian untuk Percobaan DAC0808

2. Ukur catu daya DC sebesar +5,12V. Matikan catu daya dan hubungkan

ke rangkaian pada kaki VCC DAC0808, Vref(+) DAC0808 dan

kedelapan kaki resistor 10k.

3. Ukur catu daya simetris DC pada +6V dan –6V. Matikan catu daya dan

hubungkan ke rangkaian pada kaki VCC LM741 dan kaki VEE LM741

dan DAC0808.

4. Hubungkan multimeter pada luaran LM741 untuk mengukur Vout.

5. Hidupkan catu daya.

6. Beri logika 0 pada kaki A1 – A8.

7. Ukur Vout dan catat hasilnya dalam Tabel 5.2.

8. Ulangi langkah 6 dan 7 dengan kombinasi logika lain seperti yang

tertera dalam Tabel 5.2.

GND2

Vcc

13

Iout4

msbA15

Vrf(-)15

A26

A37

Vrf(+)14

A48

A59

A610

COMP16

A711

lsbA812

Vee

3

DAC0808

VCC

5k

5k

C10,1uF

VEE

Vref(+)

VCC

5k

P2

VEE

OUT

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

SW-DIP8

1 2 3 4 5 6 7 8

16

15

14

13

12

11

10

9

RESPACK3

VCCINPUT

10k ohm

3

2

6

1 5

74

LM741

7

Lab Teknik Digital

Jobsheet Praktikum

DATA HASIL PERCOBAAN

Tabel 1.2 Data Hasil Percobaan IC DAC0808

Vref(+)

(V)

INPUT (Biner) Vout Praktek

(V)

Vout Hitung

(V) A1 A2 A3 A4 A5 A6 A7 A8

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 1 0 1 0 0 0

0 0 1 1 1 1 0 0

0 1 0 1 0 0 0 0

0 1 1 0 0 1 0 0

0 1 1 1 1 0 0 0

1 0 0 0 1 1 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 0

1 1 0 0 1 0 0 0

1 1 0 1 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 0 1 0

1 1 1 1 1 1 1 1

ANALISIS DATA HASIL PERCOBAAN

1. Gambarkan kurva transfer Digital-ke-Analog (Vout fungsi kode input

biner) dalam Gambar 2.

2. Hitung Vout hitung dalam Volt untuk setiap kode input biner dan

masukkan dalam Tabel 5.2.

Rumus:

256

8

128

7

64

6

32

5

16

4

8

3

4

2

2

1)(

AAAAAAAAxVrefVout

3. Gambarkan garis linier untuk Vout hitung fungsi kode input biner dalam

Gambar 2.

4. Hitung kesalahan relatif (dalam Volt dan %) untuk masing-masing data

dan buatkan tabel kesalahan relatifnya.

5. Hitung kesalahan relatif keseluruhan (dalam Volt dan %) untuk

DAC0808.

8

Lab Teknik Digital

Jobsheet Praktikum

TUGAS

1. Rancang rangkaian pengubah analog ke digital dengan IC ADC0804

dan berikan penjelasannya

2. Apakah fungsi op-amp dalam rangkaian DAC?

3. Jika Iref (arus referensi) diganti menjadi 1,5 mA, apa pengaruhnya

terhadap Iout dan Vout?

9

Lab Teknik Digital

Jobsheet Praktikum

Analisa

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

10

Lab Teknik Digital

Jobsheet Praktikum

Kesimpulan

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

1

Lab Teknik Digital

Jobsheet Praktikum

MEMORI

A. Tujuan Kegiatan Praktikum 7 :

Setelah mempraktekkan Topik ini, anda diharapkan dapat :

1. Mengetahui prinsip kerja penulisan dan pembacaan data dalam memori.

2. Mengetahui dan memahami pengalamatan memori dan pendekodean

memori sebagai komponen elektronika digital.

B. Dasar Teori Kegiatan Praktikum 7

Dalam sistem digital, memori digunakan untuk menyimpan data/informasi

secara sementara atau permanen. Secara umum memori terbagi menjadi dua, yaitu

RAM: Random Access Memory dan ROM: Read Only Memory. RAM dapat ditulisi

dan dibaca secara acak, sedangkan ROM hanya dapat dibaca setelah ditulis datanya.

IC memori 6116 merupakan salah satu RAM statik berkapasitas 16.384 bit

atau 2 kbyte. IC 6116 mempunyai 8 jalur data (D0-D7) dan 11 jalur alamat (A0-A10).

Untuk menulis data digunakan sinyal W (aktif LOW) dan untuk membaca data

digunakan sinyal G (aktif LOW). Kaki E (aktif LOW) digunakan untuk

mengijinkan memori menulis atau membaca data pada jalur data. Kaki 12

dihubungkan ke GND dan kaki 24 dihubungkan ke +5V. Susunan kaki IC memori

6116 dapat dilihat dalam Gambar 6.1.

Gambar 1.1 Susunan Kaki IC Memori 6116

A08

A17

A26

A35

A44

A53

A62

A71

A823

A922

A1019

E18

G20

W21

D09

D110

D211

D313

D414

D515

D616

D717

6116

2

Lab Teknik Digital

Jobsheet Praktikum

D. Lembar Praktikum

1. Alat dan Bahan

IC 6116 1 buah

IC 74245 1 buah

IC 74373 1 buah

Respack 10K Ω 2 buah

Resistor 10K Ω 2 buah

Resistor 220 Ω 8 buah

LED 8 buah

Push Button 2 buah

Dipwitch 8-bit 2 buah

Multimeter Digital 1 buah

Power Supply DC 1 buah

Project Board 1 buah

Pinset 1 buah

Jumper secukupnya

2. Kesehatan dan Keselamatan kerja

(a) Periksalah kelengkapan alat dan bahan sebelum digunakan.

(b) Pelajari dan pahami petunjuk praktikum pada lembar kegiatan

praktikum.

(c) Pastikan tegangan keluaran catu daya sesuai yang dibutuhkan.

(d) Sebelum catu daya dihidupkan hubungi dosen pendamping untuk

mengecek kebenaran rangkaian.

(e) Yakinkan tempat anda aman dari sengatan listrik.

(f) Hati-hati dalam penggunaan peralatan praktikum !

3

Lab Teknik Digital

Jobsheet Praktikum

3. Langkah percobaan 7

1. Rakitlah rangkaian seperti Gambar 1.2 pada project board.

Gambar 1.2 Rangkaian untuk Percobaan Memori 6116

2. Ukur catu daya DC sebesar +5V. Matikan catu daya dan hubungkan catu

daya ke rangkaian.

Catatan: - LED nyala berarti logika 1 dan LED mati

berarti logika 0.

3. Cek kondisi saklar, catat arah switch untuk menunjukkan logika 0 dan 1.

4. Hidupkan catu daya.

5. Set jalur alamat A10-A0 pada 00000000000 dan set jalur data D7-D0 pada

11111111.

6. Tekan saklar WRITE untuk memasukkan data ke dalam memori, kemudian

lepaskan saklar.

7. Ulangi langkah 5 dan 6 untuk kombinasi alamat dan data yang lain seperti

yang tertera dalam Tabel 1.1.

8. Set jalur alamat A10-A0 pada 00000000000.

9. Tekan saklar READ untuk membaca data pada memori, dan catat luaran

LED dalam Tabel 1.1.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

SW-DIP8

1 2 3 4 5 6 7 8

16

15

14

13

12

11

10

9

RESPACK3

+5V

10k ohm

220 ohm

A08

A17

A26

A35

A44

A53

A62

A71

A823

A922

A1019

E18

G20

W21

D09

D110

D211

D313

D414

D515

D616

D717

6116

A02

A13

A24

A35

A46

A57

A68

A79

B018

B117

B216

B315

B414

B513

B612

B711

E19

DIR1

74LS245

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

SW-DIP8

12345678

16

15

14

13

12

11

10

9

RESPACK3

+5V

10k ohm

+5V

10k

10k

+5V

+5V

WRITE

READ

OC1

C11

1D2

2D3

3D4

4D5

5D6

6D7

7D8

8D9

1Q19

2Q18

3Q17

4Q16

5Q15

6Q14

7Q13

8Q12

74HC573

4

Lab Teknik Digital

Jobsheet Praktikum

10. Ulangi langkah 8 dan 9 untuk kombinasi alamat yang lain seperti yang

tertera dalam Tabel 1.1.

DATA HASIL PERCOBAAN

Tabel 1.1 Data Hasil Percobaan IC Memori 6116

MASUKAN LUARAN

ALAMAT DATA DATA

A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1

0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1

TUGAS

1. Gambarkan blok diagram dan tabel kebenaran IC memori 6116.

2. * Kelompok 1

Susunlah sistem memori 4 kbyte dengan EPROM 1 kbyte. Buatlah

pengalamatan (pendekodean) untuk setiap memori tersebut sehingga

tidak ada alamat yang saling bertumpukan serta berilah penjelasan.

* Kelompok 2

Susunlah sistem memori 16 kbyte dengan EPROM 4 kbyte. Buatlah

pengalamatan (pendekodean) untuk setiap memori tersebut sehingga

tidak ada alamat yang saling bertumpukan serta berilah penjelasan.

* Kelompok 3

Susunlah sistem memori 32 kbyte dengan RAM statik 8 kbyte. Buatlah

pengalamatan (pendekodean) untuk setiap memori tersebut sehingga

tidak ada alamat yang saling bertumpukan serta berilah penjelasan.

5

Lab Teknik Digital

Jobsheet Praktikum

* Kelompok 4

Susunlah sistem memori 64 kbyte dengan EPROM 16 kbyte. Buatlah

pengalamatan (pendekodean) untuk setiap memori tersebut sehingga

tidak ada alamat yang saling bertumpukan serta berilah penjelasan.

* Kelompok 5

Susunlah sistem memori 64 kbyte dengan RAM statik 32 kbyte. Buatlah

pengalamatan (pendekodean) untuk setiap memori tersebut sehingga

tidak ada alamat yang saling bertumpukan serta berilah penjelasan.

* Kelompok 6

Susunlah sistem memori 16 kbyte dengan RAM statik 2 kbyte. Buatlah

pengalamatan (pendekodean) untuk setiap memori tersebut sehingga

tidak ada alamat yang saling bertumpukan serta berilah penjelasan.

Catatan: - Nama RAM/EPROM dapat dipilih sendiri asalkan kapasitasnya

sesuai.

- Range alamat ditentukan sendiri (dalam range 0000H –

FFFFH).

6

Lab Teknik Digital

Jobsheet Praktikum

Analisa

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

7

Lab Teknik Digital

Jobsheet Praktikum

Kesimpulan

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

1

Lab Teknik Digital

Jobsheet Praktikum

MULTIVIBRATOR

A. Tujuan Kegiatan Praktikum 8-9 :

Setelah mempraktekkan Topik ini, anda diharapkan dapat :

1. Memahami macam-macam dan prinsip kerja multivibrator.

2. Merancang timer/clock dan delay (aplikasi multivibrator) sesuai keperluan.

B. Dasar Teori Kegiatan Praktikum 8-9

Rangkaian multivibrator merupakan rangkaian yang digunakan untuk

keperluan pewaktuan (timing) rangkaian elektronika. Multivibrator merupakan

rangkaian yang berubah antara dua level digital secara kontinyu, berbasis “free

running” atau berdasar permintaan dari sumber pemicu eksternal.

Pada dasarnya ada 3 jenis multivibrator, yaitu:

1. Bistabil : multivibrator yang dipicu ke salah satu dari 2 kondisi

digital oleh sumber eksternal, dan berada dalam kondisi

tersebut sampai dipicu ke kondisi sebaliknya.

2. Astabil : osilator free running yang berkondisi antara 2 level

digital pada frekuensi dan siklus kerja tertentu.

3. Monostabil : dikenal sebagai one-shot, memberikan pulsa luaran

tunggal pada lebar waktu tertentu ketika dipicu dari

sumber eksternal.

Multivibrator dapat dibangun dari gerbang logika dasar, IC khusus yang

dirancang untuk aplikasi pewaktuan (IC 555, IC 74121 atau 74123) ataupun osilator

kristal. IC 555 adalah IC timer yang sangat populer dan banyak fungsinya. IC ini

merupakan peranti yang kestabilannya tinggi untuk membangkitkan waktu tunda

yang akurat (one-shot) atau osilator. Kaki tambahan digunakan untuk memicu atau

me-reset jika diinginkan. Pada mode operasi waktu tunda, waktu tersebut dikontrol

oleh satu resistor eksternal dan kapasitor. Untuk operasi astabil sebagai osilator,

frekuensi free running dan siklus kerja dikontrol dengan dua kapasitor eksternal

dan satu kapasitor. Rangkaian tersebut dapat dipicu atau di-reset pada tepi turun.

Susunan kaki IC 555 dapat dilihat dalam Gambar 1.1.

2

Lab Teknik Digital

Jobsheet Praktikum

Gambar 1.1 Susunan Kaki IC 555

D. Lembar Praktikum

1. Alat dan Bahan

IC NE 555 1 buah

IC 7404 1 buah

Resistor 47K Ω 1 buah

Resistor 10K Ω 1 buah

Resistor 4K7 Ω 1 buah

Kapasitor 680 pF 1 buah

Kapasitor 0,01 µF 1 buah

Kapasitor 100 µF 1 buah

Project Board 1 buah

Pinset 1 buah

Function Generator 1 buah

Osiloskop 1 buah

Frekuensi Counter 1 buah

Multimeter Digital 1 buah

Power Supply DC 1 buah

Jumper secukupnya

2. Kesehatan dan Keselamatan kerja

(a) Periksalah kelengkapan alat dan bahan sebelum digunakan.

(b) Pelajari dan pahami petunjuk praktikum pada lembar kegiatan

praktikum.

(c) Pastikan tegangan keluaran catu daya sesuai yang dibutuhkan.

(d) Sebelum catu daya dihidupkan hubungi dosen pendamping untuk

mengecek kebenaran rangkaian.

(e) Yakinkan tempat anda aman dari sengatan listrik.

(f) Hati-hati dalam penggunaan peralatan praktikum !

TRIG2

Q3

R4

CVolt5

THR6

DIS7

VCC8

GND1

555

3

Lab Teknik Digital

Jobsheet Praktikum

3. Langkah percobaan 8

1. Rakitlah rangkaian seperti Gambar 1.2 pada project board.

Gambar 1.2 Rangkaian untuk Percobaan Multivibrator Astabil

2. Ukur catu daya DC sebesar +5V. Matikan catu daya dan hubungkan ke

rangkaian.

3. Hidupkan catu daya, osiloskop dan frequency counter.

4. Hubungkan probe osiloskop dan probe frequency counter ke Vout.

5. Set volt/div dan time/div sehingga diperoleh gambar yang jelas.

6. Gambar sinyal luaran tersebut beserta volt/div dan time/div dan catat

tampilan frekuensi pada frequency counter.

DATA HASIL PERCOBAAN

TRIG2

Q3

R4

CV

olt

5

THR6

DIS7

VC

C8

GN

D1

U1

55 5

RB

10 k

RA

4,7 k

C

68 0 pF

0,01 u F

VCC=5V

Vou t

4

Lab Teknik Digital

Jobsheet Praktikum

ANALISIS

Hasil Perhitungan Secara Teori

Waktu pengisian (luaran HIGH):

C )R(R 0,693t BAHI

Waktu pengosongan (luaran LOW):

C )(R 0,693t BLO

Periode total:

C )2R(R 0,693ttT BALOHI

Frekuensi osilasi:

C )2R(R

1,44

T

1f

BA

Siklus kerja (duty cycle):

BA

B

2RR

RD

Hasil Pengukuran dari Osiloskop dan Frequency Counter

Waktu pengisian (luaran HIGH):

HIt

Waktu pengosongan (luaran LOW):

LOt

Frekuensi osilasi:

f

Periode total:

f

1T

Siklus kerja (duty cycle):

LOHI

HI

tt

tD

5

Lab Teknik Digital

Jobsheet Praktikum

Tugas:

1. Menggunakan 555 rancang multivibrator astabil yang berosilasi pada 50

kHz dengan siklus kerja 60%. Ambil nilai C = 0,0022 F.

2. Berikan contoh salah satu aplikasi multivibrator astabil dalam rangkaian

elektronika digital.

6

Lab Teknik Digital

Jobsheet Praktikum

4. Langkah Percobaan 9

1. Rakitlah rangkaian seperti Gambar 1.3 pada project board.

Gambar 1.3 Rangkaian untuk Percobaan Multivibrator Monostabil

2. Ukur catu daya DC sebesar +5V. Matikan catu daya dan hubungkan ke

rangkaian.

3. Ukur frekuensi pada function generator sebesar 10 kHz dan hubungkan

ke Vin pada rangkaian.

4. Hidupkan catu daya, function generator, osiloskop dan frequency

counter.

5. Hubungkan 2 probe osiloskop ke Vin dan Vout, serta probe frequency

counter bergantian ke Vin dan Vout.

6. Set volt/div dan time/div sehingga diperoleh gambar yang jelas.

Gambar sinyal Vin dan Vout beserta volt/div dan time/div dan catat tampilan

frekuensi pada frequency counter untuk keduanya.

DATA HASIL PERCOBAAN

TRIG2

Q3

R4

CV

olt

5

THR6

DIS7

VC

C8

GN

D1

U2

555C

100 pF

0,01 uF

10 k

VCC = 5V

RA

47k

1 2

U3A

SN74LS04

Vin

Vout

7

Lab Teknik Digital

Jobsheet Praktikum

ANALISIS

Hasil Perhitungan Secara Teori

Frekuensi osilasi Vin dan Vout:

f

Lebar pulsa yang diinginkan pada Vout:

C )(R ,11t AW

Hasil Pengukuran dari Osiloskop dan Frequency Counter

Untuk Vin:

Waktu HIGH:

HIt

Waktu LOW:

LOt

Frekuensi osilasi:

f

Periode total:

f

1T

Untuk Vout:

Waktu HIGH:

HIt

Waktu LOW:

WLO tt

Frekuensi osilasi:

f

Periode total:

f

1T

8

Lab Teknik Digital

Jobsheet Praktikum

Tabel 1.1 Perbandingan Hasil Perhitungan dengan Pengukuran

Vin Vout

Teori (Perhitungan) Praktek (Pengukuran) Teori (Perhitungan) Praktek (Pengukuran)

tHI

tLO (tW)

T

f

TUGAS

1. Rancang rangkaian one-shot dengan IC 555 agar mengeluarkan sinyal

dengan waktu HIGH 10 s setiap periode 60 s. Asumsikan Vin

mempunyai waktu LOW selama 1 s setiap periode 60 s dan Vcc yang

digunakan sebesar 5V. Gambarkan bentuk gelombang Vin dan Vout

untuk rangkaian tersebut.

2. Rancanglah multivibrator monostabil dengan IC 74121 yang

mengonversi gelombang kotak 100 kHz, siklus kerja 30% menjadi

gelombang kotak 100 kHz, siklus kerja 50%.

3. Beri contoh aplikasi multivibrator monostabil dalam rangkaian

elektronika digital.

9

Lab Teknik Digital

Jobsheet Praktikum

Data Hasil Percobaan

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

10

Lab Teknik Digital

Jobsheet Praktikum

Analisa

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

11

Lab Teknik Digital

Jobsheet Praktikum

Kesimpulan

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

_______________________________________________________________________________

SDLS029C − DECEMBER 1983 − REVISED JANUARY 2004

1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Dependable Texas Instruments Quality andReliability

description/ordering informationThese devices contain six independent inverters.

Copyright 2004, Texas Instruments Incorporated

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1A1Y2A2Y3A3Y

GND

VCC6A6Y5A5Y4A4Y

SN5404 . . . J PACKAGESN54LS04, SN54S04 . . . J OR W PACKAGE

SN7404, SN74S04 . . . D, N, OR NS PACKAGESN74LS04 . . . D, DB, N, OR NS PACKAGE

(TOP VIEW)

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1A2Y2A

VCC3A3Y4A

1Y6A6YGND5Y5A4Y

SN5404 . . . W PACKAGE(TOP VIEW)

3 2 1 20 19

9 10 11 12 13

4

5

6

7

8

18

17

16

15

14

6YNC5ANC5Y

2ANC2YNC3A

SN54LS04, SN54S04 . . . FK PACKAGE(TOP VIEW)

1Y 1A NC

4Y 4A6A

3YG

ND

NC

NC − No internal connection

V CC

!" #!$% &"'&! #" #" (" " ") !"&& *+' &! #", &" ""%+ %!&"", %% #""'

#&! #% -./.010 %% #"" " ""&!%" ("*" "&' %% (" #&! #&!#", &" ""%+ %!&" ", %% #""'

SDLS029C − DECEMBER 1983 − REVISED JANUARY 2004

2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

ORDERING INFORMATION

TA PACKAGE † ORDERABLEPART NUMBER

TOP-SIDEMARKING

Tube SN7404N SN7404N

PDIP − N Tube SN74LS04N SN74LS04NPDIP − N

Tube SN74S04N SN74S04N

Tube SN7404D7404

Tape and reel SN7404DR7404

SOIC − DTube SN74LS04D

LS040°C to 70°C

SOIC − DTape and reel SN74LS04DR

LS040 C to 70 C

Tube SN74S04DS04

Tape and reel SN74S04DRS04

Tape and reel SN7404NSR SN7404

SOP − NS Tape and reel SN74LS04NSR 74LS04SOP − NS

Tape and reel SN74S04NSR 74S04

SSOP − DB Tape and reel SN74LS04DBR LS04

Tube SN5404J SN5404J

Tube SNJ5404J SNJ5404J

CDIP − JTube SN54LS04J SN54LS04J

CDIP − JTube SN54S04J SN54S04J

Tube SNJ54LS04J SNJ54LS04J

−55°C to 125°C Tube SNJ54S04J SNJ54S04J−55 C to 125 C

Tube SNJ5404W SNJ5404W

CFP − W Tube SNJ54LS04W SNJ54LS04WCFP − W

Tube SNJ54S04W SNJ54S04W

LCCC − FKTube SNJ54LS04FK SNJ54LS04FK

LCCC − FKTube SNJ54S04FK SNJ54S04FK

† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelinesare available at www.ti.com/sc/package.

FUNCTION TABLE(each inverter)

INPUTA

OUTPUTY

H L

L H

SDLS029C − DECEMBER 1983 − REVISED JANUARY 2004

3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

logic diagram (positive logic)

1A

2A

3A

4A

5A

6A

1Y

2Y

3Y

4Y

5Y

6Y

Y = A

SDLS029C − DECEMBER 1983 − REVISED JANUARY 2004

4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

schematics (each gate)

Input A

VCC

Output Y

GND

130 Ω

1 kΩ

1.6 kΩ

’04

4 kΩ

InputA

VCC

OutputY

GND

20 kΩ 120 Ω

’LS04

8 kΩ

12 kΩ

1.5 kΩ

3 kΩ

4 kΩ

InputA

VCC

Outpu tY

GND

2.8 kΩ900 Ω

’S04

50 Ω

3.5 kΩ

250 Ω500 Ω

Resistor values shown are nominal.

SDLS029C − DECEMBER 1983 − REVISED JANUARY 2004

5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) †

Supply voltage, VCC (see Note 1) 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage, VI: ’04, ’S04 5.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

’LS04 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package thermal impedance, θJA (see Note 2): D package 86°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DB package 96°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N package 80°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NS package 76°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. This are stress ratings only, and

functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is notimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

SN5404 SN7404SN5404 SN7404UNIT

MIN NOM MAX MIN NOM MAXUNIT

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

VIH High-level input voltage 2 2 V

VIL Low-level input voltage 0.8 0.8 V

IOH High-level output current −0.4 −0.4 mA

IOL Low-level output current 16 16 mA

TA Operating free-air temperature −55 125 0 70 °C

NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unlessotherwise noted)

PARAMETER TEST CONDITIONS‡SN5404 SN7404

UNITPARAMETER TEST CONDITIONS‡MIN TYP§ MAX MIN TYP§ MAX

UNIT

VIK VCC = MIN, II = −12 mA −1.5 −1.5 V

VOH VCC = MIN, VIL = 0.8 V, IOH = −0.4 mA 2.4 3.4 2.4 3.4 V

VOL VCC = MIN, VIH = 2 V, IOL = 16 mA 0.2 0.4 0.2 0.4 V

II VCC = MAX, VI = 5.5 V 1 1 mA

IIH VCC = MAX, VI = 2.4 V 40 40 µA

IIL VCC = MAX, VI = 0.4 V −1.6 −1.6 mA

IOS¶ VCC = MAX −20 −55 −18 −55 mA

ICCH VCC = MAX, VI = 0 V 6 12 6 12 mA

ICCL VCC = MAX, VI = 4.5 V 18 33 18 33 mA

‡ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.§ All typical values are at VCC = 5 V, TA = 25°C.¶ Not more than one output should be shorted at a time.

SDLS029C − DECEMBER 1983 − REVISED JANUARY 2004

6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

switching characteristics, V CC = 5 V, TA = 25°C (see Figure 1)

PARAMETERFROM

(INPUT)TO

(OUTPUT) TEST CONDITIONS

SN5404SN7404 UNITPARAMETER (INPUT) (OUTPUT) TEST CONDITIONS

MIN TYP MAXUNIT

tPLHA Y RL = 400 Ω, CL = 15 pF

12 22ns

tPHLA Y RL = 400 Ω, CL = 15 pF

8 15ns

recommended operating conditions (see Note 3)

SN54LS04 SN74LS04SN54LS04 SN74LS04UNIT

MIN NOM MAX MIN NOM MAXUNIT

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

VIH High-level input voltage 2 2 V

VIL Low-level input voltage 0.7 0.8 V

IOH High-level output current −0.4 −0.4 mA

IOL Low-level output current 4 8 mA

TA Operating free-air temperature −55 125 0 70 °C

NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unlessotherwise noted)

PARAMETER TEST CONDITIONS†SN54LS04 SN74LS04

UNITPARAMETER TEST CONDITIONS†MIN TYP‡ MAX MIN TYP‡ MAX

UNIT

VIK VCC = MIN, II = −18 mA −1.5 −1.5 V

VOH VCC = MIN, VIL = MAX, IOH = −0.4 mA 2.5 3.4 2.7 3.4 V

VOL VCC = MIN, VIH = 2 VIOL = 4 mA 0.25 0.4 0.4

VVOL VCC = MIN, VIH = 2 VIOL = 8 mA 0.25 0.5

V

II VCC = MAX, VI = 7 V 0.1 0.1 mA

IIH VCC = MAX, VI = 2.7 V 20 20 µA

IIL VCC = MAX, VI = 0.4 V −0.4 −0.4 mA

IOS§ VCC = MAX −20 −100 −20 −100 mA

ICCH VCC = MAX, VI = 0 V 1.2 2.4 1.2 2.4 mA

ICCL VCC = MAX, VI = 4.5 V 3.6 6.6 3.6 6.6 mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.‡ All typical values are at VCC = 5 V, TA = 25°C.§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, V CC = 5 V, TA = 25°C (see Figure 2)

PARAMETERFROM

(INPUT)TO

(OUTPUT) TEST CONDITIONS

SN54LS04SN74LS04 UNITPARAMETER (INPUT) (OUTPUT) TEST CONDITIONS

MIN TYP MAXUNIT

tPLHA Y RL = 2 kΩ, CL = 15 pF

9 15ns

tPHLA Y RL = 2 kΩ, CL = 15 pF

10 15ns

SDLS029C − DECEMBER 1983 − REVISED JANUARY 2004

7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

recommended operating conditions (see Note 3)

SN54S04 SN74S04SN54S04 SN74S04UNIT

MIN NOM MAX MIN NOM MAXUNIT

VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 V

VIH High-level input voltage 2 2 V

VIL Low-level input voltage 0.8 0.8 V

IOH High-level output current −1 −1 mA

IOL Low-level output current 20 20 mA

TA Operating free-air temperature −55 125 0 70 °C

NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unlessotherwise noted)

PARAMETER TEST CONDITIONS†SN54S04 SN74S04

UNITPARAMETER TEST CONDITIONS†MIN TYP‡ MAX MIN TYP‡ MAX

UNIT

VIK VCC = MIN, II = −18 mA −1.2 −1.2 V

VOH VCC = MIN, VIL = 0.8 V, IOH = −1 mA 2.5 3.4 2.7 3.4 V

VOL VCC = MIN, VIH = 2 V, IOL = 20 mA 0.5 0.5 V

II VCC = MAX, VI = 5.5 V 1 1 mA

IIH VCC = MAX, VI = 2.7 V 50 50 µA

IIL VCC = MAX, VI = 0.5 V −2 −2 mA

IOS§ VCC = MAX −40 −100 −40 −100 mA

ICCH VCC = MAX, VI = 0 V 15 24 15 24 mA

ICCL VCC = MAX, VI = 4.5 V 30 54 30 54 mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.‡ All typical values are at VCC = 5 V, TA = 25°C.§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, V CC = 5 V, TA = 25°C (see Figure 1)

PARAMETERFROM

(INPUT)TO

(OUTPUT) TEST CONDITIONS

SN54S04SN74S04 UNITPARAMETER (INPUT) (OUTPUT) TEST CONDITIONS

MIN TYP MAXUNIT

tPLHA Y RL = 280 Ω, CL = 15 pF

3 4.5ns

tPHLA Y RL = 280 Ω, CL = 15 pF

3 5ns

tPLHA Y RL = 280 Ω, CL = 50 pF

4.5ns

tPHLA Y RL = 280 Ω, CL = 50 pF

5ns

SDLS029C − DECEMBER 1983 − REVISED JANUARY 2004

8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATIONSERIES 54/74 AND 54S/74S DEVICES

tPHL tPLH

tPLH tPHL

LOAD CIRCUITFOR 3-STATE OUTPUTS

High-LevelPulse

Low-LevelPulse

VOLTAGE WAVEFORMSPULSE DURATIONS

Input

Out-of-PhaseOutput

(see Note D)

3 V

0 V

VOL

VOH

VOH

VOL

In-PhaseOutput

(see Note D)

VOLTAGE WAVEFORMSPROPAGATION DELAY TIMES

VCC

RL

Test Point

From OutputUnder Test

CL(see Note A)

LOAD CIRCUITFOR OPEN-COLLECTOR OUTPUTS

LOAD CIRCUITFOR 2-STATE TOTEM-POLE OUTPUTS

(see Note B)

VCC

RLFrom Output

Under Test

CL(see Note A)

TestPoint

(see Note B )

VCCRL

From OutputUnder Test

CL(see Note A)

TestPoint

1 kΩ

NOTES: A. CL includes probe and jig capacitance.B. All diodes are 1N3064 or equivalent.C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL.E. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO ≈ 50 Ω; tr and tf ≤ 7 ns for Series

54/74 devices and tr and tf ≤ 2.5 ns for Series 54S/74S devices.F. The outputs are measured one at a time, with one input transition per measurement.

S1

S2

tPHZ

tPLZtPZL

tPZH

3 V

3 V

0 V

0 V

thtsu

VOLTAGE WAVEFORMSSETUP AND HOLD TIMES

TimingInput

DataInput

3 V

0 V

OutputControl

(low-levelenabling)

Waveform 1(see Notes C

and D)

Waveform 2(see Notes C

and D)≈1.5 V

VOH − 0.5 V

VOL + 0.5 V

≈1.5 V

VOLTAGE WAVEFORMSENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

1.5 V 1.5 V

1.5 V 1.5 V

1.5 V

1.5 V 1.5 V

1.5 V 1.5 V

1.5 V

1.5 V

tw

1.5 V 1.5 V

1.5 V 1.5 V

1.5 V 1.5 V

VOH

VOL

Figure 1. Load Circuits and Voltage Waveforms

SDLS029C − DECEMBER 1983 − REVISED JANUARY 2004

9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATIONSERIES 54LS/74LS DEVICES

tPHL tPLH

tPLH tPHL

LOAD CIRCUITFOR 3-STATE OUTPUTS

High-LevelPulse

Low-LevelPulse

VOLTAGE WAVEFORMSPULSE DURATIONS

Input

Out-of-PhaseOutput

(see Note D)

3 V

0 V

VOL

VOH

VOH

VOL

In-PhaseOutput

(see Note D)

VOLTAGE WAVEFORMSPROPAGATION DELAY TIMES

VCC

RL

Test Point

From OutputUnder Test

CL(see Note A)

LOAD CIRCUITFOR OPEN-COLLECTOR OUTPUTS

LOAD CIRCUITFOR 2-STATE TOTEM-POLE OUTPUTS

(see Note B)

VCC

RLFrom Output

Under Test

CL(see Note A)

TestPoint

(see Note B )

VCCRL

From OutputUnder Test

CL(see Note A)

TestPoint

5 kΩ

NOTES: A. CL includes probe and jig capacitance.B. All diodes are 1N3064 or equivalent.C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL.E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.F. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO ≈ 50 Ω, tr ≤ 1.5 ns, tf ≤ 2.6 ns.G. The outputs are measured one at a time, with one input transition per measurement.

S1

S2

tPHZ

tPLZtPZL

tPZH

3 V

3 V

0 V

0 V

thtsu

VOLTAGE WAVEFORMSSETUP AND HOLD TIMES

TimingInput

DataInput

3 V

0 V

OutputControl

(low-levelenabling)

Waveform 1(see Notes C

and D)

Waveform 2(see Notes C

and D) ≈1.5 V

VOH − 0.5 V

VOL + 0.5 V

≈1.5 V

VOLTAGE WAVEFORMSENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

1.3 V 1.3 V

1.3 V 1.3 V

1.3 V

1.3 V 1.3 V

1.3 V 1.3 V

1.3 V

1.3 V

tw

1.3 V 1.3 V

1.3 V 1.3 V

1.3 V 1.3 V

VOL

VOH

Figure 2. Load Circuits and Voltage Waveforms

PACKAGE OPTION ADDENDUM

www.ti.com 17-Dec-2015

Addendum-Page 1

PACKAGING INFORMATION

Orderable Device Status(1)

Package Type PackageDrawing

Pins PackageQty

Eco Plan(2)

Lead/Ball Finish(6)

MSL Peak Temp(3)

Op Temp (°C) Device Marking(4/5)

Samples

JM38510/00105BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/00105BCA

JM38510/00105BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/00105BDA

JM38510/07003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/07003BCA

JM38510/07003BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/07003BDA

JM38510/30003B2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 JM38510/30003B2A

JM38510/30003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/30003BCA

JM38510/30003BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/30003BDA

JM38510/30003SCA ACTIVE CDIP J 14 25 TBD A42 N / A for Pkg Type -55 to 125 JM38510/30003SCA

M38510/00105BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/00105BCA

M38510/00105BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/00105BDA

M38510/07003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/07003BCA

M38510/07003BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/07003BDA

M38510/30003B2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 JM38510/30003B2A

M38510/30003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/30003BCA

M38510/30003BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/30003BDA

M38510/30003SCA ACTIVE CDIP J 14 25 TBD A42 N / A for Pkg Type -55 to 125 JM38510/30003SCA

SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SN5404J

PACKAGE OPTION ADDENDUM

www.ti.com 17-Dec-2015

Addendum-Page 2

Orderable Device Status(1)

Package Type PackageDrawing

Pins PackageQty

Eco Plan(2)

Lead/Ball Finish(6)

MSL Peak Temp(3)

Op Temp (°C) Device Marking(4/5)

Samples

SN54LS04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SN54LS04J

SN54S04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SN54S04J

SN7404D ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404

SN7404DE4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404

SN7404DG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404

SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 7404

SN7404N ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 SN7404N

SN7404N3 OBSOLETE PDIP N 14 TBD Call TI Call TI 0 to 70

SN7404NE4 ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 SN7404N

SN74LS04D ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04

SN74LS04DBR ACTIVE SSOP DB 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM LS04

SN74LS04DG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04

SN74LS04DR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04

SN74LS04DRE4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04

SN74LS04DRG4 ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 LS04

SN74LS04J OBSOLETE CDIP J 14 TBD Call TI Call TI 0 to 70

SN74LS04N ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 SN74LS04N

SN74LS04N3 OBSOLETE PDIP N 14 TBD Call TI Call TI 0 to 70

SN74LS04NE4 ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 SN74LS04N

PACKAGE OPTION ADDENDUM

www.ti.com 17-Dec-2015

Addendum-Page 3

Orderable Device Status(1)

Package Type PackageDrawing

Pins PackageQty

Eco Plan(2)

Lead/Ball Finish(6)

MSL Peak Temp(3)

Op Temp (°C) Device Marking(4/5)

Samples

SN74LS04NSR ACTIVE SO NS 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 74LS04

SN74LS04NSRG4 ACTIVE SO NS 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 74LS04

SN74S04D ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 S04

SN74S04DG4 ACTIVE SOIC D 14 50 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 S04

SN74S04DR ACTIVE SOIC D 14 2500 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 S04

SN74S04N ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 SN74S04N

SN74S04N3 OBSOLETE PDIP N 14 TBD Call TI Call TI 0 to 70

SN74S04NE4 ACTIVE PDIP N 14 25 Pb-Free(RoHS)

CU NIPDAU N / A for Pkg Type 0 to 70 SN74S04N

SN74S04NSR ACTIVE SO NS 14 2000 Green (RoHS& no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM 0 to 70 74S04

SNJ5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ5404J

SNJ5404W ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ5404W

SNJ54LS04FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 SNJ54LS04FK

SNJ54LS04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ54LS04J

SNJ54LS04W ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ54LS04W

SNJ54S04FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 SNJ54S04FK

SNJ54S04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ54S04J

SNJ54S04W ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ54S04W

(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

PACKAGE OPTION ADDENDUM

www.ti.com 17-Dec-2015

Addendum-Page 4

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availabilityinformation and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement thatlead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used betweenthe die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weightin homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuationof the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finishvalue exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on informationprovided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken andcontinues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN5404, SN54LS04, SN54LS04-SP, SN54S04, SN7404, SN74LS04, SN74S04 :

• Catalog: SN7404, SN74LS04, SN54LS04, SN74S04

• Military: SN5404, SN54LS04, SN54S04

• Space: SN54LS04-SP

NOTE: Qualified Version Definitions:

PACKAGE OPTION ADDENDUM

www.ti.com 17-Dec-2015

Addendum-Page 5

• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications

• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device PackageType

PackageDrawing

Pins SPQ ReelDiameter

(mm)

ReelWidth

W1 (mm)

A0(mm)

B0(mm)

K0(mm)

P1(mm)

W(mm)

Pin1Quadrant

SN7404DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

SN74LS04DBR SSOP DB 14 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1

SN74LS04DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

SN74S04DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1

SN74S04NSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Sep-2015

Pack Materials-Page 1

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

SN7404DR SOIC D 14 2500 367.0 367.0 38.0

SN74LS04DBR SSOP DB 14 2000 367.0 367.0 38.0

SN74LS04DR SOIC D 14 2500 367.0 367.0 38.0

SN74S04DR SOIC D 14 2500 367.0 367.0 38.0

SN74S04NSR SO NS 14 2000 367.0 367.0 38.0

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Sep-2015

Pack Materials-Page 2

MECHANICAL DATA

MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE

4040065 /E 12/01

28 PINS SHOWN

Gage Plane

8,207,40

0,550,95

0,25

38

12,90

12,30

28

10,50

24

8,50

Seating Plane

9,907,90

30

10,50

9,90

0,38

5,605,00

15

0,22

14

A

28

1

2016

6,506,50

14

0,05 MIN

5,905,90

DIM

A MAX

A MIN

PINS **

2,00 MAX

6,90

7,50

0,65 M0,15

0°–8°

0,10

0,090,25

NOTES: A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and otherchanges to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latestissue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current andcomplete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of salesupplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s termsand conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessaryto support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarilyperformed.TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products andapplications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provideadequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, orother intellectual property right relating to any combination, machine, or process in which TI components or services are used. Informationpublished by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty orendorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of thethird party, or a license from TI under the patents or other intellectual property of TI.Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alterationand is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altereddocumentation. Information of third parties may be subject to additional restrictions.Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or servicevoids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirementsconcerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or supportthat may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards whichanticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might causeharm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the useof any TI components in safety-critical applications.In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is tohelp enable customers to design and create their own end-product solutions that meet applicable functional safety standards andrequirements. Nonetheless, such components are subject to these terms.No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the partieshave executed a special agreement specifically governing such use.Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use inmilitary/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI componentswhich have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal andregulatory requirements in connection with such use.TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use ofnon-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products ApplicationsAudio www.ti.com/audio Automotive and Transportation www.ti.com/automotiveAmplifiers amplifier.ti.com Communications and Telecom www.ti.com/communicationsData Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computersDLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-appsDSP dsp.ti.com Energy and Lighting www.ti.com/energyClocks and Timers www.ti.com/clocks Industrial www.ti.com/industrialInterface interface.ti.com Medical www.ti.com/medicalLogic logic.ti.com Security www.ti.com/securityPower Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defenseMicrocontrollers microcontroller.ti.com Video and Imaging www.ti.com/videoRFID www.ti-rfid.comOMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.comWireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2015, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinueany product or service without notice, and advise customers to obtain the latest version of relevant informationto verify, before placing orders, that information being relied on is current and complete. All products are soldsubject to the terms and conditions of sale supplied at the time of order acknowledgement, including thosepertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extentTI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarilyperformed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OFDEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICALAPPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, ORWARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TOBE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or representthat any license, either express or implied, is granted under any patent right, copyright, mask work right, or otherintellectual property right of TI covering or relating to any combination, machine, or process in which suchsemiconductor products or services might be or are used. TI’s publication of information regarding any thirdparty’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 1998, Texas Instruments Incorporated

M54HC164M74HC164

October 1992

8 BIT SIPO SHIFT REGISTER

B1R(Plastic Package)

ORDER CODES :M54HC164F1R M74HC164M1RM74HC164B1R M74HC164C1R

F1R(Ceramic Package)

M1R(Micro Package)

C1R(Chip Carrier)

PIN CONNECTIONS (top view)

NC =No InternalConnection

.HIGH SPEEDtPD = 15 ns (TYP.) AT VCC = 5 V.LOW POWER DISSIPATIONICC = 4 µA (MAX.) AT TA = 25 °C.OUTPUT DRIVE CAPABILITY10 LSTTL LOADS.BALANCED PROPAGATION DELAYStPLH = tPHL.SYMMETRICAL OUTPUT IMPEDANCEIOL = IOH = 4 mA (MIN.).HIGH NOISE IMMUNITYVNIH = VNIL = 28 % VCC (MIN.).WIDE OPERATING VOLTAGE RANGEVCC (OPR) = 2 V TO 6 V.PIN AND FUNCTION COMPATIBLEWITH 54/74LS164

DESCRIPTIONThe M54/74HC164 is a high speed CMOS 8 BITSIPO SHIFT REGISTER fabricated in silicon gateC2MOS technology. It has the same highspeed per-formance of LSTTL combined with true CMOS lowpower consumption.

The HC164 is an 8 bit shift register with serial dataentry and an output from each of the eight stages.Data is entered serially through one of two inputs (Aor B), either of these inputs can be used as an activehigh enable for data entry through the other input.An unused input must be high, or both inputs con-nected together. Each low-to-high transition on theclock input shifts data one place to the right andentersintoQA, the logic NAND of the twodata inputs(A ⋅ B), the data that existed before the rising clockedge. A low level on the clear input overrides allother inputs and clears the register asynchronously,forcing all Q outputs low.

All inputs are equipped with protection circuitsagainst static discharge and transient excess volt-age.

1/12

INPUT AND OUTPUT EQUIVALENT CIRCUIT

TRUTH TABLE

INPUTS OUTPUS

CLEAR CLOCKSERIAL IN

QA QB ............ QHA B

L X X X L L ............ L

H X X NO CHANGE

H L X L QAn ............ QGn

H X L L QAn ............ QGn

H H H H QAn ............ QGnX: Don’t CareQAn - QGn : The level of QA -QG, respectively. before the most-recent transition of th clock.

LOGIC DIAGRAM

M54/M74HC164

2/12

PIN DESCRIPTION

PIN No SYMBOL NAME AND FUNCTION

1, 2 A, B Data Inputs

3, 4, 5, 6,10, 11, 12,

13

QA to QH Outputs

8 CLOCK Clock Input (LOW toHIGH, Edge-triggered)

9 CLEAR Master Reset Input

7 GND Ground (0V)

14 VCC Positive Supply Voltage

IEC LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value Unit

VCC Supply Voltage -0.5 to +7 V

VI DC Input Voltage -0.5 to VCC + 0.5 V

VO DC Output Voltage -0.5 to VCC + 0.5 V

IIK DC Input Diode Current ± 20 mA

IOK DC Output Diode Current ± 20 mA

IO DC Output Source Sink Current Per Output Pin ± 25 mA

ICC or IGND DC VCC or Ground Current ± 50 mA

PD Power Dissipation 500 (*) mW

Tstg Storage Temperature -65 to +150 oC

TL Lead Temperature (10 sec) 300 oCAbsolute MaximumRatings are those values beyond whichdamage to the device may occur. Functional operation under these condition isnot implied.(*) 500 mW: ≅ 65 oC derate to 300 mW by 10mW/oC: 65 oC to 85 oC

RECOMMENDED OPERATING CONDITIONS

Symbol Parameter Value Unit

VCC Supply Voltage 2 to 6 V

VI Input Voltage 0 to VCC V

VO Output Voltage 0 to VCC V

Top Operating Temperature: M54HC SeriesM74HC Series

-55 to +125-40 to +85

oCoC

tr, tf Input Rise and Fall Time VCC = 2 V 0 to 1000 ns

VCC = 4.5 V 0 to 500

VCC = 6 V 0 to 400

M54/M74HC164

3/12

DC SPECIFICATIONS

Symbol Parameter

Test Conditions Value

UnitVCC

(V)

TA = 25 oC54HC and 74HC

-40 to 85 oC74HC

-55 to 125 oC54HC

Min. Typ. Max. Min. Max. Min. Max.

VIH High Level InputVoltage

2.0 1.5 1.5 1.5V4.5 3.15 3.15 3.15

6.0 4.2 4.2 4.2

VIL Low Level InputVoltage

2.0 0.5 0.5 0.5V4.5 1.35 1.35 1.35

6.0 1.8 1.8 1.8

VOH High LevelOutput Voltage

2.0VI =VIH

orVIL

IO=-20 µA1.9 2.0 1.9 1.9

V4.5 4.4 4.5 4.4 4.4

6.0 5.9 6.0 5.9 5.9

4.5 IO=-4.0 mA 4.18 4.31 4.13 4.10

6.0 IO=-5.2 mA 5.68 5.8 5.63 5.60

VOL Low Level OutputVoltage

2.0VI =VIH

orVIL

IO= 20 µA0.0 0.1 0.1 0.1

V4.5 0.0 0.1 0.1 0.1

6.0 0.0 0.1 0.1 0.1

4.5 IO= 4.0 mA 0.17 0.26 0.33 0.40

6.0 IO= 5.2 mA 0.18 0.26 0.33 0.40

II Input LeakageCurrent

6.0VI = VCC or GND ±0.1 ±1 ±1 µA

ICC Quiescent SupplyCurrent

6.0 VI = VCC or GND 4 40 80 µA

M54/M74HC164

4/12

AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)

Symbol Parameter

Test Conditions Value

UnitVCC

(V)

TA = 25 oC54HC and 74HC

-40 to 85 oC74HC

-55 to 125 oC54HC

Min. Typ. Max. Min. Max. Min. Max.tTLH

tTHL

Output TransitionTime

2.0 30 75 95 110ns4.5 8 15 19 22

6.0 7 13 16 19

tPLH

tPHL

PropagationDelay Time(CLOCK - Q)

2.0 57 160 200 240ns4.5 19 32 40 48

6.0 16 27 34 41

tPHL PropagationDelay Time(CLEAR - Q)

2.0 60 175 220 265ns4.5 20 35 44 53

6.0 17 30 37 45

fMAX Maximum ClockFrequency

2.0 6.2 18 5.0 4.2MHz4.5 31 53 25 21

6.0 37 62 30 25

tW(H)

tW(L)

Minimum PulseWidth(CLOCK)

2.0 24 75 95 110ns4.5 6 15 19 22

6.0 5 13 16 19

tW(L) Minimum PulseWidth(CLEAR)

2.0 40 75 95 110ns4.5 10 15 19 22

6.0 9 13 16 19

ts Minimum Set-upTime(A, B - CK)

2.0 16 50 65 75ns4.5 4 10 13 15

6.0 3 9 11 13

th Minimum HoldTime(A, B - CK)

2.0 5 5 5ns4.5 5 5 5

6.0 5 5 5

tREM MinimumRemoval Time

2.0 5 5 5ns4.5 5 5 5

6.0 5 5 5

CIN Input Capacitance 5 10 10 10 pF

CPD (*) Power DissipationCapacitance

99pF

(*) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without load.(Refer to Test Circuit). Average operting current can be obtained by the followingequation. ICC(opr) = CPD • VCC • fIN + ICC

M54/M74HC164

5/12

TIMING CHART

M54/M74HC164

6/12

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT ICC (Opr.)

INPUT WAVEFORM IS THE SAME AS THAT IN CASE OF SWITCHING CHARACTERISTICS TEST.

CLEAR MODE SERIAL MODE

M54/M74HC164

7/12

Plastic DIP14 MECHANICAL DATA

DIM.mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

a1 0.51 0.020

B 1.39 1.65 0.055 0.065

b 0.5 0.020

b1 0.25 0.010

D 20 0.787

E 8.5 0.335

e 2.54 0.100

e3 15.24 0.600

F 7.1 0.280

I 5.1 0.201

L 3.3 0.130

Z 1.27 2.54 0.050 0.100

P001A

M54/M74HC164

8/12

Ceramic DIP14/1 MECHANICAL DATA

DIM.mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 20 0.787

B 7.0 0.276

D 3.3 0.130

E 0.38 0.015

e3 15.24 0.600

F 2.29 2.79 0.090 0.110

G 0.4 0.55 0.016 0.022

H 1.17 1.52 0.046 0.060

L 0.22 0.31 0.009 0.012

M 1.52 2.54 0.060 0.100

N 10.3 0.406

P 7.8 8.05 0.307 0.317

Q 5.08 0.200

P053C

M54/M74HC164

9/12

SO14 MECHANICAL DATA

DIM.mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 1.75 0.068

a1 0.1 0.2 0.003 0.007

a2 1.65 0.064

b 0.35 0.46 0.013 0.018

b1 0.19 0.25 0.007 0.010

C 0.5 0.019

c1 45° (typ.)

D 8.55 8.75 0.336 0.344

E 5.8 6.2 0.228 0.244

e 1.27 0.050

e3 7.62 0.300

F 3.8 4.0 0.149 0.157

G 4.6 5.3 0.181 0.208

L 0.5 1.27 0.019 0.050

M 0.68 0.026

S 8° (max.)

P013G

M54/M74HC164

10/12

PLCC20 MECHANICAL DATA

DIM.mm inch

MIN. TYP. MAX. MIN. TYP. MAX.

A 9.78 10.03 0.385 0.395

B 8.89 9.04 0.350 0.356

D 4.2 4.57 0.165 0.180

d1 2.54 0.100

d2 0.56 0.022

E 7.37 8.38 0.290 0.330

e 1.27 0.050

e3 5.08 0.200

F 0.38 0.015

G 0.101 0.004

M 1.27 0.050

M1 1.14 0.045

P027A

M54/M74HC164

11/12

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for theconsequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Nolicense is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specificationsmentionedin this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.SGS-THOMSON Microelectronicsproducts are not authorized foruse ascritical components in life support devices or systems without expresswritten approval of SGS-THOMSON Microelectonics.

1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIESAustralia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

M54/M74HC164

12/12

© 2000 Fairchild Semiconductor Corporation DS006399 www.fairchildsemi.com

August 1986

Revised March 2000

DM

74LS

165 8-Bit P

arallel In/S

erial Ou

tpu

t Sh

ift Reg

isters

DM74LS1658-Bit Parallel In/Serial Output Shift Registers

General DescriptionThis device is an 8-bit serial shift register which shifts datain the direction of QA toward QH when clocked. Parallel-inaccess is made available by eight individual direct datainputs, which are enabled by a low level at the shift/loadinput. These registers also feature gated clock inputs andcomplementary outputs from the eighth bit.

Clocking is accomplished through a 2-input NOR gate, per-mitting one input to be used as a clock-inhibit function.Holding either of the clock inputs HIGH inhibits clocking,and holding either clock input LOW with the load inputHIGH enables the other clock input. The clock-inhibit inputshould be changed to the high level only while the clockinput is HIGH. Parallel loading is inhibited as long as theload input is HIGH. Data at the parallel inputs are loadeddirectly into the register on a HIGH-to-LOW transition of theshift/load input, regardless of the logic levels on the clock,clock inhibit, or serial inputs.

Features Complementary outputs

Direct overriding (data) inputs

Gated clock inputs

Parallel-to-serial data conversion

Typical frequency 35 MHz

Typical power dissipation 105 mW

Ordering Code:

Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code.

Connection Diagram Function Table

H = HIGH Level (steady state)L = LOW Level (steady state)X = Don't Care (any input, including transitions)↑ = Transition from LOW-to-HIGH levela...h = The level of steady-state input at inputs A through H, respectively.QA0, QB0, QH0 = The level of QA, QB, or QH, respectively, before the

indicated steady-state input conditions were established.QAn, QGn = The level of QA or QG, respectively, before the most recent

↑ transition of the clock.

Order Number Package Number Package Description

DM74LS165M M16A 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow

DM74LS165WM M16B 16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide

DM74LS165N N16E 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Inputs Internal

Shift/ Clock Clock Serial Parallel Outputs Output

Load Inhibit A...H QA QB QH

L X X X a...h a b h

H L L X X QA0 QB0 QH0

H L ↑ H X H QAn QGn

H L ↑ L X L QAn QGn

H H X X X QA0 QB0 QH0

www.fairchildsemi.com 2

DM

74L

S16

5Logic Diagram

Timing Diagram

Typical Shift, Load, and Inhibit Sequences

3 www.fairchildsemi.com

DM

74LS

165Absolute Maximum Ratings(Note 1)

Note 1: The “Absolute Maximum Ratings” are those values beyond whichthe safety of the device cannot be guaranteed. The device should not beoperated at these limits. The parametric values defined in the ElectricalCharacteristics tables are not guaranteed at the absolute maximum ratings.The “Recommended Operating Conditions” table will define the conditionsfor actual device operation.

Recommended Operating Conditions

Note 2: CL = 15 pF, RL = 2 kΩ, TA = 25°C and VCC = 5V

Note 3: CL = 50 pF, RL = 2 kΩ, TA = 25°C and VCC = 5V

Note 4: TA = 25°C and VCC = 5V.

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Note 5: All typicals are at VCC = 5V, TA = 25° C.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: With all outputs OPEN, clock inhibit and shift/load at 4.5V, and a clock pulse applied to the CLOCK input, ICC is measured first with the parallel inputs

at 4.5V, then again grounded.

Supply Voltage 7V

Input Voltage 7V

Operating Free Air Temperature Range 0°C to +70°C

Storage Temperature Range −65°C to +150°C

Symbol Parameter Min Nom Max Units

VCC Supply Voltage 4.75 5 5.25 V

VIH HIGH Level Input Voltage 2 V

VIL LOW Level Input Voltage 0.8 V

IOH HIGH Level Output Current −0.4 mA

IOL LOW Level Output Current 8 mA

fCLK Clock Frequency (Note 2) 0 25 MHz

fCLK Clock Frequency (Note 3) 0 20 MHz

tW Pulse Width Clock 25ns

(Note 3) Load 15

tSU Setup Time Parallel 10

(Note 4) Serial 20ns

Enable 30

Shift 45

tH Hold Time (Note 4) 0 ns

TA Free Air Operating Temperature 0 70 °C

Symbol Parameter Conditions MinTyp

Max Units(Note 5)

VI Input Clamp Voltage VCC = Min, II = −18 mA −1.5 V

VOH HIGH Level VCC = Min, IOH = Max2.7 3.4 V

Output Voltage VIL = Max, VIH = Min

VOL LOW Level VCC = Min, IOL = Max 0.4

Output Voltage VIL = Max, VIH = Min 0.35 0.5 V

IOL = 4 mA, VCC = Min 0.25 0.4

II Input Current @ Max VCC = Max, VI = 7V Shift/Load 0.3mA

Input Voltage Others 0.1

IIH HIGH Level VCC = Max Shift/Load 60µA

Input Current VI = 2.7V Others 20

IIL LOW Level VCC = Max Shift/Load −1.2mA

Input Current VI = 0.4V Others −0.4

IOS Short Circuit Output Current VCC = Max (Note 6) −20 −100 mA

ICC Supply Current VCC = Max (Note 7) 21 36 mA

www.fairchildsemi.com 4

DM

74L

S16

5Switching Characteristics at VCC = 5V and TA = 25°C

Symbol ParameterFrom (Input) CL = 15 pF RL = 2 kΩ, CL = 50 pF

UnitsTo (Output) Min Max Min Max

fMAX Maximum Clock Frequency 25 20 MHz

tPLH Propagation Delay TimeLoad to Any Q 35 37 ns

LOW-to-HIGH Level Output

tPHL Propagation Delay TimeLoad to Any Q 35 42 ns

HIGH-to-LOW Level Output

tPLH Propagation Delay TimeClock to Any Q 40 42 ns

LOW-to-HIGH Level Output

tPHL Propagation Delay TimeClock to Any Q 40 47 ns

HIGH-to-LOW Level Output

tPLH Propagation Delay TimeH to QH 25 27 ns

LOW-to-HIGH Level Output

tPHL Propagation Delay TimeH to QH 30 37 ns

HIGH-to-LOW Level Output

tPLH Propagation Delay TimeH to QH 30 32 ns

LOW-to-HIGH Level Output

tPHL Propagation Delay TimeH to QH 25 32 ns

HIGH-to-LOW Level Output

5 www.fairchildsemi.com

DM

74LS

165Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 NarrowPackage Number M16A

16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300 WidePackage Number M16B

www.fairchildsemi.com 6

DM

74L

S16

5 8-

Bit

Par

alle

l In

/Ser

ial O

utp

ut

Sh

ift

Reg

iste

rs Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 WidePackage Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied andFairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILDSEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into thebody, or (b) support or sustain life, and (c) whose failureto perform when properly used in accordance withinstructions for use provided in the labeling, can be rea-sonably expected to result in a significant injury to theuser.

2. A critical component in any component of a life supportdevice or system whose failure to perform can be rea-sonably expected to cause the failure of the life supportdevice or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation DS006413 www.fairchildsemi.com

August 1986

Revised March 2000

DM

74LS

245 3-STA

TE

Octal B

us Tran

sceiver

DM74LS2453-STATE Octal Bus Transceiver

General DescriptionThese octal bus transceivers are designed for asynchro-nous two-way communication between data buses. Thecontrol function implementation minimizes external timingrequirements.

The device allows data transmission from the A Bus to theB Bus or from the B Bus to the A Bus depending upon thelogic level at the direction control (DIR) input. The enableinput (G) can be used to disable the device so that thebuses are effectively isolated.

Features Bi-Directional bus transceiver in a high-density 20-pin

package

3-STATE outputs drive bus lines directly

PNP inputs reduce DC loading on bus lines

Hysteresis at bus inputs improve noise margins

Typical propagation delay times, port-to-port 8 ns

Typical enable/disable times 17 ns

IOL (sink current)

24 mA

IOH (source current)

−15 mA

Ordering Code:

Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code.

Connection Diagram Function Table

H = HIGH LevelL = LOW LevelX = Irrelevant

Order Number Package Number Package Description

DM74LS245WM M20B 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide

DM74LS245SJ M20D 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

DM74LS245N N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Enable Direction Operation

G Control

DIR

L L B Data to A Bus

L H A Data to B Bus

H X Isolation

www.fairchildsemi.com 2

DM

74L

S24

5Absolute Maximum Ratings(Note 1)

Note 1: The “Absolute Maximum Ratings” are those values beyond whichthe safety of the device cannot be guaranteed. The device should not beoperated at these limits. The parametric values defined in the ElectricalCharacteristics tables are not guaranteed at the absolute maximum ratings.The “Recommended Operating Conditions” table will define the conditionsfor actual device operation.

Recommended Operating Conditions

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Note 2: All typicals are at VCC = 5V, TA = 25°C.

Note 3: Not more than one output should be shorted at a time, not to exceed one second duration

Supply Voltage 7V

Input Voltage

DIR or G 7V

A or B 5.5V

Operating Free Air Temperature Range 0°C to +70°C

Storage Temperature Range −65°C to +150°C

Symbol Parameter Min Nom Max Units

VCC Supply Voltage 4.75 5 5.25 V

VIH HIGH Level Input Voltage 2 V

VIL LOW Level Input Voltage 0.8 V

IOH HIGH Level Output Current −15 mA

IOL LOW Level Output Current 24 mA

TA Free Air Operating Temperature 0 70 °C

Symbol Parameter Conditions MinTyp

Max Units(Note 2)

VI Input Clamp Voltage VCC = Min, II = −18 mA −1.5 V

HYS Hysteresis (VT+ − VT−) VCC = Min 0.2 0.4 V

VOH HIGH Level VCC = Min, VIH = Min2.7

Output Voltage VIL = Max, IOH = −1 mA

VCC = Min, VIL = Min2.4 3.4 V

VIL = Max, IOH = −3 mA

VCC = Min, VIH = Min2

VIL = 0.5V, IOH = Max

VOL LOW Level VCC = Min IOL = 12 mA 0.4

Output Voltage VIL = MaxIOL = Max 0.5

V

VIH = Min

IOZH Off-State Output Current, VCC = MaxVO = 2.7V 20 µA

HIGH Level Voltage Applied VIL = Max

IOZL Off-State Output Current, VIH = MinVO = 0.4V −200 µA

LOW Level Voltage Applied

II Input Current at Maximum VCC = Max A or B VI = 5.5V 0.1mA

Input Voltage DIR or G VI = 7V 0.1

IIH HIGH Level Input Current VCC = Max, VI = 2.7V 20 µA

IIL LOW Level Input Current VCC = Max, VI = 0.4V −0.2 mA

IOS Short Circuit Output Current VCC = Max (Note 3) −40 −225 mA

ICC Supply Current Outputs HIGH

VCC = Max

48 70

Outputs LOW 62 90 mA

Outputs at Hi-Z 64 95

3 www.fairchildsemi.com

DM

74LS

245Switching Characteristics VCC = 5V, TA = 25°C

Symbol Parameter Conditions Min Max Units

tPLH Propagation Delay Time, CL = 45 pF12 ns

LOW-to-HIGH Level Output RL = 667Ω

tPHL Propagation Delay Time, 12 ns

HIGH-to-LOW Level Output

tPZL Output Enable Time 40 ns

to LOW Level

tPZH Output Enable Time 40 ns

to HIGH Level

tPLZ Output Disable Time CL = 5 pF25 ns

from LOW Level RL = 667Ω

tPHZ Output Disable Time 25 ns

from HIGH Level

tPLH Propagation Delay Time, CL = 150 pF16 ns

LOW-to-HIGH Level Output RL = 667Ω

tPHL Propagation Delay Time, 17 ns

HIGH-to-LOW Level Output

tPZL Output Enable Time 45 ns

to LOW Level

tPZH Output Enable Time45 ns

to HIGH Level

www.fairchildsemi.com 4

DM

74L

S24

5Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 WidePackage Number M20B

5 www.fairchildsemi.com

DM

74LS

245Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm WidePackage Number M20D

www.fairchildsemi.com 6

DM

74L

S24

5 3-

STA

TE

Oct

al B

us

Tran

scei

ver

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 WidePackage Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied andFairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILDSEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into thebody, or (b) support or sustain life, and (c) whose failureto perform when properly used in accordance withinstructions for use provided in the labeling, can be rea-sonably expected to result in a significant injury to theuser.

2. A critical component in any component of a life supportdevice or system whose failure to perform can be rea-sonably expected to cause the failure of the life supportdevice or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation DS006431 www.fairchildsemi.com

April 1986

Revised March 2000

DM

74LS

373 • DM

74LS374 3-S

TAT

E O

ctal D-Type Transparent Latches and E

dge-Triggered Flip-F

lops

DM74LS373 • DM74LS3743-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

General DescriptionThese 8-bit registers feature totem-pole 3-STATE outputsdesigned specifically for driving highly-capacitive or rela-tively low-impedance loads. The high-impedance state andincreased high-logic level drive provide these registers withthe capability of being connected directly to and driving thebus lines in a bus-organized system without need for inter-face or pull-up components. They are particularly attractivefor implementing buffer registers, I/O ports, bidirectionalbus drivers, and working registers.

The eight latches of the DM74LS373 are transparent D-type latches meaning that while the enable (G) is HIGH theQ outputs will follow the data (D) inputs. When the enableis taken LOW the output will be latched at the level of thedata that was set up.

The eight flip-flops of the DM74LS374 are edge-triggeredD-type flip flops. On the positive transition of the clock, theQ outputs will be set to the logic states that were set up atthe D inputs.

A buffered output control input can be used to place theeight outputs in either a normal logic state (HIGH or LOWlogic levels) or a high-impedance state. In the high-imped-ance state the outputs neither load nor drive the bus linessignificantly.

The output control does not affect the internal operation ofthe latches or flip-flops. That is, the old data can beretained or new data can be entered even while the outputsare OFF.

Features Choice of 8 latches or 8 D-type flip-flops in a single

package

3-STATE bus-driving outputs

Full parallel-access for loading

Buffered control inputs

P-N-P inputs reduce D-C loading on data lines

Ordering Code:

Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code.

Order Number Package Number Package Description

DM74LS373WM M20B 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide

DM74LS373SJ M20D 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

DM74LS373N N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

DM74LS374WM M20B 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide

DM74LS374SJ M20D 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

IDM29901NC N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

www.fairchildsemi.com 2

DM

74L

S37

3 •

DM

74LS

374

Connection Diagrams

DM74LS373 DM74LS374

Function TablesDM74LS373 DM74LS374

H = HIGH Level (Steady State) L = LOW Level (Steady State) X = Don’t Care Z = High Impedance State

↑ = Transition from LOW-to-HIGH level Q0 = The level of the output before steady-state input conditions were established.

Logic Diagrams

DM74LS373Transparent Latches

DM74LS374Positive-Edge-Triggered Flip-Flops

Output EnableD Output

Control G

L H H H

L H L L

L L X Q0

H X X Z

OutputClock D Output

Control

L ↑ H H

L ↑ L L

L L X Q0

H X X Z

3 www.fairchildsemi.com

DM

74LS

373 • DM

74LS374

Absolute Maximum Ratings(Note 1)Note 1: The “Absolute Maximum Ratings” are those values beyond whichthe safety of the device cannot be guaranteed. The device should not beoperated at these limits. The parametric values defined in the ElectricalCharacteristics tables are not guaranteed at the absolute maximum ratings.The “Recommended Operating Conditions” table will define the conditionsfor actual device operation.

DM74LS373 Recommended Operating Conditions

Note 2: The symbol (↓) indicates the falling edge of the clock pulse is used for reference.

Note 3: TA = 25°C and VCC = 5V.

DM74LS373 Electrical Characteristicsover recommended operating free air temperature range (unless otherwise noted)

Note 4: All typicals are at VCC = 5V, TA = 25°C.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Supply Voltage 7V

Input Voltage 7V

Storage Temperature Range −65°C to +150°C

Operating Free Air Temperature Range 0°C to +70°C

Symbol Parameter Min Nom Max Units

VCC Supply Voltage 4.75 5 5.25 V

VIH HIGH Level Input Voltage 2 V

VIL LOW Level Input Voltage 0.8 V

IOH HIGH Level Output Current −2.6 mA

IOL LOW Level Output Current 24 mA

tW Pulse Width Enable HIGH 15ns

(Note 3) Enable LOW 15

tSU Data Setup Time (Note 2) (Note 3) 5↓ ns

tH Data Hold Time (Note 2) (Note 3) 20↓ ns

TA Free Air Operating Temperature 0 70 °C

Symbol Parameter Conditions MinTyp

Max Units(Note 4)

VI Input Clamp Voltage VCC = Min, II = −18 mA −1.5 V

VOH HIGH Level VCC = Min, IOH = Max2.4 3.1 V

Output Voltage VIL = Max, VIH = Min

VOL LOW Level VCC = Min, IOL = Max

Output Voltage VIL = Max, VIH = Min 0.35 0.5 V

IOL = 12 mA, VCC = Min 0.4

II Input Current @ Max Input Voltage VCC = Max, VI = 7V 0.1 mA

IIH HIGH Level Input Current VCC = Max, VI = 2.7V 20 µA

IIL LOW Level Input Current VCC = Max, VI = 0.4V −0.4 mA

IOZH Off-State Output Current with VCC = Max, VO = 2.7V20 µA

HIGH Level Output Voltage Applied VIH = Min, VIL = Max

IOZL Off-State Output Current with VCC = Max, VO = 0.4V−20 µA

LOW Level Output Voltage Applied VIH = Min, VIL = Max

IOS Short Circuit Output Current VCC = Max (Note 5) −50 −225 mA

ICC Supply Current VCC = Max, OC = 4.5V,24 40 mA

Dn, Enable = GND

www.fairchildsemi.com 4

DM

74L

S37

3 •

DM

74LS

374

DM74LS373 Switching Characteristics at VCC = 5V and TA = 25°C

Note 6: CL = 5 pF.

DM74LS374 Recommended Operating Conditions

Note 7: The symbol (↑) indicates the rising edge of the clock pulse is used for reference.

Note 8: TA = 25°C and VCC = 5V.

RL = 667Ω

Symbol Parameter From (Input) CL = 45 pF CL = 150 pF Units

To (Output) Min Max Min Max

tPLH Propagation Delay TimeData to Q 18 26 ns

LOW-to-HIGH Level Output

tPHL Propagation Delay TimeData to Q 18 27 ns

HIGH-to-LOW Level Output

tPLH Propagation Delay TimeEnable to Q 30 38 ns

LOW-to-HIGH Level Output

tPHL Propagation Delay TimeEnable to Q 30 36 ns

HIGH-to-LOW Level Output

tPZH Output Enable TimeOutput Control to Any Q 28 36 ns

to HIGH Level Output

tPZL Output Enable Time Output Control to Any Q 36 50 ns

to LOW Level Output

tPHZ Output Disable TimeOutput Control to Any Q 20 ns

from HIGH Level Output (Note 6)

tPLZ Output Disable TimeOutput Control to Any Q 25 ns

from LOW Level Output (Note 6)

Symbol Parameter Min Nom Max Units

VCC Supply Voltage 4.75 5 5.25 V

VIH HIGH Level Input Voltage 2 V

VIL LOW Level Input Voltage 0.8 V

IOH HIGH Level Output Current −2.6 mA

IOL LOW Level Output Current 24 mA

tW Pulse Width Clock HIGH 15ns

(Note 8) Clock LOW 15

tSU Data Setup Time (Note 7) (Note 8) 20↑ ns

tH Data Hold Time (Note 7) (Note 8) 1↑ ns

TA Free Air Operating Temperature 0 70 °C

5 www.fairchildsemi.com

DM

74LS

373 • DM

74LS374

DM74LS374 Electrical Characteristicsover recommended operating free air temperature range (unless otherwise noted)

Note 9: All typicals are at VCC = 5V, TA = 25°C.

Note 10: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM74LS374 Switching Characteristics at VCC = 5V and TA = 25°C

Note 11: CL = 5 pF.

Symbol Parameter Conditions MinTyp

Max Units(Note 9)

VI Input Clamp Voltage VCC = Min, II = −18 mA −1.5 V

VOH HIGH Level VCC = Min, IOH = Max2.4 3.1 V

Output Voltage VIL = Max, VIH = Min

VOL LOW Level VCC = Min, IOL = Max0.35 0.5

VOutput Voltage VIL = Max, VIH = Min

IOL = 12 mA, VCC = Min 0.25 0.4

II Input Current @ Max Input Voltage VCC = Max, VI = 7V 0.1 mA

IIH HIGH Level Input Current VCC = Max, VI = 2.7V 20 µA

IIL LOW Level Input Current VCC = Max, VI = 0.4V −0.4 mA

IOZH Off-State Output Current with VCC = Max, VO = 2.7V20 µA

HIGH Level Output Voltage Applied VIH = Min, VIL = Max

IOZL Off-State Output Current with VCC = Max, VO = 0.4V−20 µA

LOW Level Output Voltage Applied VIH = Min, VIL = Max

IOS Short Circuit Output Current VCC = Max (Note 10) −50 −225 mA

ICC Supply Current VCC = Max, Dn = GND, OC = 4.5V 27 45 mA

RL = 667Ω

Symbol Parameter CL = 45 pF CL = 150 pF Units

Min Max Min Max

fMAX Maximum Clock Frequency 35 20 MHz

tPLH Propagation Delay Time28 32 ns

LOW-to-HIGH Level Output

tPHL Propagation Delay Time28 38 ns

HIGH-to-LOW Level Output

tPZH Output Enable Time28 44 ns

to HIGH Level Output

tPZL Output Enable Time28 44 ns

to LOW Level Output

tPHZ Output Disable Time20 ns

from HIGH Level Output (Note 11)

tPLZ Output Disable Time25 ns

from LOW Level Output (Note 11)

www.fairchildsemi.com 6

DM

74L

S37

3 •

DM

74LS

374

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 WidePackage Number M20B

7 www.fairchildsemi.com

DM

74LS

373 • DM

74LS374

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm WidePackage Number M20D

www.fairchildsemi.com 8

DM

74L

S37

3 •

DM

74LS

374

3-S

TAT

E O

ctal

D-T

ype

Tran

spar

ent L

atch

es a

nd E

dge-

Trig

gere

d F

lip-F

lops

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 WidePackage Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied andFairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILDSEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into thebody, or (b) support or sustain life, and (c) whose failureto perform when properly used in accordance withinstructions for use provided in the labeling, can be rea-sonably expected to result in a significant injury to theuser.

2. A critical component in any component of a life supportdevice or system whose failure to perform can be rea-sonably expected to cause the failure of the life supportdevice or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ADC0808/ADC08098-Bit µP Compatible A/D Converters with 8-ChannelMultiplexerGeneral DescriptionThe ADC0808, ADC0809 data acquisition component is amonolithic CMOS device with an 8-bit analog-to-digital con-verter, 8-channel multiplexer and microprocessor compatiblecontrol logic. The 8-bit A/D converter uses successive ap-proximation as the conversion technique. The converter fea-tures a high impedance chopper stabilized comparator, a256R voltage divider with analog switch tree and a succes-sive approximation register. The 8-channel multiplexer candirectly access any of 8-single-ended analog signals.

The device eliminates the need for external zero andfull-scale adjustments. Easy interfacing to microprocessorsis provided by the latched and decoded multiplexer addressinputs and latched TTL TRI-STATE® outputs.

The design of the ADC0808, ADC0809 has been optimizedby incorporating the most desirable aspects of several A/Dconversion techniques. The ADC0808, ADC0809 offers highspeed, high accuracy, minimal temperature dependence, ex-cellent long-term accuracy and repeatability, and consumesminimal power. These features make this device ideallysuited to applications from process and machine control toconsumer and automotive applications. For 16-channel mul-tiplexer with common output (sample/hold port) seeADC0816 data sheet. (See AN-247 for more information.)

Featuresn Easy interface to all microprocessorsn Operates ratiometrically or with 5 VDC or analog span

adjusted voltage referencen No zero or full-scale adjust requiredn 8-channel multiplexer with address logicn 0V to 5V input range with single 5V power supplyn Outputs meet TTL voltage level specificationsn Standard hermetic or molded 28-pin DIP packagen 28-pin molded chip carrier packagen ADC0808 equivalent to MM74C949n ADC0809 equivalent to MM74C949-1

Key Specificationsn Resolution 8 Bitsn Total Unadjusted Error ±1⁄2 LSB and ±1 LSBn Single Supply 5 VDC

n Low Power 15 mWn Conversion Time 100 µs

Block Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corp.

DS005672-1

See OrderingInformation

October 1999

AD

C0808/A

DC

08098-B

itµPC

ompatible

A/D

Converters

with

8-ChannelM

ultiplexer

© 1999 National Semiconductor Corporation DS005672 www.national.com

Connection Diagrams

Ordering Information

TEMPERATURE RANGE −40˚C to +85˚C −55˚C to +125˚C

Error ±1⁄2 LSB Unadjusted ADC0808CCN ADC0808CCV ADC0808CCJ ADC0808CJ

±1 LSB Unadjusted ADC0809CCN ADC0809CCV

Package Outline N28A Molded DIP V28A Molded Chip Carrier J28A Ceramic DIP J28A Ceramic DIP

Dual-In-Line Package

DS005672-11

Order Number ADC0808CCN or ADC0809CCNSee NS Package J28A or N28A

Molded Chip Carrier Package

DS005672-12

Order Number ADC0808CCV or ADC0809CCVSee NS Package V28A

AD

C08

08/A

DC

0809

www.national.com 2

Absolute Maximum Ratings (Notes 2, 1)

If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (VCC) (Note 3) 6.5VVoltage at Any Pin −0.3V to (VCC+0.3V)

Except Control InputsVoltage at Control Inputs −0.3V to +15V

(START, OE, CLOCK, ALE, ADD A, ADD B, ADD C)Storage Temperature Range −65˚C to +150˚CPackage Dissipation at TA=25˚C 875 mWLead Temp. (Soldering, 10 seconds)

Dual-In-Line Package (plastic) 260˚C

Dual-In-Line Package (ceramic) 300˚CMolded Chip Carrier Package

Vapor Phase (60 seconds) 215˚CInfrared (15 seconds) 220˚C

ESD Susceptibility (Note 8) 400V

Operating Conditions (Notes 1, 2)

Temperature Range (Note 1) TMIN≤TA≤TMAX

ADC0808CCN,ADC0809CCN −40˚C≤TA≤+85˚CADC0808CCV, ADC0809CCV −40˚C ≤ TA ≤ +85˚C

Range of VCC (Note 1) 4.5 VDC to 6.0 VDC

Electrical CharacteristicsConverter Specifications: VCC=5 VDC=VREF+, VREF(−)=GND, TMIN≤TA≤TMAX and fCLK=640 kHz unless otherwise stated.

Symbol Parameter Conditions Min Typ Max Units

ADC0808

Total Unadjusted Error 25˚C ±1⁄2 LSB

(Note 5) TMIN to TMAX ±3⁄4 LSB

ADC0809

Total Unadjusted Error 0˚C to 70˚C ±1 LSB

(Note 5) TMIN to TMAX ±11⁄4 LSB

Input Resistance From Ref(+) to Ref(−) 1.0 2.5 kΩAnalog Input Voltage Range (Note 4) V(+) or V(−) GND−0.10 VCC+0.10 VDC

VREF(+) Voltage, Top of Ladder Measured at Ref(+) VCC VCC+0.1 V

Voltage, Center of Ladder VCC/2-0.1 VCC/2 VCC/2+0.1 V

VREF(−) Voltage, Bottom of Ladder Measured at Ref(−) −0.1 0 V

IIN Comparator Input Current fc=640 kHz, (Note 6) −2 ±0.5 2 µA

Electrical CharacteristicsDigital Levels and DC Specifications: ADC0808CCN, ADC0808CCV, ADC0809CCN and ADC0809CCV, 4.75≤VCC≤5.25V,−40˚C≤TA≤+85˚C unless otherwise noted

Symbol Parameter Conditions Min Typ Max Units

ANALOG MULTIPLEXER

IOFF(+) OFF Channel Leakage Current VCC=5V, VIN=5V,

TA=25˚C 10 200 nA

TMIN to TMAX 1.0 µA

IOFF(−) OFF Channel Leakage Current VCC=5V, VIN=0,

TA=25˚C −200 −10 nA

TMIN to TMAX −1.0 µA

CONTROL INPUTS

VIN(1) Logical “1” Input Voltage VCC−1.5 V

VIN(0) Logical “0” Input Voltage 1.5 V

IIN(1) Logical “1” Input Current VIN=15V 1.0 µA

(The Control Inputs)

IIN(0) Logical “0” Input Current VIN=0 −1.0 µA

(The Control Inputs)

ICC Supply Current fCLK=640 kHz 0.3 3.0 mA

AD

C0808/A

DC

0809

www.national.com3

Electrical Characteristics (Continued)

Digital Levels and DC Specifications: ADC0808CCN, ADC0808CCV, ADC0809CCN and ADC0809CCV, 4.75≤VCC≤5.25V,−40˚C≤TA≤+85˚C unless otherwise noted

Symbol Parameter Conditions Min Typ Max Units

DATA OUTPUTS AND EOC (INTERRUPT)

VOUT(1) Logical “1” Output Voltage VCC = 4.75VIOUT = −360µAIOUT = −10µA

2.44.5

V(min)V(min)

VOUT(0) Logical “0” Output Voltage IO=1.6 mA 0.45 V

VOUT(0) Logical “0” Output Voltage EOC IO=1.2 mA 0.45 V

IOUT TRI-STATE Output Current VO=5V 3 µA

VO=0 −3 µA

Electrical CharacteristicsTiming Specifications VCC=VREF(+)=5V, VREF(−)=GND, tr=tf=20 ns and TA=25˚C unless otherwise noted.

Symbol Parameter Conditions MIn Typ Max Units

tWS Minimum Start Pulse Width (Figure 5) 100 200 ns

tWALE Minimum ALE Pulse Width (Figure 5) 100 200 ns

ts Minimum Address Set-Up Time (Figure 5) 25 50 ns

tH Minimum Address Hold Time (Figure 5) 25 50 ns

tD Analog MUX Delay Time RS=0Ω (Figure 5) 1 2.5 µs

From ALE

tH1, tH0 OE Control to Q Logic State CL=50 pF, RL=10k (Figure 8) 125 250 ns

t1H, t0H OE Control to Hi-Z CL=10 pF, RL=10k (Figure 8) 125 250 ns

tc Conversion Time fc=640 kHz, (Figure 5) (Note 7) 90 100 116 µs

fc Clock Frequency 10 640 1280 kHz

tEOC EOC Delay Time (Figure 5) 0 8+2 µS Clock

Periods

CIN Input Capacitance At Control Inputs 10 15 pF

COUT TRI-STATE Output At TRI-STATE Outputs 10 15 pF

Capacitance

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operatingthe device beyond its specified operating conditions.

Note 2: All voltages are measured with respect to GND, unless othewise specified.

Note 3: A zener diode exists, internally, from VCC to GND and has a typical breakdown voltage of 7 VDC.

Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greaterthan the VCCn supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog VIN does not exceed the supply voltage by morethan 100 mV, the output code will be correct. To achieve an absolute 0VDC to 5VDC input voltage range will therefore require a minimum supply voltage of 4.900 VDCover temperature variations, initial tolerance and loading.

Note 5: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. How-ever, if an all zero code is desired for an analog input other than 0.0V, or if a narrow full-scale span exists (for example: 0.5V to 4.5V full-scale) the reference voltagescan be adjusted to achieve this. See Figure 13.

Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has littletemperature dependence (Figure 6). See paragraph 4.0.

Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC.

Note 8: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

AD

C08

08/A

DC

0809

www.national.com 4

Functional DescriptionMultiplexer. The device contains an 8-channel single-endedanalog signal multiplexer. A particular input channel is se-lected by using the address decoder. Table 1 shows the inputstates for the address lines to select any channel. The ad-dress is latched into the decoder on the low-to-high transitionof the address latch enable signal.

TABLE 1.

SELECTED ADDRESS LINE

ANALOGCHANNEL

C B A

IN0 L L L

IN1 L L H

IN2 L H L

IN3 L H H

IN4 H L L

IN5 H L H

IN6 H H L

IN7 H H H

CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its8-bit analog-to-digital converter. The converter is designed togive fast, accurate, and repeatable conversions over a widerange of temperatures. The converter is partitioned into 3major sections: the 256R ladder network, the successive ap-proximation register, and the comparator. The converter’sdigital outputs are positive true.

The 256R ladder network approach (Figure 1) was chosenover the conventional R/2R ladder because of its inherentmonotonicity, which guarantees no missing digital codes.Monotonicity is particularly important in closed loop feedbackcontrol systems. A non-monotonic relationship can cause os-cillations that will be catastrophic for the system. Additionally,the 256R network does not cause load variations on the ref-erence voltage.

The bottom resistor and the top resistor of the ladder net-work in Figure 1 are not the same value as the remainder ofthe network. The difference in these resistors causes theoutput characteristic to be symmetrical with the zero andfull-scale points of the transfer curve. The first output transi-tion occurs when the analog signal has reached +1⁄2 LSBand succeeding output transitions occur every 1 LSB later upto full-scale.

The successive approximation register (SAR) performs 8 it-erations to approximate the input voltage. For any SAR typeconverter, n-iterations are required for an n-bit converter.Figure 2 shows a typical example of a 3-bit converter. In theADC0808, ADC0809, the approximation technique is ex-tended to 8 bits using the 256R network.

The A/D converter’s successive approximation register(SAR) is reset on the positive edge of the start conversion(SC) pulse. The conversion is begun on the falling edge ofthe start conversion pulse. A conversion in process will be in-terrupted by receipt of a new start conversion pulse. Con-tinuous conversion may be accomplished by tying theend-of-conversion (EOC) output to the SC input. If used inthis mode, an external start conversion pulse should be ap-plied after power up. End-of-conversion will go low between0 and 8 clock pulses after the rising edge of start conversion.

The most important section of the A/D converter is the com-parator. It is this section which is responsible for the ultimateaccuracy of the entire converter. It is also the comparatordrift which has the greatest influence on the repeatability ofthe device. A chopper-stabilized comparator provides themost effective method of satisfying all the converter require-ments.

The chopper-stabilized comparator converts the DC inputsignal into an AC signal. This signal is then fed through ahigh gain AC amplifier and has the DC level restored. Thistechnique limits the drift component of the amplifier since thedrift is a DC component which is not passed by the AC am-plifier. This makes the entire A/D converter extremely insen-sitive to temperature, long term drift and input offset errors.

Figure 4 shows a typical error curve for the ADC0808 asmeasured using the procedures outlined in AN-179.

AD

C0808/A

DC

0809

www.national.com5

Functional Description (Continued)

DS005672-2

FIGURE 1. Resistor Ladder and Switch Tree

DS005672-13

FIGURE 2. 3-Bit A/D Transfer CurveDS005672-14

FIGURE 3. 3-Bit A/D Absolute Accuracy Curve

DS005672-15

FIGURE 4. Typical Error Curve

AD

C08

08/A

DC

0809

www.national.com 6

Timing Diagram

DS005672-4

FIGURE 5.

AD

C0808/A

DC

0809

www.national.com7

Typical Performance Characteristics

TRI-STATE Test Circuits and Timing Diagrams

Applications Information

OPERATION

1.0 RATIOMETRIC CONVERSION

The ADC0808, ADC0809 is designed as a complete DataAcquisition System (DAS) for ratiometric conversion sys-tems. In ratiometric systems, the physical variable beingmeasured is expressed as a percentage of full-scale which isnot necessarily related to an absolute standard. The voltageinput to the ADC0808 is expressed by the equation

(1)

VIN=Input voltage into the ADC0808

Vfs=Full-scale voltage

VZ=Zero voltage

DX=Data point being measured

DMAX=Maximum data limit

DMIN=Minimum data limit

A good example of a ratiometric transducer is a potentiom-eter used as a position sensor. The position of the wiper is di-rectly proportional to the output voltage which is a ratio of thefull-scale voltage across it. Since the data is represented asa proportion of full-scale, reference requirements are greatlyreduced, eliminating a large source of error and cost formany applications. A major advantage of the ADC0808,ADC0809 is that the input voltage range is equal to the sup-ply range so the transducers can be connected directlyacross the supply and their outputs connected directly intothe multiplexer inputs, (Figure 9).

Ratiometric transducers such as potentiometers, straingauges, thermistor bridges, pressure transducers, etc., aresuitable for measuring proportional relationships; however,many types of measurements must be referred to an abso-lute standard such as voltage or current. This means a sys-

DS005672-16

FIGURE 6. Comparator I IN vs VIN

(VCC=VREF=5V) DS005672-17

FIGURE 7. Multiplexer R ON vs VIN

(VCC=VREF=5V)

t1H, tH1

DS005672-18

t1H, CL = 10 pF

DS005672-19

tH1, CL = 50 pF

DS005672-20

t0H, tH0

DS005672-21

t0H, CL = 10 pF

DS005672-22

tH0, CL = 50 pF

DS005672-23

FIGURE 8.

AD

C08

08/A

DC

0809

www.national.com 8

Applications Information (Continued)

tem reference must be used which relates the full-scale volt-age to the standard volt. For example, if VCC=VREF=5.12V,then the full-scale range is divided into 256 standard steps.The smallest standard step is 1 LSB which is then 20 mV.

2.0 RESISTOR LADDER LIMITATIONS

The voltages from the resistor ladder are compared to theselected into 8 times in a conversion. These voltages arecoupled to the comparator via an analog switch tree which isreferenced to the supply. The voltages at the top, center andbottom of the ladder must be controlled to maintain properoperation.

The top of the ladder, Ref(+), should not be more positivethan the supply, and the bottom of the ladder, Ref(−), shouldnot be more negative than ground. The center of the laddervoltage must also be near the center of the supply becausethe analog switch tree changes from N-channel switches toP-channel switches. These limitations are automatically sat-isfied in ratiometric systems and can be easily met in groundreferenced systems.

Figure 10 shows a ground referenced system with a sepa-rate supply and reference. In this system, the supply must betrimmed to match the reference voltage. For instance, if a5.12V is used, the supply should be adjusted to the samevoltage within 0.1V.

The ADC0808 needs less than a milliamp of supply currentso developing the supply from the reference is readily ac-complished. In Figure 11 a ground referenced system isshown which generates the supply from the reference. Thebuffer shown can be an op amp of sufficient drive to supplythe milliamp of supply current and the desired bus drive, or ifa capacitive bus is driven by the outputs a large capacitor willsupply the transient supply current as seen in Figure 12. TheLM301 is overcompensated to insure stability when loadedby the 10 µF output capacitor.

The top and bottom ladder voltages cannot exceed VCC andground, respectively, but they can be symmetrically less thanVCC and greater than ground. The center of the ladder volt-age should always be near the center of the supply. The sen-sitivity of the converter can be increased, (i.e., size of theLSB steps decreased) by using a symmetrical reference sys-tem. In Figure 13, a 2.5V reference is symmetrically cen-tered about VCC/2 since the same current flows in identicalresistors. This system with a 2.5V reference allows the LSBbit to be half the size of a 5V reference system.

DS005672-7

FIGURE 9. Ratiometric Conversion System

AD

C0808/A

DC

0809

www.national.com9

Applications Information (Continued)

DS005672-24

FIGURE 10. Ground ReferencedConversion System Using Trimmed Supply

DS005672-25

FIGURE 11. Ground Referenced Conversion System withReference Generating V CC Supply

AD

C08

08/A

DC

0809

www.national.com 10

Applications Information (Continued)

3.0 CONVERTER EQUATIONS

The transition between adjacent codes N and N+1 is givenby:

(2)

The center of an output code N is given by:

(3)

The output code N for an arbitrary input are the integerswithin the range:

(4)

Where: VIN=Voltage at comparator input

VREF(+)=Voltage at Ref(+)

VREF(−)=Voltage at Ref(−)

VTUE=Total unadjusted error voltage (typically

VREF(+)÷512)

DS005672-26

FIGURE 12. Typical Reference and Supply Circuit

DS005672-27

RA=RB

*Ratiometric transducers

FIGURE 13. Symmetrically Centered Reference

AD

C0808/A

DC

0809

www.national.com11

Applications Information (Continued)

4.0 ANALOG COMPARATOR INPUTS

The dynamic comparator input current is caused by the pe-riodic switching of on-chip stray capacitances. These areconnected alternately to the output of the resistor ladder/switch tree network and to the comparator input as part ofthe operation of the chopper stabilized comparator.

The average value of the comparator input current varies di-rectly with clock frequency and with VIN as shown inFigure 6.

If no filter capacitors are used at the analog inputs and thesignal source impedances are low, the comparator input cur-rent should not introduce converter errors, as the transientcreated by the capacitance discharge will die out before thecomparator output is strobed.

If input filter capacitors are desired for noise reduction andsignal conditioning they will tend to average out the dynamiccomparator input current. It will then take on the characteris-tics of a DC bias current whose effect can be predicted con-ventionally.

Typical Application

TABLE 2. Microprocessor Interface Table

PROCESSOR READ WRITE INTERRUPT (COMMENT)

8080 MEMR MEMW INTR (Thru RST Circuit)

8085 RD WR INTR (Thru RST Circuit)

Z-80 RD WR INT (Thru RST Circuit, Mode 0)

SC/MP NRDS NWDS SA (Thru Sense A)

6800 VMA•φ2•R/W VMA•φ•R/W IRQA or IRQB (Thru PIA)

DS005672-10

*Address latches needed for 8085 and SC/MP interfacing the ADC0808 to a microprocessor

AD

C08

08/A

DC

0809

www.national.com 12

Physical Dimensions inches (millimeters) unless otherwise noted

Molded Dual-In-Line Package (N)Order Number ADC0808CCN or ADC0809CCN

NS Package Number N28B

Molded Chip Carrier (V)Order Number ADC0808CCV or ADC0809CCV

NS Package Number V28A

AD

C0808/A

DC

0809

www.national.com13

Notes

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERALCOUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implantinto the body, or (b) support or sustain life, andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling, can be reasonably expected to result in asignificant injury to the user.

2. A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system, or to affect itssafety or effectiveness.

National SemiconductorCorporationAmericasTel: 1-800-272-9959Fax: 1-800-737-7018Email: [email protected]

National SemiconductorEurope

Fax: +49 (0) 1 80-530 85 86Email: [email protected]

Deutsch Tel: +49 (0) 1 80-530 85 85English Tel: +49 (0) 1 80-532 78 32Français Tel: +49 (0) 1 80-532 93 58Italiano Tel: +49 (0) 1 80-534 16 80

National SemiconductorAsia Pacific CustomerResponse GroupTel: 65-2544466Fax: 65-2504466Email: [email protected]

National SemiconductorJapan Ltd.Tel: 81-3-5639-7560Fax: 81-3-5639-7507

www.national.com

AD

C08

08/A

DC

0809

8-B

itµP

Com

patib

leA

/DC

onve

rters

with

8-C

hann

elM

ultip

lexe

r

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

DAC08088-Bit D/A ConverterGeneral DescriptionThe DAC0808 is an 8-bit monolithic digital-to-analog con-verter (DAC) featuring a full scale output current settling timeof 150 ns while dissipating only 33 mW with ±5V supplies.No reference current (IREF) trimming is required for mostapplications since the full scale output current is typically ±1LSB of 255 IREF/256. Relative accuracies of better than±0.19% assure 8-bit monotonicity and linearity while zerolevel output current of less than 4 µA provides 8-bit zeroaccuracy for IREF≥2 mA. The power supply currents of theDAC0808 is independent of bit codes, and exhibits essen-tially constant device characteristics over the entire supplyvoltage range.

The DAC0808 will interface directly with popular TTL, DTL orCMOS logic levels, and is a direct replacement for theMC1508/MC1408. For higher speed applications, seeDAC0800 data sheet.

Featuresn Relative accuracy: ±0.19% error maximumn Full scale current match: ±1 LSB typn Fast settling time: 150 ns typn Noninverting digital inputs are TTL and CMOS

compatiblen High speed multiplying input slew rate: 8 mA/µsn Power supply voltage range: ±4.5V to ±18Vn Low power consumption: 33 mW @ ±5V

Block and Connection Diagrams

DS005687-1

Dual-In-Line Package

DS005687-2

Top ViewOrder Number DAC0808

See NS Package M16A or N16A

May 1999D

AC

08088-B

itD/A

Converter

© 2001 National Semiconductor Corporation DS005687 www.national.com

Block and Connection Diagrams (Continued)

Ordering Information

ACCURACY OPERATING

TEMPERATURE RANGE N PACKAGE (N16A)(Note 1)

SO PACKAGE(M16A)

8-bit 0˚C≤TA≤+75˚C DAC0808LCN MC1408P8 DAC0808LCM

Note 1: Devices may be ordered by using either order number.

Small-Outline Package

DS005687-13

DA

C08

08

www.national.com 2

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Supply VoltageVCC +18 VDC

VEE −18 VDC

Digital Input Voltage, V5–V12 −10 VDC to +18 VDC

Applied Output Voltage, VO −11 VDC to +18 VDC

Reference Current, I14 5 mAReference Amplifier Inputs, V14, V15 VCC, VEE

Power Dissipation (Note 4) 1000 mWESD Susceptibility (Note 5) TBD

Storage Temperature Range −65˚C to +150˚CLead Temp. (Soldering, 10 seconds)

Dual-In-Line Package (Plastic) 260˚CDual-In-Line Package (Ceramic) 300˚CSurface Mount Package

Vapor Phase (60 seconds) 215˚CInfrared (15 seconds) 220˚C

Operating RatingsTemperature Range TMIN ≤ TA ≤ TMAX

DAC0808 0 ≤TA ≤ +75˚C

Electrical Characteristics(VCC = 5V, VEE = −15 VDC, VREF/R14 = 2 mA, and all digital inputs at high logic level unless otherwise noted.)

Symbol Parameter Conditions Min Typ Max Units

Er Relative Accuracy (Error Relative (Figure 4) %

to Full Scale IO)

DAC0808LC (LM1408-8) ±0.19 %

Settling Time to Within 1⁄2 LSB TA=25˚C (Note 7), 150 ns

(Includes tPLH) (Figure 5)

tPLH, tPHL Propagation Delay Time TA = 25˚C, (Figure 5) 30 100 ns

TCIO Output Full Scale Current Drift ±20 ppm/˚C

MSB Digital Input Logic Levels (Figure 3)

VIH High Level, Logic “1” 2 VDC

VIL Low Level, Logic “0” 0.8 VDC

MSB Digital Input Current (Figure 3)

High Level VIH = 5V 0 0.040 mA

Low Level VIL = 0.8V −0.003 −0.8 mA

I15 Reference Input Bias Current (Figure 3) −1 −3 µA

Output Current Range (Figure 3)

VEE = −5V 0 2.0 2.1 mA

VEE = −15V, TA = 25˚C 0 2.0 4.2 mA

IO Output Current VREF = 2.000V,

R14 = 1000Ω,

(Figure 3) 1.9 1.99 2.1 mA

Output Current, All Bits Low (Figure 3) 0 4 µA

Output Voltage Compliance (Note 3) Er ≤ 0.19%, TA = 25˚C

VEE=−5V, IREF=1 mA −0.55, +0.4 VDC

VEE Below −10V −5.0, +0.4 VDC

SRIREF Reference Current Slew Rate (Figure 6) 4 8 mA/µs

Output Current Power Supply −5V ≤ VEE ≤ −16.5V 0.05 2.7 µA/V

Sensitivity

Power Supply Current (All Bits (Figure 3)

Low)

ICC 2.3 22 mA

IEE −4.3 −13 mA

Power Supply Voltage Range TA = 25˚C, (Figure 3)

VCC 4.5 5.0 5.5 VDC

VEE −4.5 −15 −16.5 VDC

Power Dissipation

DA

C0808

www.national.com3

Electrical Characteristics (Continued)

(VCC = 5V, VEE = −15 VDC, VREF/R14 = 2 mA, and all digital inputs at high logic level unless otherwise noted.)

Symbol Parameter Conditions Min Typ Max Units

All Bits Low VCC = 5V, VEE = −5V 33 170 mW

VCC = 5V, VEE = −15V 106 305 mW

All Bits High VCC = 15V, VEE = −5V 90 mW

VCC = 15V, VEE = −15V 160 mW

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operatingthe device beyond its specified operating conditions.

Note 3: Range control is not required.

Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximumallowable power dissipation at any temperature is PD = (TJMAX − TA)/θJA or the number given in the Absolute Maixmum Ratings, whichever is lower. For this device,TJMAX = 125˚C, and the typical junction-to-ambient thermal resistance of the dual-in-line J package when the board mounted is 100˚C/W. For the dual-in-line Npackage, this number increases to 175˚C/W and for the small outline M package this number is 100˚C/W.

Note 5: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

Note 6: All current switches are tested to guarantee at least 50% of rated current.

Note 7: All bits switched.

Note 8: Pin-out numbers for the DAL080X represent the dual-in-line package. The small outline package pinout differs from the dual-in-line package.

Typical Application

Typical Performance Characteristics VCC = 5V, VEE = −15V, TA = 25˚C, unless otherwise noted

DS005687-3

DS005687-23

FIGURE 1. +10V Output Digital to Analog Converter (Note 8)

Logic Input Current vsInput Voltage

DS005687-14

Bit Transfer Characteristics

DS005687-15

Logic Threshold Voltage vsTemperature

DS005687-16

DA

C08

08

www.national.com 4

Typical Performance Characteristics VCC = 5V, VEE = −15V, TA = 25˚C, unless otherwisenoted (Continued)

Unless otherwise specified: R14 = R15 = 1 kΩ, C = 15 pF, pin 16 to VEE; RL = 50Ω, pin 4 to ground.

Curve A: Large Signal Bandwidth Method of Figure 7, VREF = 2 Vp-p offset 1V above ground.

Curve B: Small Signal Bandwidth Method of Figure 7, RL = 250Ω, VREF = 50 mVp-p offset 200 mV above ground.

Curve C: Large and Small Signal Bandwidth Method of Figure 9 (no op amp, RL = 50Ω), RS = 50Ω, VREF = 2V, VS = 100 mVp-pcentered at 0V.

Output Current vs OutputVoltage (Output VoltageCompliance)

DS005687-17

Output Voltage Compliancevs Temperature

DS005687-18

Typical Power SupplyCurrent vs Temperature

DS005687-19

Typical Power SupplyCurrent vs V EE

DS005687-20

Typical Power SupplyCurrent vs V CC

DS005687-21

Reference InputFrequency Response

DS005687-22

DA

C0808

www.national.com5

DS

0056

87-4

FIG

UR

E2.

Equ

ival

ent

Circ

uit

ofth

eD

AC

0808

Ser

ies

(Not

e8)

DA

C08

08

www.national.com 6

Test Circuits

DS005687-6

VI and I1 apply to inputs A1–A8.The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.

and AN = “1” if AN is at high levelAN = “0” if AN is at low level

FIGURE 3. Notation Definitions Test Circuit (Note 8)

DS005687-7

FIGURE 4. Relative Accuracy Test Circuit (Note 8)

DA

C0808

www.national.com7

Test Circuits (Continued)

DS005687-8

FIGURE 5. Transient Response and Settling Time (Note 8)

DS005687-9

FIGURE 6. Reference Current Slew Rate Measurement (Note 8)

DS005687-10

FIGURE 7. Positive V REF (Note 8)

DA

C08

08

www.national.com 8

Test Circuits (Continued)

Application Hints

REFERENCE AMPLIFIER DRIVE AND COMPENSATION

The reference amplifier provides a voltage at pin 14 forconverting the reference voltage to a current, and aturn-around circuit or current mirror for feeding the ladder.The reference amplifier input currrent, I14, must always flowinto pin 14, regardless of the set-up method or referencevoltage polarity.

Connections for a positive voltage are shown in Figure 7.The reference voltage source supplies the full current I14.

For bipolar reference signals, as in the multiplying mode,R15 can be tied to a negative voltage corresponding to theminimum input level. It is possible to eliminate R15 with onlya small sacrifice in accuracy and temperature drift.

The compensation capacitor value must be increased withincreases in R14 to maintain proper phase margin; for R14values of 1, 2.5 and 5 kΩ, minimum capacitor values are 15,37 and 75 pF. The capacitor may be tied to either VEE orground, but using VEE increases negative supply rejection.

A negative reference voltage may be used if R14 isgrounded and the reference voltage is applied to R15 asshown in Figure 8. A high input impedance is the main

DS005687-11

FIGURE 8. Negative V REF (Note 8)

DS005687-12

FIGURE 9. Programmable Gain Amplifier orDigital Attenuator Circuit (Note 8)

DA

C0808

www.national.com9

Application Hints (Continued)

advantage of this method. Compensation involves a capaci-tor to VEE on pin 16, using the values of the previousparagraph. The negative reference voltage must be at least4V above the VEE supply. Bipolar input signals may behandled by connecting R14 to a positive reference voltageequal to the peak positive input level at pin 15.

When a DC reference voltage is used, capacitive bypass toground is recommended. The 5V logic supply is not recom-mended as a reference voltage. If a well regulated 5V supplywhich drives logic is to be used as the reference, R14 shouldbe decoupled by connecting it to 5V through another resistorand bypassing the junction of the 2 resistors with 0.1 µF toground. For reference voltages greater than 5V, a clampdiode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistorcurrent source, none of the above compensation methodsapply and the amplifier must be heavily compensated, de-creasing the overall bandwidth.

OUTPUT VOLTAGE RANGE

The voltage on pin 4 is restricted to a range of −0.55 to 0.4Vwhen VEE = −5V due to the current switching methodsemployed in the DAC0808.

The negative output voltage compliance of the DAC0808 isextended to −5V where the negative supply voltage is morenegative than −10V. Using a full-scale current of 1.992 mAand load resistor of 2.5 kΩ between pin 4 and ground willyield a voltage output of 256 levels between 0 and −4.980V.Floating pin 1 does not affect the converter speed or powerdissipation. However, the value of the load resistor deter-mines the switching time due to increased voltage swing.Values of RL up to 500Ω do not significantly affect perfor-mance, but a 2.5 kΩ load increases worst-case settling timeto 1.2 µs (when all bits are switched ON). Refer to thesubsequent text section on Settling Time for more details onoutput loading.

OUTPUT CURRENT RANGE

The output current maximum rating of 4.2 mA may be usedonly for negative supply voltages more negative than −8V,due to the increased voltage drop across the resistors in thereference current amplifier.

ACCURACY

Absolute accuracy is the measure of each output currentlevel with respect to its intended value, and is dependentupon relative accuracy and full-scale current drift. Relativeaccuracy is the measure of each output current level as afraction of the full-scale current. The relative accuracy of theDAC0808 is essentially constant with temperature due to theexcellent temperature tracking of the monolithic resistor lad-

der. The reference current may drift with temperature, caus-ing a change in the absolute accuracy of output current.However, the DAC0808 has a very low full-scale current driftwith temperature.

The DAC0808 series is guaranteed accurate to within ±1⁄2LSB at a full-scale output current of 1.992 mA. This corre-sponds to a reference amplifier output current drive to theladder network of 2 mA, with the loss of 1 LSB (8 µA) whichis the ladder remainder shunted to ground. The input currentto pin 14 has a guaranteed value of between 1.9 and 2.1 mA,allowing some mismatch in the NPN current source pair. Theaccuracy test circuit is shown in Figure 4. The 12-bit con-verter is calibrated for a full-scale output current of 1.992mA. This is an optional step since the DAC0808 accuracy isessentially the same between 1.5 and 2.5 mA. Then theDAC0808 circuits’ full-scale current is trimmed to the samevalue with R14 so that a zero value appears at the erroramplifier output. The counter is activated and the error bandmay be displayed on an oscilloscope, detected by compara-tors, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a16-bit accuracy D-to-A converter. 16-bit accuracy implies atotal error of ±1⁄2 of one part in 65,536 or ±0.00076%, whichis much more accurate than the ±0.019% specification pro-vided by the DAC0808.

MULTIPLYING ACCURACY

The DAC0808 may be used in the multiplying mode with8-bit accuracy when the reference current is varied over arange of 256:1. If the reference current in the multiplyingmode ranges from 16 µA to 4 mA, the additional errorcontributions are less than 1.6 µA. This is well within 8-bitaccuracy when referred to full-scale.

A monotonic converter is one which supplies an increase incurrent for each increment in the binary word. Typically, theDAC0808 is monotonic for all values of reference currentabove 0.5 mA. The recommended range for operation with aDC reference current is 0.5 to 4 mA.

SETTLING TIME

The worst-case switching condition occurs when all bits areswitched ON, which corresponds to a low-to-high transitionfor all bits. This time is typically 150 ns for settling to within±1⁄2 LSB, for 8-bit accuracy, and 100 ns to 1⁄2 LSB for 7 and6-bit accuracy. The turn OFF is typically under 100 ns. Thesetimes apply when RL ≤ 500Ω and CO ≤ 25 pF.

Extra care must be taken in board layout since this is usuallythe dominant factor in satisfactory test results when measur-ing settling time. Short leads, 100 µF supply bypassing forlow frequencies, and minimum scope lead length are allmandatory.

DA

C08

08

www.national.com 10

Physical Dimensions inches (millimeters) unless otherwise noted

Small Outline PackageOrder Number DAC0808LCMNS Package Number M16A

Dual-In-Line PackageOrder Number DAC0808

NS Package Number N16A

DA

C0808

www.national.com11

Notes

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERALCOUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implantinto the body, or (b) support or sustain life, andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling, can be reasonably expected to result in asignificant injury to the user.

2. A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system, or to affect itssafety or effectiveness.

National SemiconductorCorporationAmericasEmail: [email protected]

National SemiconductorEurope

Fax: +49 (0) 180-530 85 86Email: [email protected]

Deutsch Tel: +49 (0) 69 9508 6208English Tel: +44 (0) 870 24 0 2171Français Tel: +33 (0) 1 41 91 8790

National SemiconductorAsia Pacific CustomerResponse GroupTel: 65-2544466Fax: 65-2504466Email: [email protected]

National SemiconductorJapan Ltd.Tel: 81-3-5639-7560Fax: 81-3-5639-7507

www.national.com

DA

C08

088-

Bit

D/A

Con

verte

r

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

©2001 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Rev. 1.0.1

Features• Short circuit protection• Excellent temperature stability• Internal frequency compensation• High Input voltage range• Null of offset

DescriptionThe LM741 series are general purpose operational amplifi-ers. It is intended for a wide range of analog applications.The high gain and wide range of operating voltage providesuperior performance in intergrator, summing amplifier, andgeneral feedback applications.

8-DIP

1

8-SOP

1

Internal Block Diagram

LM741Single Operational Amplifier

LM741

2

Schematic Diagram

Absolute Maximum Ratings (TA = 25°C)Parameter Symbol Value Unit

Supply Voltage VCC ±18 VDifferential Input Voltage VI(DIFF) 30 VInput Voltage VI ±15 VOutput Short Circuit Duration - Indefinite -Power Dissipation PD 500 mWOperating Temperature RangeLM741CLM741I

TOPR 0 ~ + 70-40 ~ +85

°C

Storage Temperature Range TSTG -65 ~ + 150 °C

LM741

3

Electrical Characteristics(VCC = 15V, VEE = - 15V. TA = 25 °C, unless otherwise specified)

Note:1. Guaranteed by design.

Parameter Symbol ConditionsLM741C/LM741I

UnitMin. Typ. Max.

Input Offset Voltage VIORS≤10KΩ - 2.0 6.0

mVRS≤50Ω - - -

Input Offset VoltageAdjustment Range VIO(R) VCC = ±20V - ±15 - mV

Input Offset Current IIO - - 20 200 nAInput Bias Current IBIAS - - 80 500 nAInput Resistance (Note1) RI VCC =±20V 0.3 2.0 - MΩInput Voltage Range VI(R) - ±12 ±13 - V

Large Signal Voltage Gain GVRL≥2KΩ VCC =±20V,

VO(P-P) =±15V - - -V/mV

VCC =±15V,VO(P-P) =±10V 20 200 -

Output Short Circuit Current ISC - - 25 - mA

Output Voltage Swing VO(P-P)

VCC = ±20V RL≥10KΩ - - -

VRL≥2KΩ - - -

VCC = ±15V RL≥10KΩ ±12 ±14 -RL≥2KΩ ±10 ±13 -

Common Mode Rejection Ratio CMRRRS≤10KΩ, VCM = ±12V 70 90 -

dBRS≤50Ω, VCM = ±12V - - -

Power Supply Rejection Ratio PSRR

VCC = ±15V to VCC = ±15VRS≤50Ω - - -

dBVCC = ±15V to VCC = ±15VRS≤10KΩ 77 96 -

Transient Rise Time TRUnity Gain

- 0.3 - µsResponse Overshoot OS - 10 - %Bandwidth BW - - - - MHzSlew Rate SR Unity Gain - 0.5 - V/µsSupply Current ICC RL= ∞Ω - 1.5 2.8 mA

Power Consumption PCVCC = ±20V - - -

mWVCC = ±15V - 50 85

LM741

4

Electrical Characteristics( 0°C ≤TA≤70 °C VCC = ±15V, unless otherwise specified)The following specification apply over the range of 0°C ≤ TA ≤ +70 °C for the LM741C; and the -40°C ≤ TA ≤ +85 °C for the LM741I

Note :1. Guaranteed by design.

Parameter Symbol ConditionsLM741C/LM741I

UnitMin. Typ. Max.

Input Offset Voltage VIORS≤50Ω - - -

mVRS≤10KΩ - - 7.5

Input Offset Voltage Drift ∆VIO/∆T - - - µV/ °CInput Offset Current IIO - - - 300 nAInput Offset Current Drift ∆IIO/∆T - - - nA/ °CInput Bias Current IBIAS - - - 0.8 µAInput Resistance (Note1) RI VCC = ±20V - - - MΩInput Voltage Range VI(R) - ±12 ±13 - V

Output Voltage Swing VO(P-P)

VCC =±20VRS≥10KΩ - - -

VRS≥2KΩ - - -

VCC =±15VRS≥10KΩ ±12 ±14 -RS≥2KΩ ±10 ±13 -

Output Short Circuit Current ISC - 10 - 40 mA

Common Mode Rejection Ratio CMRRRS≤10KΩ, VCM = ±12V 70 90 -

dBRS≤50Ω, VCM = ±12V - - -

Power Supply Rejection Ratio PSRR VCC = ±20V to ±5V

RS≤50Ω - - -dB

RS≤10KΩ 77 96 -

Large Signal Voltage Gain GV RS≥2KΩ

VCC = ±20V,VO(P-P) = ±15V - - -

V/mVVCC = ±15V,VO(P.P) = ±10V 15 - -

VCC = ±15V,VO(P-P) = ±2V - - -

LM741

5

Typical Performance Characteristics

Figure 1. Output Resistance vs Frequency Figure 2. Input Resistance and Input Capacitance vs Frequency

Figure 3. Input Bias Current vs Ambient Temperature Figure 4. Power Consumption vs Ambient Temperature

Figure 5. Input Offset Current vs Ambient Temperature Figure 6. Input Resistance vs Ambient Temperature

LM741

6

Typical Performance Characteristics (continued)

Figure 7. Normalized DC Parameters vs Ambient Temperature

Figure 8. Frequency Characteristics vs Ambient Temperature

Figure 9. Frequency Characteristics vs Supply Voltage Figure 10. Output Short Circuit Current vs Ambient Temperature

Figure 11. Transient Response Figure 12. Common-Mode Rejection Ratiovs Frequency

LM741

7

Typical Performance Characteristics (continued)

Figure 13. Voltage Follower Large Signal Pulse Response Figure 14. Output Swing and Input Range vs Supply Voltage

LM741

8

Mechanical DimensionsPackage

6.40 ±0.20

3.30 ±0.30

0.130 ±0.012

3.40 ±0.20

0.134 ±0.008

#1

#4 #5

#8

0.252 ±0.008

9.20

±0.

20

0.79

2.54

0.10

0

0.03

1(

)

0.46

±0.

10

0.01

8 ±0

.004

0.06

0 ±0

.004

1.52

4 ±0

.10

0.36

2 ±0

.008

9.60

0.37

8M

AX

5.080.200

0.330.013

7.62

0~15°

0.300

MAX

MIN

0.25+0.10–0.05

0.010+0.004–0.002

8-DIP

LM741

9

Mechanical Dimensions (Continued)

Package

4.9

2 ±

0.2

0

0.1

94

±0.0

08

0.4

1 ±

0.1

0

0.0

16

±0.0

04

1.2

70

.05

0

5.720.225

1.55 ±0.20

0.061 ±0.008

0.1~0.250.004~0.001

6.00 ±0.30

0.236 ±0.012

3.95 ±0.20

0.156 ±0.008

0.50 ±0.20

0.020 ±0.008

5.1

30

.20

2M

AX

#1

#4 #5

0~8°

#8

0.5

60

.02

2(

)

1.800.071

MA

X0

.10

MA

X0

.00

4

MAX

MIN

+0.1

0-0

.05

0.1

5

+0.0

04

-0.0

02

0.0

06

8-SOP

LM741

6/1/01 0.0m 001Stock#DSxxxxxxxx

2001 Fairchild Semiconductor Corporation

LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

Ordering InformationProduct Number Package Operating Temperature

LM741CN 8-DIP0 ~ + 70°C

LM741CM 8-SOPLM741IN 8-DIP -40 ~ + 85°C

Philips Semiconductors Linear Products Product specification

NE/SA/SE555/SE555CTimer

346August 31, 1994 853-0036 13721

DESCRIPTIONThe 555 monolithic timing circuit is a highly stable controller capableof producing accurate time delays, or oscillation. In the time delaymode of operation, the time is precisely controlled by one externalresistor and capacitor. For a stable operation as an oscillator, thefree running frequency and the duty cycle are both accuratelycontrolled with two external resistors and one capacitor. The circuitmay be triggered and reset on falling waveforms, and the outputstructure can source or sink up to 200mA.

FEATURES• Turn-off time less than 2µs

• Max. operating frequency greater than 500kHz

• Timing from microseconds to hours

• Operates in both astable and monostable modes

• High output current

• Adjustable duty cycle

• TTL compatible

• Temperature stability of 0.005% per °C

APPLICATIONS• Precision timing

• Pulse generation

• Sequential timing

• Time delay generation

• Pulse width modulation

PIN CONFIGURATIONS

1

2

3

4 5

6

7

8

1

2

3

4

5

6

7 8

14

13

12

11

10

9

GND

TRIGGER

OUTPUT

RESET

GND

NC

TRIGGER

OUTPUT

NC

RESET

NC

DISCHARGE

THRESHOLD

CONTROL VOLTAGE

NC

DISCHARGE

NC

THRESHOLD

NC

CONTROL VOLTAGE

VCC

VCC

D, N, FE Packages

TOP VIEW

F Package

ORDERING INFORMATIONDESCRIPTION TEMPERATURE RANGE ORDER CODE DWG #

8-Pin Plastic Small Outline (SO) Package 0 to +70°C NE555D 0174C

8-Pin Plastic Dual In-Line Package (DIP) 0 to +70°C NE555N 0404B

8-Pin Plastic Dual In-Line Package (DIP) -40°C to +85°C SA555N 0404B

8-Pin Plastic Small Outline (SO) Package -40°C to +85°C SA555D 0174C

8-Pin Hermetic Ceramic Dual In-Line Package (CERDIP) -55°C to +125°C SE555CFE

8-Pin Plastic Dual In-Line Package (DIP) -55°C to +125°C SE555CN 0404B

14-Pin Plastic Dual In-Line Package (DIP) -55°C to +125°C SE555N 0405B

8-Pin Hermetic Cerdip -55°C to +125°C SE555FE

14-Pin Ceramic Dual In-Line Package (CERDIP) 0 to +70°C NE555F 0581B

14-Pin Ceramic Dual In-Line Package (CERDIP) -55°C to +125°C SE555F 0581B

14-Pin Ceramic Dual In-Line Package (CERDIP) -55°C to +125°C SE555CF 0581B

Philips Semiconductors Linear Products Product specification

NE/SA/SE555/SE555CTimer

August 31, 1994 347

BLOCK DIAGRAM

COMPARATOR

COMPARATOR

FLIP FLOP

OUTPUTSTAGE

THRESH-OLD

VCC

6

7

3 1

4

2

5

8

R

R

R CONTROLVOLTAGE

TRIGGER

RESET

DIS-CHARGE

OUTPUT GND

EQUIVALENT SCHEMATIC

NOTE: Pin numbers are for 8-Pin package

CONTROL VOLTAGE

FM

VCC R14.7K

R2330

R34.7K

R41K

R75K

R126.8K

Q21Q9

Q8

Q7Q6Q5

Q1

Q2 Q3

Q4

Q19Q22

R133.9K

OUTPUTQ23

C B

R1082.K

R510K

Q10

Q11 Q12

Q13

Q20R114.7K

CBQ18

ER85K

Q17

Q16

Q15

R6100K

R16100

Q14

Q25

R95K

R154.7K

Q24

R14220

THRESHOLD

TRIGGER

RESET

DISCHARGE

GND

Philips Semiconductors Linear Products Product specification

NE/SA/SE555/SE555CTimer

August 31, 1994 348

ABSOLUTE MAXIMUM RATINGSSYMBOL PARAMETER RATING UNIT

Supply voltage

VCC SE555 +18 V

NE555, SE555C, SA555 +16 V

PD Maximum allowable power dissipation1 600 mW

TA Operating ambient temperature range

NE555 0 to +70 °C

SA555 -40 to +85 °C

SE555, SE555C -55 to +125 °C

TSTG Storage temperature range -65 to +150 °C

TSOLD Lead soldering temperature (10sec max) +300 °CNOTES:1. The junction temperature must be kept below 125°C for the D package and below 150°C for the FE, N and F packages. At ambient tempera-

tures above 25°C, where this limit would be derated by the following factors:D package 160°C/WFE package 150°C/WN package 100°C/WF package 105°C/W

Philips Semiconductors Linear Products Product specification

NE/SA/SE555/SE555CTimer

August 31, 1994 349

DC AND AC ELECTRICAL CHARACTERISTICSTA = 25°C, VCC = +5V to +15 unless otherwise specified.

SYMBOL PARAMETER TEST CONDITIONSSE555 NE555/SE555C

UNITSYMBOL PARAMETER TEST CONDITIONSMin Typ Max Min Typ Max

UNIT

VCC Supply voltage 4.5 18 4.5 16 V

ICC Supply current (low VCC=5V, RL=∞ 3 5 3 6 mA

state)1 VCC=15V, RL=∞ 10 12 10 15 mA

Timing error (monostable) RA=2kΩ to 100kΩtM Initial accuracy2 C=0.1µF 0.5 2.0 1.0 3.0 %

∆tM/∆T Drift with temperature 30 100 50 150 ppm/°C∆tM/∆VS Drift with supply voltage 0.05 0.2 0.1 0.5 %/V

Timing error (astable) RA, RB=1kΩ to 100kΩtA Initial accuracy2 C=0.1µF 4 6 5 13 %

∆tA/∆T Drift with temperature VCC=15V 500 500 ppm/°C∆tA/∆VS Drift with supply voltage 0.15 0.6 0.3 1 %/V

VC Control voltage level VCC=15V 9.6 10.0 10.4 9.0 10.0 11.0 V

VCC=5V 2.9 3.33 3.8 2.6 3.33 4.0 V

VCC=15V 9.4 10.0 10.6 8.8 10.0 11.2 V

VTH Threshold voltage

VCC=5V 2.7 3.33 4.0 2.4 3.33 4.2 V

ITH Threshold current3 0.1 0.25 0.1 0.25 µA

VTRIG Trigger voltage VCC=15V 4.8 5.0 5.2 4.5 5.0 5.6 V

VCC=5V 1.45 1.67 1.9 1.1 1.67 2.2 V

ITRIG Trigger current VTRIG=0V 0.5 0.9 0.5 2.0 µA

VRESET Reset voltage4 VCC=15V, VTH =10.5V 0.3 1.0 0.3 1.0 V

IRESET Reset current VRESET=0.4V 0.1 0.4 0.1 0.4 mA

Reset current VRESET=0V 0.4 1.0 0.4 1.5 mA

VCC=15V

ISINK=10mA 0.1 0.15 0.1 0.25 V

ISINK=50mA 0.4 0.5 0.4 0.75 V

VOL Output voltage (low) ISINK=100mA 2.0 2.2 2.0 2.5 V

ISINK=200mA 2.5 2.5 V

VCC=5V

ISINK=8mA 0.1 0.25 0.3 0.4 V

ISINK=5mA 0.05 0.2 0.25 0.35 V

VCC=15V

ISOURCE=200mA 12.5 12.5 V

VOH Output voltage (high) ISOURCE=100mA 13.0 13.3 12.75 13.3 V

VCC=5V

ISOURCE=100mA 3.0 3.3 2.75 3.3 V

tOFF Turn-off time5 VRESET=VCC 0.5 2.0 0.5 2.0 µs

tR Rise time of output 100 200 100 300 ns

tF Fall time of output 100 200 100 300 ns

Discharge leakage current 20 100 20 100 nA

NOTES:1. Supply current when output high typically 1mA less.2. Tested at VCC=5V and VCC=15V.3. This will determine the max value of RA+RB, for 15V operation, the max total R=10MΩ, and for 5V operation, the max. total R=3.4MΩ.4. Specified with trigger input high.5. Time measured from a positive going input pulse from 0 to 0.8×VCC into the threshold to the drop from high to low of the output. Trigger is

tied to threshold.

Philips Semiconductors Linear Products Product specification

NE/SA/SE555/SE555CTimer

August 31, 1994 350

TYPICAL PERFORMANCE CHARACTERISTICS

Minimum Pulse WidthRequired for Triggering

Supply Currentvs Supply Voltage

Low Output Voltagevs Output Sink Current

Low Output Voltagevs Output Sink Current

Low Output Voltagevs Output Sink Current

Delay Timevs Temperature

Delay Timevs Supply Voltage

Propagation Delay vs VoltageLevel of Trigger Pulse

High Output Voltage Dropvs Output Source Current

MIN

IMU

M P

ULS

E W

IDT

H (

ns)

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE

150

125

100

75

50

25

0

0 0.1 0.2 0.3 0.4 (XVCC)

-55oC

0oC

+25oC+70oC

+125oC

10.0

8.0

6.0

4.0

2.0

0

5.0 10.0 15.0

SUPPLY VOLTAGE – VOLTS

SU

PP

LY C

UR

RE

NT

– m

A

1.015

1.010

1.005

1.000

0.995

0.990

0.985

-50 -25 0 +25 +50 +75 +100 +125

NO

RM

ALI

ZE

D D

ELA

Y T

IME

TEMPERATURE – oC

10

1.0

0.1

0.001

1.0 2.0 5.0 10 20 50 100

10

1.0

0.1

0.01

1.0 2.0 5.0 10 20 50 100

10

1.0

0.1

0.01

1.0 2.0 5.0 10 20 50 100

1.0 2.0 5.0 10 20 50 100

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

1.015

1.010

1.005

1.000

0.995

0.990

0.985

0 5 10 15 20 0 0.1 0.2 0.3 0.4

300

250

200

150

100

50

0

V

– V

OLT

SO

UT

V

– V

OLT

SO

UT

V

– V

OLT

SO

UT

V

– V

OLT

SO

UT

V C

C

NO

RM

ALI

ZE

D D

ELA

Y T

IME

PR

OP

AG

AT

ION

DE

LAY

– n

s

ISINK – mA ISINK – mA ISINK – mA

ISOURCE – mA SUPPLY VOLTAGE – V LOWEST VOLTAGE LEVELOF TRIGGER PULSE – XVCC

+125oC

+25oC

-55oC

VCC = 5V VCC = 10V VCC = 15V

-55oC

+25oC

+25oC

-55oC

+25oC

+25oC+25oC

+25oC

-55oC

-55oC

55oC

+25oC

+25oC

–55oC

+25oC

+125oC

5V ≤ VCC ≤ 15V

-55oC

0oC

+25oC

+70oC

+25oC

Philips Semiconductors Linear Products Product specification

NE/SA/SE555/SE555CTimer

August 31, 1994 351

TYPICAL APPLICATIONS

OUTPUTFLIPFLOP

COMP

COMP

f 1.49(RA 2RB)C

555 OR 1/2 556

DISCHARGE

CONTROLVOLTAGE

THRESHOLD

TRIGGER

RESET

OUTPUT

R

R

C

RB

RA

R

5

6

2

4

3

8

7

.01µF

VCC

OUTPUTFLIPFLOP

COMP

COMP

555 OR 1/2 556

DISCHARGE

CONTROLVOLTAGE

THRESHOLD

TRIGGER

RESET

OUTPUT

R

R

RA

R

5

6

2

4

3

8

7

.01µF

VCC

∆T = 1.1RC

C

13

VCC

| ∆t |

Astable Operation

Monostable Operation

Philips Semiconductors Linear Products Product specification

NE/SA/SE555/SE555CTimer

August 31, 1994 352

TYPICAL APPLICATIONS

DURATION OF TRIGGER PULSE AS SEEN BY THE TIMER

VCC VCC

10k

2 555

.001µF

NOTE: All resistor values are in Ω

Figure 1. AC Coupling of the Trigger Pulse

1

SWITCH GROUNDEDAT THIS POINT

OVOLTS

1/3 VCC

VCC

Trigger Pulse Width Requirements and TimeDelaysDue to the nature of the trigger circuitry, the timer will trigger on thenegative going edge of the input pulse. For the device to time outproperly, it is necessary that the trigger voltage level be returned tosome voltage greater than one third of the supply before the time outperiod. This can be achieved by making either the trigger pulsesufficiently short or by AC coupling into the trigger. By AC couplingthe trigger, see Figure 1, a short negative going pulse is achievedwhen the trigger signal goes to ground. AC coupling is mostfrequently used in conjunction with a switch or a signal that goes toground which initiates the timing cycle. Should the trigger be heldlow, without AC coupling, for a longer duration than the timing cyclethe output will remain in a high state for the duration of the lowtrigger signal, without regard to the threshold comparator state. Thisis due to the predominance of Q15 on the base of Q16, controllingthe state of the bi-stable flip-flop. When the trigger signal thenreturns to a high level, the output will fall immediately. Thus, theoutput signal will follow the trigger signal in this case.

Another consideration is the “turn-off time”. This is the measurementof the amount of time required after the threshold reaches 2/3 VCCto turn the output low. To explain further, Q1 at the threshold inputturns on after reaching 2/3 VCC, which then turns on Q5, which turnson Q6. Current from Q6 turns on Q16 which turns Q17 off. Thisallows current from Q19 to turn on Q20 and Q24 to given an outputlow. These steps cause the 2µs max. delay as stated in the datasheet.

Also, a delay comparable to the turn-off time is the trigger releasetime. When the trigger is low, Q10 is on and turns on Q11 which turnson Q15. Q15 turns off Q16 and allows Q17 to turn on. This turns offcurrent to Q20 and Q24, which results in output high. When thetrigger is released, Q10 and Q11 shut off, Q15 turns off, Q16 turns onand the circuit then follows the same path and time delay explainedas “turn off time”. This trigger release time is very important indesigning the trigger pulse width so as not to interfere with theoutput signal as explained previously.