EP Matching

download EP Matching

of 57

Transcript of EP Matching

  • 8/7/2019 EP Matching

    1/57

    By

    Surjo W. AdjiDept. of Marine Systems Engineering

    ITS Surabaya

    Back To Main Menu

    http://../CALonShiProS%20Main%20Menu.pdfhttp://../CALonShiProS%20Main%20Menu.pdf
  • 8/7/2019 EP Matching

    2/57

    A. PERHITUNGAN DAYA KAPAL DAN PEMILIHAN MOTOR INDUK

    (1) DATA KAPAL

    1. Nama : KM. Contoh

    2. Tipe : General Cargo

    3. Dimensi Utama :

    1. LWL : 116,478 meter

    2. LPP : 111,999 meter

    3. B : 116,711 meter

    4. H : 9,979 meter

    5. T : 7,822 meter

    6. Cp : 0,7298

    7. Cb : 0,7209

    8. VS : 12,50 knots .

  • 8/7/2019 EP Matching

    3/57

    4. Rute Pelayaran : Jakarta - Tokyo

    5. Radius Pelayaran : 2746 mil laut

    (2) PERHITUNGAN TAHANAN KAPAL : METODE GULDHAMMER

    HARVALD

    Pada perhitungan untuk mencari tahanan kapal dipakai data - data ukuran utama kapal,

    rumus - rumus perhitungan tabel, dan diagram. Metode perhitungan yang digunakan

    adalah metode Guldhammer Harvald

    a. MENGHITUNG VOLUME DISPLACEMENT

    = Lwl x B x T x Cb

    = 116,478 x 16,711 x 7,822 x 0,7209

    = 10975,874 m3

  • 8/7/2019 EP Matching

    4/57

    b. MENGHITUNG ANGKA FROUDE

    Fn = V / ( g x Lwl )

    Dimana : V = 12,5 knot

    = 6,43 m / detik

    g = Percepatan gravitasi standar( = 9,8 m / detik2 )

    Fn = 6,43 / 9,8 x 116,478

    = 0,005633016

    c. MENGHITUNG ANGKA REYNOLD

    Rn = ( V x Lwl )/ Vk

    Dimana : Vk = Koefisien Viskositas kinematik ( = 1,188.10-6 )

    Rn = ( 6,43 x 116,478 ) / 1,18 x 10-6

    = 6,30 . 108

  • 8/7/2019 EP Matching

    5/57

    d. MENGHITUNG WETTED SURFACE AREA (WSA )

    Wetted Surface Area atau S dapat dihitung dari rumus seperti pada berikut ini (Harvald

    113)

    S = L x [( 2T ) + (1,37 x ( Cb - 0,274 ) x B )]

    = 116,478 x [( 2 x 7,822) + (1,37- 0,7209-0,274) x 16,711]

    = 3014,91 m2

    e. MENGHITUNG TAHANAN GESEK

    Menurut ITTC ( Harvald 119 ) :

    CF = 0,075 / ( Log Rn - 2 )2

    = 0,075 / ( Log 6,30 108 - 2 ) 2

    = 1,618.10-3

  • 8/7/2019 EP Matching

    6/57

    f. MENGHITUNG TAHANAN SISA

    CR atau tahanan sisa kapal dapat ditentukan melalui diagram Guldhammer - Harvald

    dengan hasilnya adalah sebagai berikut

    ! Interpolasi Diagram

    L / ( 1/3 ) =116,478/ (10975,874) 1/3

    = 5,24

    Dari hasil tersebut kita interpolasi pada Diagram Guldhammer dan Harvald

    diperoleh :

    L/ V1/3

    = 5 CR = 1,15 x 10-3

    L/ V1/3

    = 5,5 CR = 0,94 x 10-3

    Dengan rumus interpolasi diperoleh :

    Y Y1 ( X2 - X1) = X X1 ( Y2 Y1 )

    5,24 5[ ( 0,94 1,15 ). 10-3

    ] = X 1,15 x 10-3

    [ ( 0,94 1,15 ) .10-3

    ]

  • 8/7/2019 EP Matching

    7/57

    103

    X = 1,049

    CR = 1,049 x 10-3

    ! Koreksi CR terhadap B/T

    B/T = 16,711/ 7,822

    = 2,136

    Dengan rumus koreksi berikut :

    103

    CR = 103

    CR (B/T=2,5) + [ 0,16 ( B/T - 2,5 )]

    = 1,045 + [ 0,16 x ( 2,136 - 2,5 )]

    = 0,9867

    ! Koreksi CR terhadap LCB

    Dari diagram NSP diperoleh :

    LCB = 1,1 % (di depan midship)

    Dari Gbr. 5.5.15 Harvald hal. 130 diperoleh LCB standard = 0,525 %

    Sehingga :

  • 8/7/2019 EP Matching

    8/57

    LCB = LCB - LCBstandard

    = 1,1 - 0,525

    = 0,575

    Karena LCB berada didepan LCB standard maka koreksi untuk CR :

    103

    CR = 103

    CR (standar) + d103

    CR x | LCB |

    d.LCB

    Dengan interpolasi pada Gbr. 5.5.16 Harvald hal.130 diperoleh :

    d103

    CR = 0,0042

    d.LCB

    Sehingga :

    103

    CR = 0,9867 + ( 0,042 x 0,575 )

    = 1,0108

  • 8/7/2019 EP Matching

    9/57

    ! Koreksi CR karena adanya anggota badan kapal

    Dalam hal ini, yang perlu dikoreksi adalah karena adanya boss baling - baling,

    sehingga CR dinaikkkan 3 % saja.

    103

    CR = (1 + 3% ) x 1,0108

    CR = 1,0411. 10-3

    g. KOEFISIEN TAHANAN TAMBAHAN

    Karena adanya tahanan tambahan untuk korelasi model kapal, sehingga koefisien

    penambahan tahanan atau CA untuk L > 100 m dan L < 150 m, ini menggunakan 103

    CA = 0,2. (Harvald. 5.5.23 hal 132).

    Sehingga CA = 0,2. 103

    h. KOEFISIEN TAHANAN UDARA

    Besarnya koefisien tahanan udara menurut (Harvald. 5.5.26 hal 132) adalah sebagai

    berikut :

  • 8/7/2019 EP Matching

    10/57

    103

    CAA = 0,07

    CAA = 0,07.10-3

    i. KOEFISIEN TAHANAN KEMUDI

    Besarnya koefisien tahanan kemudi menurut (Harvald. 5.5.27 hal 132) adalah sebagai

    berikut :

    103

    CAS = 0,04

    CAS = 0,04.10-3

    j. KOEFISIEN TAHANAN TOTAL KAPAL

    Koefisien tahanan total kapal atau CT dapat ditentukan dengan menjumlahkan seluruh

    koefisien - koefisien tahanan kapal yang ada

    CT = CR + CF + CA + CAA + CAS

    = ( 1,0411 + 1,618 + 0,2 + 0,07 + 0,04 ) . 10-3

    = 2,9691. 10-3

  • 8/7/2019 EP Matching

    11/57

    k. TAHANAN TOTAL KAPAL

    RT = CT x 1/2 x x V2 x S

    = 2,9691 . 10-3

    x 1/2 x 1025 x (6,43)2

    x 3013,91

    = 189614,2271 N

    Besarnya tahanan total kapal ini masih merupakan harga pada pelayaran percobaan.

    l. KONDISI PELAYARAN DINAS

    Karena dari perencanaan telah ditentukan bahwa rute pelayaran kapal adalah Jakarta -

    Tokyo. Maka kondisi karakteristik daerah pelayaran dinas kapal ini diambil harga

    tambahan untuk jalur pelayaran Asia Timur yaitu sebesar 20 - 25 %. Dalam

    perencanaan ini diambil harga tambahan sebesar 20 %1.

    Sehingga,

  • 8/7/2019 EP Matching

    12/57

    RT(dinas) = RT + 20% RT

    = 189614,2271+ ( 20% x189614,2271)

    = 227537,0725 N

    m. PERHITUNGAN DAYA EFEKTIF KAPAL

    Perhitungan Daya Efektif atau PE

    PE = ( RT(dinas) / 1000 ) x VS

    = (227537,0725 / 1000 ) x 6,43

    = 1463,06 KW

    = 1961,206434 HP

  • 8/7/2019 EP Matching

    13/57

    (3) PERHITUNGAN KARAKTERISTIK DAYA PROPULSI KAPAL

    Dalam menghitung Interaksi antara hull atau badan kapal dengan propeler ini dipakai

    untuk menentukan gaya dorong atau thrust yang diperlukan oleh sebuah kapal berdasarkan

    karakteristik dari propeler yang terpasang pada buritan kapal.

    Pada perhitungan ini kapal ditentukan bekerja dengan propeler tunggal atau single screw.

    a. PERHITUNGAN WAKE FRACTION ( w )

    Dengan menggunakan rumus yang diberikan oleh Taylor2,

    Dimana Cb = 0,7209, maka :

    w = 0,283 + {[(0,314 - 0,283)/(0,75 - 0,7)]x(0,7209 - 0,7)}

    = 0,2956

  • 8/7/2019 EP Matching

    14/57

    b. PERHITUNGAN SPEED OF ADVANCE ( Va )

    Va = ( 1 - w ) Vs

    = ( 1 - 0,2956 ) x 6,43

    = 4,529292 m/detik

    c. PERHIRTUNGAN THRUST DEDUCTION FACTOR ( t )

    Dari ketentuan yang ada diameter propeler / D dapat diasumsikan sebagai berikut

    0,6 T D 0,7 T3

    0,6 x 7,822 D 0,7 x 7,822

    4,6932 m D 5,4754 m

    Di sini diambil diameter propeler atau D = 5,4 m

    Kemudian dari persamaan berikut :

  • 8/7/2019 EP Matching

    15/57

    1. d = 0,625(B/L) + 0,08

    = [0,625 x (16,711/111,999] + 0,08

    = 0,173

    2. e = 0,165 - 0,25 (B/L)

    = 0,165 - [0,25 x (16,711/111,999)]

    = 0,1276

    3. f = 825 8060 (B/L) + 20300 (B/L)2

    = 825 - [8060 x (16,711/111,999)] + [20300x(16,711/111,999)2]

    = 74,331

    4. t1 = ( d + e ) / [ f (0,98-Cb)3 + 1 ]

    = ( 0,173 + 0,1276 ) / [ 74,331x (0,98 - 0,7209)3

    + 1 ]

    = 0,1310

    5. t2 = 2 [(D/L) - 0,04]

    = 2 x [(4,95/111,999) - 0,04]

    = 0,00303

    Maka thrust deduction faktor :

  • 8/7/2019 EP Matching

    16/57

    t = t1 + t21

    = 0,1310 + 0,003

    = 0,134

    d. PERHITUNGAN EFISIENSI LAMBUNG ( H )

    H = (1-t) / (1-w)

    = (1 - 0,134) / (1 - 0,2956)

    = 1,23

    e. PERHITUNGAN GAYA DORONG ATAU THURST ( T )

    T = RT/ (1-t)

    = 227537,0725 /(1-0,134)

    = 262744,8874 N

  • 8/7/2019 EP Matching

    17/57

    f. PERHITUNGAN DAYA DORONG ( PT )

    - Berdasarkan speed of advance

    PT = ( T / 1000 ) x Va

    = ( 262744,8874 N/ 1000 ) x 4,529292

    = 1190,048 KW

    = 1595,239 HP

    - Berdasarkan efisiensi lambung

    PT = PE / H

    = 1595,239 HP/ 1,21

    = 1594,476748 HP

  • 8/7/2019 EP Matching

    18/57

    g. PERHITUNGAN EFISIENSI PROPULSIF

    Efisiensi Relatif Rotatif

    Harga rr atau efisiensi relatif rotatif untuk kapal dengan propeler tipe single screw

    adalah berkisar antara 1,02 sampai 1,05. Dalam perencanaan propeler dan tabung

    poros propeler ini diambil harga rr sebesar 1,05

    Sehingga, rr = 1,05

    Efisiensi Propeler

    Efisiensi propeler atau P di sini merupakan harga efisiensi propeler yang terpasang di

    bagian buritan kapal. Pada perencanaan propeler dan tabung poros propeler ini diambil

    harga asumsi P sebesar 0,6

    Sehingga, P = 0,6

  • 8/7/2019 EP Matching

    19/57

    Koefisien propulsif

    Koefisien Propulsif atau PC merupakan harga koefisien yang diperoleh dari perkalian

    antara efisiensi lambung, efisiensi relatif rotatif, dan efisiensi propeler.

    PC = H .rr. P

    = 1,23 x 1,05 x 0,6

    = 0,7749

    (4) PERHITUNGAN KARAKTERISTIK DAYA - DAYA MEKANIS SISTEM

    PROPULSI DAN DAYA MOTOR PENGGERAK UTAMA

    a. PERHITUNGAN DAYA PADA TABUNG POROS BALING - BALING

    Daya pada tabung poros baling - baling atau PD dihitung dari perbandingan antara

    Daya Efektif atau PE dengan Koefisien Propulsif atau PC.

    PD = PE / PC

    = 1961,206434 / 0,7749

    = 2530,915517 HP

  • 8/7/2019 EP Matching

    20/57

    b. PERHITUNGAN DAYA PADA POROS BALING - BALING

    Di sini kapal memiliki kamar mesin di bagian belakang, dengan loss 2%4. Sehingga

    harga efisiensi bantalan dan tabung baling - baling atau SB adalah 0,98.

    PS = PD / SB

    = 2530,915517 HP/ 0,98

    = 2582,56685 HP

    c. PERHITUNGAN DAYA PENGGERAK UTAMA YANG DIPERLUKAN

    Besarnya daya motor penggerak utama atau PB yang diperlukan pada perencanaan

    baling - baling dan tabung poros baling - baling ini tidak terlepas oleh adanya harga

    efisiensi sistem roda gigi transmisi atau G. Adanya harga efisiensi sistem roda gigi

    transmisi atau G ini karena direncanakan pada hubungan sistem transmisi daya antara

    motor induk dengan poros propeler terpasang sistem roda gigi reduksi.

  • 8/7/2019 EP Matching

    21/57

    Sistem roda gigi pada kapal ini direncanakan menggunakan Gigi Reduksi Tunggal

    atau Single Reduction Gears dengan loss 2%5 untuk arah maju dan Gigi Pembalik

    atau Reversing Gears dengan loss 1% Dari data sistem ini dapat diketahui harga

    efisiensi sistem roda gigi transmisi atau G dari setiap sistem adalah

    1. G Single Reduction Gears = 0,98

    2. G Reversing Gears = 0,99

    Daya Poros yang telah direncanakan di sini adalah daya maju, Sehingga untuk daya

    motor penggerak yang diperlukan adalah

    PB = PS / G PB

    = 2582,56685 HP/ 0,98

    = 2635,2723HP

  • 8/7/2019 EP Matching

    22/57

    Besarnya daya motor penggerak utama atau motor induk ini adalah daya keluaran

    pada pelayaran normal atau SCR, dimana besarnya adalah 85 % dari daya keluaran

    pada kondisi maksimum atau MCR. Sedangkan daya keluaran pada kondisi

    maksimum atau MCR dari motor induk ini adalah

    PB(MCR) = PB(SCR) / 0,85

    = 2635,2723HP / 0,85

    = 3100,32 HP

    (5) PEMILIHAN MOTOR PENGGERAK UTAMA

    Dari data mengenai karakteristik putaran kerja dan daya pada kondisi MCR dari dua

    metode tersebut diatas maka dapat ditentukan spesifikasi motor penggerak utama atau

    main engine dari kapal ini dengan mengacu pada BHP at MCR yang paling besar.

    Sehingga dari data ini, dapat ditentukan tipe - tipe motor penggerak yang akan dipakai.

  • 8/7/2019 EP Matching

    23/57

    Digunakan mesin merk : STORK WARTSILA DIESEL

    Jenis : 9 SW 280

    Putaran engine : 750 rpm

    Daya mesin : 3120 BHP

    Selengkapnya data spesifikasi ini dapat dilihat pada lampiran spec engine dari motor

    diesel tipe tersebut

    B. DESAIN PROPELER

    Dari perhitungan Tahanan di tugas rencana umum diketahui data sebagaiberikut

    ! PB (MCR) = 3100,32 HP sehingga :

    digunakan mesin merk : STORK WARTSILA DIESEL

    Jenis : 9 SW 280

    Putaran engine : 750 rpm

  • 8/7/2019 EP Matching

    24/57

    Daya mesin : 3120 BHP

    ! Va = 4,5292 m/s = 8,805 knots

    ! Vs = 12,5 knots

    ! PD = 2530,91 Hp

    Dipilih GEARBOX merk REINTJES type WLS (reduction only)

    ! Ratio of gearbox : 6:1 dan 7,5 :1

    ! Dimensi : Panjang 470 mm , Lebar 790 mm

    TYPE B4-55

    Langkah- langkah :

    Perhitungan Diameter Optimum

    "Mencari nilai Bp

    5,25,2

    5,0

    805,8

    91,2530125x

    Va

    xPNBp

    dprop == = 36,74719

  • 8/7/2019 EP Matching

    25/57

    " Dari diagram Bp - (terlampir) dapat diperoleh harga (P/D)o = 0,75 dan 0 =

    203,428 (untuk 4.55 B series screws)

    " Menghitung Nilai Do

    329468,14

    125

    805,8428,203===

    x

    Nprop

    oxVaDo

    "Menghitung nilai Po

    Po = (P/D) * Do * N prop = 1343,3877

    " Mencari nilai Dopt (DB )

    Db= 0,95 x 12,7875 = 13,612995 (untuk single screw)

    " Menghitung B

    ( * ) /B Nprop Db Va = =199,5

    " Berdasarkan perhitungan B maka dapat dicari besarnya (P/D)B dari Bp -

    diagram yaitu sebesar : 0,81

    " Mengitung PB

    (P)B= (P/D)x DB x N prop = 1378,25

  • 8/7/2019 EP Matching

    26/57

    Cek nilai D apakah memenuhi rule

    1. D max = 0,6 T 0,7T = 15,393696 ft - 17,959312 ft

    = 4,6932 m 5,4754 m

    karena DB = 13,612995 ft = 4,1509 m berarti masih memenuhi rule dimana

    disebutkan bahwa Db < D max

    2. Berdasarkan Design Screw Propeler hal 330 disebutkan bahwa perlu

    dipertimbangkan tempat yang tersedia di lines plan = X = 5,4 m dan

    berdasarkan gambar 10.1 (terlampir ) maka diketahui bahwa D b + 0,03 D

    + 0,08 D tidak boleh melebihi nilai X (5,4 m)

    = 4,159+ (0,03*4,159 ) + (0,08*4,159 )

    = 4,61649 m (memenuhi)

    3. Pertimbangan Effisiensi

    Effisiensi yang dihasilkan sebesar =57 %. Karena dalam perencanaan kita

    cari effisiensi yang paling besar maka dicoba dibandingkan dengan type

    series yang lain begitu pula dengan rasio gear box yang berbeda supaya

  • 8/7/2019 EP Matching

    27/57

    diketahui effisiensi paling tinggi dengan catatan masih memenuhi rule di

    atas.

    Untuk lebih jelasnya ukuran dalam langkah langkah di atas ditabelkan sebagai berikut :

    TYPE B 4-55

    Rasio Gear

    Box

    6:1 7,5:1

    Bp 27,560386 22,048309

    (P/D)A 0,75 0,825

    203,428 182,495Do 14,3294468 16,068685

    Po 1343,3877 1325,6665

    Db 13,612995 15,265251

    b 199,5 180.5(P/D)b 0,81 0,855

    Pb 1378,25 1305,18 57 61,5

  • 8/7/2019 EP Matching

    28/57

    Dilakukan perbandingan dengan type series yang lain :

    TYPE B4-40

    Rasio Gear Box 6:1 7,5:1

    Bp 27,560386 22,048309

    (P/D)A 0,7 0,76 210 190

    Do 14,7924 16,7295

    Po 1294,335 1271,442

    Db 14,05278 15,89302

    b 193,2566 173,3703(P/D)b 0,88 0,955

    Pb 1545,8 1517,18

    59,5 62,1

  • 8/7/2019 EP Matching

    29/57

    TYPE B4-70

    Rasio Gear Box 6:1 7,5:1

    Bp 27,560386 22,048309(P/D)A 0,81 0,855

    220 180Do 15,4968 15,849

    Po 1569,051 1355,0895

    Db 14,72196 15,05655

    b 209 171(P/D)b 0,728 0,96

    Pb 1339,698 1445,43

    57,5 60,5

  • 8/7/2019 EP Matching

    30/57

    TYPE B4-85

    Rasio Gear Box 6:1 7,5:1

    Bp 27,560386 22,048309

    (P/D)A 0,815 0,84 198,8 180

    Do 14,003427 15,849

    Po 1426,6037 1331,316

    Db 13,303298 15,5655

    188,86 171(P/D)b 0,83 0,93

    Pb 1380,217 1400,26

    57 59

    " PEMILIHAN TYPE PROPELER

    Berdasarkan hasil dari grafik diatas maka dipilih propeler FPP type series B4-70

    dengan putaran 100 rpm dengan pertimbangan sebagai berikut:

  • 8/7/2019 EP Matching

    31/57

    1. Db =15,05656ft = 4,954030039 m

    Dimana nilai D opt (4,954030039 m) < D max (4,6932 m 5,4754 m)

    (memenuhi)

    2. Mengecek apakah nilai Db +0,03 Db+0,08 Db tidak lebih dari ukuran yang tersedia di

    lines plan yaitu sebesar 5,4 m.

    CEK : 4,954039939 + ( 0,03*4,954039939) + ( 0,08*4,954039939)

    = 5,026363134 m < 5,4 m (memenuhi)

    3. Effisiensi yang dihasilkan paling tinggi dari series yang lain yang memenuhi rule. yaitu

    : 60,50 %. (Ada series lain yang mempunyai Effisiensi lebih tinggi tetapi tidak

    memenuhi kedua rule di atas.)

  • 8/7/2019 EP Matching

    32/57

    C. ENGINE PROPELLER MATCHING

    1) Karakteristik Tahanan Kapal

    Dalam hubungannya dengan engine propeller matching, data tahanan kapal digunakan

    untuk mendapatkan nilai konstanta yaiutu konstanta yang dikalikan dengan kwadrat

    kecepatan kapal sehingga sebanding dengan tahan total kapal.

    Tahanan total kapal dalam berbagai kecepatan dapat diketahui dari perhitungan

    maupun dari uji tarik pada towing tank dengan menggunakan model. Data tahanan

    kapal yang diberikan dalam hal ini adalah harga tahanan tanpa sea margin dan kapal

    yang diasumsikan dalam kondisi ideal, data tersebut dapat dilihat pada tabel berikut

    ini,

  • 8/7/2019 EP Matching

    33/57

    Vs(knots) Vs(M/s) RT(N) EHP(kw) EHP(HP)

    1 0.5144 1213.53 0.6242404 0.814528

    2 1.0288 4854.12 4.993923 6.516221

    3 1.5432 10921.8 16.85449 21.99224

    4 2.0576 19416.5 39.951384 52.12976

    5 2.572 30338.3 78.030047 101.8159

    6 3.0864 43687.1 134.83592 175.938

    7 3.6008 59463 214.11445 279.383

    8 4.1152 77666 319.61107 417.0381

    9 4.6296 98296 455.07123 593.7906

    10 5.144 121353 624.24037 814.5276

    11 5.6584 146837 830.86394 1084.136

    12 6.1728 174748 1078.6874 1407.504

    12.5 6.43 189614 1219.2195 1590.874

    13 6.6872 205087 1371.4561 1789.517

    Tabel 1. Data EHP, tahanan, dan kecepatan kapal pada kondisi trial

  • 8/7/2019 EP Matching

    34/57

    Jika data tahanan dan kecepatan kapal digambarkan pada sebuah grafik maka maka

    akan terjadi sebuah grafik scatter ( titik-titik sebaran ) seperti berikut ini:

    HUBUNGAN TAHANAN-KECEPATAN

    0

    50000

    100000

    150000

    200000

    250000

    0 2 4 6 8

    Vs (m/s)

    Rt(N)

    Gambar 1 - Grafik scatter hubungan antara tahanan dan kecepatan kapal

  • 8/7/2019 EP Matching

    35/57

    Untuk mendapatkan harga konstanta maka dilakukan perhitungan atau analisa regresi

    grafik tersebut di atas agar didapat hubungan :

    RT = . Vs2

    = * * S * CT * Vs2

    = * * S * CT

    = * 1025* 3014,91 * 2,9691. 10-3

    = 4587,679

    Hubungan tahanan kapal dan kecepatan kapal ini akan diimplementasikan ke dalam

    bentuk hubungan kwadrat antara KT dan J

    2

    22)1)(1(xJ

    DwtKt

    =

    222 954,41025)2956,01)(134,01(

    679,4587xJ

    xKt

    =

    Kt = 0,424424641 J2

  • 8/7/2019 EP Matching

    36/57

    Hubungan KT dan J di atas adalah hubungan yang didapat pada kondisi trial ( ideal ),

    untuk mendapatkan titik operasi propeller pada kondisi service maka harga sea margin

    harus pula diperhitungkan , harga sea margin ini akan mempengaruhi besarnya tahanan

    kapal, oleh karena itu maka hubungan antara KT dan J juga akan berubah. Besarnya sea

    margin yang sesuai dengan daerah pelayaran kapal (Asia Timur ) adalah 15 % - 20 % . (

    Harvald Sv. Aa, Resistance And Propulsion of Ships 1983). Pengaruh penambahan sea

    margin tersebut akan ditunjukkan sebagai berikut :

    KT = 120 % * 0,4244246 * J2

    KT =0,50930957 J2

    Hubungan KT dan J2

    baik untuk kondisi trial ( ideal ) maupun untuk kondisi service ini

    kemudian akan diplotkan pada kurva open water propeller untuk mendapatkan titik

    operasi propeller.

  • 8/7/2019 EP Matching

    37/57

    Kurva Kt J

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

    J

    Kt

    Trial

    Service

    Gambar 2- Grafik KT- J pada kondisi trial dan service

  • 8/7/2019 EP Matching

    38/57

    Karakteristik Propeller

    Seperti telah dijelaskan sebelumnya bahwa karakteristik propeller, untuk fixed pitch

    propeller diberikan dalam konstanta-konstanta sebagai berikut :

    # Koefisien gaya dorong ( KT )

    # Koefisien Torsi ( KQ )

    # Koefisien Advance ( J )

    # Effisiensi Open Water ( o )

    Harga konstanta - konstanta ini didapatkan dari open water test pada laboratorium .

    Data ini diperoleh dari Laboratorium Hidrodinamika (LHI)-BPPT Surabaya.

    Harga harga konstanta tersebut dapat dlihat pada tabel pada halaman berikut ini :

  • 8/7/2019 EP Matching

    39/57

    J KT KQ eff

    0 0.3124 0.339 0

    0.05 0.3004 0.335 0.07

    0.1 0.2873 0.328 0.14

    0.15 0.2733 0.315 0.207

    0.2 0.2582 0.302 0.272

    0.25 0.2422 0.288 0.335

    0.3 0.2253 0.273 0.395

    0.35 0.2076 0.257 0.45

    0.4 0.1891 0.24 0.502

    0.45 0.1698 0.222 0.548

    0.5 0.1498 0.203 0.587

    0.55 0.1292 0.183 0.617

    0.6 0.108 0.162 0.636

    0.65 0.0862 0.14 0.636

    0.7 0.0638 0.117 0.611

    0.75 0.041 0.092 0.534

    0.8 0.0178 0.065 0.344

    0.838 0 0.045 0Tabel 2. Open Water Propeller Bp series 4-70

  • 8/7/2019 EP Matching

    40/57

  • 8/7/2019 EP Matching

    41/57

  • 8/7/2019 EP Matching

    42/57

    Harga KT yang didapat dari perhitungan rumusan di atas akan terlihat pada tabel berikut

    ini :

    J Kt sea trial Kt sea margin

    0 0 0

    0,1 0,00424 0,00509

    0,2 0,01698 0,02037

    0,3 0,0382 0,04584

    0,4 0,06791 0,08149

    0,5 0,10611 0,12733

    0,6 0,15279 0,18335

    0,7 0,20797 0,24956

    0,8 0,27163 0,32596

    0,9 0,34378 0,41254

    1 0,42442 0,50931

    Tabel 3. Hubungan KTdan J pada kondisi trial dankondisi service

  • 8/7/2019 EP Matching

    43/57

    Nilai KT pada kedua kondisi ini kemudian diplotkan pada Grafik Open Water Propeller.

    Dari hasil pengeplotan akan didapatkan titik operasi propeller yaitu dengan menemukan

    titik perpotongan antara KT ( pada diagram open water ) dengan KT = J2

    pada kondisi trial

    maupun kondisi service.

    Grafik Open Water Propeller dengan hasil plot nilai KT dapat dilihat seperti berikut :

  • 8/7/2019 EP Matching

    44/57

    Kurva Open Water Bp series 4-70

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.450.5

    0.55

    0.6

    0.65

    0.7

    00.05 0.

    10.15 0.

    20.25 0.

    30.35 0.

    40.

    45 0.5

    0.55 0.

    60.

    65 0.7

    0.75 0.

    8

    J

    Kt,Kq,Eff

    KT

    KQ

    Eff

    Kt sea

    trial

    Kt seamargin

    Gambar 4 - Grafik untuk mencari titik operasi propeller

  • 8/7/2019 EP Matching

    45/57

    Berdasarkan pembacaan grafik maka didapatkan hasil :

    1. Titik operasi propeller pada kondisi trial :

    J = 0,55

    KT = 0,1301

    KQ = 0,198

    o = 0,6

    2. Titik operasi propeller dengan sea margin 20 % ( kondisi service)

    J = 0,4905

    KT = 0,159

    KQ = 0,21

    o = 0,587

    Dari harga KQ yang diperoleh, dapat dihitung besarnya torsi dari propeller pada kondisi

    open water Qtrial, juga dapat dihitung besarnya torsi yang disalurkan

    ( delivered torque) oleh permesinan ke propeller Qmargin.

  • 8/7/2019 EP Matching

    46/57

  • 8/7/2019 EP Matching

    47/57

    1,1 66 732,7477 806,0224 839,6067 66 26,91047

    1,133333 68 777,8295 881,5401 918,2709 68 29,43176

    1,166667 70 824,257 961,6332 1001,701 70 32,10581

    1,2 72 872,0303 1046,436 1090,038 72 34,93711

    1,233333 74 921,1493 1136,084 1183,421 74 37,93016

    1,266667 76 971,614 1230,711 1281,991 76 41,08944

    1,3 78 1023,424 1330,452 1385,887 78 44,41946

    1,33333333 80 1076,58 1435,44 1495,25 80 47,92471

    1,36666667 82 1131,08 1545,81 1610,22 82 51,60967

    1,4 84 1186,93 1661,7 1730,94 84 55,47884

    1,43333333 86 1244,12 1783,24 1857,55 86 59,53671

    1,46666667 88 1302,66 1910,57 1990,18 88 63,78778

    1,5 90 1362,55 2043,82 2128,98 90 68,23654

    1,53333333 92 1423,78 2183,13 2274,09 92 72,88749

    1,56666667 94 1486,35 2328,62 2425,65 94 77,7451

    1,6 96 1550,28 2480,44 2583,79 96 82,813891,63333333 98 1615,54 2638,72 2748,67 98 88,09834

    1,66666667 100 1682,16 2803,6 2920,41 100 93,60294

  • 8/7/2019 EP Matching

    48/57

    RpsRpmprop Q margin Pd margin

    Pbmargin % rpm

    % dayamargin

    0,5 30 156,6532 78,32661 81,59022 30 2,615071

    0,533333 32 178,2365 95,05949 99,0203 32 3,173728

    0,566667 34 201,2124 114,0203 118,7712 34 3,806769

    0,6 36 225,5806 135,3484 140,9879 36 4,518843

    0,633333 38 251,3414 159,1829 165,8155 38 5,3145990,666667 40 278,4946 185,6631 193,399 40 6,198687

    0,7 42 307,0403 214,9282 223,8836 42 7,175755

    0,733333 44 336,9785 247,1175 257,4141 44 8,250452

    0,766667 46 368,3091 282,3703 294,1358 46 9,427428

    0,8 48 401,0322 320,8258 334,1935 48 10,71133

    0,833333 50 435,1478 362,6232 377,7325 50 13,61852

    0,866667 52 470,6559 407,9018 424,8977 52 13,61852

    0,9 54 507,5564 456,8008 475,8341 54 15,25109

    0,933333 56 545,8494 509,4595 530,6869 56 17,00920,966667 58 585,5349 566,0171 589,6011 58 18,89747

    1 60 626,6129 626,6129 652,7217 60 20,92057

    1,033333 62 669,0833 691,3861 720,1938 62 23,08314

    1,066667 64 712,9462 760,4759 792,1624 64 25,38982

  • 8/7/2019 EP Matching

    49/57

    1,1 66 758,2016 834,0217 868,7726 66 27,84528

    1,133333 68 804,8494 912,1627 950,1694 68 30,45415

    1,166667 70 852,8897 995,038 1036,498 70 33,22109

    1,2 72 902,3225 1082,787 1127,903 72 36,15074

    1,233333 74 953,1478 1175,549 1224,53 74 39,24776

    1,266667 76 1005,366 1273,463 1326,524 76 42,51679

    1,3 78 1058,976 1376,668 1434,03 78 45,96249

    1,33333333 80 1113,978 1485,305 1547,192 80 49,5895

    1,36666667 82 1170,374 1599,511 1666,157 82 53,40246

    1,4 84 1228,161 1719,426 1791,068 84 57,40604

    1,43333333 86 1287,341 1845,189 1922,072 86 61,60488

    1,46666667 88 1347,914 1976,94 2059,313 88 66,00362

    1,5 90 1409,879 2114,818 2202,936 90 70,60692

    1,53333333 92 1473,236 2258,963 2353,086 92 75,41942

    1,56666667 94 1537,986 2409,512 2509,908 94 80,44578

    1,6 96 1604,129 2566,606 2673,548 96 85,690651,63333333 98 1671,664 2730,384 2844,15 98 91,15866

    1,66666667 100 1740,591 2900,985 3021,86 100 96,85448

  • 8/7/2019 EP Matching

    50/57

    Dimana :

    Q = KQ n2

    D5

    PD = 2 Q n

    PB = DHP / s dimana s = 0,96

    Hubungan antara beban propeller dan kecepatan propeller akan lebih jelas terlihat dalam

    gambar berikut ini:

  • 8/7/2019 EP Matching

    51/57

    Kurva BHP terhadap rpm

    0

    20

    40

    60

    80

    100

    30 40 50 60 70 80 90 100 110

    Rating Rpm

    Ratingdaya

    Trial

    Service

  • 8/7/2019 EP Matching

    52/57

    Karakteristik Motor Induk

    Dalam proses matching ini komponen terakhir sekaligus yang mempunyai peran sangat

    penting adalah motor induk. Dalam hal ini yang dibutuhkan dalam matching adalah

    pengeplotan kurva beban propeller vs rpm propeller pada kurva daya vs rpm motor induk.

    Untuk itu maka perlu diketahui karekteristik unjuk kerja (performance) dari pada motor

    induk yaitu motor diesel putaran tinggi.

    Data shop test dapat dilihat dalam tabel sebelumnya, dimana dari data di atas dan data

    spesifikasi motor diketahui besarnya kondisi Maximum Continuous Rating dari motor

    induk sebagai berikut yaitu :

    100% BHP = 3120 hp

    100% RPM = 750 rpm

    100% BMEP = 249,6

  • 8/7/2019 EP Matching

    53/57

    Batasan kecepatan motor minimum (idling speed) yang didapat pula dari spesifikasi

    engine adalah 262,5 RPM

    Sedangkan untuk mencari besarnya Spesifik Fuel Consumption maka digunakan besarnya

    Fuel Consumption atau dalam istilah diesel adalah mf Fuel Mass Flow (laju aliran bahan

    bakar) yang mempunyai besaran kg/hr atau kg/s

    SFC =BHP

    mf

    Dimana motor diesel dikenal dengan motor yang mempunyai Fuel Rack yang konstan

    (artinya massa bahan bakar yang diinjeksikan ke dalam silinder per siklus adalah konstan.

    Dan besarnya aliran massa bahan bakar yang diinjeksikan ke dalam silinder sebanding

    dengan putaran motor (putaran pompa bahan bakar sebanding dengan putaran motor),

    yaitu:

    mf =

    mfnz ..

    dimana :

  • 8/7/2019 EP Matching

    54/57

    mf = laju aliran bahan bakar (kg/s)

    z = jumlah silinder

    n = putaran per detik

    mf = massa bahan bakar yang diinjeksikan per silinder per putaran kg

    = 1 untuk 2 tak ; 2-untuk 4 tak

    Dari data data maka disusun kurva karakteristik motor induk, seperti yang dapat dilihat

    pada gambar berikut, sementara itu untuk melakukan matching maka daerah kerja motor

    induk tersebut harus dinyatakan dengan batasan yang lebih spesifik lagi. Berikut ini adalah

    kurva daerah service (service range chart):

    Proses Matching

    Setelah mendapatkan karakteristik tahanan kapal yang kemudian diubah menjadi

    karakteristik beban propeller dan setelah mendapatkan daerah kerja motor induk (service

    range chart) maka langkah berikutnya adalah memplotkan kurva-kurva tersebut.

  • 8/7/2019 EP Matching

    55/57

    Karena adanya perbedaan antara kecepatan motor dengan kecepatan propeller ( adanya

    reduction gear) maka dalam proses matching digunakan langkah derating yaitu

    mengasumsikan bahwa besarnya putaran propeller sama dengan putaran motor. Hal di atas

    dilakukan dengan mengasumsikan bahwa 100% putaran motor induk sama dengan 100%

    putaran propeller. Untuk memplotkan kurva beban propeller pada daerah kerja motor

    induk maka dalam kurva tersebut besarnya putaran propeller dan putaran motor yang

    merupakan sumbu x kurva yang dinyatakan dalam skala %.

    Selain itu karena dalam daerah kerja motor , daya motor dinyatakan dalam % maka dalam

    proses matching ini beban propeller juga dinyatakan dalam persentase dan mengacu

    kepada daya MCR dari motor sebagai 100% daya.

    Dalam penganalisaan hal-hal yang diperhatikan yaitu:

    " Matching dilakukan untuk mendapatkan operasi kapal pada kondisi service,

    jadi kurva beban propeller pada saat service saja yang akan dijadikan acuan.

  • 8/7/2019 EP Matching

    56/57

    " Dalam matching kurva beban harus masuk ke dalam daerah kerja motor yaitu

    daerah dimana motor aman beroperasi. Penentuan daerah kerja service motor

    bergantung pada Diesel Engine Service Range Chart.

    " Titik-titik perpotongan yang diambil adalah titik-titik kritis antara kurva beban

    propeller dengan daerah kerja tanpa henti ( Continuous Service Range ) dari

    daerah kerja motor.

    " Setelah titik - titik matching ditemukan, masing-masing titik tersebut akan

    dianalisa :

    ! Daya motor, kecepatan motor, kecepatan propeller, beben propeller

    ! Besarnya Spesifik Fuel Oil Consumption

    ! Kecepatan kapal yang dicapai.

  • 8/7/2019 EP Matching

    57/57