5. Absorption Dehydration

download 5. Absorption Dehydration

of 92

Transcript of 5. Absorption Dehydration

  • 8/12/2019 5. Absorption Dehydration

    1/92

    Dehidrasi GlikolDehidrasiDehidrasi GlikolGlikol

  • 8/12/2019 5. Absorption Dehydration

    2/92

    Syarat cairan yangdapat menyerap air

    Sangat higroskopis Tidak membentuk padatan pada

    konsentrasi tinggi

    Tidak korosif Tidak mengendap bila meyerap gas

    Mudah diregenerasi

  • 8/12/2019 5. Absorption Dehydration

    3/92

    Syarat cairan yangdapat menyerap air

    Mudah dipisahkan Tidak larut dalam HC

    Stabil dengan adanya sulfur atau CO2

  • 8/12/2019 5. Absorption Dehydration

    4/92

    Syarat cairan yangdapat menyerap air

    Yang memenuhi syarat Glikol DEG TEG

    TREG Yang paling populer TEG

    TREG memiliki suhu absorpsi50o

    C

  • 8/12/2019 5. Absorption Dehydration

    5/92

  • 8/12/2019 5. Absorption Dehydration

    6/92

    Unit dehidrasi glikol Gambar 18.1 Unit regenerasi dirancang pada tekanan

    atm Initial thermal decomposition

    Glikol Suhu EG 165oC, 329oF DEG 164oC, 328oF TEG 206oC, 404oF

    TREG 238oC, 460oF

  • 8/12/2019 5. Absorption Dehydration

    7/92

    Unit dehidrasi glikol

    The glycol dehydration processesremoves water vapor from naturalgas.

    Removing water vapor preventshydrate formation and corrosion, andmaximizes pipeline efficiency.

  • 8/12/2019 5. Absorption Dehydration

    8/92

  • 8/12/2019 5. Absorption Dehydration

    9/92

  • 8/12/2019 5. Absorption Dehydration

    10/92

    Unit dehidrasi glikol Wet gas enters the tower at the bottom. Dry glycol flows down the tower from the

    top, from tray to tray, or through packingmaterial.

    NATCO's special bubble cap configurationmaximizes gas/glycol contact, removingwater to levels below 5 lbs/MMscf.

    Systems can be designed to achieve levels

    down to 1lb/MMscf.

  • 8/12/2019 5. Absorption Dehydration

    11/92

  • 8/12/2019 5. Absorption Dehydration

    12/92

    Unit dehidrasi glikol

    The dehydrated gas leaves the towerat the top and returns to the pipelineor goes to other processing units.

    The waterrich glycol leaves thetower at the bottom, and goes to thereconcentration system.

  • 8/12/2019 5. Absorption Dehydration

    13/92

    Unit dehidrasi glikol

    In the reconcentration system, thewet glycol is filtered of impuritiesand heated to 400F.

    Water escapes as steam, and thepurified glycol returns to the towerwhere it contacts wet gas again.

  • 8/12/2019 5. Absorption Dehydration

    14/92

    Contactor featuresavailable Diameters from 8-5/8 in. to 15 ft. Design pressures from 230 to 2,160 psig Flowrate capacities from 100 to 200,000

    Mscfd ASME Code, National Board, or British

    Standard stamped Corrosion allowance with ASME code

    inspection openings

  • 8/12/2019 5. Absorption Dehydration

    15/92

    Contactor featuresavailable

    Internal or external glycol-gas heatexchangers or air coolers Integral inlet scrubber

    3 to 15 trays or packed columns 18, 24 or 30 inch tray spacing Carbon steel or stainless steel trays

    and bubble caps

  • 8/12/2019 5. Absorption Dehydration

    16/92

    Contactor featuresavailable

    Tray drains Tray inspection openings

    External or inter-tray manways

    Gas piping and valves

    Instrumentation and alarm systems

  • 8/12/2019 5. Absorption Dehydration

    17/92

    Contactor featuresavailable

    Special coatings Safety caged ladders and platforms

    Construction materials are carbon

    steel, 304 or 316-L stainless steel,316-L stainless steel clad, or 316-Lstainless steel overlay

  • 8/12/2019 5. Absorption Dehydration

    18/92

    Regenerator featuresavailable Glycol purity to 99.0% with standard type

    and to 99.97% with stripping gas type Heat duty from 75,000 to 8,000,000

    Btu/h

    Heat sources can be direct fired, steam,hot oil, electric, or natural gas

    ASME Code or TEMA C or R design heat

    exchanger

  • 8/12/2019 5. Absorption Dehydration

    19/92

    Regenerator featuresavailable

    ASME Code or National BoardStamped

    Pulsation dampeners

    Flame arrestors Internal or external glycol-glycol

    heat exchangers or air coolers

  • 8/12/2019 5. Absorption Dehydration

    20/92

    Regenerator featuresavailable Glycol flash drums or hydrocarbon

    skimmers Glycol sock or charcoal filters with

    standby

    Glycol pumps can be electric, gas or glycolpowered, with standby, automaticswitching.

    Automatic reflux/overhead temperature

    control

  • 8/12/2019 5. Absorption Dehydration

    21/92

    Regenerator featuresavailable

    Temperature or filter differentialpressure recorders Instrumentation and alarm systems

    High level, low level, and hightemperature alarms Automatic shutdown panels

    Automatic pilot re-light systems

  • 8/12/2019 5. Absorption Dehydration

    22/92

    Regenerator featuresavailable Moisture analyser Construction materials are carbon steel,

    304 or 316-L stainless steel, 316-Lstainless steel clad, or 316-L stainless

    steel overlay. Special coatings Galvanized skids, ladders, and access

    platforms

  • 8/12/2019 5. Absorption Dehydration

    23/92

    Regenerator featuresavailable Galvanized skids, ladders, and access

    platforms

    Fiberglass cold-weather housings

    Modular design Stripping gas recovery system

    Combustion Air Controller or Firetube

    Turbulator for increased fuel efficiency

  • 8/12/2019 5. Absorption Dehydration

    24/92

    Regenerator featuresavailable Galvanized skids, ladders, and access

    platforms

    Fiberglass cold-weather housings

    Modular design Stripping gas recovery system

    Combustion Air Controller or Firetube

    Turbulator for increased fuel efficiency

  • 8/12/2019 5. Absorption Dehydration

    25/92

    wv

    w yPPx

    Xw: fraksi mol air dalam glikol

    P : tekanan sistem

    Pv: tekanan uap air pada suhu reboiler

    Yw: fraksi mol air dalam uap reboiler

    Gambar 18.2 digunakan untuk gas dengankandungan S dan CO2 tinggi

  • 8/12/2019 5. Absorption Dehydration

    26/92

    Basic process designfactor

    Konsentrasi TEG minimum dalam leansolution yang masuk ke bagian atasabsorber yang diperlukan

    Laju sirkulasi TEG yang diperlukan Jumlah kontak dalam absoeber yang

    diperlukan

  • 8/12/2019 5. Absorption Dehydration

    27/92

    Konsentrasi Lean TEGminimum

    Digunakan Gambar 18.3 f(Tg-in, Tdew-eq)

    Contoh: berapa suhu Tdew-eq air jika

    suhu gas masuk 40oC dan lean glikolmengandung 99.5% berat TEG

  • 8/12/2019 5. Absorption Dehydration

    28/92

  • 8/12/2019 5. Absorption Dehydration

    29/92

  • 8/12/2019 5. Absorption Dehydration

    30/92

  • 8/12/2019 5. Absorption Dehydration

    31/92

  • 8/12/2019 5. Absorption Dehydration

    32/92

    Konsentrasi Lean TEGminimum

    Actual water dew point umumnya 5.5-8.5oC > Tdew-eq Pendekatan ini dapat digunakan untuk

    menentukan konsentrasi lean glikolminimum

  • 8/12/2019 5. Absorption Dehydration

    33/92

    Konsentrasi Lean TEGminimum Prosedur:

    Tentukan suhu dew point air keluarandari kontrak penjualan atau suhuminimum system

    Kurangi langkah 1 untuk menentukanTdew-eq actual

    Gunakan Gambar 18.3 untuk menentukan

    konsentrasi minimum lean TEG

  • 8/12/2019 5. Absorption Dehydration

    34/92

    Konsentrasi Lean TEGminimum Contoh:

    Kontrak penjualan gas mempunyaispesifikasi kandungan air100kg/106stdm3 gas pada tekanan 6.9MPa. Suhu inlet gas adalah 40oC.Berapakah konsentrasi minimum leanTEG yang diperlukan.

  • 8/12/2019 5. Absorption Dehydration

    35/92

    Konsentrasi Lean TEGminimum Prosedur:

    Suhu dew point air (Gb App. 18A)=f(100,6.9)

    Tdew-eq= T1 8o

    C Gambar 18.3 untuk menentukankonsentrasi minimum lean TEG = f(40,

    Tdew-eq)

  • 8/12/2019 5. Absorption Dehydration

    36/92

  • 8/12/2019 5. Absorption Dehydration

    37/92

  • 8/12/2019 5. Absorption Dehydration

    38/92

  • 8/12/2019 5. Absorption Dehydration

    39/92

  • 8/12/2019 5. Absorption Dehydration

    40/92

  • 8/12/2019 5. Absorption Dehydration

    41/92

    Regenerasi TEG Konsentrasi lean TEG

    tertentu dihasilkandalam reboiler danregenerator denganmengendalikan suhu reboiler

    tekanan gas

    stripping gas yangdigunakan

    wv

    w yP

    Px

  • 8/12/2019 5. Absorption Dehydration

    42/92

    Regenerasi TEG Jika digunakan stripping gas, konsentrasi rich

    TEG yang meninggalkan absorber diperoleh darineraca massa di sekitar absorber

    eanTEGwtwaterinlorbedwtwaterabswtleanTEG

    wtleanTEGrichTEGwt

    100%

  • 8/12/2019 5. Absorption Dehydration

    43/92

    Regenerasi TEG Gb 18.4 dapat digunakan untuk memprediksi

    kerja regenerator Jika kandungan air dalam lean TEG kecil maka

    persamaan terdahulu menjadi

    m

    LeanTEGRichTEG

    /1

  • 8/12/2019 5. Absorption Dehydration

    44/92

    Regenerasi TEG Rich TEG = wt% TEG in Rich TEG solution

    Lean TEG = wt% TEG in Lean TEG solution = densitas cairan = 1.12 kg/L (9.3lb/USgal)

    m = Lean TEG rate, L/kg (USgal/lb)

    m

    LeanTEGRichTEG

    /1

  • 8/12/2019 5. Absorption Dehydration

    45/92

    Regenerasi TEG Konsentrasi Lean TEG min pd Gb 18.4

    T (204oC) = 98.7 wt%

    T (193oC) = 98.4 wt%

    T (182oC) = 98.1 wt%

  • 8/12/2019 5. Absorption Dehydration

    46/92

    Regenerasi TEG Prosedur umum penggunaan Gb 18.4

    Tekanan atm tanpa stripping gas

    Tekanan atm dengan stripping gas

    Tekanan Vakum dengan stripping gas

  • 8/12/2019 5. Absorption Dehydration

    47/92

  • 8/12/2019 5. Absorption Dehydration

    48/92

    Regenerasi TEG Contoh

    96.8 wt% Rich TEG memasukiregenerator menggunakan 0.03m3stripping gas/L larutan glikol.Berapakah konsentrasi Lean TEG jikasuhu regenerator 204oC pada tekanan 1atm dan 500 mmHg

  • 8/12/2019 5. Absorption Dehydration

    49/92

    Regenerasi TEG Lean TEG (1 atm) =

    Lean TEG (500 mmHg) =

  • 8/12/2019 5. Absorption Dehydration

    50/92

  • 8/12/2019 5. Absorption Dehydration

    51/92

    Ci l ti R t

  • 8/12/2019 5. Absorption Dehydration

    52/92

    Circulation Rate Absorber Contacts

    Untu laju sirkulasi tertentu maka

    diperlukan jumlah kontak absorber yangtertentu pula

    11

    01

    11

    1

    N

    N

    N

    A

    AA

    yy

    yyEa

    N

    Ci l ti R t

  • 8/12/2019 5. Absorption Dehydration

    53/92

    Circulation Rate Absorber Contacts

    yN+1: fraksi mol air dalam inlet gas

    y1: fraksi mol air dalam outlet gas y0: fraksi mol air dalam outlet gas bila berada

    dalam kesetimbangan dengan Lean TEG yangmasuk (

  • 8/12/2019 5. Absorption Dehydration

    54/92

    Circulation Rate Absorber Contacts

    A: faktor absorbsi = L/KV L: laju sirkulasi TEG, mol/waktu V: laju alir gas, mol/waktu K: konstanta kesetimbangan utk air antara air dlm gas

    dan air dlm larutan TEG-air, y=Kx N: jumlah plat teoritis dlm absorber

    11

    01

    11

    1

    N

    N

    N

    A

    AA

    yy

    yyEa

    N

    Ci l ti R t

  • 8/12/2019 5. Absorption Dehydration

    55/92

    Circulation Rate Absorber Contacts

    Fraksi mol air, yw, berhubungan dengan W yaitu

    massa air per std volume gas yaitu: Yw = 1.33x10-6W dimana W dalam kg/106std m3

    Yw = 2.11x10-5W dimana W dalam lb/MMscf maka

    01

    11

    01

    11

    WW

    WW

    yy

    yy

    N

    N

    N

    N

    Ci cul ti n R t

  • 8/12/2019 5. Absorption Dehydration

    56/92

    Circulation Rate Absorber Contacts

    Persamaan sebelumnya dapat ditulis

    menjadi persamaan di bawah yangplotnya ada di Gb. 18.5.

    01

    11

    01

    11

    WW

    WW

    yy

    yyE

    N

    N

    N

    Na

  • 8/12/2019 5. Absorption Dehydration

    57/92

  • 8/12/2019 5. Absorption Dehydration

    58/92

  • 8/12/2019 5. Absorption Dehydration

    59/92

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    60/92

    Circulation Rate Absorber Contacts

    Perhitungan laju Lean TEG utkeffisiensi absorbsi dan N tertentu

    1. Hitung y0 (W0)

    2. Tentukan effisiensi absorbsi3. Tentukan A dari persamaan atauGb.18.5

    4. Hitung L0, laju sirkulasi Lean TEG

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    61/92

    Circulation Rate Absorber Contacts

    Perhitungan N utk laju Lean TEG dan

    effisiensi absorbsi tertentu1. Hitung y0 (W0)

    2. Tentukan effisiensi absorbsi

    3. Tentukan A dari persamaan atau Gb.18.54. Tentukan N dari persamaan atau Gb. 18.5

    5. Overall efisiensi 25-40 %

  • 8/12/2019 5. Absorption Dehydration

    62/92

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    63/92

    Circulation Rate Absorber Contacts

    y0 = Kx0 dan W0= (W)()(x0) (18.7)

    Y0: fraksi mol air dalam lean TEG x0 dpt dihitung menggunakan pers. (18.8)

    melalui xgl, yaitu wt% TEG yang masukabsorber yang tidak boleh lebih kecil dari

    nilai minimum pd Gb. 18.3.

    150/18/100

    18/100

    0

    glgl

    gl

    xx

    xx

  • 8/12/2019 5. Absorption Dehydration

    64/92

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    65/92

    Circulation Rate Absorber Contacts

    Jika menggunakan metode Kremser-Brown,

    V dan L harus dalam satuan molar, shgdiperlukan utk mengestimasi MW

    Berat molekul larutan air TEG

    MW = 18x0 + 150 (1-x0)

    150/18/100

    18/100

    0

    glgl

    gl

    xx

    xx

  • 8/12/2019 5. Absorption Dehydration

    66/92

  • 8/12/2019 5. Absorption Dehydration

    67/92

  • 8/12/2019 5. Absorption Dehydration

    68/92

  • 8/12/2019 5. Absorption Dehydration

    69/92

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    70/92

    Circulation Rate Absorber Contacts

    Contoh:

    Hitunglah laju sirkulasi 98.7 wt% Lean TEGyang diperlukan utk mengeringkan 106 stdm3/d gas pada 7 MPa dan 40oC dalam

    absorber 4 tray (1 tray teoritis), shg gaskeluarannya hanya mengandung air 117 kg/106 std m3 gas. Kandungan air pada inlet

    gas adalah 1100 kg/ 106 std m3gas.

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    71/92

    irculation RateAbsorber Contacts

    Xgl = 98.7%

    W= 1100 kg/ 106 std m3gas

    W1= 117 kg/ 106 std m3 gas

    N = 1

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    72/92

    Absorber Contacts

    1. Hitung x0menggunakanpersamaan 18.8 150/18/100

    18/100

    0

    glgl

    gl

    xx

    xx

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    73/92

    Absorber Contacts

    1. Tentukanmenggunakan Gb.18.6 = f(xgl)

  • 8/12/2019 5. Absorption Dehydration

    74/92

  • 8/12/2019 5. Absorption Dehydration

    75/92

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    76/92

    Absorber Contacts1. Hitung W0

    menggunakanpers. 18.7 W0= (W)()(x0)

    2. Hitung effisiensiabsorbsi Eamenggunakan

    pers. 18.5.

    01

    11

    01

    11

    WW

    WW

    yy

    yyE

    N

    N

    N

    Na

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    77/92

    Absorber Contacts1. Tentukan A menggunakan Gb. 18.5 =

    f(N,Ea)

  • 8/12/2019 5. Absorption Dehydration

    78/92

  • 8/12/2019 5. Absorption Dehydration

    79/92

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    80/92

    Absorber Contacts Hitung K dari pers 18.6

    K = (yw)()=(A)(W)() Hitung Lo = (A)(K)(VN+1) Hitung Mol gas/Jam

    Hitung Mol TEG/jam Hitung MW Lean TEG menggunakan pers.

    18.9

    MW = 18x0 + 150 (1-x0)

    Circulation Rate

  • 8/12/2019 5. Absorption Dehydration

    81/92

    Absorber Contacts Hitung laju sirkulasi TEG/jam

    WTEG = mol TEG/jam x MW VTEG = WTEG/TEG H2O absorbed/hr = (W-W1)/24

    Circulation rate =VTEG/ H2O absorbed/hr

    (liter/kg H2O absorbed)

  • 8/12/2019 5. Absorption Dehydration

    82/92

  • 8/12/2019 5. Absorption Dehydration

    83/92

  • 8/12/2019 5. Absorption Dehydration

    84/92

  • 8/12/2019 5. Absorption Dehydration

    85/92

  • 8/12/2019 5. Absorption Dehydration

    86/92

  • 8/12/2019 5. Absorption Dehydration

    87/92

  • 8/12/2019 5. Absorption Dehydration

    88/92

  • 8/12/2019 5. Absorption Dehydration

    89/92

  • 8/12/2019 5. Absorption Dehydration

    90/92

  • 8/12/2019 5. Absorption Dehydration

    91/92

  • 8/12/2019 5. Absorption Dehydration

    92/92