20_kemagnetan

14
1 DAFTAR ISI DAFTAR ISI .............................................................................. 1 BAB 20. KEMAGNETAN .......................................................... 2 20.1 Magnet dan Medan Magnet ........................................ 2 20.2 Hubungan Arus Listrik dan Medan Magnet ................. 2 20.3 Gaya Magnet .............................................................. 4 20.4 Hukum Ampere ........................................................... 9 20.5 Efek Hall .................................................................... 13 20.6 Quis 20 ...................................................................... 14

description

jhgftyftjyfy

Transcript of 20_kemagnetan

Page 1: 20_kemagnetan

1

DAFTAR ISI

DAFTAR ISI..............................................................................1 BAB 20. KEMAGNETAN ..........................................................2

20.1 Magnet dan Medan Magnet ........................................2 20.2 Hubungan Arus Listrik dan Medan Magnet.................2 20.3 Gaya Magnet ..............................................................4 20.4 Hukum Ampere ...........................................................9 20.5 Efek Hall....................................................................13 20.6 Quis 20......................................................................14

Page 2: 20_kemagnetan

BAB 20. KEMAGNETAN

20.1 Magnet dan Medan Magnet

Fenomena kemagnetan yang mula-mula diamati adalah bahwa magnet alam berupa batu-batu (magnet) tertentu akan menarik potongan besi kecil. Magnet alami yang lain adalah bumi yang pengaruhnya terhadap jarum kompas sudah dikenal sejak zaman dahulu (sekitar abad 11).

Pada tahun 1819, H.C. Oersted menemukan bahwa arus dapat menghasilkan efek magnet. Selanjutnya pada tahun 1831, Michael Faraday dan Joseph Henry menunjukkan bahwa arus dapat ditimbulkan dengan menggerakkan magnet.

Medan magnet didefinisikan sebagai ruang di sekitar sebuah magnet atau di sekitar muatan yang bergerak. Jika menggunakan analogi untuk medan listrik, maka untuk sebuah kawat berarus sebagai sumber khas medan magnet, dapat diterapkan secara skematis yang menyarankan bahwa (a) arus menghasilkan medan magnet dan (b) medan magnet mengerahkan gaya pada arus

arus ⇔ medan ( Bv

) ⇔ arus

Medan magnet adalah medan vektor. Salah satu besaran untuk memerikan medan magnet

adalah induksi magnet Bv

. Garis medan induksi disebut garis induksi. Hubungan antara induksi magnet dengan garis induksi adalah arah garis singgung pada garis induksi menyatakan arah induksi magnet dan banyaknya garis induksi per satuan luas (yang tegak lurus pada garis), adalah sebanding dengan besarnya induksi magnet. Dari hubungan tersebut, induksi magnet disebut juga rapat fluks. Satuan induksi magnet weber/m2 = Tesla (T) dimana 1 Wb/m2 = 1 T = 104 Gauss

20.2 Hubungan Arus Listrik dan Medan Magnet

Muatan listrik yang bergerak dalam medan magnet akan mendapat gaya yang disebut gaya

Lorentz. Untuk mengetahui hubungan gaya ini dengan medan magnet, perhatikan Gambar 15.1 berikut.

2

Page 3: 20_kemagnetan

Gambar 15.1 Hubungan medan magnet dan gaya

Jika sebuah muatan q bergerak dengan kecepatan vv dalam medan magnet dan membuat

sudut θ terhadap arah Bv

maka muatan tersebut akan mendapat gaya magnet

BvqFvvv

x = (15.1)

Besarnya gaya magnet ini adalah

F = qvB sin θ (15.2)

Persamaan (15.1) sesuai dengan kenyataan berikut : Gaya magnet hanya bekerja bila muatan

q bergerak terhadap medan magnet, Jika vv searah atau berlawanan arah Bv

maka gaya magnet

sama dengan nol, Gaya magnet maksimum jika vv tegak lurus Bv

.

Catatan :

Untuk mengingat arah gaya dapat digunakan salah satu dari dua cara berikut , Arah Fv

Fv

searah dengan pergerakan sekrup yang diputar dari vv ke B

v dan Kaidah tangan kanan, yaitu jika tangan

kanan dikepalkan sehingga jari-jarinya mengikuti putaran dari vv ke Bv

maka arah v

searah dengan ibu jari.

F

Contoh 1 Sebuah medan magnet uniform yang mengarah secara horisontal dari selatan ke utara besarnya adalah 1,5 T. Jika sebuah proton yang energinya 5 MeV bergerak dalam arah vertikal menuju ke bawah melewati medan ini, berapakah gaya yang bekerja pada proton tersebut ? (Massa proton = 1,7 x 10-27 kg, muatan proton = 1,6 x 10-19 C) Jawab Energi kinetik proton K =(5 x 106 eV)(1,6 x 10-19 J/eV) = 8 x 10-13 J Dari hubungan K = ½mv2 didapat kecepatan proton

m/s 10 x 1,3kg)10 x (1,7

)10 x 8)(2(2 727-

-13

===mKv

Sehingga besarnya gaya yang bekerja pada proton

3

Page 4: 20_kemagnetan

F = qvB sin θ = (1,6 x 10-19)(3,1 x 107)(1,5)(sin 90) = 7,4 x 10-12 N

Dari hubungan didapatkan bahwa arah gayanya adalah ke timur. BvqFvvv

x =

Contoh 2

Sebuah partikel bermuatan q = -2e masuk dengan kecepatan )(108 jiv))v += m/s ke dalam medan

magnet T 5,0iB)

= . Tentukan gaya yang bekerja pada muatan tersebut.

Jawab

N10

))(0(10

)x x (10)5,0( x ))(10( )2( x

8

8

8

8

ke

ke

jiiieijieBvqF

)

)

))))

)))vvv

=

−+−=

+−=

+==

Jadi gaya yang bekerja adalah e108 N dengan arah sejajar sumbu z.

20.3 Gaya Magnet

Selain di ruang bebas, kawat yang dialiri arus berisi muatan yang bergerak. Sehingga bila kawat berarus tersebut diletakkan dalam medan magnet akan mendapat gaya. Tinjau kawat berarus yang diletakkan dalam medan magnet seperti pada Gambar 15. 2.. Jika muatan dq mengalir melalui suatu penampang dalam waktu dt maka dalam kawat mengalir arus

i = dq/dt (15.3)

Gaya yang bekerja

BvdqFdvvv

x = (15.4)

4

Page 5: 20_kemagnetan

Gambar 15.2 Medn magnet pada kawat lurus

Dari persamaan (15.3) dan (15.4) serta dari hubungan lddtvvv = didapat

BldiFdvvv

x= (15.5)

Arah gaya searah perpindahan sekrup bila diputar dari lidv

ke Bv

. Bila kawat lurus, Bv

tetap

dan homogen, serta sudut antara ldv

dan Bv

tetap, maka persamaan (5) dapat ditulis

BliFvvv

x= (15.6)

F = i l B sin θ (15.7)

Contoh 3 Suatu kawat panjang dialiri arus 2 A. Kawat terletak sejajar sumbu y dan arus mengalir ke searah sumbu y negatif seperti tampak pada Gambar 3. Kawat berada dalam medan magnet 3 T dan membuat sudut 30° dengan y positif (misalkan arah B

v pada bidang yz). Bila medan magnet hanya

berpengaruh pada kawat sepanjang 20 cm, hitunglah gaya pada kawat.

Jawab Karena kawat lurus dan medan magnet serba sama, maka besar gaya F = i l B sin θ = (2)(0,2)(3)(sin 150°) = 0,6 N

5

Page 6: 20_kemagnetan

Arah gaya searah perpindahan sekrup jika diputar dari lidv

ke Bv

, yaitu pada arah sumbu x positif.

atau N 6,0iF)v

+=

Contoh 4Sebuah kawat dibengkokkan seperti terlihat pada Gambar 4. Kawat tersebut mengangkut arus i dan ditempatkan dalam medan magnet uniform B

v yang muncul keluar bidang gambar. Hitunglah gaya

yang bekerja pada kawat. Jawab

Gaya pada setiap bagian yang lurus F1 = F3 = ilB dan menuju ke bawah seperti diperlihatkan pada gambar Gaya dF pada segmen kawat yang melengkung sepanjang dl dF = iB dl = iB (R dθ) dan arahnya dalam arah radial menuju pusat busur O. Hanya komponen gaya vertikal saja yang efektif, sedangkan komponen horisontal ditiadakan oleh gaya yang sama oleh segmen busur pada sisi lain dari O. Jadi besar gaya total pada setengah lingkaran di sekitar O adalah

iBRdiBRdiBRdFF ∫∫∫ ====πππ

θθθθθ000

2 2sinsin)(sin

Karena ketiga gaya ini searah maka besar gaya resultan seluruh kawat F = F1 + F2 + F3 = 2ilB + 2iBR = 2iB(l +R) Perhatikan bahwa gaya ini sama dengan gaya yang bekerja pada sebuah kawat lurus yang panjangnya 2l + 2R.

Selanjutnya kita akan meninjau sebuah loop kawat (lilitan kawat) yang berputar pada sumbu S seperti ditunjukkan pada Gambar 5. (Gambar 5(b) menunjukkan tampak samping)

6

Page 7: 20_kemagnetan

Gambar 15.3 Medan Magnet pada kumparan

Di sini sumbu S dianggap tegak lurus Bv

. Gaya yang menimbulkan momen gaya untuk

memutar loop adalah abFv

dan cdFv

. Karena lidv

pada a-b dan c-d tegak lurus Bv

maka

abFv

= cdFv

= i l1 B (15.8)

Besar momen gaya adalah

θτ sin2lFcd= (15.9)

Dari persamaan (15.7) dan (15.8) dengan A adalah luas loop didapat

θθτ sinsin)( 21 BAilBli == (15.10)

.Arah momen gaya adalah dari a ke b. Dengan menggunakan perkalian vektor persamaan (15.10) dapat ditulis

BAivvv x =τ (15.11)

dengan adalah vektor luas loop yang arahnya normal sesuai dengan perpindahan sekrup yang diputar menurut arah arus dalam loop. Persamaan

Av

(15.11) berlaku umum tidak peduli bentuk

loop. Besaran disebut momen dipol magnet dan ditulis Aiv

Aimvv = (15.12)

Sehingga persamaan (15.11) dapat ditulis

Bmvvv x =τ (15.13)

7

Page 8: 20_kemagnetan

Persamaan (15.13) juga berlaku untuk sebatang magnet permanen seperti misalnya jarum kompas di dalam medan magnet. Gambar 15.4 menunjukkan batang magnet yang digantung dengan tali.

Gambar 15.4 Magnet digantungkan pada sebuah tali

Jika magnet dilepaskan, magnet akan berputar membuat mv sejajar dengan Bv

. Selanjutnya

kutub U akan melewati arah Bv

membuat sudut θ negatif. Pada keadaan ini momen dipol akan

mengarah ke bawah, yang menyebabkan batang magnet akan diputar kembali ke arah Bv

. Demikian

seterusnya sehingga terjadilah osilasi teredam di sekitar arah Bv

.

Contoh 5 Suatu kumparan dipasang vertikal dengan tali tegang seperti tampak pada Gambar 6. Ukuran kumparan adalah l1 = 10 cm dan l2 = 20 cm. Kumparan berada dalam medan magnet sebesar 0,05 T dalam arah sumbu x positif. Kumparan yang terdiri dari 20 lilitan dialiri arus sebesar 10 A. Hitung : Momen dipol magnet, Momen gaya pada loop jika bidang loop sejajar B

v, Momen gaya pada loop jika

bidang loop membuat sudut 60° terhadap Bv

. Jawab Bila ada N lilitan maka momen dipolnya m = N i A = (20)(10)(10 x 20 x 10-4) = 4 A m2

Jika bidang loop searah Bv

maka normal bidang loop tegak lurus Bv

sehingga θ = 90°. Besar momen dipol τ = mB sin θ = (4)(0,05)(sin 90°) = 0,2 Nm

Jika bidang kumparan bersudut 60° terhadap Bv

, maka sudut antara m dan B sama dengan 30°. Jadi τ = mB sin θ = (4)(0,05)(sin 30°) = 0,1 Nm Contoh 6 Sebuah magnet batang sepanjang 20 cm berada dalam medan magnet 0,5 T. Magnet batang dipasang tegak lurus dengan arah medan magnet dan dapat berputar pada sumbu S yang tegak lurus bidang gambar. Ini dilukiskan pada Gambar 7. Untuk mempertahankan magnet pada posisi ini, kutub U harus diberi gaya F0 = 0,5 N. Hitunglah momen dipol magnet batang ini.

8

Page 9: 20_kemagnetan

Jawab Momen gaya oleh medan magnet τ = mB sin θ di mana θ = 90° Momen gaya oleh F0 adalah τ0 =(F0)(l/2) Agar seimbang maka kedua momen gaya ini harus sama, yaitu τ = τ0

mB = (F0)(l/2)

)5,0)(2()2,0)(5,0(

20 ==BlF

m = 0,1 A m2

20.4 Hukum Ampere

Dengan hukum Biot-Savart kita dapat menghitung Bv

yang dihasilkan oleh arus listrik, tetapi perhitungannya sering sulit dilakukan dan membutuhkan banyak tenaga. Untuk bentuk-bentuk tertentu akan lebih mudah dengan menggunakan hukum Ampere, yaitu

ildBC

0μ=∫vv

(15.14)

Hukum Ampere di atas berlaku umum tidak peduli bentuk kawat yang dialiri arus ataupun bentuk lengkungan integrasi C. Baik hukum Biot-Savart maupun hukum Ampere diperoleh dari dua eksperimen terpisah. Dalam teori listrik magnet, hukum Ampere yang bentuknya diubah dalam bentuk diferensial, merupakan bagian dari persamaan Maxwell yang merupakan hukum dasar elektromagnet. Kita akan menerapkan hukum Ampere di atas untuk beberapa bentuk simetri kawat berarus yaitu (a) Sebuah kawat panjang, (b) Dua kawat sejajar, (c) Solenoida dan (d) Toroida.

(a) Sebuah kawat panjang

Misalkan untuk suatu lengkungan tertutup C yang mengelilingi suatu kawat lurus panjang berarus i (Gambar 15.7).

9

Page 10: 20_kemagnetan

Gambar 15.7 Medan magnet pada kawat panjang

Pertimbangan simetri menganjurkan bahwa arah Bv

adalah menyinggung lingkaran berjari-jari R yang berpusat pada kawat dan berputar menurut arah putar sekrup agar berpindah ke arah arus. Ternyata garis induksi yang dihasilkan berbentuk lingkaran sepusat sehingga persamaan (16) menjadi

B (2πR) = μ0i atau Ri

Bπμ2

0= (15.15)

yang sama dengan yang diperoleh dari perhitungan menggunakan hukum Biot-Savart.

Perhatikan di sini bahwa integral RldldlingkaranC

π2== ∫∫vv

adalah merupakan keliling lingkaran yang berjari-jari R. (b) Dua kawat sejajar

Gambar 15.8 memperlihatkan dua kawat sejajar yang panjang dan terpisah sejauh d satu sama lain. Kedua kawat mengangkut arus masing-masing ia dan ib.

Gambar 15.8 Medan pada kawat sejajar

Kawat a akan menghasilkan sebuah medan magnet aBv

pada semua titik yang berada di

sekitarnya, termasuk di kawat b. Besarnya aBv

di kawat b

10

Page 11: 20_kemagnetan

di

B aa π

μ2

0= (15.16)

Kaidah tangan kanan memperlihatkan bahwa arah aBv

pada kawat b adalah ke bawah seperti

terlihat pada gambar di atas. Kawat b yang dialiri arus ib, dengan demikian berada dalam medan

magnet luar . Kawat b dengan panjang kawat l ini akan mendapat gaya magnet yang mengarah ke

kawat a yang besarnya

aBv

dili

lBiF ababb π

μ20== (15.17)

Hal yang sama akan didapat jika ditinjau dari kawat b, yaitu didapatkan bahwa gaya yang bekerja pada kawat a oleh kawat b besarnya sama tapi arahnya berlawanan. Jadi untuk kasus di atas kedua kawat tersebut akan saling tarik menarik.

Contoh 9 Sebuah kawat panjang yang ditopang secara kuat mengangkut arus ia sebesar 100 A. Sejajar dengan kawat tersebut, tepat di atasnya, terdapat kawat halus yang beratnya 0,073 N/m dan mengangkut arus ib sebesar 20 A. Berapa jauhkah kawat b tersebut direntangkan di atas kawat a agar kawat b tertopang dengan gaya tolak magnet. Jawab Untuk menyediakan gaya tolakan maka kedua arus haruslah menunjuk arah yang berlawanan. Untuk kesetimbangan maka gaya magnet persatuan panjang harus menyamai berat persatuan panjang.

dii

lF

lW ab

πμ20==

mm 5,5 m 10 x 5,5)073,0(2

)100)(20)(10 x 4()/(2

3--7

0 ====π

ππμ

lWii

d ab

Contoh 10 Dua buah kawat sejajar yang berjarak d satu sama lain mengangkut arus yang sama besarnya tapi berlawanan arah. Carilah medan magnet pada titik di antara kedua kawat yang berjarak x dari salah satu kawat. Jawab Perhatikan Gambar di bawah ini.

11

Page 12: 20_kemagnetan

Misalkan arus yang mengalir pada kedua kawat masing-masing adalah ia dan ib. Maka

baik yang ditimbulkan arus iaBv

a dan bBv

yang ditimbulkan arus ib menunjuk ke arah yang sama di P,

sehingga

⎟⎠⎞

⎜⎝⎛

−+=+=

xdxi

BBB ba11

20

πμ

(c) Solenoida Solenoida adalah sebuah kawat panjang yang dililitkan berbentuk heliks (Gambar 14).

Gambar 14

Untuk sebuah solenoida yang mempunyai N lilitan dan panjang l yang dialiri arus i, didapatkan bahwa induksi magnet di dalam solenoida adalah

lNi

B 0μ= (20)

Contoh 10Sebuah solenoida mempunyai panjang 0,5 m dan diameter 3 cm. Solenoida tersebut mempunyai lima lapisan lilitan yang masing-masing terdiri dari 850 lilitan dan mengangkut arus sebesar 5 A. Hitunglah B di pusat solenoida dan fluks magnet untuk sebuah penampang solenoida pada pusatnya. Jawab Medan B di pusat solenoida

22-2--7

0 Wb/m10 x 3,1 T10 x 3,15,0

)5(850) x 5)(10 x 4(====

πμlNi

B

12

Page 13: 20_kemagnetan

Sampai keadaan di mana medan Bv

konstan, maka fluks didapat dari

∫ ==ΦC

BASdBvv

.

dengan A adalah luas penampang efektif dari solenoida Jadi fluks magnet di pusat solenoida

Φ = BA = (1,3 x 10-2)((1/4)(3,14)(3 x 10-2)2) = 9,2 x 10-6 Wb

(d) Toroida Toroida adalah sebuah solenoida yang yang dibengkokkan dalam bentuk lingkaran (Gambar 15).

Gambar 15

Induksi magnet di dalam toroida yang mempunyai N lilitan dan dialiri arus i,

rNi

μ2

0= (21)

20.5 Efek Hall

Gaya yang diberikan oleh medan magnetik kepada kawat yang berarus dipindahkan ke kawat oleh gaya yang mengikat elektron pada kawat di permukaannya. Pembawa muatan juga mengalami gaya magnetik ketika kawat yang sedang menyalurkan arus berada dalam medan magnet luar, pembawa muatan dipercepat ke arah salah satu sisi kawat. Hal ini menghasilkan pemisahan muatan dalam kawat yang disebut dengan efek Hall.

13

Page 14: 20_kemagnetan

Gambar Efek Hall

20.6 Quis 20

1. Sebuah elektron dengan kecepatan jiv ˆ10 x 3 ˆ10 x 2 66 +=v m/s, memasuki medan magnet

T. Hitung besar dan arah gaya magnet yang bekerja pada elektron tersebut ! jiB ˆ15,0ˆ03,0 −=v

2. Sebuah kawat penghantar yang mengangkut arus i dibuat seperti pada gambar di bawah. Segmen yang melengkung adalah bagian dari lingkaran yang berjari-jari a dan b. Segmen yang

lurus berada sepanjang jari-jari Carilah medan magnet Bv

di titik P.

bi

14

i

P

θ 3. Sebuah solenoida yang terdiri dari 200 lilitan mempunyai panjang 25 cm dan diameter dalam 10

cm dan mengangkut arus sebesar 0,3 A. (μ0 = 4π x 10-7 T.m/A).

a. Berapa besar medan magnet B pada pusat solenoida ?

b. Berapa fluks magnetik ΦB untuk sebuah penampang solenoida pada pusatnya ?