Translation Series No

167
FISHERIES RESEARCH BOARD OF CANADA Translation Series No. 1511 Hydrochemical characteristics and the pattern of the changes of surface water composition. By Michal Antonie ' Original title: Hydrochemickâ charakteristika a zâmislosti zmien zloenia povrchovçrch vôd. From: VyskumnyjJtav Vodohospodarsky Bratislava, Pràce a studie 27, : 4-161, 1964. Translated by the Translation Bureau(MK) Foreign Languages Division Department of the Secretary of State of Canada Fisheries Research Board of Canada Freshwater Institute Winnipeg, Manitoba 1970 - 165 pages typescript

Transcript of Translation Series No

FISHERIES RESEARCH BOARD OF CANADA

Translation Series No. 1511

Hydrochemical characteristics and the pattern of the changes of surface water composition.

By Michal Antonie'

Original title: Hydrochemickâ charakteristika a zâmislosti zmien zloenia povrchovçrch vôd.

From: VyskumnyjJtav Vodohospodarsky Bratislava, Pràce a studie 27, : 4-161, 1964.

Translated by the Translation Bureau(MK) Foreign Languages Division

Department of the Secretary of State of Canada

Fisheries Research Board of Canada Freshwater Institute Winnipeg, Manitoba

1970 -

165 pages typescript

INTO - 'EN TRANSLATED FROM - TRADUCTION DE

Slovak English

SECRÉTARIAT D'ÉTAT BUREAU DES TRADUCTIONS

DIVISION DES LANGUES

1964 _165_

PUBLISH ER - ÉDITEUR

Hydrological Res. Institute

PLACE OF PUBLICATION LIEU DE PUBLICATION

DATE OF PUBLICATION DATE DE PUBLICATION

ISSUE NO. NUMÉRO

PAGE NUMBERS IN ORIGINAL NUMÉROS DES PAGES DANS

L'ORIGINAL

4- 1à NUMBER OF TYPED PAGES

NOMBRE DE PAGES DACTYLOGRAPHIEES

YEAR ANNÉE

Bratislava

VOLUME

BRAKCH OR DIVISION Freshwater Inst., Winnipeg, FRB DIRECTION OU DIVISION

TRANSLATOR (INITIALS) TRADUCTEUR (INITIALES)

MK

DATE COMPLETED DEMANDE PAR ACHEVÉ LE

July 31, 1970 Dr. G.J. Brunskill PERSON REQUESTING

YOUR NUMBER VOTRE DOSSIER N°

769-1 8-14

*ATE OF REQUEST ATE DE LA DEMAI ATE DE LA DEMANDE

March 9, 1970

Fi\-"13

DEP,-.RTMENT OF THE SECRETARY OF STATE TRANSLATION BUREAU

• FOREIGN LANGUAGES DIVISION CANADA ÉTRANGÈRES

AUTHOR - AUTEUR

M. AntoniY

TITLE IN ENGLISH - TITRE ANGLAIS Hydrochemical Characteristics and the Pattern of the Changes of Surface Water Composition

'Title in foreign language (transliterate foreign characters) Hydrochemicka charakteristika a zAvislosti zmien

zlolenia povrchovYch ve3d REF5RENCE IN FOREIGN I,ANGUAGE (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE FOREIGN CHAftACTERS. • RÉFERENCE EN LANGUE ETRANGÉRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET.TRANSCRIRE EN CARACTERES PHONETIQUES.

As above - Final report

REFERENCE IN ENGLISH - RÉFÉRENCE EN ANGLAIS

As above

REQUEeTING DEPARTMENT Fisheries & Forestry MIN 1ST ERE-CLIENT

TRANSLATION BUREAU NO. 5918

NOTRE DOSSIER NO

UNEDITED DRAFT TRANSLATION» Only for information

TRADUCTION NON REVISÉE sc..,u!cniont

SOS•200-10-6 (REV. 2/68)

DEPARTMENT OF THE SECRETARY OF STATE

• TRANSLATION BUREAU

FOREIGN LANGUAGES DIVISION

F-7-yç / SECRÉTARIAT D'ÉTAT

BUREAU DES TRADUCTIONS

DIVISION DES LANGUES ÉTRANGÈRES

CLIENT'S NO. . DEPARTMENT DI VISI ON/BRANCH CITY No DU CLIENT MINISTERE DIVISION/DIRECTION VILLE

Fisheries Res. Board Fresilwater Institute Winnipeg, Man.

BUREAU NO. LANGUAGE TRANSLATOR (INITIALS) DATE No DU BUREAU LANGUE TRADUCTEUR (INITIALES)

5918 Slovak MK

HYDROLOGICAL RESEARCH INSTITUTE - BRATISLAVA

Papers and Studies

27

MICHAL ANTONI, M.Sc., Ph.D.

HYDROCHEMICAL CHARACTERISTICS AND THE PATTERN OF THE CHANGES

OF SURFACE WATER COMPOSITION

BRATISLAVA

This paper, presenting the general hydrochemical character-

istics of river water in Slovakia, evaluates factors which

affect the chemical composition of water, and determines the .

pattern of the changes in the composition of water and the runoff

of ions from the river basins.

The paper represents a generalization of knowledge of the

composition of surface water in Slovakia. It is based on the

evaluation of observations made during the last few years.

SOS-200-10-31

-2-

The paper is designed for workers in hydrology, both in

planning and in practice, and also for hydrology scientitts and

university students.

Publisher's reader: Oleg Bogatyrev, M.Sc., Ph.D.

Copyright: Hydrological Research Institute, 1964

INTRODUCTION

Nowadays each branch of the economy is making increased

demands for high-quality water.

Water in our country is already becoming the limiting

factor for the development of industry and the national economy,

both from the quantitative and qualitiative points of view, as

Professor Madera emphasized.

Comparison of the consumption of water in Czechoslovakia

in 1939 (1700 x 106 m3 /year) with the recent consumption

(3700 x 106 m3/year) shows that it has more than doubled. By.

1965 it will have increased about four times and by 1980 about

nine times. In Slovakia the increase in the consumption of water

is even faster and in the period from 1950 to 1980 the consumption

of water will increase eight times (from 500 x 10 6 m3 to

4000 x 106 m3/year). This shows that the consumption of water

is exceptionally high and increases continually. However, at

minimum flow rates, 14,000 x 106 m3 of water leave the territory

of Czechoslovakia per annum, and 2300 x 106 m3 of water flows

off Slovakia (the Danube not includud). It means that already

in 1980 shortage of water will be evident at minimum flow rates

and that in 1990 all available sources will be exhausted.

The quality of water is of decisive importance as far as

its use is concerned - in other words it affects the design of

essential equipment needed for its conditioning. Incorrect

water management - be it froM any viewpoint - can have far-

reaching. consequences. It is natural that the properties of

water (physico-chemical and biological) are being studied, in

each case, with an eye to the use planned for this water.

Today we can no longer imagine a project without knowledge of

the basic properties of the water which will be used in it.

These fundamental data are needed especially to prevent losses

in production, damage to buildings, etc.

For this very reason the increased demands for water

quality and extensive and expensive conditioning have led and

are leading today to an intensified study of the chemistry of

water both in our country and abroad. In an era of increased

demands for water, hydrochemistry, i.e., the chemistry of natural

waters, has become a scientific discipline. Hydrochemistry came

into being not very long ago - less than fifty years - though

a great deal of attention had been paid to the problems of water

quality even earlier (especially at the end of the nineteenth

century). At that time, however, hydrochemistry was only an

auxiliary scientific discipline which served several related

branches of knowledge. In the first period factual material was

collected without being processed in detail. Laws which control

the changes of water composition were not studied and the results

• obtained were not generalized. Such an attitude to the solution

of these problems is far from being the best one and it is quite

unsuitable for future use. FILATOV (1955) said that without

learning the laws of formation of the chemical compostion of

water, and the effects of certain factors onthese changes and

processes, it is impossible to make attempts to generalize the

results with sufficient reliability. It is equally impossible

to forecast the composition of water in streams and reservoirs

from the changes in t heir natural character in spite of knowing

the principles of the hydrochemical regimes bf all rivers which

are exploited.

In the U.S.S.R., where the development of industry is

110 showing an immense growth and where the solution of the problems was approached in a planned manner, some authors ( -ALEKIN in the

U.S.S.R. and KONENKO in the Ukrainian S.S.R.) started to solve

the problems of surface water hydrochemistry from the point of

view mentioned above. Thus they laid the foundations for the

recent development of the techniques of solving complex problems

in hydrochemistry.

They have been followed by many authors who started to

solve the basic problems connected with the formation of the

chemical composition of water and with the laws controlling its

changes, problems of the equilibrium of the runoff of material,

and by authors who are studying chemical erosion. Such results

were achieved that they are being considered as factors (quantities)

gl, in hydrological calculations (27, 29, 30). Soviet specialists

have achieved such success in this field that their results can

be used in the prognosis of water compositon.

Recent results indicate that the composition of water is

closely related to physical, geographic, climatic or other

conditions. Therefore all findings cannot be applied equally

to all rivers, but they mUst be studied separately and in their

individual relations to actual conditions.

In our country little research has been done on the

complex problems of the hydrochemistry of surface water. Here

especially PLEISCHL, SCHULZ, HAMACKOVA, MADERA, KOHOUT, BOSKO

and others have contributed to the development of the hydro-

chemistry of surface water. In addition to characterizing water

properties these authors contributed mainly to those branches

of water chemistry which are connected with the organic pollution .

of rivers. Recent papers by CHALUPA, who studied the factors

governing water composition and changes of essential elements,

are a contribution to the solution of these problems. Also

some papers by the author of this book and in part the paper by

HAVRANEK (a preliminary Ph.D. thesis) can be considered as a

contribution to this field.

• On account of the specific problems posed by practice and

increased demands for water quality, the fact that we must

inevitably study the correlations between water composition and

the concrete natural conditions, and that we must bear in mind

that the results shouldbe generalized, we decided to process the

results accumulated.

Ile The evaluation of our own results has been focused on:

(a) The general characteristics of the composition of water,

(h) The assessment of the effects of factors which influence the composition of water,

(c) The determination of the factors on which the ' changes in water composition depend,

(d) The equilibrium of the discharge of substances dissolved in water,

(e) The possibility of predicting the composition of water.

The scope of this paper and the treatment were selected in

order to draw at least partial conclusions concerning the

hydrochemistry of surface water and the laws controlling the

formation and changes of the composition of water. Such a

paper would at least partially fill the gap existing in the

hydrochemistry of surface water and would make work for other

scientists easier in this branch of knowledge, not to mention

the need for basic data for practical purposes.

I GENERAL CHEMICAL CHARACTERISTICS OF FLOWING SURFACE WATERS

The quality of water has been the subject of study for a

long time, so that nowadays we can find data on the composition

of water from nearly all continents. Data not only on the

larger rivers or isolated locations, but in many cases on entire

rivers, the entire drainage basins of the more important rivers,

and even small creeks have been processed.

Various authors adopted different approaches to the

description and evaluation of chemical processes in water.

They were very often obsessed with the idea of using the results

for practical purposes. Their approach to water analyses and

their evaluation was different acèording to whether the water

was for industrial, constructional, agricultural, piscicultural

or drinking purposes. Some papers were written only from the

point of view of natural science and their authors tried to

characterize the properties of water from the widest and most

general viewpoint.

Apart from the fact that a great number of authors proceeded

and still proceed without deep generalization when evaluating

chemical processes in water, and without reference to the laws

controlling the changes of the composition of water and the

factors resultinL; from these changes, many authors are already

indicating in the conclusions of their papers that there is a

close relationship between the environment and the composition

of river water. At the same time opinions differ as to which

of the factors affecting the chemical composition are primary.

Some authors (TAKAHISHA HANYA, UNZUMASA KITANO, TSUZUMAKI MICHIJI,

NAGYAMA, SHU, NONYTA SAJDZE, FILATOV, DENISOV, DZENS-LITOVSKII,

LE GRAND, BAECKER and others) are of the opinion that the

dominating influence is exerted by the geological or hydro-

geological conditions of the drainage basin. Other authors

(VORONKOV, GIRENKO, ALEKIN, HAVRANEK) ascribe the dominating

influence to the pedological conditions of the drained terrain

and others to climatic conditions, emphasizing that the most

important role is played by the precipitation and related

hydrological conditions. A number of authors do agree that

precipitation and the hydrological regime of the river are the

factors which affect the composition of water, but some (FILATOV) /10

say that such factors bulk largest only as far as changes of the

composition of water are concerned. The basic Character of water

is determined by the parent rock material or the compostion of

the subsoil. We shall deal with these questions in the following

chapters.

Papers which deal with the • tudy of the factors governing

the composition of water and generalization of the results with

the aim of using them for predicting the composition of water

gl, in seas, lakes and reservoirs have been restricted to the

observation and characterization of several groups of components.

Analyses involving the six to eight main ions and total

mineralization* are most common, followed by papers which analyze

the regime of organic and essential elements in detail.

Recently, in addition to the regime of the main tons, a

great deal of attention is being paid to the content of trace

elements in surface waters, which has been neglected up to now.

It is especially in the U.S.S.R. that the trace elements have

lately started to be studied.

*Total mineralization (I) is the total amoun of ions present in water and is expresséd in mg/l. or mval/1 .; it is different from the suspended matter dried.

+Translator's Note: mval/litre + 11£1-.1 u.' when g. - equ. = atomic weight in gra6:

All the topics of the papers cited above are today indepen-

dent parts of the hydrochemistry of natural waters - especially

in the U.S.S.R. They cannot be included in the problems related

to the hydrochemical regime of the main ions and their prediction,

with which we wish to deal in this paper. Here we have mentioned

them only marginally to emphasize the evident progress of the

chemistry of natural water.

(A) ON THE EVALUATION OF WATERS IN GENERAL

Papers which deal only with the general characterization of

the composition of water actually present a description of water

properties either from the general point of view or as centred

on a special goal. The amounts of compounds found in water have

been listed and the ratios of the components referred to. Even /11

numerical values have been introduced as characteristic of surface

suspended matter dried waters such as — 0.75, or the ratios of electric conductivity

Mg 2+

etc. Discussed are the forms in which individual Ca 2+' e components occur in water, i.e. what salts water contains.

Also describbd are the physical properties of water (temperature,

colour, odour, turbidity, etc.), gas content in water etc. In

short, the attitudes to the evaluation of water are different

and according to papers which have already been published, can

be characterized as follows:

1. Evaluation of physical properties of water,

2. Evaluation of gases dissolved in water,

3. Evaluation of the main ions (components) in water,

• -10-

4. Evaluation of essential elements,

5. Evaluation of trace elements,

6. Evaluation of organic matter,

7. Evaluation of natural radioactivity of water,

8. Recently even evaluation of artificial radioactivity of water.

The most common evaluation of water was and is even today

based on the main ions such as Ca2+ Mg2+ , K+ , Na+ , HCO S02- , 3 ' 4 '

Cl- , and possibly also NOi. These ions practically represent the

total mineralization of water (up to 98-99%). The main Interest

of the substances listed here is that they are the most important

from a practical point of view. Trace elements and essential

elements amount only to a very small part of the total content of

salts, and they were therefore not taken into account.

Different ways of expressing concentrations and ratios of

individual ions have been used in the evaluation of the mineral

portion, such as g/kg, g/1., mg/1. 1 mval, mvallo, or coefficients

of ratios. Many ways to classify natural waters have been

devised, along with different ways of presenting results and

methods for evaluating qualitative properties.

In many cases the principle and method of evaluation has

been fairly good. Hudever, the disadvantage of all these

systems mentioned above is the statistical assessment of results,

which is no longer satisfactory demands.

We shall use FILATOVIS classification (40) for hydrochemical /12

characterization of our waters. It is a simple and clear

system which is easy to use. In principle FILATOV divided

HCO- 3 bicarbonate waters SOt- + Cl 1.9

-11 -

natural waters into 3 basic types of water according to their

anion contents: bicarbonate, sulfate and chloride types, which

form the main classes

this system are based

According to the

of the classification. The subclasses of

on the content of the main cations.

content of individual anions and the

ratio of the main anion to the other two remaining anions,

FILATOV defines 3 types of waters: pure, intermediate and

mixed.

As the pure or true type of water he considers water in

110 which the ratio of the main anion to the sum of anions in

milliequivalents is Kg--2/ 1.9. FILATOV called it "the coefficient

of the main anion" (Kp).

Waters in which 1 C.Kp l.9 he considers as belonging to

the intermediate water type.

Waters with Kp Z-1 he classes with the mixed type.

Thus, generally, FILATOV divided waters into the following

five classes:

Class I True

Subclasses:

Class II True sulfate

Subclasses:

ClassIII Ti.ue sulfate

Subclasses:

calcareous, magnesium and sodium waters.

2 SO4 -

waters _ 1.9 Cl- + HC07; "

calcareous, magnésium and sodium waters.

Cl- waters --`/ 1.9 Ho°

3 + SO2

4 calcareous, magnesium and sodium waters.

-12-

Class IV Intermediate waters Kp = 1 to 1.9 (chloride-bicarbonate,

chloride-sulfate, sulfate-bicarbonate, Sulfate-chloride,

bicarbonate-sulfate, and bicarbonate-chloride waters).

Class V Mixed waters Kp,‘1.

We shall also mention ALEKINIS suggestion (3) for the

division of surface waters into four categories according to

total mineralization. it can be used with advantage if the

degree of mineralization of the water is given. Individual

categories are characterized by the following limits of mineral

compounds:

First category: Water with low mineralization (below 200 mg/1.),

Second category: Water with medium mineralization (200-555 mg/1..),

Third category: Water with high mineralization (555-1000 mg/1.).

With the limits of the first category ALEKIN still

distinguishes waters with very low mineralization (below

100 mg/1.). ALEKIN and VORONKOV (3) (89) and other authors

adhere to this categorization when dealing with rivers, and

plot their results on maps of the individual regions and even of

the entire territory of the U.S.S.R.; at the same time they

divide waters into such types as, for example, bicarbonate,

suflate and chloride. It needs to be emphasized that only in

the U.S.S.R. have the rivers been to such an extent and so

comprehensively from the hydrochemical point of view.

-13-

(B) CHARACTERIZATION OF WATERS OF SLOVAK RIVERS

Before we proceed with an assessment of the pattern of

composition changes and the factors influencing the composition

of water, etc., we shall present a brief description of the

composition and hydrochemical prol;erties of the surface waters

of the whole of Slovakia.

We have selected rivers of different sizes from various

geological formations to assess the properties of waters. At

the same time we took care that the selected sampling sites

would represent the natural state of the river wherever possible.

In the case of larger rivers (Vah, Nitra, Hron, Little Danube, /14

Morava etc.) we also included sections which are already under

the influence of artificial factors (pollution with waste waters).

The results from these sections, where the natural regime of

water has been disturbed, are being cited both to reveal the

extent of such disturbances and so that the results from

economically more important regions can be used for practical

purposes.

1. Total Content of Mineral Compounds

Comparison of the content of mineral compounds or

the suspended matter dried indicates relatively large differences

between our rivers, but they are substantially smaller than for

the rivers of the U.S.S.R. or other countries. More balanced

ratios are due to more balanced climatic conditions and smaller

differences in the composition and kinds of waters feeding the

Third category:

Fourth category

-14-

rivers. Cases occur in the U.S.S.R., for example, where the

lower streams feed only the reservoirs of ground waters, or

where, during very dry seasons, the river beds get almost dry.

It is understandable then that such rivers, at low flow rates,

have a very high mineralization, which decreases considerably

during the rainy seasons, or that rivers in arid areas have a

considerably higher mineralization that the rivers in areas

of permanent swamps or permanent snow and glaciers.

In our country we have not sudh extreme conditions and

therefore we also do not observe such marked differences in

the water composition. Mineralization of our waters fluctuates

within the range of 60-600 mg/1., and only in isolated cases

have these limits been exceeded. Even in such cases the water

was affected, as a rule, by waste waters. Mineralization of

the major part of our waters lies between 200 and 400 mg/l. (cf.

Tables la, lb, le, id, le, lf). According to ALEKIN'S categor-

ization of waters there are only 3 categories in our country,

but if we accept the division of the first category into two,

there are four:

First category: Waters with very low mineralization (below 100 mg/1.),

Second category: Waters with low mineralization (below 200 mg/1.),

Waters with medium mineralization (up to 500 mg/1.),

: Waters with high mineralization (over 500 mg/1.).

4'eM1chefin/ea/ Comfic,ff>tioe o71 vaelede. fiXerrek, /e/Kee s Zier, 1:ft,

A."/1

37100I .

-0 te

MIA •

20.

217I •

001 •

15.7ll

1

ee

`e

-

1.2.X

610 ,

JAN

51,»

i Detendination • •

, - 7 _________ .

! -Flow q 013 /sec.). emperature of,irnter(°C) . .

. Iloi' -- Ul .,--1 -4 - ranF -oar...çuy %Cm) pecifio conduCtivity (4.1e,.cm .10_

t. .ait '18°c) e ll_nity Vlei.hY1 Oranl) ml 0,I ii 901/litr.

cloiL,y (Phehoiphthaleifi ml 0.1 N UâOHiliter Undissolved dry rilatter ( 05°C) . Pndissolved calcinated matter (600°C.). -

ee 0a- . 511aUMMIgtne.unUe datt..âMc- '.. . .. . _ . • ... • . leOund COe- • - • . . ..

ggranné?I - (Ger ail rades)' . Temporary hardness

d I- 4. Permanent harness -u- . • . . ' . . . . renic comrounds -• Kubel (02.) . lenemical-.consumption of oxygen (BCO)

,olind oxygen. . • ' Olen differencet .

kii ri es fiva ' Si ictc ac id Si0 2. • Nitre es. NO; Phosphates. 2_ PO» 8R1W2és e() O17 '

.gIcartonates 3.i. HCOi ron• . alcium Ca

Fet+ • . gar esium Mg

50 ium . Ne f. eo .asiunt„,,.K .

monia viiiF 2.+ MR/1 gene se_ 'Prn

z anlors z cations . . • l'ons

ex ,v.viae- 1 s s E. isteçu ph,vee 4LiAU8T I YJ - 02; r3-.." rf;rere errJrD

sire - OF ,-• en, Pretror yrekur rAj

.e/

.1;

traï

-+,,,,.•

if.z...

1220 . ir . .1;10 0 e , /.se. : --... .,_ fer

- 20 X 1 if..7• ;

/O.- • 0IA - . AI,

.__ . . . - . _ . / 2 - . •

- • le ,,,,, . ' , 0 ! , el'I .! 17-, : .

. . ...., 470 ,

C . .1A10 Ae .

sr ' ' 0 C.«,'

.7.4I . ...... .. ... . . • . .. - ... - --- . - - - -

lax • s.44 z.• 1 • . u o ..

- 740i - I -I4

.10 1 ' • f II 1 ' ' . .A2I01- • .I.II I . ' me . 12.70 • ; '. . . IA7I ; , .1 • •

cu, -”, 4".. owl. <...... .,..7 le •410/ ••• 4.7, • OA, el&el • re L 4 II à A II : ‹ite gar 1.17 «07 • ee le ,117 i- e07

20 tOf 1 ere ee r.ler e re,. a 0+ • e

«ts S s

--;',..TrI. . . . 0,00T-0 79 'tog 1 ' A00 I Ali . A7I epee' ZII „,.. e.. Se ...__, de..., ;, ,e7, .k. W. t.: . 9.. -.. 11.47..

4•• s •eto ' ••• 0 00 -.WI: red ---r -H- 4 - t' ,,....«, ede ,,,,, <so» -.. ehr. e.e . <eel ,,.. ee ...1dr ..e7.e . ea 1 fret , le ,,t le te . ess .r.74. • ,,,,e1 eN -a Mt" . Zli et-,le - et en ; ..* .!.1.. rest , er.! ,,, st ,N.N.

.f7.1" › f! e -77-77-7 Ili d; .., AI 1-1 -0.A2', 4e.: $1,4.• 17., 55W 71 , rt.. if eye' err « me ..,•eo . .ts. i Nu ..,a-.0

7..0 -70:;:r• ' 'lie . -, .7; ..". I . ' - .1:07 ' ..., !wee. t20 sele rz-keie, ..eli ..."--17- :de 713;-, 32 eleer . 15? €/.W mi...r ier es: A01 121 ee <•••• r 00 el; re • Sr bm eIer .0 ...t. en, . ...e. c;70 4_..e., J." . _ASA _ _AI!. t„ .110}, ‘

-i-e -N . .e.51 1-4.1e. +1.W ZN , .z51 »is' 27, r, e' Ye», .50 refil ittlere.;7 11 +1 Atiff-e/r . 17h. L-gfe . I 1.7 1 20.7.'

. •

1__AIri-

210•,.. /018. sr 2221 510 , 1,0I . ...AC 4,ef, efe rre Ittle 5,, , ea eta i.s. . 10,90 , •fl I me 1 . o

• e i...-nf.?

■ 50 A.10 1- , ;Al 7•2II Al. ";1 2

7,.•' . <try, ..± ,1 /7,?' n 4'41 C.fr ICI erg offs ef I a» MA, L 'writes At e i e

HI Zee HI_.,

,..,e e • 2,7 * * I. , ; ea e72 7 50, 4 gel fief Ice 1.77 Le. 1.7 . .......i r7 .,.. 40.1;ets . 1 . ,eft, Z..../ . en, ., .y:

5711; de ezs 171' II , '1..7 5Z:1 . Reg ze,--e-N - .. ao..1 ea- era al I elf Ise • ea • eel ero eol; { elf .- IN eei r.- 511

ea: «Il. . ' eN, . esei< en 1* . IN •00/ WH 05 HI'

M

• is 1.„

..

I* •04 • see 1H53 x72 .51. tr.71' ter' •10,1 30,071 ze *40'*40' 0155n, . car NO thefi rl'; l. ,C e 31f17's, '173 1.0, ,.‘ :tee , ter . sio.

ee. .......i SINSIN Ye" .. .« , 54» Ne , +.n, ;• :rip! inr..so• ..,_ 44e .« -f-if,d, 70 4/N Af:or___ , 11.1,.e .;. 7' ,i,f,?..0 . 71f ..:tf,, e !, N•t.'„;...!:+1 _,..±fg!,

XII :4-. g AI :. roo,a, SUN ', ',sit *es Jew 1 ee , Wm Ner4 ; 13:1;troa , ftgn 11.44 _crew rem 1 see -ifeto .ele - a 171e9.» .eu.: 7es. ;woo

* Jura gee" ittocessily Ater" son

ik at- s icirce eeeel-ree' cessife A7 et4c-n Meeerjecé

•i

,77

J.01:

Mee 04.-••• •

e .1p; Id •

; •

:0

• -_..

410,

.zfor

err

710

001

roe/ "

• ee

71.1e

LAU..

. -1220

- ---" •

flo . . /•70 ' 0 JO.- .. 5.7.0r;

/;•e'; . feral eao ; - . Il/I-, .

1 - 211 - .07.10 '' . - - - - - 020. ■ 1, 41. ,

3l' : zee ,' 250 ' '

J.,., 2.1, 0 i ' 51.10 1 20, ' +520 , ' , ,..50.0 ,. ,_

AI.f .I : 007 i AI*

011 • 5.000 I2.00'

'7.0-0i •

70 AJ . . I

,010,e;;AÏ ' i . . 401,;,0 i ' : 0- 0-.4. 0 0 .• ' --1'

IA/ • 155 or 2 A1.00 ! . 7/1.10 JOAO,

, • _ zezaii " ezeo ,

fiZZie

3

S-G

14 L2_ '3

t,s- /e 17 18 ;Ze .21

,z‘ .2.7 -Z•3 27,

35t As--

se

35 3?'

O•

• •

77afe j .feeten e en) aej domIteos/Won oje. weden tgevak., /eA/eieS

ite /4 in 475.00 •

7" •I • • F/W et -(fh374. ). ---------------------.------- --- ' tztnive.fee74-tee& of e/4ite("À• CO --- - --- --- - - • ._ .. ._ . ___ _ .---- ___ _. .._ 1

- i 3 Teem spe-gency . fee.) zr- C'o/oe .,(Dne.) '-'- - / -, - -, -- • - -4

- (ec1 ,i 4 .

J»ecipc .c.oAceue_W f.y 1 413 ....cel. • 4).76"..ee 17._ i i P# _ ... 1 __:

S " ae7 ekete.,be liyeelee aeece, L-n.i./ p./._4, iicte

' j

/tb.Yy rieknhea- le t.'n el/

I . 9. tladieeo/Yect deg ma ere. . é/o5°C) , le z4ncli s.s 0/ ye ol . Ct1-7cincrc f7`e . ma.7)...en... 1" , ook,q, 1,, «buspenctecl. -màttér - dri ed. at ig‘ ,4 - -i_ ,...u.spen Cie a -matter .:purtit 1- e a.... /.3 7; . -_.-- -... - • -. -- eee Coz. - -:" - - - - --... - - - - - ...

1 04. 3ouncl CO2- ' AS ReerResSIke C0.2. . . ___ . ' I t' / o7'cti ha.edoess fee-e-eian geéïdes')17 ---1 -71. - ,... ''. 7,empoieezey netne se ( _ ,...-_#-___ )

Pc-,E el ez/ic-h .;e Acz.eciness (.- --b---- .

) .. . •, ‘,., ec,,,;c, cc.,,,ads - et,..6e( (0.2) ,„ , , ;2e 3/ och,»e lea/ cons ttev.ffon of oxyf len Pt' 0 /7"... ' ->e./ Focenci . ex ti_9en

.

ceeeeence -±. _. . „. .. - ... _ . .: -z.? Siec, c acid Si ea_ . ;_•-:_çt /WM/Yes iiej ,

i e ZS" eite af es Afp,, . , 7 » Ph osPhaire ese.._ • ___________ ____ ._.__..... __...._._... ------ --.---------- -- -

'.-- 2>: SulMf-es Soe' -- - • --- • - - -- . ' - Ch Deitr#;e s CI": • , .27 Pkereconalk'S iiiC0-------. . -- • - --« 3 - - -

_-;c ,. 7;zon ... re al' 2 ' . -31 -Calci-rim. Ca 4.. - - . - ---- - — -

' 32- Ma9V))2Stecm - /1192-1-- ' • - - - - - - • . . .. . . ._..... . _. _ --,,3:1 S_of blitz-el . ec'," ,/ ... __ .. . . . ... it Poi etes /t4e1 le e • ! --s." 1--/ve 0441, Neer .36 -'0eQ,c1. neje Heee

. .. .... .... ... ....... ... _ .

d? É arl lop s .. . ____. . . . . . ___. 1 . _ _

, 3 2 catice3 : 3e/ z Ions

• •• • -- -- • -- -- - .

RI VI

I' Ih .1 re» J . 'St, .1 0 lek f PetrkIte I./e/areck. , e0-- 37j—"e

n‘ey,2... a6c 0e,..,i .4,p,..... ,.....,.,..4.,,,_, znausse i

;4 .4F sA.,yei_„v1 li . e 4/01 '

llin et.. 1101 N/, * , : T....« of eel .-- _u nioVslKjr_L_• • V 07724 - —

an e.. 1.--.." - ...,

1„,eit,„..,,11,,„, - i„,,,fii i„,en itei-en[,,,a ,,,e‘zi kiln ,,,,ea ,,,,,:j 14,/a [014,1J 040421[44WIT54404 ken! [41/11744011 ar0le[4fIla :...rell I...al .+1 /3 . ell* ......., gee 1.., Zà;

, c ro z,, Z.§, , _ . 4/1, 7,10 - 1/0 11.0 140 . . - 170 ; i .4.40 - - - -

- 1 ..

110 . • . - Z70 • 1.41 , - • - . •.---- --- --

411.10 • 14,011;. I .1.41,11 lief/ 11130 • /4110 r _ 1740

Ze Z10 7,11 LIO Zi0 110 Z30 • •

7.40 . 1 —• . 10.0 • en • 17.01 . .17 1 , 1041 311 _ eu _en _ «se 401 /40 I.Si Imo .u. «se +If

440 17f, ' 401 . ear gee- eu - -

1710 . • • 1111 1, 1070 Ate 1041 14I1 11701 all

e, . au z00 4,15 415 11110 13,00 - /131. . __ msa

tail ! ' sex zee zee n.ea• 1740 1*.em /4100

14 efe • •

P 41,0 1410 r ,

170

141,1I : I »ell /11.10 4:0 M 11

.1.1 1 ,• 40 40 -e« e‘f - -

+to • ' 11/0 I den, 7e0o se« me AV nu eu . . 0.‘ I I

_.■. ',el en. . gee es - - . . . . . . _. .. _. _ . ._ 070 71 • 1410 ; /411 ll ' /10 4,

4. 10 /0 11 /4.

110 •

e ZIO ' 410 140 1011 eu - -

- -1 zu el, /,40 1» 044 - -

• . .__ 1.70 . _ _ __ .ess 1 1 nu etew . en en, • 10 ex.

_ ..s_ _____ 1.7i 410 .-- 441 10 10 .411

/110 771 en el/ zio . -410 103 • - 744 -141 -ZI1

4+0 141 . IN em - - ea/ s-0.0/ go/ gee <41/ 1 ee en 000/ #41 441 <40/ 401 ace 0/ - - 110 403 401 477 en 474 411 eor 0.41 ess en - tit zee 004 474 4. 44 407 zsr - (re III •ess

40/ <40/ 407 go/ <go/ en a - - 407 <get ea se - - eat 010/ est - en <eat en. 1130 431 1410 4470 0.17. 1101 +es, ess iess nu e11 -74+7 +ma an ee4e en 4+7 es ea 47f SZIO 404

-4- Zia e/f 441 ere 424 i 401 /1.41 err get .1.1.70 ers 1.47 go en 4,11 170 en eu 10 0,17

. . . . __ /11.00 4 ,41 7120 /4141 el ' 7011 /11,10 314 7414- t4410 .111 '417/ 1440 400 rut 1701 ele 1417 10470 40 11410 415

. . .- 420 <40/ 4/1 047 1 00/ 411 001 <"0,0/ ea 1/0 <401 ets ess .0en en 0e _ - -

. _ eeo eu 1/.7+ SZto 10 fif1.11 £0,10 zoo Igoe 3410 1,71 1111 71+0 10 , 14.41 11:40 le itu eu 113 1709 114 .1421

410 47.1 1701 1140 101' 1133 /110 400

007 1

11.11 44X4 401 . 1.1.11 /110 WI 21.0 40 1.40 feu 4130o III +4.10 031 0.11

0. 4,0 11 .11 701 0,10 701 7.20 7,04 Igre ; , 0.1-11. eel /4.14 Z90 ;„14 . : 40 4/7 10! —

_ . e1,10:7; ei,/ .r2 ..512 4e .y.jo goo _fie 4_10 0,4/ 1,34 440 0.014 417 1.10 ea, 101 400 041 437 1W en 141

1

l e 4.04:01, 0.10 007 • 470 eu. en 017 073 eo+ es: eu en , 0.*. en Ill 1 eer eu en eft ere eft 0.00 rt - - /0/ 040/ 0.41 0,01 ré ; -, - eta _ -

/17,11, 477 1410 00444 en 4.711 24007 +.4.0 4.e.e 141.17 +05 +721 101.11 4re, 4171 14471 401 110 4 - 1 -

,I0 040 +4.40. 10 4110 147/ 4.13 1117 01/ 440 10.41 110 4.11 1047 101.15 710 110/ 110 417 4141 . i /1411 111' 12.12

171.11, 1,4/.200.00 104/7 017 /00,00 lozet god 40400 17471 4,001100,00 4.11.01 10.01j100.41 /1121 4,01 /00,0 41401 « 00.00

1"--1

Z-4

. . • , .. . . . . .

,. • . . . ! . .

«tee cheinickleee/esit'eve werite iCzt evez,£ eleees ee,, I I Wren I 11,007 I /Iron I 11,04 Il•reef 1/0-0,0

. J/ TŒ . OF :64 P „..ricve- de!ir s ' ; e 42 ,0enrn „i.e.'. 4z:eke .. (r, y. 'skeei«114e4( reiTee / 0te tlrec

tel4/1n411.0id.;47”;7111(.2,01j 11.01z1t4e4M1A11.411 1111 pe4/1.1 11.71) 411/X E111/1117-1114 1111-7,e72,11.

le Determination

..„.., remperature of ( war(°C) / Flow Q (m3/sec.) .. 3 rah..-..paw.5..ty cm .. q olor

• . . ._.....

.. .. .... '

•',.' -oecific condu.ctivity (L.v...cm .10-6.

at 18 ° C) - '4 tcr ;; cini y (Fhenoiphhalein ml 0.1 N Na0H/1i er :

7 Iiij:-41n.itY". (i4e-th-.4 iDrangl) ..m1 0.1 N HC1/liter . ;do

Undissolved calcinate0_ mat er...46.00°C) 'Y Undissolved dry matter ( Or . . .

-.. fLedR8gea MRt8F ÎEAïgel.e-ebooc .3 Fre e COI. ._ .. ' t`i ound COe.

4y- geressive COJ. _ it etal hardness (Gerlan. rddes)

ermanent _aardness -"- /7 emporary ,aardness -ii-

‘? Orge.nic compounds - Kubel (02-) ..?..c biochemical. consumption of' oxygen (BCO) j1 Fou_nd oxygen _

. 23 Si içic aaid SiOa. -22-0Ten differencet

2-19. 1.11 rites iwi. . --2SN1 trates 21; Phosphates 27 ee.f ates Se - .28 u iorIdes . Cl 2-9 i3 carbonates

Fe Hco3 • . ., .

2 ' irÎn cium Ca . \ .

2,2- Maunesium Ng2-1- ..?-s So ium Na .t.

.3q- Po _es-Ammonia Did:* 2_+ :e tannes A M-3) Z anlQns eis z cations _ . • ...

ri «JO 11.11

7.10

4440

1110

1111

11470 12131 1/7.12

7.24 111

1411 .110 - 712:11" . - 74i;

elf 41.2

7111 - 1111

1110 4,

111.10 /1124

eeeo /1041

111 1.711 I I le ASO

7271 I 111

'1 3 _ - -

Ïï110

117

laze; 111/0

7,44

/110

1,11

2110

fIll

1170

210.11 41171

Xie1

7

ic

12-

' 3 f

16

/7

•gen 110 :44.

, 111 2.5-

•1101 001

411

411 ze 2e 11,0

1.70 5471

417 rem 32._

es• lea 33 07• 34'

21/ 420 3s- 36

41,17

4.71 et! 3S ere IMO 39'.

170 41111 0.10 1110 411

211

110 4140

111A4 11421

1/Z04 111,11

4401

211

41100

11100

21.04

- •

242

- 71111

.111140

zzl

-ter;

'110

1:01

470

057

ZiO

0:60

•11 1111 _

_ - -1011

. . . 110

. . -

7,10 el" 1147

1 112 440

2171 I 421

211

.4 411

11

144

112 ZJO

-412 1 -412

210

111 1,W

1 112 141 -

. - -_ 4,17 • /2 11 -

_ ...

- - -112 .011 - _ . .

_240 : 111 1101 2,10 .

.... - ' XS 1111 010 127 4110 111 -

,... - 411 4,02 /11 240 404. 114 -

--r- 1- goy 4001 001 - -

011 4411 ea en ee. 111 110 ex, 411 ea 110

0.41 1111 101 1,9 4111 000 0,01

1111 111 /444 me 011 11424 1110

ea ea 1111 141 011 117 XII

- - - /0111 472 742 #1,00

11 11 11 4111 0.11 031 3:17

rze ezo 411 1111

111 111 LIP 4.11 Z70

44/' 14M - - _

111 402 110 <XI/ 117

1410 404 1 eat 7170 ze 1411 1111

192 1,10 ea eat 42 I 42/ 111 414

eg 112, /0 I 217 I 1711 111011 £11 »ea 11111

J 74.12 411 S117 I 140 rel 109

1U, 0011

en- SW

411 MO

1111 4412 0.4 2211 AN 111

1121 11112 4n 11,4 rem oft e7/ 119 4,11 VI 14,11 111

411 4M 2.11 1,11 112 111

1.11 444.1 1100

1111 2,10

410 11-Ji

• 1114

1111

49

112

.11110

, 2411

+1110

141 0.11 11.11 0,11 11/0 111

40, 411 . 111

211

171

tt.

ewg 711 404 'II I 211

.441 .41+ 1 011 42 SOO 1.40 10 101 z11 411 ezo en 101 gif 011 111 44111 42 err ea ex 411

ea 177

411

UI •01,41 ea 111 411 0.11 le

4110 /21,27

11.41 111,1

ell /MI/

1110

1.11 *ea 171,40 ; 21/ 1111 {If 0004 12+,0e ea 4111 11111 111

XV 117/ 94/1 111 1112 11111 111

4 31 MOO 41111 .1110 11101 11112 IX

11 111,00

ate lea ea 1110 1410 elt 111 1111 1140 11030 11121 411 /1100 121,41 1;1/ 2401 11140 221 .41100 11010 114.1-02+1,11

e

r

,. • •

• '

.0171 wed

•• • .

• •

#ean cAe_rnlea/ doiejeatfiA9,9 ofwedee ■-f%ver% eiveleS eVen

Pewee -T 1-0.04,20 j_Br'rey 1 rale,co L 1 Lalsrre r Intorec

eg.ece ; lat- Zlee/Pietee. ei• ezeove¢

I '

- •:- - - Dete.rraination •' ' i D. OW C) M

3/sec .)_. , •

. , ' i :z, ensperature of ,watër ( PC) •

• .•_ y »Dior . çr -u,) • 3 rif. paDep.cly t cm) . ,--r --I --I •

.. s- beeine conductivity (.cm .10 at 18 ° C) •> 4. 1.ei.nity (Méthyl Crane?) ml 0.1 N HC1/liter 16 AC1 ity (Phenolphthalein) ml 0.1 N Na0H/liter 1 Undissolved dry matter (105°C) ic, Undissolved, .calcinated. matter ( . :90°C)

. //1-tiekerideci matier 6ri*1,4t 105 8 Lus..ead.ect matter. ismitéa a -G 0,0 °C .t. ' /3 ree- uua. __._ .. _ _ _... ._ _ ..______ , - ie .riund CO .2- ,„

/4- ecressive uw..._ , tb Otal hardness (Ger au - grades - 7:7_ 1.. 1

17 Temporary Ilardness Ç_'- • fiPermanent hardness -"- _ ifgrganic.compounds - Kubel (02)

.2e; ioicnemical_ consumption of oxygen (BCO) •if Found oxygen._ . _ . „2. -..,-Oxïgen. diiferêncet . X.? Si içic ag.id SiOa

- - ,,,-iy 112. riz es .i.vt.a.- - —;.4--- Nitrates NO;

2(Phosphatés_, e... POir . . - ,../7 sulfates b07, - • ,2,5 Chlorides . Cl

' IA- Bicarbonates 3.1. HCOà" • . . . - .1 3 Fe ‘ Irgn 2.1.- .

i.3) . Calciuip Ca z-r; _ 3...-__Ma

uan

nesium Mg . • .....

''.:+ciP•ezgioiums: .11 14

ium__Na-fr e • - Us-Ammonia 1- - 2.:i. . .3 langa.uese M

aniçri

.5e z cations. je

...e/ r ns .

. . . .

• 99.84

sczcs.

203.00

00/0

>el

1,70

lI0 -

110

-2.72 _

1240

++,00

1.701 eZIL

471 ei+-1 041

lewd

207

417

. -L- --,

L0!1 ._.. __ efl e10; eta I 1010

070 grel 0 401 004 401 0 go/I ce ee ; <0.01„ 004 1

1.73 . ear azi Ill 0.01 4,0 zzn. 409 4 /.0 1,11 900 1 ge lei , 004•IT,77-1

409+09/ 409 4/1 <18/ 4 0' 4=0,01 a» oft .-0,0/ ce ee: <411 ' ea

/411 /790 0,17 • /tell /no 1 eu kee sea 479' 1199 2e804 afitr *II

439 710 040 ZOO 00. ea 471 SW (Zie ,Of 1.0 J. 4/2 I ex

7419 lfe 404 774+ lee 2.12 zet /1,20 scavere Klee! 2:071

00

79+0 i

4 en, eos 00S 75717:7w 41+ eel <40/ , 411 401, 8400 } 4/+•

SIAS 31.40 411 eel sees' ter see gle ese: cew 91:004 977 4907.

2050 000 401 91.7S, 9101_ 4+1 tze zoo an /le LW I 0e1I Zed

1 4001 Ace 450 424 - eff 4221 ate ef7 ese ex : ce en : 4401 zes

off L to £01 em, zee toi 400 et/ tzo eoti en ter aool Lot

ae es oes 4811 401 i 4SS ere,: rue an 437 an' . _i. art 4108, an; ao 009 <00 404 ea, - ' - ex: - I-- :----• I - - --- T , -- -

.194/2.194/2 ■ cm i 5080 :16r3 54/ +180 /52.21 lit 1. SIZf /2024 4+4 120+ trey zoe 1,. 77 199. 20 1 551«i +077 9141 +.92 40+ 701/ le' 1520 +951 Zfl 4171 +4001 __Ou]

Me _719,fw ee l f,,zz__es.r1 Lei eas.e., 480.14 19.2-21-909e 17447 74/ , /09,09 zoo.e. ey Plete /11,40,111/00.00 114012 7.011/040a tszeoi ea, Me, . 1

11.00

10210

/7f40

400

flea

gel

ea 4120

•4/11 are gm 0170

»10 eA,

ZOO

•7017977- 4+1

1,50

/Ill, I

es Lee 2178

era /1740

445

4,1,31

400

/4/0

£20

teell

z+4, 24507

ess

1420

1400

tee /07/0 0040

710 427

.4c7a

4 441 400 ,,I0 408 000 1

zoo L eta 53o eze co

770 1:7G.L. Se, 170 078

ao z 0 420

_.1 100 1.12 • L

0.4 040 oo . ...... .. .. . _ . • 00? ZS+ 220

,.77 1 l.fl :22...,, 1,99,_ I.S., • ;

ell_L_ 901 ce 471+ ] /0.41, i

-427 -0.79 -on • 414

>end

If

421

27f

002

210

r0e4•211 [Wed

oce

C00

acso

14»

/40-90

1712

440 tao 1.4o

/4,70

[wed -.1011.,ed 1.1.78

1470

49,00

13470

79.90

cua !se

0900

1447

2,74

fli

1410

+IGO

3420 elf

14.00

zeta 0,7S

?f.

,

zoo

teejou eel

907

S1.10

49.19,

1949-707

!Tee

01k

3 •

J-

7

9 16, /1 /2_

/3

/7 /6

47.»

at 22- 23

2.7

33 3q

3e sz 3S

07,1,

3 It

7

(.9 //

is4 "j-ib 17 lî t

.0 I

3 ‘er

25

3se.

s' 37 3 7 35 37

De 7te Ingeon

lean e4ernical ColfriPeSeee webi e />) /z/vées . ivee.

-.-.44-7,4-4 .- I ---- 7;404-4 - I O negro 1 On, Onder repro - 4 ......... . . One

- e

- .1v-a.#27.... - pii•-ne.T_.-7-s_____iiré. _ ro orà ---f 1-0,44.17

4elmehe/277e.- r 777--- ;/- --ifielfeb- - L.4.....,-, <-.F. lei vsto,-.4 til

___ ._ ..____... . ote-,7re _

A71-i,,71,,,,e,i ii„„.,11 ,„,,c >ea f.7.0. b.x.21[,,,elliZeil:•,,e ][..eni ""ell '''''el41/4 flifr'elltll.."'él ..'lzji. 1::;::: ej tt.t'''''d 1.7.11 170( I ef,001 f,i/ 5.07 . MI 710

MO 17.20 11.101

ec•

.w

,/420

_

le

-it-oe; '--- r -- ;ix- ---- Jelo 1051 UN 404 14'401 I

- 100 fee 7400 - eoe ..._i

4-- i-- -- - - .__ 100.70 , meal Wee 104•0 lee ea 534.1b 17440 -I

_eo ■ zeor ex .505 27e. ere es'. 757

_1490L .775Z_ 1430 1.07 .7e70 507 1/.5, 017 See Jet en, 4f1 41./0 1.11 eec, te I Lam_ i ex ex got 401 ex es 417 I

eze ; rote ex $*, 1+ f051 71. r ____._ __4___ ..__... 0.2 4

400

7,10 11 e

-.7/0 I eras 1111:40 e

+7.11- j:*. we /150 Zilee0 ae---;-- I '

ea. rime 13%7 F. Dee Wu, re -- 74510

1/.71.70.•

Z.10 1,14

a 0 Z/

wee Ne e

ex

:sew

--...

eft

742,70

ex ,,,,t,Ae /

.te.

/fee"

/

*

re ; ;

_.e.14° i__- -i- - e'n 00.41 Ile eele 7701 le00 «70 ,

414 I efe ell 400 0,5, go 457 ex , 400 ere SW ere Ale 571 7200 7210

I ZOO 4,0 ea ex 14.44 - moo -

iaa os ree era 400 - 444 - I ..7.42 re tx te /4.47 4.54 Zel 172 I. +7/ 7.14 71e e54 /710 70* re re eoz err ; rem lee 4.44 ex era I re

-2. 4.' -re, -ese i -efi -577 -e51 -es -/Of I Ma, 1 15/0 ex ore loo 7.5, 710 500 i,

477 ex ; ea+ en <ex eta 44.4. <en def 401 <eel <20/ 405 eee/ ego/ eof <el 4I0 ea, sex ex 404 <40/ . 4.0!

al 404 407 elf 2e* 4/4 42 0* 0 171 1575 • ex -.4.f7 ex ell 50,, 401 OS 114 401 es+ re est i ego 475 ete 0.01 <4e/ Ow elf <eel Off ire? <0.01 0.44 op <ea/ 440/ en ex ex ell <447 007 elf 'eel ! 004

zee 445 542e tee 447 /vs 74.10 451 74.41 5757 000 1450 fel e7f 1454 l'er ass axe sex 4e4 Itee trze err lors .444414 411 244 410 •Z55 41 ex err ow 1410 eos p4.44 770 011 500 42 err oe 4012 I

447f *Oa

/71,10 4.4.1 1457 11457 241 41 rem 257 tee new vz sex 1505 ex 722e 11547 ese 070 15157 zsz euz ex i tee ' ate 441 "■,.v/ eV ee/ eel 441 444 ee4/ ax ex <ao/ 410 41e <4744 4.4.0 ' e01 <40/ 1.47 elf <ex err ex I ear ex

4,C2e 5./ 451/ sue 141 sox ex tee xso ex Lee 2.41 eel, ter «If ex ex era tel• re ex «el tot 4147

ex ex ex, ex ee 1.777 <e2 407 .4407 40 477 ex /UV /.. 24H /lie ex rue ex ot etz 7+401 720 , 2514'

ZOO 421 lee 5.44 444 471 £210 457 17+ 700 051 1h1 fee gee n71 /se 417 4.71 /V ele ze 4.34 e em . 714

toe ea e17 440 441 257 440 411 I 4.44 00 45/ 157 4.0e 475 115 fie ell 40e *24. ell i 114 407 4/0 ' ee.

417 025 0.42 etc ea/ .4:5 ex ex 441 40 <44/ Off OK 0.0f ZOO' ere 401 417 010 401 ere ex ; goo ex: 44/ <441 1 n00/ 000 - - 400 - - 000 ----- 444 ex 400 lie 0.52 000 4441434 45..,

Z142_,I i 471i 4440 /feel., 27+ 57/1 15410 571 44.77 ale 4.0+ 5074 2112 fee *501 (1440 4,7+1 7710 lox ow Pee moo! oe Zee 0e0 4544 ea" zer 4444 7710 247 1515eff0 In +41+' No fa] f4117557 4,/1 oex ex .415 44.5+ 5,, 41 , <:71 ' +5.17

---1- ,-- 21510 777 »ex two rue Wee zee: 741 14454 ses,s, 7.44 /4444 rem /ea /0424 15014 1.54 /0400 145e1 057 geee 5152 f11 44145

/, a '

e/

..1237 .4iee.) . . _____ ________ _. _____ .... ______,.. . ../..., • tenipef(J;u-/ze. e piéet et2 CC)

- ---- " - I - - :f _

. .2,. Tkezes..MiC.e4cti. '(em) _ ____ __. ._ .. ._ ___ _ ..___. ; zA eo/oR, 1 ‘'.9() •-'

- . . _. ,Sicecific eandu- ce./7`y . 7.£1 .-"! c».7. . -%.0-6: : . ne le cr."- " , _ _ -, - • - . _ 67 >51 / •

' ... x . a cite fit rie'nc/p4i_halein - ell 9,/, -W Ware/ 1,. lee, alkaeni 7'.(iYe?.(1-n j/ 04"eyë, jkil e //V liC//iibU1 . . . .. _ . _ ?

... 9 Uadiseolveci ctie ina ea (/o5°C) ; i _ /c Undissolved r!«,_ in a Pz.e_e. e'er/re-de ré.d.9 --e..._

- .....,.„...._ ---;(1, Susp._ernci.ed mattér - drj.eol ut -: i88 .,, 53 Su'Renueo, matter-ignizea_at ' 1 &- 2•ourni CO-i-i--- - ' - .. _ . _._... . _ . ._., _ . . kr . ayepessik.e., _we:_ . . .--- - _ id- / Sa.1 ha4edoess f Ic-ii.m-an----jece-eléS) _

___IZ 7-2mpogebey „ocreen e se (.. _-.. .___-_-_. 3______:_. -../15 . Pee meucht r Ac.-raen

eess ç , , 1- ......_._.......i. ._ il Decinic. compound s - t-c... 6 er .

-' (02) .

-

_ .2.0 3,0e-hem ica/ Cons uenv>7`ion 0/ oxyeen n3C.0)..:... ._ .21 Founc/ eceen • . . _ . . . ... .

..2. 3-, ex y cen .cilte-tee-ice.. 1- ... ___ ________ . ... 43- Sie:cic actci Si

.... •

, N ND.

..-'r I 7Rites .._ • .- - - -"' -----_-- - - -1'

•• __ ,-C-- NI /Rees NO ___-'___26 __.l'h /of e

s cti.re e „_ P.09 . -.. . ...._ _

_ ...t."5- Su../ ?Le So 4 - it

- ---- -- - •

• 3 •

- 2.$ Ch vkiare s" . Cr. . " . - . - 7 _ 54' picei.,5 o n a' te s. WC's-- ----- - --- ------ --- -- - - - _ ,...3ç . .. tRon __ Fe.3* • ---- --•-•---- -- -- • - - _ :il Cetici-urn. Ca. z«. ...._____........._ _. - ezi Herqnes, um - 41.72-e• ...._____. ._...__..

" _ 33 S_odiute . gal' ._ ...j.>.' . . . ?a14 Ss! um Ke„ .,, - • • • ___ - Js--- flIelonict, H4'44 . 2.

74 ... ...r6 10,2qcz o etre . /ere .. _ . ._._ .._. __ ;.;7 .Z arlippS

3_5" 2 ("QrtonS. . . _,....3.7 . .2 1017$ ._ _..._ __ .. .

!

-

geciel die«

4 4 _ Dc 7iceMinereon i ..

:

"------- ---- . --1 . 17 .-;. _ 7-.e ni p e e ez7e e-,z' e .. iije id:Od - .(60 27 - • — — . _ 3 Teehs,04.tee4cti. _kno. _ ____ __. _ -__: ._-_:=1-1.1_-_-__Z,_.

i 1- _ e- . ectoe .r- . ,

t r .spedhc c-onducfiviYy (i.i. :1 iT',79'_-6:-. _ ét7e iewc r -::.

v É PlY ' .1 - e.z/et/iiihey (fieey/Oetiii-jeiri./ ehy fictfiliti.k_I- • j

e7/ r: aci g ot/7zy rev,7éncip4i.hakin (j;ieNefoe/.?«. .̀ei.c I

_j __ . 9 ttadiseofre o( 'afiev,-. ma tee (toe • c) i_ io. Unesso/ yea/. . Ce-fcince7% of _iereede., fée-c5 à"%--

/,. , - _ . I gi-tigïéi.-41;té '------.(.2- SuPfigle .: a - igni eg: Rt

1...: /3 7' ----- --- -- - - - .-- - - ---- --- -- - /5‘ .30t.emd c'02- . _ . ._ . _ _.. -.. ---. -- - - - • :. . 45- .2corResS/ke, CO.% • . . . _.__.

.1- ' .., /e / 07`al haecioeSS f Quë ,nerti j - /eeidé) ... ....- . -- 17 iempogeleef ate a/Jese _...)____ ______. . _ ./s Pc, t en tme-h-;£'

r/3a.ecYness r --i, — ) .

_ ; _ i? e,,c,„,,,.c.,,,> .,,,,,„ads - 1«,c.6e( (0.2) „ An ) • , _ ..,te 3roCheMiCatCOrIS et/n/d/0") 0/ eXyfe0 ( 4" '/

I — e cY, ;»... .:41 Fo wi el 0/wen -

-22- X9,yen eee/ice ± - •

-

..i._ 2.3 Stec, p etc/ d %roe 2. , - .<2se /WM/7'es Nei. .. . - --- - --------- • - .

'I-- 2 •5- etizafçs IIP .. 3 ,..

.7 Su/ tes SO - e- --- --- _ 7 '17 /04,7/2,,-te2 _i_D"pe .. _ _

---- --- ------ - - --- - , .28. Ch veides Cr. , . _ -

_ ,Z- Picer,p3onate- .5 Ife0-3" :Sic 71/20/7

• - ' - _if, Caki-tein. Cazi" - - "" •

. .. - 32-- eagnesium - /1/92-fr . : . .. .

- _ 35 5b/ici, irce,_._21 ....;K 1-)0ssitem /ç -'-

•'. • - 35".' ;Ina/no/71ot, evile jzi. . _ _________ ... - _.e Pa09 a 0 eSe en _. 3/ La/. f /pi) s . . .. ______ _

; 4,5, 2 cartons. ., --___ 37 ..Z fonS . .. . _.

. 1

77e

eivek,_

c,,,,,,,, i km.. I 0 A• n.0 •jeosrenscki 1 Poserksj. . Porte X «red I rush.

.6.../terp,a/ve . sfre bi 4;i»-,, -rige-,- ; „„-,-,..- iiiip.7,- -.Éhlei,,,ze.:::. IS; Posthaste' idssie_PeehteIC 44,4 e Ore fa, ' 1 4 2 ere ikg,,s_l_es; 8 shys,se. '

t;,1-11.- ;,7 ,,,:,-/i [..,;ftri...../1 ;nee ref//11 ,,,;71 -..,;. .4 ar, ,...vj --de [,,//1 ,,,,./j a t.,„, ,,,,., ,3,,„,„,, ..... ..,,„, /il [,//1[.

,.., . z/ Ste Off eft of 1104 tua

. /I701"" - - MO reso ems ma ge eve ',fa

- SZ44 - voo IIMMÉMIIIIIIIIIMMII goaMM Aux #.0,

- zee _ -- 1.5100

____ -•-• _ _._ __ _ _. .— - - -

,e..«, mew

..__ --- _ _.. . . ._ . ss 21ea

titie0

byl

X

I

-7SC MI

se see MX

me see

en . . _ .. _____ _ _ _ _ _ . .. -

ttIe tea+ _ IMX

140 SO es+ 0,e/ sip +I•50° +imMIE12111211111111ICEI•231111111 .0-AvEZZ leacerrà

• r ea en XIX 411 de XIS esso

e7eS0 /tee me c* tee +4 geas

lei; s!so gsa - 1+.70 nee 17.101 Star .

'tee seso 7510 171_1‘11 to.#0 I see 1++5X 114.00

/ate • me 13;111 /Mot leas 111,e0 moo 1s3",1K3

are fa Su OW Stf 1 ee usa lee

.16,40 11,40 11,143 11,001 1001 MOO eZe0 ere i eras 1

en ma ye epee elf . ee 49V

Lia tie 1111Z3M1 nee IMMEZIMMECIM $100 Leo

77711--- eta 7,1,1 MIX .I.S, ' /444 bad f.ffit

‘7.771- eel MIME eo fe • ' £*' MI ease got

ell I go! ea 5730 ge : el es* gao

tefh

a s; Set esso IMIEZMIIIIIIIEHM.1.1 ede 111.1 ere -1--

met tua ers ese 01,15 ea ere gee ,

-470 . -eft -ref -ere -4e . -ess -Ufa -4ea ism era ',sea 14,10 fee e.«0

e07 : <gel es IS < aas 405 eal <eas ace oat <4501 Se Of <e0/ ex ers 1 401 ex <XX en 0,01 <ex I got

.71+I ail 475 glz Oa 1,51 407 541 415 gee 417 4:71 o*f es gee OW BM , um oy eas ee 472'

4571 40/ ea vs <451 aso eat <401 Of esoc <e0* ae 400 <ace 44? 40* <el gad ex <4104 et esa gar . ass

7e—fsa 44e /5/3 eso 411 fess I4 40 42+ mg sesoa alia es ego 1.1 +ea Sao Me *79 FM efo see ses 470 : leaf

ess 4/1 ea fee ram 17.14 gee eta 5+1 mo . ef 1540 Wriarill 410011= 170 Zoo off ea

/11,9a I ■47 7611 5102 ex es,v WO rig :4,, 145,4? 4:030 1005 00470 . See 45:57 tee ignerjr=110 740 feu rrErn

ee 144, SW XI 11E3.53 4.10 c401 401 41001 <WO a* ea el 40 en fa g* 00-ro [El es ea ee I 4 Si

zee, fif ' era ea er +en gra 4+7 /540 ABU VX «00 eh,' go o, 1730 7100 54? "et rturewrgermara

,:.; e+ei ere 1,0 019 1411 2,14 ' ex Zaff /see 1)10 2700 510 ate miaow, 2.511 ,,,wria "so 57 IX go rg3

tie 42/ 9,51 174 ate /tee 110 41+ I le« 10001 asei 4,1S 1514 . ass ' tif ex all tes sse eso ea ewe am le

'1,0: 107 . .u. 00 . ae see 520 l 0, s e ea f000 40071 .537 se, el l ges 5?! ' ear mg 57X 40-0, 157 *IX 0,11 I

441 I« a01 i -4111 4+1 444 <401 410 am eel 41+ esc et 0,11 ee Ce l 40/ . ee eosa efa 510 4450 aos 1 tee

ea ' —1- . - ea , - - 4504 <001./i 408 - - I - ea ■ -

14/.74_ I.V ■ 3141 Jell i ex , rail 4441 . 0,,1/ ; ■■177 Agee t 'sal fee eel 4 eel sae ne1 1 , 44,1 See 5112 1010 444' e1.4•0 1 171! +51,

11e . , +557 tee l ey i 4,4,7 142./,,'g Telf 12700 . 4 0e1 +7+1 15,4.1 1,91 seas sass , 414. : 4120 mao WO ALTO !if , feu

18170' 5, 711/00,00 ,e+s-I Sel I 11450 «SI, se . 3445; fit» o , essa enat 11151 Sec '/0100 eletf • tea e0e0 UMW ma/ 114170 401.4000

(- 7

12_

t7 I N.)

7O 2, I

-<rf

2$

3: 3/ 32. 33 35e 33- 3( :47 3 35/

.

C71

-21-

To the first category belong waters from the regions of

early Tertiary eruptive rocks, crystalline rocks with quartz

rock formations, granite massifs and Quaternary terraces, unless

these waters have been affected by another geological base.

To the second category belong waters of rivers where the

major part of the drained land is made up of the formations

mentioned above, which, however, are already partially affected

by other formations.

It is possible to class the overwhelming majority of

rivers in the third category, be they waters from pure or mixed

geological formations. The range of mineralization in this

category is relatively wide and the differences between waters

do not exceed these limits, because in larger basins the waters

interact to such an extent that any small differences occurring

become eliminated.

The fourth category contains primarily waters of rivers

which are subject to great artificial influences and some waters

of natural character, such as the waters of Werfenian layers,

Triassic limestones and dolomites and waters from the region of

the Upper Triassic up to the Lower Cretaceous (Little Danube,

Nitra, Vernar etc.).

Hence it is evident that in our country there are first of

all geological conditions and then artificial factors which

cause the differencés in the mineral content of river waters.

It needs to be emphasized that these factors determine only the

basic state of the content of compounds in the water. Changes

in this content during the year or other periods of time are

122.

-22-

caused by several other factors. Marked changes in the content

of components are due principally to the hydrological conditions.

The changes are characteristic of all streams in spite of the

fact that they are not manifested to the same extent in all

rivers. However, this depends on other factors (soil conditions,

climatic conditions, feeding conditions, season of the year, etc.)

as well. The character of the changes, however, is approximately

the same.

2. The Main Ions and Their Ratios 2- - The main ions (HCO

3' SO

4' ci, 0a2+ , Mg2+ , K+ and

which practically represent the total mineralization (up to

98-99%), change due to natural as well as artificial factors.

A comparison of the changes in the content of compounds indicates /28

that the changes occur not only with respect to the total

mineralization but also in the ratios of individual components.

It is evident from Tables la, lb, lc, id, le and lf that

the greatest proportion of the mineralization consists of

bicarbonates and calcium, and only in isolated cases of sulfates.

Other components are present in much smaller quantities.

However, the ratio of the two main ions (HCO3 and Ca2+ ) and

other ions is not the same in all waters, as a rule. Yet te

changes do not depend on the content of total mineralization,

in the sense that a higher mineralization would be characterized

by higher ratios (of the two main ions mentioned above) or vice

versa. The changes in the ratio of ions to the total mineral-

ization are nearly in agreement with the origin of the water;

-23-

changes in a certain type of water are partially due to the

effect of precipitation or the season of the year.

The changes in the ratio of components due to different

types of water are relatively large. With bicarbonates, for

example, we have observed changes in the range of 54 to 90 mval%)

and in some waters which have been affected by waste waters

the bicarbonate content may even drop below 50 mval%. Similar

changes in terms of mval% can occur even in other components

(see details in Tables la, b, c, d, e, f).

The differences in mval% abundance of components are therefore

related to the origin of the waters and are determined first of

all by the geological bedrock (see Table 2).

Table 2 gives evidence of the abundance of individual

components in some more important hydrogeological regions.

As aIready mentioned earlier, the mval% abundance of

components varies with respect to the total mineralization and

also the ratios of the components.

Let us consider some characteristic ratios such as, for

„ + 2- 2- K Ca2+ + Mg 2+ Ca2+ + Mg2+ Si03

example, el:2+'e -t

2- 2-

Ca Na Na+ K+ HCO3

HCO3

+ S04

HCO3

+ S04

etc. and compare them for rivers from various hydrogeological

regions. Table 3 shows that individual coefficients of the

ratios of certain ions differ considerably from each other.

This indicates that in various hydrogeological regions the m,2+

values of such coefficients are different. The ratios of 2-- Ca2+,

for example, are very low in granite massifs and Quaternary

terraces (0.11-0.17), considerably higher (0.45-0.65) in the

-24-

regions of the early Tertiary, Triassic limestones and dolomites,

and different (about 0.3) in the flysch region and in the

Holocene. More pronounced differences are evident between the NCO- SO2-

coefficients of the ratios of -3 , 4 and SiO2- HCO

3 3 Sio2- 3 ; they are, however, approximately* for a specific

HCO-3 + S02- 4

hydrogeological region (cf. Table 3).

It is evident from the presented material that the values

of the ratios of water components and their mval% abundance

in the total mineralization can be used for the characterization

of water types with certain hydrogeological ratios.

3. Hydrochemical Characterization of Waters

Water types will first be characterized hydrochemically

and categorized in agreement with FILATOPS classification,

which divides waters into groups according to the three main

anions (HCO- ' S02- ' Cl-).

3 4 Processing of the data in Tables la, b, c, d, e, f,

- produced various coefficients of the ratios of ions HCO

3 SO2- + Cl 4

which were used for the classification of the corresponding

water types (cf. Table 4).

*Adjective missing - Translator's note.

Hydrogeological region Y.Trbtïtline roc

with quartz formarions ranite maes - and Quaternary terraces earIY-7-iFfn-FY eruptive rocks

T

1 / assic limesee - and Dolomites, lper Trias,

si • and Lovier -Œrétace:ous . _, Flyscli with much limestone and conglomerates Holocene Klippe:zone

Wprfenian layers and Triiassic limestone and

DoloMites

etemiee/ corn/ewe/Won wedees 7oøi vaejous 4ote-oeecio9lea/ eeeioes of tr,/oketkièt 7e-r-ge, 2

R/ 'e ire lehe, Hco; .re el - Ca" /2.1" Al.• . ,t. 4 14 IA 4 4 4-4 tecet

jee40/414 [0,122 1 :owl Z1 f.«1011 or117:1[0yral] [erg/XJ[01401] [nrolt][or011 fers1.44][ntrall feir01%,] [me] ;fflr,g1:41 fend 1412011 [1,1011 towl] Pn101,1 ['4.1

dove. eéroylkon hr., r 0,41 4411 418 3478 4/2 Ie•,:o. 4+1 1411 421 247+ 400 /0,47 9, 00 • 10,47 410 0,11 0,11 41+ -4/1 411

,,e41/4c

ehn9r/e0 415 3472 427 33,13 0,// /414, 0,10 14/I 0,1+ /9, 74 et /I /411 0,00 447 4/2 412 411 41+ .4 41 «15

above. Popr.2d In? . 0, 14, 7457 4 1 /471 40r /0,7/ 412 19,57 401 701 0,17 1411 401 700 - 41+ 1,17 2, 1/ •4 41 14 21

peileho 14Pr/1/147a. 410 7492 42/ "8, e3 9,9+ 4415 0,18 7414 4/0 /40 9, 01 /471 40e 7,14 0,13 404 414 411 - 420 /414

Okne in Remew,..",-„,,e. eo moy 0,14 81,24 4/0 as 4+7 1401 4/1 1411 0,1+ /401 e01 4 10 1,11 411 9,17 4 71 .401 4/1

bet., R440 . Karrieecs, 0,1/ 07,79 411 20,00 0,11 /412 442 4.7; 71 0,11 Z4.11 4/0 /411 4/1 /2,10 0,0 400 411 4 71 - 4 02 4/2

Rerie0 19l4Worria', 0/012 1,71 77,11 471 2411 411 4 11 1, 11 9, 41 - - 410 441

'1.01/ic0h7 84r/ke. 1,70 61,31 441 1417 0,7/ 1/77 417 - - - 411

144270,4/kg,Ceeek. 410 7400 1,1f 11,11 4/1 417 8,41 6414 411 1409 eye 47.1 0,0S 441 407 449 /411 .4 12 417

/740/1; /* &mere!. ., 190 141/ 441 An 0,10 9, 01 444 6441 4/1 21,17 431 442 0,// 7,11 et+ 9, 71 9, 10 es, -411 407

100orec' /C0ieere(2. 1,02 77,04 9, 74. /411 0,11 *01 1,51 74o1 0,71 /471 0,21 410 0,01 1,47 417 411 41+ 2 11 - au 4 70

eeine 4.441.11,40r 410 no 411 /447 4 4. 7,11 2,91 6411 0,4/ 2411 4+1 410 4/1 2,11 0,10 +Jr 4,44 L" - 4 10 2, a

folealheew,Cee2k- 4.13 «lb ea 1,41 ell 1,41 470 9411 4/I ;7,21 4 17 9, 17 42, 2, 4:2 4+7 411 401 1,11 -144 Lit

eerne in »role- +,11 14,+4 431 19, 41 407 404 - - - - - 470

Tr

an

-2 6-

• Zzlio cpeeicietr7'5 o71 Plàin ions

evezietts of ehadeez•C:iii;q7:57VC - -ieégieins _

.7-izee, 3

o

/on lea..711o* [myall

ee cie o a .2,w 1-he- mg . x. 02... met liCO3- ,raft- ce'. pe eo32-

.sit e cl jam,,e, ce me we +e. me' //coi' de-i-mco; J'a: - wco;

eelteinene /2.04feeS eerny Hron a 6ove orlyh quaetz . ' Ifron le c 0,51 /Je a78 2,4,9 479 079 4 23

eleae011 5 kirne V ICQ 423 8,75 3,52 2,90 0,88 ,f,28 42/

ge2aa17e MQ5ereS ' Popraa' a‘oveJ .mit 0,11 0, 83 2.53 - a» £ 21 _ unz weedeencuey Pr/Ni/na

tugaces II) /Pr/lei/Met- 4/7 0,67 &Sa 8,20 0,25 8,6'9 413

if/ka Q e. o Ve juchii. beekd 0, 1 e eady 7i.eiieuey . es 457 2,99 1,25 4e6 ege 458

' eika ezlist, Kanilenka .4+1 a69 2,26 120 ae a 7é7 465

Agekieve, RoceéS Jeicte ed,?eek. , eepijelf . Ink /Utzwe, 4+9 411 2,05 108 450 07/ 456'

Okno In eemeteké 'genre , 0,38 459 2,93 1,+8 4+7 487 0, +7

Laborec• cz4ove Nedzaa berce • 0,26 0,38 /0,55* /1,28 423 . 495 0,07

Laborec «love litimenné 0,33 0,38 9, 16 6,9/ 020 493 412 La borec Édom/ Nicha/one . 0,33 0,39 6,96 8,19 emi 4 94' aie

Laborec

Fly s c,h lei th .i4 rof any 0, 32 431 6,36 408 8,23 489 416

Yydrenka etierte)

ete.ln ou/4 0,23 0,35 1,60 Z28 425 eV 0,//

.r. tzii dam' l/a'ora in adarské

, 0,26 0,4•1 9,4.2 /0,00 am 4 93 ape

lime,s7lone 0 n0%7 vo 6c1o.i1 ' J'yianik 0,26 0,36 8,02 /4;6'3 am 0,93 0,08

an cl 0 «lava in Trepiec 0,29 0,33 790 /0,87 0,2/ • 4 9/ 0,08

Ce011910M-ena 7L-e5 rop/' ahpve « BarcIejor 0,33 0,33 Z76 /0,82 4/5 0, 94' 0,08

Top/72 in HanueoYce 0,38 430 8,69 /0,29 4/7 489 405

Klippe zone sfobraneckeoeeeeeh.. II) Padhorod a 4./ 0,57 14;27 8,57 0,09 0,86 0,1/

L S. ià ' 1i. 1, 1 eS,Ohe, Reeece i 0 liptorsk

. a 0.ra da, 0,4,6 - - 9,00 427 492 0087

4.4.Cie d eitemites. ,vitrica 1T/rut . - Triassic in .Bic hce - - - 4 ',! - _

I plee/e, eeetizee'oZtS z apeonj,ky Cieeek 0,4,5 456 3,61 - 0, 88 1,02 _

D tenïan layees, • . a-s à ï c //reepio,,e, Ver neir _ _

. _ in 1/ ernor

- - 0,53 -

ad d.oheeej te5

Illa/ina hfole cen e .ins/akubov \ 0,30 8, 2+ z se 3,50 0, 27 493 0,14.

-27 -

T4 tie 4'

/7:y de° chein eh axadize e ishks cf trome wa,6 wehees

dedien-it- - " Typz, //co; ripe° it

ad70//ts ezelife. (.ro!' • er) walzet,: A.Yen, a e 241 4.2`.5 Pnefile, (4,e- • er) I

Foryte - Pr;, irtthroce. ) 4,10 eviscie - Brot/Norp ,km /17/ Korea, .7,00 '

Bodroi - Undo nod Bodropon 91.4" / »anzibe. . - t km /7/2 171

Zatorica - Woo 14/ effie 1:4:4ude - Pri4,04 2,7/

Oh - Ppr/orcs 1,41 .1 Z/11Y£ 0‘7414e. - rreeuire 0,97 2.

Labor« - Koikorce 013 / tfordaye - Iforoveki Jen *.* £36

• / /*torero - egY/77 4-X-. 212

Labor« - Hamann( (1p..h.hr) 4,11

Zolborac - lYiehalorce (-4 ) J,19 I Pen - aptorek, tfikiddI 1,70 /

ZoOorec - Yojany .1,04 I ed-n - Illiaa (jeek.) 2,41 /

ands,» - Jokioak 9,11 I 65» - 1//oh0rec 1,54 /

Ondara - Tragic 1,77 I 6e/7 -ellarenSee'rpsde- 4" /

On dpra - Noncom% (etlose) 1,31 I Petri/J:40 . ' 617 /

Ondoya - Joetrabis 1,1/ I ../o/oyetke potok ' 2,06 /

fop": - 8 prdefor (pod) 4,11 I Nitro - Nooleky ritteige) 3,17 /

rop/r; - He »Witted 4.3f / Nitta - Nitro (eelettr) 231 ce

/ Nitre - AoYala £01 I Tope, - Promo, 4,22

Cirocha - N e crfn 3,46 / N 21 ron - Banoke B=o )

( 2, /

Riko - Kamienka 110 / Nron - xserea 602 /

Ok no - Ramoteki Nemrs 2S0 ey Nron.

- Komonfn £97 / tee / Ist CI)C4 wet,

Jotranacke potok - Pod/wrote .e.t2 276 (3 I Nron

- Ilît PctlistEer

Pozinokf potok - Pazinok (4441-4-.) 0,07 e Hornet - Jpierkd None Far 3,/2

Porne - Orsiony (timcc,) 410 / Horned - 'park's; pore I't 3 2,60

Nara - Berotko .1,46 / Horne/ - Rofice (iltrue) £ /2

Purite . - élanpnce 411 se Horned - A'Oece (tet/egtr) 4«

* tv,zie4 zinz ; caw: 0 e eaiezee zts

intErmécliateite/frie - eiseade ooede- ileaeeores 3 Tint èrmectietd i eileexeous

eilX/241 S'eiliz7f2 — aue on de/cage° re.s

"e* ezae I-I/fete Alanufadittiee season

o

-28-

Table 4 shows that the coefficients fluctuate between

1.2 and 8:2, and that even in two cases (Little Danube and

Pezinsky Creek) the main ion was ilepresented by sulfates to

such an extent that one can speak about the intermediate su fate-

bicarbonate type. HenCe it is evident that the differences

among the coefficients of a particular main ion are relatively

large. It indicates that the hydrochemical properties of surface

water vary to a large extent.

The most common types are the true bicarbonate-lime

(calcareous) waters and, to a lesser extent, the intermediate

water type.

When comparing the coefficient values of the main ion,

we observe that the coefficients are approximately the same

for certain hydrogeological regions, but are essentially

different for individual formations. The lowest values are

found with crystalline rocks, early Tertiary eruptive rocks,

and neogenic volcanic rocks (rivers Cierny Hron, Rimavica,

Hron, Rika, Okna etc.). Waters from these areas belong to the

intermediate bicarbonate-calcareous type and there even exist

mixed water types with the coefficient lower than 1.0.

Relatively low coefficients mark waters from Quaternary

terraces, Upper Triassic to Lower Cretaceous, Triassic limestones

and dolomites and Werfenian layers (rivers Vah, Vernar, Revuca,

Nitrica and Lupciansky Creek, etc.).

• -29--

Considerably higher coefficients and thus a markedly

true bicarbonate-calcareous type are found in waters from the

flysch region, the "bald mountain" flysch region* and the

Klippe zone.

Hence it is evident that FILATOV'S system of classification

of surface waters reflects geological influences on water

properties. It has been shown that water types can be divided

according to the magnitude of the prevailing ion coefficient

into certain more important hydrogeological groups.

The assessment of hydrochemical properties of water

indicates that we have several characteristic groups of water.

Each differs from the other in total mineralization and the

content of the main ions.

It is evident from the division of rivers according to

hydrogeological regions that the chemical composition of waters

is.in fact affected by the bedrock of the drained territory.

(vie shall deal with this in detail in the next chapters).

Waters which belong to one particular group are characterized

by having approximately the same not only total mineralization

but also relative content of compounds. This is very important

for the total characterization of the properties of water

(cf. Table 3).

• *There is no English term for "podhôlny" Flysch; "hola" is a bald mountain, "podhôlny" means something located below a bald mountain - Translator's note.

• -30--

II EFFECTS OF IMPORTANT FACTORS ON THE COMPOSITION OF RIVER WATER /34

It is known that in addition to geological conditions the

chemical composition of water and changes of such composition

are affected by pedological and climatic conditions, by the

water source which takes part on feeding the stream, the season

of the year, etc. The effects of individual factors on the

changes in the chemical composition of water and their participa-

tion in the formation of the chemical properties of water have

not yet been evaluated with sufficient accuracy and reliability.

In most cases only a statement of a subjective assumption based

on several analyses has been dealt with. Such knowledge, even

if valuable, cannot be generalized, because the deduction was

not based on objective methods and the conclusions are not

formulated mathematically. Only the dependence of composition

changes on the flow and partly also on the geological bedrock

has already been evaluated from this aspect. Such a state of

affairs can be explained by the fact that the flow conditions

most markedly affect the changes of the composition of water

and are, therefore, most important from the practical point of

view. As far as other factors are concerned, it is more

difficult to determine and.assess their individual influence

on the chemical properties of water, though such factors basically

affect such properties. Nevertheless we do not find papers in

the literature which analyze the effect of important factors and

the conditions and processes of the formation of the chemical

composition of water.

of 82.9,2

/19" cl

/2,1

/100;

/940

any gesatie

2.61;6‘

eisr

12,2

co"

55,6

310

300

2.0

220

180

-31-

e-e/Oendence . of vafConVeoSh'on on Me main Vote-Rae. - ye.egeieny Ébe ?an zce

- • - he,ofile. bizeolis-4va,-/eipen,hm. /g7/

of

leaSo-Pokiece..- of A:lit:few, fze.??(>1.47 e etc' ce

the e /vet -

n bvi'M main ,„ 7

• si (wit. ie-f

. • -..

•-•-•,--.......-_.r.tes_ 7e-C1Soe Stele; 'prevalence , pore 'and yitili»e, *gee'

I*I-S.:ea.-S.5n I) . •‘'. :.

trecr..fot, het' leb .-iélfà-lèhce' ,e/piee. d 26r7 ir --

(...recrSo» aZ

9pntn7ts-ek4fee t

2040 /666 80,6 6;0 46;0 /1,7 7 + •5',/ 27+,6

- - 3900

34•00

2600 I

! i , I

i-2200 À

-÷1,900

rH 14-00 I s

1000

Mone-hS

77, / letneet/ 44Mf es of Mette,e, CornreoSiWoil

in f4e, Paineee.

/— cemeice er dried- ••,- 3_-,étispendëd marter- e-d

- - - 7

mlyiniw / 11 /// y yn nil Ix ,r1271,ril

-32-

gl› The process of formation of the chemical composition of

surface waters is very complicated and takes a different course

under different geographical conditions (89, 92). VORONKOV

assumes that surface waters are an inseparable part of a certain

geographical zone. Chemical processes in water are genetically

connected with such a zone and reflect its peculiarities. He

ascribes the heterogeneity of chemical composition of surface

waters to the conditions of its formation in various geographical

zones and under various soil conditions of the same zone. On

these grounds VORONKOV thinks it necessary to study the laws

of formation, taking into account the conditions for the formation

of various genetic categories and also taking into account the

11› relative flow rates. He thinks that the determination of

genetic categories of waters is very difficult but at the same

time necessary for a deeper study of factors which influence

the hydrochemical regime of surface waters.

VORONKOV, as well as others, considers that precipitation

waters are the primary factor in the formation of the chemical

composition of waters of various genetic categories; the chemistry

of these waters changes as soon as they touch the earth's

surface. The chemical composition of waters affected by

precipitation gains peculiar properties depending on which layers

of soil or subsoil the formation is taking place in. Japanese

specialists (TAKAHISHA HANYA, UDZUMASA KITANO, TSUZUMAKI MICHIJI,

NAGYAMA, SHU, NONYTA SAJDZE etc.), some Soviet specialits

1110

(FILATOV, DENISOV, DZENS-LITOVSKII) as well as some others

(LE GRAND, BAECKER, WILD, BAUER and MOYLE) are of the opinion

• -33-

that the geological bedrock is the primary factor which influences

and determines chemical properties of water and that waters of

certain characteristic properties pertain to each geological

bedrock. These effects are very important because of their

character both from the theoretical and practical viewpoints.

Therefore in the next chapters we shall pay further attention

to them.

(A) EFFECTS OF SEASONS ON THE COMPOSITION OF WATER

Water composition changes considerably in the course of

a year or several years. It is the total mineralization that

changes as well as individual components and their mutual

relations. Some components change less, some more. The reason

for these changes can be seen not only in the effects of the

bedrock and hydrological conditions but also - partially - in

the changes of season. Seasons with related temperature and

soil conditions cause only gradual and slow changes in the

composition. Such changes also contribute to the occurrence of

mineralization.

From the viewpoint of practical needs it is nt.cessary to

learn the course of such changes within a year, season, months,

even individual days, because such changes may often be of

importance for the use of water. Nowaàays one cannot be

satisfied with only simple data on the mean composition, because

-34-

it changes greatly, depending on time and other factors.

Qualitative properties of water,.therefore, need to be character-

ized under various conditions and at various time intervals.

To accomplish a characterization we have accumulated

materials which we obtained from sampling sites (called

"profiles" by the author - translator's note) observed for a

long time (the Danube in Bratislava, Nitra River in Anala,

Laborec River in Michalovce and Rika River below Kamienka),

i.e. materials from drainage basins of different sizes and with

different bedrock as well.

The basic materials indicate that the composition of water

in individual years has changed to quite a considerable extent.

The same is true even to a larger extent of the composition

changes within a year.

The highest contents of components appear during the

summer and fall months in Rika River and in the fall and winter

months in the Danube, Nitra River and Laborec River. However,

not all components change vnth the same tendency. In Rika River,

for example, the highest amounts of alkali appear during the

summer months, those of calcium and magnesium in fall; in

Laborec River and Nitra River, however, the maximum amounts of

alkali appear in fall, etc. The highest alkali amounts in the

Danube occur in winter and fall (for details cf. Tables 5, 6, 7,

8 and 9 and Fig. 1, 2, 3, and 4.

-35-

Comparison of changes of the content of water components

with their abundance ratios (in mval%) indicates that the course

of the changes is different. We assumed that the highest

mval% abundance would correspond to the highest content of a

certain component and vice versa. It becomes evident from the

data that this is not correct, and that the changes of ion

ratios are affected rather by the_season than 10 - e- the content of

ions* (except the Danuabe), where the composition is more affected

by water sources. The lowest abundance of bicarbonates, for

example, occurs in spring, while sulfates and chlorides are

present in their maximum quantities in this season. The lowest

contents of calcium appear in spring and summer, while magnesium,

sodium and to some extent potassium contents at this time are

at their maxima.

For better orientation we present the results of our analyses

as processed according to the seasons (cf. Tables 10-13).

Hence it follows that the flow conditions have a great -

one can say dominating - influence on the composition changes.

However, from the abundance ratios of the components it follows

that even annual seasons and conditions depending on them

(precipitation, soil conditions, temperature and biological

processes) induce composition changes. These factors show less

influence during monthly and even less during daily intervals

than within a year, while the influence of the flow is far more

marked. • *The wording of the text is obscrue - Translator's note.

71,9.1)4../wit, Pratte monig(y eviden(s

-36 -

the Main lons 4,471ede anti hçeik

-àbiindâ-fiàe

7;tee. 6

• 141 -.81.4t/SUPet.1 r k/r/ /471 .. .

. „ref!' ci - col* me: + Ma+

A . + 1, 2-„, Z,

/1/0014 4

Nee,-

[m/t) [v/I1[,,21 ;el [,,,,,e1r,[me1 el y.91] eye/ %,] [rny,g11 en:01 .5;] [ rewal]Tinwo 1 '1,1 (Inv.7111[02,21 te,][myol]Li..51 .4.][lnyQ1) 115»:01 e51 [.. Mr- .7-1.i im;I .rd

/ 16$/ 3. 16 70,85 0,92 ! 20,63 0,38 8,52 2,72 60, 10 10.5 20, 36 a++ . /0,2/ oya 1 2,22 0,+6 . 30,96 0, 31 i 48/4' 8,77 : /00

i 1

4/ 50,40 ,34. it '09,60 475 /00

'// 2205 3,07 69,61 4 98 22,22 0,86 4/6 2,74 63,13 1,02 23,50 0,41 8,80 0,11" : 3,46 4 4,

II

/// 19/6 3,11- 72.7+ 0,80 ; /448 438 478 2,37 60,30 109 26,20 090 10/8 0,/3 I 3.20 433 52.4 2 3,93 li 4759 8,26 /00

i /1 20/1 2,82 73,43 0,68 1 /6,59 434 485 2,61 63,65 1,00 20, 39 0,38 9,27 0,// 2,66' 3,85: 4836 4/0 i 5114 7,94 ' /00

I 2029 2,83 7526 0,6/ 1 /6,22 0,32 8,5/ 2,34 61,57 /00 16,31 0,33 8,68 0,/,1 3,42 3,76 44 73 3,80 i 8027 756 /00

0/ 2965 2,59 76,95 0,51 'i 10,/4' 0,27 8,0/ 2,15 61,95 0,9/ 26,22 0,28 4 07 4/3 3.74 3,37 4.e76 3,47 5474 0, 94 , /00

II/ 2174 2,62 7+,8s 0,57 I /6,21 0,3/ 8,85 2,27 61,95 0,91 2509 0,32 872 4/3 3,14* 3.50 4481 3,67 51,19 Z!? /00

I

10 . 1989 2. 74 74, 05 0,61 i 16,50 0,33- 9, 46 2,2/ 6273 095 2054. 471 460 4 11 3,07 3,70 50,89 3,59 49,19 7,28 /00

/3' /320 3,04 7562 0,6 I /592 434 446 2,14 82,57 10/ 27,671 030 8,0! 008 2,41 14 02 3400 3,7i* +9,20 Z76 : /00

X /129 3,18 ;2,60 0,82 1 /0,72 0,38 8,82 2,78 64,50 4/3 26,2/ • 0,3/ 7,49 0,09 2,09 4,39 50,40 4;31 49,60 9,69 : /00

X/ 1076 3,34 72,76 0,90 i /46/ 0,35 Z63 2,95 6466 1,05 24/9 0,34 2. 93 4 /7 030 4' 3-0 11 39 4' 34' 459,61 8. 93 ! 100

XI/ 2136 2,94" 72,30 0,89 /46/ 0,33 8,08 2,6/ 6444 /,00 2469 433 815 0// 3. 7/ * 09 I fe 18 0, 0f + 9.82 4/3 1 /00

2015 1,98 73,84 .467 /768 433 446 2,4* 62,08 /,06. 2577 0,33, 450 0,// 2.84. 3, 70 1 50. 12 3,88 49,89 7, 78 /00

MGCth. I 1

regle 7 deiken.

Nitre /.0 Arrakz.

/eeete etoeft(y de/t4À,is the main ions ,» iveuee,e e/te:i/ ege/n.

abundance

/Y a /ea; • de CI - CD 2. eg 2+ 1le* K + 2'A Zx ri

(inPi[tnyel/ 1] meled[fiere1/1][invo1 fe][myogl][inyel zi[eekel][mr01 °S]ilm61/1)[filyal Z] [1114'61/1][mr.01 %,;][/111will]l1/171•01 el [ftw1/1][/nral ,id[nee.51/11 1171Wi r]Unr.21/1)[,nrety]

/ 22,3 4, 0 66,1 400 15,0 226 /49 .9,97 192 176 248 0,90 - Y42 0,19 j 2,8 6,66 49,4* 982 fg 6 /3,48 /00

I/ 24, 2.83 eZe 0,1.3 /So 073 /7+ 3.64 59,7 1,1* 25:9 059 //,3 0,» 1 3,2 4,/8 +47 4,42 5/,3 ' e.e/ 100

dr 241 2,81 63. 4 0,71 /CC 0,73 /3. 0 2,45 60,6 402 22,8 ese /3,9 0,// j, 2,7 4,29 41 4:04' ! .985- 813 /00

/0 23.1 2,70 it 9 06'6 20,7 gm /0, 4* 2,42 ego 1, 05 256 4 f! /2,7 0,11 2,7 4,/1 50,4 4,19 49,6 826 /ea 1' /6,2 410 63.9 0,90 /48 0,81 /3. 5 2,78 55,9 1 +2 246 0,14 /2,e 0/3 2,6 485 +0+ 4, 87 sae 942 /00

17 /1,3 .7, 90 66,8 egi. /4,4 4/0 /41 4/9 56,0 170 294 ese 149 4/3 2,3 J;e+ I 50,6 570 444 /1,54 /00

ea A3. / 3,72 63,1 1,09 /43 1,19 /47 .486 80,3 /6/ 26,5 467 /1,0 419 2,! 490 I 49,3 407 507 /1,97 /00

el// 40 - .- 44.9 - 1. 00 - 3,92 - 1,84 - - - - - 2,49 - 578 - - /00

/X zs 4,13 87,2 1,0/ /6,4* 40/ /6, 4' .3:9/ 59,5 18/ 29, 8 45/ 8,4 4» 2,3 615 59: 3 607 46, 7 17. 17 /00 X 81 4,95 85,9 1,07 /4,5 1,44. /9,6 424 55,6 2,10 28,8 0,9e /2,8 0,2/ 2,1 736 +9,1 7,83 503 /4:99 /e0 X/ 9,3 445 645 1,01 / 4, 6 /,4.7 /9,9 4, 2,7 10,4. 1,99 23.9 • 1,20 /5,7 0,23 3,0 7,40 54/ 3.64. $1,8 /4, 76 /Oa

X// /to 3.95 640 47+ /2,9 1,04 /8,1 .7,59 59,3 /,37 2.3,2 0,87 /4,9 4/8 Z7 573 49,3 .090 50,7 /163 me . .

nil 1" /44 3,38 63. 4. 488 /7,8 489 /7,3 2,75 548 1,37 17.0 0,67 /3.6 0, /4' 2,8 3.14' fe 0,93 + 8,0 /0. 87 100 Meth

pe]

-37-

It needs to be emphasized that the changes of the mean

annual and monthly chemical composition of water are not in

full agreement with the flow conditions; this is due to various

conditions characteristic of the given river. This can be

observed on the Danube and partially also on Rika River. In

the Danube, e.g. the composition changes differently - on the

one hand according to the proportion of snowmelt and glacier

waters and on the other according to the contribution by small

tributaries in winter and fall, when the volume of ground and

pore water fed into the stream increases. These two sources

of different origin, which feed the stream with water, cause

different properties of water; these properties alternate twice

a year. The influence of the mentioned sources is relatively

great (cf. Table 5).

The effect of various sources of water is revealed not

only in the total content of mineral compounds but also in

their changes depending on the flow. During the season in

which the river is supplied with melt water, the curve has a

steeper slope.

Two seasons occur also with Rika River, but they are

connected rather with the subsoil and the degree of its

leaching. It is mainly a question of the season after long-

lasting elevated flow rates, especially after the melt water

runoff (i.e. April and May). In this period of time the total /41

contents of components in water are lower than at the time when

the water level is slightly elevated (especially with a

tendency to increase.

>1 .,spended

[40

80

60

201

I. 0 *IV

0

-38-

[Ifej

1-30

20

15

10

5-c--;

0 ,

NI II V Mon7chs _ _

L - Aturdectiions Wedee ecempoSilion Nibeq., eii/e/t in a yen /- eeecific, eeeducMdiy, ..Z -1 Suspended matter titidd.„

;-

mater ignited, 4- Z , 5-- fioh/

Immust, monamm IFOMMIIMEM 1111111111 111111901 11111111111

IY V VI VI VO IX X XI XI reW

F/6, 3. "Yee/ea/ions .71 wetatee. 0-ern/Dos/eon /:.4,4‘teeeo

if? a Ifecte . _

- Syeiy eie Gen oict ce-7, Sus-pendecl_rnatt-e-r dried-i- 3- -Suspended matter ignited, '-(74-2è 5---pent/ 6t.

390

?-320

280

240

200

120

't»» _Jeo

10,91

699

24,5

/4+

45

19,1

3,9

3, 0

4,0

59 2,8

18,7

2,09

45,9

2,15

2,30

2,7/

2,77

2,41

3,00

2,6/

2,02

.020

2,00

2,23

[if/nee/rat d[ero1/1]1(erel X] UnP)

78,4 0,59 MI

0,47

0,36'

414.

0,53

0,7/

466

0,78

0,7/

494

0,97

089

412

/8,4' 0,52

MeeQ/ . matiM/r ereenis i.t.he main

- 39 -

ions in evedee and 1»ebiTàbundànce . in different seasons.

772-Z e. 8

LaSorec »Kit /YIc.,44foVCe'

i/CO; r I

/5,/

23,5

20,3

249

/Z3

/3,3

/8,9

/4,9

20,9

4•

111,0

/42

2,51 +7,1

2,/7 3+,9

287 4'07

2,98 47.9

033 446

3,45 149

3,49 50,4

3,93 se/

3,98 I 52.7

4,13 53,2

430 511

2,79 . +7,9

IYonlh

9/

/1/

Y/

re/

/X

X

X1

XII

mere' tans .

Jar

75.2 10+2

666 0,16

72,6 0,60

72,8 066

7.7,0 0,6/

.90,3 44. 9

70,3 4 58

747 411

72,9 475

• 77.7 059

77,7 0,74

' 7077 490

Cl -

Imrelfil[erol X]

427 9,7

0,22 47

0,2/ Z/

0,20 63

020 57

422 4+

0,44. /2„g

425' 6,4

0,22 0,1

0,21 7. 0

am 4,4

430 81

0,23 7.6'

(be'

[inal/I]lreelZ]

1,94 77,3

1,4.9 68,7

2,03 70,7

1,97 679

2,/6 64,9

Z3+ 678

2,39 642

2,6+ 62.2

2,57 14:9

2,59 627

2,87 66.7

2,09 649

494 I 69,5

]me1/1111,mel Z.1

/88

/es

/8,8

2/7

243

/9,1

20,9

/4/

23,6

23,5

20,5

/3,4'

Ila'

1.mel/lik/nr51 Z]

0,08 3,2

0,27 /0,1

0,22 7,7

0,12 4

0,37 /1,1

0,29 4+

0,27 77

440 //,7

0,36'

445

0,49

0,62 I /6,0

0,2+

[ffireln]l[treel X]

0,8

4,5

2,8

2.8

27

4, 6

3,2

3, ,

2,2

2,9

3,5

' 3,4

0,00 3,2

MY001 117Y01 7]

2,78 ft,s

2,78 ft,s

fmr.61/1.11-ineel W01/1 ) 147+91 %1 5.29 i /00

4,54 /00

4‘,803 18/00 80.

6.81 /07

6:90 /00

6,92 /00

7.84 /00

7.11 ; /00

7,78 , 100

/00

zi7 100

443; 100

/0,9

9,3

0,02

0,10

0,08

408

aoa

0,10

0,11

4/2

415

2,37 64 1

296 108

3,16 1 52.2

3,52 11,4

3,41- Sao

3,43 +es

3,91 499

3,58 41,4.

3,63 440

4,12 49.9

3,70 4.9.9

3,04, 52.1

1712]

es:

Actn 1710»7 evR7 Lee2& -the- main -10es ivede/e awe/ ieerk a btindânce in diffèrent _ _ . . _ . . _ seasons

.

/veen elmkaka.

2 NCO,- J'04,1- Cl - Ca t+ 1192+

Ala + X''' . 14 4. 2-, gal

11' teM [mY21/t] Eni,D1 leInvol/li[eel e][erol/1][.nrel ;4f/wee/i [/flat X][mr.d/l][nerel z][ifirv1/1][me,212limral/11(eval X.][mel/lifmel 7.][52e1/1 1 -ftwl '4]Emrol./1][01,01 7]

/ 1,37 478 72,2 4/7 157 0,13 /2,0 457 182 0,22 22,4 4/2 /2,2 0,07 XI 1,08 52,4 499 42.6 406 /00

// 184 410 067 0,/8 240 0,12 /3,3 0,51 535 42E 243 4/3 /3,1 407 7,1 4 99 4.76 498 12,4' /89 /70

e/ 2,25 481 11,8 0,2C 25,5 . 4/3 /2,8 451 54;3 420 21,3 4/4 /4,8 409 48 1,02 540 a, 94 +50 1e6 /09

/0 got? 0,40 59,7 0,21 27,3 0,10 /3,0 438 51,5 es 21,1 0,10 /,/ 408 /13 477 52,0 07/ +8,0 1, 48 /00

e 1, 1$ 410 69,0 0,21 28,7 4/2 /3,9 0,42 52.5 4/7 21,3 0,11 /63 468 140 407 52,1 0,80 4,9,0 1,e7 /00

5/ 0,82 0,8,1 19,8 0,2/ /7,7 0,15 /2, 6 0,51 546 422 22,2 0/2 /2,1 0,09 4/ 1/9 5+,6 499 4,5+ 2.18 /00

I9/ 124 0,81 144 428 221 0,/1 /2,6 0,10 52,e 0,25 21 9, 0,1.9 /54 all .9 7 /.27 I 52.7 1,/4' 474 2,4/ /00

po 4 7.1 0,90 73,2 aly /5,1 4/4 11,4 go- 52,0 0,3/ 2+4 419 /4,4 an 84 /*,23 446.. 125 s0+ 2,48 WO

/X 051 1,/0 70,7 0,11 /0,9 0,./8 4+ a 75' 16,4 0, 84' 251 0,17 /2,8 0,07 53 1,38 549 133 +9,1 2,7/ /00

• X 45+ 1,/1 7,9,3 417 /2,/ 4/2 8,9 477 60,2 0,26 243 4/7 /3,3 468 63 /, +0 52,2 1,23 478 2,69 /00

07 1,08 0,17 51,0 0,2+ /88 4/7 /3,3 ges 10,8 426 23,4 4/4 /2,6 408 2. 2 1, 28 58,1 /,// 4.4+ 2,39 /00

Xi zett 410 522 428 II,/ 0,17 /44 0,49 ea 0,2/ 21,9 4/7 /7,7 0,09 9, 4 410 04.5 0,96 455 _2.11 /00

a/Mead 1,41 417 14,4 4 24 23, 1 0,11 /2,6- 0,52 54,7 42/ 22,1 0,/4 /4,7 OW 8,4 194. 52,3 095 4.77 4 99 /00 /7leeltS

Tiabfe

[gal

• • •

Tà47c, - Mean evii i-enfs the rha.i n ions end abunciance in different seasons- -

itnngal a *ea,- 18:- et- e.g- eg,... N.- A-- 4 4 z.,

S 260I) k.%.,1 ("7,21] [mAel X] [Inrot][arefe] kiwi] Wet feJ [ewe] Peel z.j [inked kne1 y] [met] ['eel ej Well [owe! .ed [meet] [five! x

]

[,nmet] [owl ',Y.] [ere!) [elvel .1;,

]

511/2149 233f 3,/1 7133 0,88 20,11 e.37 449 2,80 62,20 403 2464 4 42 /4 01 ea .3// 4,36 51,01 4,/,2 I 449f e 5s, ma

Seine 182/ 2,73 71, 4/ 0,09 18,38 cm 429 2,3/ 82,09 ese 23,8/ 0,33 487 4/2 3,23 3,12 4031 372 50, 61 734 Am

Tall , 1410 2,74 74,4's Ceo /039 eM 474 2,30 62,19 4%98 26,09 0, 3/ 8,42 01/ 2,99 3,61 49,86 3,68 50,14 734 /00

1/44.1)tie /924 3,/5 72,41 0,84. /9,3/ 436 9,21 2,83 15,9/ 1,04 24;18 0,32 767 eye 2,32 4,35 5228 4,311 ,4472 485 e0

zes 2,49 73,65 489 /Zif 0,34 470 2,52 13,63 100 25,25 0,33 8,33 0,// 2,79 3,9/ 4.948 1,08 147,32 7,e7 /ail

TaZfe, if Cean_ coidenis of:the main ices 'd/e"abundance in different seasons

. ... . . _ ... knell e wca; .rre- • a' Coe' „ye, Me+ K 2;4 27, Z

seam [es] tmy.i] [..is] [m921] iffiral %][nnet] [oral Z] Umw1,1 krel t] [owed [met x] Unveil [mow% imred krel z] need [iv/ Z) owe] [m'2/7] [mre] ['we! X]

Speng 23,1 2,93 13,44 0,81 18,20 0,7/ /5,96 2,87 $6,16 422 28,9/ 0, .17 /2,09 4/2 2,84 441 5133 4,22 48,67 1,87 /00

StiallfeJZ 13,8 3,85 1364 1/0 /4/8 1/0 tent 2,19 54.e7 111 33,07 482 /2,42 ezi 2,6/ 005 5"4, 99 4,00 43, 20 /404 toe

Fail . 8,8 4,41 6492 0,96 /4, 3/ 42$ 4e 74 +,0! 542/ 1,8$ eft 407 /4,92 0,24, 3,35 e7/ le14* 7,17 I 14 68 /3,8 ea

White 15:9 4,22' 13,75 1,02 /5,41 134 10,91 4,48 60,43 471 25, . 406 /4,1e 0,11 4 76 4 62 ̀/7 29 zse 52,71 Ataa ea

frieete m,4 3,37 65, 44 415 ./7 28 049 /Z28 2,75 13,74 482 2779 0,12 /3,59 0/4 2114 3,te 5409 4, 91 i 449/ /909 /00

7,4 te, /02 eeae coe`edn's eithe ma -in-ions smai , a-bund.anc e in the different /*pen ___. _ „... _ .... .....

Ma': of"' 2, 1 , IA. 9 CC Cee*

Mg,. . _

2i efoollal 0 eV; .ra t-

f&r..rer Ws] [e», a t] new, 1.,1 [mra1][//1,01%] [eyed [faro! fd [mead krol :4] [mr,;(][favel ',',;] [ftwol] [meal ;,i [meal] [/nr.pl5d [mvoll[nival "4] [nved l[nh.ol e;] [e wad i[.'rea/ %.]

f Rifle 2848 2,/a 72, 6 1 417 /8, 66 423 Zes 480 69 77 0, 48 18,99 421 81.9 407 2,7/ 2,90 i 17,92 1,58 i 4708 j; ,,,,s

ee 496 2,62 , 74,69 412 /766 417 3, 69 2,9/ 63,65 4 e0 1 /7,3s. gm 867 4/1 4,33 3,51 10,36 3,46 : 4969 697 '00

LI«

I Fait, 442 2,97 77, 11 466 /en 0,22 474' 2,71 64,83 492 1 2440 0,6/ 9,8/ 0,/ 3,35 3,83 j 47,82 4,18 1 52,40 3, 0/ : .104

Viki,,e, 10,19 3, 91 77,4/ 46/ /5,48 429 4/1 2,66 74,09 4 67 I 18 66 4 20 457 0,96 4 67 3,94,1 1432 3,5gi. 4749 7. 01 ' /00

hem 2,13 7435 411 /9,01 e es 7,67 1,94 64 11 452 1 19 6+ 029 468 449 2,13 3,of 12» 2,7g .k7,0 3;82 . /ea

,^ffle_A.,• ■

Cean ctidemis of-àje nià in . Jim's and ffieigiti . .a...bundanc-é in t he different sea son e . _ even

Xamienk,

btee..

_ etnal liras- far er - Cat' . ee 449 A" . ,94

, 2-,

ediel r0,5's1 [mral] kwelkl[mv.21] [eye/ f4,][mvall ("lye! f4] Pnyoll [meal ['rived [,,?r,615;][mra1] mrel •,;][,nvol] [mral%][al] limr.9/%1[e»..9e] [[,,A91 3 ) [,,metli it,,,e/5•":

I I Siewhe 2,23 455 6/, /1 413 2456 4/2 /333, 4+1 13,17 4/8 21,68 4/2 /448 488 3,51 4 90 1/72 484 1 44 26 1, 74 /00

Slimy« 481 418 6,9, 29 4 2y fese 4/1 /1,3/ am 53,33 427 12,50 4/8 /3, 00 ell 9,v7 /,27 11,42 1.20 ; 4858 2 47 faa

I Fee, ,,e,. 478 63,4/ 419 13,59 4/6 /3,00 460 16,60 424 12,19 4/6 /38/ 0,48 3,51 /,13 53,71 1,06 I 4429 229 . va t

leinfea /.22 471 67,1'9 42/ /4 4+ 4/4 12,96- 414 18,74 4,21 12,93 410 /0,97 407 3, 61 1, 09 54, 04 0,92 Ï.___«9, 46 00 2, 90 180

Tétar r 1,e2 6;67 66,34; 42/ 1479 0,13 /2,87 0,12 .1-4;,74. 4 2/ 24/1 4/4 /5•,74. 409 8, ,,2 /,‘,/ 5/.5.7 4 95 1 , 47 1,96 ma mute i

O

-42-

For comparison the accompanying tables give the values of

the arithmetic means and weight means (the values are related to

the water volume) as well as estimated differences (in percentage)

between such data.

For rivers with a higher mineralization (the Danube,

Laborec, Nitra) the weighted means are lower, as a rule, than the

arithmetic means, though the differences are very low for the

Danube. In cases where the flow and precipitation have more

marked effects on the changes of compound contents (a decrease),

.as happens with the waters of low mineralization (Rika River), /44

where the weighted means in many cases are even higher than the

arithmetic means; the flow or precipitation changes show

different effects in sites where the mineralization of water is

low (incomprehensible in Slovak - translator's note). Also

remarkable is the fact that the differences between the two

means are lower in individual months than if average annual

values are taken into consideration. It is caused by the fact

that the flow ratios are better balcanced in individual months

than within a year. Errors which can arise due to incorrect

processing of the basic materials, can also be seen from these

data. Assuming that the basic materials mentioned here stem

from about 150-350 analyses, there is a great probability

that the effects of accidental atypical data will cancel

themselves. Obviously even greater errors can occur when

processing a smaller number of samples.

-43-

IUNN e 71-4

Fig. 4. Annual alterations of water composition in Rika River

1. Specific conductivity 2. Suspended matter dried 3. Suspended matter ignited 4..

5 . Flow Q

(B) PRECIPITATION CONDITIONS AND THEIR EFFECT /47

ON THE COMPOSITION OF RIVER WATER

Despite different opinions, bibliographic reviews indicate

that precipitation exerts a great influence on the final compos-

ition of water. It exercises a double effect:

a) Physical - due to diluting more mineralized river water, and

h) Chemical - supply and direct supplementation of water with chemical components.

-44.- •

00

7,e. 5 ee, emmua/ peeeiloifa7/1 Jletebek, (ftei Me/we/0d «o/- /950)

7a-ee, efizet-de,e2 ea. eeMpoS /Won of filegaijoiietWon ceteleS

(a mozolieg jdo

'é w 5 et zeM ets)

ebt2/24.019-12- 1st, e... acdpitet-Tfs=i475- r..e.mx-des

dent, n en f Burk.rer necogra /I? . 10-

6irenku Me104e zteth °es ( eid-h) minimum moximum minimum merimum eean• Nelel In I M morimum mean,

eftetddn- cdd2 460 81,06 0,60 3600 5,e 420 21,00 1,00

Iirenesiite Mg r • 0,30' 8,30 eta nort • 460 0,00 /zoo 0,10 -- too

/4kedi ode + e ) 0,60 30,80 4/0 3300 2,70 0,10 15400 410 .. 15,00

at' e;tki 0 We; A I CO; 3,05 .90,28 3,00 +1,00 14,20 3,10 62,00 4,00

lc/M5-304, - 3,01 90,28 0,60 7800 11,4.0 0,10 9700 2.00 - 74 00

Chlaridtg- cc 1,08 255,60 0,20 34,00 0,50 0,10 260,00 400 - .M.. 00

4liteales -NO; • 0,39 402 2,0 0,22 0,00 .9,0 .0,01 -.- 490

Afruncilig- bye 0,17 0,06 2,0 0,26 0,03 12,00 0,10 "'. 480

3devdedhe- &d. 40008 4- 4010 - - - - , - -

.101:11./70 -7,2_ 0,0015 * - - - - -

Maitik'm e, ag.eq 5 o. 2o - 0,,e0 Je_ Pitee

Ut 93

-45-

It is sufficient for the assessment of the physical effect

on river water composition to have more detailed data on the

flow conditions or on the total precipitation in a typical

season and at the profile under study. It is sufficient to

know the flow conditions, because they are actually the result

of precipitation conditions and other climitic factors.

Precipitation conditions in Slovakia (totals and the

terrirtorial distribution) are schematically shown in Fig. 5.

This basic material is sufficient to give a rough idea of the

balance of the discharge of compounds from the river basin.

To judge the other, i.e. chemical influence, it is necessary

to learn about the composition of precipitation waters. As a

matter of fact the chemical influence consists in enriching

water with compounds present in the precipitation and in the

atmosphere in general, i.e..in the direct supply of chemical

components to river water.

Precipitation waters are characterized by certain contents

of mineral and organic compounds. As compared to river waters,

they are characterized by a higher content of dissolved gases

and also by different abundances of the main ions.

It follows from bibliographic references that the composition

of precipitation waters is relatively diverse (cf. Table 14).

The difference in these data is caused by various factors,

which can have various effects on the final composition of

water. From the existing knowledge it emerges that in arid,

flat, industrial and maritime areas precipitation waters contain /49

more salt than precipitation waters in mountainous and humid

• -46-

areas. In maritime areas there are increased contents of

chlorides, potassium, magnesium and iodine (82, 32). In more

distant sites their ratios change together with the salt contents.

The changes of precipitation water composition are different

and dependent on weather, season, landscape, etc.

Precipitation waters on our territory are characterized

by relatively high Mineralization (about 40-60 mg/1.) and

suspended matter (about 30-40 mg/1.). In some cases bicarbonates

or sulfates are the main anions. It is evident from our data

(cf. Table 15) that sulfates are a very variable component of

precipitation waters. Their contents'fluctuate between 1 and

36 mg/1., and, therefore, in many cases the rain-water is of

the sulfate type. Calcium, and in some cases sodium and

potassium, are the main cations. Rain-water contains relatively

more alkali and ammonia than river Water, and therefore

their abundance ratios are also different.

Hence it follows that most mineralized waters occur in the

vicinity of industrial centres and that in the mountains the

precipitation is somewhat less mineralized. On observing the

composition of precipitation water, we find that the mineraliza-

tion is lower at the beginning than at the end of the rain; it

is in agreement with GIRENKOIS finding on the effect of the

duration of rain on the chemical composition but not with the

opinion of TAKASIMA.

• •

gind 07 ,50, ,ee-eipiliztt/...ile

,faieftebty Sired ,a£ cie Sahifii», 'Mee, ecectuc4e4

n I/ye/ice/4z) -

§ a.rie 111 ESR.gea igni e d

Y°Geieman

azinied domftasiiiee of itifeei/Wiedion waiens ie LS/oyez ea,

/5-

Ore) er4le . . e4/ Ai SNOW Red* elbore mkt Kemonore wed (.44.4., .rerShk1 - Bel-drier- ermlt Reetern fleer/Nterer •Winik «neon //ewe Oneorr• Orebikoro NNW», deebeer INN!! Wee Seabee.. &fete

e,,1,l kénIrr ere. IN.. ...Z.Te 1.4.4 ealev..... ....e.i...... Oldie.' ,.aN Heel Mere el7/117 9,017 lie I ar

l Ie Mee k /1 /IN 74entt 74£1081 1. NI Ne Net NUN, gem, *jew el...! ea.?

Il ,0 I 447 14 tele0 "'U." j 40 4e44 14

ee.._ 4 iNN 11 /$5 iNeyi”Seeeet.

[ few ke I 0„, Nee NM zof fZIO /41.0 UN «MP Mu f4.10 «a .f.U1 - «10 NU INN SW Mil 04 24, «sr feu um ea au eat Jew "1

IN/ ., - - 40 40 40 CIO 4.10 111 40 470 470 dao en le 40 471 llo - - - - sjo eV 07 70 IN

Alkeito na no

MI LP Z.41 Zed Zee IN 4,19 VW - eV ZN - 440 10 Zol « zoo zu za ero ao' • 40 10 le' 40 /0 40 41 n/10 Ned

•00 *04 1110 ..tr,.v 4.00 lie WO 040e,,,.. - eZZ, - nee' 740 OW 070 00 00 1710 WO Aga 00 410 (40 wo wo

.thede Wee

1 ea nu nu - szoo eto - ozu 14,41 MN WO 44/ >el UN?) ee ie•S' if,e# /4" 47 NM - ea - - - -

Peor4f4.1 &ref/

412 IN gel 401 IN NO 420 40 - Zed, Z10 - NI 40 1.10 40 447 470 117 40 40 W 1.7o 40 10 40 Vevn.I el.

Pe) OA ZOO 1.10 4,04 - 470 .- i00 - MI 470 III ea ea o 40 MO ZOO - 400 eff 4A, {10 W ZAP

N..-

ea ea _ e ' en - - ON 144 - If N. eft ot . 11/I 11 e 44I e eu

.4 a. e 414 411 e

eel - - - Z71 ZOO 415 (Se - - 411"0 . NM "ZO et NM NO zuo no ttto 1,30 ele. NO 441 de

a"

- ZN 41V 1,* 40 0..0 1,40 ZS, ZO ZN 741 lepe Nei 400 «ZOO 10 44e too eso 40 LU- Lio 47o 44,0 ZO el

to '. IN.Ifij

."..1 4eo 17o za zoo - otie ILS! -. ea, 411 - Cie 4M LW 44$ 4 4, £4f /OW SA, sio 10 10 doo too 274

fig .

_Ifell - W gee ell 47/ - OW 411 - ea ao au duo 40 too 10 I ger 40 zso a eu ao CM 4111 uo

/Le

*70 iSo Roo 40 zoo mo ea 44, - eu 40 too 411 zoo noo 40 111 40 zzo 40 475 40 40 el 471 40 1.'21 e -

40 4so 40 40 40 4II 40 70 - 40 zoo Zoo zoo zoo 410 415 feff 741 40 40I W. EW 4.10 4 10 475 90

4, oe

toell - - 70 ea 411 409 407. : 4.1! - eu e eu eu too uo 441 417- es .70 en e. or - ZN 40 ZeI _

:?

>Z1

(%/*/-■

4 s`e

çz. •

e.‘t gg à g g à è )\

4 e

(71 0 e-J

The opinons of authors concerning the effects of precipit-

ation on the composition of river water are not in agreement.

VORONKOV asserts that in the northern parts of the U.S.S.R.

the effects of precipitation are considerable and that they

diminish in the southward direction (toward lowlands); HAVRÂNEK

is of a similar opinion. This phenomenon is ascribed to a

gradual pollution of the atmosphere. On the other hand

DZENS-LITOVSKII asserts that the northern sections of rivers

in the U.S.S.R. are subject to geological effects and southern

river sections to climatic effects.

GAaMONOV estimates that climatic conditions affect the

changes of chemical composition of water in such a way that in

areas where precipitation predominates over evaporation of

water (northern part of the U.S.S.R.), bicarbonates are the

main anions. In areas with low precipitation the sulfate and

chloride contents are rising. The author is of the opinion

that ground waters, like surface waters, respond to the climatic

conditions; in areas of high precipitation the waters are of

the bicarbonate type, in areas of low precipitation of the

sulfate type, and in arid areas, where evaporation shows a

great predominance over precipitation, the waters are of the

chloride type. This opinion can be considered basically correct,

but changes of the composition of river water cannot be ascribed

precipitation only, or to a complex of climatic factors, because

the composition of water is affected by other factors . also,

as we shall see later.

19_

-49 -

As evident, climatic conditions and especially precipitation

conditions exert a great influence on the chemical composition.

However no dominating influence should be ascribed to them.

We know about cases of a higher total water runoff per square

unit in which the mineralization is higher than would have

been expected. The mineralization of the Amazon River, for

example, is 37 mg/l. at a total runoff of 100 cm, but river

waters on the island of Java (Serajo River and Meravo River)

have mineralization of 122 and 107 mg/1., respectively, and a

runoff as high as 150 cm. Even under our conditions there are

completely different properties of river waters (Rika River,

Sobranecky Creek, Topla River etc.) while the precipitation and

runoff conditions are the same. Hence it follows that there do

exist still other factors which affect the composition of water

remarkably.

To estimate the effect of precipitation on the changes of

the composition of river water, it is sufficient to draw up-

a balance of the rain-fall, record the flow changes in the river

and analyze the chemical composition of the water. Differences

which result from the balance of the composition of river water

should be ascribed to other effects (soil, general climate,

temperature, etc.). It means practically that when observing

the laws controlling the composition of river water, the precipit-

ation in a certain case must be analyzed from the viewpoint of

heterogeneity under local conditions, and only then they can it

be used for the proper purposes.

-50-

As far as our own conditions are concerned, it can be

stated that many of the factors listed above 5peed and direction

of winds, various localities etc..(such factors were not listed

above - translator/snotel7 will not affect the composition of

precipitation to the same extent as in countries in which the

conditions are often completely different.. It can be assumed

that in our country it will be industry, the season and

duration of rains which will exert the greatest influence on

the composition of precipitation.

(C) SUBSOIL AND ITS EFFECTS ON THE COMPOSITION OF SURFACE WATERS

There are no doubts any more than the composition of

surface water is seriously affected by the subsoil, though

there is no uniformity of opinion on the effect of g eological

and soil conditions on the final composition. Some authors

are of the opinion that geological conditions are the main

primary factor, but other authors have the idea that it is

primarily the soil conditions which exert the main influence

on the composition of surface water. The study and substantiation

of the influence of geological conditions should be considered

-51-

more opposite because the geological conditions produce the

parent rock, from which the soils and substrates originate

(due to decomposition and weathering of the base .rock).*

It is impossible to exclude the effects of other factors

on the composition of water. On the contrary they may be very

strong. In spite of this, the subsoil remains the main factor

determining the qualitative properties of surface waters. The

author came to these conclusions on the grounds of his own

experience; these conclusions can be confirmed by data which

he has already reported when analyzing the effects of precipita-

tion. The waters of the Amazon River (South America) and Serajo

and Meravo rivers (on the island of Java) have low mineralization,

which is usually ascribed to the precipitation conditions.

Although the runoff on the island of Java is about 50 cm, i.e.

50%, higher than the runoff in South America in the area of

the Amazon, where the runoff is 100 cm, the mineralization of

of the Amazon waters is approximately three times lower.

Mineralization of water in our rivers is different (Rika River,

Sobranecky Creek, Topla River etc.) although the runoff is

practically the same. In view of all this, it is possible that

*The style of this book is unusually poor. There are many paragraphs which do not make sense even in Slovak. The sentences are extremely long and branched. The main verbs, nouns or adjectives are often missing. On the other hand the author has used excessive words, often in a wrong sense. An accumulation of nouns is very common in this paper. The book is full of awkward passages in Slovak and the translator did not know how to cope with them. The principles of the book could be presented briefly in several pages of an abstract. - Translator's note.

-52-

11, the difference in mineralization has been caused by another

factor, and that factor is the subsoil in our opinion.

1. The Composition of River Water as Related to Soil Conditions

It becomes evident from our general knowledge of the

effects of the subsoil on the composition of surface waters

that the subsoil has a great influence, and actually determines

the basic character of surface waters. The main effect is

exercised by the bedrock. Soil conditions in the drained

territory have a great influence on the formation of the

chemical composition of river water and sometimes they affect

its composition to a great extent. However, they cannot be

considered to possess a unique influence as far as the deter-

mination of basic qualitative properties is concerned. Although

the influence of soil conditions is immense, the author did

not succeed in finding a relationship between characteristic

properties of water and various types of soil even after he

had processed a great quantity of material on the quality of

water, which had been collected from the entire territory of

Slovakia. On the other hand he discovered distinct qualitative

properties, i.e. the dependence of the content of total

mineralization on hydrogeological conditions.

On the basis of his own knowledge and the opinions of

other specialists the author arrived at the conclusion that for

the formation of basic properties of surface water the bedrock

is of the greatest importance. For the processes associated

with the leaching and dissolving of individual components the

-53-

primary factor is the soil with its sorption complex, which

pertafns to the bedrock. This opinion is considered by the

author to be correct also because the geological conditions,

i.e. the parent materials together with the climatic conditions

and the vegetation, are the main factors which determine the

character of the surface soil strata, or in other words, the

character of the soil type, which possesses (in addition to

other properties) also the properties of a sorption complex.

The state of the sorption complex and the quality and quantity

of individual sorbed cations determine many other important

properties in addition to the soil reaction. Due to various

climatic conditions the properties of the surface part may

indeed change, but the principal properties continue to be

shared.

Thus the soil and its influence on the composition of

water can be characterized rather as a certain active factor,

i.e. a factor in which the compounds change and are prepared in

a form which then enters water easily; the quality of the water,

however, depends on that of the parent rock.

There was no success in finding how the composition of

waters could be related to and depend on pedological conditions,

though the effects of pedological conditions cannot be denied

and there are many papers and essays on their effects.

Therefore in the next chapters we shall not deal with a detailed

analysis of the relations between water and soil. Instead we

present a map of soil types (Fig. 6) by means of which it is

possible to compare the conclusions, i.e. the relation between

qualitative properties of waters of individual rivers and soil

types.

• •

Meenozems and "Weed. soils [7:7 Rene/elm/5 3u.eozems L j Ave mounietin

wz.tzzed,sods - • et' es (ekele

(

al)

end pod2of s ils

Ataceete Soils

Aar of /floes egavale-ieu

-.55-- •

2. Dependence of the Composition of River Water on the Bedrock

The preceding chapter showed clearly that a relation

exists between the soil conditions and the composition of

water. After we divided (the results of*) chemical analyses of

individual rivers according to the more marked geological

regions, it was found that certain relations do exist.

A great number of authors dealing with analyses of surface

waters and the conditions under which the basic chemical

properties of water had formed, relate the chemical processes

in water to the bedrock of the drained area. First of all

the Japanese specialists confidently assert that the composition

of river waters results from the effects of the bedrock. They

arrived at this conclusion on the grounds of observations in

nature and laboratories.

Also in the Soviet Union, where hydrochemistry of surface

waters has been studied in considerable depth, many authors

hold the opinion that the bedrock is the primary factor

affecting the processes in water.

Even those Soviet authors who ascribe a great importance

to the upper part of the subsoil, or, properly speaking, to

soil conditions in the formation of the composition of water,

do not exclude the effects of rocks on the basic porperties of

surface waters.

*Added by translator.

-56-

To emphasize that the bedrock gives the main_characteristic /56

properties to water we shall present another set of data on

heavy or rare metals (Table 16), which are exclusively under

the effects of the bedrock and not external (climatic) factors.

The presence of a certain amount of such components in

water proves the effect of the bedrock on the composition of

water.

Also LE GRAND and MOYLE (59, 64) are among the authors who

are of the opinion that geological conditions determine the

properties of surface waters.

BAEGKER (24) and WILD and BAUER (65) are also convinced

of the influence of bedrock on the composition of water.

They have already discovered salt deposits from the composition

of water.

As far as our conditions are concerned, the author

processed the basic materials on the chemical composition of

waters of Slovak rivers (23) and correlated them to hydro-

geological conditions in Slovakia. It is evident from the

materials that the river waters have various compositions,

but they are in agreement with defined regions.

When analyzing the dependence of water composition on

geological conditions, it is necessary to refer to data published

by BEHOUNEK (33). Although these data deal with ground waters,

the effects of rocks on the composition of water are clearly

evident (Table 17).

/57

• 77z4te, /6"

-57-

ealfames of heavy edecuzeinglaisin waiv ( /net)

ificulece. •o »nee,. CU , Z/7, Cd, I'd, Li Ce Rd Ti 4.4> Ze Ou a, riyika

evens la- Bohemia.. a015 fib - - - - - q 0.+ 0, 0/2

/. ,..... Buchtormo e; eee., 0,02 - - - - _ _ _

lienchi (71 Zueeniséayaleerek 407 - - - - - - -

ieteellns oeiqienelo In- aa,eas of •i,ae miribie 41 _ _ _ _ _ ._

teGt£M9 C(/224/ 435/ .

ZelVa1/475k4reti e/ rate e f _ - - - - _ _

eyzeams clelh),...!filq. 44, «as of ce: mefehy 2,85 - - - - - _ -

A evilq ...e4 the eitea.., - 3, of del-Jos/1-s of Z', _ - _ _ _ 24/0 9

/1 speeiny-in ..ni.isk..._ 4.e. - _ _ _ eeepn ( K4rzakh...sfan)

, - - - - 4,0 0;06 - - thleoaa's ..5/2/eilys

cletrhin Is Ri Pen 5 - 4001 40002 0,00+ - - - -

cligeneee sl'beh'ef beerns/4/ng:)5 »ofe)

Titee, /7 e01rep0S70/7 Runninf ozei Pez+el'ouS

Semi- Com/totimc,i . dion, elitnitz. ey4yt -4‘45,z-b` 'elate- usign-p- ,WYP5=0»

eeectnbeczWon or essoived cqmp,?(Ails en„ 2'n /€.

Pay nesiolue, 2540 24,0 --2/40 /60,0 /10,0 /20,0 125,0 2 265,0

cep. eonguais. 1) 2,e 3,1 8,0 «3 i;eetca_s /, f Yle..4Ces

On 0 78,0 e7 - 450 62,0 5, 2 10,0 /28,0 76¢2.0

A180 50 25 ..... 210 12,0 3,0 ZO 2.9,0 128,0

le- ea 84,0 -IMO /7, 0 45 2f,0 /4,0 1 /04 0

/0, 8 ao - 40 ao - 40 ao - 4 0 0,0 __140 0,5 iitaces

Oh/orio'es-CI - 40 e2 - /40 40 *goes 5,0 4,0 /40

-5E-

This brief review gives clear evidence that geological

conditions have 'a great influence on the composition of surface

waters. One can even say that geological conditions with the

adhering overburden (soil) determine the principal and charac-

teristic properties of water, which change, more or less, under

the effects of other factors. A majority of authors is of

such an opinion, which can be considered to be correct, though

there do exist also other opinions that the composition of water

is not always related to the geological environment (65, 42).

Evaluation of Results

We shall briefly characterize the chemical composition of

waters of Slovakia with respect to the bedrock in agreement with

the hydrogeological divisions of the territory (cf. Fig. 7).

We have selected the following categories as processed in

agreement with the State Hydrological Plan (1954):

1. Crystalline rocks with quartz formations,

2. Granite massifs and Quaternary terraces,

3. Eruptive rocks of the Early Tertiary,

4. Triassic limestone and dolomites,

5. Triassic limestone and dolomites and the Upper Triassic to the Lower Cretaceous,

6. Werfenian layers and Triassic limestone and dolomites,

7. Bald mountain flysch,

E. Flysch with ample occurrence of sandstone and conglomerates,

9. Pyroclasts,

10. Holocene.

/58

frj 8 # Et1 8 Ile Fig. 7.

"

nydrogeological map - oi'Sroliakià Tas based on data of the Ystatny vodohospodarsky plan (State HydrologiCal Plan).

1. Alluvium with horizons of phreatic water;

2. Neogene with horizons of ground water in aquiferous layers - there are usually Artesian waters in the lowlands and basins;

gl, 3. Neogenic pyroclasts with fissure waters; .

4. Oligocene without water sources as a rule, Upper Oligocene with water horizons in gravel, sand and conglomerates;

5. Bald mountain flysch with fissure waters of negligible yield, conglomerates of the bald mountain flysch with fissure-semikarst waters;

6. Flysch with fissure-stratiform waters of negligible yield, flysch zone with prevailing sandstone and conglomerates with fissure waters;

7. Klippe zone with fissure waters of lower yield;

E. Upper Triassic to Lower Cretaceous, mostly impermeable, sporadically with fissure-stratiform waters of negligible yield;

9. Triassic limestone and dolomites with fissure-semikarst waters of great yield;

10. Werfenian layers, impermeable as a rule, in limestone and melaphyric strata with fissure waters of low yield;

11. Crystalline and quartz rocks with fissure waters of a negligible yield, larger lenses of Carboniferous limestone with semikarst waters;

12. Granite massifs in upper strata and surface zones with fissure waters of low yield.

-6o-

We have divided our rivers under study according to the

preceding classification so that the chemical composition of the

section assessed corresponds more or less to a pure geological

type. It turned out that in some cases (especially in crystalline

rocks and granite massifs) only a small amount of other formations

was sufficient to affect the chemical composition of water

considerably. According to such a selection of rivers one can

speak about the composition of surface waters typical of

certain bedrocks.

Tables 2, 3 and 18 present composition of water, abundance

ratios of components and ratios of componerits which correspond

to a certain geological bedrock. They show clearly that the

least mineralized waters occur in the area of granite massifs,

crystalline rocks and eruptive rocks of the Early Tertiary.

Total mineralization of waters flowing from these geological

formations is most frequently between 50 and 80 mg/l. As far

as the chemical composition of these low-mineralized waters is

concerned, it is most remarkable that waters flowing out from

granite massifs have higher bicarbonate contents than waters from

Early Tertiary eruptive rocks and especially from crystalline

rocks.

• •

nilc /8

6Mi oSilioe ts/crien, estxtioeS

uspendeç déoree4y/eal eeyiees

Tri i

Tri

Wel Tri

r.. ----I rota/ /frebecietios7iecz/ even., ez tic/ . . .. i a id te c. hand.; samfifine_ e, _ i at_40,9e j7e6s,.,- NCO; 80:- el- ce Ng' //a+ A' + i102

/tee icq, Ye

(mg/Il [. 1 , •

elZySlid7/1 177 G. g-oCée-S Élecck 1/ron4• 6,"ellron ice, 740 1,7 2e1 /4'o e, 1 ea 24 2, 1 3,.;" 50 le I /17 q « adel

, Z. kimevice 640 46 21,4 /1,0 4,0 /2,0 1,7 2,7 8,3 3,1

,Zrenetices ..- lean/ fe Maseives Perade. e. e.ve.-foNt. 84 0 12 443 4,1 3,3 /OA, 1,1 6,2 54 -

anal eduate/enevey Prieb»D de PribiNize.e 540 2,0 449 94 1,3 /14 1,2 2,0 2,2 4,0 tedeezees

eaidy re,- eliadey Okne 1./1 750 48 ea li,.e 3,7 es 2,2 82 8,2 /45 Remetrki , lifmre, egeloWee. eociess A'ike Wad Kemienka, 770 11 37,0 45 3,8 4+ 2,3 17 4,4- 152

. SiC" limeeiree end Reerca ei a/Ate/peke,/ Crecie, 2/50 /0,0 184,7 35,0 2,0 41,0 /2,0 - - 40

/OW/P.-S. e A/Nrka ii,Bie/iciach, 4/4,0 /2,2 2257 780 35,7 5e - - - - .3:à SIC ern »wee, zu,agioneki.Ceedi+,1upècr, 210,0 9,3 2fe 6 cso 4,1 740 /40 1,0 II -

eilea.dtet itS •

freed) h/i//1 71i1a70417171. reAl; l/ant/Zan • é• .. 263,0 11,0 289,0 .121 5,0 59,0 Me es 4: 2 Z2 AM•e5f7177e 4r7Ci _1 Labarge A Kerekorce . 238, 0 e7 /e,a .1.3;6 44' 11,4 57 6:1 e7 42

cony/cm:Aar-es

#04 cen e- /10//./20 4./.9kelb0y 2950 /1,0 20/,3 42,0 Mg 80,0 11,0 9,6 '4, 0 /8,0

Ael_f_e, .zon-e, ,Tobreneck, &Lek, 2740 - /47 2440 /es .Z 9 14,1 19,1 4,0 .zel 14,1

•f e nian Al gee 5

ass iC'-iirrYeSaiteal- Pernaï- in 1/ern42' 414,0 142 261,1 /149 2,5 - - - - - - '

cm c:/ Poi0e) ifeS •

-62-

While there is about 70-75 mval% HCO- in waters from 3

granite massifs, only 45-55 mval% appears in waters from

crystalline rocks and 55-65 mval%.from Early Tertiary eruptive

rocks. On the contrary waters from crystalline rocks have a

higher abundance ratio of sulfates than the waters from granite

massifs and Early Teriary eruptive rocks. Similar differences

can be observed with the contents of calcium and magnesium.

The highest calcium abundance in mval% is found in waters from

granite massifs, then from crystalline rocks and finally in

waters from Early Tertiary eruptive rocks. Magnesium abundance

is the reverse - the lowest percentage occurs in waters from

granite massifs and a higher percentage in waters from crystalline

and Early Tertiary eruptive rocks. It should be noted that the

SiO2 contents are very high in waters from crystalline and

Early Tertiary eruptive rocks and low in waters from granite

massifs.

Another more marked group is formed by waters from Triassic

limestone and dolomites with about 200-250 mg/l. of suspended

matter. The main anion HCO - represents about 79-83 mval% and 3

sulfates approximately 15 mval%. Very similar to the waters

from Triassic limestone and dolomites are waters in the

East Slovakia Flysch region, especially as far as mineralization

and the abundance of the main ions are concerned.

Waters with higher mineralization pertain to another

group of waters, i.e. waters flowing from the bald mountain

flysch, Werfenian layers, Triassic limestone and dolomites,

Neogene and alluvium. Plain characterization according to

-63-

total mineralization is insufficient as far as waters from these

bedrocks are concerned, and the contents of individual components

must be compared with one another. Considerable differences,

which are characteristic of a certain bedrock, become evident

when comparing the abundance of the main ions.

Waters flowing from bald mountain flysch are characterized

by an exceptionally high HCO; abundance of 85-88 mval% (the

highest under our conditions), but they contain approximately

10 mval% sulfates, 2.5 mval% chlorides, 68-77 mval% calcium

and 22-32 mval% magnesium.

Waters flowing from Werfenian limestone and dolomites have

completely different hydrochemical properties. These waters

are highly mineralized, but of the main prevailing anions

bicarbonates form only 62-65 mval%, while sulfates reach up to

32-33 mval%, and chlorides only 2-3 mval%. Cations in these

waters are present in quantities similar to those in waters

from bald mountain flysch with the difference that waters from

Werfenian limestone and dolomites have a higher mval% abundance

of magnesium.

A higher abundance of HCO3 and calcium can be observed

in waters from the alluvium.

Chemical composition of waters in other Slovak rivers

fluctuates within the limits set for the types described. It

cannot be assessed so unequivocally, because there always takes

place a sort of mixing of several water types pertaining to a

certain bedrock.

-64-

III FACTORS GOVERNING RIVER WATER COMPOSITION CHANGES /62,

Changes of the composition of water as related to other

factors do not affect only the total mineralization or individual

components but also the abundance ratios of individual components

of the total mineralization and the ratios of the components.

This relates to the changes within a year (season), when the

abundance ratio of a certain component changes at the expense of

another component. The change of abundance, however, does not

need to be in agreement with the change of the total content of

components (for details cf. Tables 6-13). The changes of the

composition of water are affected by climatic factors, sources

feeding the river, soil conditions etc. Since the conditions

or the intensity of the influence of individual factors are

not the same everywhere, the changes of the composition of

surface waters in individual rivers are not the same.

Changes of the abundance ratios of water components are

severely affected by the subsoil of the drained territory. The

effects of the subsoil of the drained territory are so extensive

that on the grounds of some ratios of components it was possible

to determine to what subsoil certain water belonged. Table 3

presents the coefficients of ratios of the main ions. Hence

it is evident how different are the coefficients of certain

groups with respect to the subsoil, while the coefficients are

only slightly different from èach other in a certain subsoil.

Various classification systems of surface water quality

have been designed on the basis of the ratios of components.

çe'

100 200

ion.51mg/1] _

250

200

150

'

1

: • • 1 • • • • . • •

• ' . • •

• •

J.. «

é a

e • , •• , • • • • • • • % •• de •

• • • • • • Y.

• . It 2. ••

: • • .

• • .

i

I 250 300 350 -450

-65-

The content and abundance of components determine utilization

of water and must, therefore, be evaluated. Evidently, the

assessment of relations between the components of water is of

great importance. The evaluation relations is also important

from our point of view; in the next parts we shall be able tc5

use them as the basic and auxiliary meterials for the prediction

of the composition of water.

Fig. 8. Dependence of the HCO - content change on 27d_ of the 3 water of the Danube

(A)- RELATIONS OF COMPONENTS TO TOTAL MINERALIZATION /63

As we have already mentioned, the relations between the

various water components and to the total mineralization are of

great practical importance, because first of all they determine

the qualitative properties of water. On these grounds, as well

-66-

as in order to collect basic and auxiliary materials for the

prediction of the composition of water, we shall evaluate the

relations of the main ions to total minei.alization and specific

conductivity in detail. The relations obtained in this way can

be used in conjunction with the dependence of total mineralization

on the flow in a river to forecast how the composition of water

will change.

Graphical processing of the materials indicates that a

linear relation exists between the majority of cmmponents and

total mineralization. Dispersion of experimental points is

relatively small (cf. Fig. 8, 9, 10 and 11). With some components

(SO4 ' Na, K, and partially also C1 - ) the dispersion is

111› considerably higher (Fig. 12a, b).

It is evident from the calculations of the degree of

dependence (correlation coefficients) that the coefficients are

relatively high and that the correlation is very close (cf.

Tables 19-22a).

The values of correlation coefficients calculated from the

formula

x,y (x- k") (Y. - 7)

t (xi _ 5-02 (yi _7)2 fluctuate most frequently within the limits of 0.7 to 0.95. The

degrees of dependence are lower for magnesium and even lower for

alkalis, chlorides and sulfates, but still they lie above the

limits of significance. In some cases they are so small that

one cannot speak about any dependence.

• 21i

s

I 13

310 270 290 330 350 370

-67-

eq./

120 a

a

VO

0

60

.---•"""e''''»elr'e!"--"e '

MO 1M 720 « 280 _700 .740 MO +20 MO MO MO MO Me MO 7L

Zilenefi l

eyeencieec-e, of Me aree'i-coofeeet 'c4ezesfe-oe 2j of the kveden, af Nibect;

!

1 o

• o o

? -t-- 1 o 0

o o

1

o

1 0 °

r o

• o •

230 250 irrng /1]

F/e, /0- D9 , 3,,./e,,,,,e 0/ the hieeà- content cAderiya,

• o„ 4. eV /he kveden, .Leîo,gec

I

150 170 190 210

54

Si

1 31

oe, 11

/65

-6e-

8 / 00

0

0

) n

0

?

• 0 0

0

? -

0 7 •

0 u

0 , 0 .

,

30 410 50 80 Xi[men]

70. 80 90 100 HO /20 130 /40 • •

Fig. 11. Dependence of the HCO content changes on of the water of the Rika Ri1er 1

The dispersion of experimental points is affected by various

factors (precipitation, soil conditions, water source etc.) which

act in varying degrees and invarious time intervals. But as a

rule they are not the same as those which affect the mineral

ization, which depends to the greatest extent on the two main

ions (IWO - and Ca - ). This means that in Waters of the bicarbonate-

lime type with a high mval% abundance of these components there

will be a good dependence. The functional dependence which

should exist between total mineralization and the components

which participate on the mineralization, will be disturbed only

to a small extent. •

ZjUng//)

,ezz,

7

5

.!• co. °%.

O

-69 -

60

60 o ° 0

o 0 o

o o o 0 o

40 o —00 o 0 0 .

- o o

. 8 o 0 0° o o 0 % o d'oô jeofe 0: ô e .9 o %°:.:, 0 0 o 000 0 .

ze 0 ,:, e0

o %0

0 04 159 200 250 300 8$0

17 .9oe-nelence 71 Me Sate-ieyntewt canyr-e,s iov)

eihk wet-fen, of Laîcmzeo Riven,

9 ._

B • 0

0 7 n ,

IS' 0 0 0000 0 °

00 0 0 .

5 0

. oè 0 ce 0 g 00

# ° o - o 0 c o o R

00 0 0 co 0 ° • 0

0 0 0 000 Or 0 0

1-3 0 e°•••,...: . .,..., <:.0. 00 . itc, 00 0 0 0

0 0

0

f 0 o ee°'

0 0 0 0 0

...... ---s.

0$ 0 0

0

0 0 : 0 8 0 °

0 C

a . 0c, .,., . n c

o7 0 Oo . 8 . Ï 0 o % n o ,lo. ds. 0

0 o o 0,... 00 % fa> e . ° 0 o o coax, 00 oo ° 0 0 0 . .

0 0

o° e o ."— 0 o it

o 0 o

__ .... -- • .. o

•—•3

t›,2

o

Ei[mg//1

7C !CO 1ZU et0

Fie /.26 — 1)2...dence- of Me dear cleat k.'"co■Wee -74

chernyes.0/ Me wa-ten, of Riker., ekeeoz •

• • •

ee encie»ce, cf abt.e../ea:Wons of walen, evmpo»enfa- ce 107(a/

mibenailzaWon /ternessioo) Tage /9'

Susp matter

Brat/Wove ,km hef

entee/a.e005 .-g,tlettiOn c I ielfe • .../.3. , "ten secieune

ex n i j cix cl, ex ees, 3,rx J. fm.r, 3 ey ± rxe E 4 e

9.e.far reice 2-i 70 29+ 227, 1 34,9 32,6 1920 31,4.9 57,60 /7,91 29,40 53,79 4134 402442 408101 ,9-4779x 4' 17. 7

.Cr'cen". /0 -e

adedili so eV 2349 340 340 14;90 24,4.2 44,40 1+,11 241+ 42,33 4919 401891 401110 ,y . 4970x - 30,1 dried i/CO3-/zi

77 299 /774 37,7 20,0 ' /2,87 20,72 -3400 0,72 /1,02 2416 0,942 4101917 403472 .9.•444.ex 4 29,3

fe/2-i 75 297 33,3 349 7,0 - - - - - - 0,290 40/113 exest y. 4/14 x - 2+,1

79 299 sag 37,2 6,6 /2,87 20,78 9400 2,21 9,62 6,63 41112 4 190014. 4014/9 ,y ,..4f84 x -

ee ry zi 76 300 /2,3 377 1,8 11,97 /46+ 1+10 0,48 .vd 1,44. aieg 404•16+ 419299 ,y- 40t7x + 4,2

X4g • /2-i 79 280 7,9 371 2,1 . 88,12 5402 /we 411 8,2/ 4111 4312 406641 4e$72 y - 8,0/1 x 4 2,/

it + / 4 79 208 4,3 37,4 40 32,17 18,41 97,70 496 44.1 2,19 0,109 gysoe 422+0 y • 0,01.1 x + 0,8

■■■

-71-

xek

àfieede.ece. aiieoect4b#s of Me. deeizwi 71 io»s 9.97 714

17`41 mieena/i2Sibn

eva.9_ (h,"e4i, foiet/ neyeessi,7) ••.

ettel-ehbeen n jregel...g54:Fie

d, J. 76+4 11 ,, J, 76+4 35, :,-,, f +o v

'/ /0 ) ISO .c.egt 4619 /12 /19,1 170S 1/8,01 107,41 esJ no,75 20459 •7124 0 0/77 70708 .9 • 0,807. • 87.37

/SO 447/ 172,2 /22 946 67,52 14,33 87436 +11$ 7106 12795 .488/ 70/2/ 70+84 .9.4‘63. • 79,/

CY) -

2;ffl / (e.: 150 4471 2470 /21 678 675+ 107,49 /176,62 1747 417 /074/ +9844 70/87 70828 9-0556.- 1 89 (Y)

i„ tee +42,1 238,0 /12 112 +772 9611 111/1 170/ 3174 6401 .0,817 0,0744 01716 9-7441.. 170/

1; , ..

lx1 / /V:- (so /13 4147 +7,3 /// /2,4 1469 14179 26907 1 /401 /44.1 406 KUM 40176 7/499 -4066. - • /7,42

ei(x) / /SO 4.421 +7/ /22 /7/ 871+ 1+9,08172,02 /477. 2794 .3711 40,711 70244 70922 6 / -0/04 •■• - 44 '

(SO

7+8 se1,1 57,1 /22 /49 eel 9904' /84/7 8,76 17 15 408 .7969 0,0116 4014f y.4+,/25, « 7,21

400 / /y(7. 150 447/ /8,1 /82 49 /04:27 /70,90 1/2,61 79/ en /Z73 .4516 tee* 4/5/5 y • 4029 0 • £22

4- .Z.

'(.) /N9' () (e) /10 4.42,1 20,3 /22 /4,5 estse 84718 819,14. 1764 17,48 3/.98 .0670 00201 0.. 1/ee 5-0,441+ + - /45/

,Peicendeece afkkaA'als V& eonizni f /;211.5 pi) it ite/ mine-reel/2.7)4. lei, ie/*Plet - - / 7151;er .0 . AC74; ft-Ég?).?.€

eatiOdah.oryWeezess.jee,t4t4i4e ■

1649, 3.44, ± E 4E ,./87 ,y•38,,4,tx -Rite-

i DV . .0;yr) 7+6 284 2712 417 472 2488 440/ 776+ 3470 5411 /0410 4(9f law gee s..aeasx •

169 Mt 21,1,1 +76 56,8 3127 14e 8981 77 31 43 70 7.9,4% 4 790 40167 7/067 .Y-4511. + 577

28/ ISO,S +67 178 4468 6772 /2404 26,66 ezie 75,88 749/ 0,04/1 7/602 1 9-7246 x • 443

2-e(..) / He - ,.,. e .en • 1.4-7 r0 p e r T e 0060 70140 1 y.76858 - 4,8 , w j (so f , e7I oeeeg -,... e.e . e.,•eo 490 sze /0,10 /9;22 «so 0 ,470 4

1. , ,. rn 7- I 0`, / ••,4. (e) /37 /89 30,4 4-72 10,4 4714 64/8 /9754 /799 .147.8 5477 7408 4 0446 gee* I 5+.4e82.• ee..e

re(x) Cl /7 274 78 4-7 4. .7,0 4414 67,80 /24,07 I 7,12 4/2 .716 0,451 40108 1 0+16 1 y -Cale+, + 4 1

(Y)

((,) / el' u) 16/ 278 6,96 46,5 9,7 2717 4716 84.7/ .4"29 9,68 1,7,87 7789 47190 70796. ! 7/4/48+ •• 7, 2

2;(7) ./ /y92; ' 0 /83 270 es 475 4 4 2469 6417 1/4.07 1,89 4/0 167 0.6/1 70122 4/3/6 3/.4012 1‘ - aof

2-1,.) 4.,, , ,71 279 45 .74 zz ++,,z 72,4f /Me 789 /1,28 90,56 qms 4 0451 • gm+ 9 - 7048+ -452

*

0 gb-attie, cot g);,...Suspended matt,er dried_ e .Suspended matter ignited_ _

• • •

mat

Ta t/e ea, cizAce alitecAges f zge. centemi ions on 710-4 mi4eesilizi75;en

(?ner../ //ega,e, teee ss )

eca,

/i. /n kaifriknka,

eeRReleteo 4, 11ReSien ,eisigerif fe .,,7 .,- j ,s, de ..r, e69.4, .3..f, J'9 eefy 1 3,..re ±1,.,b, Li- 4E

A7,9

•(xi/ecedit &du 241 837 89,3 246' 256 14,23 2.1;99 92,69 1687 27,67 .5461 4712 40187 0,0748 .9=0d:ex 1. .972 (Y)''

2((

O SI.T "efeneed. platePer •, - 21 8,J- ,/ 24.9 ee2 16;91 277.7 10,7! 19,82 14,10 4448 Cie 40218 41822 Y=afex + 2,59 gniteat,..,s9)

2-, , , SuÉ érel5e918

, eihx,,arie ,) ,8 21 240 14,7 fee 22,55 97,37 10,71 1Z 61 1,4 25 4883 0,0228 40916 y-e4esx+ fee

2-. / - 1(x)

/ #CO2

le 248 97.0 48,1 246 12,6. 1922 1478 2466 710 12,10 22,19 4881 499958 1/9109 y`e88ex 4 4- 06

2- -

(x)/ ..le (y)

248 g.?,9 141 2ee 4;7 242/ .f“0 63,29 4, 03 geg . 1,489 4059 09427 e47708 e=e8cx.42/

ze(x) / 01- (Y)

248 81,9 4, 7 246 1,', 2099 34 +2 62,97 7. 16 2,28 *08 4216 reaffl epee e=10/fx + 2,44

'x) /ce2+

(Y) 248 49 /1,8 2e6 ,es >2,17 2461 3e7/ e92 4.11 476 ee..7 8,0141 40,4e• y- .4'12#x +7.40

4x) / ,i 2 24 7 As 2,8 27. 7 42 17. 71 2478 47.1! 40'7 4 42 eef 4 690 48221 4‘74100 y =Café 2 x -488

(e) S.

I(x) /ive+(Y) 24e 849 22 241 48 19,09 2481 17,27 ye 409 ...eq- 44es 10111 41196' y-0,02.gx +417

Delebafeece; Vectee4.04ç0/S gle eieniee of ions De icia./ en:AedeePz494;en 220

ee4 event'« iMmeecieee 6Wie/ lineae, /ta45, . v de.getalion etfotesricn eet&?,s'en:

n ' I - 4 de .rx . 7.'84.1- . 35, ■ f:y 184,.ry My ±1 E 4e xtX/4'

. ( etect,4J-

£ (x) - - 21 390 272 eee „ref 22,// .16,26 69470 /4 78 2752 8416 +4759 48873 42200 se=esex + 48e / -(b )

4.(x) 7 s0+2- re) 25 190 07.2 fed? 9,9 42,46 84 11 293;3 8, +3 1497 46,e1 +ercze e /220 4+990 e=40fex + 1417

Z. 25 290 254/ 5/9 es;a /999 29,84 71,82 1449 /7. 76 56,29 +4958 40/1/ 90999 e=c,7se x - e8,21

(Y) .

'x) / Ce2(e+) 1.9 .190 646 57.9 8,2 .1623 59+2 /78,26 6,67 8, 95 2965 +47/e 80258 e420/8 y =4 ea x - /1,28

-73-

To find out whether the dependence does exist between /70

individual components and total mineralization, and of what -

kind it is, we calculated the probable errors of correlation

coefficients from the formula r

E = 0.6745 1 -x,y

We then verified whether the condition of reliability of

the correlation coefficients 4E.:4jx,y had been fulfilled. It

can be found from the materials at hand that this condition has

been fulfilled in a majority of cases, though the correlation

coefficients are different for individual components and various

rivers.

How individual components fulfill this condition can, and

only in a few cases are they within the limits of significance

(p = 0.05). Only in isolated cases are these values below the

limits of significance.

(B) RELATIONSHIP BETWEEN SPECIFIC CONDUCTIVITY AND OTHER MAIN i71

COMPONENTS OF WATER

Nowadays determination of the specific conductivity of

water is generally used when analyzing water. Many authors

ascribe great importance to the specific conductivity, especially

because it gives an idea of the total content of the compounds

dissociated in the water. On these grounds it is recommended

for checking changes in the composition of water.

2

• •

l eeeSçie/les" ce 14.e €eafio of spee.eeddligeivity 1

(a) ,(10) f/co; cpt. le* - 21/ oo, x/ x/ X/

0/ leafee_.

uncj

Lab ore c Topic RikQ Nitre Hron

0 777 0,5/5 0,767 1,056

a, ,26Z 0,524

0632 0,515

0 Bi-

o; 160

/19 a/25 0/06 e 1 •1 0,115 0,166

0,022 0,027

4022 0,060 0056

0,037

a/76 8/71 0116

0,112 0,127

4044. 025.

0,052 0033 004.6 0,040

0,057 0015

01'1 0,039 0,042 0,042

0,015 4016 0,01+ 0,022

015/ 9, 019

046,

1,082 toes 0,971 1,232 Za00

4 se 0,6/3 8, 66! 0,527

0,566 0,546

• ----- - -- Suspended matter dried B = Suspended matter ignited _

-)F A

doeek/mYs Rah.° of reeSè. coeirizeeikily (7e) am/ mote. impoeileet Psealeie, eomponees

(a) Suspended matter dried (b) Suspended matter ignited

*Suspended matter

4e-ea-ien715 e. geg-Wo eye ree0" e.. coeciteeiSy a.bey dome

Corn/Jo/le/71"S t7e hIcrAteee ;viz% ites,e,e74 el. ereeittecele. O7 G.

23

7721.P-• 24

&zee. Coefficient el /he Rai% iFt.-Cede/teell. zee !row en -teed/a-1s e.,..„.....„ ean._

0 44 7,1 z.1 44 44 37.541 .5,44 /10 41141/15 /1,144111 11145177 le1-,714 leers 77.5 117e740114417.117741.71017444,71, 71.744V 1404174f 777+4444 #414441 417.3e1 f0.4•77 #474e711

7

4757 4700 4751 4701 4457 41(4 4472 7.?17 4I01 4477 4104 4 171 170 4711 4117 1,114 4111 0,711 4112 4711

, 4+75 e5,,, 4100 4533 gel gait 17/4 45zi 447, 400, 4701 4141 ,15.11 4117 4111 427/ 4001 0,111 11/1 1157 I ol, er0e

I, / x • 1,011 1,011 1.071 IOU 1117 ell , 4)77 4557 144S 4174 1150 en - gas au - - - - -

et 4110 4111 WS gas gas gas gas gs» gat gas gas 4711 4715 4506 gm - - gas - -

/l e/ X. - - gas 0,101 WI gad de+ dad 1144 407 lei 40# . use WI 4111 4/a - 4747 - 4717

-N, .. . - - 0.114 Itist «$71 0,13.21 41/4 • 4521410043» gas 41174+11 1,01 4111 4101 - 4111

-Ili .ii /ee. - - 4007 gas es» , 1,505 gas . tra me gas ee4e eeee ae« «et, «01, - -- - •- -.

HCO,yee -. en, gees Isi. 0,141 4M gas gar 44a . gal 4 1» 4774 404 , 4571" - - - - -

, 4 3Vet. - 401 em /,/#7 Iillf 1,111 11+2 1,015 4110 1/40 1,111 1101 4/44 - 4001 .-411/ zed), du+ um 1042

.8ify 0.e., . _ .. 4174 goy dag 47,4 4775 41f7 gas gas 0,047 MIS 47+1 4177 ea/ sae gas 4517 4114 4771 105 Riko

le /7,:e - pur ear 1,405 gogir gifir 40ee egkr dad ye um VW gm tar dad 4115 4171 401 1111 . end

Neer / pé.", • - WI 4541 : • enr gas deilf 4114 is* a« e+a ma 041 • 4+07 4444 4411 1,441 1+17 Off 1111 100 I

-75-

A coefficient of 0.75 is suggested for surface waters to

convert specific conductivity into the total amounts of

compounds dissolved in water.

While carrying out our studies we arrived at the conclusion

that such a conversion factor related to the total content of

compounds dissolved in water cannot be generally used for all

types of surface waters, though it is more or less suitable for

a great number of waters (cf. Table 23). We have found that

this coefficient is different for different rivers. In the

case of waters from the Early Tertiary eruptive rocks, i.e. of

waters with low ineralization, with a different abundance of

ions than is usual in common water and with elevated SiO2 contents, the coefficient exceeds even the value of 1.0. It

may even occur with these waters that the coefficient reaches

values around 1.5. An elevated coefficient indicates that the

contents of dissolved compounds are relatively higher than

specific conductivity (would show)*. This means that the solution

contains nonconducting compounds which increase the total

content of dissolved compounds, but do not take part in

conductivity. According to the preliminary results it is most

probably the content of 8i02 and tts abundance in the total

mineralization. Such an assumption has been confirmed not only /72

by the Sio2 content in the waters of individual rivers or types

waters, but also by the changes of the Si02 content in one

*Words in brackets added by translator.

-76-

and the same river. Such content changes depend on flow changes.

We have divided our materials into several intervals according

to increasing flows and have found that the coefficient of the

ratio changes quite significantly.

The coefficient value increases (i.e. the content of a

certain component and especially the content of suspended matter

decreases slower than specific conductivity) with increasing

flow rate. It reaches maximum values within intervals close

to the mean annual flow rates. At higher flows it decreases

again but there is no longer such a regularity as at lower

flaws (up to the mean flow rate - cf. Table 24). Hence it

fallows that the coefficient which is generally referred to

11› cannot be used for all surface waters, but must be calculated

separately for various types of rivers. When the coefficient

is to be expressed with higher accuracy or used for more

exacting purposes, the change depending on changes in the flow

rate must be taken into account.

We have evaluated the relation of specific conductivity

to the total content of compounds dissolved in water or the

relation of specific conductivity and total mineralization or

of other compounds to the flow rates. We have found how the

changes of a certain component depend on specific conductivity.

With a relatively high probability we can use, therefore,

specific conductivity as checking a given kind of water.

We shall.now turn to the relations and their main character-

.,

istics for the main components of water in sonie rivers. The

correlations between individual components are not equal. They

-77-

are closest as far as the suspended matter, total mineralization,

bicarbonate and calcium are concerned. They are looser for

other components, and in some cases one cannot speak about

correlations any more.

It becomes evedent from the graphs that the dependence is

linear, and we let ourselves be guided by this when calculating

the correlations which are presented in the following tables

(Tables 25-28).

From these data it can be concluded that the regressions

of a certain component are different for different rivers.

Before they can be generalized, further research is needed

even with respect to the subsoil.

(C). DEPENDECE OF CHANGES OF THE COMPOSITION OF WATER ON THE FLOW /76

When we characterized the chemical composition of water

with respect to various time intervals, we saw that the changes

of the composition of water are affected by the seasons. In

addition to the effects of the seasons following more important

and longer lasting climatic conditions and the effects of sources

feeding the river, the amount of flowing water has a great, one

can even say a dominating, influence. To be able to say that

there is a correlation between the flow volume and chemical

composition of water, we must prove this by using the materials

obtained. If a correlation does exist, the nature of it needs

to be determined.

kiellate4CE. /4e, Sfedecviees Ivelee/t eaittfraitereiS o4 Sreee./1/*e era4cietc,f/i/ify (bia/Atee/t..(fetese/;v1)

C7/17

Sum,

eiirloyra t kin /87/

leieneeictite ./V, preefsiin etrarahark; e e 2 g dx d, .fx 464.4 S ,f, .15, 1,64.1:y 31 , ..t PA., y F 4..e-

e/x

90 299 224+ 14,4 22,9 1402 2411 14,06 /7, 37 24+1 Mil 49+9 401+20 4087/6 3, - 0,60613' x - 46 fr, 1 ecv &wit. let) //CO, jeleceeir

/23 283 /74:7 23.9 /z.., 2481 I4, /2 02,41 . /0, 91 /7,4/ 1486 tree" *72217 408048 g-0,+0494 x +90,9 1 efeter7"Y;i

co yeedeter emieutfy.,.. 78 Ate +9,7 2t2 6,2 tee. 3423 See 1,6-/ e net 482+ 402162 .4/1240 y .0,14612 x + 72 ',ley (x) - -

Peertienee. et alkeets sedee- dent,e19/7e-471S 04 se•-cfyie. co/totee://i,ily (;friel//ineet .eeze (ssiew) Tadte- 28 Rime.

• Nitre 4 A/To/a. /1e. fee5.7,,w

/2 ji 0: d .s.,

,ezilgiien Étetteelete2/) :y' „ 46 4. ,I4 . 7 Sx J 1,144 3 19 ± tl.,4, E 4•E d

/ use.Ald.ed e e

Y 'erx,yi(x-R)+.47

/

ee..,e-yee/", P. it,ec./.98 4147 2149 127 92,8 6445 1/8,0 209,31 1497 14/0 /12,0/ + 480 0, 0/49 40672 y-46/2 x + gem

e...

gîPii-lii.:2 115,2 /2/ 91,1 7+,90 /22,94 224,70 97,79 6,91 115,29 +47«, earn 40J21 ,y-tZ.399 ec + .49,5/ (., (ye ... ...,..

,gp ft. e d fereern-s /15 +442 2312 /21 «a 74;90 ag 84 224;70 37,70 41,93 1.19, /0 • 4 zei 40287 40129 sy a. 0,891x + Seer

(,, (9) -

o a/ e 0

(x f (v) /9/ 419,7 46,2 /28 /9,3 /13,10 04/4 344.10 /1,79 /9,32 911+ +0,464, a -tet , 112 y - , +8 x + 29,19

eteive .e/ el - /98 +/47 SU /27 /Z9 9599 /4491 25758 «as /9, fet ..gwe 4- 0,719 0 019/ 407e4 y -4/02 x - 8,70

(x) (9)

grefece/ e02+ /99 42‘4. AB /26 /48 .99,01 /37,84 212,11 /2,1,9 19,99. 86,57 +47+9 402/7 40880 g0,/09 x + /429

(x) (9)

*eider 1/92+ /87 +42 /40 /25 ef £'8,80 18072 29400 4;0.9 4/9 »,87 + 4027 40299 4/1X y.40,7/9x +18,62

(x (9)

(Zee1 mil.CY) /59 ++2,2 /437 /2+ /4,0 104 0+ /7163 212,12 /471 /el 1476 + 414,1 40174. 4/499 y - 408/9 x - 7,87 i

eeeee. e" i CO /59 ++2,2 49 /2+ 4,2 /01,09 /0473. 304/9 2,41 SW 142! 4' ere 4 0114 4/41! ,y-401•97 x - 8,7/

. • . . _ _ • •

jtlateq(e/Ice al 14e aleled7.4.40//S of th. eeeeieweeeS. SAec/)4è ea,74e4C7iii.« (7i7k/ /Moe?, eft, eS9/;ey)

even , Leborec echo/one,

TaXte...27 [75-] ,

emite4kPnReresse fteetion... .

•n 2 , dx dy ■rx /, 6# 1,,„ 3 ..t;,, ..rs, eess, 8 sy ±I f . hr

x./.9 .9-±,4

all • n.c. e d ma t,te r 2/9 260,2 206,6 ,s0-„5 ,g2 3974 6-8,12 118,22 24,57 40,29 7.7,7/ 47/6 0,0829 413/9 y -445+ x +.9.9,1

yge,•8 12;71-e, e „ -; - 21,+ +6;28 74;26 /31;94. 2143 44,71 76,29 45.09 0,020/ 0,/204 y- 4120 x + 14 5.1 kezze -rem •r fe it. f .";. -(9) =.,e I/CO; 206 274+ /71,9 478 249 1427 5449 /08,8/ 22,02 341/ 66,09 4647 4027! 41492 y-0,892 x + 944

-trek/ 092+ ey) 22/ 2140 +78 55,3 49 41,9/ 9417 /25,42 46'S /49/ /9,01 4888 40239 40819 y... 4109 x + /9,57

y 278 259,e 4. eV 2,4 4718 7754, 14484 2,05 e38 6,15 0:s/0 0,832 4/829 y- 0, 022 x + 2,4 Po (e)

slyenCifenCe 4thieleer 6oi'S t Wedelew demlepeteis evt .

eandeceliviiy ( izeAtigfression)

4. 21

,- f ea.4■7›../

etunda 1 e i r h, .

.1;‹ 464. Ix 3 Sy Sy 1,64 # 3 S Ey I. r.ye #E entefiegrei.,) . . -

dx err x/y . Se' (r-9) •i*

u.spmIded matter e qi 2ga e0 83,9 23,9 .10,6 21,27 29,22 84,11 /5,35 23,/7 46,05 4568 90268 0,/066 y. 44'08x + eie

- -sf . l • m- er 1 ni e.

, .1-5,8 21,7 /4,3 21,07 34,55 87,21 .. /1,73 1924 lee 9173 9020 91056 y ■ 4319 x + tee . . hi CO, 48,3 2.e8 /3,3 14,9/ 23,47 +2,93 .499 14,59 26.67 4828' 90124 0,0492 y -0,51+8 s + e, 58

(e)

293 93,4 /1,7 2.e9 1,2 447 28,65 12,4/ 217 2,56 6,ef 4750 40222 40888 y - 4 093 x +9,78

/y.9 2+230 83,6 2,9 28,0 /,2 2403 .7+,&9 63,09 0,97 1,94 24/ 4187 40280 0,1044 y - 4,427x • es-9

(.9)

4/e t 292 13,1 3, 2 2e. 1 4 2 23,99 33, 16 71,61. 4/0 e.90 8,40 4+05 4 0210 4/120 j... 0,011 x *1,11 i*el(x) (Y)

.Defreinience- .71 etee1VelS'oes 7itgeeziee, diereoeenfs e fiew egidee)

77,1 4 n pen «le teeeeession) 3rQ1.:r4ome , k,n /6'71 7;a/ei.27.

41-1,4..adec:it, n' Mg 9 /ay/ k

. . gef-.2e5Slon 0 "on

log o non /og ± r, r yé- etapided apt Ale (e ,,,./..r ) . (ems)

e (4 123 429672 2,ea /2 -4/72 40/5.1.6. more -9171 etheff 916516 . tu - exiled nrat,t,i.- (, 80 3,2340 2,15698 -9281 1, /2228 /se e - 0, 612 4 0411e 4/8er 3(4) . 4/824,9 x -" Y1

e (x) / eco; 153 427567 2,2;203 74178 2,854e 683,7 -9683 902905 41/616 e ■ 653,6 fee'

le)

47(x)/ .1*0!- 78 429729 95066/ -928t 441708 279, 6 -9147 401319 921152 ye ,. 273,6 f gee ' • (g)

e / , (4 / c,- (*.y) 91 3, 2951/ /,69945 -9/6/ 2,22995 /698 - 9 55.t 905/91 8, 20792 e. -1648 x-ate/

79 429152 2,47268 -9190 3,0986/ /241/ -9618 4, 04500 418000 ,9,t =/24.9,/ .i."" i

;6 de.44,-ewv/5

ete ,i_Su,spnded matter r-7

t-J

-80-

We have plotted some components on graphs and found that a

relatively good correlation exists with respect to some of them

(suspended matter ) HCO3' Ca2+ ), though quite large dispersoons

appear for some values. A detailed analysis showed that the

dispersions are caused both by the flow trends and seasons

(especially withthe river Laborec), and by characteristic

seasons (especially with the Danube and Rika), i.e. the

seasons which are related by water levels, climatic conditions

and time.

The division of the material is based on certain trends

during characteristic seasons mentioned above and subjected to

detailed analysis.

1. General Correlation of the Chan • es of the Compostion of Water

(Entire Complexes of Observations)

Graphical representation of the materials and knowledge of

the dependence of changes of the composition of water on the

flow indicates that the dependence is hyperbolic. Using the

method of least squares we have established the degree of

dependence, which we have expressed in a correlation coefficient.

This correlation coefficient obeys the formula

2(log x.-log x)(log Yi .-log Y. ) x,y

V2 uogx._10„0 2 (logyi - log y) 2

where x. is the flow in individual determinations and y. the

individually measured water component ( HCO3' Ca2+ etc.).

on/,nez/t, tata/ Req4eSsio

• ., 4c/7c/en ee, et irif-eieaAees- lvajett eampoeenis o,, ee,t,w (4- ei'Vete) Ta-Wei()

eortnetzh'on_ . /cg Fr • /4947 efitessioo eeect25.04.

n k log Q • num. kg g t rx,y E. 4. F Y1/10/1/i/leae.) • -,: . x/e (4 m'Ys) (e/e79 r

- , x-"s* ' x

44;eacleik/Vy /.94 4/9306 2,60839 -4294. 2,95037 8/3,2 -46/4 40299 41/96 si .9/82 ()

e :bus na e d matte -424+

2,34254 -4254 Z952.39 7//,4 -499+ 40253 41082 8M: - 7//4j Dei

47 • il, - u e d matte:- -42" 2/4 4/7543 2,3504+ -4214 2,69403 4,93,1 -46z9 0,02.90 4/121) yza, 4,93,1 x

..J. • _ -- :Ce) .0i

a

CO; /fg /,/e9/9 2,39420 -0,31/ 2,72714 .334,4 - 0,6+7 4431/ 4/24-4 yene 574,4 X-0,311

19 (y) ( X) /

0,- 19

42 (4/ fo . (y) 209 /,16/60 /,‘5614' - 4/90 /47746 7.5,./5 -4.427 40312 4 /52,9 yje - 7.5",1.5 x ‘,2-

e ci - 2/5 4/74es 452759 -0,49+ Z/0713 tee/ -dese2 40239 40556' y,, /24/ ,r-ee•e*

( ) ( y)

Q 2+ -0,202 205 4/7971 1 10033 -0,297 2,Ieeco /4' /, 4 4609 40290 4/M4

(X) (Y)

e I+ /99 /, /6730 1/77/7 +0,03/ I,14090 /343 4409 40474 4/9/2 8,,+ .• /343 x*et03/

(X) (y)

e -0,0fS

• Me .' 159 1,1559* 4/8359 -4sse 412493 664 - 4540 40979 4/5/9

( x) (9)

Q e 4 /0•9 tese. 4. 75324, -0,372 1,/1261 /3;23 - 0,5/4 40898 4/172 9,+ - /5,23 x-4.372

(x) (Y)

° (X)/ 2 /G/ 4/5234 2,62649 -0,3+9 9,02901 /096,7 -4709 40204' 4/816 yE,

(x) ( y)

Oeteemeeeme atfee.ezies me7reif,evierpanen13 0/1 Me 'eh/ 1./4ee) zwe, . ,.

/47?'ch44vae rtaidieea 7teeie ,eeet essie

gette46.011 /1 • / y 1 lof .57 k

/031 a num. log a ± /; f 4,e- nessien frete,, .1

• r eier,4- ) , - ••,. y (e?

a ,7,373-) (.9,,,w) y ...),

3/9 490320 2,41249 1 -4/32 2,312/8 340,9 - 0,660 4025/ 0,1004, y - 9+46 Peen ,i,,./_:_42,

42 . Sus '

pend- ,4--e rnaeuÊr -4,0z ..' dfl.aot . 13/247 I -0,082 I 2,39799 249,1 -0,642 4025/ 4/004 s'Ai, - 2+9F x °'

- 4; .:tuspenciL447mq2-4r. -0,013

,) 2,06/29 , -404's 1/3799 /3Z4 - 4861 0,0372 41489 yrre ' %ni twit) _ k

i )/ M-03.- (y) 100 40356/ 2,23232 - 4/40 2,3493/ 233,5 -4719 0,0202 80809 y,,,,,,i . 223,1x-4

0 -1

/ J'Of- 21,6- 4 9391/ 1,49974 - 4043 I,5/887 32,39 - 14,s, 404/7 4/609 9r; - ' 3246 X ()•

-40+3

x ' (y)

-- 260 4 92719 4924/0 - 4/04 1,02063 /0,89 - 0,337 0,037/ 4/494 „gr,- - /0,39 x 410+

(4) 0 '

''. 219 0,929/0 1,07353 - a /2/ /,79199 6/,/ -0,674 0,8329 409/8 »il* ,.. 641 x-4/2/

/ Ca',

(x) (g)

0 „,,,,2+ -0,166

(x)/ "' (0 159 0,929/8 49/29/ - a, ae 1, 09676 /1,96 - 461f 40393 4/172 y,,,, -. .. 14 66 x

-4292 (x) / Mg + /96 0,81011 0,8253+ -0292 1,07393 /1,89 - 0,509 487941 0,1+72 9,,,,Q * - /4/9 5 (9)

Mi 0,81286 0,47057 +41/9 436993 2,34 + 0,088 0,04.89 4/992 et.. . 2,34 x-4//.9

(X) / •• (Y)

/ -4/2e ' (y) ; 2-, (8) 166 , 4 8343/ 2,41411 - 4128 2,56077 363,7 - 4796 802/7 0,0994 ezi -363,7 x

• • • eudedions ihe aeaca•i4kws. ielviere do«peeenie ,t4.01 me flow «31-dee) ?Via «4/mean eereessio#1

eke 41 ("einianka..-

Zi‘le. 32o

belittle:eon ' /09 ji /09 1 ee62Non df/helepecee,

n k /ay e num. /ay a ± re,1 4.E e/..q (4 /es) (y/m3) eefeesebil .9' ek e

/Spe

e (x) f.,,„1„ àdi, sac 0,01+7790 492922 -42er 49,2220 ne, -‘9,5-24« . 40242 0, ff20? „4 ■ e

".f

(2 Suspen.e ed. matter s e A:41"

ex) / T;ieti iy) 311 0:0190070 1,94779 -414.0 1, 91040 89,21 -0,123 40179 411/8 _ye - e ,

Q 4 ,x) , • • s.Ped1:15,Le d.e2;teaor 73681 -0/.92 Z73907 etee .-0,172 48295- 4/180 Fez,. - F 94 x

' el •,._

e-0,381 - '

/ fiC'0 - 292 0,0225630 167102 - 480fe 487790 4.7,6.1 -0,701 4828/ 0,0804. g,,,.. - 47,03 x

[,k) 2 (4)

.i.' C

-0,171

x)/ ' ' r 94. (e)

.32/ 0,0118480 49595/ +0,175 495(189,01 + 0 284. (1,084.8 0,/284 gai. ... 9,01x

e 0,- 778 e1 33.5* 40071792 464125 -4,778 • 484,483 44.5 - 4 led 488610 4/4+0 yci_ - 4,40 x

(x)/ - (91

Q ,2 / CD 337 40652468 1,01138 -4219 105642 Mee -8,184 8,0242 48906 y„•• -11..eqx

( x), (g)

Q I ii, Z . 3p, 00.34.760 041826 -0202 0,4.1937 2,83 -0,272 46,318 4/272 ' .9,7,8• - 2,03;4'72 (X) /

e , No * 292 i 40818100 4+68/2 -4102 440870 2,94 -4180 4088/ 0,1524. ye , . - 2,94. x-4/02 (.9)

193 90.011888 0,44420-6 -8,/414 44,4813- .9,44. -4895 48..194. 41578 ye . - 2,09 5 / 141

(7) ,

_ 0

/ E ' 24,9 40295920 1,91491 -0,10'8 f, 92012 88,28 -0,4" 00327 0,1304 yzi - 88,28 x-4 me

x) t (e)

7.;a11.e. 316 4Itgght. h.0/1 aie,, etheekleth-ClIS serif/de-9Z Amtle011eek adhy

vmz,z_ 14e-fiev m3Atee) bed non h:eevt, !feu ssidm

411«/475en n /09 .0 1 09 1 ePeek Cl /,,e num. log rk, 4*E. . Ref,t0.1S1 '

(a ',rib') (ems) e o - .y.cx

7Surri„ bpended matter ,,, . • _..1 21 080744 44.8112 -0,121 41e72/ 20g7 -4720 40171 44312 y,,...266)7x-."" -.7

eoly) .

(4/ 1800; 21 460344 2,31/94 -0203 2,30301 2042 -0,810 9.0/02 4008 4,„..,;. -2042x-el"

- C9)

(7) ..10:- (0 25 460744 1„55611 - 8)115 1,41442 241 - 0,287 4000 0,1956 .9,e - 241

x ce" 2+ 460013 1,77021 -0,0014 1,719/1 if, - 0,541 One 4250+ .9' ra t. ••■

( Y)

20 0,51201 2,6120! -4e2 410789 1249 -47901 0,01/6 01204 . ..37/,..0 k - e fee

-83-

From the calculations of the degree of dependence for the

entire complex it can be concluded that not all water components

depend equally on flow changes (cf. Tables 29-32a). This shows

that the components which are not related to the flow are affected

to a larger extent by other factors (soil, climatic conditions

etc.).

For the river Nitra all components except SO2- depend on 4 flow changes. The explanation is as follows. Because there

are high concentrations of such'components (chlorides and alkalis)

as are affected in other rivers by precipitation, the mecipit-

ation exercises a small effect as far as the increase is

concerned. Due to this, the changes of increased concentrations

depend mostly on flow changes. (This paragraph makes no

sense in Slovka - translator's note).

.In other rivers we observe that flow changes depend on

specific conductivity, suspended matter, bicarbonates, calcium

and total mineralization) In the river Laborec they also

depend on sodium, and in the Danube on magnesium and sulfates

in addition. Magnesium and especially sulfates, chlorides,

potassium and sodium (the river Rika) do not depend.on flow

changes. Relatively high and at the same time fluctuating

contents of these components in precipitation waters are the

reason why there is no relation between the contents of such

components and the amount of flowing water. The content of

such components except sulfates is generally low in river

waters. Their high content in precipitation waters affects the

variability of certain components all the more. It is especially

O

-84-

evident in waters with low mineralization (Rika). Here even the

content of components (sulfates and potassium) increases with a

certain flow increase; however, it decreases with an additional

flow increase. On the one hand this is related to precipitation

(intensity and duration of rains, intervals between rains,

direction of winds etc.) and on the other hand to the season

and soil conditions. Relatively speaking the highest contents

of such components occur in spring at relatively high flows;

they are lowest in winter.

The values have relatively large dispersions under the

influence of the factors mentioned. Correlation coefficients

are quite low (especially in the river Rika), but they meet the

conditions for the probable error of correlation coefficients

(cf. Tables 29-32a, where 4E )

After we established the degree of correlation, we calc ated

the nonlinear regression. In the given case it was a hyperbolic

function. Its general formulais y = a.xk and "k" obeys the

relation

k =, 2: (log x . - log x) (log y. - log y) i

L (log x . - log x) 2 i

and for "a" there is another formula

log y. - k log . log a = xi

We have calculated the parameters of the hyperbola and

devised equations for individual components as well as for •

-5-

total mineralization. The equations show the dependence of

changes of the contents of components on flow changes for

individual rivers (cf. Tables 29-32a).

2. Partial Correlation of the Changes of the Composition of Water

Graphical presentation of results showed a relatively

large dispersion of individual points, as we have already shown

earlier. We searched for the reason for this. We classified

our results in accordance with the seasons and calculated the

degree of correlation. It became apparent that the large

dispersion is not caused by the seasons, because partial complexes

have even lower degrees of correlation. Exceptions were found

in fall, when the correlations were closer than for the complete

complexes. We classified . our materiàls according to the flow

trends (in the river Laborec, where we had limnographic

records of water level changes) and according to characteristic

seasons.

The following seasons are characteristic of the Danube:

a) A season with prevailing participation of glacier and

Alpine melt waters (end of spring and summer). This season

is characterized by a lower mineralization (decrease of

50-60 mg/1.).

b) A season with prevailing participation of pore water and

increased participation of ground waters (from end of fall

and winter to beginning of spring) - and increased mineral-

ization.

-86-

The following seasons are characteristic of the river Rika:

a) A season with moderately increased water levels which have

an increasing trend. Total mineralization is elevated in

this 'season.

h) A season following prolonged high water levels (April and

May) after the melt runoff.

With other rivers which have a higher mineralization we

do not observe such differences as concerns water composition

during certain intervals of time and dependence on the source

of feeding water. Here the differences manifest themselves

rather in the trend of the flow. Distribution of the material

11› according to seasons did not yield positive results even in /83

this case. Selections had large dispersions and looser cor-

relations than the entire sets.

Fig. 13 and 14 present both the distribution of values

belonging to a certain selection and curves which show the

dependence of changes of the components mentioned above on

flow changes.

Thus we observe two patterns with the Danube. The upper

part of the material (the first set) comprises data from late

fall, winter and partially also from spring, and only a few

data from the summer and fall - and those primarily data which

were strongly influenced by pore water. A slow decrease is

evident in the first set of individual values (the set of higher

gl, values) with respect to the flow increase.

390

370

350

330

310

290

230 800 1200 1600 2000 2900 2800 3200 3600 9000 9900 9800 5200 1142W 0 [nee]

270

250

•• 1R

lie h.w. • ora

.mil .

iimagi: iii • ---• ma: • ,

. . 0

/83

-87-

Fig..13. Dependence of the 2:1 content change on Q of water of the Danube

I Season with prevailing pore water with partial regression,

II Total regression

III Season with prevailing Alpine waters with partial regression

Already greater differences as depending on flow changes /84

are evident from the other set; the correlation is quite good

(cf. Tables 33 and 34 and Fig. 13).

The tables show that the partial correlations are substanti- /86

ally better than the total correlation and that the regressions

differ from each other. The curves of the first set of data have

only a slight curvature and in several cases they almost

gl, approximate linear correlations. The curves of the other set have

steeper slopes.

ee. a .

to 18

(..

,...„. . ,....

m .

.

littim% En is

/ —

e') 120 — 0 20 40 60 80 100

row. e [ ep] 160 200 /80 120 14-0

380

360

340

320

300

280

• esie

24-0

220

288

/80

160

-88-

Fre. 14 - Deffencie/We 0, Me 2.-1. e-42/274eePeS c6a./27e, en a of tverfett Leae,,tec

- eleclinia5 inenci

/7, - rising trend

///, - siagd;zed t‘nencef 0///011/

- eth cemrdex ey‘ oÉSeeva7Lio/25

-89-

Apeeleece eillete61es_e_metdee1t comfiemem'S Pe Sreei:rlavo r km /cm (egutits..tAten‘rwan1A.e102.44irm1 irrv )

7.-tee- 33

?1/4i7hl (a eyded) •

y- - /0

d i i _

eceAdetliion mg ;(,- 8 ,I_ &of:env ,eciscailoev

n k /088 a Pam. logo ± iky f 4. Le /

xty (4 mYs) (gier') vureatem) y- g • x *

Q Msite42-', ,,) y *3 3,2873.5. 2,49096 -0,/64' 5,03110 /071,0 -4701 48+219ese a ease y- /071x 41'4' , 4 ..rdit,

--a . - --Züspen-Cee (x ) Jett er ( 9) 8.25909 2,40710 -4/00 2,92790 84,70 -4713 404•94.0 4/9760 ,y = 847 x

a - (X) / Nee; 7/ 47+129 2,2978:1 - 0,1+0 8,0(964'e 2,7+14.8 117,4 -48708,0(964'8,0(964' 0,23916 y - se, e i °'

(y)

12(x) / re

2i. 3f

(Y) 4 278/2 47+113 -4131 2,49901 114,,e - 0,9+4' 44829/ 4/3/24, y - /54;6 x--"se

e Z .,:, 33 3,2124.8 2,1/748 - 0,1+7 2,981+1 989, 8 -0,801 407.1-29 4201/2 y -, 889,6 x

(X)/

(9)

t2 ulGerg.L,ey ette7i.edee,1/4/75

ezik:

rotirlo

of etelexpreel77eS 4-2 eziee.)

r km 187/ (betereal --tunt-4.ecvilhePA.0.4diefret.)i-ev foed-io-te /1 ) 1 J '' r

&LIU/cr.:Lion log .i." log 1e /0

ellaciBio-nr.elieeeo-X,

. g .t r F f zr /7 k g own lo o e/se le /7,3e) ( g/e13) Inocifflean) ..9- P. x k

e 79 3,302/0 2,427/1 - 0,/71 2,99/67 881,0 -4659 405,287 8,/7/49 9- 981 (x) (9)

79 spent e • -0,zet

(x) /matt axe 3,3074, 7 2,31849 -4 282 3,24912 /770,3 -am 404,290 4/7/80 y- 1770,8 x

) I/CO; 8/ 9,30/93 2,22/92 -a/77 2,801/2 438,4. -4719 0,03/71 9,/2701 y- on,* ;4/77 e(x / (9)

e -0,2w (.,„ ) / .1)77 (.4, ) 4,8 3,9/030 44,8933 -0,290 2,44,984• 291,8 -4179 406718 427032 y - 281,6 x

e / , (x) / , a (9) 4,5 .!e074.7 468271 - 0,/27 2,22941 /69,6 - 0,680 . 404'84.g 4M1e y -

Q ,, / znm, . (.9) +1 3,3/849 2,41810 - 4/4.2 3,04q73 m90,9 - a 738 0,04170 4/8304, y - /ma ..,<

-90-

Following the division of the data into the two sets

mentioned above, we note a better degree of correlation in the case

of the river Rika. This is especially true of the other set,

which characterizes the season following prolonged high water

levels and the melt water runoff.

Since the selection according to seasons was not successful

and a serious dispersion of data occurred in the, basic material,

we made a selection according to flow trends in the river

Laborec, where we had detailed limnographic records of flows.

Both Figure 14 and. Table 15 show that in the river Laborec

both the mineralization and the content of the individual

components are highest at the time when the flow has ân -

increasing trend, although the mean flow in the case of such

selections is highest, i.e. the mineralization should be lowest.

This can be explained by the ihct that sufficient amoumt of

dissolved compounds always accumulate in the subsoil during the

season between rains. On contact with precipitation waters

these compounds enter into solution instantly, which increases

the mineralization in the initial masses of water. Mineralization

of water which feeds the river with a certain delay, i.e.

mainly with a decreasing trend and later, is relatively lower

with respect to the flow volume of water. Lower mineralization

of water with decreasing flow trends can be explained by the

fact that the soil is already partially leached and is not

capable of supplying a relatively large amount of water with

soluble compounds to such an extent.

«9,2-fie/Wei/ce - alketah'pes gyi ri/Sen, eooponents oe fzele(a e3/.4ee,) _ -

evue, /ficha/arc ki lek /Mectit, 'tee; IteSSf

,

etee.424.7`lon i• ,fr' P.24/8e2Ssigen, geq4Cleet.

/09 /08,l

n k kg a mine.kg a ±/2..‘.9 f y ze e "PeteOlrneet.)9

x/Y 62 M'Ye) (9/,771) ,

90 • 4/0273 2,36670 -0,/22 2,102/1 8/74 -4611 4‘94.4.6 0,178" y = 3/7,8 x -4 fer

alezeac

efe, (x) 33 £/8S7 2,87280 -4/12 2,108/1 8249 -eue 40701 426,20 y - 8248

iii+ .7ey

CO 88 4623/7 2,4432/ -4 1e 2,13669 342, 8 -4157 49+79 4/880 y - 84,2, 3

.

84 1,1/942 2,2341/ - 4/1/ 2,40820 MO -0,70 44351 414,4s. y - 2(40 x -Ve

1,- . ,

a - Sus per.d&d 228718 -4/02 2,v53! 264 6 -4 (08 40627 a feae y . 2646

atter te -0,07:7

dri ed tag a6/108 2,22652 -407!7 2,3eee 281,4. -4123 40468 41876+ y . zes.,4 x

71 4020/2 2241,/7 -4/19 2,36610 222,1 -4738 44291 41/84 y - 212," x-41"

Q - (,) /llca, 37 z/4,358 2,17206 -0,11e 2,31107 224+ -4728 40121 0,208+ y . 22+,4. X

(Y) -40$/o Be 41680 2,2111+ -403/9 2,707J6 202,9 - 412+ 40121 424e. y - 202,9 x

/40 /,/f1e8 /,64.231 -4/37 473647 62,7 -4690 40348 4/232 y - 82,7 x-4177

e (X)

ez. 47 1,26001 1,63282 -4/82 t 79882 . 62,9 -4 6+! 42187 0,23+8 y - 645

(e) /I0 0,6/496 1,70237 -40847 /,714-97 549 -4433 40122 42483 y -

63 495821 2,32201 -4/4-+ e460.19 2947 -4+92 40612 0.2808 y • 2147

Q (x) zi 3+ 4/1129 2,39052 -0,142 2,55428 2543 -4770 0,0164 0,0640 y : 118, 8

(e) -0,0eté 67 0, 18116 2,47044. -4022+ 25/887 $341 - 0, 437 4061/ 0,218+ y * e14/ x

O

-92-

As far as the dependence of the changes of mineralization

and its components on the flow is concerned, Table 35 shows that the

highest degree of dependence is for a decreasing trend of flow,

then for an increasing tend, and lowest at stabilized water

levels, although one would expect the correlation to be closest

at stabilized water levels. VORONKOV (93) arrived at similar

conclustions but for the season of low water levels. He even

asserts that there is no cortielation between the.composition of

water and the flow in that season.

At stabilized water levels the correlation is weakest

because various magnitudes of flows apply to the stabilized

water levels and, in addition, during various annual seasons

and various trends of flows etc. (This sentence makes no sense

in Slovak and a verb is missing - translator's note). Under

such different conditions the conditions under which water is

enriched with mineral compounds are also different. One time

it is a long-lasting dry season, when ground waters with

higher mineralization participate in the flows, another time

it is a season following long-lasting leaching of the subsoil,

when the waters have a lower mineralization.

On the other hand with both increasing and decreasing

trends the changes last a short time, so that such differences

do not occur. In addition to this there is another fact,

namely that precipitation immediately after contact with the

soil is enriched with mineral compounds. This decreases the

variability of the concentrations of a certain component. At

higher precipitation intensities leaching of soil is decreased

-93--

proportionally to the amount of water. This causes a more

frequent concentration decrease although the absolute amount

of leached compounds is higher.

There are relatively good correlations between the

composition of water and flow rates in rivers (cf. Fig. 15-18

and Tables 29-35). Components which are more strongly influenced

by precipitation do not change in dependence on flow changes.

This is especially 'evident in waters which have a low mineral-

ization. The dependence of changes of:mineralization and some of

the main ions is lower in waters with a low mineralization

than in waters with a higher mineralization.

The degree of correlation is relatively low because

various factors affect the disturbances of the dependence of

composition changes, e.g. the trends of flows, the sources of

water which feed the river, seasons following long-lasting

different climatic'conditons, etc. Such factors cause dispersion

of values. Partial correlations are better as was shown with

those selections which correspond to one of the factors listed

above. This means in practice that it will be necessary to

evaluate the effect of a certain factor on composition changes

when analyzing the dependence of composition changes in detail.

—94 — 700 • 600

500

eno

300

ek e1* , 200

tO SO f0

a[m3xp] 20 50

Fhe, 15 - Dependence of the chareles e', 6-1,7£5 Pie a of h/a/71-e-,Z

of Me ivied ml`n enet//ze,,

or /Wing, R/reit,

• 3f

29

251

221

t 2A

_171

t)f5i

, • 1

1

o e o

)

1 o •

1 • 0 0 0 0

? • o

0 0 o

) 1

50 o [m3/s]

/0 20 30 4£0

16. D9be1cied7Ce of Me # Co3-- eon chanfes

on a cif weacee, 4/174ear ife-e

. • ' ' j gf 1 CO ;.4

dcd

!

4-3

;-q (=I

et, :11 zee IL. • .01111 .. 0 . . . . . 00 .

tan . 10

elPhl [WM 100 150 200 250 300

75

50

oe,

25 5 2 3

-95 -

tio3

FiQ . 17 - »epeeclence aMeecuVaos of Me. dried suspended matter PI2 a et hAel.-tele, o/c .L.a4vnec Rive,t

o o o

0

0 //ow- e

'Fig. 18 - Pepe/We/Ice f /he heco,- cenierit eanje- ve a oit ekiz, devet

-96-

IV THE BALANCE OF THE DISCHARGE OF COMPOUNDS DISSOLVED IN WATER /91

General chemical characteristics and the description of

the properties of river water are not sufficient for the

elucidation of processes which take place in nature and

especially of processes which take place on the surface of the

earth and which are strongly influenced by water. It is necessary

to know the detailed balance of the discharge of compounds

soluble in water as well as the balance of compounds which fall

on the surface of the earth in the form of precipitation.

Such balances should be used for the elucidation of denudation

and erosion processes in which a great role is played by these

very compounds dissolved in water, which form the main componant

of chemical erosion. A detailed balance and the investigation

of chemical erosion are important With respect to the history

of the development of the Earth in addition to their practical

values.

It needs to be noted that our study will be focused only

on compounds dissolved in water, i.e. on the balance of the

discharge of chemical compounds dissolved in water. Some more

precisely defined considerations will be focused on the balance

of discharge of ions and of total mineralization, i.e. on the

main part of chemical erosion, which according to BRAZHNIKOVA .(30)

represents an important part of total erosion: E = N + Ch,

where N represerts the deposits of soil and minerals in the form

of alluvial and drifted deposits, i.e. mechanical erosion, and

-97-

Ch represehts dissolved chemical compounds (by drifting off

soil and minerals in the form of soluabe compounds, i.e, chemcial

erosion.

When drawing up the balance, it is ricessary to keep in

mind the purposes for which the results will be used and to

proceed to process the results from such an aspect. At the same

time the peculiarities of the river basin must be evaluated.

On the Third All-Union Hydrological Meeting in 1957 KHOBKOV

said that it is necessary to observe and evaluate the peculiar-

ities of the stream in more detail, because such peculiarities

can have a great importance for the balance of the total discharge

of compounds. He noted that the peculiarities of individual

regions or stream sections are neglected even in cases of

'detailed statistical generalization of the ion discharge in

rivers. Data originating from a small amount of basic data

offer an even more distorted image of the discharge.

We know that the concentration of compounds changes with .

the flow changes and that such changes are different for various

compounds, i.e, for various groups of compounds and different

types of rivers. Hence it follows that balances which do not

originate from detailed knowledge of such properties of the

stream can be only considered a rough guide.

It is evident from available sources that more detailed

balances of the discharge, which take into consideration also

the knowledge of annual changes and areas into which the landscape

is divided, appeared around 1947 and are the domain of Soviet

authors (3, 4, 5, 7, 10, 29, 30).

• eischaief of /OeS from Me

eye the vis,s,n, 7ciefe, 87

-9 8-

,ei:seAcedefe. 07e sail's fRorn con14>m/elS eznel 78i/e.. 36 ee572p0S/.74 .0n or eibee.41, Pt/a/eit (CC-Peg/4e ajleit),

݈-ofieeoefficienr pischeefe 0/ ices [mye %] eolYneill`5'5'01 eitee.ce;d 1011 tikint 01 'se' Arc+ x+ cor se ci wo;

Argth tiMeRker, +74. 30,4 22,9 11,4 9,4 1,3 19,5 44 ey es Jena% Iteseeéa. 200 19,4 32,1 Z! Z7 1,7 344' 1,7 4 6 43 Elzeope . 300 347 349 6,1 1,3 2,2 . 39,4 Z3 2,9 44.

leaskv Weten Dischaeqe of ionS fat e 15,:ept geea.. f/oie ,oe fea■ - waieie, sys/em . [kdial [km'] ci," ne" ,vei-A, co; Jr cr 4 [emnfiej

azneids czeof 4/hi/e. Seas 1000 3+1 1,94 1,30 453 e19 5, 10 402 24/3 25,1

ea lea" 5ee4) 6100 1166' 1443' 3,45 en Z476 /470 42+ 72,53 ms

ZI:407.`ec..fiee4141,l ûmko7 Se«, 4600 322 14, 75 4 22 /1,/s 25,76' 14+1 /465 87,92 19,1

Aveett . J'eumnaglied - 11700 2393 37,18 8,97 20,58 64,06 91,21 488 134 53 45,9

an. (fie. cSect, 600 Ise 207 6,79 6,43 435 4 11 4 68 1443 24 7

alaCked feet of /1zo v 1200 158 en 1,36' 2,32 /0,76 455 2, 61 3406 24 9

It7Li52,179•e. OCecrry sunpthebliheae 14100 314 ese 4 15 3,40 1311 7,68 .eze 4449 24,2

Beeinq Sect., Sea o elehotet, 3200 810 6,60 1,7+ 2,92 /2,91 4 94 2,12 8423 9, 3' ' Se. of Tcf4I/7 /e, " j'ecimva,q/zed 3200 810 460 1,7+ 2,82 /2,91 4,94 2,12 3423 8,3 7a c:1 (kerb

Ca51

piczn Sect/ zoo 305 1480 3,0/ 404 2413 18,94 4 22 sgeg 21, 8

/1-feal Seq.) +55 e° 1,27 4 00 3,14 5,18 .9,23 4,12 28,72 ee,s

0115C4 svSleme WI Moe pale /en es - -- - ('-'9 _

Sysierns evithouil outlet 4841 #09 2457 401 9,48 25,69 24 17 469 es/ 29,2

Sammaieizec( (10781) (22,3)

erne/etc ferveii-ort. q of 21545 3968 74,28 /6;87 36,30119,77 7498 38,33 35411 /7,9

Me 44S,S, 'it (seem (um

ewe, meneens in ieetckeis Mciiectie. ofh&R, Sinag syseeenS pid/e7e Jecrzedc.hSn and Cenbecti fleet 62n/y? -eree/e eaid the betSin

1elMol3-71 •

-99-

The discharge of chemical compounds at the present time has

not yet been sufficiently investigated even in the U.S.S.R.,

not to mention other countries.

Of foreign papers we refer to the balance of the discharge

of water components as presented by CLARK (3) (cf. Table 36).

The table indicates that the ratios of water components

in Europe and South America are very similar with each other,

although the discharge per 1 mm2 is twice as high in Europe as

in South America. The 'ratios of ions in North American waters

are different from those for the two continents mentioned above

and according to ALEKIN (3) they are very similar to waters

running off in the U.S.S.R. However, the waters in the U.S.S.R.

have an even higher rival% abundance of magnesium, sulfates and

chlorides than North American waters.

The discharge of the main ions from the territory of the

U.S.S.R. has been divided according to individual seas into

which the waters flow. If Table 36 presented the differences

between the discharge of ions on different continents, the

differences are even more marked as regards certain regions of

river basins in the U.S.S.R., pertaining to individual seas

(cf. Table 37).

Even more marked differences in the ion discharge are

evident from data for individual rivers of the U.S.S.R. (Table 38).

The indexes of ion discharge fluctuate within very wide

limits of 2.8-161 t/km2/annum and accOrding to BRAZH-NIKOVA (30)

the maximum values of the discharge are even 250 t/km2/annum.

-100-

Most rivers have values below 50 t/km2/annum. In our country

the situation is the reverse. Our rivers discharge as a rule

/ / more than 50 tfkm2 /annum.

Based on a large quantity of basic material - 15,000 analyses

of 550 rivers - the discharges of ions from the territcry of

the U.S.S.R. were processed by BRAZHNIKOVA (30) and plotted on

a map. She has divided the discharges into six categories

according to their magnitude:

1. Discharge of ions from 0 to 10 t/km2/annum,

2. Discharge of ions from 10 to 20 t/km2/annum,

3. Discharge of ions from 20 to 30 t/km2/annum

4.. Discharge of ions from 30 to 40 t/km2/annum,

5. Discharge of ions from 40 to 50 t/km2/annum,

6. Discharge of ions above 50 t/km2/annun.

When calculating the balance of discharge of ions or of

other compounds dissolved in water, many authors proceeded to

characterise the distribution of the discharge in individual

seasons, in months or as depending on hydrological conditions.

Hence it follows that each river or type of river (lowland,

mountain and other rivers) has a different distribution of ion

discharge. The highest figures usually occur in the spring and

summer seasons (cf. Table 39). We can see from the table that in

spring the Dnepr discharges 42% of the total annual amount of

ions, the Don up to 51.5% and Sumgait River even as much as 7%,

while the Danube discharges only 30.5% and Amudarya River about

111, 37% (2, 3, 7, 10).

• -101-

Jere enej c4eadeeich'es ‘7t loti cesc4erAye.....

iit eet/eita/ eifre4s ot e _.

T 'en,' fit 104 e icienieea4t/e Ion :s- even,

Yisofebeye 1 44 ce...,25,,_ 11e4ye o theejef [W e ifr..1 Eii.rmei..) [t/.s. en') [we te [erne r [1/.r Xml

The Amu& a- 59,380 72,7 - Hero 2,870 10,2 .9,2

Dnepr 41/0 16,2 3, / 8/on: 2,160 161,0 $0,0

Don 6,220 14,7 2,1 Kilôeilr 1,950 31,7 5:9

rego 46,500 33,7 5; 8 Jonc 0,950 3,9 4,0 .

Zeno 41,300 17,0 8,4 Se4 811e 0,630 1,8

0,570 13,7

Ob 34200 12,2 5, 0 Tojmiro 7,9 9,0

Jem:rej 29,00 11, 4 6.,7 1999 0,260 20,4 8,0

Julok /WM eino

17200 48,0 9,8

1,560 11.9,0 Avorskoje Kojeu 0,470 61,4 . -

Chotonge 9,500 . 2,8 9,3 Anclijeoje Kea 0,740 160,0

Amu-Dorjo 17,700 78,1 5,9 Achty - 0,130 133,0 Jyr-Dwio 6,050 27,8 2,0 :femur 0,180 81,1 _

Peeoro 5, 470 /8,5 12' 5 Koro -Zroj 0,015 58,8 - Pjerina 3,600 fee /3' 3 e(eQr-ekl. 0,025 .99,8 . - Inv/ 3,320 16, 1 1,6 Sumgolt 0,055 34,1 - 1nelt:qirik2 3,280 .9,1 5:0

Trek 3,090 747 8,0

7à4/0 38

* elms pee, anmen

** tons Ani pee a/mum

feezsond e5leeietzefivi cie Ion diS44ezie_9Pe,

'y SIP/he izi vets iseteeelevej Tr24/.e3.9

• ,feasen-

even, henten., 4c+ring Pift1/11,e/L -rid/ /14,7ise.-

xi - f. e. - Fi ri - /X. X.- X/.

74e- Panuee. 29,4 30,5 26,0 /7 1 lee./ aeeentio/ished the- disbelétation erdify Dnepr /9,9 42,0 21,4 1+,7

Den 144 11,1 244 /1,7 fre, a# piyedzei.4,

Amy - Porjo /8, 4- 27,2 es 4- Me otsceeve, io eolnloezéte-•

.111/ek 14,9 37,9 471 Me gestes

Arcrekee Kea 4 3 19,4 548

Andirkoje Kopu /I, I 34,7 S4,2

Ach If - éci el 49,9 +69

A-cry - At /8,1 +4.3 $7 8

Jumsreit • /4,4 779 7,7

7;11/e m Yelleilufion of de disc aeee cf 4%, 0. -esente eirees ezen42,e449, Met/i .e./4(J menths eiir>eleèenece.)

_

• X2/1/C.12. / .1/ .111 Ii, b' VI kW nil /X X XI XII

ThZ., DanzeZe- 1,5 41 /0,1 /42 142 9/ 9,1 78 6,2 45 8, 4 64

Dnepr 2,0 • 7, 3' 9,5 172 193 146 6,9 54 5,7 4,8 48 5,1

Don 5,4 5,9 10,1 /9,3 21,6 9,6 54 5,0 4 4 41 4,8 5,1

Amu -119rjo 5,0 69 6,2 72 49 /2,2 1+2 13,1 8,1 5,6 5,4. 5.,,e

-102-

Distribution of the ion discharge during the course of

a year in individual months is presented in Table 40.

Hence it follows that the intensity of leaching of dissolved

compounds is different. It depends on geological, pedological

and climatic conditions and the profile of the river basin.

The magnitude of the discharge of ions from the river basin

depends on the discharge conditions in the river basin. The

greater the water flow, the greater the discharge of ions

(spring, summer). The discharge of ions is greater in rivers

which have a more humid climate than in rivers with a dry

climate.

Such differences can be observed on the basis of the

gl›

indexedischargeofions(P ) . ALEKIN (3) and BRAZHNIKOVA (29)

related the discharge of ions to the specific discharge and

stated that the index of discharge of ions is directly propor-

tional to the product of specific discharge and mean .

mineralization, as expressed by the formula Pi = A M C, where

C = mineralization of water, M = specific discharge, and

A = coefficient of proportionality.

It is assumed that mineralization of water decreases

with increasing specific discharge and that the mineralizatdon

is inversely proportional to the specific discharge for the

majority of rivers.

It is not possible to agree completely and unconditionally /96

with such conclusions. It can be true only on condition that all

factors affecting the composition of water are more or less the

same (the subsoil, composition of precipitation waters, etc.).

• -103-

Under our conditions we have cases where even the mineralization

of water is higher at a higher specific discharge than at lower

specific discharge, or we have very different mineralization of

water at the same specific discharges.

In practice this means, according to the authors, that

the highest discharge of ions will be in rivers which will have

a relatively hgh mineralization at a high specific discharge,

or t hat at a very high mineralization the specific discharge is

not very small (incomprehensible - translatorts note).

Concluding this very short review of balancing the

discharge of ions it needs to be noted that much work has

already been done, especially in the U.S.S.R., that tables and

maps are available with respect to discharge of ions for important

rivers, and in some regions even for smaller rivers and complete

river basins. However, the results have not yet been sufficiently

based on statistics. From this viewpoint, in our country

CHALUPAIS papers can be characterized as the only papers based

on a deeper theoretical analysis and statistical characterization

of results.

Total Discharge of Compounds in Our Rivers

For the calculations of ion discharge we have chosen five

drainage basins (the Danube, Nitra, Laborec, Topla and Rika)

with different areas of drained territory. Since the areas of

the river basins are of different magnitude, the flow conditions

are different as well. Consequently we obtain various amounts

-104-

of discharged compounds. The amounts of discharged compounds,

i.e. of the individual main ions, total mineralization and the

suspended matter from the entire drained territory are evident

from Table 41.

Table 41 presents also the amounts of compounds discharged

from an area of 1 km2 , i.e. so-called specific discharge of

compounds. Such amounts are relatively very high as compared

with the data given by CLARK (3) in Table 36 and with the data

from ALEKIN (5) in Tables 37 and 38 • According to the classifi-

cation by BRAZHNIKOVA (30) they pertain to the sixth (last)

category of ion discharge. As compared with these data, it is • /98.

remarkable that a high discharge of ions occurs also from the

territory of Early Tertiary eruptive rocks (the Rika), i.e. from

a territory in which the total mineralization of waters is

very low. It could be assumed that the discarge of ions will

be considerably lower, at least in these waters, and that it

will pertain to the middle categories of such classification.

To be able to judge the extent of leaching of compounds

from the subsoil, we must include in our balance also the

precipitation waters and their contents of dissolved compounds.

The author made a balance of compounds deposited on the drained

territory or on 1 km2 (cf. Table 41) based on analyses of

precipitation waters and precipitation conditions in the river

basins.

1-177cal Waece,eompozeeds foe some. e/Vees

Ri'Ve../f., 11/itrQ Zgeorec Rika

, ken to‘ecin 8414/7re

site A nirei o frlichalamce Karniereka

845in .aeete [km'] - 3/11,230 /401, /27 -82,562 'noun ,..74 • en 7 Wei emea 2 204661 1 0.50, 841 ..ro, 370

freecijai, r „ ,, begh..5 L i

,

t/ /1774194 1 ker? 0,700 4 750 T 0,800

lieu, awl off 'it e eze 580,262 see; 719 44,781

[iee 073/a4n um 1 kn7 2 0, me 0,421 4 7/1

, r ,

Bela/ice ei $i/eviele, eemPoneetS 1. Lrons pee an/,am]

roves-, rake die- Thia/ ells- e0/hp9b in htn ce 4 chic/tie-fee A iq geefa. fete 3 acatelien 3 e-- ilice4.et tielasin

175.e„

eirSin the

iesin ..e elezect, /10433 1/0 692 100 259 38038 104 244 55286' ' /552 37/3 2/61 .Suspended_ en*

latter dried ikme 3400 61,71 3/78 2714 74, 40 4Z26 2484 5457 3* 33 ediee ea=

; 26 eae //9 24+ 92 740 70 801 79 976 18/7/ /352 M47 +95

NCO 1 Ave 8,40 3Z79 29,39 1486 57,08 42,23 2/,48 29,33 7,81

(eke «ea_ 39 756 24154 /5502 8127 /6 35/ 712+ 67,96 5/6,30 45434 dee.

I km i /2,60 7,69 4, 9/ 429 /1,69 538 0,99 8,20 7, 11

et - enege a.«4, 7 780 /8222 /0 492 mg a +962 -3 a he 259,70 2/8,50 - 4490

1 kire t 2,44 478 2, 34 562 3,+7 -2,/1 4/2 3,47 - 405

Co" edek, eleeit, 1214<9 31 971 /9823 4 938 22 978 /80+0 302,20 47460 /74,40

1 Ice' s 341 /418 429 3 53 /6,40 /2,87 4,80 Z57 Z77

M •l+ Mee agegv 2 650 <9681 69,91 /576' 353/ /955 4427 1/960 79,33 e 1 km' 04.3 3,05 2,22 I/1 2,52 /,39 es+ 1,90 t,e

+ -etigeeteeer, 814 7 9 987 2090 2206' 3096' 890 1059 139,/0 58,50

A/9 1 km' 2,I7 2,83 0,66' 1,50 2,2/ 8, 64 1,28 2,21 493

25„ 20 +

ediiete aeecz, 4+17 3 772 -654 4098 -1,6494 /33,50 /5<9 70 K

/ km s . 1, ee 1,20 - 0,20 2,92 -7,34. 2,/2 2,52 - 0,e

E effee cheaz, ma 052 25647G /59 424 927+7 2 342 3396 /054

i 1 km 2 31,77 91,29 4.g SÉ 37,12 eem 54 06 3720 53,93 1473

componeniss ft/k1 4 f4e /17,vey of Imee,;(elieteew

B ceschaefe freief ee kachby q subsoil si

• -41

7200

1000

800

f 600

1100

200

0

■ - 1r il

soil

luarm•I mu Jr 10 U 70

Wf)

/6'000

14 000

/2080

10 000

8 000

6 000

4 000

• 2 000

-106-

o

• °

0 0 o o

o o

o p

_ 900 1200 Enn ?DOD 2400 PROD 3200 U170 417170 imn el» r;

pipit. a un3/s)

- 2),9enctieece of Me olisalaege, of .7/4:s-solved eofteounels -: dried_susnended matter - on the Danube water

flow

seo

fri]

78/p1v e unm

Dyeeedence e c4cutie 2 anal

F/4. 20- Zecfct, /seitete.reaole ki/ e:iffice •

-107-

We see from the able that the amounts of compounds brought

to the surface of the earth are relatively high. If we compare

them with the total discharge of compounds, we find that with

the respect to some components the discharge is only a little

higher than the influx of the compounds into the river basin.

With some compounds it is even lower, which means that compounds

(such as chlorine or potassium) are absorbed in the soil. With

other compounds (bicarbonate and calcium) on the other hand,

especially in the flysch area, very intensive leaching takes

place. Table 41 shows to what extent individual compounds

are extracted from the subsoil.

The table shows that about four times as many mineral

compounds have been leached in the flysch area per km2 as in

the area of Early Tertiary eruptive rocks; the greatest fraction

is represented by bicarbonates and calcium, which were about

5.5 times as high as from the Early Tertiary eruptive rocks.

On the other hand, from the Early Tertiary eruptive rocks more

potassium, sodium and sulfates have been leached out and a

considerably lower amount of chlorides has been absorbed by the

soil from precipitation waters than in the flysch area. Hence

it can be deduced that the subsoil has a great influence on the

enriching of surface waters with mineral compounds; the influence

is even so great that it dominates over the effect of precipita-

tion. Precipitation, and thus the water flow as well, depresses

the concentration of total mineralization, but not to such an

extent as one would assume. This is evident from the fact that

-10 8--

there is a linear increase of the discharge of ions when the

flow increases (a direct linear relation between the discharge

of ions and the flow - translator's note).

It is evident from Fig. 19-22 that the correlation between /100

the discharge of ions and the flow is so close that it almost

reaches a functional dependence, because the correlation

coefficients approach the value of 1.0 (cf. Tables 42-45). The

changes of the discharge of ions are linear with respect to the

flow and they obey the equations listed in Tables 42-45.

Hence it follows that the subsoil also has a great

capacity for being leached out; a brief contact with water

(fallen precipitation) is sufficient to supplement water

sufficiently with compounds present in the soil. At the same

time it is evident from the degree of correlation that it is

not affected to a considerable extent even by the intensity

of precipitation (very confusing in Slovak - translator's note).

The degree of leaching or the degree of the enrichment of /101'

water with mineral compounds depends on the kind and character

of the subsoil. Many more compounds are leached from the subsoil

in the flysch area than in the area of Early Tertiary eruptive

rocks or in other areas.

/0000

.9 000

69 000

7 000

8000

5 000

+ 000

o 000

2 000

I 000

0 • 0 10 20 30 eat/. e [eye]

-109--

+0 50 60

• •

o O ee e8 62 Poly Q finPl

66' 2,0 2* 2,9 *Î2 i0 *0 J;2 ea

[Ice]

14, 21- D9eendence. oi£ clischez4e. Zs' oe of Lez,ep/tee even, Jvcdeor,

F/9. 22 - Pepeatieflce, of the cliseizzzefe of come zeme/s evedee, flew in, ei../(41, eiveit

1. - Hee3- 1/1. - sor

21,

—110—

Z7d ./z

‘ete_ficieeee _ Me.ei4scezeye., 10/7.5 ceat 4/ en>l-enehiZezi oh *

17/ ":/inecr,e, eeetessipn) _ . . -..„_. . 4.tertui'on n 2 ' g c5, 0:., ,./.., ‘04 se,„ ..p, 1,04 4 3 ..1y ± ,

1 4. =Ire, «ecitivi, . 1/x 1 [ y•lr,,,y -`11.-., (x-,7)..9.

! V . •nt ••• 40 MD +11149/079 194513 /1411 29479 +NM 317+4 1 110.74,/0 /1109410 +0,000 00t+09i40010e g - 707.2+ • 10111

i e friNce,-1„, Ill nlig »me lot /97202 114,13 24471 374;41 151/34 314174;74 07441,41 .a92.1 4100791;i /70030V y. 117.9+ ..1-9.10i

74 eil 77111 1.111 Ifni 514 « 41 10401 Me 19,41 43-127,2/ 4741/01 •0,117 4001709140/18.71 y• 73,-14.x •/970/ PO '• (y) I

Q /fee 71 1071 713411 MI !die ,J419 1040+ +0491 9217.1 /047409 3.140414 .e018 leoeoxoli aaeles y . 41,47+ +1730 tx) (Y)

a /lee (x) (r)

Q

79 1/7? Arm nw /4111i :Alf 41Z;e1 MU 213Z.1 - 4,91412. 13.9419 .0,20 400teesiaoneox y. me x • 1119

ill,Yee 14 10/4, Sfel 1071 ISO AMP 1441: ID«, CM42 11144,1 és.iff,4.1.4,170 40,7;001401441f y- 7. 05. • 700 (x) (Y) I - I e (Xlee,

(Y) !I 21/1 :00/1 .V71 +942 11471 ,017,31191437 11044 379433 1/307,111•4070 0,0/717411007/41i y-37,144- 70

e A e 71 /90f 917073 MU 210.713 14917 me Wei .110741 01114x /11.7.74011•401/ 400/290 4X14+4 y•1099++101194.

.en f/ow (7i€41151a7‘,e)5 hofe)

f. Suspendeçl matter Q

ete, keedze(etee ?eige disc4ae:fe, cileeS gee t rieefa/..»/e,ea .zcivç'ee 7»e142111 Nitro IN AX0/4‘../ (Yea/ linexzet. exeRiaelcoe:44)

egeefliGd, lietteSes* xtomerSin. n Y 1 d. dy 4 /11,,r, 9.1, 4, 1,1#4. Je, e f.),y £ 4E c're,' 0 fremee4Q

274 11,7 1114;1 11,7 4.12t0 711 n,14. ltil 1.10407 111490 191419 •0,118 410077 it01.0 ,y-2,74744 • »se,

41,2 27+47 144 17137 .9,09 1441 17,11 1704,10 27$5,10 1114440 •470/ 40900 1,010 y. /4.1,,Ix . /037,1 .

e ° , . a.- Q) /2,1or)/ cy) fol r, 7199 At? 192,5'192,5'020 (421 /1,17 14471 Sete 711,01.4N+ 0,0717 4014. y• .74.,C0x• 1437

e ler,e) ..e u 1+43 /e9 214,9 An /415' et?! Mx !!!.17 7/131? •4941 e9199 407 y. /140 . • 1040 m

a lryi:0) Épy /44 /077.9 /j;2 7,31 44+ /49.9 2911 +13;30 70,97 1900,10 +0,17/ 40/10 1,019 y. 40,01x • 7042 Cx) (Y)

/10 li • 1114.7 N;$ /04.1 el( 1411 1,411 /MS 11441 9/419 .4m 0,0110 0,071 y- 1.09+ • /tee

e (x)fre. 04) ire 77,C 1141 74,1 /J74* 449 its( 19,07 94/9 1+7,71 27427 •4111 0,0140 g/71 Y. 421+ * 117,2

e

4., e) 0/9 /7.9 131 1+4 «9 7,4,1 11,12 11,1! 71,41 1417 min •eird 99/41 4011 y- 4:0. • 20,9 (x) (y)

e (+)/'(V)

110 17,1 91144 /4;4 +7743 440 47,10 144* m2,1 stir,x, 4+0,41.94/1 0,0100 4070 y.2149. • /Mr

t Suspended matter Q

Rive& ,

glerer elYirine/or

-111-

, 41/ [roa] Afiemieace. 51 44. esliS14a/egeto51.5 «nd 115571ed 51e.eah'z4344sol

in /1'e. /ow /ire /l7 5/d 42.43545.5sien )

Pefietriener Of, ieffiteS_Si0/1 A/ scnem

ire_ c54114.014Pr3 n _ A ea.s. 34 204. 4 ..9.1y, ±4,, 3 F E

on, 44

251 19,5" 21.241 37/ 79547 723 11,80 2499 19419 27413 10437 •4111 400/9 0,0004 y• /99,4 x • 3147

am 417709-1;} 700 110 1909,4 791 27771 917 1477 /47/ 05400 1537,20 207400 .4909 4 002.9 40/70 y« /049,4 • 1.70.9

am) Q 245 20,4, 3741 341 9043 /0,02 1441 3454 25471 +2250 712,44 40,5v1 0,0090 0,0490 be. 21,11, • 4.4f

e(x) AC/-. Q)(y 990 /0,7 a1,9 sz : 1114 es+ /422 1402 74 77 114 74 71811 .0. et 4 0771 97104 ..Y et7. • 4°

e , ,

‘4‘5".71 4 259 445 7427 37,5 1014,3 10,41" /75+ 81,31 30750 X130 91470 0,910 goon 0,0/12 9, 94249 •1191 (x) (y)

e ,

i„n, •.(2) 219 ter /141 371 171,1 1471 49,22 3411 34 24 eslo 192,53 . 4 040 40024 0.0014 y. 439,, • 39,9

(x) CY Q

(x)/4" 4 • "d, me /4/ 871 74.7 174 2 411 9, 77 17,41 2470 41,82 7450 41273/ 40210 4 1920 5/ - $,91x • 19,3

0(a) (e*. oh, ev /et szc z.., 1/9, 1 fev lee. 3494 4477 71,10 /4411 .4110 0,01/0 40440 y. 3,70* • 48

.. 4

/z •04 /05/40 1714 1 211 41747 4,31 7. 41 /413 154 07 141409 290491 .4911 40010 0,0010 4 - ItZ4, •3542 a pa

(a) Suspended matter

7-ert4 445

4e1.0e1e

Rik5101Korniellka

ere/We/Ice cf Me 44/7',5c44/rez oie ices epee/ Xela/mble■e«/..'za7904 .9» 755-e flew 6/0k/lieeee ,eeeeessioe)

- t

1355en5/44454 . Refeesslen erme.f55.44 1%4 1.11,14eMer n 37 i Cf, 4 ,r, eif .r, 3S ,r, 4 $#., 3 4, 9ç 5 F 4.3

x/( a')' se 444 11930 1,11 11440 9,220 488+ 40/7 +1,91' 18,91 /2411 *e 9r gem 40345 y. 75,19 .142

e r1 , • ,y,

714-7-• 202 445 SW 417 44744 4117 4194 1,111 leer zezz +4/1 .ieue emu 9,8219 e.-24/A. - ee

ate) to

pne.Q) 334 1,42 /410 432 en 4555 4 115 2,070 4419 45,33 eel 44111 401544 55445 34 .13.0x . 2. 7 (D) (9)

e , „ ne)

Acr •qe 331 445 445 432 4 78 0,iel 1,040 4910 440, ef. gro +4905' goon 40172 y. 4,419 . 0,2

9 A9et•.124) 357 use et4.0 1,22 /5,I9 44.14 4741 1,202 4,11 912 /1,48 4 0,039 40042 40el 9» 0,171e. 7.4 (X)

Q 13+ 1+0 497 en eta 4071 1,109 2,029 ter 401 ec. 44111 40097 40111 9. 2,40x 4 ez

(X) (y) a 00 /010*.ilio 211 499 4,14 431 4313 43-41 41If 1,911 481 497 441 4.0,919 0,0909 4 0779 5.4 9,0/x • 43

Q ) , od/K . , .42/09 203 1,39 4;1/ 1,3/ 4:79 457f 0,141 4742 1,417 407 401 *0,150 0,000I 00244 5'. 3,099 .- 42

a (x) Ari .e)e) 1+5 1,44 )7491 437 9420 . 0,421 0,097 .4279 2419 47,39 49457 .4011 4004/ 40/14, ,44,94,7 x *14/

(a) Suspended matter

-16 • 14

12

10

8

23 .— kic4ezdefe iee.

?Ye eemouni 471 eonepiengés

anel eernieer-e-)14 leached -by ibeee)ei{e14 .o» jntoyi4blet dere.04 .

4 id ges:c4adeje 447 bithesieet./i2.46 .p4

- zrabethed&a:ze 4.o.t 4.eve_qe,, diie to pre- -

e-fee'A 7ifee ,

Dol. .3

0 10 a[m3Arj

10 000

9 000

0000

7 000

6 000

- 5 000.

000

3 000

2000

000

VA v

ova °

0 0 10

[m3/el 20 30 40 50 80

70 60 eo SO 20 30 pm-

-112-

000 410 0

70i, 0

000

000 0.

0 . 000 0

000

1 000 °

-------- --------- - a000

0

Dos]

• Fite - esthaieare aye Me bin/et/Moue of eent_POUtigiS

eé/Or (74 61freteiriu(s leached by precipitation into -7

_ idatee, ekze . €-eiai .etitreXaisfe, /v7' 7 mi- 4.mq4.24eon • .2- AP/La/ ei/1-e■tali2erhon WiScherlre

_due .t o "eeeerecnoe .

900 • 0

280 111111re

350 320

i

2, i Iledirdiall

E0 4 An 11111111111111 °

I -.14111111111Preer& el illieleelP"-

0 0 Of a[mois

04 1,2 1,6 2,0 2,9 2,8 3,2 9,8 3,5 f,0

»era

Z 06ore c

Ri

0,613

8788

a, 4«..25

0;717

0,772

-0,078

0, 324.

0,628

0, eta

0, 129

8,79.9

0,/68

0,160

0,804-

0, 964-

-113-

pq, 25. Fume of Me iefed emezenis • . eo,y,e,unel.s aed ee»,/ee, ze.ls leached by

•, free e/ev'îLeiliee . 42- ek.a., /Pli)efe.

f Wed eueoe Zi• • f/. 'etc I off _clue to

of -freec%eliczeon • 2 = iohd criefe. ee037 cesci4cziesfe, pie eev -

•3 .

.cine t o

Tiak,

4 eoeieie een 74 of teed eeeie ion::: ei....ee, ee2+ me 2+

mat t_er ile.93- eue o,

0,701

0,/08

-114-

Leaching of compounds (chemical erosion) from the subsoil

can be expressed by the following equation:

yo = (a - al )x + (h - to), where

a = The slope of the line which represents the dependence of the total discharge of compounds from the river basin,

a' - Tue angle of the line with axis x which represents the dependence of the discharge of compounds due to precipitation for average evaporation;

= The free term of the equation of the line for the total discharge of compounds;

b' .= The free term of the equation of the line of the discharge of compounds due to precipitation.

The e.quation can be rewritten in a simpler form:

yo = aox + 130 .

Such an equation can be used for calculations of the

discharge of compounds due to chemical erosion.

It is evident from Figures 23, 24 and 25 that the true •

ddscharge of ions from the river basin in the flysch area is

very close to the discharge of ions provided the water concen-

tration (in the original text "water concentration", but

according to the sense rather "the concentration of ions in

water" - translator's note) does not change, i.e. that the

subsoil at each Q saturated water with the amount of compounds

which appears in water at minimum flows. This means that the

subsoil has a much greater effect than the precipitation. The

influence of precipitation is manifested mainly on waters from

Early Tertiary eruptive rocks.

For a more general characterization of the leaching

capacity of a certain subsoil the author suggests a so-called

coefficient of leaching of subsoil, i.e. coefficient of chemical

eriosion; by means of such a coefficient it would be easier to -

-115--

calculate the discharge of compounds from the subsoil as a

portion of the total discharge of compounds from the river

basin, i.e, that portion of the discharge which is due to

chemical erosion. The coefficient of chemical erosion is a

number which represents the ratio of the total dishcarge of

compounds to the discharge of compounds due to leaching of the

subsoil: ax+by = 0 o +

ax + b y •

where y is the total discharge of compounds and yo

the discharge /106

of compounds due to leaching of the subsoil.

For our . conditions (the rivers Nitra, Laborec and Rika)

we have calculated coefficients of chemical erosion for some

more important components (Table 46).

The table indicates that the coefficients of chemical /107

erosion are low for areas of Early Tertiary eruptive rocks

(Rika), where the subsoil has small amounts of soluble mineral

compounds. High coefficients are found for such components as

occur in the subsoil in elevated amounts.

By introducing such a coefficient we are able to compare

the effect of subsoil on the discharge of compounds in relation

to the total discharge or to the discharge due to precipitation.

Hence we see that the ion discharge coefficients of water are

considerably higher in the flysch area than in areas of Early

Tertiary eruptive rocks. •

-116-

1. Distribution of the Discharge of Compounds

We have shown the total balance of the discharge of

compounds, the balance of compounds falling on the drained

territory in the form of precipitation and the proportion of

such compounds and compounds leached from the subsoil of the

total balance in the foregoing chapter. Now we shall briefly

deal with the volume of the discharge during a year, i.e, the

volume of the discharge according to individual months and

seasons.

The evaluation of the dependence of the changes of the

discharge of compounds on the flow showed a very close correlation

and in some cases one can even speak about a functional

dependence. Therefore we do not have to think about other

factors which could affect the discharge of ions and, therefore,

also its distribution during the year. It will be sufficient

if we confine ourselves to balancing only the flow conditions.

The differences in the discharge of compounds during the

year are very large and, as a matter of fact, they result from

flow changes. If we make a balance of the discharge in the•

course of individual months (cf. Tables 47-50), we observe

very large differences on the Laborec (flysch area), where,

e.g., the difference is about 17-fold with respect to the disbharge

of total mineralization and 19-fold with respect to the

suspended matter; the differences in sulfates and chlorides are

even larger. With the Rika (the area of Early Tertiary eruptive

rocks) the differences are considerably smaller. With total

mineralization and suspended matter the maximum difference is

-117-

3.5-fold and with cÉlorides and potassium up to 5-fold. We see

that fluctuations in the Rika are 5-6 times smaller than in

the Laborec, while the differences in flow fluctuations are

about 4.5 times as large. With some components, e.g. sulfates, /112

the difference is only 2.3 fold. Hence it follows that the

variability of discharge of compounds is affected both by flow

fluctuations and subsoil.

As far as the distribution of the discharge of compounds

within a year is concerned, we observe the greatest portion to

occur in spring and winter months. There is an extremely

high discharge from the river Laborec in winter months.

Several times we have recorded high levels at snow melting and

simultaneous increase of flow due to rains (we have classed

such cases with the spring season). The smallest portion of

the total discharge of compounds appears in the summer and fall

months.. It is evident from Tables 51-54 that 72.4% of the total

discharge of ions runs off the river Laborec in the winter and

spring seasons, and only 27.6% in summer and fall; this is

roughly in agreement with flow conditions. In the Rika the

discharge of compounds is distributed a little differently. In

winter and spring only 56.3% of ions of the total disbhârge

runs off. There are certain stall differences as far as the

distribution of the discharge of individual components (ions)

is concerned, but this is in connection with the èffect

mentioned above.

• 4 leek, +7 mone4 escherieee.. cy ions anal 74,4/

1% ]

/0,3

9,1

46

.07

II.'

46

42

0:4

J;4'

10 0

ea

kg/4 W.]

400,1 5,7

744,6 /0,

470,4 45

1032 41

1699 /t 4.

, •

I 7191 /as 1976 42

5543 7.9

393.2 96

sae 57

1147 3;6

861,7 9,6"

40,3,3

EI091

4'

(kei5)1 11(34's11-

tz, 140

21,1 71.*

19,1 I/O,'.

/35 9.1

\ es , 12,4

/es 14 0

146 , ea /4,4, I 78

•8,9 1 M

47 i 4.7

9,0

14,9

107

4,3 4:0

te 2 /2,4.

94 48

8,3 Zd

/4,1 mg

/4/ 13. 2

/31 /0.4

8,9 43

47 44

4,4 4,1

47 44

89 1 4 2

el I 4 1 8,5

a- _

Utsvil [ % 1.

14,3 43

347 10,3 ,

27,6 9,2

243 41

31,9 12,0

271 9,1

24.,5- 92

244 44

16,0 44.

16,6 44

/M. 4,8

91,2 10,5

**

[ keel

/000

112,5

seo

1049

143,5

1241

1019

85,1

ces

445

199,0

25o i 44. 25, 9 45- 1040

• es '.

ref 30,0

249

24,1

3.3.1

330

240

23,4.

141

16,7

149

32,5

37

8,5

40

12,4

10,5

77

ff,6"

4,9

10,7

(*sel l 147

/277

79,7

45,2

935

712

41,7

50,3

40,1

402

543

102,1

72,0

1 •41

14,0

71

146

41

7.0

44

1,s

9,B

/1,7

uspencied matter

ri9in

-118-

The Arntc4e,

. Bratwoeci-Akin /871

awl% 1 a egiéd

(-ei) Py/s1 7,1

/ /see 44.1,7 7.41

1512 154,1 1,4'

Al 2991 401,1 /0,5

/Y 1190 474* 4 $

Y • 150/ 4511 11,

Y/ MU 14.4,2 9,5

17/ 2301 4447 40

YI/ 1177 4.294 7,5

/X 2013 3141 es

•X 1477 821,6 41

X/ 1601 2941 42

X4 /44.3 548,9 9,5

177n142 2010 485,7 mean

ie-Suspended matter . _

7.9 I 2771

nited [kg/e] [71 [.91/11

181,1 7.0 ates

le: II, 413,2

046 /1,1 3639

1107 4 3+43

170,2 11, 2 3540

211,7 49 447,9

1+1,9 Z 6 eei

211,7 70 329,0

5,2 2+49

1991 60 2147

1737 5,* 2/e•I

317,4 46 +048

421 3148

NCO;

./euen nlonihly 04..sc469.4e9e, 07e ..0.75 erne' 7eteW/77/e-efecilizzzAct7 lei ken v 'Vitro b7,4/7eia. (Agee 4nigi1/5423ktn2

TQZ/e,

e 1 a . PR-14de: Igniteçt*. //co; Jo:- CI -

011 417 .. [me] [9/3 ] [ % ] [gis] [7.1 [es] [7. ] [97s] [7.] [gAr]' [7.] [9P- ] 1- [7.] WM' [7.] [91 [7,1 ['s][ ['/,] Wei r [%3

4. / 22,3 95/5, /41 3 - date 143 59.974 15,6 1 070,4 13,2 9090 15,8 f771,1 ' 14 0 + 77 2 1+,8 4633 164 165,0 16.6 f0 9343-1 /0, 7 // 24,0 7531,4 131 5251,2 12,8 " 204,1 /1,0 7248 :49 e3e2 l4 0 /267,2 10,7 333,4 /0,3 2760 9,8 1272 12,8 7353,4 1/2 /// 248 8021,7 12,4 4993,1 11,9 50142 13,1 9838 1 /5,2 7+1,9 118 /4/4,1 . /1, 9 322,6 /0 0 369, 6 13, 1 124 7 12,8 8905,0 / 3. 4 Ze* itt 584:49 9,3 37561 9,2 3404,4 9,6 yeed I /2,1 4834. 7,7 /129,4 ' 9 4. 295:7 9.1 777, 2 0 8 Ma 10. 2 7176. 8 /1. 4 e /6,2 +9/4/ 77 3066,7 . zs 8044,7 zs 704.5 .17 4876 7.7 .9040 7.6 2002 47 239,5 45 34 2 4,1 1736,4' 8,7

• r/ /1,3 4334,7 ea 24748 45 24841 30 557/ 6,9 440,7 7,0 722,1 1 6,1 233,9 . 7,2 /77,4 6,3 548 49 1034+ 77 P// 16,1 5734,1 ea 3641 49 1656,9 es 8801 10,2 . 426,3 8, 9 /181,7 ■ 9,9 3146 .9,8 249,6 .9,8 83,7 8,4 63843 07 Pe' 40 3193 6 40 /852,0 45 - • - 373,6 Z/ 2840 45 6240 43 /7e2 55 -- - - - - - a 71 2102,0 44 1854,0 4,1 19915 4,9 364.5 4,5 2493 4, 3 542,3 46 /450 51 97,8 4/ 413 42 - - X es 29044 4,1 2/6g/ .3,3 1 921, 4. 5,0.. 8341 4/ 112,3 .43 5548 . 47 /73,4 44 /443 42 52,7 .3,3 2733,3 4,2 Al et 4 /10. 0 69 2 9744 es 1715,1 72 +41,6 6,0 483, 1 Z7 787,7 ' 46 224,1 6,9 257,6 9,1 828 8,3 4933.7 7 e- Xl/ 14,0 4792,2 7,5 8 3432 42 33749 48 459,4 4,/ 514,6 ; 42 9534 , .9,3 233,5 32 2744 ee 142 8,9 51746 9.1

/11niet be+ 5149,4 .er 18142 9,3 17472 9. 9 760,1 9,5 .5778 9.2 /015,9 45 3044 9,4 283,4 /0,0 /032 /0,2 8 /32,8 /2,4' Mean

a •,

7

epee

fesl

40

5/

es.

4,9

2,3

4/

1,1

70

9, 4

/42

/4+

4.9

4,2

9,1

5,7

24'

/3,0

[ee] 1073

1+8,1

/142

/121

/044

1/, 9

/0B,9

see see nos

ee7

/11,8

[7.1

/e.7

/2,2

/

e1,5

4; e

7,

/2,C

4.9 /06,4 44.

• Di

-119-

1101

Trzi le, 48 0,242/) /110/17ey 9/15C4celZee ofians coat to7e2/ /11/ ./7e./Ze4.2c77e.017

R/442.4 196Ortc li7Hich91011C2. . . i .4145 in ,4f-14 ea/ 1 rut m ,cm i

y c Je t ' el- Cot* • Mai - 4 /19" X" . Ze•

pimith , a

7'/2/eet -x. gnitect //o-

[Reel 1.9/11 1%3 les1 [7.1 [eel 1%1 11/4 1 WA Ws) [%1 [eel [7,1 [eel [%I [el [7,1 [es) [7,1 rs9J1 [7,1

/ $eg scam 14.9 $ 2147 14, 2 15742 240 1 0143 17,1 4547 1+,1 /M40 let zee/ les se7 .9,9 sae ea to SI*4 129

// $9.1 nee,' 240 S$11,1 182 1731.4 At /194,3 " 12,1 sear zee 2083,0 2411 302$ 211 $44 1 32,0 279,1 MI F5 924,1 17,8

*0+ /41 eggs 11,1 stay . Its was 12,0 1891 9,4 954. 7 11,1 119,3 /41 121.0 11,1 80,9 140 4 2085 es

1Y , 144 5244? LI 2/242 41 11110 9,1 se1,4. 9,9 /181 81 7181 81 /417 /40 92,0 84 142 Zi +1441 8,7

bli /0,9 11187 4,7 /2247 4,5 14144 43 31(0 47 74. 2 3,7 4147 .4,1 111 48 140 4,9 348 4, 1 27147 4+

In es /74.44. 4.,4 1/247 kJ / +MS 41 tsgs 3,2 ez 1,4 14,Z, 4,7 180 4,8 54 1 41 13,1 ZS 2 1140 4,1

I XX MI 19741 8,1 2474+ 88 110) 7 9,9 1241 49 2940 11,0 912/ 14i /740 /2,0 /181 /0,7 84/ /1,2 * 511,1 9,9

. ex ee .1144 2,1 1471 41 7149 2,1 124,0 - 2,1 121 14 205.9 2,4 351 2,1 *1.3 3,1 /87 41 1 MI 2,4

Ix 40 917,9 1,7 3$89 1,1 4742 1,7 1017 › 18 144 12 /14,1 1,8 14 2 2,4 2+,9 2,1 11,2 48 901. 0 1,8

f X 4,0 1244 2,! 1180 2,1 $egs 2, 4' /081 1,8 344 /7 1112 2,4 +12 3.3 41 1 41 /4 4 41 F123,4 4 4'

XI 49 /522.1 418 / 024 / 40 /1141 4,1 2/40 49 $18 1,9 399, 2 4 0 69,1 4.1 14 7 4,9 141 4.1 / 793,0 41

XII 14 9041 1, • - - 47Z7 1,7 de+ 1,4 30,0 1,1 /443 1,7 /71 1,2 +40 3,7 /4/ 2,1 - 1010 41

eltrited $47 310.22 43 2/141 81 23171 es 1180 ed Ides z7 721,1 81 //Zd 43 102,9 9,4 141 49 19 312,5 84

11121111

*.Suspended mater

...■

_

ekan Money oliSc4q/2,7e oic l'Ons czec;/ 7407id Mii7e/e,ea'zaiioo 7aWe e

Pi:to Komienkci léagin ergerz,ge 4.er

lYme4; a Peika i le' • 1 . ,i,,q,- ,0:- cy- Car* nee* Al a *

[m>) [31/e] [ A] 9/1 ] [7.] [ 1/3 1 [ 7.] [eel 1 1/, 1 [ee ] 1%1 [eel 1%1 fee) 1%1 19/811%1 / 117 /10,3 8.1 174 79 du ef 11,4 0,0 1,4 4,1 /40 30 3,7 44 47 6:9 I 4 yy /541 141 103,2 /2,2 71,3 14+ /41 88 • 47 40 219 /4 0 9,1 . /3,9 47 /0,7 0 411 141,4 13,+ 1/2,1 MS 1e4 /1, 4 rge 147 10,4. /42 23,0 /3,1 4+ /2,9 70 /J, / 11' 2,80 1841 18,1 /07.2 /41 74* /1,3 28,8 14 1 10,1 /2,1 213 /2,2 40 /44 0. 7 /2,9 I' 461 11e,1 e$ 0Z0 40 547 .0.0 Ms 9.7 $ 4' .4/ me z+ 3,2 7,3 4,9 4,9 Y/ get 67, 2 412 388 4', 1 322 4, 1 CA 9,3 1,5 +2 70 +0 17 3,9 /.7 4 0 V/ 1,24 //4; 0 84 79. 3 44 93,1 ,9,1 /5. 9 1,9 ed ed /40 81 8,7 44. 1. 2 gél Ye 471 641 4/ +41 4, 1 4.4/ 1,8 9,‘ 3,8 41 4. 4 41 44 41 e+ ed 41 /2 0,0 +et ee 14 4 41 $4.. 1 * 9 47 49 2, 4 4 0 Z7 4,4 3,1 4.4 10 3, 1 X 48.#. etd 1,9 34 2 49 .ree 45 4,4 9,3 2,9 2,9 4+ 4,8 /7 39 2, 7 + 1 X/ 1, 01 97,0 7,/ 142 11 41 e9 t1,4 et 4; 7,7 te,t 11 3,2 7,3 3,4 9 4'

X# 2,01 /MI /1,4 /042 /2,5 71,1 /40 37,4 /9,7 /2,1 /1,8 244 /47 42 /49 8/ /S, 2 "fornte _

mea ' 1+1 1/1,1 4+ MI 4+ 111 41 me e 4 ec .0. 4 /4, 7 44 3,7 4 4 4 4 Bs'

buspended matter

-120-

2. Specific Discharge of Ions and of Total Mineralization

From the viewpoint of submitting parameters and meeting

ecomomic requirements, the results should be generalized;

therefore it is necessary to give a basic unit which would

serve as the starting point in various calculations. We have

decided, therefore, to calculate specific discharge of individual

ions and of total mineralization (as in hydrological practice),

which means the amount of compounds discharged from a square unit

(km2 ) in a time unit (one second): g/sec/km2 .

We are presenting the specific discharge of compounds and

its simultaneous distribution in the course of a year.

It is evident from the basic materials that there are

differences between the specific discharges of individual ions,

total mineralization and suspended matter. Specific discharge

of total mineralization, of suspended matter and of a major

part of the ions is higher in the flysch area than in the area

of Early Tertiary. eruptive rocks, which is again different from

other regions. Specific discharge of chlorides and alkalis are,

however, the same, and specific discharge of potassium is

even higher in the area of Early Tertiary eruptive rocks.

As far as the distribution Of specific discharge is

concerned, it is in agreement with the distribution of the

discharge of compounds (cf. Tables 47-54) and the same applies

to the former as to the distribution of compounds.

• •

Télle elee4eidihiee keitvee4 Me- Wisc4 ,e_ .7 1 ions eznef 747-4t/

7ht Panuee- and annuel season. -47 seizeshve,r p km 12771 , _ ,,,J.'.g lit...40. lel,er in19,_ hnuel a g

ln Qià 30,1- CI - Ce t `

me I. /,/ * K * le

kewl >es] [kg;s] %ria [keel /e. J0 keirl 17°)0 [9/s1 [%10 [kes] 13/4.1 0 [ker] v410 tkeirl [1,2f [kg4] (r.:1e4 [A-a/el

2511 104 9 29,2 3/3,2 241 3840 149 76,3 36. 2 29,1 29,2 /256 29,0 314 21/ 19,9 32, 4 /2, 4 144 7349i 11,1

filming«, 2 266 901 / 209 2/68 /9,7 107,2 22,9 18,7 hte 240 22,/ i6,0 /94 213 21,6 /1,8 216 82 23,0 04,9 I 249

Fee /576 3844 20,3 291, / 210 2102 249 67,0 23.0 20,7 248 1/1 9 23.8 214 212 /1,2 /2,2 6,0 /0,9 486, 5 247

Wi'alre /ces sec 296 1323 347 1644. 223 99,3 32,4 227 228 //a,/ 244 fee' 26,2 /2/ 228 90 28:3 6049! 25.8

I 2010 412,7 23,6 27/,6 " 9,7 fee 241 72,0 24,7 Ka 25 1 /09, e 24', ! e9 23.6 13.7 25,8 9. 1 214 403.3i

e7 creams

raPe, z elkee

/Vitro ;ye lie kv

cf eieee,4›..4.0a as ale#Ced/%1e P/L annual -reason

4etwil e, 5 s e e d . ma; _ - r //co,- • 20 1- 4*

01 -- eoz-* me.r. me + x * Ze

114,Solt,

re« res 1 ' .0 [57;s I .0 [ es ] 4 [i/s) 4 0 [ er] 4 ee ] .0 [es] 410 [es] r• [es .1 (4. 10 [es] if. 1".:. ) 0

e/ e s8e2 30,8 4 1448 29,1 4 /25;7 297 eatz 22,1 194,4 ee /û 3 J9.1 e49 248 tei 244 /064 311 71864 341

leynfen /34 49246 22,4 8/443 22,4 1 MS 23.8 72.7.3 es 119, 4 exa 7143 /9,7 2740 24,1 /960 /42 714 211 1120 219

/

fed/ ed scc49 /44 z420 /23 24/42 /7,9 40e,e /9,4 Jett /24 7/1,9 19$ /944 /20 2/7,4 202 de 24:0 43+9,0 /7,2

Villite 1679 68950 3/2 4 lie 9 349 48958 29,5 772( 226 779,1 S4 / /101,9 20+ 183,9 24/ 1e40 1e,/ 729 23.1 77648 108

0916 ' area 2' 4' 6881.-8 21." 3724,2 26,1 373/,: 228 769,1 27,8 577,1 248 /8/48 229 891,4. 346 213,4 20,* 1/48 15.1 0/124 12,3

ultif]

less

-122- _

CiSr.4eztey.e, 74>A7 1eqo in ccordancewith the season

even, rec int-1/c/7Qloyct...•

(2 Pilied.de.".1 ite -- lic°:- eel' el - cot* /.19 34 . No K + El

Je-as e4 tml/sl [ 9/s1 r.- 779. 0 [9/si L'1•10 [es ] [Ye.. 10 [vs) ci../25 [g/s1 i‘tefl Ls/el r [gis] 1 % 10 re41,-; 191311 Teeflo [ ws ] f % 2s I

ifAginor 2448 41072 54/ 3/24,8 4Z 7 81444 44,9 7771 11,9 2278 -4-0,1 /0241 43.3 /70,9 493 /42,41 49,1 74,0 I 42,0 1 906,4I 142 ! ! I Jimmie eV 1770,2 /42 /174:7 /40 /424,0 /8,3 2644 /7,1 163 te2 429,9 /92 e0 /ze 641 I 248 144 I .941 2413.0 i /7.7

FallA. 442 10042 /44 14.2,7 94 8042 /0,8 /33.7 9,2 .941 2, 7 289,9 /47. 49,1 13,4 441 /4,1 23,4 ; /3,3 1$219 II .9, 1

WM/ex /4 19 20748 21,4 /103. 9 24,1 /9941 24;4 100,9 20,4 99,9 22,1 142,/ 242 etc 22,7 43.9 /j;,g 21,1 : 14., l' je784,1 27, 4.

77 1470 3306,2 34,0 2/83.1 82,9 2144,3 .32,7 smo 83. 1 /18,3 34,1 723.9 12,4 /17,8 31,9 /02,0 33, 4 63.1 ..772 42740i 341 /MAAS I I

buspencted matter

Teibb--

PA) e Pek eischaefe. de. e /oils qed fvfeil eilhe1/2eibe7according_to the season Tie fe.

'ke Xe/nieek.

Anual a eiereci*-Tgai.t er, 4, W001 ./0:- CI" cell' e924 No+

Sé4:i Lm/s]9/J] 1 % 0 1[es l!r`Y:f.'0 Is/s1' 0 Is/el /'Ø 1 es ] .0 [ es] ' 0 let] " 0 [es ] • [ es] .• ]0 [ils] [ Y• 10

Sparno 2,23 171,3 93.7 /e/,7 ; 870 71:2 37. 1 24, 1 Jes 43 37,4 241 11:2 4:9 ses es see 7/ 4.1, 0 /474 I 344 I

Siimmee2 411 749 /40 40,9 I /9,1 43. 7 20,3 9,9 /02 4.4 /7,1 /49 /0/ 2,8 24/ .3,1 241 .1,1 242 740 ; /42 ' I

404 91,0 241 90,11 22,0 +9,7 22,/ '14, 4 28,6 3,1 22,1 12,6. '!•22,1 10 21,6 e+ 249 -3, 4. 707 7006 1 21,0

Wioltg1,22/00,222763.0;72,956,224,//2, 0 247492e0 rne02, 9 /7. 8 4 3 /9, 191.7! 24 9 I ri, - 44.2 //6,6 24;4 72,1 1 26,2 142 23,9 11, 26,2 6,7 24/ /49 241 3,7 296 f,4; '. 2Z0 4, 7 27. 2 /02,1 21,0

1,124/7.5 • i - ,

_*puspended matter 4, uq/ esteve.-

- elt-Inkez/ eesiniteze.,79oe ffie -s-Ateteitie- eile-hcrefe., /lees gee, 4/12/ leitte.e'reze75'es,

Palieuee

Bretir/ore ,km 1.971 cé4i:»7 aieez /31331.2 k," 2 ,

f el - e + + , Q Pgited 4e- ited* //cos- ..re, ,VD + ,c; * El /epee', ('/s) [g/ • s/..tkell . [9/skeef [ /71:-_ [9/0kee % . [9/skeli % 0 [eske] %a 4 0 giskin il " se erkffl %,.

/ /396 442 Z8 499 79 2,42 I 71 46/ 9,2 4/9 11 476 4/ 4/8 Z8 408 37 0,05 3,7 301 3, 7 // /157 4 91 /1,4* 2,93 /1,7 3,/S I /0,2 491 /4, a 423 /0,/ 1,49 /0,1 0,23 9,9 0,/0 11,3 41,2 /2.9 3.68 /46 /1/ 2007 1413 MS 2,71 /0,9 2,80 9,1 43/ 9,2 0,2/ 9,2 471 79 0,20 8,9 4/3- /4 9 492 49 3.12 es Ir 2/94 . 941 es 2,/+. .1,1 2,34. 40 410 7,1 419 43 0,80 es 4 /I 42 0,11 e2 4e 7 4' 4:C2 ea 1 210/ 5:02 /1,1 2.62 //,3 219 40 0,70 /0,1 0,27 me 1,/2 /1,9 0,29 /2,1 4/1 /2,8 4 /1 /9,0 902 / 4 fry 2912 4v+ 9, 1 2,19 47 3,19 I /1,1 0,54 4!' 0, 2/ 9,2 0,91 /0,1 424. /0,1 0,/4 9,9 'an /46 fys /41

1// 2119 3,4'ffl 8 0 1,89 ZS 201 4 .6 0,47 7 1 41e 48 478 e,s 0,20 8,9 4/I 42 491 9,9 4111 8.1 ee/ 2277 9,27 7,e 1,79 7,0 2,7/ 41 441 1,9 0,/9 8,1 0,01 7,2 ea 7,8 0,// 7E 0,07 40 4;22 79 /X 2017 2,39 3:1 1,29 e/ 1,19 6,0 0,3/ t 7 4/2 3.3 0,1/ 1:4. 4/2 3.2 0,07 .470 0,04 49 2,99 Ce X /977 2,46 3.6 1,1/ 40 /.67 3:4 6:37 3.0 4/3 3.7 0,12 5;1 4/3 ee 0,07 ea 441 27 144' 3:7 X/ /608 2,27 1,2 1,3S 3:3 /.08 174 438 3, 7 411 4,,S 0,1/ 1,4. ell 4.,7 0,07 3.0 4.94' 4:9 2. 07 er AI /4.4'! t /4. .9,6- 2.4./ e é 3,07 49 421 /1,7 0,1+ /0,1 1.01 11,2 421 /ad 412 41 407 49 /e, es

deneke 20/2 941 7f7 7 00 ‘92 , 2.7/ I es as9 L e3 4/9 8,3 0,79 .9,4 0,20 46 4/2 es 0,07 40 4,19 49 ',lean' _

-elSuspended mat,ter _

Peeeem.çue 074 awe 144/ meemes

LI153

e veg. Nitre hi Adela (ZaS/./7 aeeet_ 3/59, 23 km')

77zUe 6-‘

-123 -

iiemeed cesIit /6'2473:ems et esch'et,tge ,fe ions creel ida/77»iie/2,27/2a7/ ■7/7

• _

emyb. a P/Med,e- en14,ed ",°i .90/ e'.' - 992+ e5,2+ He + tr + ii

(.,,'/:] Se», r1/4. 10 erkeil . V‘''... j0 8/3...kfill-P4J.)0 [5/skell r%.11 syskeli` i! las ge kerre/2.. ]Of [glekinl ..-t e410 [9/s9.4l os 3/9.47, .r ii 1e3 9/..111 É v'ili 1 . ,t, sv, /49 ,49 /4 3 1, se /5", 9 45+ /8, 2 432 /69 416 /49 8, /1 144 415 /0,4 40s /eo 44,9 /87 11 34 0 2,10 /1,9 488 /2. 8 413 /1,0 4.38 49 420 /0,0 0,40 /0,7 4/1 /43 401 es 404. 12,1 2,99 11,2

/1/ 248 2,14. /2, 9 151 /1,5 1, 19 /3/ 43/ /2,2 424 /14 4+1 II,! 0,10 /40 41E /3,1 404. /1,9 2,112 /9,8

/4, 23/ /48 9,3 1, /S .9, 2 /,2/ 9,8 43/ 12,1 0,11 7,7 4 86 44.. 409 9,1 408 9,4 gos /0,2 1,4,0 11,9

4, /9. 2 1,16 Z ? 0,72 7,1 0,97 40 422 e2 e/s Z-7 429 ze gas .97 449 es get 68' /,.92 .8,7

yI p:3 tj7 4,4, 0„4,4- 9,5 485 7,0 412 6,9 414. 7,0 0,25 41 407 Z2 406 6,3 4 85 es /,80 7.7

Vg /41 * 142 40 115 48 . 4/8 44' 4 28 /et 420 e8 497 8,9 4/0 44 404 40 400 4, 4' 1,02 e7

ys .9,0 1,0/ so 0,59 41 - - em 7,1 409 411 428 9, 3 408 9,1 - - - - - -

If 7,1 OW 4.,4 0,59 41 460 4', 412 4,5 0,09 4 3 417 +4 aas J;, am s,, go/ 42 - -

X 6,1 ow 41 0,49 9,3 461 ,f7 efi 4.,/ 4,, 63 418 4 7 409 9,4 409 3:2 402 3:3 0,7 4 1 - X/ 9,3 /42 6,1 411 6,1 487 7,2 4/1 40 4/2 z7 421 46 487 0,9 409 41 401 es 1,16 zr x# »,e, 1,52 zs a,/ e2 107 49 4/6 41 em, 42 *0,1/ 9,8 0,07 7, 2 409 49 403 49 1,19 er

emie 144. US 9,2 4/3 9,5 1,20 49 424. 8,5 4M e2 412 8,1 410 4+ 489 10,0 401 /4 2 2,51 12,4. MGM

-

qeàuspendect matter

76- Peeeenbrje 7\'‘ q/1 uci,/ mes [1163

447neal eblextiezzlion IL the Speeei cotsc441,9e iteis twat, 7icleciri.17»»£/e44zceili,e

Titr ie

/fVelliZ > Q00rec1inicha/arcit. (A64S/37 elite 1401, klrel)

:Ignited4`-:,. ,r4.2- el - co" iy, Z. .4.62 ÷ X + zi

(..”'Mferk fll r '4.1 siekei r 7!)0 tw.,A-mi 1. °5 ie-kil r '4)0 [e.tel rs.if ferkel (.4.10 [see».1 1.4 10 rem.,41 ( 74.10 Egirkli

, 549 620 21,9 4,4.7 248 485 2e0 47+ /7,5 ass 144 6+1 e3,1 421 20,5 0,07 49 0,04' 49 Z93 21,4

// C9,9 420 29,0 4,72 262 9,92 23,8 1,35 32, 1 0,41 29,2 1+9 263 422 21,8 9.25 32,0 0,20 661 9,94. 274

AZ 24,5 2,92 /0,3 2,08 /1,6 2,29 /13 es/ /2,0 4/8 .9,4. 47/ /e 6 0,11 /1,3 4 0.9 /If 409 /1,0 3,41 4 9

/1, /44 2,48 8,2 1,52 85 185 4/ 0,4,1 49 409 45 est ef 0, 9,9 /0,0 407 ,e 4. 0,04 7,6- .14' 47

V /ea 1,90 4:7 0,99 +9 0,88 63 0,2+ 9, 7 401 3,7 . 488 tg 0,06 3,8 0,04. 4,9 402 .94 19+ 5,4

VI 45 1,24. 4+ 490 4,5 /,OS 61 4/4 3,2 401 .9, 4. 428 4:7 0,01 tg 404, 5,1 0,0+ ZS 170 48

WI 19,1 2,6/ 9,3 177 9,8 2,00 40 437 49 42/ /5,0 495 /0,9 4/2 /2,0 409 /0,7 0,09 /12 45+ e9

kill 49 0,69 2, 1 439 2,2 as/ 2,5 0,09 2,1 403 1,B 415 2,4. 0,82 2,5 403 9,8 0,0/ 2,0 0,96 2, 4'

/X 3,0 0,47 /,7 0,24 13 0,34 1, 7 469 /,‘ 402 /,2 4// 18 gas 2, 4. 401 2,3 4009 49 481 /,‘

X 4., 8 0,51 2,1 0,38 2,1 4+9 2, 4. 4 03 18 402 1,7 4/1 2,4' 4 03 3,3 9.03 34 0,8/ 2,e am. 2,4. •

,y, 9,9 139 44 0,7$ 4.4 492 4.,/ 4/1 3e6 403 1,9 42+ 48 aas .e,b- 0,04.. 44 0,02 ta 1,29 3,9

X// 24 0.4.3 41 - - en. 1. 7 4 06 14. 0,02 15 4/0 17 401 1,2 0,03 3,7 401 2,1 0,18 1,8'

VW-1,4a/

/47 2, 39 4 3 152 es i,81 40 0,57 8,8 4// z7 452 44- 0,04 8,3 0,07 .9, 10 481 .8,9 eos 48 ',fuzee'

*Puspended -matter _ Cg/jsi Peeeeni e., annua/ Mect/is 11173 •

ifneleid ;;;1/4"- fite-es->efe- ge.èchee-/eje: cii-e10//-ç7oeavici---747/e7-117/>i- «ea.- - -reek; .scf . •

gleeet • /Zike Hi/Co/me/My, (4:14 adreev I2,43 k/nt)

. Ei Apoi4 'Dàlg et e 1J1à. ft17 Nees-

Jo:- el- op,* Mgr No + e+ [did ksk„er-7%0 [es ke" 1 ['4. 30 Leski] [*/.11 Leskel [.4. 30 [es ken ,.1.1 -10 Ise kell 1 b tesfrA f 7,10 teik,1 Je.9:10 Les,t4 .,),i Le.,4-.41

/ 1,37 £93 48 1,09 ,7,. .9 401 4 4. am 6,0 0,10 41 421 40 0,09 4 -4' 406 48 0,86 28 1, 72 4+

0 1,9,9 2,e1 /2,1 zas /2,2 1,71 19,4. 9,27 es 9, /e /49 43+ 12,0 4/0 /39 409 /9,7 449 34. 2,M 149

/// 2,25 2,94 /3,4 440 /3,3 1,38 /2,4' eve- 14., ? 0,/7 1.8,2 9,87 /2.1 408 /2,3 4/1 /8,/ 4/1 11,2 215 /30

IV 249 2,97 /3,1 £72 /2. 9 429 /1,3 0,46 /0",/ 4/6 /2,9 484 /2,2 488 /1,4' . ea /2,9 0,18 13,+ 2,4,,t /2,2

V 1, 15 1,,9e 46' 1, 08 48 age ea aso 9,7 4/0 1,1 0,2/ Z4« 491 7,3 9,97 9,‘ 499 9,4 1,62 Z9

PI 9, 92 492 4,2 0,19 es 0,10 4,5 0,10 43 aos 4,2 4// 410 093 2,9 493 30 0,9+ 9,2 0,e3 4',?' re £24 1,84 44 1,1e 44 44/ 9,1 427 49 4/1 49 0,24. ei. 490 4+ 409 ei 40,8 es 1,74* es ///// 0,73 4/f 41 061 49 464 s-,g 1,86 41 409 4,4 0,11 0:4 0,04 6, 1, aos 19 0,01 1,7 410 40

hr as/ 0, 7.8 48 412 8,1 011 9, 9 ea 1,0 ei,,e+ go 0,11 9,4' 481 +8 aas 42 9, 98 24 0,99 +,+

X as# 449 3,9 ass ea ass, 48 407 Zs 0,94, 2,9 4/3 4,4 408 3,9 0,01 4,1 0,91 2,9 0,92 4,1

X/ 483 1,51 Z1 /a/ Zs 4.97 Zs, 0, 19 4/ 4/0 Z7 421 Z.;" 401 Z3 491 e 4' 0,91 eg 418 z a.

XI/ zag 2,1/ /1,4 £76 /2,9 £22 11,0 960 79,7 420 /14 433 /1, 7 401 11,9 nee 14 2 4/1 /30 2,19 /2,9

7F7-Fert le 1,ss 44 4/4. ee 493 43 425 4+ au 4 * 424 44 0.90 44. 447 43 491 e6 47/ 44 Means

C °41;15 pedeteelLet7e eneuer/ mens

-125-

V FORECAST OF THE COMPOSITION OF RIVER 'WATER

In connection with the increased demand for the quality

of water used in various branches of the economy, the problems

of suitable basic material on the composition of water and its

prompt use arise. Nowadays with such a high and extensive

demand it is impossible to provide basic material for the

requested case when the need is urgent. Collection of the

materials which would reflect composition changes during a

year would last too long and the realization of planned actions

would be postponed. It is therefore necessary to generalize

the knowledge of the composition of the water, which can then

be used for required purposes.

Final conclusions based on the generalized knowledge

shouid make it possible to predict water quality. This is

what we are trying to do. Forecasting the quality of river

water has not been sufficiently elaborated in our country or

abroad. Only in isolated papers do we meet references to

forecasting the composition of water, but even this is marginal.

Eventually the authors, who refer to a relation which expresses

the dependence of the change on the flow or the change of compon-

ents on total mineralization indicate that these data could be

used for forecasting composition changes. Existing knowledge

can be summed up as follows:

Since 1901, when KUNDSEN for the first time elaborated

hydrographic tables for the calculation of salinity and density

of sea water based on the chloride contents according to the

the formula 1

Qn = k (c)

-126-

, III formula S% = 0.030 + 1.805 Cl - , and which tables are used with

great success in oceanography, this relation has been applied by /120

MUSINA and MIKEJ to river water as well, namely to the river Don.

They accomplished the calculations by the method of least

• squares and the error was less than 0.02%.

PIVARELIS (69) recommended using the dependence which he

obtained on the Volga (Saratov profile) and Moscow River

(Rublev profile) when observing the dependence of the composition

of water on the flow with the aim of determining the flow.

The author thinks it possible to use some step function for

the expression of the dependence in spite of large dispersion

of points. To express the dependence he uses the reciprocal

value and dried suspended matter, for which he gives the following

relation

1

dried suspended matter

For a concrete case it is

Q = 11.9 x 10125x

where X)/ 0.007.

Like ALEKIN (2) the author recommends constructing two

curves, namely for the rising and declining trends. 2- BLINOV (28) states that the changes of 8

04

and Cl- content

as rélated to the flow of the Volga in the profile Saratov obey

Q=

and he gives the following concrete relation for C1 - :

•-0.63 - Q = 0.035 Cl

-127-

It needs to be noted as far as such evaluation of the

correlation is concerned as well as the evaluation of the

correlation derived by MUSINA and MIKEJ for Don River that the

selection of components used for the expression of the dependence

was not chosen advantageously. This was proved both under our

own as well as Japanese conditioris, where very weak correlations

exist between the components mentioned. In many cases one

cannot even speak about correlations.

Weak correlation between such components in waters with

low mineralization result from a greater influence of climatic

factors and soil processes on the content of such compounds in

water.

Also ALMAZ°V (8) can be blamed for such insufficiency.

He also used chlorides for characterizing correlations between

the composition of water and the flow in the Dnepr and stated

that this relation in addition to the relation for salinity "S"

can be used for prognostic purposes. He expresses both

relations by general formulas: n1 S = A1Q 2

CI- A2(4

The attitude is basically correct but the water components were

not chosen correctly.

BOCKOV (27) investigated the formation of the chemical

composition of water and the runoff regime in river basins

(i.e. the so-called external runoff stage) and arrived at the

conclusion that such a stage can be characterized on the basis

of hydrological conditions and the corresponding composition of

water.

-12g-

The author stated that a good correlation exists between

the content of water components, total mineralization and flows.

The correlation is expressed by a curvilinear function:

C = f(Q)

and is similar to the flow plot from which the flow of salinity

can be calculated. This relation is not the same during the

entire year according to BOCKOV and can also be different for a

defined runoff phase. He stated that the curves can have

various characteristics for the ascending and descending

branches as well as for the intensity of flooding.

VORONKOV (89) also states that the composition of water is

different for certain runoff stages and that the changes of the

composition of water as related to flow changes are different

for various rivers. He refers to several types of curves for

various rivers in the U.S.S.R. In addition to these relations

thè author evaluates in detail the relation between the content

of water components and total mineralization. The relations can

be used for the forecast.

Also MAKIMOTO HIRONARI (62) and TAKAKURA (81) mentioned

that correlations exist for the changes of water componants

among themselves and with respect to flow conditions. Both

consider it possible to use such correlations for the forecast.

On the other hand LARSEN (57) does not recommend using

for prediction of composition any relations between the components

of total mineralization and flow conditions in spite of the fact

that he found very good correlations.

-129-

Hence it follows that many authors who found certain

relations between the composition of water or some water

components and flow conditions in the river or, possibly,

relations between water components and total mineralizatiôn,

tried to use such relations for forecasting the composition of

water. Any success in this direction cannot be considered as

satisfactory. The fact that the forecasting technique has not

been elaborated to a sufficient extent should be ascribed to

the fact that even individual relations have not been sufficiently

elaborated, not to mention the fact that the influence of

individual factors on composition changes has not been accurately

determined, which obviously has a great effect on the formulation

of the forecasting technique.

The greatest success in forecasting water quality was

achieved by Soviet authors and by CHALUPA in our country.

In our papers we have evaluated in more detail the dependence

of the changes of water components on total mineralization as

well as on the flows, we have characterized the qualitative

properties .of water from various hydrogeological areas and we

have evaluated the effect of precipitation on the composition

of water. We can, therefore, proceed to the problem of fore-

casting from a wide'r viewpoint.

It follows from our results that the most useful items for the

elaboration of the forecase are the relations showing dependence

of the changes of the suspended matter, specific conductivity,

bicarbonates, calcium and total mineralization on flow changes

-130-

as well as relations showing the dependence of the components

mentioned above on total mineralization and specific conductivity.

Other water components which do not show good correlations

(sulfates, chlorides, potassium, sodium, etc.) cannot be used

as basic indicators of changes. They can be calculated by

using some other characteristics.

For the evaluation of chemical erosion of the drained

territory, we can use the relations cited for the balance of

the discharge of ions and the total mineralization as related

to the flows.

The relations which we have d. rived and which express the /12)

dependence of the changes of components on the total mineral-

ization of components, total mineralization, suspended matter

and specific conductivity on the flow as well as relations

between the discharge of compounds and the flow can be used not

only for short-term but also long-term forecasting of the

composition of water. However, with long-term forecasts,

especially with respect to water in reservoirs, it will be

necessary to donsider other factors as well (such as, e.g., the

presence of biological life, biochemical processes in water and

in bottom sediments, evaporation, infiltration, dwelling time,

etc.) to which no attention was paid in this paper because of

their exceptional character.

In our case we focus our attention on forecasting changes

of the composition of water as related to the flow during the

year, i.e. on the conditions of natural changes in flowing water.

without impounding it.

• -131-

If we calculate the content of the main ions, we assume

that we know:

1. The flow in the river (Q in m3/sec), - 2. Specific conductivity f.itin .cm .10 6 (18°07

3. Alkalinity of the water (in mval/l. or, like the content of bicarbonates, in mg/l.

We have chosen these known values because they can easily

be obtained by simple masurements and their relations are

relatively good, so that the calculations of the content of

components would notbe full of major errors.

To be able to calculate other components also (the main

ions) based on the components mentioned above, we should learn

the relations between the total mineralization and the components

mentioned above (sic: - translator). We can calculate any of

the components mentioned before if we know the relations

between the various main ions and total mineralization.

Relations between mineralization and the three selected

components for rivers which we have observed are listed in

Table 59.

From these relations and from relations among individual

components listed in Tables 19-22 and 25-28 we can calculate .

the composition of water if we know (measure) one of the three

quantities mentioned.

—13 2 -

Zak- se ge/;z7S'o/, eebireeb weriee, evmeeenes /e»).eiteil;"za,14,fre gent/

weic/e riews eeleiion. , ett-

. speciyir..+ 4.04.4c*- , I/co -

, • iii* se.e.e, tre4/,£994-- e(x)/ •zi iy) Widy (0e) (x)/ .1 (40

(x) z 1 (g)

ffiePiatude. (Xi) fZe 7 Arcoi 22,3 . „en, Brotiriera, ii. = 1249,1.10

-allie Zi li " 0,449 ef4le

a770. 4770

(2e') 17,/.9 I/CO; 02, 0/ ri ./066,7. e ' 2'

Mitr4g Mee d•;t 444, 9,987

+ a BOY r i - a, +66 a+6.6

-4 (2L) +2,2 • NCO' + 48 : LaPorec eseeichp/orce. II . 362,7. ,:ér

0,6250 ri -.

aeoe 0,e06 0,625

-4 1de (06,) 8,72 ,e/ke 4X9eilenkez., It. 81,28 .0 li= Ei••----1

a<4.91 age a es 46:6 _

-0,1,2 liCO., Jeff rODI19 ii, lienararcet , li = 3249. e 2. i n'

a 731 0, 739

e • 26 - Nomorectee fee deteem»ieoli on of the

emienis t wedee, deeetmenft5 /Rom 1-ea9we 2;*

O

-133 -

• /124-

The mathematical procedure is basically as follows:

firstly we calculate total mineralization () and then using

it and substituting in equations for individual components we

calculate the real values of certain components. Thus on the

basis of relations known we can calculate the content of certain

components at various values of the flow; in addition, we can

define them in more detail for various characteristic seasons,

various trends of flow, etc.

Similarly we can calculate and predict also the magnitude

of the discharge of compounds (ions) from the :river basin.

This can be used with advantage in drawing up the hydrological

balance, in judging chemical erosion, in evaluating the quality

of water impounded in resenpoirs, etc. In this case it is

sufficient to use the relation for a certain component and to

calculate data from a real case.

Such procedures for calculating both the concentrations

(content) of the compounds in water and the discharge of

compounds from the river basin is sufficient for a rough

prediction of water composition and the discharge of ions.

To simplify work and ac elerate calculation of the

content of compo s e author constructed nomograms on the

basis of the obtained equations (Fig. 26 and 27).

y=0 X

ek—peteenetw acueve

X-0

now d'afiecim

• ' ;

• e

% s2. c

• 2

2fre °2 1 ••• 40 tO

9-• a

7 . 7

- S - S

# ' #

1,014 10 7 3 ,'

li

1,0 10 1 • 9 9

8 r 8 7 7

-:--: 5

45 3 -r• 0,5 3

2 1

£10 log x #,0 0,00

•••••••• ••• ■•••

num. log x

025

0,50

0.75

It

Fife • 27 "" it/Ornaq 4)eidel fOni Celeljeb0/2 67/1 z; ante ei4ze, eemponeen`S cZS

eitAeldiee leî,

- 5E) + 7

-135-

In both cases associated nomograms are shown. The first

nomogram represents the equations of linear regressions

and the other the equation of a nonlinear regression for the

dependence of the change of components on the flow

y = a.x

We present the necessary characteristics for the use of

both nomograms in a tabular form (Tables 60 and 61).

To calculate the first nomogram we proceed as follows:

1. We search for "y" (i.e. one of the water components) for

a certain assumed "x" i ) at a known "z" (regression

coefficient) and "u" (free term of equation).

Procedure:

Draw a line from scale "a" (for a known "a") through

scale "x" (for ) and on scale "y" read the magnitude of

the desired component.

2. The other procedure can be reversed - for an assumed "y"

we find "x" while "z" and "u" are the same for the given

component and river as in Example 1.

Procedure:

Connect the know value on scale "y" with the known value for

the given relation on scale "b"; read on scale flax" and

connect this value with the known value (on scale "a" - added

by translator) and read 7, on scale "x" (English formulation

by translator, because Slovak explanation is incomprehensible

and inaccurate, cf. the original paper, Page 133, line 9).

-136 -

etet,a,dedeleeeS efizeteen.5 egIbviesenike Zak. 60 COR,R,e-be on e ideveei wemp o./eA74,5 ignae

'Coe/pone/7f (y) ex Pcze4e etre Loborec Rike

-

Pley 4eS1.01Zle, - 30,1 0,870 +79,1 0,693 +57,7 0,11! + 2,59 4117

ifizer,coackeli4 + 57,7 des' +97,1 ede ++3,2 40e +472 0,891

Iwo; +243 4+48 4- S2,0 0,4.66 - +,d, 0,625 +408 0, be

- 24,S 4/94 +17,4 0,066 +44,9 0,092 +9,21 0,0/J

Cl - - _: -3,9 0,10# i- 0,3 0,034 +3,4+ 0,011

Cat ' - 4,1' 0,16f + Z3 4135 + Z2 0,149 +440 0,124

*2 4270 +8,3 0,029 -0,04 0,082 -0,89 0,089

A/D+ + 2,1 0,019 -15,5 0, 081 - 4,92 0,04.8 +0, 57 0,029

+0,3 0,01.1 - - - - - -

/Voted ; e - /ne mednien. -eeuctillon

M.erieaet-enishé...5 etruài/owsg9a,geseeizq e-o/e/teletlions eel-weer, eiorelloeerefs gee' a.

7;Z4 sy

Riven.. ecellevIen71 ge 'mete, Nitro taboret. /2 ika Top/'a

(31 )

vied. eapekeyhiy 1036, 4 -4/72 9/2,2 -429+ ea 6 - 0,122 93,8/ -4208 _ _

aeini ak., 4es Wee- 1224,9 -4223 7/1,2 -0,28', 24.9,5 - 0,092 ege -41+0 2o47 -a /92

1/69; 683,6 -4/78 en f - 43/1 223,5 -0,1+0 4.7,63 - 0,305 2012 -0,202

JO 2- 273,6 -4282 zaxs -4/9 32,36 - 0,0+3 8,03 1- 0,175 29,8 - 4/35 4

C1 - - - /29 / - 449', /0,39 - 0,/04 4,45 -4778 _ . _

Ca f + 169,8 -0,161 1+1,4. -0,297 641 -0,/21 /1,39 - 0,584 52,4. -0,093

He 2. - - - - 11, 66 - 0,166 2,63 -0,372 - -

N a * - - 66,8 -0,555 /1,86 - 0,292 2,94. -0,102 - : -

N + - - /5,23 -4272 2,34. ... 0,//9 3,04 - 4 /89 - -

ri /24,4/ - 0./30 - - 3637 -0,128 83,28 -0,1/98 321,9 -0.152

Nolte : 49,4 e7L-eies q eteieve- rhypededeila)

• -137-

The procedure for the use of the other nomogram, which

represents the dependence of the changes of the components on

Q, is as follows:

1. We search for "y" (i.e. for one of water components) at

known "Q." and we know the parameters "a" and "k" on the curve

(a hyperbola).

Procedure:

Draw a line from the scale for the known

scale "x(Q)". Draw another line between the intercept

obtained on the scale "Qk" and the value "a" on scale

"num.log a" and read the desired value on scale "y"

(reformulated by the translator).

2. We know "y" and search for "Q".

Procedure:

Draw a line through the known value on scale "y" and the

known value "a" for the given relation on scale "a";

connect the resulting intercept on scale "Qk t with the .

known value on scale "k" and read the searched "Q" on

scale "x" (origninal text incomprehensible - translator's

note).

The procedures for reading (flow diagrams) are presented

graphically for both nomograms.

We cannot perform more thorough and detailed predictions

yet, because we have not enough observations (several years -

minimum 15 years) to be able to characterize, e.g., the

probability of repeating and exceeding high discharges of ions.

"k" through the

-138-

Relations such as these can be solved as they are solved in

hydrology, but we need additional observations to be able to

generalize.

Based on our basic materials we can construct lines indicat-

ing how long the discharge of compounds (ions) lasts and lines

indicating how long certain concentrations of individual

components or of total mineralization last. Because there are /134

very close correlations between the discharge of ions and flows,

and in some cases there are even functional correlations, on

the basis of hydrological material we could calculate predictions

of repetition or exceeding of discharges with a certain

probability.

Calculations of the probability of repetition could be

accomplished by one of the methods used, either graphically or

by means of some equations for empirical probability distribution,

or by means of equations for binomial or logarithmically normal

distribution, or by means of some simplified methods (e.g. after

ALEKSEEV - 1960).

Calculations based on the equations mentioned, which hold

true for entire complexes of random quantities, yield values

which characterize the mean composition. If we wish to character-

ize the composition of water under various conditions (various

seasons, various levels etc.) and make the results more accurate

and decrease the errors between actually found and calculated

data, we can make the calculations on the basis of the equations

for partial correlations of characteristic selections of random

quantities.

-13 9 -

eafeu-kilees veilles anof etzkees ers Éezsed ite.4175''oes 4 acir44ey

7) x-Pa.:4de. measeceed

44; a1g1U11:510:4's7,c,tof 1,971

7;a4

z. erect .1 ealzione*eatAt. ne.de7teci tx-,,,,,- .-mi_ --hyreezeces t?elisleed; ceut.aeed 44./ eizec7e.kiieemiA44chs , L e0/11- .4 artnece , 'Melt' ,G7M-stibleYy :, F/0 be rt'r't k eiel,&2q/k_ I • '

. el F/04,1 ••• •`' eei•cietc-#1#1) ie- ̂ _, ..... defœnifert , .,: •

/lent [eintl Lny/11 [me) tmel I mei l [Y. 1 [ met] [ % [ [ mei [ % ] ere eels, Weer e 119 1 - .14, y - 1 2 1+,4 et - II/ - ec

Cà SO41 pre ereoeDis 1 / met 144 1 177,1 - MO - 1,1

i de ••/•• reed^ 0 fed site rig, - fd 41 -1, - 1f - 110

- 12+ - 7,1 0 0, - 1,9

k / 111,1 Pre oomie I. j 1+44 •

- ,s,# + 540 + ,c - 7,1 St .0

..k1 Ire ege edIoe 0 tee e .r,f +15,7 + f + 7

tre e ,0

.. / tlet pre obtodio / • 1 116;11 gi--- cn - • - I .7 _ -

d e /5,64r 0 1115 _ 7,1 I 0 • - 4:2-

••, / Tel ire e/i re 40doblo / 1 1113 - I - 16;0 - el le

/ et • s f pre eelli tdidoe 0 . 1'6•

r .'' 1 14,1* pre 4,6140ie / 1 1117 - lee - 41 - rge - C,f

7121 reef - ‘47 - 36" - IS - 3* - 17.2 - ei - et ore co/f edger 0 2154 141,0 - 1,1 2 tat Pre oldoSig t 13/* tfet -

- Oro etedurdoe 0 1154 "V 711,1" • Id + 0,9

- el - 3,4 - MS - +,1

"':." 111,4 Ire 4004/4 1 1/21 - /50 - 40 -111 - 11 1 -Jed - 3% g, de eddi Md. 0 tos,7 f71.! 10g1 - 9 _"5 . - 11,,

ea, 5 111.0 ore oddodie 1 ie 7 er 0 e - - Off eg/I el - i+ - 41 r Pe e + fe / d 1040

1121 • go • j, 0

Mt* Ore oSdoefo / 1 1154 - 41 - Me + S 1 + 1,7 - _ I feel pre ee/fl altar 0 111,4. 107,1

Ire redoes 1 1143 - 4 7 - 1,7 - nt - 14+ .. 1+,1 - 7,1 _ _ pre eel" reed 0 144 I 171,1 _ / 1141 /re ode/odie 1 / 1144 - II - Id

ere eggegreor o fit!' - 41 WC.111

/0.7 ore 'Dees / 1 111,• • SI IMIMICEMM

•17

e: IIMIKEM _ ,z, - Id - -

IWO- Deg C 4 i f Aber 0 ger /et - - 41 ralagera■

g Ilei t Oro added: 1 ,e_ MI/

+140 + 7.* + ez t e,e _ _ 1 171. 1

pfil.' eel, Mir 17 /17,1 1.4*,f • 21 • 22 'Ze drlodie 4* 7.1 • ti • 1,1 • gir - - e êreelieer 0 /MO • t9/, f - - 0 - 1,1-

5 171,0 its eledogie 2 2, sett •1.6. 40 150 - Pro eell /11or 0 144+ •

/gel - CO - 1,7 re - led - - 2 1641 e MCl/4 t 7 , 111,1

pre ce/j rééer 0 12, t 1!:,1 At 0 - ei - 4, I 1 • 7 • ec . IL+ - 1,7 - 1;1 ore oetegie / 1 142

_ _ _ -

- 141 191 - _ - +I 1 - I - 17,1

ore ea/g Mgr 0 toe - t.0 - sr , 4+ - 1,3 • 42 + MI

i 11 y., • S,! • cf I si.r cre sedodie 1 1 SO 1 pre cave tee" o 14.0 tlf• • 40 • go

fl, ore sedede I i / ‘ / 1 S

15:-

"fee eeerit"••,- 0 • If •1 7,1 • ea - gé / Z # 4. IS, /

M4 Si/ 146- • 4f +,4ç1 411 pre obeti „ tif 1r• eeler eélor 1 '11 • ad • Se/ 141 21 21 - eg - +.2 - 11,1 2 et e,., 4054fie 1 .2 31.1 _ 4+ -. 9.1 wy cncita , sec - 9,* -12,0 - /1, 7 - te 2 -11,1 - fef é 1/,I -1st or, ...e'er t tie tg, • -es ere .eo/1 el -10,2 -2Z2 -17,8 -see -es - «I der .' :46

tZ4 fes -123 es* • t4,1 - 1.1 - J. 7 + 7, e r i,.# - e, 0 - .2.1

e4, ,, cgs

Ol.l - 0./ - 42 -121 -141 1-- 4,.. - 72 - 4;* ■•

400 e/

see es, - Z. ors odiodis / AI

+ t 0 + - 1,1 - i 1 4f - 4.9 1,1 M coif rider 0 442 le* 141 . 2,1 • 4., r Àrre oldeds / / 141 4 4,4 -Igo - - 47 - 5. 6rro eg/ge "edge «1 -

Mt • pre e4d44/4 / / 41,4 - 1,5 - 5, 1 • 1,7 • Z1

cat' Ore et/ It/I0P 0 (fie fef ff,7 - 1 0 - 14 • 11 t el

422 - 45 - 0.1

14., re 7 150 +617 + If r 2/ • /5 • 4+ + 5,5 • /I • 1,2

.• .6 12 • 1.4 - 0,4 - 1,4 - /.1 - 22

+.4f 4et -44 - 3.8-e0 - -540 - ,C7 - IZS $gs +4.,/ -77 -14.• -is I - es fec • u, f - Z I - '

re 41c/41/4 1 1 sse,c ill, f 1141 r 4, i + I$ J. _ 1 _ •

- -,- 110,4 1111 1121 - _ , - 120j -sec - let 1 171 - f, 7 +11.1 . 45 ore co/el Mgr G 1744 Meg Slf,2 1 MO pro oedoeie / 1 .501,1 • 1,1 • of -1+,1 - f9 _ - 4/ de erty lied 0 11+„f _ 2743 + 15, • df / 174* ore gedoeie I 1 1191+21,f • 77 ZI H *, 1 - /,i 4./17 • f,f

10/4 .124.i • 0 r•_..1,_ I 1044 Ore o rtdoele 2 1099 Z p et set - #,1 2/S _eelf.:É-Se a, jo t 3021 o7i oeikel• - 0 f

3 178,0

de ee/À7 .raIeF-tr 1141

211:4

- 11 - t f - 0,1 -lei

-1+1

-4+

:lei__ _ : 4./R -i49 -;,:, . _

+ 5,!i

--.1:0 s

• iv .1a7 - 48 - ef

1111

tree

457f - 22 lie-

ore 0/do//i0/do//i 1 2 111,1

112,1

1 501.9 ore o -247 de ee/9- earreir_z 1211 4e. 21

0010/157ifeir 0 117+ ire eelT

-

111,1 -el 1

etczeotts 44Çeil o ffie eneee 0.-entp/ex ifrt secisoe• fok Adee,san ant,' se,soi, 3

-140-

rtik,

e4,4u,474'on s cf pa Zzces ezes edeeoles as earse4 Pn /te-he*evis 14 aebeetify elesistee,ed clerift,

e'kat LoOorec tee/Iloilo/Ott

.•ge *a eon- a . eu e

Flow • idtedes,%, ellefihj ;%il" t-• - efen• ,etikee er',/,' -

seal d - . Di we

.e.,.y.fflaiu. abil 4/kalie ttee -I, • l /

net •-b Ile 'or • ; fee/ ' lguili re1 t me) -Tine) 1%1 fiv/r 1%1 I tme 17.1 197 •' 1M 1.15:- g-I55-er --e-- ,,e41

•• ,g • • • • Ira* 3e, 9 • Z7 _12,1_•11.1 1+.3 11.• •

/Jed 1091 • MC • 90

//to - !A9 -

-444 -2+ • 211 • MO

47 - et

. ,,, --Iore r4/d00 ter 7

A Pre • la, • el

• 11.7 • 49

1 1 7 1101 241.7•

O

- 171

%. 2,7•‘' 0, **deem 1 1012 •-13.0 - 1+7

1 ?MO ro eel' Milo

171d 1191 111f

MI 1# 00 obm 2

MU__ - - 151

- 7'

- /14 - MY•- 14 • Mf • 1.1

• * celjr,rjes F 20+.9 • ire • e7.4.

MO f 100.1 • M. 9 • f.: • :et • 10.7 ,...

1 11t2 Ore 00100/. t r4 117.7 • d7 • +.‘ 2U+ 2 • • ea 2 e i -

79.0 113.0 1 1 • Y • I 1 Z7 .ir..... 1 r g MI. • 147

re re etre E., 1013 *DJ 174

MO 9 116,0 • /2 7 • 7.2 • 14 • • 90 J 177 2 Ore ed100M F.,,»Zraillal +MO if. f

• s ce/".M00 1101M321111•111 - 0 y - 1 2 • 192 • 91 - gs1 3 M. 9 • 2 f ■ /0 • eel. Pre CI Ig0

•• IgZ

;.+fele 1 7.0 12 .0 • 111,f • 10 ,1 • 10.0 '■ 3 egf ore oeclobie J • 27.0 • /19 re co/ 1100 1+1 3 2251 lea . 111 • Ye

- 1,0 - o.+ • if. f • zo

/t+, / pro (Wee, / 1111 -174 - Mg

Pre cd/ Me,191+ - 170 - c

2700 • 14.91 MI -17.4- - 4rt - 7.7 - 2.11

pro eh/eerie I /171 -791 - MC

re eel' Meer 3111 - 1.1 - Si

1 50.1 1111 J494 -11,8 - Z f -143 - 91

ore pedalo I 101.5 -743 - 214

ore col -',Wr 1/00 - !17 - al

L MI 1157 2172 •11,2• .. 11 +MO •19+

Oro otoPele 2 !I .4 - 17,1 - 14,1 r* eel /Dori] Ici., - MO - fg 12,2 -

2110 174:0 7.$ - 7.I - .1,O

3' MU , eepeelt 2 155 3 -Mg' - 0 f

ore arena,- e 3151 ge

1 224,4 3101 SM1 1,7 • p .5. - f., - 49

ors ottleOre 1 114.2 -10.1 - 1,1 rt.22.101. Mt I 1510 Mt •Itt • 171 • i,f • Id -13 -t2

S MS ore 05000/I 3 IR1 _lee; • 411 4 /

re cel re or 1790 .11.90 ar - t - I ( -2f.4 -1.5 • 1.0 - 2,S.5,..3 $04: 4' e otcloeit 3 1177 -107 - r

ore eel :Our 2114 +444 • /11 3 502,7 see+ Mel •.517 •151 • 0.i • 04

pr# 000001. 5 3193 •11.1 • I

1+91 • 33 • 17 fe.0 - zs

/J44 - - -

I 141.2 'P.', ee co'll 1-#1, le et °I' Ili.J__ -5.30 - 151

re celi,tglor• 141 • tee _ - 01 .5 st e -114 _ -

/ Ill,, pre oteobit 1 Im 4 - 44; f - 171

Pro cer rieo a 1052 - - 1 - 17 22,0 -10,9 . _ _

I 211.1 II1

I 155f - fti - 2+9 ore 'Moe, 4

e

2 1157

eel" idea 111 -

1 -11.1 - 100 31• _ -

/t3I 9 - Mt

ere 001#19, 2 511,.' • • - 4•9 ore ea, +jeer fl /el f - 10

/120 - S., - 10 - - 1/C0i iii,f ore 'MOM t Me f • -M u O -

2 /04, 0 ursreirzrziovarrEam „„ _ - e t . • tr . 9:o • Lc - -

err #0101/e 1 L 101.6 - 11

re e#1`200#r ICS+ +191

2 1+0,1 /4£9 ,- • '9,1 • li -

pre °bee. s 111,1 • • Mt • le l re

rg eel; 'War • 17., 1 Mid -

- /10 - Il 1'92 - 11, 1 - -

3 iii,, ore •010M 5 LI 1790 - 100 - 1,1 ore et/ mile , 201 -

• 154 . 115

1 MS.+ tod • 19+ • nt - - Pre ooe'dtr . $ Lj 1911 • • 11 • 1.7 o a/ efes,ra 17 f • 110 • a re

I /i, S. MS 11.1 .9'.1 • 11,2 •109 • 00,0 •

fg tredelle / I - 21 r • £4 • gy ce/ III,, V Il - 1 - 10

1 el re /1.1 11f 12.r - to.s - I.0 •' 3:1 Ire 'Mee& 1 1 Mt - Of - M.+

, ce/ Mee If • /19 • Mc

1 25,S 13,3 MC • 04 • 41.7 ' • 147 - f3:7

Melee / _g_4 • 40 daj . •

. ,. e DTI« fit 01

M 307 5/1 • ar • 1..S • 91 .11,0'

1i1 re •edoelo 2 i - 1 f amomi n . 0 r Mafia. se r us MC MO Of - 0.7 • 22 • +.2

re 041#01# t - 0 7 IIMMEM11 ff eel - titer n .117 ing^rinail • up

191 Ad 241 •.•eat •tee . L+ re 0100 e 2 MI • Me MCKIM.

ru:mrreuranMI • 2 9 IIIIMLŒall • 0'0 .001 e o .11,1

ore oedoem S 370 191 • 0 /111:Kani

$ 7 7 .,3 •Ali gor 1/ 27,f 35,0 ie

• CI

• ej • /4;1' • 4 fp . 11:1

- obdoeit I , 12 1 • ei

re ter rigor ___19, •• IS

329 1 se+ lee . 4 f • it/ • 49 • 11

• 12 • le

.11fLele_2 ■11If 7 • 12 fali:EPRIR

. 90.2 ! 7 - 9:2 • 43 • 47

41,4 Jed - 7C IIIIMEal. - l' t e leriée fifj - 41 nalinglial

+10 112 409 209 - W,/ - 9.? - 99

e 'Agree 1 31 4 -MI IMErMli

ll:A.2m fi f • 03 21M2C0M.

1 Mt re ce 111 ses st•5:5 - 11 • 97 re .11,M tf - 0 •

liMMI/12 .

11 rt c-i-1$3_,M0o r, f - di

2 • $0.4 re+ 407 de - zs:9 - 0.7 • $4 ore .011 2 M.1 -1/ S /211:Egila -

rp' • 2 es ctILLÉréo Jr es. +7.I -72 -11.9 e..e - 14:4 _ c, - If,!

re odeopie 2 J 7 - Y - lty --r

1$ o • to - re ce/i_ideor 1 .A. 9 zr • zs j • as • 0.6

Z 1+0 01! ildoe, t le f 7 13:1 13,3 - 0,3 - 06 - -I

3 414 lire rely rebore] +70

ft.0 91 f • et •1+7 • 11 • 2.7 • at . - 45 '

lere obloOte 3' •• 94 •If f

S'a eel - pea - 13 11 -

MO 41, f Me «S - 41 • 0.3 • • 03'

re #0151, 1 +1

A 7 e 21/"i_•etr_ 17 51 • • LT - • $9 - i.i - 10 ! - 57

re 0110, .1 St M. 4 it 2 - 0,4. • 07

e ege;79.03 -use,/ ftte : e ee. entina. eonf/o/ex /-7eqz.. Seg...ço /

3 = fin SeaSon ,3 sea.fees 64 4ncif

-141-

The question of how precisely we shall succeed in determining

the composition of water depends on how close the relation is and

what way that particular relation is used. Errors between

values found and calculated are lower where partial nonlinear

regressions are used; most results fluctuate within limits of

-5% error and only isolated cases have a higher error.

Somewhat greater errors occur due to the use of specific

conditions, but they are still within acceptable limits

(except sulfates and potassium - cf. Tables 62 and 63).

It becomes apparent from those tables that though the

differences (in percentage) for individual components and ways

of calculations are different, they lie within acceptable

limits.

-142-

BIBLIOGRAPHY

1, AKITO KOGA: Chemical Studies on the Hot Spring of Beppu VI.- 135 VIII. Nippon Kagaku Zasshi (Japanese Pure Chemistry),

Vol. 78, No. 12, Dec. 1957: 1713-1712.

2. ALEKIN, 0.A.: K izucheniyu kolichestvennykh zavisimostei

mezhdu mineralizatsiei, ionnym sostavom i vodnym rezhimom

rek SSSR. Trudy GG1 (Gosudarstvennyi Geologicheskii Insti-

tut), Vyp. 25(79), 1950:23-35 (On studies of quantitative

correlations between mineralization, ionic composition,

and water regime in rivers of the USSR. Proceedings of the State Geological Institute, vol. 25(79), 1950:23-35).

3. ALEKIN, 0.A.: Osnovy gidrokhimii. (Principles of Hydrochemistry),

Leningrad 1953. 4. ALEKIN, 0.A., and J.P. MORICHEVA: K voprosu o proiskhozhdenii

i budushchem ionnogo sostava vody Arallskogo morya.

Gidrokhim. materialy, Tom 25, 1955: 3-15 (Problems of present and future ionic composition of water of the

Aral Sea. Hydrochemical Papers, vo. 25, 1955: 3-15). 5. ALEKIN, 0.A., and L.V. BRAZHNIKOVA: Novye dannye po stoku

rastvorennykh veshchestv s territorii SSSR. Trudy III. vsesoyuznogo gidrolog. slezda, Tom 10, Leningrad 1959: 13-23 (New data on the discharge of dissolved compounds

from the territory of the USSR. Proceedings of the 3rd

All-Union Hydrological Meeting, vol. 10).

6. ALEKZEEV, G.A.: Grafoanaliticheskie sposoby opredeleniya i

prevedeniya k dlitel'nomu periodu nablyudenii parametrov

krivykh raspredelenii. Trudy GG1 (Gosudarstvennyi Geolo-

gicheskii Institut), Vyp. 73, Gidrometeoizdat, Leningrad 1960 (Graphoanalytical methods of determination of the

parameters of distribution curves and their extrapolation

for longer periods of observation. Proceedings of the

State Geological Institute, vol. 73, Publishing House of Hydrology and Meteorology, Leningrad 1960).

7. ALMAZOV, A.M.: Gidrokhimicheskii stok rek Dunaya i Dnepra

v Chernoe more. Gidrokhim. materialy, Tom 23, 1955:39-47 (Hydrochemical runoff of the Danube and Dnepr River in

the Black Sea. hydrochemical Papers, vol. 23),

-143-

8. ALMAZOV, A.M.: Do pitaniya pro prognoz gidrokhimichnogo re-

zhima Dniprovsko-Buzkogo limanu pri zaregullyuvanii stoku

r. Dnipra. Dopovidi ANUSSR (Akademia Nauk Ukrainskoi SSR) (Ex Referetivnyi zhurnal khimiya, 21, 1955)(Investigation

of the forecast of the hydrovhemical regime in the Dnepr-Bug firth after embankment of Dnepr River. Proceedings

of the Academy of Sciences of the Ukrainian SSR. From

Referativnyi zhurnal - Chemistry).

9. ALMAZOV, A.M.: 0 vliyanii ispareniya atmosfernykh osadkov i

protsessov fotosinteza na khimicheskii sostav vody otkry-

tykh limanov. Gidrokhim. materialy, Tom 29, 1959:140-1144 (Effects of evaporation of atmospheric precipitations

and of photosynthetic processes on chemical composition

of water in open firths. hydrochemical Papers, vol. 29).

10. ALMAZOV, A.M., and J.G. MAISTRENKO: Gidrologicheskaya i gidro- 136

khimicheskaya kharakteristika sovetskogo uchastka Dunaya.

Dunai i pridunaiskie vodoemy v predelakh SSSR, Izdatellstvo

ANUSSR, Kiev 1961 (Hydrological and hydrochemical charac-

teristics of the Soviet section of the Danube. The Danube

and Danubian water resevoirs on the territory of the

USSR, Publishing House of the Academy of Sciences of the

Ukrainian SSR).

11. ANDRUSOV, D.: Geologia ceskoslovenskych Karpat. SAV, Bratislava

1958 (Geology of Czechoslovak Carpathian Mountains. Slovak

Academy of Sciences, Bratislava).

12. Hydrologicke studie slovenskych povodi. VUV (Vyskumny ustav

vodohospodarsky), Bratislava 1951 (Hydrological studies

of Slovak river basins. Hydrological Uesearch Institute).

13. Report of the International Joint Commission, United States

and Canada on Pollution of Boundary Waters. Sew. Ind.

Wastes, Vo. 24, No. 9, 1952:1200.

14. Vodohospodarska prognoza na Oravskej •priehrade. Bulletin CSAV,

roc. II., c. 12 (VI), 1960 (10). Hydrological forecast on

the Orava Dam. Bulletin of the Czechoslovak Academy of

Sciences, vol. 2, No, 12 (VI), 1960 (10).)

15. ANTONIO, M.: Vyskum a hospodarsky vyznam cistoty slovenskych

tokov. Sbornik rrednasok zo sjazdu chemikov - VIII (koze-

luzstvo), Banska Stiavnica 1953: 211-267 (Research and

• -144-

economical importance of the purity of Slovak streams.

Bulletin of lectures from the meeting of chemists - VIII

leather dressing)).

16. ANTONIC e M.: Zdravotno-technicke problemy v povodi stredneho

Hrona a moznosti ich riesenia. Vodohosp. casopis SAV, III.,

C. 3-4, 1955: 313-333 (Hygienic and technical problems

in the river basin of the central Hron and possibilities

how to solve them. Hydrological Journal, Slovak Academy

of Sciences).

17. ANTONIC, M.: 0 specifickom znecisteni riecnej vody. Vodni

hospodarstvi, c. 10, 1957 ( On specific pollution of river water. The Hydrology, no. 10, 1957).

18. ANTONIO, M.: Moznosti praktickeho pouzitia specifickeho zne-

cistenia a miery znecistenia. Vodni hospodarstvi, c. 7, 1958 (Possibilities of the practical use of specific pollution and of the extent of pollution. The Hydrology,

no. 7, 1958). 19. ANTONIO M., et al.: Zdravotno-technicky a limnologicky vyskum

v povodi Bodrogu - I., II. a III. cast. Zaverecna zprava

VUV (Vyskumny ustav vodohospodarsky), Bratislava 1960

(Hygienic and technical and limnological research in the

river basin of Bodrog River. Parts 1, 2 and 3. Final report. Hydrological Research Institute),

20. ANTONIO, M.: Die Verunreinigung des Flusses March und ihr

Einfluss auf die Reiheit der Donau. V. Arbeitstagung der

Arbeitsgemeinschaft Donauforschung der SIL. Wien, Sept.

1960 (prednaska)(Pollution of Morava River and its effect

on the purity of the Danube.

21. ANTONIO, M.: Sucasny stay- cistoty vtd na Slovensku. Jakost

vody v tocich. Sbornik prednasok XI. seminare pro zdra-

votne vodohospodarske pracovniky. CsVTS (Ceskoslovenska

vedecko-technicka spolecnost, Praha 1961:281-306 (Recent

state of water purity in Slovakia. Water quality in

streams. Bulletin of lectures of the llth seminar for

-145-

workers in hydrological hygiene. Czechoslovak Scientific

and Technical Society, Prague 1961: 281-306). 22, ANTONIC, M., J. MAYER, and J. SZOLGAY: Hydrologische and phy-

sikalisch-chemische Charakteristik des tschechoslovaki-

schen Abschnittes der Donau. VI. Arbeitstagung der Arbeits-

gemeinschaft Donauforschung der SIL, Budapest, Sept.1961

(prednaska)(Hydrological and physico-chemical characteris-tics of the Czechoslovak section of the Danube (a lecture).

23. ANTONIC, M.: Abhangigkeiten und Vorhersagen hydrochemischer

Veranderungen im OberflgchenwaSser. Symposium des Fach-

verbandes Wasserchemie, Leipzig, Mai 1962 (prednaska).

(Dependence and forecast of hydrochemical changes of sur-face waters. (A lecture). Symposium of the professional group Chemistry of water, Leipzig, May 1962).

24. BAECKER, P.: Probleme und mgglichkeiten hydrochemischer For-

schung I, II, III, IV. Wasserwirtschaft Wassertechnik I.

12, 1952:415-420, II. 6. 1953: 212-217, III. 7. 1953: 254-258, IV. 8. 1953: 295-298 (Problems and possibili-ties of hydrochemical research I, II, III, IV. Water

Economy (and) Water Technique).

25. BIEIKOVA, A.: Vplyv prirodzenych podmienok na zmeny chemic-

keho zlozenia povrchovych vtd. Zaverecna zprava VUV

(Vyskumny ustav vodohospodarsky), Breltislava 1961.

'X.The effect of natural conditions on the changes of

chemical composition of surface waters. Final report,

Hydrological Research Institute, Bratislava 1961). 26. BOCHKOV, N.M.: Vodnaya sreda i izmenenie ego kachestva prl

regulirovanii stoka, kak faktor khozyaistvennogo rascheta.

Trudy pervogo soveshch. po regulir. stoka, AN SSSR 1946.

(Aqueous medium and changes of its quality after the

embankment of the stream, as a factor of economical

balance. Proceedings of the First conference on embank-

ment of streams. Academy of Sciences of the USSR 1946).

BOCHKOV, N.M.: Osnovnye polozheniya metodiky prognozov

kachestva vody v vodokhranilishchakh. Trudy III.

-146-

vsesoyuznogo slezda, Tom X, Leningrad 1959. (Basic .

theses of the methods of forecasting the quality of

water in water reeervoirs. Proceedings of the 3rd All-

Union Meeting. vol. 10, Leningrad 1959).

28. BLINOV, L.K.:Orekotoroi zavisimosti minerallnogo sostava

rechnoi vody ot gidrologicheskikh faktorov. Meteoro-

logiya i gidrologiya, No. 6, 1946. (On some dependence

of mineral composition of river water on hydrological

factors. Meteorology and hydrology, f“). 6, 1946). 29. BRAZHNIKOVA, L.V.: Ionnyi stok rek vostochnoi chasti

Bollshogo Kavkaza. Gidrokhim. materialy, Tom 28, Moskva 1959: 59-68. (Ionic runoff in rivers of the

eastern part of Great Caucasus Mountains. Hydrochemi-

cal Papers, vol. 28, Moscow 1959: 59-68). 30. BRAZHNIKOVA, Karta ionnogo stoka rek territorii

SSSR. Gidrokhim. materialy, Tom 30, Moskva 1960:3-9.

(A map of ionic runoff of rivers on the territory of

the USER. hydrochemical Papers, Vol. 30, MOSCOW 1960:

3- 9). 31. BUGAEV, A.A.: 0 soderzhanii v atmosfernykh osadkakh bio-

gennykh elementov i raztvorennykh gazov. Sb. tr.

Kharkov. zool. instituta, 1958: 270-273. (Contents of

biogenic elements and dissolved gases in atmospheric

precipitations. bulletin of the Kharkov Zoological

institute, 1958: 270-273).

32. BURKSER, B.S., and N.E. FEDOROVA: Roll khimicheskogo sosta-

va atmosfernykh osadkov v formirovanii prirodnykh vod.

Gidrokhim. materialy, Tom 24, 1955. t The role of chemi-

cal composition of atmospferic precipitations in the

formation of natural waters. Hydrochemical Papers, vol.

24, 1955). 33. BULICEK, J.: Zdravotne vodohospodarske posuzovani jakosti

vody a vzduchu. STNL (Statni nakladatelstvi technicke

literatury), Praha 1957. (Hygienical and hydrological

judging of the quality of water and air. State Publish-

ing House of Technical Literature, Prague 1957).

34. BULICEK, J.: Jakost vody v tocich. "Jakost vody v tocich".

-147-

Sbornik XI. seminare pro zdravotne-vodohospodarske pra-

covniky. Praha, CSTVS (Ceskoslovenska vedecko-technicka

spolecnost 1961: 15-39.(Water quality in streams. "Water

quality in streams". Bulletin of the llth seminar for

workers in hydrological hygiene. Prague, Czechoslovak

Scientific and Technical Society 1961: 15-39). 35. LENKIN, E.I.: K voprosu otsenki rezul'tatov analiza vod-

nykh vytyazhok. Izv. Akad. Nauk Turkm. SSR, No. 6, 1955: 63-70. (On the evaluation of results of analyses of

aqueous extracts. Proceedings of the Academy of Sciences

of the Turkmenian SSR, No. 6). 36. DAUKSAS, K., and E. ROMANAUSKIS: Kai kuriu Milniaus grunto

vandenu periodinis tyrimas. Vilnaius univ. Mokslo darbai.

Khimiya 28, No. 1, 1959 ' (5-14)(Ex Referativnyi zhurnal -

khimiya, 1960, No. 2).

37. DEGOPIK I I. Ya.: Gidrokhimicheskii rezhim poverkhostnykh

vod na takyre. Doklady AN SSSR, 106, 1956: 1083-1086. (Hydrochemical regime of surface waters on the takyr (desert soil)

Doklady of the Academy of Sciences of the USSR).

38. DENISOV, P.V.: Skhema proiskhozhdeniya termallnykh istoch-

nikov Tian-Shanya. Gidrokhim. materialy, Tom 23, 1955: 82-96. (Scheme of the origin of thermal springs in

Tien-Shan. hydrochemical Papers, vol. 23, 1955:82-96). 39. DURAND, J.H.: Contribution a l'étude des eaux de drenage

de divers bassins verstants d'Algérie. Pubis. pédol. et

agrol. ministre Algérie, Sér 6, No. 6, 1958:13-20.

40. FILATOV, K.V.: 0 graficheskom izobrazhenii khimicheskikh

analizov vody. Trudy laboratorii gidrologicheskikh pro-

blemov, Tom III, 1948. (Graphical representation of che-

mical analyses of water. Transactions of the laboratory

of hydrological problems, vol. 3, 19)48).

-14e-

41. FILATOV, K.V.: Gravitatsionnayagipoteza formirovaniya khimi-

checkogo sostava podzemnykh vod platforemnykh depressii.

Izd. AN SSSR, Moskva 1956. (Gravitational hypothesis of

the formation of chemical composition of groundwaters in

platform depressions. Proceedings of the Academy of Sciences

of the USSR, Moscow 1956).

42. GELB, L.: Grundwassertypen. Vom Wasser, Band 25, 1958.

(Types of groundwaters. On water. vol. 25, 1958). 43. GIRENKO, A. Kh.: Nekotorye zakonomernosti v khimii vod atmo-

sfery. Gidrokhim. materialy, Tom 28, 1959: 101-111.

(Some regularities in the chemistry of atmospheric waters.

Hydrouhemical Papers, Tom 28, 1959: 101-111). 44. hAVRANEK, M.: Vyznam pudy jako zakladniho cinitele v jakosti

povrchovych vod. Vodni hospodarstvi, c. 8, 1956.

(The effect of soil as the fundamental factor for the

quality of surface waters. The Hydrology, Io. 8, 1956). 45, HAMACKOVA, J., and O. JIROVEC: Chemicke slozeni povrchovych

vod prazskeho okoli. Vestnik Kralovske ceske spolecnosti

nauk, roc. 1945, Praha 1946.(Chemical composition of

surface waters in the surroundings of Prague. Bulletin

of the Royal Czech Scientific Society, vol. 1945,Prague

1946). 46. CHAJEC e W.: Chemiczna charakterystyka pozoimov wodnych mio-

cenu i oligocenu. ivafta (Krakow) 11, No. 10, 1955.

biu1. Inst. naftowego 9-10. (Chemical characteristics of

47. CHALUPA, J.: Pokusne rizeni jakosti vody eliminaci rozpus-

tenych anorganickych fosforecnanu. Ceskoslovenska hygiena,

V - 10, 1960: 606. (Experimental control of water quality

by the elimination of dissolved inorganic phosphates.

Czechoslovak hygiene).

48. CHALUPA, J.: Poznamky k prognoze jakosti vody v udolnich

nadrzich. Sbornik prednasok z Postgradualneho kurzu hy-

gieny vody a zdravotnej techniky, I. diel, SNTL (Statni

nakladatelstvi technicke literatury) Praha, 1960: 162-171.

(Remarks to the forecast of water quality in barrages.

Bulletin of lectures from the Postgraduate course of

-14.9-

hygiene of water and hygienic technique. Part 1, State

Publishing House of Technical Literature Prague). 49. CHALUPA, J.: Eutrofizace nadrzi srazkovym fosforem. Sbornik

VSChT (Vysoka-skola chemicko-technologicka), odiel FTPaV

(Fakulta technologickych procesu a vyroby), Praha 1960: 295-306. (Eutrophization of water reservoirs with pre-

cipitated phosphorus. bulletin of the Chemical and Tech-

nological University, section Department of technological

processes and manufacture, Prague 1960: 295-306).

50. IWASAKI, I. , and T. NITTA: Kasen no chikyu - kagakuteki

konkyu. Nippon Kagaku Zasshi 77, 1956: 1347-1361 (preklad)

(A translation)

51. JAKOVLEV, K. P.: Matematicke zpracovani vysledku mereni. Praha,

SNTL (Statni nakladatelstvi technicke literatury) 1958.

(Mathematical processing of the results of measuring.

Prague, State Publishing House of Technical Literature).

52. JASKO, S.:A balatonfelvidéki és északbakonyi patakok vizhoza-

manak kapcsolata a aldtani felépitéssel. Hidrologiai II It

Kozlony I, 1961: 75-84.

53. LADYROV, V., and V. SAGATAKOVA: Gidrokhimicheskii rezhim

vody Bol'shogo Chuiskogo kanala i ego ionnyi stok.

Trudy In-ta vod. khozyaistva i energ. AN Kirg. SSR, Vyp.

3 (6) 1956: 199-122 (Referatyvnyi zhurnal - khimiya 24, 1956). (Hydrochemical regime of waters in the Great

Chuisk Channel and its ionic runoff. Transactions of

the Institute of hydrology and energy. Academy of Sciences

of the Kirgizian SSR, vol. 3).

54. KREDBA, M., J. HAMACKOVA, and J. GABRIEL: Vyzkum jakosti

nasich povrchovych vod. Zpravy technickeho ustavu obchodni

a zivnostenske komory v Praze, Praha 1948. (Research of

the quality of our surface waters. Reports of the techni-

cal institute of the Chamber of Trade and Commerce in

-150-

Prague, Prague 1948).

55. KRIVENTSOV, M.I.: K metodike rascheta ozhidaemoi minerali-

zatsii vody vodokhranilishch. Gidrotekhnika i meliora-

tsiya, No. 8 9 1953. (On themethods of calculating ex-

pected mineralization of water in reservoirs. Hydro-

technique and Melioratioli, No. 8, 1953).

56. KRIVENTSOV, M.1.: K voprosu o prognoze khimicheskogo sostava

vody vodokhranilishch. Trudy III. vsesoyuznogo gidrolog.

stezda, Tom X., Lenigrad 1959. (On the problem of fore-

casting chemical composition of water in water reservoirs.

Transactions of the Third All-Union Hydrological Meeting,

vol. 10, Leningrad 1959).

57. LARSON, T.E.: Geologic Correlation and Hydrologic interpre-

tation of Water Analysis. Water and Sewage Waters, Feb-

ruary 1949: 67-74.

58. LARSON, T.E., and B.O. LARSON: Mineral Quality of Illinois

Rivers, Journal AWWA 49, 9, 1957: 1915-1222.

59. LE GRAND: Chemical Character of Water in the Igneous and

Metamorphic Rocks of North Carolina. Econ. Geol. 53, No. 2, 1958: 170-189.

60. LEVCHENKO, K.M.: 0 klasifikacii prirodnych vod. AN SSR, 1953. (On the classification of natural waters. Academy of

Sciences of the USSR, 1953).

61. LEBEDEV, V.V.: Gidrologiya I gidrometriya v zadachakh. Le-

ningrad, GIMIZ (Geologicheskoe i meteorologicheskoe indatel'stvo)

(Hydrology and hydrometry in tasks. Leningrad, Geological

and meteorological publishing house)

62. HIRONAI, M., M. HIROSHI, and E. SHITOKU: The Relation be-

tween Chlorinity and Silicate Concentration of Water

Observed in some Estuaries. Rec. Oceanogr. Works Japan,

No. 1 , 1955: 106-112. Ex Referativnyi zhurnal - Khimiya

18, 1956).

63. MAYER, J., and E. PAMPLER: Nitrogen Content of Rain Water

Collected in the Humid Central Congo Basin. Nature (Engl.)

134, No. 4687, 1959, Suppl. No. 10, 1959. elOYLE, J.B.: Relationships between the Chemistry of Minne-

sota Surface Waters and Wildlife Management. J. Wildlife

-151-

Manag. 20, No. 3, 1956: 303-320. tt

65. NAUMAIER, F.: Uber die chemische and radiologische Bezie-

hungen zwischen Quellwasser und Ursprungsgestein. Neues

Jahrbuch fUr Mineralogie (68), Stuttgart 1952.(On che-

mical and radiological relations between spring-water

and thermal tuff • New Year-Book of Mineralogy (68),

Stuttgart 1952).

66. SAIDZE, N.: Khimicheskii sostav vody glavnykh rek i vodo-

emov Yaponii. Kagaku Kagjo, Chem. Ind. 7, No. 8, 1956: 9-13 (Ex Referativnyi zhurnal Khimiya, No. 9, 1957).

(Chemical composition of main rivers and water reservoirs

of Japan. - From Referativnyi zhurnal - Chemistry)

67. PERELIMIN, A.I.: Migratsionnaya sposobnostl khimicheskikh

elementov v kore vyvetrivaniya. Sbornik Kora vyvetri-

vaniya, Uyp. 2, Moskva, ANSSSR 1956; 92-100. (Migration

ability of chemical elements in the weathered stratum.

Bulletin The Stratum of Weathering, vol. 2, Moscow,

Academy of Sciences of the USSR )«

68. PETRZILEK KOCAREK: Zaklady geologie. Praha, Prace 1959. (Principles of geology. Prague, Publishing house Prace,

1959).

69. PIVARELIS, N.P.: Estestvennyi khimizm vody potokov, kak

• mera ikh raskhodov vody. Trudy centr. instituta eksper.

gidrol. i meteorologii, No. 2, 1935. (Natural chemical

processes in water of streams as a measure of their water

flow. Transactions of the central institute of experi-

mental hydrology and meteorology, No. 2, 1935).

70. PORUBSKY, A.: Hydrologicke pomery Vychoslovenskej niziny.

USG (Ustredna sprava geologicka) - Zilina 1957. (Hydrological conditions in the East Slovak Lowlands.

Central geological administration, Zilina 1957).

71. PRIKLONSKII, V.A., and F.F. LAPT 1 EV: Fizicheskie svoistva

I khimicheskii sostav podzemnykh vod. Gosgeolizdat

Moskva - Leningrad 1949. (Physical properties and che-

mical composition of groundwaters. State Geological

Publishing House, moscow-Leningrad 1949).

72. DAIDAKOVSKII, S.Z., V.G. TKACHUK, and S.M. TSVIK: Ob

• -152-

usloviyakh formirovaniya podzemnykh vod chloridnonatri-

evo-kal'tsievogo tipa. Gidrokhim. materialy, Tom 23, 1955: 97-109. (On the conditions of the formation of groundwaters

of the sodium-calcium chloride type. Hydrochemical Papers,

vol. 23, 1955: 97-109). 73. SAMARINA, V.S.: Gidrokhimicheskoe oprobovanie podzemnykh

vod. Izd. Leningradskogo universiteta 1958. (Hydrochemical

testing of groundwaters. Publishing House of Leningrad

University 1958). 74. SMETANIN, D.A.: Gidrokhimiya raiona Kurilo-Kamchatskoi glubo-

kovodnoi vpadiny. Avtoreferat dis. kand. geogr. nauk--

Institut okeanol. ANSSSR, Moskva 1959. (Hydrochemistry of the region of the Kuril Islands and

Kamchatka deep-sea trench. Synopsis of thesis submitted to

obtain the degree of PhD of geographic science. Institute

of oceaonology, Academy of Sciences of the USSR, Moscow).

75. STEPANOV, V.M.: Nekotorye voprosy formirovaniya podzemnykh

vod Zabaikal'ya. Tr. Nost.-Sib. fil. ANSSSR, vyp. 15,

1958: 83-90.(Some problems of formation of groundwaters

in Transbaikalia. Transactions of the Sibirian branch

of the Academy of Sciences of the USSR, vol. 15),

76. SHUNJI UMEMOTO: Geochemical Studies of Miasa Hot-Spring

Tottori Japan V. Relation between Water-Temperatures

and Contents of Cl- , SOT and HC0i; Nippon Kagaku Zasshi

(Jap. Pure Chem.) vol. 74, II. No. 2, 1953.

77 , TAKAHISA HANYA: Frequency of the Concentration of Chemical

Elements in the Fresh Waters of Japan and the Correla-

tion between Them. J. Chem. Soc. Japan, Vol. 76, No. 4, 1953: 323-325.

78. TAKAHISA HANYA: Correlation between the Chemical Nature of

Fresh Water and the Geological Nature of the Environ-

ment 1. J. Chem. Soc. Japan, Vol. 74 1 No. 5, 1953: 365-

367. 79. TAKAHISA HANYA: Correlation between the Chemical Nature of

Iresh water and the Geological Nature of the Environ-

ment II. J. Chem. Soc. Japan, Vol. 74, No. 6, 1953:

450-452.

-153-

80. TAKIHISA HANYA: Correlation between the Chemical Nature of

the Environment III, J. Chem. Soc. Japan, Vol. 74, N0 .7, 1953: 522-525.

81. TAKAKURA EITARO: Correlation of Concentrations of Chemical

Components in River Water with Level and Water Tempera-

ture. Nippon Kagaku Zasshi (Jap. Pure Chem.), 76, No.3, 1955: 234-236.

82. TAKASIMA: Kalil v dozhdevoi vode. J. Chem. Soc. Japan, Pure

Chem., Soc. 76, No. 10, 1955: 1148-1151 (From Referativ-

nyi zhurnal - Chemistry 17, 1956).

83. TOLSTIKHIN, N.I.: Numeratsiya prirodnykh vod. Trudy labora-

torii gidrogeologicheskikh problem, Tom III. izd. AN

SSSR, 1948. (Numeration of natural waters. Transactions

of the laboratory of hydrogeological problems, vol. 3, Publishing House of the Academy of Sciences of the USSR),

84. TSUZUMAKI, MICHIJI, NAGAYAMA, SHU: Geochemical Study of the

Mountain-Stream Waters in Kinki District of Japan.

J. Inst. Polytechn. Osaka City Univ. 62, Dec. 1954: 13-24 (From Referativnyi zhurnal - Chemistry 18, 1956).

85. TURCHINOVICH, B.T., and M.I. LAPSHIN: Osnovy regulirovantya

kachestva vody. Moskva, ANSSSR, 1950. (Principles of the

regulation of water quality. Moscow, Academy of Sciences

of the USSR),

86. UDZUMISA KITANO: Khimicheskoe izuchenie vulkanicheskogo

pepla iz Spova-Sindzan vulkan Usu. I. Khimicheskii so-

stay vulkanicheskogo pepla, II. Vodorastvorimye produkty

vulkanicheskogo pepla; J. Chem. Soc. Japan (Chem. Pure),

Soc. 1954, 75, No. 8, 768-772 (Chemical studies of vol-canic ash from the Spova-Sindzan Volcano Usu. I. Chemical

composition of volcanic ash, II. Water-soluble products

of the volcanic ash)(From Referativnyi zhurnal - Chemistry

18, 1956).

87. VESELOVSKII, N.V., and M.N. TARASOV: K voprosu o vliyanii

poverkhnostnogo i gruntovogo pitaniya na rezhim glav-

neishikh ionov vody pruda. Gidrokhim. materialy, Tom. 23,

1955: 48-61. (On the problem of the effect of surface

and ground feeding on the regime of main ions of stream

water, Hydrochemical Papers, vol. 23).

-154-

88. VINOGRADOV, A.P •, and A.G. RONOV: Evollyutsiya khimicheskogo

sostava glin Russkoi platformy. Geokhimiya 2, 1956: 3-4.

(Evolution of chemical composition of soils of the Russian

platform. Geochemistry).

89. VORONKOV, P.P.: Formirovanie khimicheskogo sostava poverkh-

nostnykh vod stepnoi i lesostepnoi zon evropeiskoi terri-

torii SSSR. Leningrad 1955. (Formation of the chemical

composition of surface waters in the steppe and forest

steppe zones on the Europian territory of the USSR).

90. VORONKOV, P.P.: Osnovnye cherty formirovaniya rezhima ion-

nogo sostava poverkhnostnykh vod stepnoi i lesostepnoi

zon v vesennii period. Trudy GGI (Gosudarstvennyi Geo-

logicheskii Institut), Vyp. 37, 1953: 91. (Principles

of the formation of the regime of ionic composition of

surface waters in the steppe and forest steppe zones

in the autumn season. Transactions of the State Geolo-

gical Institute, vol. 37).

91. VORONKOV, P.P.: Osobennosti formirovaniya khimicheskogo so-

stava poverkhnostnykh vod v razlichnykh geograficheskikh

zonach ANSSSR, 94, No. 2, 1954: 293-296. (Peculiarities

of the formation of chemical composition of surface

waters in various geographic zones, Academy of Sciences

of the USSR).

92. VORONKOV, P.P.: Osnovnye zakonomernosti gidrokhimicheskogo

formirovaniya estestvennykh vodoemov. Doklady ANSSSR,

Tom 129, No. 3, 1959: 645. (Principal regularities of

hydrochemical formation of natural water reservoirs.

Doklady of the Academy of Sciences of the USSR, vol. 129).

93. VORONKOV, P.P.: Osnovnye zakonomernosti formirovaniya khimi-

checkogo sostava poverkhnostnykh vod. Trudy III. Vseso-

yuznogo gidrolog. stezda, Tom X., Leningrad. (Principal

regularities of the formation of chemical composition of

surface waters. Transactions Of the 3rd All-Union Hydro-

logical Meeting, vol. 10).

94. VZNUZDAEV, S.T.: Gidrokhimiya malykh rek srednego ± nizhnego

Dnestrovskogo-Prutskogo mezhdurechlya. Trudy III. vseso-

yuznogo gidrologicheskogo s'ezda, Tom X., Leningrad 1959.

-155-

(Hydrochemistry of small rivers of the central and lower

Transactions of the 3rd All-Union Hydrological Meeting,

vol. 10).

95. MA, V.: Prispevek ke geochemii vod ceskych rek. Sbornik geologickych ved - technologie - geochemie, rada TG

(technologie - geochemie) av. 1, 1962: 75-134. (Contribution to the geochemistry of Bohemian rivers

waters. Bulletin of geological sciences - technology -

geochemistry, vol. 1).

96, YMAMOTO, BIROSCHI: Chemicky vyskum riek vtekajucich do zalivu

Urado. (Chemical investigation of rivers elptying into

Urado Gulf). J. Marine Meteoroi. Soc. 34, No. 4, 1957.

111••

-156-

• THE CHARACTERISTIC OF THE COMPOSITION AND OF THE LAW 01P THE SLOVAK SURFACE WATER COMPOSITION CHANGES •

Ing. Miami A ntonië, C. Se.

In the work presented the general hydrochemical characteristics

of river water (according to prevailing ions) is given and the

dependencies of water composition and their changes are evaluated

by means of statistico—mathematical methods and as far as the data

have alloyed it the factors, influencing the water quality are

evaluated as well. The balance of ion discharge and of the total

mineralization was elaborated and the derived relations for the

forecasting of water composition were used in the conclusion of

the work.

The results and knowledge obtained can be summarized as follows:

The general characteristieof Slovak waters: According to the content of minerals we classify our waters into four categories:

1. Only very slightly mineralized water

2. Water with a small mineralization

3. Water with a medium mineralization

4. Water with an increased mineralization above

up to 100 mg/e,

up to 200 mg/I,

up to 500 mg/Z,

500 mg/i.

Water originating from crystallinicum, from granite massives and

young tertiary formations pertain to the first category.

Waters originating chiefly from regions mentioned above with occu.;-

rence of other formations pertain to the second category.

The prevailing part of our waters, originating from different

geologiéal formations pertain to the third category. Waters from

zones of Werfen layers, Tries limestone and Dolomites as well as

-157 -

waters, considerably influenced by industrial waste waters pertain

to the fourth category.

The basic formation of water composition is influenced by geologic

conditions and the variations of composition are influenced also

by other factors (hydrologic conditions, soil conditions, seasons

of the year, climatic conditions etc.). Under the effect of factors

mentioned above not only the °vex. all mineralization, but also

the mval % substitution of components on the overall mineralization

are changed. The over all mineralization varies in a considerable

range according to the origin of water and under the effect of

other factors (compare tables la, b, c, d, e, f). The changes

take place not only in the mval % substitution of components but

also in the relative mutual occueence of the more important compo- A

nents. The coefficient variations in some groups of ions are very

pronounced and they show the response of hydrogeological conditions of the drainage area.

As far as hydrochemistry is concerned bicarbonate-lime waters with a coefficient 1.9 to 8.2 and with a most frequent occurenne

of about 3 - 3.5 are prevailing.

In the regions of slightly mineralized waters (the region of young- .

tertiary eruptive rocks, crystalline granite massives) there

' are waters of intermediate type and even of mixed type below 1.0.

Performing hydrochemical classification it spears also, the types

of waters and namely the coefficients of the prevailini ion are

connected with hydrogeological conditions. :

From the practical point of view it is also important to know the _ seasonal variation of water composition, that means the effect of

the seasons and of temperature conditions connected *ith them, the

effect of soil condition etc. From the evaluation it follows these

effects are substantially lower than for instance the effect of

hydrological conditions, and they make felt themselves gradually

and slowly thus influencing the variations of water composition.

Even though the effect of discharges on the composition variations

is very expressive, it is not possible to assume, the influencing

of all components is identical. Even at the Rika River and namely

-158-

at ta Danube River neither the total composition nor the over all

mineralization are in the full agreement with the discharge con-

ditions. These disagreements are caused in actual cases by diffe-

rent sources of stream eupPly (the case of the Danube) and the

subsoil, poor in minerals and its degree of leaching (the case

of the Rika).

In both oases these variations are influenced temporarily.

The occurence of minimum or maximum contents of components do not

fall into the same space of time, because in every case make felt

themselves more or less pronounced also other factors. The maximum

contents of components occur in autumn and in winter eventually

also in summer.

As far as the proportional occiu>nce of components is concerned

it is not in full agreement with the content of components and we

can state, it is rather in agreement with the season. For instance

minimum nival % representation of bicarbonates occurs in spring,

when the amount of sulphates and chlorides reach its maximum.

Similarly the calcium content use to be at minimum in spring and

other cations at maximum.

The dependencies of variations of river water composition: Analysis

of factors, influencing the river water composition showed, several

factors make • elt themselves, acting usually simultaneously. As the most important factors, which form the basic water qualities, are

considered the hydrogeological conditions of the drainage area,

that means the subsoil (mother rock with its surface layer - soil).

The water composition is effected by soil conditions in substan-

tially lower extent. The effect is so slight, that the correlation

between river water composition and soil types was not found.

The amount of the total mineralization as well as the proportional

substitution of the more important water components and their

mutual relations are effected by hydrogeological conditions. In

the connection with hydrogeological conditions the types of waters

are changed and namely the values of coefficients of prevailing

ions, pertaining to the respective type of water.

-159-

The river water composition depends to a great extent, but not

fully - as some authors claim - on the precipitation conditions

and on discharge conditions connected with them. The effect of

precipitation on the variation of river water composition is dou-

ble-dealing:

1. physical - as result of the dilution with more mineralized

river water,

2. chemical - the contribution and the direct enrichment'of water

with chemical components.

For the rough appreciation of the first - physical - effect it is

sufficient to perform more detailed observations of discharges

and eventually also the precipitation sums for the characteristic

period. For a more thorough appreciation it is necessary to perform

more detailed meteorological observations.

For the appreciation of the chemical effect it is to be informed

about data on the composition of précipitations for actual cases,

because the precipitation waters are different according to the

region (mountaineous, low-land, industrial) as well as according

to the seasons. These variations are not very important in our

conditions but they must be taken into consideration in a more

detailad study. The over-all mineralization of precipitation waters

in our country is about 40 - 60 me/ and the residue about 30 -

- 40 me. Prevailing anions are bicarbonates and 'in some cases al-

so sulphates. From cations prevail calcium and sometimes sodium

and potassium.

The chemical effect of precipitations in these regions where waters

are slightly mineralized, is substantially higher than in regions

with higher mineralization, especially as far as variations of

mutual ratios of water is concerned.

Detailed analysis of more important components of the total mine-

ralization showed the dependencies of variations and the relations

of these variations to the variations of mineralization, thus being

able to use the results for the forecasting.

-1 60

• The dependencies of components, which under ideal conditions would

be the function of mineralization, are correlation relations as

result of differently applied influence of natural factors. The

I degree of dependence is relatively high for bicarbonates, calcium,

. specific conductance and dried residue, lower for magnesium, chlo-

rides and namely for sulphates and alcalies, but for the most

part they are above the limit of importance also for the 1-percent

probability (p = 0.01). The lower degree of dependence is evident

at those components, which are under more prenounced influence

of climatic conditions.

For particular components the relationships were computed, which

are stated in respective tables. In all cases it concerns the

linear regression. Similarly the relationships of some more in-

portani. -omponents to the specific conductance were evaluated

and in tables particular equations expressing the relationship

between the components and the specific conductance are presented.

During the elaboration of nomograms and statistical evaluation

of results obtained on rivers, observed during long periods I have

stated, that between the composition of water and discharges in

the river there are dependencies of curves (hyperbolic), for which

a general relationship y = axk is valid. Correlation coefficients

at more important components are relatively high (about 0.7) and

at components.(AC, À/9+, J'e- and Cr) are substantially lower

and in many cases below the limit of importance at 5-per cent,

reliability (p = 0.05). Relatively high dispersion of points is

partly due to discharge tendencies, partly to the source of wnCer,

taking part on the feeding of river as well as to the perlde.

and degrees of the leaching of the subsoil after a more iwportaro

outflow - run-off in rivers.

This assumption was verified by means of selection of random quan-

tities belonging to respective factors. We have obtained higher

degrees of dependence thus verifying the correctness of the as-

sumption.

As far as the influence of discharge tendencies upon the water

composition is concerned they make felt themselves as fôllows:

At increasing tendency the content of the total mineralization

I is higher as at decreasing tendency, at equal discharge conditions.

iBut the relationship is ()loser at decreasing tendency than at

lincreasing tendency of discharges. The slightest relationships

are at stabilized water stages.

The balance of water component run-off. The special part of this

work deals with the balance of the run-off of chief water compo-

nents. Besides the total yearly balance the distribution of . com-

ponents run-off over the year (aocordîni to months and seasons)

was made and the specific run-off and its distribution over the

, year (for the first time for our rivers) were evaluated. The va-

riability of components run-off during the year is rather high in

' the flysh region and low for instance in the region'of young tar- t tiary eruptive rocks, eventually in other formations. The varia-

bility of the run-off is greatly influenced by the subsoil and by

fluctuations of water run-off in the river. The highest run-off (in

per cent) occurs in spring and in winter. The water from precipi-

' tations was also taken into account, i.e. the balance of mate-

rials - components fallen on the surface of area drained by re-

spective river. The contribution falling on the leaching of ma- , terials from the subsoil was also evaluated, what was necessary

to be done in the estimation of chemoerosion. This approach to

the evaluation of cl,ieiLIoeron is different from the approach of

Braïnikova and Alekin, which include into chemoerosion the whole

amount of components. The run-off of ions from the watershed (cat-

' chment area) appears to be influenced by the quality and the kind

of the subsoil, eventualiy also by other factors and it is not

dependent solely on the specific water discharge and concentration

of materials as cited by Alekin and BraInikova. For the chemo-

erosion characteristic it is possible to use the 80 called coef-

ficients of usabily of the subsoil, event. the coefficients of

chemoerosion (1) used in the work.

For instance the run-off of ions from flysh region are of about

6 - 5.5 times higher than from the region of young tertiary erupti-

ve rocks and they differ from other hydrogeological regions.

Between the run-off of materials and river discharges there is

-16 2-

a very close relationship with correlation coefficients of about

rx4e . 0.8 - 0.99. The dependencies of the variations of run-off

components upon the discharge are linear.

On the basis of data and relationships derived for.particular

components in the relation to the total mineralization, to the

discharges and then for the run-off of ions in the relation to

the discharges the forecast of water composition was made. The

forecast was based on the assumptions, the data about water dis-

. charges, specific conductance and alcality are available.

For the forecast we have used the total and partial correlations.

Better results can be obtained according to relationships from

partial nonlinear regressions.

As to b. able to use easily these results, without difficult com-

putations two nomograms were elaborated:

a) for the linear regression of the components dependence upon

the total mineralization,

b) for nonlinear regression of the components dependance upon

the discharge.

• Page

-16 3-

CONTENTS

in the in the trans- original lation: text:

Introduction 5 2

I. GENERAL CHEMICAL CHARACTERISTICS OF • STREAMING SURFACE WATERS 9 • • • • • • 6

A. ON THE EVALUATION OF WATERS IN GENERAL 10 8

B. CHARACTERIZATION OF WATERS OF SLOVAK RIVERS 13 12

II. EFFECTS OF IMPORTANT FACTORS ON THE COMPOSITION OF RIVER WATER 34 28

A. EFFECTS OF ANNUAL SEASONS ON THE COMPOSITION OF WATER 35 31

B. PRECIPITATION CONDITIONS AND THEIR EFFECT ON THE COMPOSITION OF RIVER WATERS 47 . . . . . 41

C. SUBSOIL AND.ITS EFFECTS ON THE COMPOSITION OF SURFACE WATERS . 52 47

1. The composition of river water as related to soil conditions 53 48

2. Dependence of the composition of river water on geological bedrock 54 50

III. DEPENDENCE OF RIVER WATER COMPOSITION CHANGES 62 60

A. RELATIONS OF COMPONENTS TO TOTAL MINERALIZATION 63 62

B. RELATIONSHIP BETWEEN SPECIFIC CONDUCTIVITY AND OTHER MAIN COMPONENTS OF WATER 71 70

C. DEPENDENCE OF CHANGES OF THE COMPOSITION OF WATER ON THE FLOW 76 73

-1614-

1. General correlations among the changes of the composition of water (entire complexes of observations) 76 76

2. Partial correlation of the changes of the composition of water . 82 81

IV. THE BALANCE OF THE DISCHARGE OF COMPOUNDS DISSOLVED IN WATER 91 89

TOTAL DISCHARGE OF COMPOUNDS IN OUR RIVERS 96 . 98

1. Distribution of the discharge of compounds 107 109

2. Specific discharge of ions and of total mineralization 112 115

V. FORECAST OF THE COMPOSITION OF RIVER WATER 119 116

Bibliography 135 134

Russian summary 145

English summary 152 148

-165-

Michel Antoni‘e, M.Sc., Ph.D.

• HYDROCHEMICAL CHARACTERISTICS AND THE DEPENDENCE OF THE

CHANGES OF SURFACE WATER COMPOSITION •

Decimal classification 627

Published by the Hydrological Research Institute in Bratislava

in the series entitled WORKS AND STUDIES as the issue No. 27 in

the Slovak Publishing House of Technical Literature (SPHTL) in

December 1964. This is the publication No. 2792 of the SPHTL.

Editorial board: J. Furdik, M.Sc., Editor-in-Chief, M.AntonA l

M.Sc., M. Bako, M.Sc., Ph.D., J. Baller, M.Sc., O. Bogatyrev,

M.Sc., Ph.D.p...Brachtl, M.Sc., Ph.D., K. Brys, B.Sc., I. Grund,

M.Sc., Ph.D., M. Hdn, M.Sc., J. Mihâl, B.Sc., Ph.D., J. Prochdzka,

M.Sc., Ph.D., Doc. K. Rohan, Ph.D., J. Szolgay, M.Sc., Ph.D.,

F. 'àltein, M.Sc., O. nich, M.Sc., Ph.D.

Managing editor: Ofga Dobiâgovâ

Tedhnical editor: Andrej Uram

Photoprint: Hydrological Research Institute, Bratislava

162 pages, 27 diagrams, 63 tables

12.81 author's sheets, 13.07 editor's sheets,

Permission No. 214/1-64-K-05+41468

600 copies 63 - 008 - 65 First edition

63/i