THE ORIGIN OF FERROAN-POTASSIC A-TYPE GRANITOIDS: THE CASE OF THE HORNBLENDE-BIOTITE GRANITE SUITE...

22
1195 The Canadian Mineralogist Vol. 48, pp. 000 (2010) DOI : 10.3749/canmin.48.4.000 THE ORIGIN OF FERROAN-POTASSIC A-TYPE GRANITOIDS: THE CASE OF THE HORNBLENDE–BIOTITE GRANITE SUITE OF THE MESOPROTEROZOIC MAZURY COMPLEX, NORTHEASTERN POLAND Jean-Clair DUCHeSne Département de Géologie, Université de Liège, Bât. B20, B–4000 Sart Tilman, Belgium Hervé MarTin Laboratoire Magmas et Volcans, Université Blaise-Pascal, OPGC, CNRS, IRD, 5, rue Kessler, F–63038 Clermont Ferrand, France BogUSław BagiŃSKi Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Żwirki i Wigury 93, PL–02-089 Warszawa, Poland Janina wiSZniewSKa Polish Geological Institute, Rakowiecka 4, PL–00-975 Warszawa, Poland JaCqUeline vanDer aUwera Département de Géologie, Université de Liège, Bât. B20, B–4000 Sart Tilman, Belgium aBSTraCT The mechanisms of differentiation and the source rocks of hornblende–biotite granitoids from the 1.5 Ga Mazury Complex, in the East European Craton in northeastern Poland, were investigated with major and trace elements and Sr–Nd isotopes on drill-core samples from six localities. The rock suites show metaluminous, ferroan, potassic and mostly alkali-calcic characters, together with high contents of incompatible elements typical of A-type granitoids. The presence of magnetite and a low Fe/(Fe + Mg) value of the hornblende indicate rather oxidized conditions of crystallization. In Harker diagrams, the major elements plot on a nearly continuous trend from 43 to 67 wt% SiO 2 . From 56 wt% SiO 2 onward, the overall trend overlaps with the Tranevåg liquid line of descent, defined for hornblende–biotite granite in southern Norway. Most trace-element concentrations show decreasing trends with increasing SiO 2 . The rare-earth-element concentrations are controlled by the apatite contents of the samples. The overall geochemical trend results from fractional crystallization and can be modeled by subtraction of mafic-mineral-rich cumulates. The suite is formed from melts at different degrees of fractionation, laden with various amounts of cumulus minerals. The initial Nd ranges from –3.3 to –6.8, with relatively low values of the initial Sr isotope ratio (0.702–0.707). Because of the absence of Archean rocks in this part of the East European Craton, most Nd negative values are consistent with melting of a juvenile crust extracted from the mantle at ca. 2.0–2.2 Ga. In the Mazury Complex, the parent magma for the 1.5 Ga Suwalki anorthosite was also formed by the melting of juvenile crust within the same time range. The Mazury batholith was emplaced along a linear zone of weakness, which facilitated melting of the lower crust. The melting products were a hornblende–biotite granite suite, oxidized and H 2 O-rich, associated with an anorthosite–ferrodiorite suite, formed under dry and more reduced conditions. This is another line of evidence that, in anorthosite – mangerite – charnockite – granite (AMCG) complexes, two different crustal source-rocks can produce two different suites of rocks during the same melting episode. Keywords: petrogenetic models, crustal source, Sr–Nd isotopes, East European Craton, rapakivi granite, AMCG suite, oxidized A-type granite, anorthosite, Mazury batholith, Poland. § E-mail address: [email protected] 1195_vol_48-4_art_02.indd 1195 10-08-02 11:06

Transcript of THE ORIGIN OF FERROAN-POTASSIC A-TYPE GRANITOIDS: THE CASE OF THE HORNBLENDE-BIOTITE GRANITE SUITE...

1195

The Canadian MineralogistVol.48,pp.000(2010)DOI:10.3749/canmin.48.4.000

THE ORIGIN OF FERROAN-POTASSIC A-TYPE GRANITOIDS: THE CASE OF THE HORNBLENDE–BIOTITE GRANITE SUITE

OF THE MESOPROTEROZOIC MAZURY COMPLEX, NORTHEASTERN POLAND

Jean-ClairDUCHeSne

Département de Géologie, Université de Liège, Bât. B20, B–4000 Sart Tilman, Belgium

HervéMarTin

Laboratoire Magmas et Volcans, Université Blaise-Pascal, OPGC, CNRS, IRD, 5, rue Kessler, F–63038 Clermont Ferrand, France

BogUSławBagiŃSKi

Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Żwirki i Wigury 93, PL–02-089 Warszawa, Poland

JaninawiSZniewSKa

Polish Geological Institute, Rakowiecka 4, PL–00-975 Warszawa, Poland

JaCqUelinevanDeraUwera

Département de Géologie, Université de Liège, Bât. B20, B–4000 Sart Tilman, Belgium

aBSTraCT

Themechanismsofdifferentiationandthesourcerocksofhornblende–biotitegranitoidsfromthe1.5GaMazuryComplex,intheEastEuropeanCratoninnortheasternPoland,wereinvestigatedwithmajorandtraceelementsandSr–Ndisotopesondrill-coresamplesfromsixlocalities.Therocksuitesshowmetaluminous,ferroan,potassicandmostlyalkali-calciccharacters,togetherwithhighcontentsofincompatibleelementstypicalofA-typegranitoids.ThepresenceofmagnetiteandalowFe/(Fe+Mg)valueofthehornblendeindicateratheroxidizedconditionsofcrystallization.InHarkerdiagrams,themajorelementsplotonanearlycontinuoustrendfrom43to67wt%SiO2.From56wt%SiO2onward,theoveralltrendoverlapswiththeTranevågliquidlineofdescent,definedforhornblende–biotitegraniteinsouthernNorway.Mosttrace-elementconcentrationsshowdecreasingtrendswithincreasingSiO2.Therare-earth-elementconcentrationsarecontrolledbytheapatitecontentsofthesamples.Theoverall geochemical trend results from fractional crystallization and can bemodeled by subtraction ofmafic-mineral-richcumulates.Thesuiteisformedfrommeltsatdifferentdegreesoffractionation,ladenwithvariousamountsofcumulusminerals.TheinitialNdrangesfrom–3.3to–6.8,withrelativelylowvaluesoftheinitialSrisotoperatio(0.702–0.707).BecauseoftheabsenceofArcheanrocksinthispartoftheEastEuropeanCraton,mostNdnegativevaluesareconsistentwithmeltingofajuvenilecrustextractedfromthemantleatca. 2.0–2.2Ga.IntheMazuryComplex,theparentmagmaforthe1.5GaSuwalkianorthositewasalsoformedbythemeltingofjuvenilecrustwithinthesametimerange.TheMazurybatholithwasemplacedalongalinearzoneofweakness,whichfacilitatedmeltingofthelowercrust.Themeltingproductswereahornblende–biotitegranite suite, oxidized andH2O-rich, associatedwith an anorthosite–ferrodiorite suite, formedunder dry andmore reducedconditions.Thisisanotherlineofevidencethat,inanorthosite–mangerite–charnockite–granite(AMCG)complexes,twodifferentcrustalsource-rockscanproducetwodifferentsuitesofrocksduringthesamemeltingepisode.

Keywords:petrogeneticmodels,crustalsource,Sr–Ndisotopes,EastEuropeanCraton,rapakivigranite,AMCGsuite,oxidizedA-typegranite,anorthosite,Mazurybatholith,Poland.

§ E-mail address:[email protected]

1195_vol_48-4_art_02.indd 1195 10-08-02 11:06

1196 THeCanaDianMineralogiST

SoMMaire

Lesmécanismesdedifférenciationet lesrochessourcesdesgranitoïdesàhornblendeetbiotiteducomplexedeMazury,faisant partie du cratonEstEuropéen, enPologne, d’âge1.5Ga, sont étudiés sur des carottes de forages provenant de sixintrusionsaumoyendescompositionsenélémentsmajeurs,entracesetenisotopesSr–Nd.Lasuitederochesmontreuncaractèremétalumineux, ferro-potassique, et principalement alcali-calcique, ainsi quedes teneurs élevées en éléments incompatibles,typiquesdesgranitesde typeA.Laprésencedemagnétiteet le faiblerapportFe/(Fe+Mg)de lahornblende indiquentdesconditionsdecristallisationplutôtoxydantes.DanslesdiagrammesdeHarker,lesélémentsmajeurssedisposentsurunetendancequasicontinuedepuis43%jusqu’à67%enpoidsdeSiO2.Apartirde56%SiO2,latendancegénéralesesuperposeàlalignéededifférentiationdeTranevåg,définieparlesgranitesàbiotiteetàhornblendedusuddelaNorvège.Laplupartdesconcentrationsenélémentsentracedécroissentavecl’augmentationdelasilice.Lesteneursenterresraresvarientaveclecontenuenapatitedeséchantillons.Latendanceévolutivegénéralerésulted’unecristallisationfractionnéequipeutêtremodéliséeparsoustractiondecumulats richesenminérauxmafiques.La suitede rochesest constituéede liquidesmagmatiquesàdifférentsdegrésdefractionnementetchargésdequantitésvariablesdeminérauxcumulés.LavaleurduNdinitialvade–3.3à–6.8,avecdesrapportsisotopiquesinitiauxduSrfaibles(0.702–0.707).CommelesrochesarchéennessontabsentesdanscettepartieducratonEstEuropéen,laplupartdesvaleursnégativesdeNdpeuvents’expliquerparlafusiond’unecroûtejuvénileextraitedumanteauca.2.0–2.2Ga.DanslecomplexedeMazury,lemagmaparentdel’anorthositedeSuwalki(1.5Ga)aaussiétéforméparfusiond’unecroûtejuvéniledanscemêmeintervalledetemps.LebatholithedeMazurys’estmisenplacedansunezonelinéairedefaiblesse,laquelleafacilitélafusiondelacroûteinférieure.LesproduitsdecettefusionontconstituélasuiteoxydéeetricheenH2Odesgranitesàhornblendeetàbiotite,ainsiquelasuiteanorthosite–ferrodioriteforméedansdesconditionsanhydresetréduites.Cecasd’étudeconstitueunautreindicequedanslescomplexesanorthosite–mangérite–charnockite–granite(AMCG),deuxsourcescrustalesdifférentespeuventproduiredeuxsuitesdifférentesderochesaucoursdumêmeépisodedefusion.

Mots-clés:modèlespétrogénétiques,granite,sourcecrustale,isotopesSr–Nd,cratonEstEuropéen,graniterapakivi,suiteAMCG,granitedetypeAoxydé,anorthosite,batholitedeMazury,Pologne.

tallized under reduced conditions; ilmenite typicallyprevailsinigneousrocksassociatedwithanorthosites.The reduced (ilmenite-bearing) series can be derivedfrommafic sourcesandgranitesproducedbyvariousprocesses,forexampledifferentiationofadryferroanparentalmagmaorpartialmeltingofunderplatedbasalts(the so-called tholeiitic connection of Frost&Frost1997), or fractionation of a jotunitic (orthopyroxenemonzodioritic) parental magma (Duchesne 1990,VanderAuwera et al.1998b),generatedbymeltingofamafic lower continental crust (Longhi et al. 1999,Longhi 2005).The second suite containsmagnetiteand forms hornblende–biotite granites (HBG) undermoreoxidizedconditions.Experimental evidencehasshownthatthehighFe*contentofthemagnetiteseriesreflects relatively oxidized conditions of formation,provided themagma has a high content ofH2O (upto5–6wt%) (Dall’Agnol et al. 1999,Bogaerts et al.2006).Frost et al.(2002),however,consideredthathighvalues of oxygen fugacity are linked to highdegreesofcontamination.Obviously,avarietyofsourcerocksandprocessesarerequiredtoproducethemagmasthatresulted in ferroangranites, and this in turnweakensthelinkstothegeodynamicsettingsinwhichtheyaregenerated.

TheMazury Complex in northeastern Polandcontainsawidevarietyofgraniteintrusions(Claesson et al.1995,Baginski et al.2001a,2007,Skridlaiteet al. 2003).Thepurposeof this paper is to investigatethemajor and trace elements aswell as the Sr–Ndisotopic compositions of several hornblende–biotitegranites(HBG)inordertodeciphertheirdifferentiation

inTroDUCTion

Plutonicsuitesinvolvinganorthositesandrapakivigranites or anorthosite –mangerite – charnockite –(rapakivi)granite(AMCG)are typicalconstituentsofProterozoic crystalline domains (Emslie 1991,Rämö&Haapala 1995).The felsicmembers of the suiteare characterized by high contents of potassium (>5wt%K2O) and Fe* [= FeOt/(FeOt +MgO)] valueshigher than 0.75, aswell as high contents of incom-patibleelements(LILE:large-ionlithophileelements;REE: rare-earth elements;HFSE: highfield-strengthelements), typical ofA-type granites. Such featuresare also shared byProterozoic granites not spatiallyassociatedwith anorthosites but emplacedwithin thesameperiodoftime.Classicexamplesarethe1.6–1.3GaA-type Laurentian granites (e.g.,Anderson&Morrison2005,Goodge&Vervoort2006),the1.9–0.9GaanorogenicAmazoniangranites(Dall’Agnol et al.1994,Rämö et al. 2002), and the 1.0–0.9GaA-typeSveconorwegian granites of southernNorway (e.g.,VanderAuwera et al. 2003).Theiroccurrences resultfrom specificmechanisms of differentiation,meltingprocesses and source-rockvariety in various tectonicsettings(e.g.,Anderson&Bender1989,Hoffman1989,Ashwal1993,Duchesne et al.1999,Bogdanova et al.2004,Vigneresse2007).Theyarethusofutmostinteresttodecipher the characteristicsof the evolutionof theProterozoiccontinentalcrust.

Anderson&Morrison (2005) proposed that theMesoproterozoicA-typegranitesbelongtotwodifferentseries.Thefirst one contains ilmenite and thus crys-

1195_vol_48-4_art_02.indd 1196 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1197

mechanismsandconditionsofformation.Acomparisonwithasimilarwell-documentedHBGsuitefromSouthNorway and contemporaneous with the Rogalandanorthosite(Bogaerts et al.2003,VanderAuwera et al.2003,2008)allowsustodefineadifferentiationmodelfortheMazuryHBGseries.Weidentifyfractionalcrys-tallizationasthemainmechanismofdifferentiationoftheHBGoxidizedmeltsandshowthattherocksrepre-sentcrystallizedliquidsladenwithvariousproportionsofcumulusminerals.TherocksshowarestrictedrangeofNdandSrisotoperatiosatthetimeofintrusionandsupportanoriginbymeltingajuvenilecrustalmaterialextracted from themantle atca. 2.1Ga.As inSouthNorway,HBGoxidizedgranitesarecontemporaneouswithanorthositeandferrodioriteformedunderreducedconditions,whichsuggests thatdifferentsource-rockscan bemelted during the same igeous event.As inseveralotherAMCGcomplexes,theMazurybatholithwasemplacedalongamajorlineartectonicstructure.

geologiCalfraMeworK

TheMazury Complex, situated in northeasternPoland,ispartoftheEastEuropeanCratonthatformsthenortheasternpartofEurope(Fig.1). It iscoveredbyPhanerozoic platform sedimentswhose thicknessvariesfrom400mintheeastto5000mattheedgeofTESZ (TransEuropeanSutureZone).The crystallinebasement is only known through geophysical inves-tigations and drilling (Ryka&Podemski 1998).TheMazuryComplexextendsfromOlsztynintheWesttotheVeisiejaiComplexinLithuaniaintheEast(Skrid-laite et al.2003).Itisassociatedwiththreemassifsofanorthosites(Kętrzyn,SuwałkiandSejny)andrelatedrocks(Kubicki&Ryka1982,Juskowiak1998,Ryka&Podemski1998,Wiszniewska et al.2002).Combinedgeophysical approaches havebeenused to determinethe shape, structure and extension of theMazurymagmatic belt (Wiszniewska et al. 2000) (Fig. 1). Onthemagneticimagemap(notshown),theMazuryComplex consists of amosaic of positive anomalies,whereas on aBouguer anomalymap (Fig. 1a), thegranitoidsmostly show values higher than those ofthe anorthosite–noritemassifs.TheMazuryComplexintrudedgranulite-faciesmetamorphicrocksbelongingtotheWestLithuanianDomainanditssouthernPolishextension;thelatterformedinPaleoproterozoictimesand accreted atca. 1.85–1.80Ga (Bogdanova 1999,Bogdanova et al.2006).TheelongatestructureoftheMazuryComplexfollowsanE–W-trendingshearzonethatwasrepeatedlyactiveforapproximately15millionyears(1.6–1.45Ga;Bogdanova et al.2006).Thestruc-turalsettingofemplacementoftheMazuryComplexisconsideredtobeanorogenic(e.g.,Dörr et al.2002)orpost-collisional(Skridlaite et al.2003).Bogdanova et al. (2006)suggestedarelationshipbetweenthemeta-

morphicimprintinmylonitesalongmajorshear-zonesandtheAMCGmagmatism.

TheagesofcrystallizationoftheMazuryComplexare relativelywell constrained.Two zircon fractionsextracted from theGołdap andBartoszyce boreholesintheMazurygranitesgivesingle-grainU–Pbagesofabout1.5Ga(Claesson et al.1995)Granitesfromfourboreholes in theMazuryComplex (includingBarto-szyceandGołdap)giveU–Pbzircon (TIMS)ages inthe1526–1499Ma rangeon single crystalsof zircon(Dörr et al.2002).Also,Re–Osisochronsonsulfides(pyrrhotite,chalcopyriteandpyrite)andmagnetitefromtheSuwałkianorthosite(Morgan et al.2000)giveagesof1559±37and1556±94Ma, respectively,whichcorrespondwithin error to the granite ages. SomeMazury granitoids have depletedmantleNdmodelages (TDM) of 2.1 to 2.2Ga (Claesson et al. 1995),whereastheSuwałkianorthosite–gabbronoritecomplexyieldsNdmodelagesof2.0 to2.3Ga (Wiszniewska et al.2002).About100kmtothenorthoftheMazuryComplex,anotherE–W-trendinglineament(notshownin Fig. 1) is intruded by theNemunas andGeluvaAMCGgranites,whichhavebeendatedbysecondaryionmassspectrometryat1447±5Maand1445±8Ma,respectively(Skridlaite et al.2007).

analyTiCalMeTHoDS

Analysesof themain rock-formingmineralswerecarried out on selected thin sectionswith aCamecaSX–100electron-probemicroanalyzer at theElectronMicroprobeLaboratoryoftheInter-InstituteAnalyticalComplexforMineralsandSyntheticSubstancesattheInstitute ofGeochemistry,Mineralogy andPetrology,WarsawUniversity.We employed an accelerationvoltage of 20 kV, a beam current of 10–20 nA, anda beam-spot diameter of 2mm.Weusednatural andartificialsubstancesasstandardsandthePAPprogram(Pouchou&Pichoir1991)forcorrections.

We analyzed samples from the six boreholes(Appendix 1) formajor elements,Rb andSrwith aPhilipsPW2400RtgspectrometerattheCentralLabo-ratoryofthePolishGeologicalInstitute.ConcentrationsofthemajorelementswereestablishedusingstandardX-ray fluorescence (XRF) fusion techniques. Theprecisionandaccuracyofthesedeterminationsgener-allywere found tobebetter than5%.ConcentrationsoftheREE,Y,Zr,Nb,Ba,V,Zn,Co,Cu,Ga,andPbwereestablishedwiththeICP–MSmethodwithaVGelementalPQ2PlusspectrometerattheUniversitédeLiège (Belgium), following themethod described inVanderAuwera et al.(1998a).

Concentrations ofSm,Sr andNd andwhole-rockisotopic ratiosweremeasuredwith aVG ISOMASS54Emass spectrometer in the LaboratoireMagmasetVolcans,Clermont Ferrand, France.ACAMECATSN206solid-sourcemassspectrometerwasusedto

1195_vol_48-4_art_02.indd 1197 10-08-02 11:06

1198 THeCanaDianMineralogiST

measureRbcontents.The87Sr/86Srvalueswerenormal-izedto86Sr/88Sr=0.1194,andthe143Nd/144Ndvaluesto 146Nd/144Nd = 0.7219.Relative uncertainties for147Sm/144Nd and 87Rb/86Sr are 0.5%and2%, respec-tively.TheNdisotopicvalueswerenormalizedtoaLaJollastandardvalueof0.511860.TheTDMageswerecalculatedusingthepresent-daydepletedmantlevaluesof143Nd/144Nd=0.51315(o=+10)and147Sm/144Nd=0.2137,followingaradiogeniclineargrowthforthemantlewithNd=0at4.55Ga.

peTrology

Drill cores fromKlewno,Kętrzyn, Bartoszyce,Filipów, Pawłówka, andGołdap (Fig. 1) intrusionswere investigated in this study.Detailedpetrographicdescriptions canbe found inBaginski et al. (2001b).Therocksrangefromdiorite(Klewno)togranodioriteandmonzogranite(Gołdap)andpresentasimilarminer-alogyandtexture.Theyaremediumtocoarsegrained,with porphyritic plagioclase andK-feldspar (up to 3

fig.1. a.GravitymapofnorthernPoland(Bougueranomaly,transformed)outliningthemajorgeologicalstructurespresentedonFigure1b(fromWybraniec2007,unpublished),andthelocationoftheboreholesstudied.b.SimplifiedgeologicalmapofnorthernPoland(afterKubicki&Ryka1982,modified)withthelocationoftheboreholesstudied.

1195_vol_48-4_art_02.indd 1198 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1199

cm long).Thematrix typically contains plagioclaseandK-feldspartogetherwithhornblendeandbiotiteasmajorconstituents,aswellassubordinateamountsofquartzandclinopyroxene.Thelattershowsevidenceforreactiontohornblende,exceptinKlewnoandGołdap,where it is absent.Apatite, titanite, zircon,magnetiteand ilmenite are themain accessory phases.Quartzis present in themost evolved rocks, andmyrmekiteandbiotite–quartzsymplectitesarecommon.Rapakivitextureswere locally observed in a small number ofsamples.Themineralogy and texture of this suite ofgranitic rocksareverysimilar towhat isobserved intheHBGsuite emplaced at the endof theSveconor-wegianorogeny insouthernNorway(VanderAuweraet al.2003,2008).

Themineralcompositionsofthesegraniticrocksaresummarized inTable 1. Plagioclase isweakly zonedandesine, and theK-feldspar is perthitic orthoclase.Amphibolecompositions(Table2)rangefromedeniteinKlewno tomagnesiumhastingsitic hornblende inGołdap(Fig.2).Applicationof theamphibolegeoba-rometersofJohnson&Rutherford(1989)andSchmidt(1992) gives pressures of 2–3 kbar forKlewno and4–5kbarfortheothermassifs.Thebiotiteconsistsofhigh-Tiandhigh-Fannite(upto4.8wt%TiO2and2.3wt%F inBartoszyce).Titanite locally rims ilmenitegrains.TheAn content in plagioclase is negativelycorrelatedwith the SiO2 content of the host rock,whereas the fe# value [=100*FeOt/(FeOt+MgO)] ofhornblende,biotiteandclinopyroxene(wherepresent)increases.AnexceptionisintheKętrzynpluton,whereatsimilarAncontents,thefe#ofhornblendeandbiotitearemuch higher than in the other occurrences,withvaluesof50and43,respectively(Tables1,2).Thismayreflectmorereducedconditionsofcrystallization,whichfavored the incorporation of Fe2+ inmaficminerals,whereas,undermoreoxidizedconditions,Feispartlyoxidized to Fe3+ and enters early-formedmagnetite(Toplis&Carroll 1995,Bogaerts et al. 2006).TheKętrzyngranitoidsarespatiallyrelatedtoanorthositesandrelatedrocks(inFig.1,theboreholeislocatedin

theKętrzynanorthosite),arockseriesthathascrystal-lizedundermorereducedconditionsthantheHBGsuite(Frost&Frost1997,VanderAuwera et al.2003,2008,Bogaerts et al.2006)

geoCHeMiSTry

ThecompositionsoftherocksintermsofmajorandtraceelementsarereportedinTable3anddisplayedinFigures3,4and5.

Major elements

TheKlewno samples have the lowest SiO2 (46.6wt%)andK2O(2.6%)contents,andthehighestFeOt(up to 14.9%),MgO (3.9%),TiO2 (2.9%), andP2O5(2.2%) contents,whereas theGołdapmassif displaysthemost differentiated and evolved rocks. InHarkerdiagrams (Fig. 3), samples from the variousmassifsformcontinuoustrends,with littleornooverlap.Therocksaremetaluminous;themodifiedalkali–limeindexofFrost et al.(2001),MALI,variesfrom–1.05to7.92,andFe*rangesfrom0.75to0.85,whichdemonstratesthealkali-calcicandferroancharacters.InaK2OversusSiO2diagram(Fig.3),mostsamplesplotintheshosho-niticfield,whereasonlyfewdisplayhigh-Kaffinities.AnAFMdiagramindicatesamazinglyconstantandhighFeOt/MgOvalues(Fig.4).InFigure3,thecompositionof theMazury granitoids is also compared to that of

1195_vol_48-4_art_02.indd 1199 10-08-02 11:06

1200 THeCanaDianMineralogiST

thesouthNorwegianHBGsuite.Forthiscomparison,geochemicaldataobtainedon theTranevåg intrusion,associatedwith the Lyngdal granodiorite (southernNorway), have been selected (Bogaerts et al. 2003,VanderAuwera et al.2003).Fromitsstartingcomposi-tionat56%upto69%SiO2,theTranevågtrendindeedalmost perfectly coincideswith theMazury trend forFeOt,MgO,CaO,TiO2andNa2O,andisslightlybelowitforAl2O3andK2O.

Trace elements

TheZr,Nb andREE concentrations (Fig. 5) arerelativelyhighandtypicalofA-typegranites(Whalen et al.1987)(Fig.6),asisalsotheHBGsuite(Bogaerts et al.2003,VanderAuwera et al.2003).Asobservedforthemajorelements,concentrationsoftraceelements,ifplottedagainstSiO2,showlooselydefinedtrends(Fig.5).All elements are inversely correlatedwith SiO2,exceptRb and Pb,which are positively correlated,andBa,whichisroughlyconstant.Inthesediagrams,thetraceelementsshowsomescatter,whichresultsindifferentiationtrendsthatarelesswelldefinedthanformajorelements.DiagramsofCaOversusP2O5aswellasCeversusP2O5(Fig.7)showthatbothCaOandCearepositivelycorrelatedwithP2O5,whichresultsfromtheimportantroleplayedbyapatiteinthewhole-rockcomposition.ThelightREEconcentrations(ppm)arevery high (56<La< 265),whereas the heavyREEarealsomoderatelyhigh(3<Yb<9.4),whichresultsin regularly fractionated patterns, (La/Yb)N=15± 2,

exceptfortheKlewnosamples,where(La/Yb)Nrangesfrom25to30(Fig.8,Table3).Mostsamplesalsoshowasmallnegativeanomaly(0.53<Eu/Eu*<0.96,withanaverageat0.75±0.10,Table3).Thesmall(La/Yb)NratiosandEuanomaliesobviouslyreflectthecontrolofapatiteovertheREEcontents.

Some trace elements show distinctive behaviors(Fig.5):(1)Srconcentrationsappeartoremainconstantwithineachmassif,butchangefrommassiftomassif,showing a general inverse correlation with silicacontent;(2)Zn,VandCoconcentrationsdecreasewithdifferentiation(seebelow,Fig.9);(3)ZrshowsasimilarevolutionwiththeexceptionofmostKlewnosamples,whichhavesignificantlylowerZrcontents,and(4)Nbconcentrationsarerelativelyscattered;however,withineachindividualmassif,Nbisgentlynegativelycorre-latedwithSiO2.Asforthemajorelements,comparisonwiththeTranevågseries(Fig.5)showsgreatsimilaritiesinthebehaviorofalltraceelements,exceptthatRbandPbarelessincompatibleintheTranevågsuite.

Radiogenic isotopes

The Sr andNd isotopic compositions of sevensamplesfromthevariousmassifsareshowninTable4and in Figures 10–12.TheNd values calculated atthe age of crystallization (1.5Ga) range from –3.3(Klewno) to –6.8 (Pawłówka), whereas the initial87Sr/86Srvaluesextend from0.702 (Gołdap) to0.707(Filipów).TheTDMmodelages(DePaolo1983)rangefrom2.4Ga(Pawłówka)to2.0Ga(Klewno)withallvalues,exceptKlewno(2.04Ga),averagingat2.18±0.03Ga.

DiSCUSSion

The HBG suite belongs to the oxidized A-type granite series

The1.5GaMazuryHBGfelsicrocksshowtypicalcharacteristics of ProterozoicA-type granites (e.g.,Whalen et al. 1987), i.e.,metaluminous and ferroanwhole-rockcompositionswithhighK2Oandincompat-ible elements contents.The occurrence ofmagnetitein themineral association and the lowFe/(Fe+Mg)value of the hornblende indicate oxidized conditionsofcrystallization(Dall’Agnol et al.1999,Anderson&

fig. 2. Fe/(Fe +Mg) versus IVAl in average amphibolesshowing the oxidized conditions of crystallization.NomenclatureafterLeakeet al. (1997).ThedividinglinesarefromRämöet al.(2002).

fig.3. Major-elementcompositionsofwholerocksplottedinHarker diagrams. In theK2O versus SiO2 diagram,the dividing lines are fromPeccerillo&Taylor (1976).TheTranevågcompositions (southernNorway)are fromBogaertset al.(2003),andthecumulatecompositionsaretakenfromTable5.

1195_vol_48-4_art_02.indd 1200 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1201

1195_vol_48-4_art_02.indd 1201 10-08-02 11:06

1202 THeCanaDianMineralogiST

Morrison2005).TheMazuryHBGsuiteisverysimilar,inmineralogyandcomposition,tothesouthNorwegianTranevågA-typegranite(Fig.3),whichderivesfromahydratedparentalmagmaofintermediatecomposition

(Bogaerts et al.2003,2006).Thissimilarityallowsusto investigate theMazury rocks in lightof thepetro-geneticmodeldevelopedfortheTranevågseries,asisdonebelow.

1195_vol_48-4_art_02.indd 1202 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1203

Identification of the differentiation process

In theHarker plot forK2O (Fig. 3) aswell as intheCaOversusP2O5diagram (Fig.7), thepoints fortheMazurymassifs clearly define broken or curvedtrends,which preclude any simplemixing processbetweentwocomponents,butrathersuggestsaprocesssuchaspartialmeltingorfractionalcrystallization.In

order todiscriminatebetween these twomechanisms,thecontrastingbehaviorofcompatibleandincompat-ible elements canbe used.Aplot of log (compatibleelement) versus log (incompatible element) allowsforthedistinctionbetweenthetwomechanisms,withpartialmeltingresultinginasubhorizontal trendandfractional crystallization giving a sub vertical trend(Cocherie 1986,Martin 1987,Martin et al. 1994).

1195_vol_48-4_art_02.indd 1203 10-08-02 11:06

1204 THeCanaDianMineralogiST

Figure9showsthatallsamplesdefineaverticaltrendtypicaloffractionalcrystallizationratherthanofpartialmelting.Thisconclusioniscorroboratedbythefactthatseveralmineralphasesarezoned.Evenifzoningalwaysremainsoflimitedextent,itshowsthatthemagmafromwhichthesemineralscrystallizedunderwentfractionalcrystallization.Consequently, the subsequent discus-sionswillfocusonafractionalcrystallizationprocess.

Modeling the fractional crystallization process

ComparisonwiththeSouthNorwayHBGallowstodecipherthepetrogenesisoftheMazurysuite.InSouthNorway, thecompositionsof theparentalmagmaandconjugateliquidusmineralshavebeenstudiedexperi-mentally(Bogaerts et al.2003,2006)andthisapproachprovidesstrongconstraintsontheproposedpetrogenetic

1195_vol_48-4_art_02.indd 1204 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1205

model.Usingmass-balanceequations,Bogaerts et al.(2003)havecalculatedthemodalcompositionsoftwocumulatesc1andc2inequilibriumwiththeliquidsat56wt%and62.5wt%SiO2,respectively,ontheTranevågliquidlineofdescent.Thecalculatedcompositionsofthemineralsandtheirproportionsincumulatesc1andc2aregiven inTable5, togetherwith thewhole-rockcompositions of the cumulates and their conjugatedmelts(Fig.3).Thesecumulatesc1andc2canexplaintheKlewnodiorites,whicharelow-silicarocks(SiO2<56wt%)withhighP,TiandFecontents.Theserockscouldrepresent liquids, cumulates or crystal-ladenmelts.Indeed,formostmajorelements, thecompositionsoftheKlewno samples plot on linear arrays joining thecumulatecompositiontothestartingcompositionoftheTranevågliquidlineofdescent.ItcanthusbeinferredthattheKlewnosamplesrepresentamixtureofcumulusmineralsandtheirconjugatemelt.Thecompositionofthec2cumulateplotsontheprolongationoftheMazurytrendinsuchawaythatitisnotpossibletodeterminewithmajorelementswhethersampleswithSiO2above56wt%aremeltsorcrystal-ladenmelts.TheclusteringoftheFilipówandPawłówkasamplesalongthegeneraltrendandtheiroverallsimilaritiesofcompositiontotheTranevågprimitivemelt(Fig.3),however,suggeststhatthese samplesareclose tomeltcompositions.Below,weuse trace-element concentrations to show that theKętrzyn, Bartoszyce andGołdap samples are alsocrystal-ladenmeltswithvariableamountsofcumulusminerals.

Slight differences, however, exist between theTranevågliquidlineofdescentandtheMazurytrend,indicatingthat thetwoHBGsuitesdidnotcrystallizeunder strictly identical conditions or from the sameparentmagmas.ThemoststrikingdifferenceisinP2O5,which is higher in theKlewno samples, implying acumulatesomewhatricherinapatite(ca.2.5wt%P2O5)thanthecalculatedcumulatesatTranevåg.

Trace elements confirm fractional crystallization

From theCe–P2O5 relationship in Figure 7, it ispossible to estimate theREE contents of the apatitein theKlewno samples and theKdap/meltREE values.Acceptingthatthesesampleslieonatie-linebetweenapatiteandameltwith0.5–0.7wt%P2O5and200–300ppmCe(similartothemostprimitiveTranevågmelt),then apatite should contain about 1.1wt%Ce.ThishighvaluewouldimplyaKdCeap/melt rangingfrom37to 50, values that are realistic for intermediatemelts(Henderson1982,Rollinson1993).Therelativelysmallvariations inREE concentrations between sampleson themain trend, such as Filipów andGołdap, areexplainedbythebufferingroleofapatiteinthecumu-late, leading to bulk partition-coefficients close toone. For example, based on data presented inTable5and theaboveKdCeap/meltvalues, thebulkpartition-coefficientDREErangesfrom1.5to2,thusaccounting

fortheveryslightdecreaseintheREEcontentduringfractionation,andalsoforthesubparallelcharacteroftheREEpatternsamongthevarioussamples(Fig.8).TheKętrzyn,Bartoszyce andGołdap samples,whichroughly plot on linear arrays in aCe–SiO2 diagram(Fig.5g), appear tobemixturesof cumulusmineralsandmeltsthatcouldberepresentedbythemostevolvedsampleoftheseries,i.e.,samplescontainingca.59,61and67wt%SiO2,respectively.

The small variation inwhole-rock Sr concentra-tionsobservedwithineachintrusion(Fig.5)canalsobeexplainedwithabulkpartition-coefficientDSrcloseto1.GiventhatKdSrpl/melt=2inmeltsofintermediatecompositions, whereasKdSri/melt << 1 in all othercumulativeminerals i (e.g.,Rollinson1993),andthatcumulatesinthesemeltscontainabout50%plagioclase(seec1andc2inTable5),thebulkpartition-coefficientDSrmustbecloseto1.Consequently,thecumulates,themeltsandanymixtureof thesetwocomponentshavesimilarSrcontents.

In theKętrzyn,Bartoszyce andGołdap samples,theinversecorrelationofZrwithSiO2(Fig.5)canbeaccountedforbythepresenceofzirconinthecumulate.The temperature of saturation of zircon (Watson&Harrison1983)isintherange800–920°Crange(Table3), in agreementwith the high liquidus temperatureof ferroan granites (e.g.,Duchesne&Wilmart 1997,Dall’Agnol et al. 1999,Bogaerts et al. 2006). In theKlewno samples, Zr concentrations are low (exceptin one sample),which suggests that zircon is not anaccumulated phase, but crystallized from themeltcomponentinthesecrystal-ladensamples.

Another line of evidence in favor of fractionalcrystallization isprovidedby linear arrays in log–logcoordinates(Fig.9).TheslopeoftheZnandVevolu-

fig.4. A(Na2O+K2O)–F(FeOt)–M(MgO)diagram.SamelegendasinFigure3.

1195_vol_48-4_art_02.indd 1205 10-08-02 11:06

1206 THeCanaDianMineralogiST

1195_vol_48-4_art_02.indd 1206 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1207

tionsallowsforanevaluationofDZnandDV,assumingDRb<0.1(incompatiblebehavior).ThecalculatedDZnandDVrangesbetween3and4.Giventhatmagnetite,themainZn-andV-bearingphase,ispresentinthec1andc2cumulateswithafractionof11wt%(Table5),thisyieldsKdZnmgt/meltandKdVmgt/meltrangingfrom27

to36,valuesthatarerealisticformeltsofintermediatecompositions(e.g.,Ewart&Griffin1994).

In summary, the overall trend observed in allgeochemical diagrams for theMazury intrusions isdefinedbyaseriesofmagmabatches,eachonerefer-ringtoaspecificplutonandhavingundergonelimitedamountsoffractionation.Thesamplesfromanintrusiondonotgenerallycorrespondtopuremelts,butrathertomeltsladenwithvariableamountsofcumulusminerals.Thus, the overall trend cannot properly represent aliquid line of descent, but a collection of puremeltsmixedwithmeltsmore or less loadedwith cumulusminerals.Withourmodel,however,wehaveidentifiedtruemeltsat56,59,61and67wt%SiO2,whichare

fig. 5. Trace-element concentrations plotted inHarkerdiagrams.Same legendas inFigure3.Thedashed linesoutlinepossibletrendsinsomeintrusions.

fig.6. FeOt/MgOand(Na2O+K2O)/CaOversusZr+Nb+Ce+Ydiagrams,afterWhalenet al.(1987).SamelegendasinFigure3.FRACdefinesthefieldoffractionatedI-andS-typesgranites.

1195_vol_48-4_art_02.indd 1207 10-08-02 11:06

1208 THeCanaDianMineralogiST

linkedbyafractionalcrystallizationprocess.Indetailsome of themagma batches appear to have slightlydifferenttrace-elementsignatures(Fig.4),whichverylikelyresultfromsmallvariationsinsourcecompositionorconditionsofpartialmelting.

Constraints on source age and composition

The isotopic data (Table 4) give insights into thetiming and nature of the source rocks of the variousmagmas. InadiagramofanNd(T)versus (87Sr/86Sr)0(Fig. 10), all samples plot far from themantle array,whichisconsistentwithcrustalinputinthesourceoftheMazurymagmas.Thesourceofthegranitescouldbeeitheroldercontinentalcrust,oramixtureofmantlematerialandoldercontinentalcrust.Inthelattercase,

thecrustalcomponentshouldbesignificantlyolderthanthe observedmodel ages, very probably ofArcheanage.However,allavailableresultsonthePrecambrianbasementoftheEastEuropeanCraton(Claesson et al.2001),andparticularlyonitsPolishpart(Claesson&Ryka1999),precludetheexistenceofArcheanmaterialinthatregion.ThisconstitutesacompellingargumentinfavorofaPaleoproterozoiccontinentalcrustalsourcefortheMazurymagmas.

Thereisnolinearrelationshipbetween87Sr/86Srand1/Sr(Fig.11a)insupportofamixingprocess,and,ifNdor (87Sr/86Sr)0areplottedversusSiO2 (Figs.11b,c),thereisnocorrelationbetweenisotopicvaluesandsilicacontent,whichsuggestsalimitedroleforassimi-lation–fractionalcrystallization(AFC).Inparticular,the twoBartoszyce samplesB4andB6 showsimilarisotopicvalues,around0.704,forquitedifferentSiO2contents(Table4).

ThesamplesfromtheKętrzyn,Bartoszyce,FilipówandGołdapmassifsgiveverysimilarTDMagesof~2.18Ga (Table 4, Fig. 12).Their parentalmagmas couldthus have been derived from themelting of a singleprotolithextractedfromadepletedmantleatabout2.18Ga,assumingthatthelatterhadanaverage147Sm/144Ndof 0.1071.TheKlewno sample shows a somewhatyoungerTDM (2.04Ga),which could be explainedeitherbymeltingaprotolithextractedfromthemantle140millionyears after the extractionof theprotolithof othermassifs, or by a two stage-evolution. In thislatterscenario,theextractionoftheprotolithfromthemantle tookplaceat about2.18Gabut, incontast tothesamplesfromtheotherintrusions,itevolvedwitha 147Sm/144Nd equal to 0.1257 (Fig. 12).At 1.5Ga,meltinganddifferentiationoftheprotolithchangedthe147Sm/144Ndintothemeasuredone(0.0976).However,as the differentiation of theKlewnomelts impliessubtractionof a cumulatewithmore than3%apatite(Table5),theREEbudgetwouldhavebeencompletelycontrolled by this phase.AsKdap/meltNd <Kdap/meltSm(Watson&Green 1981,Henderson 1982,Rollinson1993), the Sm/Nd value of the Klewno cumulatewouldbehigher thanthatof the liquidfromwhichitisextracted,whatevertheproportionoftrappedliquidinthecumulate.ThisisinconsistentwiththemeasuredSm/Nd (0.0976); therefore, the hypothesismust berejected.ForthesamplefromthePawłówkadrillcore,wesuggestthatthelowerNdvaluerelativetotheotherintrusionscanreflectapossiblecontaminationattheageofintrusionwithaslightlyoldercrustalmaterial(Fig.12). Finally, the 1.5Ga anorthosite and ferrodioritefromtheSuwalkimassifshowarangeinNd(T)(–2.5to–5.3)(Wiszniewskaet al.2002)andaverageTDM(~2.09Ga)similartothatdeterminedforgranitoidsfromtheKętrzyn,Bartoszyce, Filipów andGołdap drillcores.Thuswe propose that the protoliths of theMazuryHBGsuiteandoftheanorthositeandferrodioritewereextractedfromthemantleatthesametime.fig.7. a.Whole-rockCaOversusP2O5;b.Whole-rockCe

versusP2O5contents.SamesymbolsasinFigure3.

1195_vol_48-4_art_02.indd 1208 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1209

fig. 8. Chondrite-normalized REE distribution (normalizing values after Sun&McDonough1989),showingaveragevaluesforthevariousgroups.SamesymbolsasinFigure3.

fig.9. LogofV,ZnandCoconcentrations(compatibleelements)versuslogofRbconcentrations(incompatibleelement).SamesymbolsasinFigure3.Thearrowssuggestanoverallfractionalcrystallizationprocess.

1195_vol_48-4_art_02.indd 1209 10-08-02 11:06

1210 THeCanaDianMineralogiST

fig.10. ValuesofNdat1500Maversus87Sr/86Srat1500MaforsevensamplesoftheMazurymassif.

fig. 11. Isotopic ratios versus chemical compositions. a:87Sr/86Srat1500Maversus1/Sr;b:Ndat1500MaversusSiO2;c:87Sr/86Srat1500MaversusSiO2.SamesymbolsasinFigure10.

TheHBGseriesformedfromoxidizedmeltswithahighH2Ocontent(e.g.,Dall’Agnol et al.1999,Bogaerts et al. 2006) and anorthosite–ferrodiorite crystallizedfromdrymagmasunderreducedconditions(e.g.,Frost& Frost 1997,VanderAuwera et al. 1998b, 2008).

The coexistence in space and time of the two seriesisintriguing.Longhi et al.(1999)haveinterpretedtheparentalmagmaof anorthosite as resulting from themelting of a dry granuliticmafic source, andVanderAuwera et al.(2008)haveproposedthattheHBGseries

1195_vol_48-4_art_02.indd 1210 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1211

wasformedfromamildlyhydrousamphiboliticmaficsource.TwocrustalmaficsourcesthusdifferinginH2Ocontentsappear tohavebeen involved in theMazurycomplex,asisalsothecaseinSouthNorway(VanderAuwera et al.2003).

Structural setting

TheAMCGMazuryComplexisofbatholithicsize(350 3 50km)andwasemplacedalongalinearstruc-ture.Furthernorth,theNemunasandGeluvaintrusionsinLithuania alsowere emplaced along an east–westlineament(Skridlaite et al.2007).Asimilarstructuralsetting has also been recognized in several otherProterozoicAMCGcomplexes,e.g.,intheNainProv-ince (Emslie et al. 1994), in theLaramie anorthositecomplex (Scoates&Chamberlain 1997), in southernNorway(Duchesne et al.1999,VanderAuwera et al.2003), and inNamaqualand (Duchesne et al. 2007).TheMadagascar anorthosites are associatedwith amega-shearzone(deWit et al.2001)andtheKorostenComplex(Ukraine)hasintrudedattheintersectionoftwo large lineaments (Bogdanova et al. 2004).Thesestructural settings constitute zones ofweakness oflithosphericsizethatlikelycontrolledandfavoredtheemplacementoftheselargeigneouscomplexes.Lineardelaminationof the lithospherealong thesestructurescanbringtheasthenosphereintocontactwiththebaseofthecrust,thusprovidingtheadditionalheatnecessaryformeltingofthelowercrust(Teyssier&Tikoff1998).

ConClUSionS

The1.5GaHBGsuite,amajorconstituentof theMazuryComplex,ismetaluminousandferroan,andthefelsic rocksarepotassicA-typegranitoids.The rocksthusbelong to theAMCGsuitewith theparticularitythattheyhavecrystallizedinoxidizedconditions.Theywereemplacedatpressuresofca.2–5kbar.Thegran-itoids are associatedwith diorites,which crystallizedfrommeltsladenwithcumulusminerals.Thegeochem-icalvariationsoftheserocksdefinetrendsspecificforeachintrusionandcorrespondingtovariousbatchesofmagma.Thelatterstretchalonganoveralltrend,whichmimics theTranevåg liquid line of descent, a seriesformedbyfractionalcrystallizationofanoxidizedandhydrousmagma.OwingtothelackofArcheancrustinthispartoftheEastEuropeanCraton,thenegativeNdatthetimeofintrusion(–3.3to–4.7)andtherelativelylowSrisotopeinitialratios(0.702to0705)canbebestexplained bymelting of a juvenile protolith ranginginagebetween2.0and2.2Ga.TheMazuryoxidizedA-typegranitoidsarespatiallyandtemporarilyassoci-atedwithmassif-typeanorthositeandrelatedreducedrocks.Thisisfurtherevidencethatdifferentsourcescanbemeltedatthesametimetoprovideparentalmagmasof different H2O contents. TheMazury Complexintrudedamega-lineardiscontinuityinthelithospherealongwhichdelaminationcouldprovidethenecessaryheatofmelting.

1195_vol_48-4_art_02.indd 1211 10-08-02 11:06

1212 THeCanaDianMineralogiST

aCKnowleDgeMenTS

This paper is dedicated to thememory of RonEmslie.Ronwasanoutstandingscientist,anexcellentfield geologist and a brilliant petrologist.He devel-opedin1980aparadigmaticmodelofevolutionoftheAMCGsuite,stilltobedisproved.Weowehimthreedecadesoffruitfuldebates,particularlyduringdecisivefieldtripsinProterozoicprovincesallovertheworld.B.B.hasbenefittedfromagrantoftheBelgianCGRItosupportperiodsofworkattheUniversityofLiège.B.BandJ.W.havebeensupportedbythePolishNCSRgrants6.20.9316.00.0,3P04D01423and2P04D05527.P. Dzierżanowski, L. Jeżak. I. Iwasińska-Budzyk(Warsaw),G.Bologne(Liège),andC.Bosq(Clermont-Ferrand)arewarmlyacknowledgesfortheirassistancewithchemicalanalyses.WearegratefulforthereviewsofJ.B.WhalenandG.Markl,aswellas theeditorialhandlingofJ.Scoates.

referenCeS

anDerSon,J.l.&BenDer,e.e.(1989):NatureandoriginofProterozoicA-typegraniticmagmatisminthesouthwest-ernUnitedStatesofAmerica.Lithos23,19-52.

anDerSon,J.l.&MorriSon,J.(2005):Ilmenite,magnetite,andperaluminousMesoproterozoicanorogenicgranitesofLaurentiaandBaltica.Lithos80,45-60.

aSHwal,l.D. (1993):Anorthosites. Springer,Berlin,Ger-many.

BaginSKi,B.,DUCHeSne,J.-C.,MarTin,H.&wiSZniewSKa,J. (2001a):Mid-Proterozoic granitoids from theMazuryComplex (NEPoland):AMCGAffinities?EUG XI, J. Conf. Abstr.6,768.

BaginSKi,B.,DUCHeSne,J.-C.,MarTin,H.&wiSZniewSKa,J.g. (2007): Isotopicandgeochemicalconstraintson theevolutionoftheMazurygranitoids,NEPoland. InGranit-oidsinPoland(A.Koslowsly&J.Wiszniewska,eds.).AMMonograph1,11-30.

fig.12. ValuesofNdversusageforsamplesoftheMazuryComplex.TheageofcrystallizationofallsamplesfromtheMazurycomplexisassumedtobe1.5Ga.TheevolutioncurveofthedepletedmantleisafterDePaolo(1983).ThesymbolsarethesameasinFigure10.TheaverageevolutionofsamplesfromKętrzyn,Bartoszyce,Filipów,andGołdapisshown,aswellasthehypotheticalstage1ofKlewno(seetextfordetails).ForthePawłówkasample,contaminationattheageofintrusionisindicatedbythearrow.

1195_vol_48-4_art_02.indd 1212 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1213

BaginSKi,B.,DUCHeSne,J.-C.,vanDeraUwera,J.,MarTin,H.&wiSZniewSKa,J.(2001b):Petrologyandgeochemis-tryofrapakivi-likegranitesfromthecrystallinebasementofNEPoland.Geol. Quart.45,33-52.

BogaerTS,M., SCailleT, B., liégeoiS, J.-p.&vanDeraUwera, J. (2003): Petrology and geochemistry of theLyngdal granodiorite (southernNorway) and the role offractionalcrystallizationinthegenesisoftheProterozoicferro-potassicA-type granites.Precamb. Res.124, 149-184.

BogaerTS,M.,SCailleT,B.&vanDeraUwera, J. (2006):Phase equilibria of theLyngdal granodiorite (Norway):implications for the origin of themetaluminous ferroangranitoids.J. Petrol.47,2405-2431.

BogDanova,S.(1999):ThePalaeoproterozoicterranepatterninthewesternpartoftheEastEuropeancraton.SeventhEUROBRIDGEWorkshop:BetweenEUROBRIDGEandTESZ. PolishGeological Institute, Suwalki-Szelment,Poland,111-113.

BogDanova, S., gorBaTSCHev, r., graD,M., JaniK,T.,gUTerCH,a.,KoZlovSKaya,e.,MoTUZa,g.,SKriDlaiTe,g., STaroSTenKo,v.i.,Taran,l.&e.a.p.w.groUpS(2006):EUROBRIDGE:newinsightintothegeodynamicevolutionoftheEastEuropeanCraton. InEuropeanLitho-sphereDynamics(D.G.Gee&R.Stephenson,eds.).Geol. Soc. London, Mem.32,569-625.

BogDanova,S.,paSHKeviCH, i.K.,BUryanov,v.B.,MaKa-renKo, i.B., orlyUK,M.i., SKoBelev,v.M., STaro-STenKo,v.i.&legoSTaeva,o.v.(2004):The1.80–1.74Gaanorthosite– rapakivigraniteKorostenPluton in theUkrainian Shield: a 3-D geophysical reconstruction ofdeepstructure.Tectonophysics381,5-27.

ClaeSSon, S., BogDanova, S.v., BiBiKova, e.v.&gor-BaTSCHev, r. (2001): Isotopic evidence of Paleopro-terozoic accretion in thebasementof theEastEuropeanCraton.Tectonophysics339,1-18.

ClaeSSon,S.&ryKa,w.(1999):NdmodelagesofthePre-cambriancrystallinebasementofNEPoland.InBetweenEUROBRIDGEandTESZ.7thEUROBRIDGEWorkshop(Suwalki,Poland),17-19.

ClaeSSon,S.,SUnDBlaD,K.,ryKa,w.&MoTUZa,g.(1995):TheMazuryComplex–anextensionoftheTransscandi-navian igneousbelt (TIB) intoEastEuropeanPlatform?Terra Abstract Suppl.7,107.

CoCHerie,a.(1986):Systematicuseoftraceelementdistri-bution patterns in log–log diagrams for plutonic rocks.Geochim. Cosmochim. Acta50,2517-2522.

Dall’agnol,r.,lafon,J.-M.&MaCaMBira,M.J.B.(1994):Proterozoic anorogenicmagmatism in theCentralAma-zonian province,AmazonianCraton: geochronological,petrological and geochemical aspects.Mineral. Petrol.50,113-138.

Dall’agnol,r.,SCailleT,B.&piCHavanT,M.(1999):AnexperimentalstudyofalowerProterozoicA-typegranitefromtheEasternAmazoniancraton,Brazil.J. Petrol.40,1673-1698.

Depaolo,D.J.(1983):Geochemicalevolutionofthecrustandmantle.Rev. Geophys. Space Phys.21,1347-1358.

DewiT,M.J.,Bowring,S.a.,aSHwal,l.D.,ranDrianaSolo,l.g.,Morel,v.p.i.&raMBeloSon,R.A.(2001):AgeandtectonicevolutionofNeoproterozoicductile shearzonesinsouthwesternMadagascar,withimplicationsforGond-wanastudies.Tectonics20,1-45.

DUCHeSne,J.-C.(1990):Originandevolutionofmonzonoritesrelated to anorthosites.Schweiz. Mineral. Petrogr. Mitt.70,189-198.

DUCHeSne, J.-C., liégeoiS, J.-p.,vanDeraUwera, J.&longHi,J.(1999):Thecrustaltonguemeltingmodelandtheoriginofmassiveanorthosites.Terra Nova11,100-105.

DUCHeSne, J.-C., vanDeraUwera, J., liégeoiS, J.-p.,BarTon, e.S.&ClifforD,T.n. (2007):Geochemicalcontraintson thepetrogenesisof theO’okiepKoperbergSuiteandgraniticplutonsinNamaqualand,SouthAfrica:alowercrustalmaficsourceinNamaquan(Grenville)times.Precamb. Res.153,116-142.

DUCHeSne,J.-C.&wilMarT,e.(1997):Igneouscharnockitesand related rocks from theBjerkreim–Sokndal layeredintrusion (southwestNorway): a jotunite (hypersthenemonzodiorite)-derivedA-type granitoid suite. J. Petrol.38,337-369.

Dörr,w.,BelKa,Z.,MarHeine,D.,SCHaSToK,J.,valverDe-vaqUero,p.&wiSZniewSKa,J.(2002):U–PbandAr–Argeochronologyof anorogenic granitemagmatismof theMazurycomplex,NEPoland.Precamb. Res.119,101-120.

eMSlie,r.f.(1991):Granitoidsofrapakivigranite–anortho-siteandrelatedassociations.Precamb. Res.51,173-192.

eMSlie,r.f.,HaMilTon,M.a.&THériaUlT,r.J. (1994):PetrogenesisofaMid-Proterozoicanorthosite–mangerite– charnockite – granite (AMCG) complex: isotopic andchemicalevidencefromtheNainplutonicsuite.J. Geol.102,539-558.

ewarT,a.&griffin,w.l. (1994):Application of protonmicroprobedatatotrace-elementpartitioninginvolcanicrocks.Chem. Geol.117,251-284.

froST,B.r.,BarneS,C.g.,CollinS,w.J.,arCUlUS,r.J.,elliS,D.J.&froST,C.D.(2001):Ageochemicalclassifi-cationforgraniticrocks.J. Petrol.42,2033-2048.

froST,C.D.&froST,B.r. (1997):Reduced rapakivi-typegranites:thetholeiiteconnection.Geology25,647-650.

froST,C.D.,froST,B.r.,Bell,J.M.&CHaMBerlain,K.r.(2002):The relationship betweenA-type granites andresidualmagmas from anorthosite: evidence from the

1195_vol_48-4_art_02.indd 1213 10-08-02 11:06

1214 THeCanaDianMineralogiST

northern Sherman batholith, LaramieMountains,Wyo-ming,USA.Precamb. Res.119,45-71.

golDSTein,S.l.,o’nionS,r.K.&HaMilTon,p. (1984):ASm–Nd isotopic studyofatmosphericdustsandparticu-latesfrommajorriversystems.Earth Planet. Sci. Lett.70,221-236.

gooDge,J.w.&vervoorT,J.D.(2006):OriginofMesopro-terozoicA-typegranitesinLaurentia:Hfisotopeevidence.Earth Planet. Sci. Lett.243,711-731.

HarriSon,T.M.&waTSon,e.B.(1984):Thebehaviorofapa-titeduringcrustal anatexis: equilibriumandkineticcon-siderations.Geochim. Cosmochim. Acta48,1467-1477.

HenDerSon, p. (1982): Inorganic Geochemistry. PergamonPress,Oxford,U.K.

HoffMan,p.f.(1989):SpeculationsonLaurentia’sfirstgiga-year(2.0to1.0Ga).Geology17,135-138.

JaCoBSen,S.B.&waSSerBUrg,g.J.(1980):Sm–Ndisotopiccomposition of chondrites.Earth Planet. Sci. Lett.50,139-155.

JoHnSon,M.&rUTHerforD,M.J.(1989):Experimentalcali-brationofthealuminum-in-hornblendegeobarometerwithapplication toLongValley caldera (California) volcanicrocks.Geology17,837-841.

JUSKowiaK,o. (1998):Occurrence, structure andmineraldiversity of rocks from theSuwalki anorthositemassif.InGeologyoftheSulwakiAnorthositeMassif(NorthernPoland) (W.Ryka&M.Podemska, eds.).Prace Panst-wowego Instytutu Geologicznego161,53-80.

KUBiCKi,S.&ryKa,w.(1982):Geological Atlas of Crystal-line Basement in Polish part of East European Platform.WydawnictwaGeologiczne,Warsaw,Poland.

leaKe,B.e. and21others (1997):Nomenclatureof amphi-boles:reportof theSubcommitteeonAmphibolesof theInternationalMineralogicalAssociation,CommissiononNewMinerals andMineralNames.Can. Mineral.35,219-246.

longHi,J.(2005):AmantleormaficcrustalsourceforPro-terozoicanorthosites?Lithos83,183-198.

longHi, J.,vanDeraUwera, J., fraM,M.S.&DUCHeSne,J.-C. (1999):Somephase equilibriumconstraints on theorigin of Proterozoic (massif) anorthosites and relatedrocks.J. Petrol.40,339-362.

MarTin,H. (1987):PetrogenesisofArchaeantrondhjemites,tonalitesandgranodioritesfromeasternFinland:majorandtraceelementgeochemistry.J. Petrol.28,921-953.

MarTin,H.,Bonin,B.,CapDevila,r.,JaHn,B.M.,laMeyre,J.&wang,y.(1994):TheKuiqiperalkalinegraniticcom-plex (SEChina): petrology andgeochemistry.J. Petrol.35,983-1015.

Morgan, J.w.,STein,H.J.,HannaH, J.l.,MarKey,r.J.&wiSZniewSKa, J. (2000):Re–Os studyofFe-Ti-VoxideandFe-Cu-Nisulfidedeposits,Suwalkianorthositemassif,northeastPoland.Mineral. Deposita35,391-401.

nelSon,B.K.&Depaolo,D.J.(1985):Rapidproductionofcontinentalcrust1.7to1.9b.y.ago:NdisotopicevidencefromthebasementoftheNorthAmericanmid-continent.Geol. Soc. Am., Bull.96,746-754.

peCCerillo,r.&Taylor, S.r. (1976):Geochemistry ofEocenecalc-alkalinevolcanicrocksfromtheKastamonuarea,northernTurkey.Contrib. Mineral. Petrol.58,63-81.

poUCHoU, J.l.&piCHoir, J.f. (1991):Quantitative analysisof homogeneous or stratifiedmicrovolume applying themodel “PAP”. In Electron ProbeQuantitation (K.F.J.Heinrich&D.E.Newbury,eds.).PlenumPress,NewYork,N.Y.(31-75).

rollinSon,H. (1993):Using Geochemical Data: Evalua-tion, Presentation, Interpretation.LongmanScientificandTechnical,New-York.

ryKa,w.&poDeMSKi,M. (1998):Geology of the Suwalki anorthosite massif (Northern Poland).PracePanstwowegoInstytutuGeologicznego161,Warsaw,Poland.

räMö,o.T.,Dall’agnol,r.,MaCariMBa,M.J.B., leiTe,a.a.S.&Deoliveira,D.C. (2002): 1.88Ga oxidizedA-typegranitesoftheRioMariaRegion,easternAmazo-nianCraton,Brazil:positivelyanorogenic!J. Geol.110,603-610.

räMö,o.T.&Haapala, i. (1995):One hundred years ofrapakivigranite.Mineral. Petrol.52,129-185.

SCHMiDT,M.w. (1992):Amphibole composition in tonaliteas a functionofpressure: anexperimental calibrationoftheAl-in-hornblendebarometer.Contrib. Mineral. Petrol.110,304-310.

SCoaTeS,J.S.&CHaMBerlain,K.r.(1997):Orogenictopost-orogenicorigin for the1.76GaHorseCreekanorthositecomplex,Wyoming,USA.J. Geol.105,331-343.

SKriDlaiTe,g.,wHiTeHoUSe,M.&riMša,a. (2007):Evi-dence for a pulse of 1.45Ga anorthosite –mangerite –charnockite – granite (AMCG) plutonism inLithuania:implicationsfortheMesoproterozoicevolutionoftheEastEuropeanCraton.Terra Nova19,294-301.

SKriDlaiTe,g.,wiSZniewSKa,J.&DUCHeSne,J.-C.(2003):Ferro-potassicA-type granites and related rocks inNEPolandandSLithuania:westoftheEastEuropeanCraton.Precamb. Res.124,305-326.

SUn,S.S.&MCDonoUgH,w.f.(1989):Chemicalandisotopicsystematices of oceanic basalts: implications formantlecomposition and processes. InMagmatism in OceanBasins (A.D.Saunders&M.J.Norry, eds.).Geol. Soc., Spec. Publ.42,313-345.

1195_vol_48-4_art_02.indd 1214 10-08-02 11:06

ferroan-poTaSSiCa-TypegraniTeS,MaZUryCoMplex,polanD 1215

TeySSier, C.&TiKoff, B. (1998): Strike-slip partitionedtranspression of the SanAndreas fault system: a litho-spheric-scaleapproach. InContinentalTranspressionalandTranstensionalTectonics(R.E.Holdworth,R.A.Strachan&J.F.Dewey,eds.).Geol. Soc., Spec. Publ.135,143-158.

TopliS,M.&Carroll,M.r.(1995):AnexperimentalstudyoftheinfluenceofoxygenfugacityonFe–Tioxidestabil-ity,phaserelations,andmineral–meltequilibriainferro-basalticsystems.J. Petrol.36,1137-1170.

vanDeraUwera,J.,BogaerTS,M.,Bolle,o.&longHi,J.(2008):GenesisofintermediateigneousrocksattheendoftheSveconorwegian(Grenvillian)orogeny(S.Norway)andtheircontributiontointracrustaldifferentiation.Con-trib. Mineral. Petrol.156,721-743.

vanDeraUwera,J.,BogaerTS,M.,liégeoiS,J.-p.,DeMaiffe,D.,wilMarT,e.,Bolle,o.&DUCHeSne, J.-C. (2003):Derivationofthe1.0–0.9Gaferro-potassicA-typegranit-oidsofsouthernNorwaybyextremedifferentiationfrombasicmagmas.Precamb. Res.124,107-148.

vanDeraUwera, J., Bologne, g., roelanDTS, i. &DUCHeSne, J.-C. (1998a): Inductively coupled plasma-massspectrometry(ICP–MS)analysisofsilicaterocksandminerals.Geologica Belgica1,49-53.

vanDeraUwera,J.,longHi,J.&DUCHeSne,J.-C.(1998b):Aliquidlineofdescentofthejotunite(hypersthenemon-zodiorite)suite.J. Petrol.39,439-468.

vignereSSe, J.l. (2007):The role of discontinuousmagmainputsinfelsicmagmaandoregeneration.Ore Geol. Rev.30,181-216.

waTSon,e.B.&HarriSon,T.M. (1983):Zircon saturationrevisited: temperature and compositional effects in avariety of crustalmagma types.Earth Planet. Sci. Lett.64,295-304.

waTSon,e.B.&green,T.H.(1981):Apatite/liquidpartitioncoefficients for the rare earth elements and strontium.Earth Planet. Sci. Lett.56,405-421.

wHalen,J.B.,CUrrie,K.l.&CHappell,B.w.(1987):A-typegranites: geochemical characteristics, discrimination andpetrogenesis.Contrib. Mineral. Petrol.95,407-419.

wiSZniewSKa,J.,ClaeSSon,S.,STein,H.J.,vanDeraUwera,J.&DUCHeSne, J.-C. (2002):The north-eastern Polishanorthositemassifs:petrological,geochemicalandisotopicevidenceforacrustalderivation.Terra Nova14,451-460.

wiSZniewSKa, J.,wyBranieC,S.&BogDanova,S. (2000):Combined geological and geophysical characteristics ofAMCGcomplexesinNEPoland.InTransbalticPrecam-brianCorrelations. Field conference in the frameworkof theVISBYPROGRAMMEand theEUROBRIDGEproject,(Bornholm–Blekinge),Abstr.Vol.,7-8.

Received February 3, 2009, revised manuscript accepted June 24, 2010.

1195_vol_48-4_art_02.indd 1215 10-08-02 11:06

1216 THeCanaDianMineralogiST

1195_vol_48-4_art_02.indd 1216 10-08-02 11:06