The Organization of Flaked Stone Technology in Elkhorn Slough: Reassessing the Millingstone Period...

141
i  University Of California Santa Cruz The Organization of Flaked Stone Technology in Elkhorn Slough: Reassessing the Millingstone Period and Middle Period Flaked Stone Assemblages of CA-MNT-229 and CA-MNT-234 by John Patrick Ellison Summer 2014

Transcript of The Organization of Flaked Stone Technology in Elkhorn Slough: Reassessing the Millingstone Period...

i  

University Of California

Santa Cruz

The Organization of Flaked Stone Technology in Elkhorn Slough: Reassessing the Millingstone Period and Middle Period Flaked Stone Assemblages

of CA-MNT-229 and CA-MNT-234

by

John Patrick Ellison

Summer 2014

ii  

Abstract

The Organization of Flaked Stone Technology in Elkhorn Slough: Reassessing the Millingstone Period and Middle Period Flaked Stone Assemblages

of CA-MNT-229 and CA-MNT-234

John Patrick Ellison

Thirty years of research in Central California’s Elkhorn Slough has illustrated trends in

settlement organization through an extended period of time. Studies are often based on vertebrate

and invertebrate faunal data as well as presence/absence of residential features, such as storage

features and house pits. Flaked stone technology is an often-overlooked line of evidence that

may shed light on questions regarding settlement organization.

Re-analysis of the flaked stone in CA-MNT-229 (Vierra Site) Millingstone Period and

Middle Period components using Technological Organization Theory has produced insights into

the changing patterns of land use and social organization. The CA-MNT-229 dataset was

compared to coeval components in the nearby CA-MNT-234. Results demonstrate a shift in

settlement organization from the Millingstone Period to the Middle Period. Both components of

CA-MNT-229 show similar site use within differing settlement patterns. Data suggest CA-MNT-

234 is a residential site during the Millingstone Period shifting to a processing locale related to

the CA-MNT-229 residential site in the Middle Period.

iii  

Table of Contents Title Page ............................................................................................................................. i Abstract ............................................................................................................................... ii Table of Contents ............................................................................................................... iii List of Figures ......................................................................................................................v List of Tables ..................................................................................................................... vi Acknowledgements ........................................................................................................... vii Introduction ..........................................................................................................................1 Culture History.....................................................................................................................5 Theoretical Framework ......................................................................................................13 Expectations of Flake Stone Analysis and Proxy Measures ..................................20 Tool Diversity ............................................................................................20 Assemblage Formality ...............................................................................22 Tool Profiles (Specificity)..........................................................................22 Debitage .....................................................................................................23 Methods..............................................................................................................................23 Lithic Material Classification ................................................................................25 Flaked Stone Analysis............................................................................................27 Projectile Points .........................................................................................27 Bifaces........................................................................................................28 Cores, Core Tools and Flaked Cobble Tools .............................................30 Flake Tools.................................................................................................30 Drills ..........................................................................................................31 Assayed Cobbles ........................................................................................31 Debitage .....................................................................................................31 Results of CA-MNT-229 Flaked Stone Assemblage Analysis ..........................................33 Projectile Points .....................................................................................................34 Bifaces....................................................................................................................37 Cores ......................................................................................................................41 Core Tools ..............................................................................................................42 Drills ......................................................................................................................44 Formed Flake Tools ...............................................................................................46 Simple Flake Tools ................................................................................................48 Flaked Cobble Tools ..............................................................................................50 Assayed Cobbles ....................................................................................................51 Debitage .................................................................................................................51 Comparison of Flaked Stone Analysis of CA-MNT-229 and CA-MNT-234 .......57 Assemblage Diversity and Evenness .....................................................................57 Assemblage Formality ...........................................................................................60

iv  

Flaked Stone Tool Production and Use Profile ......................................................62 Bifaces........................................................................................................62 Cores ..........................................................................................................66 Flake Tools.................................................................................................67 Debitage .....................................................................................................69 Discussion ..........................................................................................................................71 Assemblage Diversity and Evenness .....................................................................71 Assemblage Formality ...........................................................................................72 Tool Profiles...........................................................................................................73 Debitage Profile .....................................................................................................73 Conclusion .........................................................................................................................74 Proposed Settlement Configuration .......................................................................74 References Cited ................................................................................................................78 Appendix I: General Catalog of CA-MNT-229 Flaked Stone Assemblage ......................84 General Catalog Data Entry Form .........................................................................85 CA-MNT-229 Flaked Stone Catalog .....................................................................86 Appendix II: CA-MNT-229 Flaked Stone Analyses Raw Data ......................................123 Projectile Point Analysis Attribute Codes ...........................................................124 Biface Analysis Attribute Codes .........................................................................125 Core Analysis Attribute Codes ............................................................................126 Core Tool Analysis Attribute Codes ...................................................................127 Drill Analysis Attribute Codes ............................................................................128 Formed Flake Tool Analysis Attribute Codes ....................................................129 Simple Flake Tool Analysis Attribute Codes ......................................................130 Flaked Cobble Tool Analysis Attribute Codes ...................................................131 Assayed Cobble Analysis Attribute Codes .........................................................132 Debitage Analysis Attribute Codes .....................................................................133 Flaked Stone Analysis Raw Data .........................................................................134

v  

List of Figures Figure 1: Location Map ......................................................................................................2

Figure 2: Site Location Map ...............................................................................................3

Figure 3: CA-MNT-229 and CA-MNT-234 Flaked Stone Diversity and Evenness

Indices in the Millingstone Period Component ....................................................59

Figure 4: CA-MNT-229 and CA-MNT-234 Flaked Stone Diversity and Evenness

Indices in the Middle Period Component .............................................................59

Figure 5: CA-MNT-229 and CA-MNT-234 Millingstone Period Assemblage Formality

Ratios ....................................................................................................................61

Figure 6: CA-MNT-229 and CA-MNT-234 Middle Period Assemblage Formality

Ratios ....................................................................................................................62

Figure 7: CA-MNT-229 and CA-MNT-234 Millingstone Period Biface Stage

Profile ....................................................................................................................63

Figure 8: CA-MNT-229 and CA-MNT-234 Millingstone Period Biface Material

Profile ....................................................................................................................64

Figure 9: CA-MNT-229 and CA-MNT-234 Middle Period Biface Stage

Profile ....................................................................................................................65

Figure 10: CA-MNT-229 and CA-MNT-234 Millingstone Period Biface Material

Profile ....................................................................................................................66

Figure 11: CA-MNT-229 and CA-MNT-234 Core Technology Profile ..........................67

Figure 12: CA-MNT-229 and CA-MNT-234 Middle Period Flake Tool Material

Profile ...................................................................................................................68

Figure 13: CA-MNT-229 and CA-MNT-234 Millingstone Period Local Debitage Technological Profile ............................................................................................69

Figure 14: CA-MNT-229 and CA-MNT-234 Middle Period Local Debitage Technological Profile ............................................................................................70

vi  

List of Tables Table 1: Attributes of Settlement Configuration ..............................................................21

Table 2: Debitage Flake Type and Description ................................................................32

Table 3: Flake Stone Assemblage of CA-MNT-229 Dietz et al. 1988 and Current

Project ...................................................................................................................34

Table 4: CA-MNT-229 Millingstone Period Component Projectile Point Basal

Attributes ...............................................................................................................35

Table 5: CA-MNT-229 Middle Period Component Projectile Point Basal Attributes .....37

Table 6: CA-MNT-229 Millingstone Period Component Biface Attributes ....................38

Table 7: CA-MNT-229 Middle Period Component Biface Attributes .............................40

Table 8: CA-MNT-229 Core Attributes ...........................................................................42

Table 9: CA-MNT-229 Core Tool Attributes ...................................................................43

Table 10: CA-MNT-229 Drill Attributes ..........................................................................45

Table 11: CA-MNT-229 Formed Flake Tool Attributes ..................................................47

Table 12: CA-MNT-229 Simple Flake Tool Attributes ...................................................49

Table 13: CA-MNT-229 Flaked Cobble Tool Attributes .................................................50

Table 14: CA-MNT-229 Assayed Cobble Attributes .......................................................51

Table 15: CA-MNT-229 Millingstone Period Debitage Analysis ....................................53

Table 16: CA-MNT-229 Millingstone Period Debitage Technological Attributes ..........54

Table 17: CA-MNT-229 Middle Period Debitage Analysis .............................................55

Table 18: CA-MNT-229 Middle Period Debitage Technological Attributes ...................56

Table 19: CA-MNT-229 and CA-MNT-234 Flaked Stone Assemblage by

Component ............................................................................................................57

Table 20: Proxy Measures and Proposed Settlement Configuration ................................76

vii  

Acknowledgments

This project is much larger than proposed and long overdue. I would not have seen the

completion of this paper without the help, support and an occasional kick in the pants from a

motley, yet incredibly supportive group of friends, colleagues and family; none of which are

mutually exclusive.

First, I’d like to thank Jack Rossen for making archaeology a possibility. After a chance

meeting over a beer, Jack invited me to Ithaca College’s 2003 field school, knowing fully that I

had just been “let go” from said college. Many thanks to Rob Edwards and Charr Simpson-Smith

of the Cabrillo College Archaeology Technology Program. The CCATP made a career in

archaeology a reality. Prior to this, I thought it was requisite to have a name like General

Augustus Lane-Fox Pitt-Rivers to use a trowel professionally. Special thanks to Diane Gifford-

Gonzalez of UCSC for her insights, lectures, guidance and, most of all, her PATIENCE.

I cannot thank Jennifer Farquhar enough. Jennifer has given me so much (including a job

going on 8 years) it would be insufferable reading if I were to list all the opportunities she has

given me. Jennifer has become a hero to me in many facets beyond archaeology.

Thanks to Ryan Brady, Stella D’Oro, Tom Garlinghouse, Jennifer Farquhar, Ben Curry,

and Mark Hylkema for being a sounding board for thoughts and ideas. I learn much more by

shooting-the-shit with you guys.

Students and close friends were involved in the analysis of this project including: Kari

Lentz, Kolin Taylor, Stella D’Oro and the UCSC Anthropology 182A Lithic Analysis class of

Winter 2010.

Inspiration for the project is in no small part due to the efforts of Naomi Scher, Terry

Jones, Jennifer Farquhar, Mark Hylkema, Charlotte Sunseri, and Cristie Boone. Thanks to Dave

viii  

Makar and especially Christina Spellman for inspiring me to actually finish this project. Without

you two I may have never finished.

Regarding the motley crew, this group would persistently gang up on me so much so I

would have dreams chanting “finish your thesis, when are you going to finish, just hand it in, it’s

just a paper” and so on. Thank you, Clinton Blount, Sarah Peelo, Stella D’Oro, Rick Fitzgerald,

Al Schwitalla, Ryan Brady, Tom Garlinghouse, Sarah Mellinger, Amanda Rankin, Linsday Kiel

and Ginny Lane (my mom) for harassing me relentlessly.

Finally, thanks to my family. Ginny, thank you for your constant support, love and, of

course, the endless nagging. You’ve helped me through every stage of life and always stuck up

for me. Thank you, Sam, Barbara and Alana, for years of support and the occasional reality

checks. Thanks for keeping my feet on the ground. Thank you Uncle Mick for pushing me to

return to school. Block by block, beam by beam and nail by nail I realized school was the choice

for me. Thanks to James, Erin, Ryan and Louie, you guys are great and I’m proud to call you my

family. I’m somewhat sorry if I occasionally “vented” in your presence.

1  

Introduction

The Vierra Hill Site (CA-MNT-229) is located on a southern bank of Elkhorn Slough in

Moss Landing, California (Figure 1). The site is situated on a stabilized dune reaching only 10

meters above sea level and less than 300 meters east of the shores of the Monterey Bay. The site

was originally described as an “Indian Cemetery” by Golomshtock in 1922 and recorded by

Arnold Pilling in 1948. Robert Greengo collected shell samples for his 1948 M.A. thesis from

U.C. Berkeley. In 1984, the site was evaluated by the California Department of Transportation

for a project to widen the adjacent Highway 1. This effort determined CA-MNT-229 eligible for

the National Register for Historic Places and recommended a data recovery (Dondero 1984). In

the spring of 1985, Archaeological Consulting and Research Services excavated over 100 cubic

meters of archaeological deposit within the area of direct impact. The data recovery effort

produced a report “Archaeological Investigations at Elkhorn Slough: CA-MNT-229, a Middle

Period Site on the Central California Coast” (Dietz et al. 1988). This influential report dismissed

several radiocarbon dates reaching into the Millingstone Period. These dates were deemed

unreliable due to the perceived inaccuracy of using shell for radiocarbon dating. Later, Jones and

Jones (1992), armed with a greater understanding of isotopic fractionation and ocean upwelling

effects on shell, defined a Millingstone Period component.

In the late 1990s focus was again placed on CA-MNT-229 when a large excavation

occurred at nearby CA-MNT-234. Only 1.4 kilometers to the south-southwest (Figure 2), CA-

MNT-234 produced evidence of occupation from Millingstone Period through Late Period

(Milliken et al. 1999). Interestingly, an unusual amount of pinniped remains were recovered

particularly in the “Primary Midden” locus. Thirty-three direct AMS radiocarbon dates placed

2  

Figure 1. Location Map (Map courtesy of Stella D’Oro, August 2014).

3  

Figure 2. Site Location Map (Map courtesy of Stella D’Oro, August 2014).

4  

the discrete “Primary Midden” locus within a 500 year window in the Middle Period (Gifford-

Gonzalez and Sunseri 2009).

This project highlights relationships in the settlement organization of contemporaneous

components in CA-MNT-229 and CA-MNT-234. Dietz et al. (1988) interpret CA-MNT-229 as a

single component forager (residentially mobile) seasonal residential base. The CA-MNT-234

Millingstone Period component was identified as a residentially mobile seasonal residential base

(Breschini and Haversat 1995, Milliken et al. 1999). The Middle Period component appears to

follow regional trends that head towards residential stability with a logistically mobile (collector)

strategy (Milliken et al. 1999). However, a lack of acorn storage, acorn macro-botanicals and the

absence of mortar and pestles presents a predicament, as these site attributes are indicative of

sedentary residential bases (Milliken et al. 1999).

To evaluate settlement mobility, I will focus on the technological organization of flaked

stone tools and flaked stone tool byproducts. The study of technological organization emphasizes

the acquisition of materials, the production, transportation, use, re-use, and discard of tools and

the byproducts of tool manufacture (Shott and Nelson 2008). This allows clearer understanding

of economic and social domains of human society (Andrefsky 1994; Bamforth 1991; Kelly 1988;

Parry and Kelly 1987; Shott 1986; Torrance 1983). Methods to identify site characteristics

require the identification of assemblage attributes that are responsive to changes in settlement

strategies.

This project accomplishes three goals:

Analyze flaked stone materials from CA-MNT-229, measuring tool attributes, sampling

debitage, grouping results into Millingstone Period and Middle Period components as

refined by Boone (2012).

5  

Compare CA-MNT-229 dataset with lithic data presented for CA-MNT-234 in Milliken

et al. (1999).

Propose settlement configuration and associated mobility strategy for each chronological

component using interpretive frameworks presented in the lithic analytic literature (see

Methods).

Culture History

Since the passage of both the Nation Environmental Policy Act (NEPA) of 1969 and the

California Environmental Quality Act (CEQA) of 1970, cultural resource management (CRM)

research projects have shed light on the prehistory of the Monterey Bay area. Due to the nature

of CRM, many data rich reports are, at times, compiled piecemeal using few well-known sites to

compare and define chronological components. Jones et al. (2007) synthesize the culture history

of the Central Coast of California, which reaches from just south of San Francisco to Point

Conception, drawing on 275 Central Coast sites but referring to only 6 within the Elkhorn

Slough area. Archaeologists working in central California have recognized significant variability

in artifact assemblages within the last 10,000-year record of human occupation (Jones et. al

2007:134). As a result, six major prehistoric periods of cultural adaptation have been identified

and generally accepted. Central Coast prehistory has been general agreed to consist of the

following periods outlined by Jones and Ferneau (2002).

Central Coast Prehistory Late 700 B.P. - Colonial Middle/Late Transition 950-700 B.P. Middle 2550-950 B.P. Early 5450-2550 B.P. Millingstone Period 9950-5450 B.P. Paleo-Indian pre-9950 B.P.

The initial Paleo-Indian period is all but absent from the Monterey Bay area with only a

single site, CA-SCR-177, yielding radiocarbon dates prior to 9950 B.P. The site is located north-

6  

northwest 35 kilometers on a former Pleistocene lakeshore. These dates have been referred to as

unreliable due to serious questions of cultural origin of most of the charcoal that produced dates

(Jones et al. 2007: 130). General foraging with high residential mobility is believed to be the

basis of subsistence at the site, though no faunal assemblage was excavated. The disputed

radiocarbon dates range 10,000-12,000 B.P. (Cartier and Bobo 2002:109). Ten thousand years

ago, sea levels were nearly 60 meters below what they are today (Moratto 1984: 222). This

would put the Late Pleistocene shoreline 10-15 km out-to-sea from where it is presently. Any site

within this zone is underwater and likely destroyed, and therefore unknown,

After the end of the Pleistocene, the Early Holocene brought a period of increasing

populations with reliance upon seeds and shellfish, coined the Millingstone Period Horizon (or

Millingstone Period). As the name implies, assemblages are consistently dominated by well-

made handstones and milling slabs. Flaked stone tools were not as common as in more recent

times. Small numbers of crude core and cobble-core tools and even fewer flake tools and large

side-notch projectile points are frequently recovered from Millingstone Period contexts

(Fitzgerald and Jones 1999). Occasionally, lanceolate points and crescent-shaped bifaces are

recovered from and attributed to the Millingstone Period (Jones et al. 2007). The prevalence of

milling equipment and large amount of shellfish remains suggests diets emphasizing, nuts, seeds,

shellfish and other marine foods (Erlandson 1991, Hildebrandt 1997). Three sites produced

Millingstone Period dates within a 10 kilometer radius of Elkhorn Slough, CA-SCR-60/130, CA-

MNT-229, and CA-MNT-234.

Seven kilometers to the north of Elkhorn Slough, CA-SCR-60/130 returned a series of

radiocarbon dates that range from 7400-6800 B.P. (Culleton et al. 2005). High numbers of

groundstone artifacts were recovered from the site. Unfortunately, handstones and milling slabs

7  

were vertically mixed with mortars and pestles usually referred to later periods, consequently no

formal artifacts could be assigned to the Millingstone Period component (Culleton et al. 2005).

Carbon and nitrogen stable isotopes were analyzed from Millingstone Period human remains.

The results indicate 70-84% of the Millingstone Period diet comprised of marine mammal,

marine fish and shellfish (Newsome et al. 2004).

Along the south shore of Elkhorn Slough, CA-MNT-229 yielded seven radiocarbon dates

between 8150-5950 B.P. (Dietz et al. 1988). Although originally dismissed, Jones and Jones

(1992) reassessed the radiocarbon data and defined a Millingstone Period component. The

Millingstone Period component is associated with the Stratum C1, generally below 110

centimeters in depth containing a number of cobble-core tools, long-stemmed projectile points

and a single flaked stone crescent (Jones and Jones 1992). Groundstone identified from the data

recovery effort was mostly associated (64 of 96 items) with the more recent mortar/pestle

tradition. Interestingly, of the 14 groundstone tools recorded as “miscellaneous abraded and

ground items”, 10 were described as ground cobbles and one a possible milling slab fragment

(Dietz et al. 1988). Classifying ground cobbles as “miscellaneous abraded and ground items”

instead of “handstones” or milling slabs” may have further obscured the Millingstone Period

component.

CA-MNT-234 located 1.4 kilometers to the south of Elkhorn Slough, generated 11

radiocarbon dates ranging from 8100-6550 B.P., within the Millingstone Period. This

component’s tool assemblage is defined by 18 well-used polished handstones, three millingslabs,

a large side-notch projectile point and a bipoint within a brown paleosol stratum (Milliken et al.

1999). In a period noted for sparse scatters of flaked stone, Breschini and Haversat (1995)

identified a “lithic workshop” within the Millingstone Period component. Though handstones are

8  

clearly found in Millingstone Period context in most of the Central Coast, Breschini and

Haversat (2011) noted a relative lack of milling equipment in the Monterey Peninsula. They

propose an alternate cultural chronology excluding the Millingstone Period and pushing the

advent of the Early Period back to 5950 B.P.

The delineation of the Millingstone Period to the Early Period is understood as an

adaptive shift associated with the onset of the “Hunting Culture” (Rogers 1929). The population

grew, and Early Period groups became more sedentary, subsisting less on marine resources and

increasingly relying on energy-intensive acorns, net and gorge fishing, and terrestrial game

hunting (Jones 2002). The transition from Millingstone Period to Hunting Culture technologies is

a result of population circumscription, economic intensification, decreased mobility and

delineation of gender roles (Jones and Waugh 1997). Stable isotope analysis on two individuals

from CA-SCR-60/130 reflects the growing importance of terrestrial resources relative to marine

ones (Newsome et al. 2004). The most prominent adaptations are the appearance of mortar/pestle

technology and a variety of stone spear and dart projectile points. Stone tool assemblages from

the area include a co-occurrence of contracting stemmed, Rossi square-stemmed, Año Nuevo

long-stemmed, side-notched, Jalama side-notched and lanceolate projectile point forms. Bipointed

fish gorges, bowl mortars, pestles, handstones and milling slabs were also commonly associated

with Early Period components (Jones et al. 2007). Olivella biplicata shell beads appear in thick

rectangular (type L) and spire-lopped (type A) styles (Bennyhoff and Hughes 1987, Milliken and

Schwitalla 2012). Shell beads heading eastward and an influx of obsidian from the eastern

Sierras indicate long distance latitudinal exchange (Dietz et al. 1988). Breschini and Haversat

(2011) identified a thousand-year span ranging from 3150-2150 B.P. with no dependable

9  

radiocarbon dates along the Monterey Peninsula. They suggest the Early Period ends 3150 B.P.

and the Middle Period begins 2150 B.P.

The Middle Period continues the trend of growing populations and territorial

circumscription; it was a time of cultural florescence in central California when sites become

especially large and numerous (Jones and Ferneau 2002). During this period, contracting

stemmed projectile points become most common with occasional Año Nuevo long-stemmed and

lanceolate form continuing from earlier times. Bipoint fish gorges continue, along with the

increase of net fishing and the first appearance of circular hook line fishing. Mortar/pestle

technology overtakes the milling slab/handstone dyad. G-series saucer and F-series saddle style

shell beads appear as L-series beads are no longer prominent. Interestingly, the Middle Period

funerary goods include varying amounts of shell beads and bone flutes (Jones et al. 2007).

Subsistence continues to focus on marine resources as shellfish refuse remained abundant, fish

increased and pinniped abundance peaked only to be supplanted by deer and rabbit (Glassow

1992, Jones and Ferneau 2002). High frequencies of sea otter (Enhydra lutris) and northern fur

seals (Callorhinus ursinus) bones at Middle Period sites appear to be evidence of long distance

pelt trade (Jones 2003, Sunseri 2009). Northern fur seals may have been overexploited for both

nutritional needs and exchange value (Gifford-Gonzalez and Sunseri 2009). Trade for Casa

Diablo obsidian, sourced east of the Sierra Nevada Mountains, increases during the Middle

Period particularly in the Monterey Bay area (Jones et al. 1996:197)

CA-MNT-229 defined the Monterey Bay region expression of the Middle Period, the

Vierra Phase. The site returned seven radiocarbon dates between 2160-1240 B.P. (Jones and

Jones 1992). Artifacts include a variety of flaked stone tools, groundstone largely of the

mortar/pestle tradition, bone tools, pitted and grooved cobles, and a large lot (3,638) of beads.

10  

Most beads (over 90%) were recovered from a single burial of an adult male. Ten burials holding

11 individuals were excavated during the testing and data recovery efforts. The burials include

six adult males, two adult females (a single burial), two children (between 3-4 years and 9-12

years) and a single indeterminate burial. Interestingly no fishing equipment was recovered,

however, the presence of elk and deer suggest forays eastward to supplement the estuarine based

diet. The Middle Period population subsisted on elk, deer, various marine mammals, rabbits, an

abundance of shellfish and fresh water birds (Dietz et al. 1988, Sunseri 2009). Dietz et al. (1988)

interpreted the high diversity of tools and faunal remains and the lack of storage, structures and

formal cemeteries as a seasonal residential base occupied by relatively mobile groups.

Thirty-three AMS radiocarbon dates fall within 2368-1549 B.P. from a discrete Middle

Period component of CA-MNT-234. Dates include 13 Callorhinus ursinus (Northern Fur seal or

NFS), 12 Canis latrans or Canis sp. (coyotes), seven Merluccius productus (Pacific Hake) and a

single Arctocephalus townsendi (Guadalupe Seal) (Gifford-Gonzalez and Sunseri 2009).

The artifact assemblage shows a variety of flaked stone tools and relatively high density of

debitage, almost no groundstone, several beads and a large number of bone tools. Faunal

assemblage shows heavy dependence on shellfish, fishes, and marine mammals especially the

northern fur seal, as well as small amounts of marine and terrestrial birds (Milliken et al. 1999,

Gifford-Gonzalez and Sunseri 2009). The Middle Period component produced an unusually high

number and northern fur seals. A high percentage of northern fur seals recovered were younger

than weaning age with isotope data showing the adults feeding far off the Central Coast. Gifford-

Gonzalez and Sunseri (2009) suggest a close proximity to a rookery.

Milliken et al. (1999) suggests settlement mobility appears to follow regional trends

heading towards residential stability with a logistically mobile (collector) strategy. Sunseri

11  

(2009) has argued both CA-MNT 229 and CA-MNT-234 represents a residential complex used

for northern fur seal pelt production for trade during the Middle Period.

The Middle/Late Transition (MLT) 950-700 B.P. was originally proposed due to the

difficulty of identifying the break between Middle and Late Periods (Jones 1993). This period

overlaps the Medieval Climactic Anomaly (MCA) 1150-550 B.P., a time when California and

parts of western North America underwent a dramatic warming trend. Material patterns shift

after 950 B.P. in the Monterey Bay area as small leaf shape and double side-notch points appear,

stemmed points decrease and bead styles change (Jones et al. 2007). Tiny saucer G1, normal

saucer G2, lipped K-series, and oval punched D3 become the diagnostic MLT shell beads

(Bennyhoff and Hughes 1987). Circular shell hooks, notched stone sinkers, milling

slabs/handstones and mortar/pestles remain common and hopper mortar technologies appear

(Jones et al. 2007).

Jones and Ferneau (2002) hypothesize that Central Coast populations during this time

underwent a process of “deintensification.” Populations declined as MCA drought created food

and water shortages leaving fewer people on the landscape which allowed groups to become

more mobile and more selective about resources to exploit, resulting in decreased diet breadth

and reduced exchange (Jones and Ferneau 2002). Jones and Kennett (1999) stated that changes

in settlement patterns and subsistence were influenced more by terrestrial drought, inferring the

ocean was still highly productive. Boone (2012) suggests the poor terrestrial resource base

resulted in an expansion of the exploitation of fish resources into waters beyond the kelp beds via

tule reed balsas. Nevertheless, numerous coastal sites, including CA-MNT-229, were abandoned

and populations relocated to the interior (Jones et al. 1999). Evidence of long distance exchange

collapse is realized in the disappearance of obsidian within MLT components (Jones and Ferneau

12  

2002). Jackson and Ericson (1994) suggest short distance longitudinal trade of finished stone

tools increases. Coastal groups produced and traded utilitarian tools of Monterey Banded chert to

inland neighbors (Sunseri 2009: 207-208).

Based on radiocarbon data and the continuity of G-series beads in the Monterey

Peninsula, Breschini and Haversat (2011) contend the beginning of the Late Period should be

pushed back to 1250 B.P., thus abbreviating the Middle Period and completely dismissing the

MLT along the Monterey Peninsula.

Components of the Late Period, 700 B.P.-Colonial, are easily identifiable as a departure

of the Hunting Culture and an introduction of flake-based Desert side-notched (DSN) and

Cottonwood arrow points. Along with the profusion of bow and arrow technology, small bifacial

bead drills, bedrock mortars, hopper mortars, lipped class-L, cupped class-K, thin rectangular

class-M and steatite beads define Late Period assemblages (Jones et al. 2007). Jones (1995)

states populations of the Central Coast continued to demonstrate a terrestrial focus as opposed to

the subsistence practices of the Chumash, to the south, who exhibited an increase of maritime

exploitation .Inland sites increase in number with stable occupations. Coastal site are few and

usually task specific shellfish processing sites for inland logistically mobile groups (Jones and

Ferneau 2002, Breschini and Haversat 1980). Boone (2012) argues the more costly fishing

beyond the kelp continues from the MLT into the Late Period. Population growth and

circumscription is suggested by an intensification of lower ranked subsistence (Carpenter et al.

2004), exploitation of lower ranked woodland locales (Jones and Haney 2005), a drop off in the

diversity of obsidian sources, and a decrease of extra-local Franciscan chert relative to the more

locally available Monterey chert (Hylkema 1991, Jones et al. 2007:143).

13  

Theoretical Framework

“Mobility has long been considered the defining characteristic of hunter-gatherers… archaeologists focus attention on the sedentarization process because reduced mobility precipitates dramatic changes in food storage, trade, territoriality, social and gender inequality, male/female work patterns, subsistence and demography (Kelly 1992: 43). Archaeologists have attributed stone tools as temporal markers and/or tools for hunting

particular game for the majority of archaeology’s existence. Only in the last 30 years,

archaeologists have had the ability to infer particular behaviors by examining the sequence of

lithic manufacture and design of lithic tools and tool kits. This has become known as the study of

the “Organization of Technology.” Nelson (1991: 57) defines the organization of technology as,

“the study of the selection and integration of strategies for making, using, transporting and

discarding tools and the materials needed for their manufacture and maintenance.”

Site formation studies in the late 1970s, particularly by Lewis Binford, opened the door to

the analysis of the organization of lithic technologies. Binford’s ethnoarchaeological research of

the Nunamiut peoples of northern Alaska produced an influential 1980 publication, “Willow

Smoke and Dogs’ Tails”; he presents hunter-gatherer resource procurement and settlement

patterns in a residentially mobile “forager” and a logistically mobile “collector” model. His

research highlighted approaches to identifying mobility signatures found in the archaeological

record for each strategy.

The Binford (1980) forager/collector model is an explanation of how mobility is organized

in hunter-gatherer societies in order to procure resources. Foragers move whole residential bases

to exploit resources and have a very high residential mobility. Collectors send out task groups on

forays to return the resource to the residential base. These task groups are a logistically mobile

component of the more sedentary collector strategy.

14  

Shott (1986) connected the diversity of tool form to the degree of mobility. Shott

studied the !Kung of the Kalahari Desert, among others, ethnographically. He focused on flaked

stone tool kits to the degree of mobility. The tool kit diversity had an inverse relationship with

residential mobility. The high mobility set constraints on tool form, as each tool has to be highly

flexible and able to complete a variety of tasks. A generalized, as opposed to a specialized, tool

form creates the ability to accomplish many tasks. Shott continues, residential move frequency

also correlates inversely with tool diversity. The more residential moves per year, the toolkits are

less diverse. Again the number of tool forms must be limited as well as general considering the

burden of carrying many tools. When placed in the Binford forager/collector model: the more

residentially mobile forager should display a less diverse toolkit; as the logistically mobile

collector should display a more diverse toolkit at the home base where a variety of tasks occur

and transport costs are less.

Shott (1986) examined three variables that can be used to characterize each

assemblage: diversity of tools, versatility, and flexibility. Diversity is defined by the number of

distinct classifiable tool types. Versatility is the number of tasks in which a tool can be applied

(form limitations). Flexibility is the number of tasks in which the tool is designed.

Shott (1986) states that if mobility is high there is a greater constraint on the number of

tools carried. Tools that are carried by residentially mobile groups (foragers) tend to be highly

flexible, highly versatile and of a very low diversity. The toolkit of the mobile foragers is

designed to accomplish an array of tasks with limited carrying weight. If specialized tools were

employed the toolkit would be more diverse. The form of these specialized tools would limit

applications; therefore, a larger number of tools would have to be curated increasing carrying

15  

costs while not increasing tool effectiveness. Generalized forms of bifaces have a high flexibility

and a high versatility and are appropriate for residential mobility.

Logistically mobile groups (collectors) do have the ability to incorporate specialized tools

to accomplish a number of tasks and therefore a diverse toolkit. The residence of the collector

groups is the home base of a number of specialized tasks groups that are sent to procure resources

and return. Each task group has a limited task and limited tools to complete the task. These tools

tend to be specialized being most effective to the task to be completed. The form of the tool is

limited in each task group and the tools are less versatile and less flexible in completing other

tasks. Shott states that each task group has a limited toolkit; the residential home base of the

collectors will show a very diverse array of tools, representing each of the task group’s tools. The

field camp assemblage should show a low diversity of tools with low flexibility and low

versatility.

Kuhn (1994) noted that residential mobility limits the ability to carry artifacts, describing

a more “mobile toolkit” as one that optimizes usable cutting edge by weight. He believes

residentially mobile groups would use a tool design that maximizes utility while lowering weight.

Kuhn assesses the economics of carrying costs of toolkits and suggests that it is more economical

to carry many flake tools than large multifunctional tools (Kuhn 1994: 435). However, Kuhn did

not consider the limited versatility of flake tools or ease of access to raw stone material for

flaking.

Based on ethnographic accounts in New Guinea, Brazil, West Australia and South Africa,

Parry and Kelly (1987) show a shift from formalized stone tool technology to expedient stone tool

technology is an economic response to the shift in mobility. Both time invested in tool production

and conservation of raw stone materials drops as a more sedentary lifestyle arises. Parry and

16  

Kelly (1987) noted several common signatures of expedient tool technology: no intention to

control the form of the flake, no core preparation, little training is required for and little effort is

expended on flake production, bipolar reduction is common, every flaked piece is a potential tool,

and tools are rarely modified.

Cowan (1999) defines expedient tools as usable flake tools driven from simple cores; and

formal tools are extensively shaped by bifacial reduction. Expedient tool production minimizes

manufacture time at the expense of tool dependability. Formal tool production is high in

manufacture cost but resulting tools are more dependable, lasting through many stages of

maintenance and easily reworked when fractured. Kelly (1988) agrees bifacially reduced tools

and flake tools are produced from highly prepared cores and bifaces are formal, whereas, the

expedient tools are flaked from unprepared cores and tend to be reduced in a bipolar fashion

between a hammer and anvil.

A shift from formal to expedient tool production is evident in North America between

1650-1350 B.P. (Parry and Kelly 1987). The reliance on bifacially flaked stone tools nearly

vanishes while the proportion of expedient flake tools increases throughout the Eastern

Woodlands, the Plains and the Southwest. Formalized tools are limited to arrow points

manufactured by specialists (Parry and Kelly 1987). The sequence of raw material reduction

during manufacture of these tools differs in each strategy and each reduction mode leaves

particular signatures of debitage. Parry and Kelly (1987) believe the shift towards expedient tool

manufacture is not a response to other non-lithic technological advances. They state that there is

no correlation between raw material availability, presence of the bow and arrow, ceramic or

agriculture to account for the shift to expedient technology. Settlement patterns appear to be the

17  

most significant correlate. This technological shift occurs at the same time large nucleated

permanent villages appear in central North America.

Formal tools are portable, flexible and reusable. They have more cutting edge per unit of

mass but they are costly in time to manufacture, use and maintain (Parry and Kelly 1987). It

makes economic sense to favor this approach to stone tools if one is mobile, has a wide range of

tasks and is limited to carrying small amounts of stone materials. On the other end of the

spectrum, expedient technology is planned for one-time use and is suitable for a narrow range of

tasks. Expedient tools do not conserve raw materials though limits time is invested in production.

This technological shift reassigns the costs of transporting tools and raw materials to mitigating

the costs of manufacture and tool use.

Manufacture costs and tool use-life correlate significantly (Shott 1989). More time and

effort put into the manufacture of a formal tool will extend the use-life of each tool. By definition,

little time and effort are placed in expedient tool production. Expedient tools have very short use

lives and may be used only once. Manufacture costs continue throughout the lives of formal tools

through tool curation (Shott 1989). Tool curation is the “ratio of realized to the potential utility”

(Shott 1989). The more each tool has been re-sharpened and further reduced, the higher the

curation rate. This extends the manufacture costs as well as use-life.

Bousman (1993) agrees that formal tools are more costly and more reliable. Residentially

mobile foragers increased tool use-life by escalating the amount of tool maintenance. In

Bousman’s study of the Levi Rockshelter, tools in the foraging component were highly curated

and maintained. He cited evidence of sharpening, reworking and re-forming after the initial tool

form fractured. The logistical collector component at Levi Rockshelter was filled with tool

fragments that were deposited without any re-working, despite plenty of material for re-use.

18  

Andrefsky (1991) states that sedentary populations tend to use a more expedient

technology while mobile populations favor formal tool technologies. Contrary to Parry and Kelly

(1987), Andrefsky argues that the underlying issue is the dependability of access to a lithic

resource. Residentially mobile foraging populations may, at times, have a less access of lithic raw

materials due to limits of daily foraging ranges. In order to ensure they have the tools to fit the job

at hand, these populations favor tools that are multi-functional, modifiable and portable

(Andrefsky 1991). More time and effort is expended during the tool-making process to ensure the

dependability of the tools used. Biface production is ideal for this process being portable,

multifunctional, modifiable and efficient cores. These tools have usually been designated as

formal tools. A more sedentary group would favor a more expedient technology and reduce the

amount of time given towards tool production. Sedentary groups have predictable access to a

lithic resource and have no need for tool curation. Expedient tools are quickly procured, used and

discarded with little concern for availability of lithic materials (Andrefsky 1991).

Acquisition of extralocal lithic materials has been associated with more residentially

mobile population (Andrefsky 1994). Availability of raw materials of a residentially mobile

population may be uncertain because of distance to a raw lithic material resource. This

uncertainty of access to raw materials may be mitigated through trade for extralocal materials.

Andrefsky (1994) also states that the extralocal materials are more likely to be fashioned into

formal tools, while local raw materials are more likely to produce more expedient tools.

Logistically mobile groups have a longer time range of access to local materials because of the

more sedentary nature of their procurement strategy. Longer occupations of the logistically

mobile strategy produce more expedient tools from local resources. Residentially mobile groups,

produce formal tools with a greater representation of extralocal materials.

19  

Tools are not the only indicators of how one organizes technology in response to mobility.

As stated above, the mode of lithic reduction will correlate with relative mobility. Debitage may

be very important for the interpretation of sites (Andrefsky 2005: 223), as it is an indicator of

processes occurring on-site and not dependent on the presence of the tools. Cowan (1999)

assessed the relative mobility of peoples of the Archaic, Early Woodland and Late Woodland time

periods at several small sites in upstate New York. The sites he chose were little more than lithic

scatters within plow zones and little to no presence of tools. Working on the assumption that flake

tools from simple cores (expedient tools) correlate with a more sedentary population and

extensive shaping of bifacial tools (formal tools) correlates with a more mobile people, Cowan

(1999) inferred behavior and mobility by assigning debitage to lithic tool production trajectories.

He concluded Archaic peoples left a mix of both core and bifacial technology throughout the

sites, indicating a residentially mobile population with all modes of lithic production. The Early

Woodland sites held a large number of bifacially reduced debitage; Cowan interprets the sites to

be short-term logistical camps where limited tasks were addressed. Late Woodland sites, created a

time when sedentary villages began to appear in upstate New York, were dominated by expedient

flake tools and bipolar core reduction.

Pecora (2001) further refined expectations about debitage production; pointing out the

lithic debitage assemblages reflect the process of manufacture within its “reduction juncture”. The

lifetime of stone tools from procurement to discard produces particular debitage types. Since

stone tools do not necessarily go through all of these stages in one place, a series of reductions

sequences and correlating debitage are deposited throughout space. The “juncture” is the point at

which manufacture is resumed after transport.

20  

Pecora (2001) recreated Junctures I-VI through experimentation and compares his

findings to the lithic assemblage of the Martin Justice Site in Eastern Kentucky. Pecora found that

early stages of reduction produced a high number of debitage and a high diversity of debitage

types while later stages produce a smaller number of debitage with low tool diversity of debitage

classes. The Martin Justice site produced low numbers of debitage and low flake type diversity,

therefore representing later stages in the reduction juncture. The debitage recovered was low in

number and less diverse, with a higher percentage of debitage types of the later stages of

reduction. Pecora interpreted the site as a residence of residentially mobile group bringing tools to

the location in finished form. Pecora inferred the mobility of a population by trends in the mode

of lithic reduction and identifying the stage of reduction found in the debitage.

Expectations of Flaked Stone Analysis and Proxy Measures

This study examines flaked stone tool assemblages from CA-MNT-229 and CA-MNT-

234, separately analyzing the Millingstone Period and Middle Period components. The question

of settlement type and mobility is approached from the perspective of technological organization,

which, as outlined above entails study of attributes that relate to the role of tools in the broader

economic system. Attributes presented in Table 1 (Brady, Farquhar and Ellison 2011) are

assemblage characteristics responsive to settlement configuration.

Tool Diversity

The diversity of tools is high at logistical collector residential sites. These localities are

the hub from which many off-site activities occur. These off-site activities require specialized

tools and, at times, required tools to be produced prior to forays. Production of different tools

designed for a variety of specialized tasks increases the tool diversity at the residential site.

Planned movements for task-specific forays would include a specific portion of the diverse

21  

flaked stone tool assemblage. As a result, task-specific sites would be limited in diversity as the

tools employed would reflect the specific task. Inversely, as residentially mobile groups “map

on” to resources, tools are generalized. Specialized tools with limited uses would require a larger

toolkit to carry.

Table 1. Attributes of Settlement Configuration. Adapted from Brady, Farquhar and Ellison (2011).

Attribute

Proxy Measure

Expectations for Residential Mobility

Expectations for Logistical Mobility

Tool Diversity Simpson’s Index of Diversity

Evenness index

Less diverse toolkits composed of multi-use tools

More even

More diverse toolkits at residential sites

Focused task specific toolkits at task specific sites

Less even at residential sites.

More even at task specific sites.

Assemblage Formality

Formality Index Biface: Core Ratio

High ratio of formal to expedient tools

High ratio of biface to cores

Low ratio of formal to expedient tools at residential sites

High ratio of specialized formal tools at task specific sites

Low ratio of biface to cores tools at residential sites

High ratio of specialized bifaces at task specific sites

Tool production, use, and discard profiles

Tool profile

Technological profile (debitage)

Low variability in tool forms

Similar debitage profiles among sites.

High variability of tool forms at residential sites

Specialized tool forms at task specific sites

Variable debitage profiles among sites.

Evenness of the tool classes will show the relative frequency distribution throughout tool

classes. This will indicate the focus of each toolkit. High evenness of multi-use tools will be

indicative of a residentially mobile strategy. Low evenness of expedient tools is a characteristic

22  

of logistically mobile residential sites, as high evenness of specialized tools reflects logistically

mobile, task-specific sites.

Tools were categorized by form and classifications and quantified to assign diversity and

evenness indices. Diversity and evenness were measured using the Simpson’s Index of Diversity

and Evenness.

Assemblage Formality

The formal nature of flaked tools generally increases as diversity of tools decreases.

Residentially mobile foraging assemblages will have generalized tools that are flexible and

versatile that can complete many tasks. A dominance of biface technology is thought to be an

indicator of a residentially mobile strategy. Expedient tools are tools that can only be employed

in a limited number of tasks. They have less complexity and are indicative of a logistical type

mobility strategy.

Tool Profiles (Specificity)

Logistically mobile strategies tend to have tools designed for specific tasks. Each tool

will be taken to task-specific locales for use, then discarded there or returned to residential sites.

Core/flake tactics produce specific and limited toolkits. Residentially mobile strategies have

tools designed for an array of activities and show a wide range of differentiated uses. Kelly

(1988) eloquently discussed the multiple uses of bifaces as either a specialized tool or a multi-

use tool. Bifaces can be reduced and designed specifically for a task; the end result of the tool is

specific, predetermined and limited. Bifaces as generalized multi-use tools go through a variety

of stages and forms. Bifaces as cores (parent material for flake tools and a tool itself) display the

non-specific and multiple-use form of the tool.

23  

Debitage

Debitage demonstrates the stages of tool manufacture occurring at each locale. Debitage

associated with residentially mobile foragers will leave similar debitage profiles among the

multiple residential sites. A more logistically mobile collector strategy will show different

debitage profiles among contemporary sites. The whole process of lithic tool production usually

occurs within the residential base, as the resource (raw lithic material) is brought to the

residential site, then processed. The logistic task sites of the logistically mobile (collector) model

will show a repetition of late stage debitage associated with re-sharpening and maintenance of

specialized tools while in use during task specific activities.

The manner of tool production differs in each mobility strategy. The residentially mobile

forager is likely to depend on multiple-use biface production due to the dependability and

maintainability of bifaces as generalized tools. Debitage from all stages in the biface reduction

sequence is easily distinguishable in the archaeological record. The more sedentary, logistically

mobile collectors tend to rely on expedient reduction because of the decrease in production costs

while still producing a usable tool. Distinctive core/flake reduction debitage is a signature of this

expedient tool production strategy.

Methods

The flaked stone analysis of CA-MNT-229 included measuring tool attributes, sampling

debitage and grouping results into Millingstone Period and Middle Period components refined by

Boone (2012). Results were then compared to the results of the flaked stone analysis of CA-

MNT-234 published in Milliken et al. (1999). This project categorized material types, tools

forms and debitage of CA-MNT-229 in a similar manner to that used for the CA-MNT-234 lithic

assemblage.

24  

The flaked stone assemblage of CA-MNT-229 had previously been analyzed for the

Dietz et al. (1988) report. Originally, this project aimed to re-analyze a sample of debitage from

each component and compare to the CA-MNT-234 Millingstone Period and Middle Period

components. Upon further inspection of the sample, it was found that many flake tools were not

identified and were instead classified as debitage. This required a full tool re-analysis and the

creation of sub-catalogue numbers. All non-sampled debitage was then scanned for tools, finding

a number of hitherto unidentified tools. When inspecting the tools many unmodified debitage

flakes were identified as tools. A common error of classifying biface thinning flakes as tools was

repeatedly identified. This flake type does retain a tool edge as a platform, however, are not

tools. These flakes formerly identified as tools were then integrated into debitage of the same

provenience.

Additionally, the former debitage analysis did not segregate material; all materials were

lumped in a single bag per provenience. Each level bag was then separated smaller bags with

sub-catalog numbers. The sub-catalog numbers, when visible, appear to be randomly given as no

pattern of debitage classification was observed. A catalogue tied to these sub-numbers was not

present and no digital catalog was, presumably, created.

As a result, all debitage was sorted into material classes with the help of the UCSC

Winter 2010 Anthropology 182A Lithic Analysis class. Each material class was counted,

weighed and segregated within each level bag retaining the original catalogue number. The entire

lithic assemblage was combed through, changing artifact class when necessary. All newly found

tools were analyzed and every previously identified tool was re-analyzed, with the exception of

eight bifaces (Cat#; 5-054, 8-001, 9-002, 32-050, 32-084, M-61, M-91) and nine projectile points

25  

(Cat#; 8-021, 12-048, 14-015, 19-016, 33-016, 40-012, 40-021, 43-041, M-30). Information on

these artifacts was gleaned from data presented in the Dietz et al. (1988) report.

A sample of debitage was analyzed from several units from each horizontal locus (South,

Middle and Northern excavation areas), being sure to include vertical (Millingstone Period and

Middle Period) components. All debitage from CU 7, RRUs 13, 14, 32, 40, and STUs 17 and 22

was analyzed.

Analytical data was entered into Access 2007 database. Following Boone (2012),

component designation was given to corresponding proveniences. All units in the Southern

Excavation area were attributed to the Middle Period. Middle and Northern Excavation areas are

divided at 100 centimeters below datum, with the Middle Period component assigned to 0-100

centimeters and the Millingstone Period from 100 centimeters to bottom. The database was used

to generate tables and queries for the comparison of CA-MNT-234 data.

Lithic Material Classification

Raw lithic materials recovered from archaeology sites in the Monterey Bay region have

local, extra-local or exotic origin. Sunseri (2009:80) described lithic materials as: “local lithics

are those found within the catchment zone, or that zone accessed within a day’s walk from a

camp; extra local lithics are those whose source is outside the catchment, but relatively close by;

and exotic lithics are those whose source is very far outside the catchment.” Lithic materials were

classified by visual inspection as Monterey chert and Franciscan chert, based on their different

color and texture characteristics. Other cherts that did not show Monterey or Franciscan

formation characteristics and could not be assigned were classified as “undifferentiated

cryptocrystalline silicate.” Obsidian was identified, though no sourcing was taken into account.

The material itself can be categorized as exotic, as the nearest sources are more than 200 km

26  

away, artifacts likely entering the site a tool form, and not as raw material. Other non-chert

materials were classified into general rock classes to the furthest extent of identification such as

igneous, meta-sedimentary, metamorphic, chalcedony, basalt, quartz or quartzite.

Locally available raw material includes Monterey chert, quartzite, igneous, and

sedimentary rock. Large deposits of banded Monterey chert occur at Año Nuevo State Park,

approximately 60 km to the north, mainly as large tabular cobbles. Many smaller, rounded

cobbles or nodules can also be found eroding from mudstone deposits at beaches and along

stream channels north and south of Año Nuevo, though limited to the west of the San Andreas

Fault. Quartzite, igneous, and sedimentary materials are the most immediately available around

Elkhorn Slough vicinity, occurring as rounded cobbles along the coast, river and stream locales.

Extra-local materials recovered from the site include Franciscan chert and

undifferentiated cryptocrystalline silicates. The closest possible procurement area of Franciscan

chert is on eastern-facing slopes of the Coastal Range east of the San Andreas, more than 30 km

east-northeast of Elkhorn Slough.

Exotic obsidian and basalt hails from extreme distances, sources nearly 200 kilometers to

the north in the North Coast Ranges (Napa Valley), and about 300 kilometers to the northeast in

Mono County (Casa Diablo, Bodie Hills).

The distinction of Monterey chert as local and Franciscan chert as extra-local is

problematic. Limited research on the pinpoint or possible locations of chert procurement locales

has been accomplished. Other than the obvious outcrops at Año Nuevo State Park, Monterey

chert is generally described as local to the area west of the San Andreas Fault (Sunseri 2009).

Franciscan chert described as occurring east of the San Andreas Fault is closer in distance than

the known Año Nuevo State Park Monterey chert source. Numbers of Monterey chert tools and

27  

debris are greater than Franciscan chert in the Elkhorn Slough area, even though it is possible

that there was a greater economic investment in the acquisition of Monterey chert.

Flaked Stone Analysis

Flaked stone materials from CA-SCR-229 include a variety of tools and debitage.

Artifact tool classes present include; projectile points, bifaces, cores, core tools, formed flake

tools, simple flake tools, drills, flaked cobble tools and assayed cobbles. Basic attributes

identified for each tool class include length, width, thickness, and weight. Additionally an

artifact class-specific criterion was recorded. These attributes provide baseline descriptions from

which to develop morphological categories, identify production technologies, and interpret tool

use and discard patterns. Ultimately, the data allows assessment of site function, raw material

acquisition, and chronology. Analytical criteria for each artifact class developed for comparison

in the Central Coast of California (Farquhar, Brady, Garlinghouse and Ellison 2011) are detailed

below.

Projectile Points

Projectile points in Central California are typically late-stage bifaces that exhibit a

distinctive hafting element. These bifacially shaped projectiles generally show characteristic

proximal forms that can be classified chronologically. More recent projectile point forms in the

region are produced by pressure flaking a single piece of debitage forming a specialized arrow

point. These flake-based points have limited utility and signal the use of bow and arrow

technology. Analytic units were chosen to (1) develop morphological descriptions (i.e., point

type identification), and (2) identify tool use and discard patterns. Overall size measurements

(length, axial length, width, thickness, and weight), and proximal shape measurements (basal

width, neck width, stem length, distal shoulder angle, proximal shoulder angle, and notch

28  

opening) were recorded to distinguish distinct point types. Other attributes including condition,

use-wear, break type and reworking were recorded to characterize tool production, use, and

discard patterns.

Bifaces

This analytical category consists of artifacts exhibiting modification along both margins

of opposing faces. Planar outlines and cross-section views of bifaces are typically symmetrical,

indicating the methodical nature of formal tool production as opposed to incidental production.

Bifaces may function as cores from which flakes are removed, as formal tools, or as preforms for

tools such as projectile points or knives. Biface function can be determined from general tool

shape and size attributes including length, width, and thickness (Andrefsky 2005: 204). While

this artifact class includes other forms including projectile points and drills, such items are better

characterized by specific diagnostic attributes, and are treated separately. Biface analyses have

been considered an especially important component of prehistoric research as these implements

have the potential to yield information on a broad range of issues including raw material

procurement strategies, technological processes, site function, and settlement mobility strategies

(Bouey and Basgall 1991: 29). For example, bifaces are viewed as flexible, highly maintainable

and portable tools, useful for a variety of functions. These implements are considered ideal for

residentially mobile groups, or for activities conducted away from residence camps.

Comparison of manufacturing stage data provides clues to how people organized their

stone tool procurement and production activities (Andrefsky 2005:30-34) and changes in those

strategies through time. Additional analytical avenues were explored including manufacture

stage, width-thickness ratios, planar shape, original form, use-wear type, break type, size, and

reworking. Suggestions of raw material procurement strategies were made by the identification

29  

of origin form, material type, manufacturing stage, and weight/thickness ratios. The origin form

from which a biface was produced provides information on conditions of material acquisition

(i.e., direct access vs. exchange), while manufacture stage assessments (Callahan 1979) are used

to place a tool along a production continuum from raw material acquisition to finished tool.

Bifaces were assigned to one of five sequential reduction stages based on a combination

of technological and morphological traits including width/thickness ratio and number of arrises

(ridges between flake scars):

Stage 1 bifaces are thick in cross-section, exhibiting a limited degree of planar symmetry with irregular, sinuous margins, and are shaped solely by percussion flaking.

Stage 2 bifaces are also strictly percussion-flaked, but have increased edge symmetry, straighter margins, and narrower cross-sections to indicate further shaping and thinning;

Stage 3 bifaces are well-thinned preforms with good planar symmetry, regular margins, and extensive percussion removals which generally extend across the mid-section of the artifact. Such artifacts are generally thicker than bifaces interpreted as projectile point preforms, but may still demonstrate a minimal amount of pressure flaking;

Stage 4 bifaces are well-shaped, thin preforms that are wholly or nearly symmetrical; straight margins and uniform cross-sections are developed through moderate to heavy amounts of invasive pressure flaking;

Stage 5 bifaces are well-refined, finished tool forms (frequently non-diagnostic point fragments) that are extensively pressure flaked, opposing surfaces showing total or near-complete coverage by closely spaced, parallel flake removal scars.

Bifaces designated Stage 1 and Stage 2 classes are considered to represent the earliest

phase of biface reduction (Early-stage bifaces). Stage 3 bifaces are considered to be Middle-

stage, representing fully shaped blanks in the process of final percussion thinning. Stage 4 and

Stage 5 bifaces are indicative of Late-stage reduction. It is assumed that these stages comprise an

overall reduction sequence designed for the manufacture of dart-size projectile points. The

manufacture of arrow-points does not require beginning with a percussion-thinned biface.

30  

Arrow-points are generally produced using a small flake blank and pressure reduction

techniques. However it is also possible that early-stage forms could have served as cores in the

production of small flakes or as roughed-out tools themselves, and that middle-stage or late-stage

bifaces were also used as processing implements. Stage classifications are intended only to

identify the relative phase of reduction at which point each biface was discarded.

Cores, Core Tools and Flaked Cobble Tool

Cores are defined as pieces of stone from which three or more flakes have been removed.

Core function can vary depending on the context of its use. For example, a core may function as

the parent piece for the production of flake tools, or it may function as a cutting or chopping tool

(core tool). Flaked cobble tools are cortex-covered cobbles that exhibit a minimal number of

unifacial or bifacial flake removals designed to create a robust working edge.

Core, core tool, and cobble tool attributes specifically address issues of stone tool

procurement, production, and use. Inferences on procurement strategies were made in part based

on size, origin form, and presence of cortex.

Tool function was inferred by examining platform characteristics and the size of flake

removals. Level of tool curation or relative amount of effort in tool production was estimated by

assessment of platform configuration and preparation. Analytical methods are designed to

evaluate material acquisition, manufacturing technology, and morphological variation in tools.

Flake Tools

Flake tools are pieces of debitage that have been altered by use or minimal intentional

modification. Simple flake tools exhibit little modification of the original shape, as the

modifications are limited to use wear. Formed flake tools have been intentionally modified to

create a particular edge shape. Recognition of these pieces is dependent on differentiating use-

31  

related wear and incidental edge-damage. Identification is based on level of edge modification

and intensity of use.

Numerous attributes were recorded to establish tool procurement, use, and discard

patterns. These include tool condition, material type, flake type, and size. Tool function was

ascertained from examination of use-wear, the number of modified edges, and edge shape.

Identification of tool type (simple vs. formed) was useful for assessing tool formality. Spine

plane and edge angles were also recorded for each flake tool. Spine plane angle is an indication

of preferred tool configuration, while edge angle reflects a desired end product of the task

performed (Bouey and Basgall 1991:30). Flake type will determine the technological method

favored in producing the flake tools.

Drills

Analytical categories of drills include basic metric data as well as morphological

descriptions of drill bits including end-length, width, thickness, edge angle, and use wear. Drill

bit morphology is assumed to be related to the task for which it was used (i.e., drill or

perforator).

Assayed Cobbles

Assayed cobbles exhibit only limited modification, typically one or two random flake

removals, possibly to assess material quality. Identification of raw material and form specifically

address issues of stone tool procurement.

Debitage

Unmodified flakes and shatter produced by the manufacture, maintenance, and

rejuvenation of flaked stone tools were classified as debitage. During the cataloguing process, all

debitage was sorted by material type, counted, and weighed by its provenience within an

32  

excavation unit and level. Selected flakes were then sorted into one of five general size classes

according to maximum flake diameter: <1.0 cm, 1.0-2.0 cm, 2.0-3.0 cm, 3.0-5.0 cm, >5.0 cm.

Each size-sorted flake was weighed individually and categorized by its diagnostic traits

into one of 19 different technological classes. Each represents a reduction trajectory from early

percussion shaping to pressure finishing. These are represented in Table 2.

Table 2. Debitage Flake Type and Description.

Flake Type Description

Primary Decortication flakes with more than 70% dorsal cortex

Secondary Decortication flakes with less than 70% dorsal cortex or only a cortical platform

Simple Interior Percussion non-cortical (interior) flakes which are relatively straight in cross-section, generally with broad platforms and one principal dorsal arris

Complex Interior Percussion interior flakes with two or more principal dorsal arrises, usually displaying more refined platforms and somewhat more uniform dorsal topography than the simple variety

Linear Flake flakes have straight cross-sections, are at least twice as long as they are wide, and have a single major longitudinal arris

Early Bifacial Thinning flakes which have curved cross-sections, narrow and/or lipped and faceted platforms, and one or two major dorsal arrises

Late Bifacial Thinning flakes with curved cross-sections, narrow/lipped and faceted platforms, three or more dorsal arrises, and often more intensively prepared platforms than the earlier thinning flakes

Early Pressure Flake flakes with a simple dorsal surface, a platform that may be oblique or perpendicular to the longitudinal axis, and includes edge preparation/pressure flakes (i.e., small flakes that retain remnants of tool or core margins and show complex dorsal surfaces) and rounded pressure flakes (i.e., small flakes with a well-defined focal platform which are round or amorphous in outline, usually with a simple dorsal topography)

Late Pressure Flake flakes with a complex dorsal surface, platforms that are oblique to the longitudinal axis, and includes linear pressure flakes (i.e., small flakes with a greater length relative to thickness, one linear dorsal arris, and a well-defined focal platform)

Pressure Flake Notch short, round, fan-shaped flake with a platform set into a depression Bipolar flakes have crushing at both ends with distinct cones of percussion and

straight dorsal and ventral surfaces; or a classic “orange wedge” shaped shatter

Cortical fragment a broken piece of a cortical flake

Simple Interior fragment a broken piece of a simple interior flake

Complex Interior fragment a broken piece of a complex interior flake

Cortical Shatter small chunky pieces of debitage that exhibit any cortex

Angular Shatter cuboidal or chunky pieces of debitage without cortex

Pressure fragment a broken pressure flakes that cannot be further classified

Indeterminate flakes that cannot be otherwise categorized because of weathering or some other hindrance

Potlid flakes that cannot be otherwise categorized because of thermal damage

33  

For technological comparisons the above flake types can be merged into six inclusive

reduction groups. The first five are considered to be technologically “diagnostic”, representing

the progressive stages of core/flake, bifacial or bipolar reduction strategies:

BIPOLAR reduction is an expedient strategy in which the debitage is a result of raw lithic material (unprepared core) being reduced by a hammer-stone and anvil. This reduction sequence leaves two identifiable flake types (bi-hertzian cone and “orange wedge” shaped flakes) which may be used as simple flake tools.

DECORTICATION combines all cortical flakes (primary, secondary and associated fragments) and represents material from the initial or “primary” reduction of raw material masses and/or the production of large, cortical flake blanks.

INTERIOR PERCUSSION includes the three interior flake types (simple, complex, linear and associated fragments), typifying debris from the “secondary” core reduction stage that involves the shaping and thinning of non-bifacial and bifacial cores.

BIFACE THINNING accounts for both early and late biface thinning flakes, representing the percussion-thinning of already shaped bifacial cores and bifacial tool preforms; this stage is not represented in the reduction of non-bifacial cores.

PRESSURE includes three types of diagnostic pressure flakes (early, late, notched and associated fragments), and constitutes the final, or “tertiary” stage of tool production, shaping, and maintenance; in bifacial reduction modes, late-stage biface thinning flakes may also be considered part of tertiary reduction.

INDETERMINATE includes seven flake types (interior and cortical shatter and indeterminate percussion). This group is normally omitted from technological analyses, as it contains only undiagnostic flakes and fragments.

Results of CA-MNT-229 Flaked Stone Assemblage Analysis

The results of the current lithic analysis of CA-MNT-229 have altered the original

configuration of the flaked stone assemblage (Table 3) published in Dietz et al (1988). Many

tools were left unidentified and unmodified debitage flakes were classified as tools. My analysis

increased the count of bifaces, drills, formed flake tools, and flaked cobble tools. Counts of cores

and simple flake tools decreased and two new tool classes were established; assayed cobbles and

core tools.

34  

Table 3. Flake Stone Assemblage of CA-MNT-229 Dietz et al. 1988 and current project.

Original Analysis (Dietz et al.

1988) Current Project

Middle Period (single

component) Millingstone

Period Middle Period

Residual Total

Projectile Point 15 3 10 2 15 Biface 60 16 75 5 96 Core 148 21 110 3 134 Core Tool - 3 6 1 10 Drill 2 3 4 1 8 Formed Flake Tool 14 2 22 1 25 Simple Flake Tool 150 19 114 2 135 Flaked Cobble Tool 12 5 8 2 15 Assayed Cobble - 4 7 2 13 Total 401 76 356 19 451

Projectile Points

A total of 15 Stage-5 bifaces classified as projectile points were recovered from CA-

MNT-229. All specimens are manufactured from Monterey chert, and thirteen of them fall

within the identified components. Most specimens can be classified as one of the seven

distinctive Central Coast point types (Jones 1993) including three Large Side-notched and five

Central Coast Stemmed Series (CCSS) points. The CCSS points include: Rossi Squared-stem

(n=1), Año Nuevo Long-stemmed (n=1), and Contracting-stemmed (n=3) points. Four stemmed

specimens with measurable attributes did not accord well with identified CCSS projectile points

and were classified as Small Square-stemmed points. The Small Square-stemmed classification

was also used to describe several points at the nearby site CA-MNT-234. The Small Square-

stemmed points are similar in morphology to the Rossi Square-stemmed, although the specimens

are more gracile and tend to be smaller in most dimensions. A single distal fragment was

classified as indeterminate due to the lack of measurable basal attributes.

The Millingstone Period component yielded three projectile points (Table 4). A single

(Cat# 12-048) Large Side-notched projectile point was recovered from Unit 12, 120-140

centimeters below surface. This point type has been associated with relatively early time frames

35  

along the Central Coast. Most commonly these points relate stratigraphically and contextually

within the Millingstone Period Culture 5500-4500 years B.P. (Jones 1993:31-32) though these

forms have been attributed as early as the onset of the Millingstone Period 9050 years B.P.

(Fitzgerald 2000).

Table 4. CA-MNT-229 Millingstone Period Component Projectile Point Basal Attributes.

Projectile Point Attributes

ML MW MTH AL SL NW BW PSAo DSAo NOAo

Large Side-notched number - - - - - 1 1 1 1 1

mean - - - - - 11.0 14.0 105 230 125 range - - - - - 11.0 14.0 105 230 125

Rossi Square-stemmed number 1 1 1 - - 1 1 1 1 1

mean 40.0 27.0 11.0 - - 15.0 18.0 110 180 70 range 40.0 27.0 11.0 - - 15.0 18.0 110 180 70

Small Square-stemmed number - 1 1 - - 1 1 1 1 1

mean - 17.0 6.5 - - 15.0 14.0 90 230 140 range - 17.0 6.5 - - 15.0 14.0 90 230 140

(ML=Maximum length, MW= Maximum width, MTh= Maximum thickness, AL= Axial length, SL= Stem length, NW= Neck width, BW= Basal width, PSA= Proximal shoulder angle, DSA= Distal shoulder angle, NOA= Notch opening angle)

A single Rossi Square-stemmed point (Cat# 33-016) was collected from CA-MNT-229.

This specimen was used as an example when defining the point type (Jones and Hylkema 1988).

This point style was originally assigned to 4000-2000 years B.P. (Jones and Hylkema 1988:183),

and later revised to include the entire Early and Middle Periods 5500-750 years B.P. (Jones

1993:31). Jones et al. (2007:138) notes the disappearance of square-stemmed points sometime

during the Middle Period (2500-750 years B.P.).

A single small square-stemmed point (Cat#14-059) was identified in the Millingstone

Period component. The point but could not be classified as Rossi Squared-stemmed points due to

the lack of thickness. The specimen does not conform to the “large, thick, often excurvate blades,

with short stems that range from square to slightly expanding” (Jones and Hylkema 1988:177)

36  

definition of the Rossi Square-stemmed points. Three small square-stemmed point specimens

(Cat# 19-016, 32-032 and 40-012) were recovered from the Middle Period component.

The Middle Period component returned 10 projectile points of a variety of types (Table

5). Two Large Side-notched projectile points (Cat# 31-005 and 43-041) recovered from this

component shows the spatial distribution of temporally diagnostic artifacts to be compromised.

The single Año Nuevo Long-stemmed point (Cat# 08-021), as the Rossi Square-

stemmed, contributed to the definition of the point type (Jones and Hylkema 1988). The

specimen falls within the allotted temporal component. It is described as a long tapering poorly

defined stem, pointed or nearly pointed at the base, and an apiculate tip and the specimen having

a substantial length and thickness (Jones and Hylkema 1988). This projectile point style is found

along California’s Central Coast and dated between 4000-1000 B.P.

Three Contracting-stemmed points (Cat# 14-015, 40-021 and 41-001) fall within the

expected component. These points are hardly temporally diagnostic though seem to appear

during the introduction of the Hunting Culture 5450 B.P. and die off after the Middle-Late

Transition 700 B.P. A single distal end (Cat# 10-036) of a dart-sized projectile point was

identified. Lack of distinguishable basal characteristics precludes the specimen from

classification.

37  

Table 5. CA-MNT-229 Middle Period Component Projectile Point Basal Attributes. Projectile Point Attributes

ML MW MTh AL SL NW BW PSAo DSAo NOAo

Large Side-notched number 1 2 1 - - 2 2 2 1 1

mean 36.0 20.0 10.0 - - 12.6 18.0 130 215 100 range 36.0 19.0-21.0 10.0 - - 12.2-

13.0 16.0-20.0

115-140

215 100

Small Square-stemmed number 1 3 2 - - 3 3 3 3 3

mean 39 18.3 7.8 - - 14.2 15.8 95 235 140 range - 15.0-20.0 6.0-9.5 - - 13.0-

15.0 14.5-18.0

90-100

220-250

130-160

Año Nuevo Long-stemmed number - - 1 - - 1 1 1 1 1

mean - - 13.0 - - 20.0 0.2 75 235 160 range - - 13.0 - - 20.0 0.2 75 235 160

Contracting-stemmed number 2 3 2 1 1 3 3 3 3 3

mean 51.5 20.4 11.1 27.2 14.7 16.9 10.5 80 220 140 range 48.0-

55.0 16.8-24.5 11.0-

11.2 27.2 14.7 13.6-

19.0 6.6-15.0

80 205-230

125-150

Indeterminate number - 1 1 - - 1 - - - -

mean - 16.0 7.5 - - 12 - - - - range - - - - - - - - - -

(ML=Maximum length, MW= Maximum width, MTh= Maximum thickness, AL= Axial length, SL= Stem length, NW= Neck width, BW= Basal width, PSA= Proximal shoulder angle, DSA= Distal shoulder angle, NOA= Notch opening angle)

Bifaces

Bifaces (N=96) represent 21.9% of the tool assemblage (Table 6). All but five specimens

fall within the identified components. The majority of bifaces are Monterey chert (n=53) with

lesser amounts of obsidian (n=24), Franciscan chert (n=7), undifferentiated crypto-crystalline

silicate (n=5), igneous rock (n=1), and meta-sedimentary rock (n=1).

38  

Table 6. CA-MNT-229 Millingstone Period Component Biface Attributes.

Millingstone Period Early Stage Middle Stage Late Stage Indeterminate Stage Total Material

Monterey chert 1 2 8 - 11 Obsidian - 1 1 1 3 Franciscan chert - - 1 - 1 Meta-sedimentary - - 1 - 1

Condition Complete - 1 3 - 4 Near complete - 1 - - 1 Proximal - - 5 - 5 Distal - - - - - End 1 - 1 - 2 Medial - - 1 - 1 Margin - 1 1 1 3

Origin Cobble base - - - - - Flake base 1 2 3 - 6 Biface base - 1 2 - 3 Chunk/shatter - - - - - Split cobble - - - - - Indeterminate - - 6 1 7

Size Arrow - - 1 - 1 Dart - 1 2 - 3 Knife/Large biface 1 1 3 - 5 Indeterminate - 1 5 1 7

Break Manufacture - - 3 - 3 Use/impact - - 5 - 5 Indeterminate 1 2 - 1 4

Shape Rectangular - - 3 - 3 Convex rounded - 1 - - 1 Convex pointed - 1 2 - 3 Straight - - 3 - 3 Triangular - - 1 - 1

Reworking Present - 2 - - 2 Absent 1 - 8 1 10

Heat Alteration Present - - 1 - 1 Absent 1 3 10 1 15

Use-wear Single - - 5 - 5 Multiple 1 3 2 1 7

Total 1 3 11 1 15

Fifteen bifaces were identified in the CA-MNT-229 Millingstone Period component.

Nearly 75% are classified as “finished tools.” All extra-local Franciscan chert and one exotic

39  

obsidian specimens were identified as late stage, indicating arrival at the site as finished tools.

The middle stage obsidian biface was re-worked from a broken late-stage biface, demonstrating

the high value of this material. Bifaces produced on local materials are represented in all stages,

with the majority clustering in the late stages. Use-wear is present on all stages of bifaces.

Middle Period bifaces are large in number, but remain the same 21.1% representation of

the flaked stone tool kit as the Millingstone Period bifaces (Table 7). Overall, Middle Period

bifaces were dominated by late stage bifaces. Use-wear is present and persistent during all

stages. Early stage bifaces were mostly Monterey chert and locally available rock and whole in

form when discarded. Late-stage bifaces, mostly of exotic obsidian material and very high

quality cherts, are only discarded when implements are too fragmented to rework. The high

percentage of proximal end fragments of the latter stage bifaces is also of note. All bifaces

measure rather small, averaging 35.0 millimeters, with the greatest length measurement only

reaching 43.3 millimeters. The most common biface origin form was of flake blanks, though

only a single flake based biface was small enough to be considered “arrow” size.

40  

Table 7. CA-MNT-229 Middle Period Component Biface Attributes.

Middle Period Early Stage Middle Stage Late Stage Indeterminate Stage Total Material

Monterey chert 11 10 19 2 42 Obsidian - 4 16 1 21 Franciscan chert 4 1 1 - 6 Cryptocrystalline silicate 2 - 3 - 5 Igneous 1 - - - 1

Condition Complete 7 3 1 - 11 Near complete 3 - 2 - 5 Proximal 4 4 17 - 25 Distal - - 2 - 2 End 3 2 - - 5 Medial - 4 9 - 13 Margin 1 2 8 3 14

Origin Cobble base 3 - - - 3 Flake base 11 8 6 - 25 Biface base - 4 19 - 23 Chunk/shatter 1 - - - 1 Split cobble 1 - - - 1 Indeterminate 2 3 14 3 22

Size Arrow - - 1 - 1 Dart 6 9 18 - 33 Knife/Large biface 11 4 12 1 28 Indeterminate 1 2 8 2 13

Break Manufacture 2 2 9 1 14 Use/impact 5 6 18 - 29 Indeterminate 4 4 7 2 17

Shape Rectangular - 1 2 - 3 Convex rounded 3 2 10 - 15 Convex pointed 1 2 3 - 6 Straight - - 8 - 8 Triangular - 1 - - 1

Reworking Present 1 5 20 1 27 Absent 17 10 19 2 48

Heat Alteration Present 1 2 5 1 9 Absent 17 13 34 2 66

Use-wear Absent 2 1 6 - 9 Single 6 5 10 2 23 Multiple 10 9 23 1 43

Total 18 15 39 3 75

41  

Cores

One hundred and thirty-four cores were collected from CA-MNT-229 (Table 8),

accounting for 29.7% of the stone tool assemblage, the second most numerous flaked stone tool

class. Cores were classified into four morphological categories including; bipolar (n=111), multi-

directional (n=14), bidirectional (n=4), unidirectional (n=3) with two specimens indeterminate.

One hundred twenty-five expedient cores (un-patterned multi-directional and bipolar cores)

greatly outnumber seven formal cores (unidirectional and bi-directional cores).

Expedient flake tool manufacture predominates at CA-MNT-229, as evidenced by the

high proportion of expedient cores (93.3%) and the dependence of bipolar reduction, the most

expedient of core types. The expediency of flake tool production is also manifested in the low

percentage of prepared platforms (39.2%) and the rather small maximum flake length, averaging

22.9 mm. The majority of all cores (86.7%) were formed on raw Monterey chert pebbles

processed on-site. It is unclear if these Monterey chert pebbles are present within the CA-MNT-

229 catchment area or if they were traded. Only two cores of Monterey chert measure more than

5 centimeters in diameter, and none measure greater than 7.2 centimeters.

42  

Table 8. CA-MNT-229 Core Attributes.

Millingstone Period Middle Period Residual Total Material

Monterey chert 16 84 1 101 Franciscan chert 3 13 1 17 Cryptocrystalline silicate 1 5 - 6 Meta-sedimentary 1 3 - 4 Chalcedony - 2 - 2 Basalt - 1 - 1 Igneous - 1 - 1 Quartzite - 1 - 1 Metamorphic - - 1 1

Condition Complete 20 100 3 123 Near complete - 1 - 1 Proximal - 1 - 1 End 1 8 - 9

Dimensions (mm) Length range 17.3-69.3 10.6-63.8 33.9-54.3 10.6-69.3 Length average 28.8 29.5 43.7 29.7 Width range 20.4-103.5 14.8-55.1 40.7-71.7 14.8-103.5 Width average 36.5 31.1 55.0 32.5 Thickness range 12.4-53.5 9.9-42.4 28.1-51.6 9.9-53.5 Thickness average 25.6 21.5 37.1 22.5 Maximum flake length range 14.6-68.6 8.8-48.0 21.6-42.8 8.8-68.6 Maximum flake length average 25.6 22.2 28.1 23.2

Origin Round pebble 15 75 2 92 Tabular cobble 1 1 - 2 Globular cobble 1 9 - 10 Split cobble - 2 - 2 Indeterminate 4 23 1 28

Type Unidirectional - 3 - 3 Bidirectional 2 2 - 4 Multi-directional 1 12 1 14 Bifacial - - - - Bipolar 18 91 2 111 Indeterminate - 2 - 2

Platforms Single 12 62 - 74 Multiple 9 48 3 60

Cortex Present 17 87 3 107 Absent 4 23 - 27

Total 21 110 3 134

Core Tools

Ten core tools were collected from CA-MNT-229 accounting for only 2.2% of the flaked

stone tool assemblage (Table 9). Cores showing use wear were categorized as core tools,

43  

implying a secondary use. Cores tools were classified into four morphological categories

including; bipolar (n=4), bidirectional (n=3), bifacial (n=2), unidirectional (n=1).

Table 9. CA-MNT-229 Core Tool Attributes.

Millingstone Period Middle Period Residual Total Material

Monterey chert 2 2 1 5 Franciscan chert 1 2 - 3 Meta-sedimentary - 2 - 2

Condition Complete 2 5 1 8 End 1 1 - 2

Dimensions (mm) Length range 23.3-44.5 22.9-63.1 20.5 20.5-63.1 Length average 34.3 34.1 20.5 32.6 Width range 28.7-33.7 25.3-81.5 45.0 25.3-81.5 Width average 31.2 38.6 45.0 37.0 Thickness range 15.5-31.7 12.2-45.3 28.8 12.2-45.3 Thickness average 23.6 23.0 28.8 23.7 Maximum flake length range 19.1-33.6 12.0-33.0 20.5 12.0-33.6 Maximum flake length average 25.5 21.2 20.5 22.3

Origin Round pebble 1 3 - 4 Globular cobble - 1 - 1 Indeterminate 2 2 1 5

Type Unidirectional - - 1 1 Bidirectional 1 2 - 3 Multi-directional - - - - Bifacial 1 1 - 2 Bipolar 1 3 - 4 Indeterminate - - - -

Platforms Single 2 2 1 5 Multiple 1 4 - 5

Cortex Present 1 4 - 5 Absent 2 2 1 5

Total 3 6 1 10

The ten core tools from CA-MNT-229 represent a minority of flexible, generalized, and

formalized tools designed for an array of tasks. The two bifacial core tools are exemplary of the

formalized tools and are outliers in an assemblage that is dominated by expedient tools. Core

tools, and particularly bifaces as cores, indicate a much different flaked stone tool approach than

44  

is common in the Middle Period and may be a remnant of the underlying Millingstone Period

signature mixing upward.

Drills

Eight drills were collected from all of CA-MNT-229, the smallest representation of

classes representing only 1.2% of the assemblage (Table 10). The three Millingstone Period

drills are crafted from a variety of forms including a broken biface, a decortication flake and a

biface thinning flake. The Millingstone Period drills similar in overall size and bit size all with

multiple types of use wear. The Middle Period drills are of a variety of sizes and uses but they

are all crafted from early reduction flakes; three on decortication and a single bipolar flake.

45  

Table 10. CA-MNT-229 Drill Attributes.

Millingstone Period Middle Period Residual Total Material

Monterey chert 3 3 1 7 Cryptocrystalline silicate - 1 - 1

Condition Complete 3 4 1 8

Dimensions (mm) Length range 29.9-42.5 29.5-52.9 52.1 29.5-52.9 Length average 35.5 38.8 52.1 39.2 Width range 13.0-29.3 14.9-30.2 22.3 13.0-30.2 Width average 20.1 21.3 22.3 21.0 Thickness range 3.7-8.2 6.5-14.8 7.2 3.7-14.8 Thickness average 5.5 11.1 7.2 8.5

Drill Type Perforator - 1 - 1 Drill 3 3 1 7

Origin Biface 1 - 1 2 Flake 2 4 - 6

Flake Type Bipolar - 1 - 1 Decortication 1 3 - 4 Interior - - - - Biface thinning 1 - - 1 Indeterminate - - - -

Bit Dimensions (mm) Bit Length range 2.4-8.9 4.6-14.1 37.3 2.4-37.3 Bit Length average 5.4 7.1 37.3 10.2 Bit Width range 2.8-8.1 3.6-8.6 14.6 2.8-14.6 Bit Width average 4.8 5.4 14.6 6.3 Bit Thickness range 1.4-5.1 1.1-3.4 7.0 1.1-7.0 Bit Thickness average 2.7 2.4 7.0 3.0

Edge Angle 20-29 o 1 2 1 4 30-39 o 2 1 - 3 40-49 o - 1 - 1 50-59 o - - - -

Use-wear Single - 1 - 1 Multiple 3 3 1 7 Absent - - - -

Reworking Present 2 - 1 3 Absent 1 4 - 5 Indeterminate - - - -

Total 3 4 1 8

46  

Formed Flake Tools

No biface thinning flakes were chosen to produce a formed flake tool. The twenty-five

formed flake tools analyzed from CA-MNT-229 were manufactured from all stages of the

core/flake reduction sequence (Table 11). Most flakes are crafted on initial reduction flakes

including; decortication flakes (n=11) and bipolar flakes (n=8). Lesser amounts of interior

percussion flakes (n=4) and un-attributable shatter (n=2) were also identified.

Only two formed flake tools were collected from the Millingstone Period context. A total

of six edges were identified, all show bifacial use-wear. Three edges were classified as straight in

shape and convex edges are absent.

The Middle Period formed flake tool edges are dominated (60.0%) by convex edges. The

formed flake tools average size increases unlike the majority of all flaked stone tool classes. Yet,

only two Middle Period specimens (Cat# 04-126 and 07136) are larger than 5.0 centimeters, both

of which are of igneous rock.

47  

Table 11. CA-MNT-229 Formed Flake Tool Attributes.

Millingstone Period Middle Period Residual Total Material

Monterey chert 2 14 - 16 Franciscan chert - 3 - 3 Cryptocrystalline silicate - 2 - 2 Igneous - 3 1 4

Condition Complete 2 14 1 17 Near complete - 1 - 1 Proximal - 1 - 1 Distal - 2 - 2 End - 2 - 2 Medial - 1 - 1 Margin - 1 - 1

Dimensions (mm) Length range 28.2-31.0 19.1-66.4 56.5 19.1-66.4 Length average 29.6 33.2 56.5 33.4 Width range 23.0-24.0 15.7-51.1 53.5 15.7-53.5 Width average 23.5 27.9 53.5 28.2 Thickness range 8.7-9.5 5.0-21.8 27.8 5.0-27.8 Thickness average 9.0 12.8 27.8 13.3

Flake Type Bipolar 1 7 - 8 Decortication 1 9 1 11 Interior - 4 - 4 Biface thinning - - - - Indeterminate - 2 - 2

Edge Count One 1 9 - 10 Multiple 1 13 1 15

Edge Shape Concave 2 7 - 9 Convex - 27 1 28 Straight 3 9 - 12 Other 1 2 1 4

Use-wear Location Dorsal - 2 - 2 Ventral - 8 - 8 Bifacial 6 35 2 43

Use-wear types per edge Single 2 10 - 12 Two 2 17 2 21 Three + 2 18 - 20

Edge Angle 20-29 o - - - - 30-39 o - 2 - 2 40-49 o - 8 - 8 50-59 o 1 7 1 9 60-69 o - 21 1 22 70 o+ 5 7 - 12

Total 2 22 1 25 (Total edges) 6 45 2 53

48  

Simple Flake Tools

The simple flake tool class is the most populous tool class with 135 specimens

accounting for 29.9% of all flaked stone tools at CA-MNT-229 (Table 12). The simple flake

tools are crafted from the full range of flake types, though initial reduction flakes are in the

majority. Decortication (n=50) and bipolar flakes (n=34) account for 69.4% of identifiable flake

types. Lesser amounts of interior percussion (n=29) and biface thinning (n=8) were identified.

Simple flake tool specimens that cannot be assigned to a reduction strategy include; un-

attributable shatter (n=3) and indeterminate flakes (n=11). Only three specimens hold

measurements greater than 5.0 centimeters.

Some differences amongst the Millingstone Period and Middle Period simple flake tools

are noted. The Millingstone Period simple flake tools are almost two-thirds decortication flakes.

Identifiable Middle Period simple flakes tool forms are more evenly distributed between

decortication (37.3%), bipolar (29.4%) and interior (25.5%). All simple flake tools from biface

thinning flakes (n=8) are found within the Middle Period component. Middle Period tools

average smaller in size with most (54.4%) having only a single edge. The larger Millingstone

Period tools tend to have multiple edges (52.6%).

49  

Table 12. CA-MNT-229 Simple Flake Tool Attributes.

Millingstone Period Middle Period Residual Total Material

Monterey chert 17 88 - 105 Franciscan chert 1 16 2 19 Cryptocrystalline silicate - 8 - 8 Obsidian - 1 - 1 Meta-sedimentary - 1 - 1 Quartzite 1 - - 1

Condition Complete 15 81 1 97 Near complete 3 7 1 11 Proximal - 2 - 2 Distal 1 - - 1 End - 11 - 11 Medial - 6 - 6 Margin - 7 - 7

Dimensions (mm) Length range 15.2-53.8 13.1-56.2 30.8 13.1-56.2 Length average 28.0 26.8 30.8 27.0 Width range 10.8-33.1 7.3-44.5 26.5-35.3 7.3-44.5 Width average 21.0 20.3 30.9 20.5 Thickness range 3.5-24.7 1.7-22.4 11.0-12.9 1.7-24.7 Thickness average 9.5 8.6 12.0 8.8

Flake Type Bipolar 3 30 1 34 Decortication 11 38 1 50 Interior 3 26 - 29 Biface thinning - 8 - 8 Indeterminate 2 12 - 14

Edge Count One 9 62 1 72 Multiple 10 52 1 63

Edge Shape Concave 9 52 2 63 Convex 14 56 2 72 Straight 11 71 - 82 Other - 9 - 9

Use-wear Location Dorsal 8 49 1 58 Ventral 5 28 - 33 Bifacial 21 111 3 135

Spine Plane Angle 20-29 o - 22 1 23 30-39 o 17 58 1 76 40-49 o 5 34 - 39 50-59 o 9 35 1 45 60-69 o 2 22 1 25 70 o+ 1 17 - 18

Total 19 114 2 135 (Total edges) 34 188 4 226

50  

Flaked Cobble Tools

Jones and Jones (1992:174) noted the prevalence of flaked cobble tools to be “largely

recovered from depths in excess of 100 centimeters” (Table 13). They refer Jones and Hylkema

(1988:167) indicating the tool class is common in contexts dating to the Early and Millingstone

Periods. The revised component designation outlined by Boone (2012) places most flaked cobble

tools within the Middle Period. Fifteen flaked cobble tools were recovered from CA-MNT-229,

eight specimens from the Middle Period context, five from the Millingstone Period context and

two from the monitoring effort.

Table 13. CA-MNT-229 Flaked Cobble Tool Attributes.

Millingstone Period Middle Period Residual Total Material

Metamorphic 4 1 1 6 Igneous 1 1 1 3 Cryptocrystalline silicate - 1 - 1 Quartzite - 4 - 4 Franciscan chert - 1 - 1

Condition Complete 4 8 2 14 Distal 1 - - 1

Dimensions (mm) Length range 56.1-78.0 41.0-74.5 85.0-85.7 41.0-85.7 Length average 68.9 63.2 85.4 68.0 Width range 34.8-72.3 36.3-62.8 67.0 34.8-72.3 Width average 55.0 53.2 67.0 55.3 Thickness range 27.4-36.7 24.2-52.8 61.7 24.2-61.7 Thickness average 32.2 37.6 61.7 37.9

Origin Round pebble - 1 - 1 Tabular cobble - 1 - 1 Globular cobble - 1 1 2 Split cobble 5 4 1 10 Indeterminate - 1 - 1

Use-wear Present 3 7 2 12 Absent 2 1 - 3

Cortex Present 5 7 2 14 Absent - 1 - 1

Total 5 8 2 15

51  

Millingstone Period flaked cobble tools are exclusively produced from local non-chert

(metamorphic and igneous) split cobbles. Middle Period flaked cobble tools are from a variety of

materials, mostly (50.0%) local quartzite. Split cobbles are the most popular origin, though they

only account for 55.6% of identifiable cobble forms.

Assayed Cobbles

Ten of the twelve assayed cobbles were collected from identified components (Table 14).

In both Millingstone Period and Middle Period contexts, only half of the assayed cobbles were of

local materials. Middle Period assayed cobbles trend a bit smaller and are exclusively cherts. The

origin forms in all contexts are evenly distributed between split cobbles (50.0%) and round

pebbles (50%).

Table 14. CA-MNT-229 Assayed Cobble Attributes.

Millingstone Period Middle Period Residual Total Material

Monterey chert 1 3 1 5 Franciscan chert 1 2 - 3 Cryptocrystalline silicate 1 1 - 2 Igneous 1 - - 1 Meta-sedimentary - - 1 1

Condition Complete 4 6 2 12

Dimensions (mm) Length range 44.4-56.4 30.3-56.5 45.0-97.0 30.3-97.0 Length average 49.6 45.5 71.0 51.1 Width range 19.1-38.5 24.1-42.2 24.0-47.4 19.1-47.4 Width average 32.0 32.7 35.7 33.0 Thickness range 21.7-32.8 9.7-39.5 15.7-75.9 9.7-75.9 Thickness average 25.8 25.3 45.8 28.9

Origin Round pebble 2 3 1 6 Split cobble 2 3 1 6

Total 4 6 2 12

Debitage

The debitage assemblage from CA-MNT-229 is composed of 4110 flakes recovered from

the units 7-43 (excluding shovel broadcast units 37 and 41). All flakes were recovered from 3-

52  

mm dry-screened units debitage and densities are rather light at 43.8 flakes per m3. Monterey

chert is the most abundant material present (n=2861, 69.6%), with lesser quantities of Franciscan

chert (n=453, 11.0%), meta-sedimentary rock (n=237, 5.8%), obsidian (n=210, 5.1%), quartzite

(n=141, 3.4%), igneous rock (n=109, 2.7%), undifferentiated cryptocrystalline silicate (n=72,

1.8%), chalcedony (n=24, 0.6%), and quartz (n=3, <0.1%).

In order to characterize the technological profile of CA-MNT-229 debitage, a sample of

seven units (CU 7 and STU 22 from the Southern area; RRU 14, STU 32 and RRU 40 from the

Middle area; RRU 13 and STU 17 from the Northern area) were selected (n= 1226). The analysis

sample consisted of all levels from the sampled units. The sample of 1226 flakes (representing

29.8% of all CA-MNT-229 debitage) was size sorted and analyzed. The density remains a light

46.0 flakes per cubic meter.

Material counts vary from the previous effort due to the difference of material categories.

Monterey chert dominates the sample (n=865), followed by Franciscan chert (n=129), igneous

rock (n=62) undifferentiated cryptocrystalline silicate (n=47), quartzite (n=41) meta-sedimentary

rock (n=34), obsidian (n=30), and metamorphic rock (n=18). The analyzed debitage flakes

measure medium, with nearly half (42.7%) falling into the central class (2.0-2.9 cm diameter).

The next largest size class (3.0-4.9 cm) represents 26.3% of the flakes as the smaller class (1.0-

1.9 cm) shows 27.1 %. Flakes smaller than 1.0 cm and larger than 5.0 cm are rare accounting for

only 1.5% and 2.4% respectively. Results of the Millingstone Period debitage analysis are

presented in Table 15.

53  

Table 15. CA-MNT-229 Millingstone Period Debitage Analysis.

Local Extra-Local Exotic Flake Type MCT IGN MTS QZT MET FCT CCS OBS Total

Primary Decortication 12 1 2 2 - 2 - - 19 Secondary Decortication 23 1 - - 4 - 2 - 30 Simple Interior Percussion 7 1 - 2 - 2 2 - 14 Complex Interior Percussion 1 - - - - 2 - - 3 Linear Flake 1 - - - - - - - 1 Early Bifacial Thinning 12 1 - - 2 - - 1 16 Late Bifacial Thinning - - - - - 1 - 1 2 Early Pressure Flake 3 - - - - - - - 3 Late Pressure Flake - - - - - - - - - Pressure Flake Notch - - - - - - - - - Bipolar 47 1 - 2 - 1 1 - 52 Cortical fragment - - - - - - - - - Simple Interior fragment - - - - - - - - - Complex Interior fragment - - - - - - - - - Cortical Shatter 32 - 2 5 - 5 - - 44 Angular Shatter 20 2 - 1 - 5 2 - 30 Pressure fragment - - - - - - - - - Indeterminate 25 3 1 1 2 6 - - 38 Potlid 14 - - - - 3 - - 17

Total 197 10 5 13 8 27 7 2 269 Size Class (cm)

<1.0 2 1 - - - - - - 3 1.0-1.9 54 1 - 1 2 2 1 2 63 2.0-2.9 84 1 3 4 1 14 2 - 109

3.0-4.9 57 7 2 6 5 11 3 - 91

>5.0 - - - 2 - - 1 - 3

Total 197 10 5 13 8 27 7 2 269

Overall, diagnostic flakes reveal a rather uneven reduction strategy weighted heavily

towards the expedient unprepared core/flake reduction sequence accounting for 80.5% of

identifiable flakes (Table 16). The bifacial reduction sequence is present, though in limited

numbers consisting of 19.5% of flake debris. Obsidian material class debitage counters the trend

in all other material classes. This exotic stone was traded, as its nearest source nearly 200

kilometers from CA-MNT-229. This material arrives on-site in a pre-reduced bifacial form

leaving only biface thinning flakes and pressure flakes in the debitage at CA-MNT-229. The

54  

presence of obsidian grows considerably from Millingstone Period into the Middle Period

contexts.

The density of Millingstone Period debitage is considerably light at 37.4 flakes per cubic

meter. As expected, the debitage is dominated by local materials (86.6%). Notable is the near

absence of exotic obsidian (0.8%). Almost all debitage (97.8%) falls within the medium size

classes with a total of six flakes less than 1.0 millimeters or greater than 5.0 millimeters.

Debitage with an identifiable reduction sequence held a slight majority at 52.0%. Local

materials are dominated by initial core reduction with bipolar (40.0%) and decortication flakes

(36.0%) accounting for over three-quarters of identifiable flakes. Interestingly, interior core

reduction is the most populace reduction sequence in the extra-local material class. The exotic

material, obsidian, is limited to only two biface thinning flakes. Tool maintenance pressure

flakes are nearly absent from the Millingstone Period component.

Table 16. CA-MNT-229 Millingstone Period Debitage Technological Attributes.

Category

Local Extra-Local Exotic

MCT IGN MTS QZT MET FCT CCS OBS Total

Bipolar 47 1 - 2 - 1 1 - 52

Decortication 35 2 2 2 4 2 2 - 49

Interior 9 1 - 2 - 4 2 - 18

Biface Thinning 12 1 - - 2 1 - 2 18

Pressure 3 - - - - - - - 3

Total 106 5 2 6 6 8 5 2 140

55  

Middle Period continues to be dominated by local material (82.2%), though a modest

increase in extra-local materials (14.8%) and a large increase of exotic materials (3.0%) are of

note (Table 17). Again, almost all debitage (95.6%) falls within the medium size classes 1.0

millimeters to 4.9 millimeters. There is a slight increase in debitage density to 53.8 flakes per

cubic meter.

Table 17. CA-MNT-229 Middle Period Debitage Analysis.

Local Extra-Local Exotic Flake Type MCT IGN MTS QZT MET FCT CCS OBS Total

Primary Decortication 40 3 2 6 2 6 1 - 60 Secondary Decortication 80 9 1 3 1 6 3 - 103 Simple Interior Percussion 34 8 3 4 - 3 4 - 56 Complex Interior Percussion 7 1 - - - 3 1 - 12 Linear Flake 2 - - - - - - - 2 Early Bifacial Thinning 59 6 3 3 3 8 4 1 87 Late Bifacial Thinning 6 - - - - 2 - 11 19 Early Pressure Flake 11 - - - - 1 - 2 14 Late Pressure Flake 1 - - - - - - 11 12 Pressure Flake Notch 3 - - - - 1 - 2 6 Bipolar 137 6 4 5 - 18 10 - 180 Cortical fragment 2 - 1 - 1 1 1 - 6 Simple Interior fragment - - - - - - - - - Complex Interior fragment - - - - - - - - - Cortical Shatter 81 5 3 1 - 12 5 - 107 Angular Shatter 61 5 3 2 - 16 4 - 91 Pressure fragment - - - - - - - 1 1 Indeterminate 90 7 8 2 3 21 7 - 138 Potlid 54 2 1 2 - 4 - - 63

Total 668 52 29 28 10 102 40 28 957 Size Class (cm)

<1.0 4 - - - - 1 - 10 15 1.0-1.9 214 7 2 3 1 20 4 18 269 2.0-2.9 317 17 12 10 5 38 16 - 415 3.0-4.9 125 23 11 13 3 37 19 - 231 >5.0 8 5 4 2 1 6 1 - 27

Total 668 52 29 28 10 102 40 28 957

Identifiable flakes from the Middle Period component increase slightly to 58.3% (Table

18). This is likely a result of a minimal increase of biface thinning and pressure flakes within the

local materials. Initial reduction of local materials remains the most dominant sequence

representing two-thirds of identifiable flakes. Bipolar (33.3%) and decortication (33.0%)

56  

continues to be the most common flake type. Extra-local materials follow the trend of initial core

reduction with a slightly larger representation of biface thinning flakes (19.2%). Pressure flaking

appears and dominates the exotic obsidian material class.

Table 18. CA-MNT-229 Middle Period Debitage Technological Attributes.

Local Extra-Local Exotic

Technological Category

MCT IGN MTS QZT MET FCT CCS OBS Total

Bipolar 137 6 4 5 - 18 10 - 180

Decortication 122 12 4 9 4 13 5 - 169

Interior 43 9 3 4 - 6 5 - 70

Biface Thinning 65 6 3 3 3 10 4 12 106

Pressure 15 - - - - 2 - 16 33

Total 382 33 14 21 7 49 24 28 558

Overall, there is only a minimal difference between the two components. The debitage

analysis shows a large percentage of decortication debris and an overall dominance of bipolar

fragments within the medium class sizes. This signals the raw material was rather small. Little

effort to produce formal cores is evident in the small representation of core shaping debris. These

factors suggest raw lithic materials were brought on-site in pebble forms (cobbles < 5.0 cm

diameter) to be processed predominately into flake tools and marginally late stage bifaces.

Analysis of the CA-MNT-229 flaked stone shows the expedient nature of on-site tool

production activities. The high number of expedient cores and simple flakes tools produced from

chert pebbles present in the assemblage correspond with the debitage analysis. An overwhelming

94.3% of cores are classified as expedient with 86.5% of identifiable core origin forms produced

on chert pebbles. Initial cobble core reduction flakes account for 70.9% of flake tools. Though, a

57  

significant representation of formal tools remains. Late stage bifaces, projectile points, drill and

formed flake tools account for nearly one-third of the flaked stone tool assemblage. This variety

of tool forms demonstrates tool specialization representing a variety of tasks. Formal tool

production and tool maintenance debitage occurs in only trace amounts signaling these activities

are performed off-site.

Comparison of Flaked Stone Analysis of CA-MNT-229 and CA-MNT-234

The analysis of flaked stone materials from CA-MNT-229 will be compared with the

results of the flaked stone analysis from CA-MNT-234 presented in Milliken et al. (1999). Both

Millingstone Period and Middle Period components have been identified, isolated and quantified

(Table 19). The results will be compared in the following section using proxy measures

discussed in the methods section: tool diversity, assemblage formality and tool production and

use profiles.

Table 19. CA-MNT-229 and CA-MNT-234 Flaked Stone Assemblage by Component.

Millingstone Period Middle Period CA-MNT-229 CA-MNT-234 CA-MNT-229 CA-MNT-234 Total Projectile Point 3 2 10 2 17 Biface 16 14 75 16 121 Core 21 17 110 17 165 Core Tools 3 1 6 - 10 Drill 3 - 4 - 7 Formed Flake Tool 2 2 22 2 28 Simple Flake Tool 19 11 114 12 156 Flaked Cobble Tool 5 - 8 - 13 Assayed Cobble 4 - 7 - 11 Total 76 47 356 49 528

Assemblage Diversity and Evenness

To measure potential differences among artifact assemblages by component, the Simpson

Index of Diversity was applied using flaked stone tool artifact classes recovered within each

component. Values approaching “1” show more diverse assemblages, while values trending

58  

toward “0” signal assemblages that are less diverse. More diverse assemblages are associated

with greater residential stability, while less diverse assemblages illustrate more short term

residential occupation, or task specific locales.

D = N(N-1)∑ni(ni-1)

D = Simpson’s index N = the total number of flaked stone tools of all flaked stone tool classes ni = the number of individual flaked stone tools

Evenness values measure the similarity of artifact abundance across flaked stone tool

classes. Low evenness values at residential sites indicate a less generalized toolkit, pointing to

more task specific activities.

E=1/DS

E= Evenness S= the total number of flaked stone tool classes D= Simpson’s index

For the current study, the diversity and evenness measures vary minimally within the

Millingstone Period component. The Simpson’s Index of Diversity shows both CA-MNT-229

and CA-MNT-234 components relatively diverse measuring 0.8 and 0.72 respectively (Figure 3).

The evenness index shows both sites somewhat even, with little change between the two

components.

59  

Figure 3. CA-MNT-229 and CA-MNT-234 Flaked Stone Diversity and Evenness Indices in the Millingstone Period Component.

Turning to the Middle Period again (Figure 4), both flaked stone assemblages are diverse,

marked by similar indices (0.75 and 0.71). Interestingly, the evenness index varies between

Middle Period components as CA-MNT-229 (0.45) holds a slightly uneven assemblage, and CA-

MNT-234 (0.69) showing a more even pattern.

Figure 4. CA-MNT-229 and CA-MNT-234 Flaked Stone Diversity and Evenness Indices in the Middle Period Component.

0

0.2

0.4

0.6

0.8

1

CA‐MNT‐229 CA‐MNT‐234

Millingstone Components

Simpson's Index of Diversity 

and Eveness

Flaked Stone Diversity and Evenness in Millingstone Period Component

Simpson's Index

Evenness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CA‐MNT‐229 CA‐MNT‐234

Middle Period Components

Simpson's Index of Diversity 

and Eveness

Flaked Stone Diversity and Evenness in Middle Period Component

Simpson's Index

Evenness

60  

Diversity measures show little variability between each of the components within both

sites. The only noticeable difference of all components can be seen in the evenness measure.

Unfortunately, the diversity measure appears to be misleading in the CA-MNT-234 Middle

Period component. The most even component is predominately focused only on three tool

classes with similar representation; bifaces, cores and flake tools. Four additional tools in two

tool classes (projectile points and formed flake tools) only account for 8.2% of the assemblage.

The presence of these two classes inflates the diversity, while realistically the majority of tools

are distributed evenly in a very narrow toolkit.

Assemblage Formality

Two methods chosen to measure assemblage formality include: biface/core ratio and

formal/informal tool ratio. The biface to core ratio broadly compares representations of formal

and informal reduction traditions. More sedentary populations (logistically mobile) tend to use a

more expedient technology while mobile populations (residentially mobile) favor formal tool

technologies (Andrefsky 1991). The count of bifaces representing high tool formality is divided

by the count of more expedient informal core tool class. The formal to informal tool ratio

considers all flaked stone tool classes and associated reduction sequences with the exception of

assayed cobbles. Formal tool classes include: projectile points, bifaces, drills, and cobble tools.

Informal tools have been classified as: cores, core tools and flake tools.

61  

Figure 5. CA-MNT-229 and CA-MNT-234 Millingstone Period Assemblage Formality Ratios

For the Millingstone Period components, formality indices remain somewhat flat

showing mixed results. Nevertheless, both assemblages appear to favor informal expedient

toolkits (Figure 5). Biface to core ratios ranged from 0.76 to 0.82 slightly favoring cores. At both

sites, informal tools are represented by a 2-to-1 ratio measuring 0.6 to 0.52.

Formality indices within the Middle Period assemblages show a clear difference when

compared to the contemporary assemblage (Figure 6). Middle Period flaked stone in CA-MNT-

229 holds the most informal tool ratios of all components with biface/core ratio of 0.68 and

formal/informal tool ratio of 0.38. In contrast, CA-MNT-234 Middle Period assemblage shows a

nearly 1-to-1 biface/core ratio (0.94) and a 0.58 formal/informal tool ratio. Patterns suggest a

difference in the formality of toolkits including a highlighted importance of bifaces at CA-MNT-

234. The noted difference of biface frequency is likely relative to site function.

00.10.20.30.40.50.60.70.80.9

CA‐MNT‐229 CA‐MNT‐234

Millingstone Components

Form

ality Index

Millingstone Period Assemblage Formality Ratios

Biface/Core

Formal/Informal

62  

Figure 6: CA-MNT-229 and CA-MNT-234 Middle Period Assemblage Formality Ratios.

Flaked Stone Tool Production and Use Profile

To further understand assemblage variability and formality, or lack thereof, in flake stone

toolkits we turn to technological characteristics of several artifact classes. Discussion focuses on

bifaces, cores, flake tools and debitage to further understand settlement configuration and toolkit

organization.

Bifaces

A noticeable difference in biface staging is evident during the Millingstone Period

(Figure 7). The CA-MNT-229 collection is dominated by late stage (73.3%) implements, while

the CA-MNT-234 assemblage had a more even mix of stages present.

0

0.2

0.4

0.6

0.8

1

CA‐MNT‐229 CA‐MNT‐234

Middle Period Components

Form

ality Index

Middle Period Assemblage Formality Ratios

Biface/Core

Formal/Informal

63  

Figure 7. CA-MNT-229 and CA-MNT-234 Millingstone Period Biface Stage Profile.

Material profiles from the two locales remain somewhat consistent both dominated by

locally available materials (Figure 8). An interesting representation of exotic (obsidian) bifaces is

present in the CA-MNT-229 collection accounting for 18.8%. This is in contrast to the low

counts of obsidian bifaces (7.1%) at CA-MNT-234.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

CA‐MNT‐229 CA‐MNT‐234

Millingstone Period Biface Stage

Early

Middle

Late

64  

Figure 8. CA-MNT-229 and CA-MNT-234 Millingstone Period Biface Material Profile

Middle Period biface stage profiles show a slight difference between sites (Figure 9). CA-

MNT-229 and CA-MNT-234 both have a large representation of late stage bifaces (54.2% and

73.3% respectively). As discussed in the results, CA-MNT-229 bifaces are small, measuring no

more than 43.3 millimeters in length. The small size, more even distribution throughout stages

and less representation of the total flaked stone toolkit suggests the Middle Period bifaces at CA-

MNT-229 were produced from small pebbles. The uneven representation of biface stages, lack of

biface thinning flakes as flake tools and the lack of biface thinning flakes and pressure flakes in

the debitage indicates bifaces were produced from raw pebble material to finished tool for a

special use off-site. In fact, nearly half of the late stage bifaces were proximal ends (47.2%),

which may have been discarded from hafts upon return from a foray. Further discussion on this

pattern can be seen in the debitage section.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CA‐MNT‐229 CA‐MNT‐234

Millingstone Period Biface Material

Exotic

Extra‐local

Local

65  

Figure 9. CA-MNT-229 and CA-MNT-234 Middle Period Biface Stage Profile

An increase of exotic materials is noted at both Middle Period components (Figure 10).

Obsidian accounts for a quarter of bifaces at each site (25.0-27.7%). An increase of extra-local

materials at CA-MNT-229 contrasts the decrease of extra-local materials at CA-MNT-234.

These shifts identify a greater dependence on long-distance trade materials and use of locally

available high-valued materials at a processing site.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

CA‐MNT‐229 CA‐MNT‐234

Middle Period Biface Stage

Early

Middle

Late

66  

Figure 10. CA-MNT-229 and CA-MNT-234 Millingstone Period Biface Material Profile.

Cores

Core technology remains dominated by expedient core types through time in both CA-

MNT-229 and CA-MNT-234 (Figure 11). Expedient technology hits a peak at the CA-MNT-229

Middle Period component with an overwhelming 92.8% of cores.

Two trends are noted in all but one component. An abundance of cores produced on local

materials (77.8-80.0%) and of pebble sized raw material (80.0-86.0% <5 centimeters in length)

are found in both components in CA-MNT-229 and the Millingstone Period component of CA-

MNT-234. Cores from these three components are consistent in size, material and origin form

showing a uniform selection of similar raw material.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CA‐MNT‐229 CA‐MNT‐234

Middle Period Biface Material

Exotic

Extra‐local

Local

67  

Figure 11. CA-MNT-229 and CA-MNT-234 Core Technology Profile.

Interestingly, the CA-MNT-234 Middle Period component slightly differs when it comes

to raw material acquisition to produce cores. Cores were produced from a range of size and

origin forms of locally available materials. Only 33.3% of identified origin forms were recorded

as pebble size (<5 centimeters). The focus on only locally available raw material, variability of

origin forms and expedient nature of core production signals an ad hoc approach to raw material

acquisition and core production.

The CA-MNT-229 Middle Period component shows a heightened presence of bipolar

cores (84.3%) indicating a strategy reflecting raw material conservation, and/or expedient use of

small, locally acquired pebbles. Unfortunately, the availability of Monterey chert pebbles in the

area is unknown, and the need for raw-material conservation thus likewise remains unknown.

Flake Tools

Millingstone Period flake tools at CA-MNT-229 and CA-MNT-234 are almost entirely

produced on locally available materials (95.0% and 100.0% respectively). The technological

strategy used to produce the entirety of CA-MNT-229 flake tools was of the core/flake reduction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CA‐MNT‐229Millingstone

CA‐MNT‐234Millingstone

CA‐MNT‐229Middle Period

CA‐MNT‐234Middle Period

Core Technology

Formal

Expedient

68  

sequence. The flake tools at CA-MNT-234 used both bifacial (50.0%) and core/flake (50.0%)

reduction strategies.

Middle Period flake tool materials show more variability in both sites (Figure 12). The

increase of extra-local and appearance of exotic materials during this period shows an increase in

long-distance trade. Though, materials are still dominated by locally available stone at both CA-

MNT-229 (75.7%) and CA-MNT-234 (83.3%). A trace amount of obsidian flake tools (0.8%)

were identified at CA-MNT-229.

The core/flake derived flake tools continue to outnumber bifacially reduced flake tools in

both sites. The 95.0% core/flake reduced flake tools at CA-MNT-229 show continuity in the

expedient tool richness at the site. The 25.0% representation of bifacially reduced flake tools

may highlight the importance of bifaces at CA-MNT-234 during the Middle Period. Though

most flake tools are produced from the core/flake tradition, the evidence of bifaces as cores is

interesting as component is dominated by late stage bifaces.

Figure 12. CA-MNT-229 and CA-MNT-234 Middle Period Flake Tool Material Profile.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CA‐MNT‐229 CA‐MNT‐234

Middle Period Flake Tool Material

Exotic

Extra‐local

Local

69  

Debitage

Millingstone Period debitage varies slightly between the two sites (Figure 13). The CA-

MNT-229 debitage is overwhelmingly core/flake debris reaching 85.6% of flakes. As will be

addressed in the Middle Period discussion, patterns are likely the result of expedient tool

production from small pebble locally procured raw materials. CA-MNT-234 has a slight majority

of core/flake debris with strong presence biface production and tool maintenance pressure flakes.

Though the ranking of activities are similar, this component has the most even representation of

both core/flake (58.1%) and biface production/maintenance (41.9%) debris. Use of bifaces as

cores is evident with half of the flake tools from the bifacial reduction sequence and an even

representation of all biface stages.

Figure 13. CA-MNT-229 and CA-MNT-234 Millingstone Period Local Debitage Technological

Profile.

Middle Period debitage analysis at CA-MNT-229 shows 79.2 % of debitage within the

core/flake reduction sequence (Figure 14). As the results state, most debitage is initial core

reduction including decortication debris and bipolar fragments measuring within the medium

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

CA‐MNT‐229 CA‐MNT‐234

Millingstone Period Local Debitage Profile

Core/Flake

Biface Production

Bifacial Tool Maintenance

70  

class sizes. This signals that the raw material procured was rather small. Little effort to produce

formal cores is evident in the small representation of core shaping debris. These factors suggest

raw lithic materials were brought on-site in pebble form (< 5cm diameter) to be processed

predominately into flake tools and occasionally late stage bifaces.

The high number of expedient cores and simple flakes tools produced from chert pebbles

present in the assemblage correspond with the debitage analysis. An overwhelming 92.8% of

cores are classified as expedient with 85.7% of identifiable core origins produced on chert

pebbles. Initial core reduction flakes account for 68.9% of simple flake tools. The flaked stone

tool and debitage analyses are consistent in highlighting the expedient nature of on-site tool

production activities. Though, a significant representation of formal tools remains. Late stage

bifaces, projectile points, drills and flaked cobble tools account for nearly one-third of the flaked

stone tool assemblage. The variety of formal tool forms and abundance of expedient technology

demonstrates tool specialization. There is little evidence of formal tool production or tool

maintenance activities performed on-site.

Figure 14. CA-MNT-229 and CA-MNT-234 Middle Period Local Debitage Technological Profile.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

CA‐MNT‐229 CA‐MNT‐234

Middle Period Local Debitage Profile

Core/Flake

Biface Production

Bifacial Tool Maintenance

71  

The Middle Period debitage at CA-MNT-234 shows, for the first time in this study’s

components, a dominance of biface production and maintenance activities (57.3%). The

core/flake reduction is still representative at 42.7%. Flake tools of this component are common

making up 28.6% of the flaked stone assemblage. As the core analysis suggests, flake tools are

of secondary importance, created ad hoc on-site. Three-quarters of flake tools are products of

these ad hoc cores. Biface production debris appears common (40.9%), though a paucity of early

stage bifaces were recovered. Most bifaces from the component are of late stage and not

necessarily curated for flake tool production. It is likely bifaces were brought to and produced

into final tool forms, then re-sharpened and maintained. The ad hoc nature of expedient tool

classes, the focus on only on three tool classes and the overall importance of bifaces show a

focused and repetitive activity requiring late-stage bifaces to be carried to and produced on-site.

Discussion

The ultimate goal of this project is to propose mobility strategies within each chronological

component, using the measures of lithic technological composition outlined in the earlier

Methods and discussed in the prior section.

Assemblage Diversity and Evenness

Simpson’s index of diversity was employed to measure the assemblage diversity of the

flaked stone tool kit. More diverse assemblages are associated with greater residential stability,

while less diverse assemblages illustrate more short term residential occupation, or task specific

locales. The results show little deviation among all components. All components appear to be

diverse. A note, diversity scores appear to be skewed in the Middle Period assemblage of CA-

MNT-234 as 91.8% of tools are evenly distributed in only three tool classes. The remaining 8.2%

72  

of tools are distributed in two additional tool classes, giving similar diversity scores as all other

components.

Evenness values appear to be more informative than the diversity scores. Evenness values

in the Millingstone Period are similar, both “even” in the tool class distribution. The Middle

Period evenness values show a slight divergence with the CA-MNT-229 registering as “slightly

uneven” and CA-MNT-234 having the “most even” value.

The evenness values show both Millingstone Period assemblages to reflect a residentially

mobile toolkit. The Middle Period evenness value gives CA-MNT-229 the slightly uneven tool

assemblage that is indicative of a logistically mobile toolkit. The most even toolkit is the CA-

MNT-234 Middle Period component. Despite the diversity score, the high evenness of the

narrow toolkit suggests a specialized task specific activity occurring in this component.

Assemblage Formality

Two indices were explored to assess assemblage formality. The biface/core index and the

formal/informal index presented several interesting patterns. During the Millingstone Period,

there is little deviation between the two sites, all favoring informal toolkits. The Middle Period

assemblages, however, indicate the greatest deviance of indices between sites. CA-MNT-229

demonstrates the most informal flaked stone assemblage in both biface/core and formal/informal

indices. Contemporaneously, CA-MNT-234 shows a nearly even biface/core ratio and a

divergent formal/informal reading. In comparison, the formality ratios indicate little difference in

assemblage formality during the Millingstone Period, and a substantial difference of assemblage

formality during the Middle Period.

73  

Tool Profiles

In summarizing the flaked stone tool assemblage profile, unique characteristics for each

temporal component were identified. The Millingstone Period component of CA-MNT-229

shows cores and flake tools as the prominent technology with bifaces mostly of the late-stages.

The CA-MNT-234 assemblage has evidence of bifaces used as cores. The Middle Period

assemblages show drastic differences in overall tool profile. CA-MNT-229 is strongly focused

on the use of bipolar reduction on expedient pebble cores for simple flake tool production.

Formal tools are present at the lowest ratios. Bifaces are present, though, in broken proximal

ends of the late-stages. Inversely, CA-MNT-234 holds a nearly even amount of bifaces to cores.

The bifaces are dominated by late-stage specimens within a very narrow toolkit. Bifaces at this

locale are specialized and brought on-site for a specific task. Cores and flake tools are prevalent,

though are limited to locally available materials. These cores can be interpreted as locally

procured ad hoc tools for additional cutting implements that the specialized bifaces were too

limited to accomplish additional non-specialized tasks.

Debitage Profile

Both temporal components of CA-MNT-229 appear to be the result of expedient tool

production from small pebble locally procured raw materials. The similar profile in both

components may be a result of the same activities occurring at two different occupations.

Unfortunately, it is more likely that the Middle Period residues have overwhelmed the

Millingstone Period component through sheer numbers and the mixing of sand matrices.

The Millingstone Period component of CA-MNT-234 has a slight majority of core/flake

debris with strong presence biface production and tool maintenance pressure flakes. The

core/flake reduction sequence, as both components of CA-MNT-229, are a result of processing

74  

small pebble locally procured raw materials. The increase of biface debris correlates with the use

of bifaces as cores and flake tools of biface origin.

The Middle Period debitage from CA-MNT-234 is a complete departure from all other

components examined. Biface production and maintenance activities are the dominant flaked

stone debris. Most bifaces from the component are of late stage. Debitage analysis suggests

bifaces were brought to and produced on-site into final tool forms. The bifaces were continually

re-sharpened and maintained while in use. The ad hoc nature of the expedient cores and flake

tools lend to the drop in core/flake representation in this component.

Conclusion

Proposed Settlement Configuration

All proxy measures and attributes have been considered in assessing settlement

configuration (Table 20). The integrity of the Millingstone Period component of CA-MNT-229

is somewhat questionable. Without doubt, the site was occupied during the Millingstone Period

(Jones and Jones 1992, Jones et al. 2007). The site has several Millingstone Period specific

characteristics outlined in the Jones and Jones (1992) article including side notch projectile

points, core tools, flaked cobble tools and an eccentric crescent biface. Additionally another late-

stage biface (Cat# 04-058) holds attributes that may deem the specimen the temporally explicit

eccentric crescent. The biface is of high quality Monterey chert, has a slight curvature, is highly

curated, and holds a remarkable width-to-thickness ratio of 4.5. These tools, including crescents,

are present in both defined Millingstone Period and Middle Period components.

The similarity of both Millingstone Period and Middle Period flaked stone assemblages

lends to the possible mixing of the two components. The only notable difference is found within

the evenness index and the formality index (formal/informal tools). The Millingstone Period

75  

component bore the least informal assemblage index. The Middle Period produced the most

informal tool assemblage as well as the only uneven flaked stone tool assemblage. Nevertheless,

the Millingstone Period component will reflect the Middle Period settlement configuration with

reservations.

The Millingstone Period component of CA-MNT-234 shows a tool profile indicative of a

residentially mobile home base. At first glance the diversity of flake stone tools higher than

expected and the informal nature of this assemblage are both counter to this settlement

classification. First, the most indicative attribute of a residentially mobile settlement

configuration is the flaked stone tools are very flexible and multi-purposed. Secondly, the bifaces

are used as both a tool and a core. The full reduction sequence of the biface class is evident in the

evenly distributed staging of the bifaces. Finally, the debitage supports the even nature of tool

distribution as core/flake and biface production are somewhat even. This component gives great

insight to approaches towards flaked stone materials as Millingstone Period components

generally show a lack of stone tool production debris. The concentration of flaked stone material

identified as the “Lithic Workshop” (Breschini and Haversat 1995) further aids in the poorly

understood Millingstone Period expression in the Monterey Bay area.

It is clear the CA-MNT-229 Middle Period flaked stone assemblage is diverse and

uneven with the most informal toolkit. Expedient pebble cores, flake tools and debris related to

their production are overwhelming. The pattern of broken proximal ends of late-stage bifaces and

paucity of distal fragments signals an interesting discard pattern. The bifaces are broken off-site

as few distal ends are present. The proximal end returns to CA-MNT-229 still within the haft,

and then discarded. These lines of evidence reflect patterns of a residential site of a logistically

mobile group.

76  

Table 20. Summary of Proxy Measures and Proposed Settlement Configuration.

Millingstone Period Middle Period Proxy Measure CA-MNT-229 CA-MNT-234 CA-MNT-229 CA-MNT-234 Assemblage Diversity

Diverse (D=0.8)

Diverse (D=0.72)

Diverse (D=0.75)

Diverse (D=0.71)

With reservations. Assemblage Evenness

Even (E=0.57)

Even (E=0.6)

Slightly uneven (E=0.45)

Most even (E=0.69)

Assemblage Formality (Biface/core Index)

Informal (B/C=0.76)

Informal (B/C=0.82)

Most informal (B/C=0.68)

Nearly even (B/C=0.94)

Assemblage Formality (Formality Index)

Informal (F/I=0.6)

Informal (F/I=0.52)

Most informal (F/I=0.38)

Informal (F/I=0.58)

Tool Profile Cores prevalent. Bifaces mostly

late-stage.

Bifaces as cores. Even

representation of all stages.

Expedient pebble cores and flake

tools overwhelming.

Broken proximal late-stage bifaces

discarded.

Bifaces as specialized tools. Ad hoc cores and

flake tools.

Debitage Profiles Focus on expedient core

production.

Most even focus on core/flake and biface reduction

sequences.

Focus on expedient core

production.

Focus on biface production and maintenance.

Proposed settlement configuration

Logistically mobile residential

site. With reservations.

Residentially Mobile residential

site

Logistically mobile residential

site.

Logistically mobile special-use

site.

Finally, the Middle Period component of CA-MNT-234 holds the most even, most formal

and least diverse toolkit of all components. The dominance of late-stage bifaces and ad hoc

nature of cores and flake tools indicates the narrow and specific nature of the toolkit carried to

the site. The bifaces at CA-MNT-234 in the Middle Period are specialized for a logistically

planned task at a task-specific site. The debitage profile reinforces this classification, as it is

contrary to the contemporary CA-MNT-229 component. The debitage is dominated by

production and maintenance debris of the specialized bifaces.

77  

The lack of mortars and pestles noted in Milliken et al. (1999) supports both faunal

analyses and lithic analysis as a location for a specialized task. This component has been

extensively studied for its large population of northern fur seals (Gifford-Gonzalez and Sunseri

2009, Sunseri 2009). Following the comprehensive analysis of the fauna, flaked stone analysis

suggests the flaked stone tool assemblage and debris are associated with the processing of

Northern Fur Seals at CA-MNT-234 during the Middle Period. The flaked stone tool kit was

designed to dispatch the Northern Fur Seals in the rookery location at or very near CA-MNT-

234. The northern fur seal parts were then brought to the residential base at CA-MNT-229 for

consumption and further pelt production for use and trade (Sunseri 2009).

78  

References Cited

Andrefsky, W. 1991 Inferring Trends in Prehistoric Settlement Behavior from Lithic Production

Technology in the Southern Plains. North American Archaeology 12(2):15. 1994 Raw Material Availability and the Organization of Technology. American

Antiquity 59:21-35. 2005 Lithics: Macroscopic Approaches to Analysis. New York: Cambridge University

Press. Bamforth, Douglas R. 1991 Technological Organization and Hunter-gatherer Land Use: A California

Example. American Antiquity 56:216-234. Bennyhoff, J.A and R. E. Hughes 1987 Shell Bead and Ornament Exchange Networks Between California and the

Western Great Basin. American Museum of Natural History Anthropological Papers 64:80-175.

Binford, L. R. 1980 Willow Smoke and Dogs' Tails: Hunter-gatherer Settlement Systems and

Archaeology. American Antiquity 45:4-20. Boone, C.M. 2012 Integrating Zooarchaeology and Modeling: Trans-Holocene Fishing in Monterey

Bay, California, Ph. D. dissertation, Department of Anthropology, University of California, Santa Cruz.

Bouey, P.D, and M.E. Basgall 1991 Archaeological Patterns Along the South-Coast, Point Piedras Blancas, San Luis

Obispo County, California: Archaeological Test Evaluation Sites CA-SLO-26, SLO-267, SLO-268, SLO-1226, and SLO-1227. Report on file at California Department of Transportation, District 5, San Luis Obispo.

Bousman, C.B. 1993 Hunter-Gatherer Adaptations, Economic Risk, and Tool Design. Lithic

Technology 18:59-86. Brady, R. T., J. M. Faquhar and J. P. Ellison 2011 Flaked Stone Studies at Camp Roberts Army National Guard Training

Installation: Theoretical Underpinnings and Contributions to California Central Coast Prehistory. Presented at the 76th Annual Meeting of the Society for American Archaeology. Sacramento, California. April 1

79  

Callahan, E. 1979 The Basics of Biface Knapping in the Eastern Fluted Point Tradition: A Manual

for Flint Knappers and Lithic Analysts. Archaeology of Eastern North America 7(1):1-180.

Carpenter, T. R., D. Nicholson and D. W. Zeanah 2004 Archaeological Evaluations of Twelve Prehistoric Properties on Camp San Luis

Obispo and Camp Roberts, San Luis Obispo County, California (Camp San Luis Obispo: CA-SLO-602, CA-SLO-1842, CA-SLO-2023, CA-SLO-2175 and CA-SLO-2209; Camp Roberts: CA-SLO-1880 West, CA-SLO-1180 East, CA-SLO-1835, CA-SLO-1836, CA-SLO-2025, CA-SLO-2176 and CA-SLO-2177). Prepared for Military Department California National Guard, Sacramento, California.

Cartier, R. and V. Bobo 2002 Early Peoples of Monterey Bay: The Scotts Valley Site. In A Gathering of

Voices: The Native Peoples of the Central California Coast. Santa Cruz, CA: The Santa Cruz History Journal.

Cowan, F. L. 1999 Making Sense of Lithic Scatters: Lithic Technology Strategies and Mobility.

American Antiquity 64:593-607. Culleton, B. J., R. H. Gargett and T. L. Jackson 2005 Data Recovery Excavations at CA-SCR-60/130 for the Pajaro Valley Water

Management Agency Local Water Supply and Distribution Project. Report prepared for the Pajaro Valley Water Management Agency and submitted to the US Army Corps of Engineers, San Francisco District.

Dietz, S. A., W. R. Hildebrandt and T. L. Jones 1988 Archaeological investigations at Elkhorn Slough: CA-MNT-229, a Middle Period

Site on the Central California Coast. Papers in Northern California Anthropology 3. Dondero, S. B., D. Noble, J. Offerman and T. Schuster 1984 A Preliminary Report on Archaeological Testing , CA-MNT-229. Report on file

at the California Department of Transportation, Sacramento. Erlandson, J. M. 1991 Shellfish and Seeds as Optimal Resources: Early Holocene Subsistence on the

Santa Barbara Coast. In Hunter-Gatherers of Early Holocene Coastal California. J.M.Erlandson and.R.H. Colten, ed. Pp. 89-100. Los Angeles: Institute of Archaeology, University of California, Los Angeles.

Farquhar, J. M., R. T. Brady, T. Garlinghouse and J. P. Ellison 2011 Archaeological Investigations from the Nacimiento Water Project, San Luis

Obispo, California. Albion Environmental Inc. Submitted to the County of San Luis Obispo, Department of Public Works.

80  

Fitzgerald, R. T. 2000 Cross Creek: An Early Holocene/Millingstone Period Site. California State Water

Project, Coastal Branch Series Paper Number 12. San Luis Obispo County Archaeological Society, San Luis Obispo.

Fitzgerald, R. T., and T. L. Jones 1999 The Millingston Horizon Revisited: New Perspectives from Northern and

Southern California. Journal of California and Great Basin Anthropology 21(1):67-93. Gifford-Gonzalez, D. and C. K. Sunseri 2009 An Earlier Extirpation of Fur Seals in the Monterey Bay Region: Recent Findings

and Social Implications. Society for California Archaeology Proceedings 21:89-102. Glassow, M. A. 1992 The Relative Dietary Importance of Marine Foods Through Time in Western

Santa Barbara County. In Essays on the Prehistory of Maritime California. T.L. Jones, ed. Pp. 115-128. Davis, CA: Center for Archaeological Research at Davis.

Haversat, Breschini G. S. and T. 1980 Preliminary Archaeological Report and Archaeological Management

Recommendations for CA-MNT-170, on Pescadero Point, Monterey County, California. Archaeological Consulting.

1995 Archaeological Evaluation of CA-MNT-234, at the Site of the Proposed Moss

Landing Marine Laboratory, Moss Landing, Monterey County, California. Archaeological Consulting.

2011 A Revised Cultural Sequence for the Monterey Peninsula Area, California. Pacific

Coast Archaeological Society Quarterly 44(3):1-24. Hildebrandt, W. R. 1997 The Relative Importance of Lacustrine and Estuarine Resources to Prehistoric

Hunter-Gatherer Populations: A View from Southern Santa Clara Valley, California. Journal of California and Great Basin Anthropology 19(2):197-225.

Hylkema, Mark G 1991 Prehistoric Native American Adaptations along the Central California Coast of

San Mateo and Santa Cruz Counties Master's Thesis, Social Science, San Jose State University.

Jackson, T. L. and J. E. Ericson 1994 Prehistoric Exchange Systems in California. In Prehistoric Exchange Systems in

North America. T.G. Baugh and J.E. Ericson, ed. Pp. 385-415. New York: Plenum Press.

81  

Jones, T. L. 1993 Big Sur: A Keystone in Central California Culture History. Pacific Coast Archaeological Society Quarterly 29(1):1-78. 1995 Transitions in Prehistoric Diet, Mobility, Exchange and Social Organization

Along California's Big Sur Coast, Ph. D. dissertation, Department of Anthropology, University of California, Davis.

2002 Archaeology and Prehistoric Human Use. In Changes in a California Estuary: A

Profile of Elkhorn Slough. J. Caffrey, M. Brown, W. B. Tyler and M Silberstein, ed. Moss Landing, CA: Elkhorn Slough Foundation.

2003 Prehistoric Human Ecology of the Big Sur Coast, California. Contributions of the

University of California 61. Archaeological Research Facility, University of California, Berkeley.

Jones, T. L and D. A. Jones 1992 Elkhorn Slough Revisited: Reassessing the Chronology of CA-MNT-229. Journal

of California and Great Basin Anthropology 14(2):159-179. Jones, T. L and D. J. Kennett 1999 Late Holocene Sea Temperatures Along the Central California Coast. Quaternary

Research 51:74-82. Jones, T. L and J. Ferneau 2002 Deintensification Along the Central Coast. In Catalysts to Complexity: Late

Holocene Societies of the California Coast. J.M. Erlandson and T.L. Jones, ed. Pp. 204-231. Los Angeles, CA: Institute of Archaeology, University of California, Los Angeles.

Jones, T. L and J. W. Haney 2005 Archaeological Evaluation of CA-MNT- 910, -1749/H, 1919 and -2182, Fort

Hunter Liggett Military Installation, Monterey County, California. California Polytechnic State University, San Luis Obispo, CA.

Jones, T. L and M. G. Hylkema 1988 Two Proposed Projectile Point Types for the Monterey Bay Area: Año Nuevo

Long-stemmed and Rossi Square-stemmed. Journal of California and Great Basin Anthropology 10(2):163-186.

Jones, T. L and G. Waugh 1997 Climatic Consequences or Pragmatism? A Middle Holocene Prehistory of the

Central California Coast. In Archaeology of the California Coast during the Middle Holocene. J.M. Erlandson and M.A. Glassow, ed. Los Angeles, CA: Institute of Archaeology, University of California, Los Angeles.

82  

Jones, T. L, N.E. Stevens, D. A. Jones, R. T. Fitzgerald, and M. G. Hylkema 2007 The Central Coast: A Midlatitude Milieu. In California Prehistory: Colonization,

Culture and Complexity. T.L.Jones and K.A. Klar, ed. Pp. 125-146. Lanham, MD: AltaMira Press.

Jones, T. L, T. Van Buren, S. Grantham, J. Huddleson and T. W. Fung 1996 Archaeological Test Excavations for the Castroville Bypass Project, State

Highway 1, Monterey California. Cultural Studies Office, Caltrans Environmental Program. Submitted to Gary Ruggerone, Environmental Branch, Caltrans District 05, San Luis Obispo, CA.

Jones, T. L., G. M. Brown, M. Raab, J. McVickar, G. Spaulding, D. J. Kennett, A. York and P. L. Walker 1999 Environmental Imperatives Reconsidered: Demographic Crises in Western North

America during the Medieval Climatic Anomaly. Current Anthropology 40(2):137-170. Kelly, R. L. 1988 Three Sides of a Biface. American Antiquity 53:717-734. 1992 Mobility/Sedentism: Concepts, Archaeology Measures and Effects. Annual

Review of Anthropology 21:43-66. Kuhn, S. L. 1994 A Formal Approach to the Design and Assembly of Mobile Toolkits. American

Antiquity 59:426-442. Milliken, R and Al W. Schwitalla 2012 California and Great Basin Olivella Shell Bead Guide. Walnut Creek, CA: Left

Coast Press, Inc. Milliken, R. J., J. Nelson, W. Hildebrandt and P. Mikkelsen 1999 The Moss Landing Hill Site: A Technical Report on Archaeological Studies. Far

Western Anthropological Research Group, Inc. Submitted to California State University. Moratto, M.J. 1984 California Archaeology. Salinas, CA: Coyote Press. Nelson, M. C. 1991 The Study of Technological Organization. In Archaeology Method and Theory.

M. Schiffer, ed. Pp. 57-100. Tucson, AZ: University of Arizona Press. Newsome, S. D., D. L. Phillips, B. J. Culleton, T. P. Guilderson and P. L. Koch 2004 Dietary Reconstruction of an Early to Middle Holocene Human Population from

the Central California Coast: Insights from Advanced Stable Isotope Mixing Models. Journal of Archaeological Science 31:1101-1115.

83  

Parry, W. J., and R. L. Kelly 1987 Expedient Core technology and Sedentism. In Organization of Core Technology.

J.K. Johnson and C.A. Morrow, ed. Pp. 285-304. Boulder, CO: Westview Press. Pecora, A. M. 2001 Chipped Stone Tool Production Strategies and Lithic Debris Patterns. In Lithic

Debitage: Context, Form, Meaning. W. Andrefsky, ed. Pp. 173-190. Salt Lake City, UT: The University of Utah Press.

Rogers, D. B. 1929 Prehistoric Man of the Santa Barbara Coast. Santa Barbara, CA: Santa Barbara

Museum of Natural History Press. Shott, M. J. 1986 Technological Organization and Settlement Mobility: An Ethnographic

Examination. Journal of Anthropological Research 42:15-51. 1989 Bipolar Industries: Ethnographic Evidence and Archaeological Implications.

North American Archaeologist 10:1-24. Shott, M. J. and M. C. Nelson 2008 Lithic Reduction, Its Measurement, and Implications. In Lithic Technology. W.

Andrefsky, ed. Pp. 23-45. New York, NY: Cambridge University Press. Sunseri, C. K. 2009 Spatial Economies of Precontact Exchange in the Greater Monterey Bay Area,

California, Ph. D. dissertation, Department of Anthropology, University of California, Santa Cruz.

Torrence, R. 1983 Time Budgeting and Hunter-gatherer Technology. In Hunter-Gatherer Economy

in Prehistory. G. Bailey, ed. Pp. 11-22. Cambridge, UK: Cambridge University Press.

84  

Appendix I: General Catalog of CA-MNT-229 Flaked Stone Assemblage

85  

General Catalog Data Entry Form—Explanatory Key Site Number. Site designation/assigned California Trinomial Catalog Number Specimen number assigned consecutively during cataloguing Unit Type Unit type: Auger, CU (Control Unit), Isolate, Mechanical, RRU (Rapid

Recovery Unit), SBC (Shovel Broadcast), STU (Surface Transect Unit). Unit Number Unit number Upper Level Upper depth in cm below surface Lower Level Lower depth in cm below surface Context Context assigned as per Boone 2012: MST (Millingstone), Middle (Middle

Period). Mesh Screen size used, if applicable (“) Group Artifact/Material group

FLS Flaked stone

Class Artifact Class ASC Assayed cobble

BIF Biface COR Core CRT Core Tool DEB Debitage DRI Drill FFT Formal flake tool FKT Simple Flake Tool FLC Flaked cobble tool (“chopper”; sinuous edge) PPT Projectile Point

Matl. Material Type

BAS Basalt CCS Cryptocrystilline silicate CHA Chalcedony FCT Franciscan Chert IGN Igneous rock MCT Monterey chert MET Metamorphic MTS Metamorphosed sedimentary rock OBS Obsidian QTZ Quartz QZT Quartzite

Count Material count Weight Material weight in grams measured to nearest 1/10th of a gram except for

items over 300 grams which are weighed to the nearest gram Description Material/Artifact description Comments Analyst comment

86  

CA‐MNT‐229FlakedStoneGeneralCatalogSite Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 01002 STU: Surface Transect Unit 01 000 010 Middle 1/8 inch FLS COR CCS 1 9 CORE 

CA‐MNT‐0229 01008 STU: Surface Transect Unit 01 010 020 Middle 1/8 inch FLS BIF FCT 1 3 BIFACE 

CA‐MNT‐0229 01009 STU: Surface Transect Unit 01 010 020 Middle 1/8 inch FLS COR MCT 1 18.1 CORE 

CA‐MNT‐0229 01010 STU: Surface Transect Unit 01 010 020 Middle 1/8 inch FLS BIF MCT 1 18.5 BIFACE 

CA‐MNT‐0229 01019 STU: Surface Transect Unit 01 020 030 Middle 1/8 inch FLS BIF FCT 1 11.2 BIFACE 

CA‐MNT‐0229 01020 STU: Surface Transect Unit 01 020 030 Middle 1/8 inch FLS FKT MCT 1 4.1 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 01047 STU: Surface Transect Unit 01 050 060 Middle 1/8 inch FLS FLC IGN 1 44.8 COBBLE TOOL 

CA‐MNT‐0229 01061 STU: Surface Transect Unit 01 070 080 Middle 1/8 inch FLS COR MCT 1 18.8 CORE 

CA‐MNT‐0229 01069 STU: Surface Transect Unit 01 080 090 Middle 1/8 inch FLS BIF MCT 1 7.2 BIFACE 

CA‐MNT‐0229 01079 STU: Surface Transect Unit 01 090 100 Middle 1/8 inch FLS COR MCT 1 10.6 CORE 

CA‐MNT‐0229 01086 STU: Surface Transect Unit 01 100 110 Middle 1/8 inch FLS BIF MCT 1 1.3 BIFACE 

CA‐MNT‐0229 01087 STU: Surface Transect Unit 01 100 110 Middle 1/8 inch FLS BIF MCT 1 0.8 BIFACE 

CA‐MNT‐0229 01088 STU: Surface Transect Unit 01 100 110 Middle 1/8 inch FLS COR MCT 1 9.3 CORE 

CA‐MNT‐0229 01137 STU: Surface Transect Unit 01 200 210 Middle 1/8 inch FLS BIF OBS 1 0.6 BIFACE 

CA‐MNT‐0229 02007 STU: Surface Transect Unit 02 000 010 Middle 1/8 inch FLS DRI MCT 1 14.8 DRILL 

CA‐MNT‐0229 02022 STU: Surface Transect Unit 02 020 030 Middle 1/8 inch FLS COR FCT 1 13.3 CORE 

CA‐MNT‐0229 02029 STU: Surface Transect Unit 02 030 040 Middle 1/8 inch FLS FKT MCT 1 7.7 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 02039 STU: Surface Transect Unit 02 040 050 Middle 1/8 inch FLS BIF MCT 1 3 BIFACE 

Page 1 of 37 

87  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 02040 STU: Surface Transect Unit 02 040 050 Middle 1/8 inch FLS FKT MCT 1 20.2 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 02043 STU: Surface Transect Unit 02 040 050 Middle 1/8 inch FLS COR MCT 1 8.9 CORE 

CA‐MNT‐0229 02047 STU: Surface Transect Unit 02 050 060 Middle 1/8 inch FLS CRT MCT 1 17 CORE Tool sub #2 

CA‐MNT‐0229 02047 STU: Surface Transect Unit 02 050 060 Middle 1/8 inch FLS FKT MCT 1 8.9 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 02049 STU: Surface Transect Unit 02 050 060 Middle 1/8 inch FLS COR MCT 1 16.6 CORE 

CA‐MNT‐0229 02057 STU: Surface Transect Unit 02 060 070 Middle 1/8 inch FLS FKT MCT 1 2.2 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 02057 STU: Surface Transect Unit 02 060 070 Middle 1/8 inch FLS FKT MCT 1 2 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 02057 STU: Surface Transect Unit 02 060 070 Middle 1/8 inch FLS COR MCT 1 6.1 CORE sub #1 

CA‐MNT‐0229 02060 STU: Surface Transect Unit 02 060 070 Middle 1/8 inch FLS BIF OBS 1 2.9 BIFACE 

CA‐MNT‐0229 02062 STU: Surface Transect Unit 02 060 070 Middle 1/8 inch FLS BIF MCT 1 0.7 BIFACE 

CA‐MNT‐0229 02066 STU: Surface Transect Unit 02 070 080 Middle 1/8 inch FLS COR MCT 1 27.1 CORE sub #2 

CA‐MNT‐0229 02066 STU: Surface Transect Unit 02 070 080 Middle 1/8 inch FLS FKT MCT 1 0.5 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 02066 STU: Surface Transect Unit 02 070 080 Middle 1/8 inch FLS COR MCT 1 12.2 CORE sub #1 

CA‐MNT‐0229 02075 STU: Surface Transect Unit 02 080 090 Middle 1/8 inch FLS COR MCT 1 19.7 CORE 

CA‐MNT‐0229 02085 STU: Surface Transect Unit 02 090 100 Middle 1/8 inch FLS COR CCS 1 48.8 CORE 

CA‐MNT‐0229 02091 STU: Surface Transect Unit 02 100 110 MST 1/8 inch FLS COR MCT 1 12.2 CORE 

CA‐MNT‐0229 02095 STU: Surface Transect Unit 02 100 110 MST 1/8 inch FLS FLC MET 1 191.1 COBBLE TOOL 

CA‐MNT‐0229 02138 STU: Surface Transect Unit 02 170 180 MST 1/8 inch FLS FKT MCT 1 7.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 03003 STU: Surface Transect Unit 03 000 010 Middle 1/8 inch FLS COR MCT 1 12.8 CORE 

Page 2 of 37 

88  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 03024 STU: Surface Transect Unit 03 030 040 Middle 1/8 inch FLS BIF OBS 1 2.9 BIFACE 

CA‐MNT‐0229 03028 STU: Surface Transect Unit 03 040 050 Middle 1/8 inch FLS COR MCT 1 8.8 CORE 

CA‐MNT‐0229 03035 STU: Surface Transect Unit 03 050 060 Middle 1/8 inch FLS BIF OBS 1 3.1 BIFACE 

CA‐MNT‐0229 03038 STU: Surface Transect Unit 03 050 060 Middle 1/8 inch FLS COR MCT 1 19.1 CORE 

CA‐MNT‐0229 03043 STU: Surface Transect Unit 03 060 070 Middle 1/8 inch FLS FKT FCT 1 22.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 03044 STU: Surface Transect Unit 03 060 070 Middle 1/8 inch FLS BIF MCT 1 2.6 BIFACE 

CA‐MNT‐0229 03055 STU: Surface Transect Unit 03 080 090 Middle 1/8 inch FLS COR MCT 1 14.7 CORE 

CA‐MNT‐0229 03074 STU: Surface Transect Unit 03 110 120 MST 1/8 inch FLS BIF MCT 1 5.1 BIFACE 

CA‐MNT‐0229 03076 STU: Surface Transect Unit 03 110 120 MST 1/8 inch FLS COR FCT 1 27.7 CORE 

CA‐MNT‐0229 03082 STU: Surface Transect Unit 03 120 130 MST 1/8 inch FLS BIF MCT 1 4.7 BIFACE 

CA‐MNT‐0229 03096 STU: Surface Transect Unit 03 150 160 MST 1/8 inch FLS COR MCT 1 27.2 CORE 

CA‐MNT‐0229 04045 STU: Surface Transect Unit 04 070 080 Middle 1/8 inch FLS COR MCT 1 12.3 CORE 

CA‐MNT‐0229 04056 STU: Surface Transect Unit 04 080 090 Middle 1/8 inch FLS FKT MCT 1 1.2 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 04057 STU: Surface Transect Unit 04 080 090 Middle 1/8 inch FLS COR MCT 1 11.7 CORE 

CA‐MNT‐0229 04058 STU: Surface Transect Unit 04 088 088 Middle 1/8 inch FLS BIF MCT 1 9.3 BIFACE CRESCENT? 

CA‐MNT‐0229 04083 STU: Surface Transect Unit 04 100 110 Middle 1/8 inch FLS FKT CCS 1 1.5 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 04084 STU: Surface Transect Unit 04 100 110 Middle 1/8 inch FLS FKT MCT 1 0.6 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 04102 STU: Surface Transect Unit 04 120 130 Middle 1/8 inch FLS COR MCT 1 9.4 CORE 

CA‐MNT‐0229 04103 STU: Surface Transect Unit 04 120 130 Middle 1/8 inch FLS FKT CCS 1 3.7 SIMPLE FLAKE TOOL 

Page 3 of 37 

89  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 04104 STU: Surface Transect Unit 04 120 130 Middle 1/8 inch FLS COR QZT 1 68.8 CORE 

CA‐MNT‐0229 04111 STU: Surface Transect Unit 04 130 140 Middle 1/8 inch FLS FLC QZT 1 37 COBBLE TOOL 

CA‐MNT‐0229 04112 STU: Surface Transect Unit 04 130 140 Middle 1/8 inch FLS FKT MCT 1 2.1 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 04113 STU: Surface Transect Unit 04 130 140 Middle 1/8 inch FLS COR MCT 1 24.6 CORE 

CA‐MNT‐0229 04123 STU: Surface Transect Unit 04 140 150 Middle 1/8 inch FLS FKT MCT 1 4.6 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 04126 STU: Surface Transect Unit 04 140 150 Middle 1/8 inch FLS FFT IGN 1 61 FORMED FLAKE TOOL 

CA‐MNT‐0229 04137 STU: Surface Transect Unit 04 150 160 Middle 1/8 inch FLS COR MCT 1 12 CORE 

CA‐MNT‐0229 04138 STU: Surface Transect Unit 04 150 160 Middle 1/8 inch FLS COR MTS 1 66.3 CORE 

CA‐MNT‐0229 04149 STU: Surface Transect Unit 04 160 170 Middle 1/8 inch FLS FKT MCT 1 3.5 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 04161 STU: Surface Transect Unit 04 170 180 Middle 1/8 inch FLS BIF MCT 1 11 BIFACE 

CA‐MNT‐0229 04170 STU: Surface Transect Unit 04 180 190 Middle 1/8 inch FLS FFT MCT 1 11.6 FORMED FLAKE TOOL 

CA‐MNT‐0229 04172 STU: Surface Transect Unit 04 180 190 Middle 1/8 inch FLS BIF OBS 1 1.1 BIFACE 

CA‐MNT‐0229 04188 STU: Surface Transect Unit 04 190 200 Middle 1/8 inch FLS FKT MCT 1 5.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 04189 STU: Surface Transect Unit 04 190 200 Middle 1/8 inch FLS FKT MCT 1 2.7 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 04192 STU: Surface Transect Unit 04 190 200 Middle 1/8 inch FLS ASC MCT 1 12.7 ASSAYED COBBLE 

CA‐MNT‐0229 04198 STU: Surface Transect Unit 04 200 210 Middle 1/8 inch FLS COR FCT 1 33.9 CORE 

CA‐MNT‐0229 04199 STU: Surface Transect Unit 04 200 210 Middle 1/8 inch FLS BIF OBS 1 0.1 BIFACE 

CA‐MNT‐0229 04210 STU: Surface Transect Unit 04 210 220 Middle 1/8 inch FLS FKT MCT 1 2.4 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 04219 STU: Surface Transect Unit 04 220 230 Middle 1/8 inch FLS ASC FCT 1 75.2 ASSAYED COBBLE 

Page 4 of 37 

90  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 04220 STU: Surface Transect Unit 04 220 230 Middle 1/8 inch FLS FFT FCT 1 40.7 FORMED FLAKE TOOL 

CA‐MNT‐0229 05027 STU: Surface Transect Unit 05 050 060 Middle 1/8 inch FLS BIF MCT 1 2.8 BIFACE 

CA‐MNT‐0229 05048 STU: Surface Transect Unit 05 090 100 Middle 1/8 inch FLS BIF OBS 1 0.5 BIFACE 

CA‐MNT‐0229 05054 STU: Surface Transect Unit 05 100 110 MST 1/8 inch FLS BIF MCT 1 5 BIFACE 

CA‐MNT‐0229 05055 STU: Surface Transect Unit 05 100 110 MST 1/8 inch FLS FLC MET 1 42 COBBLE TOOL 

CA‐MNT‐0229 05060 STU: Surface Transect Unit 05 110 120 MST 1/8 inch FLS BIF MTS 1 9.5 BIFACE 

CA‐MNT‐0229 05078 STU: Surface Transect Unit 05 140 150 MST 1/8 inch FLS ASC IGN 1 62 ASSAYED COBBLE 

CA‐MNT‐0229 05079 STU: Surface Transect Unit 05 140 150 MST 1/8 inch FLS FLC MET 1 226.3 COBBLE TOOL 

CA‐MNT‐0229 05080 STU: Surface Transect Unit 05 140 150 MST 1/8 inch FLS FLC IGN 1 57.3 COBBLE TOOL 

CA‐MNT‐0229 05088 STU: Surface Transect Unit 05 150 160 MST 1/8 inch FLS COR MCT 1 17.2 CORE 

CA‐MNT‐0229 05101 STU: Surface Transect Unit 05 180 190 MST 1/8 inch FLS BIF MCT 1 8.8 BIFACE 

CA‐MNT‐0229 06023 STU: Surface Transect Unit 06 030 040 Middle 1/8 inch FLS BIF CCS 1 1.1 BIFACE 

CA‐MNT‐0229 06026 STU: Surface Transect Unit 06 030 040 Middle 1/8 inch FLS COR MCT 1 5.4 CORE 

CA‐MNT‐0229 06027 STU: Surface Transect Unit 06 030 040 Middle 1/8 inch FLS COR MCT 1 3.9 CORE 

CA‐MNT‐0229 06031 STU: Surface Transect Unit 06 040 050 Middle 1/8 inch FLS BIF MCT 1 5.6 BIFACE 

CA‐MNT‐0229 06066 STU: Surface Transect Unit 06 080 090 Middle 1/8 inch FLS FKT MCT 1 1.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 06075 STU: Surface Transect Unit 06 090 100 Middle 1/8 inch FLS COR IGN 1 45.9 CORE 

CA‐MNT‐0229 06094 STU: Surface Transect Unit 06 110 120 MST 1/8 inch FLS BIF MCT 1 0.7 BIFACE 

CA‐MNT‐0229 07002 isolate ‐ ‐ ‐ ‐ FLS FFT IGN 1 91.7 FORMED FLAKE TOOL 

Page 5 of 37 

91  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 07004 CU: Control Unit 07 000 010 Middle 1/8 inch FLS DEB MTS 1 12 DEBITAGE sub #3 

CA‐MNT‐0229 07004 CU: Control Unit 07 000 010 Middle 1/8 inch FLS DEB MCT 8 31.1 DEBITAGE sub #1 

CA‐MNT‐0229 07004 CU: Control Unit 07 000 010 Middle 1/8 inch FLS DEB FCT 3 20 DEBITAGE sub #2 

CA‐MNT‐0229 07007 AUGER 07 048 100 Middle 1/8 inch FLS FKT MCT 1 2.1 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 07016 CU: Control Unit 07 010 020 Middle 1/8 inch FLS DEB OBS 1 0.1 DEBITAGE 

CA‐MNT‐0229 07017 CU: Control Unit 07 010 020 Middle 1/8 inch FLS DEB MCT 5 10.4 DEBITAGE sub #1 

CA‐MNT‐0229 07017 CU: Control Unit 07 010 020 Middle 1/8 inch FLS DEB FCT 4 3.6 DEBITAGE sub #2 

CA‐MNT‐0229 07017 CU: Control Unit 07 010 020 Middle 1/8 inch FLS DEB IGN 2 13.2 DEBITAGE sub #3 

CA‐MNT‐0229 07025 CU: Control Unit 07 020 030 Middle 1/8 inch FLS DEB MCT 8 5.4 DEBITAGE sub #1 

CA‐MNT‐0229 07025 CU: Control Unit 07 020 030 Middle 1/8 inch FLS DEB IGN 2 16 DEBITAGE sub #4 

CA‐MNT‐0229 07025 CU: Control Unit 07 020 030 Middle 1/8 inch FLS DEB FCT 2 6.6 DEBITAGE sub #2 

CA‐MNT‐0229 07025 CU: Control Unit 07 020 030 Middle 1/8 inch FLS DRI CCS 1 12.3 DRILL 

CA‐MNT‐0229 07025 CU: Control Unit 07 020 030 Middle 1/8 inch FLS DEB CCS 1 0.6 DEBITAGE sub #3 

CA‐MNT‐0229 07035 CU: Control Unit 07 030 040 Middle 1/8 inch FLS DEB OBS 1 0.1 DEBITAGE 

CA‐MNT‐0229 07036 CU: Control Unit 07 030 040 Middle 1/8 inch FLS DEB MCT 8 14.3 DEBITAGE 

CA‐MNT‐0229 07042 CU: Control Unit 07 040 050 Middle 1/8 inch FLS DEB MCT 6 7.3 DEBITAGE sub #4 

CA‐MNT‐0229 07042 CU: Control Unit 07 040 050 Middle 1/8 inch FLS FFT MCT 1 5.3 FORMED FLAKE TOOL sub #3 

CA‐MNT‐0229 07042 CU: Control Unit 07 040 050 Middle 1/8 inch FLS DEB QZT 1 2.5 DEBITAGE sub #6 

CA‐MNT‐0229 07042 CU: Control Unit 07 040 050 Middle 1/8 inch FLS COR MCT 1 48.7 CORE sub #2 

Page 6 of 37 

92  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 07042 CU: Control Unit 07 040 050 Middle 1/8 inch FLS BIF MCT 1 4.3 BIFACE sub #1 

CA‐MNT‐0229 07042 CU: Control Unit 07 040 050 Middle 1/8 inch FLS DEB CCS 1 1.9 DEBITAGE sub #6 

CA‐MNT‐0229 07049 CU: Control Unit 07 050 060 Middle 1/8 inch FLS DEB OBS 1 0.2 DEBITAGE 

CA‐MNT‐0229 07050 CU: Control Unit 07 050 060 Middle 1/8 inch FLS DEB IGN 1 0.4 DEBITAGE sub #4 

CA‐MNT‐0229 07050 CU: Control Unit 07 050 060 Middle 1/8 inch FLS DEB FCT 2 7 DEBITAGE sub #3 

CA‐MNT‐0229 07050 CU: Control Unit 07 050 060 Middle 1/8 inch FLS DEB MCT 10 44.4 DEBITAGE sub #2 

CA‐MNT‐0229 07050 CU: Control Unit 07 050 060 Middle 1/8 inch FLS COR MCT 1 17.9 CORE sub #1 

CA‐MNT‐0229 07060 CU: Control Unit 07 060 070 Middle 1/8 inch FLS DEB OBS 1 0.1 DEBITAGE 

CA‐MNT‐0229 07061 CU: Control Unit 07 060 070 Middle 1/8 inch FLS DEB MCT 6 10.9 DEBITAGE sub #2 

CA‐MNT‐0229 07061 CU: Control Unit 07 060 070 Middle 1/8 inch FLS DEB IGN 1 2.6 DEBITAGE sub #3 

CA‐MNT‐0229 07061 CU: Control Unit 07 060 070 Middle 1/8 inch FLS COR MCT 1 12 CORE sub #1 

CA‐MNT‐0229 07061 CU: Control Unit 07 060 070 Middle 1/8 inch FLS DEB MTS 1 1.2 DEBITAGE sub #4 

CA‐MNT‐0229 07070 CU: Control Unit 07 070 080 Middle 1/8 inch FLS BIF MCT 1 4.6 BIFACE sub #1 

CA‐MNT‐0229 07070 CU: Control Unit 07 070 080 Middle 1/8 inch FLS DEB MCT 5 12.8 DEBITAGE sub #2 

CA‐MNT‐0229 07081 CU: Control Unit 07 080 090 Middle 1/8 inch FLS FKT CCS 1 4 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 07081 CU: Control Unit 07 080 090 Middle 1/8 inch FLS DEB MCT 5 16.8 DEBITAGE sub #2 

CA‐MNT‐0229 07081 CU: Control Unit 07 080 090 Middle 1/8 inch FLS DEB QZT 3 10.7 DEBITAGE sub #5 

CA‐MNT‐0229 07081 CU: Control Unit 07 080 090 Middle 1/8 inch FLS DEB CCS 1 5.8 DEBITAGE sub #3 

CA‐MNT‐0229 07081 CU: Control Unit 07 080 090 Middle 1/8 inch FLS DEB IGN 2 21.5 DEBITAGE sub #4 

Page 7 of 37 

93  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 07081 CU: Control Unit 07 080 090 Middle 1/8 inch FLS DEB MTS 1 6.2 DEBITAGE sub #6 

CA‐MNT‐0229 07091 CU: Control Unit 07 090 100 Middle 1/8 inch FLS DEB FCT 1 2.8 DEBITAGE sub #4 

CA‐MNT‐0229 07091 CU: Control Unit 07 090 100 Middle 1/8 inch FLS COR MCT 1 45 CORE sub #1 

CA‐MNT‐0229 07091 CU: Control Unit 07 090 100 Middle 1/8 inch FLS DEB MCT 10 67.4 DEBITAGE sub #3 

CA‐MNT‐0229 07091 CU: Control Unit 07 090 100 Middle 1/8 inch FLS COR MCT 1 36.8 CORE sub #2 

CA‐MNT‐0229 07091 CU: Control Unit 07 090 100 Middle 1/8 inch FLS DEB IGN 1 9.2 DEBITAGE sub #5 

CA‐MNT‐0229 07091 CU: Control Unit 07 090 100 Middle 1/8 inch FLS DEB MTS 2 2.5 DEBITAGE sub #6 

CA‐MNT‐0229 07099 CU: Control Unit 07 100 110 Middle 1/8 inch FLS DEB MCT 3 8 DEBITAGE 

CA‐MNT‐0229 07105 CU: Control Unit 07 110 120 Middle 1/8 inch FLS DEB MCT 2 1.6 DEBITAGE 

CA‐MNT‐0229 07113 CU: Control Unit 07 120 130 Middle 1/8 inch FLS DEB OBS 1 0.1 DEBITAGE 

CA‐MNT‐0229 07114 CU: Control Unit 07 120 130 Middle 1/8 inch FLS DEB QZT 1 5.1 DEBITAGE sub #5 

CA‐MNT‐0229 07114 CU: Control Unit 07 120 130 Middle 1/8 inch FLS DEB IGN 1 0.6 DEBITAGE sub #4 

CA‐MNT‐0229 07114 CU: Control Unit 07 120 130 Middle 1/8 inch FLS DEB CCS 1 3 DEBITAGE sub #3 

CA‐MNT‐0229 07114 CU: Control Unit 07 120 130 Middle 1/8 inch FLS CRT MTS 1 6.3 CORE Tool sub #1 

CA‐MNT‐0229 07114 CU: Control Unit 07 120 130 Middle 1/8 inch FLS DEB MCT 7 13.2 DEBITAGE sub #2 

CA‐MNT‐0229 07121 CU: Control Unit 07 130 140 Middle 1/8 inch FLS DEB QZT 1 0.2 DEBITAGE sub #3 

CA‐MNT‐0229 07121 CU: Control Unit 07 130 140 Middle 1/8 inch FLS COR FCT 1 23.9 CORE sub #1 

CA‐MNT‐0229 07121 CU: Control Unit 07 130 140 Middle 1/8 inch FLS DEB MCT 1 0.6 DEBITAGE sub #2 

CA‐MNT‐0229 07128 CU: Control Unit 07 140 150 Middle 1/8 inch FLS DEB MCT 5 7 DEBITAGE sub #1 

Page 8 of 37 

94  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 07128 CU: Control Unit 07 140 150 Middle 1/8 inch FLS DEB QZT 1 20.7 DEBITAGE sub #2 

CA‐MNT‐0229 07129 CU: Control Unit 07 140 150 Middle 1/8 inch FLS FFT MCT 1 9.4 FORMED FLAKE TOOL 

CA‐MNT‐0229 07135 CU: Control Unit 07 150 160 Middle 1/8 inch FLS FKT MCT 1 4.5 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 07135 CU: Control Unit 07 150 160 Middle 1/8 inch FLS DEB CCS 1 0.4 DEBITAGE sub #2 

CA‐MNT‐0229 07136 CU: Control Unit 07 150 160 Middle 1/8 inch FLS FFT IGN 1 55.6 FORMED FLAKE TOOL 

CA‐MNT‐0229 07140 CU: Control Unit 07 160 170 Middle 1/8 inch FLS COR MCT 1 17.8 CORE sub #1 

CA‐MNT‐0229 07140 CU: Control Unit 07 160 170 Middle 1/8 inch FLS DEB MCT 3 8.8 DEBITAGE sub #2 

CA‐MNT‐0229 07145 CU: Control Unit 07 170 180 Middle 1/8 inch FLS DEB FCT 1 1.1 DEBITAGE sub #2 

CA‐MNT‐0229 07145 CU: Control Unit 07 170 180 Middle 1/8 inch FLS DEB MCT 1 0.2 DEBITAGE sub #1 

CA‐MNT‐0229 07149 CU: Control Unit 07 180 190 Middle 1/8 inch FLS DEB MTS 1 0.2 DEBITAGE 

CA‐MNT‐0229 07153 CU: Control Unit 07 190 200 Middle 1/8 inch FLS DEB OBS 1 0.7 DEBITAGE 

CA‐MNT‐0229 07154 CU: Control Unit 07 190 200 Middle 1/8 inch FLS DEB MCT 1 0.9 DEBITAGE 

CA‐MNT‐0229 08001 RRU: Rapid Recovery Units 08 000 020 Middle 1/8 inch FLS BIF MCT 1 4.6 BIFACE ASPHALUM ON PRX END 

CA‐MNT‐0229 08003 RRU: Rapid Recovery Units 08 000 020 Middle 1/8 inch FLS COR MCT 1 14.7 CORE 

CA‐MNT‐0229 08008 RRU: Rapid Recovery Units 08 020 040 Middle 1/8 inch FLS COR MCT 1 14.8 CORE sub #1 

CA‐MNT‐0229 08008 RRU: Rapid Recovery Units 08 020 040 Middle 1/8 inch FLS COR MTS 1 15 CORE sub #2 

CA‐MNT‐0229 08008 RRU: Rapid Recovery Units 08 020 040 Middle 1/8 inch FLS FKT MCT 1 6.9 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 08008 RRU: Rapid Recovery Units 08 020 040 Middle 1/8 inch FLS ASC MCT 1 123.5 ASSAYED COBBLE sub #1 

CA‐MNT‐0229 08013 RRU: Rapid Recovery Units 08 040 060 Middle 1/8 inch FLS COR MCT 1 22.8 CORE 

Page 9 of 37 

95  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 08021 RRU: Rapid Recovery Units 08 060 080 Middle 1/8 inch FLS PPT MCT 1 18.7 Projectile Point 

CA‐MNT‐0229 08022 RRU: Rapid Recovery Units 08 060 080 Middle 1/8 inch FLS BIF OBS 1 3.8 BIFACE 

CA‐MNT‐0229 08024 RRU: Rapid Recovery Units 08 060 080 Middle 1/8 inch FLS COR MCT 1 9.5 CORE 

CA‐MNT‐0229 08028 RRU: Rapid Recovery Units 08 080 100 Middle 1/8 inch FLS COR MCT 1 9 CORE 

CA‐MNT‐0229 08036 RRU: Rapid Recovery Units 08 120 140 Middle 1/8 inch FLS COR MCT 1 14.6 CORE sub #1 

CA‐MNT‐0229 08036 RRU: Rapid Recovery Units 08 120 140 Middle 1/8 inch FLS COR MCT 1 6.3 CORE sub #2 

CA‐MNT‐0229 09002 RRU: Rapid Recovery Units 09 040 060 Middle 1/8 inch FLS BIF MCT 1 4.9 BIFACE 

CA‐MNT‐0229 09003 RRU: Rapid Recovery Units 09 000 020 Middle 1/8 inch FLS FKT FCT 1 7.3 SIMPLE FLAKE TOOL sub# 2 

CA‐MNT‐0229 09003 RRU: Rapid Recovery Units 09 000 020 Middle 1/8 inch FLS FKT MCT 1 1.3 SIMPLE FLAKE TOOL sub# 1 

CA‐MNT‐0229 09004 RRU: Rapid Recovery Units 09 000 020 Middle 1/8 inch FLS BIF MCT 1 5.3 BIFACE 

CA‐MNT‐0229 09005 RRU: Rapid Recovery Units 09 000 020 Middle 1/8 inch FLS BIF FCT 1 1.5 BIFACE 

CA‐MNT‐0229 09010 RRU: Rapid Recovery Units 09 020 040 Middle 1/8 inch FLS BIF MCT 1 14.6 BIFACE 

CA‐MNT‐0229 09020 RRU: Rapid Recovery Units 09 040 060 Middle 1/8 inch FLS COR FCT 1 14.4 CORE sub #1 

CA‐MNT‐0229 09020 RRU: Rapid Recovery Units 09 040 060 Middle 1/8 inch FLS FKT MCT 1 2 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 09021 RRU: Rapid Recovery Units 09 040 060 Middle 1/8 inch FLS COR CHA 1 29.2 CORE 

CA‐MNT‐0229 09022 RRU: Rapid Recovery Units 09 040 060 Middle 1/8 inch FLS BIF MCT 1 4.9 BIFACE asphaltum on PRX end 

CA‐MNT‐0229 09031 RRU: Rapid Recovery Units 09 060 080 Middle 1/8 inch FLS FKT MCT 1 13.2 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 09032 RRU: Rapid Recovery Units 09 060 080 Middle 1/8 inch FLS COR MCT 1 31.7 CORE 

CA‐MNT‐0229 09041 RRU: Rapid Recovery Units 09 080 100 Middle 1/8 inch FLS COR MCT 1 9.1 CORE sub #1 

Page 10 of 37 

96  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 09041 RRU: Rapid Recovery Units 09 080 100 Middle 1/8 inch FLS FKT MCT 1 7.9 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 09042 RRU: Rapid Recovery Units 09 080 100 Middle 1/8 inch FLS FFT CCS 1 10 FORMED FLAKE TOOL 

CA‐MNT‐0229 09051 RRU: Rapid Recovery Units 09 100 120 Middle 1/8 inch FLS COR FCT 1 33.6 CORE 

CA‐MNT‐0229 09056 RRU: Rapid Recovery Units 09 120 140 Middle 1/8 inch FLS FKT MCT 1 0.6 SIMPLE FLAKE TOOL sub# 1 

CA‐MNT‐0229 09056 RRU: Rapid Recovery Units 09 120 140 Middle 1/8 inch FLS FKT MCT 1 5.4 SIMPLE FLAKE TOOL sub# 2 

CA‐MNT‐0229 09057 RRU: Rapid Recovery Units 09 120 140 Middle 1/8 inch FLS FKT FCT 1 18.6 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 10004 RRU: Rapid Recovery Units 10 000 120 Middle 1/8 inch FLS COR MCT 1 15.5 CORE 

CA‐MNT‐0229 10012 RRU: Rapid Recovery Units 10 020 040 Middle 1/8 inch FLS FKT CCS 1 1.4 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 10017 RRU: Rapid Recovery Units 10 040 060 Middle 1/8 inch FLS DRI MCT 1 1.7 DRILL sub #1 

CA‐MNT‐0229 10017 RRU: Rapid Recovery Units 10 040 060 Middle 1/8 inch FLS FKT MCT 1 11.4 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 10017 RRU: Rapid Recovery Units 10 040 060 Middle 1/8 inch FLS FKT MCT 1 3 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 10025 RRU: Rapid Recovery Units 10 060 080 Middle 1/8 inch FLS COR MCT 1 9.6 CORE sub #1 

CA‐MNT‐0229 10025 RRU: Rapid Recovery Units 10 060 080 Middle 1/8 inch FLS FKT MCT 1 8.5 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 10026 RRU: Rapid Recovery Units 10 060 080 Middle 1/8 inch FLS BIF MCT 1 7.2 BIFACE 

CA‐MNT‐0229 10029 RRU: Rapid Recovery Units 10 080 100 Middle 1/8 inch FLS COR MCT 1 13.1 CORE 

CA‐MNT‐0229 10030 RRU: Rapid Recovery Units 10 080 100 Middle 1/8 inch FLS BIF CCS 1 11.2 BIFACE 

CA‐MNT‐0229 10031 RRU: Rapid Recovery Units 10 080 100 Middle 1/8 inch FLS BIF OBS 1 4.1 BIFACE 

CA‐MNT‐0229 10034 RRU: Rapid Recovery Units 10 100 120 Middle 1/8 inch FLS COR MCT 1 17.7 CORE sub #2 

CA‐MNT‐0229 10034 RRU: Rapid Recovery Units 10 100 120 Middle 1/8 inch FLS COR MCT 1 6.2 CORE sub #1 

Page 11 of 37 

97  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 10036 RRU: Rapid Recovery Units 10 100 120 Middle 1/8 inch FLS PPT MCT 1 3.5 Projectile Point 

CA‐MNT‐0229 10042 RRU: Rapid Recovery Units 10 140 160 Middle 1/8 inch FLS COR MCT 1 8.7 CORE sub #1 

CA‐MNT‐0229 10042 RRU: Rapid Recovery Units 10 140 160 Middle 1/8 inch FLS FKT MCT 1 1.8 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 11003 CU: Control Unit 11 000 010 Middle 1/8 inch FLS BIF OBS 1 1.4 BIFACE 

CA‐MNT‐0229 11004 CU: Control Unit 11 000 010 Middle 1/8 inch FLS FKT FCT 1 46.9 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 11017 CU: Control Unit 11 020 030 Middle 1/8 inch FLS FKT MCT 1 2.5 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 11030 CU: Control Unit 11 060 080 Middle 1/8 inch FLS DRI MCT 1 4.8 DRILL 

CA‐MNT‐0229 11037 CU: Control Unit 11 050 060 Middle 1/8 inch FLS FKT FCT 1 16 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 11037 CU: Control Unit 11 050 060 Middle 1/8 inch FLS FFT FCT 1 6.6 FORMED FLAKE TOOL sub #1 

CA‐MNT‐0229 11046 CU: Control Unit 11 060 070 Middle 1/8 inch FLS FKT MCT 1 2.6 SIMPLE FLAKE TOOL sub# 1 

CA‐MNT‐0229 11046 CU: Control Unit 11 060 070 Middle 1/8 inch FLS FKT FCT 1 0.5 SIMPLE FLAKE TOOL sub# 2 

CA‐MNT‐0229 11068 CU: Control Unit 11 080 090 Middle 1/8 inch FLS BIF OBS 1 1 BIFACE 

CA‐MNT‐0229 11087 CU: Control Unit 11 100 110 MST 1/8 inch FLS ASC CCS 1 23.1 ASSAYED COBBLE 

CA‐MNT‐0229 11098 CU: Control Unit 11 110 120 MST 1/8 inch FLS COR MCT 1 25.7 CORE 

CA‐MNT‐0229 11099 CU: Control Unit 11 110 120 MST 1/8 inch FLS BIF MCT 1 7 BIFACE 

CA‐MNT‐0229 11118 CU: Control Unit 11 130 140 MST 1/8 inch FLS ASC MCT 1 36.2 ASSAYED COBBLE 

CA‐MNT‐0229 11131 CU: Control Unit 11 150 160 MST 1/8 inch FLS FKT MCT 1 0.9 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 12003 RRU: Rapid Recovery Units 12 000 020 Middle 1/8 inch FLS COR MCT 1 15.9 CORE sub #1 

CA‐MNT‐0229 12003 RRU: Rapid Recovery Units 12 000 020 Middle 1/8 inch FLS COR MCT 1 9.3 CORE sub #2 

Page 12 of 37 

98  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 12019 RRU: Rapid Recovery Units 12 040 060 Middle 1/8 inch FLS FKT MCT 1 1.6 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 12019 RRU: Rapid Recovery Units 12 040 060 Middle 1/8 inch FLS COR MCT 1 3.3 CORE sub #2 

CA‐MNT‐0229 12019 RRU: Rapid Recovery Units 12 040 060 Middle 1/8 inch FLS COR MCT 1 5.9 CORE sub #1 

CA‐MNT‐0229 12025 RRU: Rapid Recovery Units 12 060 080 Middle 1/8 inch FLS FKT MCT 1 1.6 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 12042 RRU: Rapid Recovery Units 12 100 120 MST 1/8 inch FLS COR MCT 1 23.3 CORE 

CA‐MNT‐0229 12048 RRU: Rapid Recovery Units 12 120 140 MST 1/8 inch FLS PPT MCT 1 1 Projectile Point 

CA‐MNT‐0229 13003 RRU: Rapid Recovery Units 13 000 020 Middle 1/8 inch FLS DEB MCT 4 7.7 DEBITAGE sub #1 

CA‐MNT‐0229 13003 RRU: Rapid Recovery Units 13 000 020 Middle 1/8 inch FLS DEB IGN 1 5.3 DEBITAGE sub #2 

CA‐MNT‐0229 13003 RRU: Rapid Recovery Units 13 000 020 Middle 1/8 inch FLS DEB MTS 1 1.3 DEBITAGE sub #3 

CA‐MNT‐0229 13004 RRU: Rapid Recovery Units 13 000 020 Middle 1/8 inch FLS DEB MCT 1 5.5 DEBITAGE 

CA‐MNT‐0229 13009 RRU: Rapid Recovery Units 13 020 040 Middle 1/8 inch FLS DEB QZT 3 32.6 DEBITAGE sub #5 

CA‐MNT‐0229 13009 RRU: Rapid Recovery Units 13 020 040 Middle 1/8 inch FLS DEB MCT 15 36.9 DEBITAGE sub #2 

CA‐MNT‐0229 13009 RRU: Rapid Recovery Units 13 020 040 Middle 1/8 inch FLS DEB IGN 1 4.7 DEBITAGE sub #4 

CA‐MNT‐0229 13009 RRU: Rapid Recovery Units 13 020 040 Middle 1/8 inch FLS DEB FCT 3 24.8 DEBITAGE sub #3 

CA‐MNT‐0229 13009 RRU: Rapid Recovery Units 13 020 040 Middle 1/8 inch FLS COR MCT 1 36.1 CORE sub #1 

CA‐MNT‐0229 13009 RRU: Rapid Recovery Units 13 020 040 Middle 1/8 inch FLS DEB MTS 2 6 DEBITAGE sub #6 

CA‐MNT‐0229 13010 RRU: Rapid Recovery Units 13 020 040 Middle 1/8 inch FLS FKT MCT 1 1.9 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 13013 RRU: Rapid Recovery Units 13 020 040 Middle 1/8 inch FLS FFT MCT 1 5.6 FORMED FLAKE TOOL 

CA‐MNT‐0229 13018 RRU: Rapid Recovery Units 13 040 060 Middle 1/8 inch FLS COR FCT 1 35.9 CORE sub #1 

Page 13 of 37 

99  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 13018 RRU: Rapid Recovery Units 13 040 060 Middle 1/8 inch FLS DEB MCT 6 22.5 DEBITAGE sub #2 

CA‐MNT‐0229 13018 RRU: Rapid Recovery Units 13 040 060 Middle 1/8 inch FLS DEB QZT 1 3.3 DEBITAGE sub #3 

CA‐MNT‐0229 13023 RRU: Rapid Recovery Units 13 060 080 Middle 1/8 inch FLS FKT FCT 1 7.3 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 13023 RRU: Rapid Recovery Units 13 060 080 Middle 1/8 inch FLS DEB MCT 7 19.6 DEBITAGE sub #2 

CA‐MNT‐0229 13023 RRU: Rapid Recovery Units 13 060 080 Middle 1/8 inch FLS DEB FCT 2 0.8 DEBITAGE sub #3 

CA‐MNT‐0229 13027 RRU: Rapid Recovery Units 13 080 100 Middle 1/8 inch FLS DEB MCT 12 26.9 DEBITAGE sub #4 

CA‐MNT‐0229 13027 RRU: Rapid Recovery Units 13 080 100 Middle 1/8 inch FLS ASC CCS 1 12.4 ASSAYED COBBLE sub #3 

CA‐MNT‐0229 13027 RRU: Rapid Recovery Units 13 080 100 Middle 1/8 inch FLS DEB FCT 3 2.8 DEBITAGE sub #5 

CA‐MNT‐0229 13027 RRU: Rapid Recovery Units 13 080 100 Middle 1/8 inch FLS FKT MCT 1 1.5 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 13027 RRU: Rapid Recovery Units 13 080 100 Middle 1/8 inch FLS COR FCT 1 45.8 CORE sub #1 

CA‐MNT‐0229 13031 RRU: Rapid Recovery Units 13 100 120 MST 1/8 inch FLS FKT MCT 1 6.6 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 13031 RRU: Rapid Recovery Units 13 100 120 MST 1/8 inch FLS DEB MCT 10 23.3 DEBITAGE sub #2 

CA‐MNT‐0229 13041 RRU: Rapid Recovery Units 13 120 140 MST 1/8 inch FLS DEB MCT 9 26.7 DEBITAGE sub #1 

CA‐MNT‐0229 13041 RRU: Rapid Recovery Units 13 120 140 MST 1/8 inch FLS DEB FCT 1 0.6 DEBITAGE sub #2 

CA‐MNT‐0229 13041 RRU: Rapid Recovery Units 13 120 140 MST 1/8 inch FLS DEB QZT 1 5.6 DEBITAGE sub #4 

CA‐MNT‐0229 13041 RRU: Rapid Recovery Units 13 120 140 MST 1/8 inch FLS DEB IGN 3 2.3 DEBITAGE sub #3 

CA‐MNT‐0229 13044 RRU: Rapid Recovery Units 13 140 160 MST 1/8 inch FLS DEB MCT 8 14.2 DEBITAGE sub #1 

CA‐MNT‐0229 13044 RRU: Rapid Recovery Units 13 140 160 MST 1/8 inch FLS DEB QZT 1 0.6 DEBITAGE sub #2 

CA‐MNT‐0229 13044 RRU: Rapid Recovery Units 13 140 160 MST 1/8 inch FLS DEB MTS 1 2.7 DEBITAGE sub #3 

Page 14 of 37 

100  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 13045 RRU: Rapid Recovery Units 13 160 180 MST 1/8 inch FLS DEB MCT 2 18.5 DEBITAGE 

CA‐MNT‐0229 14004 RRU: Rapid Recovery Units 14 000 020 Middle 1/8 inch FLS DEB FCT 2 2.1 DEBITAGE sub #2 

CA‐MNT‐0229 14004 RRU: Rapid Recovery Units 14 000 020 Middle 1/8 inch FLS DEB MCT 18 37.1 DEBITAGE sub #1 

CA‐MNT‐0229 14009 RRU: Rapid Recovery Units 14 020 040 Middle 1/8 inch FLS DEB FCT 4 20.7 DEBITAGE 

CA‐MNT‐0229 14009 RRU: Rapid Recovery Units 14 020 040 Middle 1/8 inch FLS DEB MET 2 1.5 DEBITAGE sub #5 

CA‐MNT‐0229 14009 RRU: Rapid Recovery Units 14 020 040 Middle 1/8 inch FLS COR MCT 1 23.7 CORE sub #3 

CA‐MNT‐0229 14009 RRU: Rapid Recovery Units 14 020 040 Middle 1/8 inch FLS DEB MCT 22 80.6 DEBITAGE sub #4 

CA‐MNT‐0229 14009 RRU: Rapid Recovery Units 14 020 040 Middle 1/8 inch FLS BIF MCT 1 28.6 BIFACE sub #2 

CA‐MNT‐0229 14009 RRU: Rapid Recovery Units 14 020 040 Middle 1/8 inch FLS BIF MCT 1 2.5 BIFACE sub #1 

CA‐MNT‐0229 14009 RRU: Rapid Recovery Units 14 020 040 Middle 1/8 inch FLS DEB MTS 1 1.7 DEBITAGE sub #6 

CA‐MNT‐0229 14013 RRU: Rapid Recovery Units 14 040 060 Middle 1/8 inch FLS DEB FCT 3 25 DEBITAGE sub #2 

CA‐MNT‐0229 14013 RRU: Rapid Recovery Units 14 040 060 Middle 1/8 inch FLS DEB MTS 2 3.5 DEBITAGE sub #4 

CA‐MNT‐0229 14013 RRU: Rapid Recovery Units 14 040 060 Middle 1/8 inch FLS DEB MCT 16 69.1 DEBITAGE sub #1 

CA‐MNT‐0229 14013 RRU: Rapid Recovery Units 14 040 060 Middle 1/8 inch FLS DEB MET 2 2.7 DEBITAGE sub #3 

CA‐MNT‐0229 14014 RRU: Rapid Recovery Units 14 040 060 Middle 1/8 inch FLS FLC CCS 1 231.8 COBBLE TOOL 

CA‐MNT‐0229 14015 RRU: Rapid Recovery Units 14 040 060 Middle 1/8 inch FLS PPT MCT 1 9.2 Projectile Point 

CA‐MNT‐0229 14021 RRU: Rapid Recovery Units 14 060 080 Middle 1/8 inch FLS DEB MET 1 26.9 DEBITAGE sub #4 

CA‐MNT‐0229 14021 RRU: Rapid Recovery Units 14 060 080 Middle 1/8 inch FLS DEB CCS 1 1.2 DEBITAGE sub #3 

CA‐MNT‐0229 14021 RRU: Rapid Recovery Units 14 060 080 Middle 1/8 inch FLS DEB FCT 1 3 DEBITAGE sub #2 

Page 15 of 37 

101  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 14021 RRU: Rapid Recovery Units 14 060 080 Middle 1/8 inch FLS DEB MCT 23 75.2 DEBITAGE sub #1 

CA‐MNT‐0229 14039 RRU: Rapid Recovery Units 14 080 100 Middle 1/8 inch FLS COR MCT 1 39.8 CORE sub #1 

CA‐MNT‐0229 14039 RRU: Rapid Recovery Units 14 080 100 Middle 1/8 inch FLS FKT MCT 1 1.8 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 14039 RRU: Rapid Recovery Units 14 080 100 Middle 1/8 inch FLS DEB MCT 16 56 DEBITAGE sub #3 

CA‐MNT‐0229 14039 RRU: Rapid Recovery Units 14 080 100 Middle 1/8 inch FLS DEB FCT 2 2.7 DEBITAGE sub #4 

CA‐MNT‐0229 14039 RRU: Rapid Recovery Units 14 080 100 Middle 1/8 inch FLS DEB CCS 2 33.5 DEBITAGE sub #5 

CA‐MNT‐0229 14039 RRU: Rapid Recovery Units 14 080 100 Middle 1/8 inch FLS DEB MET 1 2.4 DEBITAGE sub #6 

CA‐MNT‐0229 14050 RRU: Rapid Recovery Units 14 100 120 MST 1/8 inch FLS DEB MCT 16 27.6 DEBITAGE sub #1 

CA‐MNT‐0229 14050 RRU: Rapid Recovery Units 14 100 120 MST 1/8 inch FLS DEB FCT 1 8.7 DEBITAGE sub #2 

CA‐MNT‐0229 14050 RRU: Rapid Recovery Units 14 100 120 MST 1/8 inch FLS DEB CCS 2 28.4 DEBITAGE sub #3 

CA‐MNT‐0229 14050 RRU: Rapid Recovery Units 14 100 120 MST 1/8 inch FLS DEB MET 5 20.5 DEBITAGE sub #4 

CA‐MNT‐0229 14050 RRU: Rapid Recovery Units 14 100 120 MST 1/8 inch FLS DEB MTS 1 2.8 DEBITAGE sub #5 

CA‐MNT‐0229 14058 RRU: Rapid Recovery Units 14 120 140 MST 1/8 inch FLS DEB FCT 2 7.9 DEBITAGE sub #2 

CA‐MNT‐0229 14058 RRU: Rapid Recovery Units 14 120 140 MST 1/8 inch FLS DEB MCT 6 10.1 DEBITAGE sub #1 

CA‐MNT‐0229 14059 RRU: Rapid Recovery Units 14 120 140 MST 1/8 inch FLS PPT MCT 1 4.2 Projectile Point 

CA‐MNT‐0229 14061 RRU: Rapid Recovery Units 14 140 160 MST 1/8 inch FLS DEB MCT 7 24.6 DEBITAGE sub #1 

CA‐MNT‐0229 14061 RRU: Rapid Recovery Units 14 140 160 MST 1/8 inch FLS DEB MET 2 8.1 DEBITAGE sub #3 

CA‐MNT‐0229 14061 RRU: Rapid Recovery Units 14 140 160 MST 1/8 inch FLS DEB FCT 1 1.7 DEBITAGE sub #2 

CA‐MNT‐0229 14072 RRU: Rapid Recovery Units 14 160 180 MST 1/8 inch FLS DEB MCT 10 34.3 DEBITAGE 

Page 16 of 37 

102  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 15002 CU: Control Unit 15 000 010 Middle 1/8 inch FLS COR MCT 1 10.1 CORE 

CA‐MNT‐0229 15017 CU: Control Unit 15 020 030 Middle 1/8 inch FLS FKT MCT 1 1.6 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 15017 CU: Control Unit 15 020 030 Middle 1/8 inch FLS BIF FCT 1 16.3 BIFACE sub #1 

CA‐MNT‐0229 15017 CU: Control Unit 15 020 030 Middle 1/8 inch FLS BIF MCT 1 20.7 BIFACE sub #2 

CA‐MNT‐0229 15031 CU: Control Unit 15 040 050 Middle 1/8 inch FLS COR MCT 1 23.4 CORE 

CA‐MNT‐0229 15038 CU: Control Unit 15 040 050 Middle 1/8 inch FLS COR MCT 1 16.1 CORE 

CA‐MNT‐0229 15045 CU: Control Unit 15 050 060 Middle 1/8 inch FLS FLC MET 1 111.4 COBBLE TOOL 

CA‐MNT‐0229 15069 CU: Control Unit 15 070 080 Middle 1/8 inch FLS COR MCT 1 13 CORE 

CA‐MNT‐0229 15085 CU: Control Unit 15 080 090 Middle 1/8 inch FLS FFT MCT 1 20.4 FORMED FLAKE TOOL sub #5 

CA‐MNT‐0229 15085 CU: Control Unit 15 080 090 Middle 1/8 inch FLS FKT MCT 1 2.5 SIMPLE FLAKE TOOL sub# 4 

CA‐MNT‐0229 15085 CU: Control Unit 15 080 090 Middle 1/8 inch FLS FKT MTS 1 10.7 SIMPLE FLAKE TOOL sub# 2 

CA‐MNT‐0229 15085 CU: Control Unit 15 080 090 Middle 1/8 inch FLS FKT MCT 1 4 SIMPLE FLAKE TOOL sub# 1 

CA‐MNT‐0229 15085 CU: Control Unit 15 080 090 Middle 1/8 inch FLS FKT MCT 1 2.9 SIMPLE FLAKE TOOL sub# 3 

CA‐MNT‐0229 15098 CU: Control Unit 15 090 100 Middle 1/8 inch FLS COR MCT 1 67.9 CORE 

CA‐MNT‐0229 15099 CU: Control Unit 15 090 100 Middle 1/8 inch FLS FLC QTZ 1 226.7 COBBLE TOOL 

CA‐MNT‐0229 15121 CU: Control Unit 15 110 120 MST 1/8 inch FLS FKT MCT 1 1.7 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 15123 CU: Control Unit 15 110 120 MST 1/8 inch FLS BIF MCT 1 2.3 BIFACE 

CA‐MNT‐0229 15131 CU: Control Unit 15 120 130 MST 1/8 inch FLS COR MCT 1 15.6 CORE 

CA‐MNT‐0229 16002 STU: Surface Transect Unit 16 020 040 Middle 1/8 inch FLS BIF MCT 1 3.3 BIFACE 

Page 17 of 37 

103  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 16006 STU: Surface Transect Unit 16 040 060 Middle 1/8 inch FLS FKT FCT 1 10.5 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 16006 STU: Surface Transect Unit 16 040 060 Middle 1/8 inch FLS COR MCT 1 5.7 CORE sub #1 

CA‐MNT‐0229 16010 STU: Surface Transect Unit 16 020 040 Middle 1/8 inch FLS COR MCT 1 10.4 CORE 

CA‐MNT‐0229 16011 STU: Surface Transect Unit 16 060 080 Middle 1/8 inch FLS FLC QZT 1 219.4 COBBLE TOOL 

CA‐MNT‐0229 16012 STU: Surface Transect Unit 16 060 080 Middle 1/8 inch FLS FFT MCT 1 7.9 FORMED FLAKE TOOL 

CA‐MNT‐0229 16018 STU: Surface Transect Unit 16 080 100 Middle 1/8 inch FLS COR MCT 1 29.8 CORE sub #3 

CA‐MNT‐0229 16018 STU: Surface Transect Unit 16 080 100 Middle 1/8 inch FLS COR MCT 1 16.6 CORE sub #1 

CA‐MNT‐0229 16018 STU: Surface Transect Unit 16 080 100 Middle 1/8 inch FLS COR MCT 1 10.3 CORE sub #2 

CA‐MNT‐0229 16023 STU: Surface Transect Unit 16 080 100 Middle 1/8 inch FLS BIF MCT 1 15.1 BIFACE 

CA‐MNT‐0229 17001 STU: Surface Transect Unit 17 000 020 Middle 1/8 inch FLS DEB MCT 2 3.6 DEBITAGE 

CA‐MNT‐0229 17007 STU: Surface Transect Unit 17 020 040 Middle 1/8 inch FLS BIF OBS 1 1.2 BIFACE 

CA‐MNT‐0229 17009 STU: Surface Transect Unit 17 020 040 Middle 1/8 inch FLS DEB MTS 1 2.3 DEBITAGE sub #3 

CA‐MNT‐0229 17009 STU: Surface Transect Unit 17 020 040 Middle 1/8 inch FLS DEB MCT 5 10.9 DEBITAGE sub #2 

CA‐MNT‐0229 17009 STU: Surface Transect Unit 17 020 040 Middle 1/8 inch FLS FKT MCT 1 2.4 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 17010 STU: Surface Transect Unit 17 040 060 Middle 1/8 inch FLS FFT FCT 1 6.1 FORMED FLAKE TOOL 

CA‐MNT‐0229 17011 STU: Surface Transect Unit 17 040 060 Middle 1/8 inch FLS DEB MCT 11 26.8 DEBITAGE sub #1 

CA‐MNT‐0229 17011 STU: Surface Transect Unit 17 040 060 Middle 1/8 inch FLS DEB MTS 2 2.8 DEBITAGE sub #3 

CA‐MNT‐0229 17011 STU: Surface Transect Unit 17 040 060 Middle 1/8 inch FLS DEB FCT 1 2.3 DEBITAGE sub #2 

CA‐MNT‐0229 17016 STU: Surface Transect Unit 17 060 080 Middle 1/8 inch FLS DEB MCT 7 10.2 DEBITAGE sub #2 

Page 18 of 37 

104  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 17016 STU: Surface Transect Unit 17 060 080 Middle 1/8 inch FLS DEB FCT 2 4.3 DEBITAGE sub #3 

CA‐MNT‐0229 17016 STU: Surface Transect Unit 17 060 080 Middle 1/8 inch FLS BIF MCT 1 5.4 BIFACE sub #1 

CA‐MNT‐0229 17020 STU: Surface Transect Unit 17 080 100 Middle 1/8 inch FLS FKT MCT 1 2.7 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 17020 STU: Surface Transect Unit 17 080 100 Middle 1/8 inch FLS DEB MCT 6 22.2 DEBITAGE sub #4 

CA‐MNT‐0229 17020 STU: Surface Transect Unit 17 080 100 Middle 1/8 inch FLS DEB CCS 2 4.7 DEBITAGE sub #5 

CA‐MNT‐0229 17020 STU: Surface Transect Unit 17 080 100 Middle 1/8 inch FLS FKT MCT 1 0.9 SIMPLE FLAKE TOOL sub#3 

CA‐MNT‐0229 17020 STU: Surface Transect Unit 17 080 100 Middle 1/8 inch FLS COR MCT 1 16.3 CORE sub #1 

CA‐MNT‐0229 17020 STU: Surface Transect Unit 17 080 100 Middle 1/8 inch FLS DEB MTS 1 0.3 DEBITAGE sub #6 

CA‐MNT‐0229 17022 STU: Surface Transect Unit 17 100 120 MST 1/8 inch FLS DEB MCT 4 25.6 DEBITAGE sub #1 

CA‐MNT‐0229 17022 STU: Surface Transect Unit 17 100 120 MST 1/8 inch FLS DEB CCS 2 6.9 DEBITAGE sub #2 

CA‐MNT‐0229 17022 STU: Surface Transect Unit 17 100 120 MST 1/8 inch FLS DEB QZT 1 19.6 DEBITAGE sub #3 

CA‐MNT‐0229 17026 STU: Surface Transect Unit 17 120 140 MST 1/8 inch FLS DEB MCT 5 9.9 DEBITAGE sub #1 

CA‐MNT‐0229 17026 STU: Surface Transect Unit 17 120 140 MST 1/8 inch FLS DEB MET 1 6.6 DEBITAGE sub #2 

CA‐MNT‐0229 18001 STU: Surface Transect Unit 18 000 020 Middle 1/8 inch FLS FFT MCT 1 0.4 FORMED FLAKE TOOL sub #1 

CA‐MNT‐0229 18001 STU: Surface Transect Unit 18 000 020 Middle 1/8 inch FLS FKT FCT 1 1.4 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 18006 STU: Surface Transect Unit 18 020 040 Middle 1/8 inch FLS FKT MCT 1 1.8 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 18006 STU: Surface Transect Unit 18 020 040 Middle 1/8 inch FLS CRT MCT 1 8.4 CORE Tool sub #1,USE‐WEAR 

CA‐MNT‐0229 18009 STU: Surface Transect Unit 18 040 060 Middle 1/8 inch FLS COR MCT 1 7.4 CORE 

CA‐MNT‐0229 18014 STU: Surface Transect Unit 18 040 060 Middle 1/8 inch FLS BIF CCS 1 7.5 BIFACE 

Page 19 of 37 

105  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 18018 STU: Surface Transect Unit 18 080 100 Middle 1/8 inch FLS FKT MCT 1 6.8 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 18018 STU: Surface Transect Unit 18 080 100 Middle 1/8 inch FLS FKT MCT 1 6.8 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 18024 STU: Surface Transect Unit 18 100 120 MST 1/8 inch FLS FKT QTZ 1 28.2 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 18034 STU: Surface Transect Unit 18 140 160 MST 1/8 inch FLS BIF MCT 1 7.1 BIFACE sub #1 

CA‐MNT‐0229 18034 STU: Surface Transect Unit 18 140 160 MST 1/8 inch FLS COR CCS 1 23.3 CORE sub #2 

CA‐MNT‐0229 19003 STU: Surface Transect Unit 19 000 020 Middle 1/8 inch FLS BIF OBS 1 3.9 BIFACE 

CA‐MNT‐0229 19004 STU: Surface Transect Unit 19 000 020 Middle 1/8 inch FLS ASC MCT 1 51.6 ASSAYED COBBLE 

CA‐MNT‐0229 19009 STU: Surface Transect Unit 19 020 040 Middle 1/8 inch FLS COR MCT 1 35.9 CORE 

CA‐MNT‐0229 19016 STU: Surface Transect Unit 19 040 060 Middle 1/8 inch FLS PPT MCT 1 5.6 Projectile Point 

CA‐MNT‐0229 19024 STU: Surface Transect Unit 19 060 080 Middle 1/8 inch FLS COR MCT 1 3.8 CORE sub #2 

CA‐MNT‐0229 19024 STU: Surface Transect Unit 19 060 080 Middle 1/8 inch FLS COR MCT 1 17.8 CORE sub #1 

CA‐MNT‐0229 19044 STU: Surface Transect Unit 19 120 140 MST 1/8 inch FLS CRT MCT 1 5.9 CORE Tool sub #2 

CA‐MNT‐0229 19044 STU: Surface Transect Unit 19 120 140 MST 1/8 inch FLS COR MCT 1 6 CORE sub #1 

CA‐MNT‐0229 19056 STU: Surface Transect Unit 19 160 180 MST 1/8 inch FLS FKT MCT 1 2.8 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 20001 STU: Surface Transect Unit 20 000 020 Middle 1/8 inch FLS FKT MCT 1 4.8 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 20004 STU: Surface Transect Unit 20 020 040 Middle 1/8 inch FLS FKT MCT 1 2.8 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 20004 STU: Surface Transect Unit 20 020 040 Middle 1/8 inch FLS FKT MCT 1 7.7 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 20005 STU: Surface Transect Unit 20 040 060 Middle 1/8 inch FLS FFT MCT 1 5.6 FORMED FLAKE TOOL 

CA‐MNT‐0229 20018 STU: Surface Transect Unit 20 080 100 Middle 1/8 inch FLS BIF OBS 1 0.6 BIFACE 

Page 20 of 37 

106  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 20020 STU: Surface Transect Unit 20 080 100 Middle 1/8 inch FLS COR FCT 1 24.5 CORE sub #2 

CA‐MNT‐0229 20020 STU: Surface Transect Unit 20 080 100 Middle 1/8 inch FLS COR CCS 1 18.5 CORE sub #1 

CA‐MNT‐0229 20020 STU: Surface Transect Unit 20 080 100 Middle 1/8 inch FLS FKT MCT 1 13.3 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 20020 STU: Surface Transect Unit 20 080 100 Middle 1/8 inch FLS FKT MCT 1 7.6 SIMPLE FLAKE TOOL sub #4 

CA‐MNT‐0229 20028 STU: Surface Transect Unit 20 100 120 Middle 1/8 inch FLS BIF OBS 1 1.4 BIFACE 

CA‐MNT‐0229 20029 STU: Surface Transect Unit 20 100 120 Middle 1/8 inch FLS FKT MCT 1 3.8 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 21002 STU: Surface Transect Unit 21 000 020 Middle 1/8 inch FLS FKT MCT 1 3.1 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 21004 STU: Surface Transect Unit 21 020 040 Middle 1/8 inch FLS BIF MCT 1 7.2 BIFACE sub #1 

CA‐MNT‐0229 21004 STU: Surface Transect Unit 21 020 040 Middle 1/8 inch FLS FKT MCT 1 6.7 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 21010 STU: Surface Transect Unit 21 040 060 Middle 1/8 inch FLS COR FCT 1 32.3 CORE sub #1 

CA‐MNT‐0229 21010 STU: Surface Transect Unit 21 040 060 Middle 1/8 inch FLS COR FCT 1 17.8 CORE sub #2 

CA‐MNT‐0229 21011 STU: Surface Transect Unit 21 060 080 Middle 1/8 inch FLS FKT CCS 1 2 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 21014 STU: Surface Transect Unit 21 060 080 Middle 1/8 inch FLS FKT MCT 1 5.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 21018 STU: Surface Transect Unit 21 060 080 Middle 1/8 inch FLS COR MCT 1 36.5 CORE 

CA‐MNT‐0229 21021 STU: Surface Transect Unit 21 060 080 Middle 1/8 inch FLS ASC FCT 1 64.5 ASSAYED COBBLE 

CA‐MNT‐0229 21026 STU: Surface Transect Unit 21 060 080 Middle 1/8 inch FLS BIF MCT 1 4 BIFACE 

CA‐MNT‐0229 21030 STU: Surface Transect Unit 21 080 100 Middle 1/8 inch FLS COR MCT 1 8.9 CORE sub #2 

CA‐MNT‐0229 21030 STU: Surface Transect Unit 21 080 100 Middle 1/8 inch FLS FKT MCT 1 6.4 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 21030 STU: Surface Transect Unit 21 080 100 Middle 1/8 inch FLS BIF MCT 1 6.4 BIFACE sub #1 

Page 21 of 37 

107  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 21042 STU: Surface Transect Unit 21 100 120 Middle 1/8 inch FLS FKT MCT 1 1.9 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 22001 STU: Surface Transect Unit 22 000 020 Middle 1/8 inch FLS DEB OBS 1 0.1 DEBITAGE 

CA‐MNT‐0229 22002 STU: Surface Transect Unit 22 000 020 Middle 1/8 inch FLS DEB MET 1 10.3 DEBITAGE sub #5 

CA‐MNT‐0229 22002 STU: Surface Transect Unit 22 000 020 Middle 1/8 inch FLS DEB CCS 1 5.3 DEBITAGE sub #3 

CA‐MNT‐0229 22002 STU: Surface Transect Unit 22 000 020 Middle 1/8 inch FLS DEB FCT 1 1.4 DEBITAGE sub #2 

CA‐MNT‐0229 22002 STU: Surface Transect Unit 22 000 020 Middle 1/8 inch FLS DEB MCT 4 8 DEBITAGE sub #1 

CA‐MNT‐0229 22002 STU: Surface Transect Unit 22 000 020 Middle 1/8 inch FLS DEB IGN 2 31.8 DEBITAGE sub #4 

CA‐MNT‐0229 22004 STU: Surface Transect Unit 22 020 040 Middle 1/8 inch FLS DEB OBS 1 0.1 DEBITAGE 

CA‐MNT‐0229 22005 STU: Surface Transect Unit 22 020 040 Middle 1/8 inch FLS DEB MTS 2 44.6 DEBITAGE sub #7 

CA‐MNT‐0229 22005 STU: Surface Transect Unit 22 020 040 Middle 1/8 inch FLS FKT MCT 1 2.5 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 22005 STU: Surface Transect Unit 22 020 040 Middle 1/8 inch FLS DEB QZT 1 2.6 DEBITAGE sub #6 

CA‐MNT‐0229 22005 STU: Surface Transect Unit 22 020 040 Middle 1/8 inch FLS FFT IGN 1 32.8 FORMED FLAKE TOOL sub #1 

CA‐MNT‐0229 22005 STU: Surface Transect Unit 22 020 040 Middle 1/8 inch FLS DEB CCS 3 6.7 DEBITAGE sub #5 

CA‐MNT‐0229 22005 STU: Surface Transect Unit 22 020 040 Middle 1/8 inch FLS DEB FCT 1 0.3 DEBITAGE sub #4 

CA‐MNT‐0229 22005 STU: Surface Transect Unit 22 020 040 Middle 1/8 inch FLS DEB MCT 22 60.8 DEBITAGE sub #3 

CA‐MNT‐0229 22010 STU: Surface Transect Unit 22 040 060 Middle 1/8 inch FLS DEB OBS 2 0.3 DEBITAGE 

CA‐MNT‐0229 22011 STU: Surface Transect Unit 22 040 060 Middle 1/8 inch FLS DEB IGN 1 2 DEBITAGE sub #5 

CA‐MNT‐0229 22011 STU: Surface Transect Unit 22 040 060 Middle 1/8 inch FLS DEB MTS 1 86.2 DEBITAGE sub #7 

CA‐MNT‐0229 22011 STU: Surface Transect Unit 22 040 060 Middle 1/8 inch FLS COR MCT 1 37.8 CORE sub #1 

Page 22 of 37 

108  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 22011 STU: Surface Transect Unit 22 040 060 Middle 1/8 inch FLS DEB MCT 5 22.7 DEBITAGE sub #2 

CA‐MNT‐0229 22011 STU: Surface Transect Unit 22 040 060 Middle 1/8 inch FLS DEB CCS 3 19.4 DEBITAGE sub #4 

CA‐MNT‐0229 22011 STU: Surface Transect Unit 22 040 060 Middle 1/8 inch FLS DEB QZT 1 18.3 DEBITAGE sub #6 

CA‐MNT‐0229 22011 STU: Surface Transect Unit 22 040 060 Middle 1/8 inch FLS DEB FCT 1 1.1 DEBITAGE sub #3 

CA‐MNT‐0229 22015 STU: Surface Transect Unit 22 060 080 Middle 1/8 inch FLS DEB IGN 1 0.7 DEBITAGE sub #3 

CA‐MNT‐0229 22015 STU: Surface Transect Unit 22 060 080 Middle 1/8 inch FLS DEB QZT 1 9.4 DEBITAGE sub #4 

CA‐MNT‐0229 22015 STU: Surface Transect Unit 22 060 080 Middle 1/8 inch FLS DEB FCT 6 41.2 DEBITAGE sub #2 

CA‐MNT‐0229 22015 STU: Surface Transect Unit 22 060 080 Middle 1/8 inch FLS DEB MCT 9 25.3 DEBITAGE sub #1 

CA‐MNT‐0229 22025 STU: Surface Transect Unit 22 098 098 Middle 1/8 inch FLS BIF OBS 1 4.2 BIFACE 

CA‐MNT‐0229 22026 STU: Surface Transect Unit 22 080 100 Middle 1/8 inch FLS DEB MCT 18 66.5 DEBITAGE sub #2 

CA‐MNT‐0229 22026 STU: Surface Transect Unit 22 080 100 Middle 1/8 inch FLS DEB IGN 2 1.4 DEBITAGE sub #5 

CA‐MNT‐0229 22026 STU: Surface Transect Unit 22 080 100 Middle 1/8 inch FLS DEB FCT 2 2.1 DEBITAGE sub #3 

CA‐MNT‐0229 22026 STU: Surface Transect Unit 22 080 100 Middle 1/8 inch FLS BIF MCT 1 1.5 BIFACE sub #1 

CA‐MNT‐0229 22026 STU: Surface Transect Unit 22 080 100 Middle 1/8 inch FLS DEB QZT 1 19.4 DEBITAGE sub #6 

CA‐MNT‐0229 22026 STU: Surface Transect Unit 22 080 100 Middle 1/8 inch FLS DEB CCS 1 17.3 DEBITAGE sub #4 

CA‐MNT‐0229 22033 STU: Surface Transect Unit 22 100 120 Middle 1/8 inch FLS COR MCT 1 8.4 CORE 

CA‐MNT‐0229 22034 STU: Surface Transect Unit 22 100 120 Middle 1/8 inch FLS BIF IGN 1 18.8 BIFACE 

CA‐MNT‐0229 22035 STU: Surface Transect Unit 22 100 120 Middle 1/8 inch FLS DEB OBS 1 0.4 DEBITAGE 

CA‐MNT‐0229 22036 STU: Surface Transect Unit 22 100 120 Middle 1/8 inch FLS DEB MCT 11 30.9 DEBITAGE sub #1 

Page 23 of 37 

109  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 22036 STU: Surface Transect Unit 22 100 120 Middle 1/8 inch FLS DEB FCT 1 6.3 DEBITAGE sub #2 

CA‐MNT‐0229 22036 STU: Surface Transect Unit 22 100 120 Middle 1/8 inch FLS DEB CCS 1 19.4 DEBITAGE sub #3 

CA‐MNT‐0229 22043 STU: Surface Transect Unit 22 120 140 Middle 1/8 inch FLS BIF MCT 1 1.1 BIFACE 

CA‐MNT‐0229 22044 STU: Surface Transect Unit 22 120 140 Middle 1/8 inch FLS DEB MET 1 5.1 DEBITAGE sub #4 

CA‐MNT‐0229 22044 STU: Surface Transect Unit 22 120 140 Middle 1/8 inch FLS DEB FCT 2 9.5 DEBITAGE sub #2 

CA‐MNT‐0229 22044 STU: Surface Transect Unit 22 120 140 Middle 1/8 inch FLS DEB IGN 1 21.7 DEBITAGE sub #3 

CA‐MNT‐0229 22044 STU: Surface Transect Unit 22 120 140 Middle 1/8 inch FLS DEB MCT 13 26.6 DEBITAGE sub #1 

CA‐MNT‐0229 23003 STU: Surface Transect Unit 23 000 020 Middle 1/8 inch FLS BIF MCT 1 3.9 BIFACE 

CA‐MNT‐0229 23007 STU: Surface Transect Unit 23 020 040 Middle 1/8 inch FLS FKT MCT 1 4 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 23007 STU: Surface Transect Unit 23 020 040 Middle 1/8 inch FLS FFT CCS 1 11 FORMED FLAKE TOOL sub #1 

CA‐MNT‐0229 23013 STU: Surface Transect Unit 23 040 060 Middle 1/8 inch FLS BIF FCT 1 3.1 BIFACE 

CA‐MNT‐0229 23018 STU: Surface Transect Unit 23 060 080 Middle 1/8 inch FLS FKT MCT 1 0.9 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 23021 STU: Surface Transect Unit 23 060 080 Middle 1/8 inch FLS FFT MCT 1 8 FORMED FLAKE TOOL 

CA‐MNT‐0229 23027 STU: Surface Transect Unit 23 080 100 Middle 1/8 inch FLS FKT MCT 1 2.4 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 23034 STU: Surface Transect Unit 23 100 120 MST 1/8 inch FLS COR MCT 1 21 CORE sub #2 

CA‐MNT‐0229 23034 STU: Surface Transect Unit 23 100 120 MST 1/8 inch FLS COR FCT 1 45.4 CORE sub #1 

CA‐MNT‐0229 23041 STU: Surface Transect Unit 23 120 140 MST 1/8 inch FLS FKT MCT 1 7.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 24003 STU: Surface Transect Unit 24 000 020 Middle 1/8 inch FLS FKT MCT 1 0.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 24009 STU: Surface Transect Unit 24 020 040 Middle 1/8 inch FLS FKT MCT 1 3.6 SIMPLE FLAKE TOOL 

Page 24 of 37 

110  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 24015 STU: Surface Transect Unit 24 040 060 Middle 1/8 inch FLS FKT MCT 1 6.9 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 24016 STU: Surface Transect Unit 24 040 060 Middle 1/8 inch FLS FKT MCT 1 11.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 24020 STU: Surface Transect Unit 24 060 080 Middle 1/8 inch FLS CRT MTS 1 19.9 CORE Tool sub #2 

CA‐MNT‐0229 24020 STU: Surface Transect Unit 24 060 080 Middle 1/8 inch FLS COR MCT 1 20.8 CORE sub #1 

CA‐MNT‐0229 24022 STU: Surface Transect Unit 24 060 080 Middle 1/8 inch FLS BIF MCT 1 4 BIFACE 

CA‐MNT‐0229 24023 STU: Surface Transect Unit 24 060 080 Middle 1/8 inch FLS FKT FCT 1 5.1 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 24028 STU: Surface Transect Unit 24 080 100 Middle 1/8 inch FLS CRT FCT 1 180.3 CORE Tool sub #1 

CA‐MNT‐0229 24028 STU: Surface Transect Unit 24 080 100 Middle 1/8 inch FLS FKT MCT 1 2.3 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 24028 STU: Surface Transect Unit 24 080 100 Middle 1/8 inch FLS FKT MCT 1 8.8 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 24040 STU: Surface Transect Unit 24 100 120 MST 1/8 inch FLS COR MCT 1 22.8 CORE 

CA‐MNT‐0229 24041 STU: Surface Transect Unit 24 100 120 MST 1/8 inch FLS CRT FCT 1 51.6 CORE Tool 

CA‐MNT‐0229 24046 STU: Surface Transect Unit 24 120 140 MST 1/8 inch FLS COR MCT 1 49.8 CORE sub #1 

CA‐MNT‐0229 24046 STU: Surface Transect Unit 24 120 140 MST 1/8 inch FLS FKT MCT 1 2.6 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 24047 STU: Surface Transect Unit 24 120 140 MST 1/8 inch FLS FKT MCT 1 23.2 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 25005 STU: Surface Transect Unit 25 020 040 Middle 1/8 inch FLS FFT MCT 1 12.9 FORMED FLAKE TOOL sub #1 

CA‐MNT‐0229 25005 STU: Surface Transect Unit 25 020 040 Middle 1/8 inch FLS FKT MCT 1 0.5 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 25010 STU: Surface Transect Unit 25 040 060 Middle 1/8 inch FLS FKT MCT 1 1.8 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 25026 STU: Surface Transect Unit 25 100 120 MST 1/8 inch FLS COR MCT 1 13.3 CORE sub #1 

CA‐MNT‐0229 25026 STU: Surface Transect Unit 25 100 120 MST 1/8 inch FLS FKT MCT 1 3.3 SIMPLE FLAKE TOOL sub #2 

Page 25 of 37 

111  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 25036 STU: Surface Transect Unit 25 140 160 MST 1/8 inch FLS FFT MCT 1 6.1 FORMED FLAKE TOOL 

CA‐MNT‐0229 26003 STU: Surface Transect Unit 26 000 020 Middle 1/8 inch FLS COR MCT 1 40.7 CORE 

CA‐MNT‐0229 26006 STU: Surface Transect Unit 26 020 040 Middle 1/8 inch FLS FKT MCT 1 3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 26015 STU: Surface Transect Unit 26 060 080 Middle 1/8 inch FLS COR MCT 1 27.2 CORE sub #2 

CA‐MNT‐0229 26015 STU: Surface Transect Unit 26 060 080 Middle 1/8 inch FLS BIF MCT 1 3.3 BIFACE sub #1 

CA‐MNT‐0229 27016 STU: Surface Transect Unit 27 080 100 Middle 1/8 inch FLS FFT MCT 1 8.8 FORMED FLAKE TOOL sub #1 

CA‐MNT‐0229 27016 STU: Surface Transect Unit 27 100 120 MST 1/8 inch FLS FKT MCT 1 4.2 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 27017 STU: Surface Transect Unit 27 080 100 Middle 1/8 inch FLS ASC MCT 1 77.8 ASSAYED COBBLE 

CA‐MNT‐0229 27024 STU: Surface Transect Unit 27 100 120 MST 1/8 inch FLS COR MCT 1 12.2 CORE 

CA‐MNT‐0229 27025 STU: Surface Transect Unit 27 100 120 MST 1/8 inch FLS FLC MET 1 301 COBBLE TOOL 

CA‐MNT‐0229 27032 STU: Surface Transect Unit 27 140 160 MST 1/8 inch FLS FKT MCT 1 2.4 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 27038 STU: Surface Transect Unit 27 140 160 MST 1/8 inch FLS FFT MCT 1 6.6 FORMED FLAKE TOOL sub #2 

CA‐MNT‐0229 27038 STU: Surface Transect Unit 27 140 160 MST 1/8 inch FLS BIF MCT 1 0.8 BIFACE sub #1 

CA‐MNT‐0229 28003 STU: Surface Transect Unit 28 000 020 Middle 1/8 inch FLS COR CCS 1 63.8 CORE 

CA‐MNT‐0229 28008 STU: Surface Transect Unit 28 040 060 Middle 1/8 inch FLS FKT MCT 1 5.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 28009 STU: Surface Transect Unit 28 020 040 Middle 1/8 inch FLS BIF OBS 1 6.7 BIFACE 

CA‐MNT‐0229 28013 STU: Surface Transect Unit 28 040 060 Middle 1/8 inch FLS BIF MCT 1 0.8 BIFACE 

CA‐MNT‐0229 29004 STU: Surface Transect Unit 29 000 020 Middle 1/8 inch FLS COR CCS 1 21.4 CORE sub #1 

CA‐MNT‐0229 29004 STU: Surface Transect Unit 29 000 020 Middle 1/8 inch FLS COR MCT 1 16.9 CORE sub #2 

Page 26 of 37 

112  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 29007 STU: Surface Transect Unit 29 000 020 Middle 1/8 inch FLS BIF MCT 1 3.8 BIFACE 

CA‐MNT‐0229 29017 STU: Surface Transect Unit 29 040 060 Middle 1/8 inch FLS FKT FCT 1 0.4 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 29023 STU: Surface Transect Unit 29 060 080 Middle 1/8 inch FLS COR MCT 1 24.3 CORE 

CA‐MNT‐0229 30016 STU: Surface Transect Unit 30 080 100 Middle 1/8 inch FLS COR MCT 1 12.6 CORE sub #1 

CA‐MNT‐0229 30016 STU: Surface Transect Unit 30 080 100 Middle 1/8 inch FLS FKT MCT 1 0.8 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 30021 STU: Surface Transect Unit 30 100 120 MST 1/8 inch FLS COR MCT 1 22.6 CORE 

CA‐MNT‐0229 30026 STU: Surface Transect Unit 30 120 140 MST 1/8 inch FLS BIF FCT 1 6.3 BIFACE 

CA‐MNT‐0229 31005 RRU: Rapid Recovery Units 31 000 020 Middle 1/8 inch FLS PPT MCT 1 1.9 Projectile Point 

CA‐MNT‐0229 31011 RRU: Rapid Recovery Units 31 020 040 Middle 1/8 inch FLS FLC FCT 1 145.8 COBBLE TOOL 

CA‐MNT‐0229 31012 RRU: Rapid Recovery Units 31 020 040 Middle 1/8 inch FLS FFT MCT 1 5.9 FORMED FLAKE TOOL 

CA‐MNT‐0229 31013 RRU: Rapid Recovery Units 31 020 040 Middle 1/8 inch FLS FFT MCT 1 6.6 FORMED FLAKE TOOL 

CA‐MNT‐0229 31018 RRU: Rapid Recovery Units 31 040 060 Middle 1/8 inch FLS COR MCT 1 14.2 CORE sub #1 

CA‐MNT‐0229 31018 RRU: Rapid Recovery Units 31 040 060 Middle 1/8 inch FLS FKT CCS 1 5.3 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 31019 RRU: Rapid Recovery Units 31 040 060 Middle 1/8 inch FLS COR BAS 1 123 CORE 

CA‐MNT‐0229 31026 RRU: Rapid Recovery Units 31 060 080 Middle 1/8 inch FLS COR CHA 1 35.9 CORE 

CA‐MNT‐0229 32004 RRU: Rapid Recovery Units 32 000 020 Middle 1/8 inch FLS DEB OBS 1 0.1 DEBITAGE 

CA‐MNT‐0229 32005 RRU: Rapid Recovery Units 32 000 020 Middle 1/8 inch FLS DEB MCT 14 27.7 DEBITAGE sub #2 

CA‐MNT‐0229 32005 RRU: Rapid Recovery Units 32 000 020 Middle 1/8 inch FLS DEB FCT 4 36.4 DEBITAGE sub #3 

CA‐MNT‐0229 32005 RRU: Rapid Recovery Units 32 000 020 Middle 1/8 inch FLS DEB CCS 1 4.6 DEBITAGE sub #4 

Page 27 of 37 

113  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 32005 RRU: Rapid Recovery Units 32 000 020 Middle 1/8 inch FLS DEB QZT 1 9.1 DEBITAGE sub #5 

CA‐MNT‐0229 32005 RRU: Rapid Recovery Units 32 000 020 Middle 1/8 inch FLS FKT FCT 1 3.3 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 32011 RRU: Rapid Recovery Units 32 020 040 Middle 1/8 inch FLS BIF OBS 1 3.3 BIFACE 

CA‐MNT‐0229 32012 RRU: Rapid Recovery Units 32 020 040 Middle 1/8 inch FLS DEB IGN 8 70.2 DEBITAGE sub #4 

CA‐MNT‐0229 32012 RRU: Rapid Recovery Units 32 020 040 Middle 1/8 inch FLS DEB MCT 42 92 DEBITAGE sub #1 

CA‐MNT‐0229 32012 RRU: Rapid Recovery Units 32 020 040 Middle 1/8 inch FLS DEB CCS 2 7.6 DEBITAGE sub #3 

CA‐MNT‐0229 32012 RRU: Rapid Recovery Units 32 020 040 Middle 1/8 inch FLS DEB QZT 1 8.6 DEBITAGE sub #5 

CA‐MNT‐0229 32012 RRU: Rapid Recovery Units 32 020 040 Middle 1/8 inch FLS DEB FCT 9 20.2 DEBITAGE sub #2 

CA‐MNT‐0229 32013 RRU: Rapid Recovery Units 32 020 040 Middle 1/8 inch FLS COR MCT 1 16.6 CORE 

CA‐MNT‐0229 32014 RRU: Rapid Recovery Units 32 020 040 Middle 1/8 inch FLS BIF FCT 1 19.7 BIFACE 

CA‐MNT‐0229 32015 RRU: Rapid Recovery Units 32 020 040 Middle 1/8 inch FLS COR FCT 1 47.1 CORE 

CA‐MNT‐0229 32029 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS DEB OBS 5 0.5 DEBITAGE 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS FKT MCT 1 0.6 SIMPLE FLAKE TOOL sub #4 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS FKT MCT 1 5.8 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS FKT MCT 1 1.2 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS DEB MTS 4 30.6 DEBITAGE sub #10 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS DEB IGN 3 3.2 DEBITAGE sub #8 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS DEB QZT 2 2.6 DEBITAGE sub #9 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS DEB CCS 6 15.5 DEBITAGE sub #7 

Page 28 of 37 

114  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS DEB FCT 9 66.1 DEBITAGE sub #6 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS DEB MCT 62 109.4 DEBITAGE sub #5 

CA‐MNT‐0229 32030 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS FKT MCT 1 4.3 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 32032 RRU: Rapid Recovery Units 32 040 060 Middle 1/8 inch FLS PPT MCT 1 5.2 Projectile Point 

CA‐MNT‐0229 32043 RRU: Rapid Recovery Units 32 060 080 Middle 1/8 inch FLS FKT OBS 1 0.3 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 32044 RRU: Rapid Recovery Units 32 060 080 Middle 1/8 inch FLS DEB MCT 22 52.9 DEBITAGE sub #1 

CA‐MNT‐0229 32044 RRU: Rapid Recovery Units 32 060 080 Middle 1/8 inch FLS DEB CCS 1 1.1 DEBITAGE sub #2 

CA‐MNT‐0229 32044 RRU: Rapid Recovery Units 32 060 080 Middle 1/8 inch FLS DEB QZT 3 15.1 DEBITAGE sub #4 

CA‐MNT‐0229 32044 RRU: Rapid Recovery Units 32 060 080 Middle 1/8 inch FLS DEB IGN 8 61.3 DEBITAGE sub #3 

CA‐MNT‐0229 32049 RRU: Rapid Recovery Units 32 060 080 Middle 1/8 inch FLS DEB OBS 1 0.4 DEBITAGE 

CA‐MNT‐0229 32050 RRU: Rapid Recovery Units 32 060 080 Middle 1/8 inch FLS BIF OBS 1 2.6 BIFACE sub #2 

CA‐MNT‐0229 32050 RRU: Rapid Recovery Units 32 060 080 Middle 1/8 inch FLS BIF OBS 1 2.8 BIFACE sub #1 

CA‐MNT‐0229 32065 RRU: Rapid Recovery Units 32 080 100 Middle 1/8 inch FLS DEB FCT 2 4.3 DEBITAGE sub #5 

CA‐MNT‐0229 32065 RRU: Rapid Recovery Units 32 080 100 Middle 1/8 inch FLS FKT MCT 1 7.4 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 32065 RRU: Rapid Recovery Units 32 080 100 Middle 1/8 inch FLS FKT MCT 1 5.4 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 32065 RRU: Rapid Recovery Units 32 080 100 Middle 1/8 inch FLS FKT FCT 1 7.7 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 32065 RRU: Rapid Recovery Units 32 080 100 Middle 1/8 inch FLS DEB MCT 14 38.4 DEBITAGE sub #4 

CA‐MNT‐0229 32065 RRU: Rapid Recovery Units 32 080 100 Middle 1/8 inch FLS DEB QZT 1 2.1 DEBITAGE sub #7 

CA‐MNT‐0229 32065 RRU: Rapid Recovery Units 32 080 100 Middle 1/8 inch FLS DEB IGN 3 45.5 DEBITAGE sub #6 

Page 29 of 37 

115  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 32072 RRU: Rapid Recovery Units 32 080 100 Middle 1/8 inch FLS FKT MCT 1 3.4 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 32079 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS DEB OBS 1 0.2 DEBITAGE 

CA‐MNT‐0229 32080 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS BIF OBS 1 0.5 BIFACE 

CA‐MNT‐0229 32081 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS BIF OBS 1 1.7 BIFACE 

CA‐MNT‐0229 32082 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS DEB MCT 27 104.3 DEBITAGE sub #3 

CA‐MNT‐0229 32082 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS BIF MCT 1 4.6 BIFACE sub #1 

CA‐MNT‐0229 32082 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS DEB CCS 2 3 DEBITAGE sub #5 

CA‐MNT‐0229 32082 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS DEB QZT 1 10.6 DEBITAGE sub #7 

CA‐MNT‐0229 32082 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS DEB IGN 1 3.5 DEBITAGE sub #6 

CA‐MNT‐0229 32082 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS FKT MCT 1 4.6 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 32082 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS DEB FCT 2 2.3 DEBITAGE sub #4 

CA‐MNT‐0229 32083 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS ASC FCT 1 69.2 ASSAYED COBBLE 

CA‐MNT‐0229 32084 RRU: Rapid Recovery Units 32 100 120 MST 1/8 inch FLS BIF MCT 1 5.5 BIFACE LEAF SHAPE 

CA‐MNT‐0229 32092 RRU: Rapid Recovery Units 32 120 140 MST 1/8 inch FLS FKT MCT 1 3.4 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 32092 RRU: Rapid Recovery Units 32 120 140 MST 1/8 inch FLS DEB MCT 24 78.9 DEBITAGE sub #2 

CA‐MNT‐0229 32092 RRU: Rapid Recovery Units 32 120 140 MST 1/8 inch FLS DEB FCT 2 3.2 DEBITAGE sub #3 

CA‐MNT‐0229 32092 RRU: Rapid Recovery Units 32 120 140 MST 1/8 inch FLS DEB QZT 1 3.2 DEBITAGE sub #5 

CA‐MNT‐0229 32092 RRU: Rapid Recovery Units 32 120 140 MST 1/8 inch FLS DEB IGN 1 2.6 DEBITAGE sub #4 

CA‐MNT‐0229 32099 RRU: Rapid Recovery Units 32 140 160 MST 1/8 inch FLS DEB FCT 3 9 DEBITAGE sub #2 

Page 30 of 37 

116  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 32099 RRU: Rapid Recovery Units 32 140 160 MST 1/8 inch FLS DEB MCT 18 48 DEBITAGE sub #1 

CA‐MNT‐0229 33006 RRU: Rapid Recovery Units 33 080 100 Middle 1/8 inch FLS FKT FCT 1 2.9 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 33006 RRU: Rapid Recovery Units 33 080 100 Middle 1/8 inch FLS FKT MCT 1 1.6 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 33006 RRU: Rapid Recovery Units 33 080 100 Middle 1/8 inch FLS FKT MCT 1 2 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 33015 RRU: Rapid Recovery Units 33 100 120 MST 1/8 inch FLS COR MTS 1 144.4 CORE sub #2 

CA‐MNT‐0229 33015 RRU: Rapid Recovery Units 33 100 120 MST 1/8 inch FLS COR FCT 1 23.9 CORE sub #1 

CA‐MNT‐0229 33016 RRU: Rapid Recovery Units 33 100 120 MST 1/8 inch FLS PPT MCT 1 9.7 Projectile Point 

CA‐MNT‐0229 33023 RRU: Rapid Recovery Units 33 120 140 MST 1/8 inch FLS DRI MCT 1 1.8 DRILL 

CA‐MNT‐0229 33027 RRU: Rapid Recovery Units 33 140 160 MST 1/8 inch FLS CRT MCT 1 20 CORE Tool 

CA‐MNT‐0229 34006 RRU: Rapid Recovery Units 34 080 100 Middle 1/8 inch FLS BIF CCS 1 11 BIFACE sub #1 

CA‐MNT‐0229 34006 RRU: Rapid Recovery Units 34 080 100 Middle 1/8 inch FLS FKT MCT 1 14.4 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 34006 RRU: Rapid Recovery Units 34 080 100 Middle 1/8 inch FLS COR MCT 1 17.1 CORE sub #2 

CA‐MNT‐0229 34025 RRU: Rapid Recovery Units 34 100 120 MST 1/8 inch FLS FKT MCT 1 15.8 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 34034 RRU: Rapid Recovery Units 34 120 140 MST 1/8 inch FLS COR MCT 1 13 CORE 

CA‐MNT‐0229 35004 RRU: Rapid Recovery Units 35 080 100 Middle 1/8 inch FLS FKT MCT 1 0.7 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 35006 RRU: Rapid Recovery Units 35 080 100 Middle 1/8 inch FLS FLC QTZ 1 266.4 COBBLE TOOL 

CA‐MNT‐0229 35012 RRU: Rapid Recovery Units 35 100 120 MST 1/8 inch FLS COR MCT 1 11.2 CORE 

CA‐MNT‐0229 36009 STU: Surface Transect Unit 36 100 120 MST 1/8 inch FLS COR MCT 1 22.5 CORE 

CA‐MNT‐0229 38007 RRU: Rapid Recovery Units 38 080 100 Middle 1/8 inch FLS BIF OBS 1 1.5 BIFACE 

Page 31 of 37 

117  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 39003 RRU: Rapid Recovery Units 39 000 020 Middle 1/8 inch FLS FFT MCT 1 7 FORMED FLAKE TOOL 

CA‐MNT‐0229 39015 RRU: Rapid Recovery Units 39 040 060 Middle 1/8 inch FLS COR MCT 1 11.2 CORE 

CA‐MNT‐0229 39020 RRU: Rapid Recovery Units 39 060 080 Middle 1/8 inch FLS COR MCT 1 15.7 CORE sub #1 

CA‐MNT‐0229 39020 RRU: Rapid Recovery Units 39 060 080 Middle 1/8 inch FLS COR MCT 1 13.3 CORE sub #2 

CA‐MNT‐0229 39028 RRU: Rapid Recovery Units 39 100 120 MST 1/8 inch FLS DRI MCT 1 1.5 DRILL 

CA‐MNT‐0229 40003 RRU: Rapid Recovery Units 40 000 020 Middle 1/8 inch FLS DEB OBS 2 0.3 DEBITAGE 

CA‐MNT‐0229 40004 RRU: Rapid Recovery Units 40 000 020 Middle 1/8 inch FLS DEB CCS 3 27.8 DEBITAGE 

CA‐MNT‐0229 40004 RRU: Rapid Recovery Units 40 000 020 Middle 1/8 inch FLS DEB FCT 5 9.5 DEBITAGE 

CA‐MNT‐0229 40004 RRU: Rapid Recovery Units 40 000 020 Middle 1/8 inch FLS DEB MCT 18 31.8 DEBITAGE 

CA‐MNT‐0229 40010 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS DEB OBS 2 0.2 DEBITAGE 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS DEB QZT 3 22.8 DEBITAGE sub #9 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS COR MTS 1 35.7 CORE sub #1 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS DEB IGN 2 4.8 DEBITAGE sub #8 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS DEB CCS 1 3.3 DEBITAGE sub #7 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS DEB FCT 9 28 DEBITAGE sub #6 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS DEB MCT 42 134.5 DEBITAGE sub #5 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS FKT CCS 1 3 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS FKT MCT 1 3.4 SIMPLE FLAKE TOOL sub #4 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS FKT MCT 1 4.7 SIMPLE FLAKE TOOL sub #3 

Page 32 of 37 

118  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 40011 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS DEB MTS 2 21.9 DEBITAGE sub #10 

CA‐MNT‐0229 40012 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS PPT MCT 1 6.3 Projectile Point 

CA‐MNT‐0229 40013 RRU: Rapid Recovery Units 40 020 040 Middle 1/8 inch FLS BIF MCT 1 3.3 BIFACE LEAF SHAPE 

CA‐MNT‐0229 40019 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS DEB OBS 4 0.6 DEBITAGE 

CA‐MNT‐0229 40020 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS DEB IGN 7 41.9 DEBITAGE sub #6 

CA‐MNT‐0229 40020 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS FKT FCT 1 8.9 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 40020 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS BIF MCT 1 16.7 BIFACE sub #1 

CA‐MNT‐0229 40020 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS DEB MET 2 4.6 DEBITAGE sub #7 

CA‐MNT‐0229 40020 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS DEB CCS 1 0.8 DEBITAGE sub #5 

CA‐MNT‐0229 40020 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS DEB FCT 4 13.8 DEBITAGE sub #4 

CA‐MNT‐0229 40020 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS DEB MCT 40 107.2 DEBITAGE sub #3 

CA‐MNT‐0229 40020 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS DEB MTS 1 9.4 DEBITAGE sub #8 

CA‐MNT‐0229 40021 RRU: Rapid Recovery Units 40 040 060 Middle 1/8 inch FLS PPT MCT 1 12.1 Projectile Point 

CA‐MNT‐0229 40029 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS DEB OBS 2 0.2 DEBITAGE 

CA‐MNT‐0229 40030 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS DEB MCT 31 80.7 DEBITAGE sub #6 

CA‐MNT‐0229 40030 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS DEB FCT 5 50.1 DEBITAGE sub #7 

CA‐MNT‐0229 40030 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS DEB CCS 4 14.1 DEBITAGE sub #8 

CA‐MNT‐0229 40030 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS DEB IGN 1 14.6 DEBITAGE sub #9 

CA‐MNT‐0229 40030 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS COR FCT 1 69.1 CORE sub #2 

Page 33 of 37 

119  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 40030 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS FKT CCS 1 4.7 SIMPLE FLAKE TOOL sub #5 

CA‐MNT‐0229 40030 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS FKT FCT 1 9.8 SIMPLE FLAKE TOOL sub #4 

CA‐MNT‐0229 40030 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS COR MCT 1 12 CORE sub #3 

CA‐MNT‐0229 40030 RRU: Rapid Recovery Units 40 060 080 Middle 1/8 inch FLS BIF MCT 1 7 BIFACE sub #1 

CA‐MNT‐0229 40044 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS DEB QZT 2 8.5 DEBITAGE sub #8 

CA‐MNT‐0229 40044 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS FKT MCT 1 0.8 SIMPLE FLAKE TOOL sub #3 

CA‐MNT‐0229 40044 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS FKT MCT 1 1.7 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 40044 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS DEB MCT 36 64.6 DEBITAGE sub #4 

CA‐MNT‐0229 40044 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS DEB CCS 2 11.5 DEBITAGE sub #6 

CA‐MNT‐0229 40044 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS DEB IGN 1 2.1 DEBITAGE sub #7 

CA‐MNT‐0229 40044 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS DEB MTS 3 6.4 DEBITAGE sub #9 

CA‐MNT‐0229 40044 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS BIF MCT 1 3.4 BIFACE sub #1 

CA‐MNT‐0229 40044 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS DEB FCT 5 80 DEBITAGE sub #5 

CA‐MNT‐0229 40045 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS BIF CCS 1 8 BIFACE 

CA‐MNT‐0229 40046 RRU: Rapid Recovery Units 40 080 100 Middle 1/8 inch FLS BIF MCT 1 13.8 BIFACE CRESCENT 

CA‐MNT‐0229 40056 RRU: Rapid Recovery Units 40 100 120 MST 1/8 inch FLS DEB OBS 1 0.4 DEBITAGE 

CA‐MNT‐0229 40057 RRU: Rapid Recovery Units 40 100 120 MST 1/8 inch FLS DEB MTS 1 1.2 DEBITAGE sub #6 

CA‐MNT‐0229 40057 RRU: Rapid Recovery Units 40 100 120 MST 1/8 inch FLS DEB IGN 4 22.4 DEBITAGE sub #4 

CA‐MNT‐0229 40057 RRU: Rapid Recovery Units 40 100 120 MST 1/8 inch FLS DEB MCT 23 58.2 DEBITAGE sub #2 

Page 34 of 37 

120  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 40057 RRU: Rapid Recovery Units 40 100 120 MST 1/8 inch FLS DEB FCT 8 26.5 DEBITAGE sub #3 

CA‐MNT‐0229 40057 RRU: Rapid Recovery Units 40 100 120 MST 1/8 inch FLS FKT MCT 1 3.3 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 40057 RRU: Rapid Recovery Units 40 100 120 MST 1/8 inch FLS DEB QZT 2 29.6 DEBITAGE sub #5 

CA‐MNT‐0229 40067 RRU: Rapid Recovery Units 40 120 140 MST 1/8 inch FLS BIF OBS 1 0.6 BIFACE 

CA‐MNT‐0229 40068 RRU: Rapid Recovery Units 40 120 140 MST 1/8 inch FLS DEB FCT 2 8.7 DEBITAGE sub #4 

CA‐MNT‐0229 40068 RRU: Rapid Recovery Units 40 120 140 MST 1/8 inch FLS DEB MCT 20 64.3 DEBITAGE sub #3 

CA‐MNT‐0229 40068 RRU: Rapid Recovery Units 40 120 140 MST 1/8 inch FLS DEB QZT 2 8.6 DEBITAGE sub #5 

CA‐MNT‐0229 40068 RRU: Rapid Recovery Units 40 120 140 MST 1/8 inch FLS FKT FCT 1 2.1 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 40068 RRU: Rapid Recovery Units 40 120 140 MST 1/8 inch FLS FKT MCT 1 1.3 SIMPLE FLAKE TOOL sub #2 

CA‐MNT‐0229 40068 RRU: Rapid Recovery Units 40 120 140 MST 1/8 inch FLS DEB MTS 1 1.7 DEBITAGE sub #6 

CA‐MNT‐0229 40077 RRU: Rapid Recovery Units 40 140 160 MST 1/8 inch FLS DEB QZT 4 32.7 DEBITAGE sub #6 

CA‐MNT‐0229 40077 RRU: Rapid Recovery Units 40 140 160 MST 1/8 inch FLS FKT MCT 1 1.4 SIMPLE FLAKE TOOL sub #1 

CA‐MNT‐0229 40077 RRU: Rapid Recovery Units 40 140 160 MST 1/8 inch FLS DEB MTS 1 4 DEBITAGE sub #7 

CA‐MNT‐0229 40077 RRU: Rapid Recovery Units 40 140 160 MST 1/8 inch FLS DEB MCT 8 19.7 DEBITAGE sub #2 

CA‐MNT‐0229 40077 RRU: Rapid Recovery Units 40 140 160 MST 1/8 inch FLS DEB FCT 5 8.2 DEBITAGE sub #3 

CA‐MNT‐0229 40077 RRU: Rapid Recovery Units 40 140 160 MST 1/8 inch FLS DEB CCS 1 1.5 DEBITAGE sub #4 

CA‐MNT‐0229 40077 RRU: Rapid Recovery Units 40 140 160 MST 1/8 inch FLS DEB IGN 1 4.4 DEBITAGE sub #5 

CA‐MNT‐0229 41001 SBC: Shovel Broadcast 41 028 028 Middle NA FLS PPT OBS 1 3 Projectile Point 

CA‐MNT‐0229 42003 RRU: Rapid Recovery Units 42 055 080 Middle 1/8 inch FLS BIF MCT 1 3.4 BIFACE 

Page 35 of 37 

121  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 42004 RRU: Rapid Recovery Units 42 055 080 Middle 1/8 inch FLS COR FCT 1 35.2 CORE 

CA‐MNT‐0229 42221 RRU: Rapid Recovery Units 42 220 230 MST 1/8 inch FLS DRI MCT 1 8.4 DRILL 

CA‐MNT‐0229 43007 RRU: Rapid Recovery Units 43 020 040 Middle 1/8 inch FLS BIF MCT 1 2.3 BIFACE sub #1 

CA‐MNT‐0229 43007 RRU: Rapid Recovery Units 43 020 040 Middle 1/8 inch FLS COR MCT 1 19.2 CORE sub #2 

CA‐MNT‐0229 43014 RRU: Rapid Recovery Units 43 040 060 Middle 1/8 inch FLS FKT MCT 1 8.2 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 43019 RRU: Rapid Recovery Units 43 060 080 Middle 1/8 inch FLS COR MCT 1 18.3 CORE 

CA‐MNT‐0229 43026 RRU: Rapid Recovery Units 43 080 100 Middle 1/8 inch FLS COR MCT 1 31.8 CORE 

CA‐MNT‐0229 43032 RRU: Rapid Recovery Units 43 100 120 Middle 1/8 inch FLS CRT FCT 1 22.6 CORE Tool 

CA‐MNT‐0229 43041 RRU: Rapid Recovery Units 43 140 160 Middle 1/8 inch FLS PPT MCT 1 4.9 Projectile Point 

CA‐MNT‐0229 M‐021 Mechanical M 080 080 ‐ FLS COR MET 1 47.3 CORE 

CA‐MNT‐0229 M‐022 Mechanical M 090 090 ‐ FLS FLC IGN 1 341.6 COBBLE TOOL 

CA‐MNT‐0229 M‐029 Mechanical M 040 040 ‐ FLS DRI MCT 1 6.1 DRILL 

CA‐MNT‐0229 M‐030 Mechanical M 033 033 ‐ FLS PPT MCT 1 14.1 Projectile Point 

CA‐MNT‐0229 M‐044 Mechanical M 180 180 ‐ FLS BIF OBS 1 1.5 BIFACE 

CA‐MNT‐0229 M‐045 Mechanical M 178 178 ‐ FLS BIF CCS 1 5.8 BIFACE 

CA‐MNT‐0229 M‐046 Mechanical M ‐ ‐ ‐ FLS CRT MCT 1 21 CORE Tool 

CA‐MNT‐0229 M‐049 Mechanical M 065 ‐065 ‐ FLS COR MCT 1 176.8 CORE 

CA‐MNT‐0229 M‐050 Mechanical M ‐ ‐ ‐ FLS FKT FCT 1 26.5 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 M‐058 Mechanical M 091 091 ‐ FLS COR FCT 1 71.6 CORE 

Page 36 of 37 

122  

Site Number Catalog  Unit Type Unit  Upper  Lower  Context Mesh Group Class Matl. Count Weight Description Comments  Number Number Level Level 

CA‐MNT‐0229 M‐061 Mechanical M 038 038 ‐ FLS BIF MCT 1 16.9 BIFACE 

CA‐MNT‐0229 M‐062 Mechanical M 197 197 ‐ FLS PPT MCT 1 9.3 Projectile Point 

CA‐MNT‐0229 M‐070 Mechanical M ‐ ‐ ‐ FLS FKT FCT 1 10 SIMPLE FLAKE TOOL 

CA‐MNT‐0229 M‐073 Mechanical M ‐ ‐ ‐ FLS ASC MCT 1 14.5 ASSAYED COBBLE 

CA‐MNT‐0229 M‐080 Mechanical M ‐ ‐ ‐ FLS ASC MTS 1 355.4 ASSAYED COBBLE 

CA‐MNT‐0229 M‐091 Mechanical M ‐ ‐ ‐ FLS BIF MCT 1 7.2 BIFACE 

CA‐MNT‐0229 M‐093 Mechanical M ‐ ‐ ‐ FLS FLC MET 1 317 COBBLE TOOL 

CA‐MNT‐0229 M‐094 Mechanical M ‐ ‐ ‐ FLS BIF IGN 1 61.6 BIFACE 

                         

 

 

 

 

 

 

 

 

123  

 

Appendix II: CA-MNT-229 Flaked Stone Analyses Raw Data

124  

FLAKED STONE ANALYSIS CODES

Projectile Point Attributes:

COND Condition: WHL Whole/ Complete NC Near complete PRX Proximal section DST Distal section MED Medial section MRG Margin END Indeterminate end INT Interior piece STM Stem

TYPE Point type ML Maximum Length (mm); Negative value (-) denotes incomplete

measurement. AL Axial Length (mm); Negative value (-) denotes incomplete measurement. SL Stem Length (mm); Negative value (-) denotes incomplete measurement. MW Max. Width (mm); Negative value (-) denotes incomplete measurement. BW Basal Width (mm); Negative value (-) denotes incomplete measurement. NW Neck Width (mm); Negative value (-) denotes incomplete measurement. MTH Maximum Thickness (mm); Negative value (-) denotes incomplete

measurement. DSA Distal Shoulder Angle, rounded to nearest 5-degree increment. PSA Proximal Shoulder Angle, rounded to nearest 5-degree increment. NOA Notch Opening Angle, rounded to nearest 5-degree increment. STATE State of weathering and patina:

0- No evidence; 1-Slight and does not affect any specific evaluation; 2- weathering/patina present and does impede ability to make certain observations; 9- Indeterminate.

USE Use wear: 0- None observed; 1- Micro-chipping, Unifacial; 2- Micro-chipping, Bifacial; 3- Edge rounding (polishing or grinding); 4- Battering/dulling; 5- Step Fracturing, Unifacial; 6-Step Fracturing, Bifacial; 7- Edge Polish; 8- Unifacial Edge Flaking; 9- Indeterminate; 10- Bifacial Edge Flaking.

Break Break Type: 0- No evidence; 1- Perverse/twisting break; 2- Plunging/overshot; 3- Hinge termination; 4- Thermal fracture; 5- Material quality; 6- Impact fracture; 7- Bending fracture; 9- Indeterminate.

REW Reworking: 0- None; 1- Flaking on fractured surface; 2- Distinct changes in working edge; 3- Tool chipped into new form; 4- Reused a different tool.

125  

Biface Attributes:

COND Condition: WHL Whole/ Complete NC Near complete PRX Proximal section DST Distal section MED Medial section MRG Margin END Indeterminate end INT Interior piece

ML Maximum Length (mm); Negative value (-) denotes incomplete measurement. MW Maximum Width (mm); Negative value (-) denotes incomplete

measurement. MTH Maximum Thickness (mm); Negative value (-) denotes incomplete

measurement. STG Stage:1 - 5 ARR Arris: Maximum number of arrises per centimeter.

SPA Spine Plane Angle: Angle rounded to nearest 5 degree increment. SHP Shape (restricted to end fragments, proximal listed before distal):

1- Rectangular; 2- Convex pointed; 3- Convex rounded; 4- Concave; 5- Straight; 6- Triangular; 7- Irregular; 8- Unworked or shaped; 9- Indeterminate; 10- Absent or broken.

SIZ Size:1- Arrow; 2- Dart; 3- Blade/Knife or large Biface; 9- Indeterminate; USE Use wear:0- None observed; 1- Micro-chipping, Unifacial; 2- Micro-

chipping, Bifacial; 3- Edge rounding (polishing or grinding); 4- Battering/dulling; 5- Step Fracturing, Unifacial; 6- Step Fracturing, Bifacial; 7- Edge Polish; 8- Unifacial Edge Flaking; 9- Indeterminate; 10- Bifacial Edge Flaking.

FORM Form, original form:1- Cobble base; 2- Flake base; 3- Biface; 4- Chunk/Shatter; 5- Split Cobble; 9- Indeterminate.

W/Th Width/Thickness ratio (complete forms): Ratio

BREAK Break type: 0- No evidence; 1- Perverse/twisting break; 2- Plunging/overshot; 3- Hinge termination; 4- Thermal fracture; 5- Material quality; 6- Impact fracture; 7- Bending fracture; 9- Indeterminate.

REW Reworking: 0- None; 1- Flaking on fractured surface; 2- Distinct changes

in working edge; 3- Tool chipped into new form; 4- Reused a different tool; 9- Indeterminate.

126  

Core Attributes:

COND Condition:

WHL Whole/ Complete NC Near complete PRX Proximal section DST Distal section MED Medial section MRG Margin END Indeterminate end INT Interior piece

ML Maximum Length (mm); Negative value (-) denotes incomplete measurement.

MW Maximum Width (mm); Negative value (-) denotes incomplete measurement.

MTH Maximum Thickness (mm); Negative value (-) denotes incomplete measurement.

FORM Core Form:1-Tabular cobble; 2- Globular cobble; 3- Angular cobble; 4- Shatter/chunk; 5- Split cobble; 6- Flake/Core; 7- Round cobble/pebble; 8- Chunk; 9-Indeterminate.

TYPE Core Type: 1- Unidirectional; 2- Bi-directional; 3- Multi-directional; 4- Bifacial; 5- Bipolar. # of PLATS Number of platforms: Number

P CONF Platform configuration: 1- Unidirectional; 2- Bi-directional; 3- Multi- directional; 4- Bifacial; 5- Bipolar.

P TYPE Platform type:1- Cortical; 2- Interior; 3- Prepared; 4- Cortical and Interior. FLK L Flake Scar, maximum length: Length (mm)

127  

CORE TOOL Attributes:

COND Condition:

WHL Whole/ Complete NC Near complete PRX Proximal section DST Distal section MED Medial section MRG Margin END Indeterminate end INT Interior piece

ML Maximum Length (mm); Negative value (-) denotes incomplete measurement.

MW Maximum Width (mm); Negative value (-) denotes incomplete measurement.

MTH Maximum Thickness (mm); Negative value (-) denotes incomplete measurement.

FORM Core Form:1-Tabular cobble; 2- Globular cobble; 3- Angular cobble; 4- Shatter/chunk; 5- Split cobble; 6- Flake/Core; 7- Round cobble/pebble; 8- Chunk; 9-Indeterminate.

TYPE Core Type: 1- Unidirectional; 2- Bi-directional; 3- Multi-directional; 4- Bifacial; 5- Bipolar. # of PLATS Number of platforms: Number

P CONF Platform configuration: 1- Unidirectional; 2- Bi-directional; 3- Multi- directional; 4- Bifacial; 5- Bipolar.

P TYPE Platform type:1- Cortical; 2- Interior; 3- Prepared; 4- Cortical and Interior. FLK L Flake Scar, maximum length: Length (mm) # of EDGES Number of modified edges: Number

USE Use wear:0- None observed; 1- Micro-chipping, Unifacial; 2- Micro- chipping, Bifacial; 3- Edge rounding (polishing or grinding); 4- Battering/dulling; 5- Step Fracturing, Unifacial; 6- Step Fracturing, Bifacial; 7- Edge Polish; 8- Unifacial Edge Flaking; 9- Indeterminate; 10- Bifacial Edge Flaking.

128  

Drill Attributes:

COND Condition:

WHL Whole/ Complete NC Near complete PRX Proximal section DST Distal section MED Medial section MRG Margin END Indeterminate end INT Interior piece

ML Maximum Length (mm); Negative value (-) denotes incomplete measurement.

MW Maximum Width (mm); Negative value (-) denotes incomplete measurement.

MTH Maximum Thickness (mm); Negative value (-) denotes incomplete measurement. Type Drill Type: 1- Perforator; 2- Drill Origin Original form: 1- Biface; 2- Flake; 3- Microblade

BL Bit Length (mm); Negative value (-) denotes incomplete measurement. BW Bit Width (mm); Negative value (-) denotes incomplete measurement. BTH Bit Thickness (mm); Negative value (-) denotes incomplete measurement. EA Edge Angle: Angle measured to nearest 5°.

USE Use wear:0- None observed; 1- Micro-chipping, Unifacial; 2- Micro- chipping, Bifacial; 3- Edge rounding (polishing or grinding); 4- Battering/dulling; 5- Step Fracturing, Unifacial; 6- Step Fracturing, Bifacial; 7- Edge Polish; 8- Unifacial Edge Flaking; 9- Indeterminate; 10- Bifacial Edge Flaking.

129  

Formed Flake Tool Attributes:

COND Condition:

WHL Whole/ Complete NC Near complete PRX Proximal section DST Distal section MED Medial section MRG Margin END Indeterminate end INT Interior piece

ML Maximum Length (mm); Negative value (-) denotes incomplete measurement.

MW Maximum Width (mm); Negative value (-) denotes incomplete measurement.

MTH Maximum Thickness (mm); Negative value (-) denotes incomplete measurement. FLK Flake Type: See debitage codes. EDG Number of modified edges: Actual number (1-5) SUR Surface used: 1- Dorsal; 2- Ventral; 3- Both MRPH Morphological type: 1- Domed uniface; 2- Amorphous E SHP Edge Shape:1- Concave; 2- Convex; 3- Straight; 4- Beaked; 5- Spoke shave; 6- S- shaped; 7- Perimeter; Modified by: A- Even; B- Irregular

USE Use wear:0- None observed; 1- Micro-chipping, Unifacial; 2- Micro- chipping, Bifacial; 3- Edge rounding (polishing or grinding); 4- Battering/dulling; 5- Step Fracturing, Unifacial; 6- Step Fracturing, Bifacial; 7- Edge Polish; 8- Unifacial Edge Flaking; 9- Indeterminate; 10- Bifacial Edge Flaking. E ANG Angle of modified edge: Measurement rounded to nearest 5 degree increment.

130  

Simple Flake Tool Attributes:

COND Condition:

WHL Whole/ Complete NC Near complete PRX Proximal section DST Distal section MED Medial section MRG Margin END Indeterminate end INT Interior piece

ML Maximum Length (mm); Negative value (-) denotes incomplete measurement.

MW Maximum Width (mm); Negative value (-) denotes incomplete measurement.

MTH Maximum Thickness (mm); Negative value (-) denotes incomplete measurement. FLK Flake Type: See debitage codes. EDG Number of modified edges: Actual number (1-5) SUR Surface used: 1- Dorsal; 2- Ventral; 3- Both MRPH Morphological type: 1- Domed uniface; 2- Amorphous E SHP Edge Shape:1- Concave; 2- Convex; 3- Straight; 4- Beaked; 5- Spoke shave; 6- S- shaped; 7- Perimeter; Modified by: A- Even; B- Irregular

USE Use wear:0- None observed; 1- Micro-chipping, Unifacial; 2- Micro- chipping, Bifacial; 3- Edge rounding (polishing or grinding); 4- Battering/dulling; 5- Step Fracturing, Unifacial; 6- Step Fracturing, Bifacial; 7- Edge Polish; 8- Unifacial Edge Flaking; 9- Indeterminate; 10- Bifacial Edge Flaking. SPA Spine Plane Angle: Measurement rounded to nearest 5 degree increment.

131  

Flaked Cobble Tools Attributes:

COND Condition:

WHL Whole/ Complete NC Near complete PRX Proximal section DST Distal section MED Medial section MRG Margin END Indeterminate end INT Interior piece

ML Maximum Length (mm); Negative value (-) denotes incomplete measurement.

MW Maximum Width (mm); Negative value (-) denotes incomplete measurement.

MTH Maximum Thickness (mm); Negative value (-) denotes incomplete measurement.

FORM Core Form:1-Tabular cobble; 2- Globular cobble; 3- Angular cobble; 4- Shatter/chunk; 5- Split cobble; 6- Flake/Core; 7- Round cobble/pebble; 8- Chunk; 9-Indeterminate.

# of EDGES Number of modified edges: Number USE Use wear:0- None observed; 1- Micro-chipping, Unifacial; 2- Micro-

chipping, Bifacial; 3- Edge rounding (polishing or grinding); 4- Battering/dulling; 5- Step Fracturing, Unifacial; 6- Step Fracturing, Bifacial; 7- Edge Polish; 8- Unifacial Edge Flaking; 9- Indeterminate; 10- Bifacial Edge Flaking.

132  

Assayed Cobbles Attributes:

COND Condition:

WHL Whole/ Complete NC Near complete PRX Proximal section DST Distal section MED Medial section MRG Margin END Indeterminate end INT Interior piece

ML Maximum Length (mm); Negative value (-) denotes incomplete measurement.

MW Maximum Width (mm); Negative value (-) denotes incomplete measurement.

MTH Maximum Thickness (mm); Negative value (-) denotes incomplete measurement.

FORM Core Form:1-Tabular cobble; 2- Globular cobble; 3- Angular cobble; 4- Shatter/chunk; 5- Split cobble; 6- Flake/Core; 7- Round cobble/pebble; 8- Chunk; 9-Indeterminate.

133  

DEBITAGE: FLAKE TYPES USED FOR TECHNOLOGICAL ANALYSIS Flake Size Sizes from 1-5 Flake Type Description

1 Primary Decortication- Any flake with more than 70% dorsal cortex. 2 Secondary Decortication- Any piece of debitage with less than 70% cortex

or only a cortical platform. 3 Simple Interior percussion- Flakes straight in cross-section, with one

dorsal arris. 4 Complex Interior percussion- Flakes straight in cross-section, with more than one dorsal arris. 5 Linear Interior percussion- Any flake straight in cross-section, twice as long as wide with one linear arris and no cortex. 6 Early Biface Thinning- Flakes curved in cross-section with one to two dorsal arrises. 7 Late Biface Thinning- Any flake curved in cross-section, with more than two dorsal arrises. 8 Early Pressure Flakes- Simple dorsal surface; platform may be oblique or perpendicular to longitudinal axis of the flake. Shapes are varied. Includes Edge Preparation/Pressure (small flakes that retain remnants of tool or core margins and show complex dorsal surfaces) and Rounded Pressure, (small pressure flakes with round or amorphous outlines and simple dorsal surfaces). 9 Late Pressure – Complex dorsal surface, w/ platforms oblique to longitudinal axis. Includes Linear Pressure Flakes (small flakes with greater length than thickness, one linear dorsal arris and a well-defined focal platform). 10 Pressure Flake-Notching- Fan-shaped, with platform set into depression; short and round. 11 Bipolar- Has crushing at both ends, with distinct cones of percussion and straight dorsal and ventral surfaces. 12 Fragment, Cortical Flake. 13 Fragment, Simple Interior. 14 Fragment, Complex Interior. 15 Cortical Shatter- Small, chunky pieces of debitage that exhibit any cortex. 16 Angular Percussion- Cuboidal or chunky pieces of shatter without cortex. 17 Indeterminate Percussion- Whole percussion flakes that cannot be typed due to weathering or other hindrances. 18 Indeterminate Pressure, complete pressure flakes that cannot be assigned. 19 Indeterminate Pressure, broken pressure flakes that cannot be assigned. 20 Indeterminate Percussion, broken percussion flakes that cannot be assigned. 99 Potlid, flake removed from parent material due to heat exposure.