The Minipig in Biomedical Research - Taylor & Francis eBooks

347
The MINIPIG in BIOMEDICAL RESEARCH

Transcript of The Minipig in Biomedical Research - Taylor & Francis eBooks

The

MINIPIGin

BIOMEDICAL RESEARCH

CRC Press is an imprint of theTaylor & Francis Group, an informa business

Boca Raton London New York

The

MINIPIGin

BIOMEDICAL RESEARCH

Peter A. McAnulty • Anthony D. DayanNiels-Christian Ganderup • Kenneth L. Hastings

E d i t e d b y

CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

Š 2012 by Taylor & Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government worksVersion Date: 20111003

International Standard Book Number-13: 978-1-4398-1119-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.com

and the CRC Press Web site athttp://www.crcpress.com

v

Contents

Preface ................................................................................................................................................................ xiEditors ..............................................................................................................................................................xiiiContributors ...................................................................................................................................................... xv

Section IOrigin and Management of the Minipig

Chapter 1History and Development of Miniature, Micro- and Minipigs ............................................................................................... 3

Friederike KĂśhn

Chapter 2Husbandry and Management ..................................................................................................................................................17

Roberta Scipioni Ball

Chapter 3Diseases of Minipigs .............................................................................................................................................................. 37

Nanna Grand

Chapter 4International Transportation of Minipigs .............................................................................................................................. 69

Finn Raaschou-Nielsen

Section IIWelfare and Experimental Usage of the Minipig

Chapter 5Ethical Issues in the Use of Minipigs in Animal Research ................................................................................................... 77

David Morton

Chapter 6Animal Welfare Issues ........................................................................................................................................................... 85

Kathy E. Laber, Alison C. Smith and M. Michael Swindle

Chapter 7Stress in Experiments: Stress Issues in Porcine Research ..................................................................................................... 93

Larry Dale Brown and Laust Peter Gade

Chapter 8Dosing Methods ....................................................................................................................................................................117

Peter Clausing

vi CONTENTS

Chapter 9In-Life Clinical Observations .............................................................................................................................................. 127

David M. Cameron

Section IIIPharmacology and ADME Studies in the Minipig

Chapter 10Minipigs in Absorption, Distribution, Metabolism, and Excretion (ADME) Studies ..........................................................143

Cornelia Preuße and Mette Tingleff Skaanild

Chapter 11The Minipig in Safety Pharmacology ...................................................................................................................................159

Stephane Milano

Section IVSafety Assessment in the Minipig—Principal Body Systems

Chapter 12Dermal Toxicity Studies: Skin Architecture, Metabolism, Penetration and Toxicological and Pharmacological Methods ..............................................................................................................................................185

Andrew Makin, Jens Thing Mortensen and William J. Brock

Chapter 13Gastrointestinal Tract ............................................................................................................................................................211

Chris Van Ginneken

Chapter 14Heart and Cardiotoxicity ..................................................................................................................................................... 237

James R. Turk

Chapter 15Central and Peripheral Nervous Systems ............................................................................................................................ 243

Allan Dahl Rasmussen and Karen Malene Wegener

Chapter 16The Kidney ...........................................................................................................................................................................253

Peter A. McAnulty

Chapter 17Reproductive System Including Studies in Juvenile Minipigs ............................................................................................. 263

Peter A. McAnulty, Paul Barrow and Edward Marsden

viiCONTENTS

Chapter 18The Endocrine System ......................................................................................................................................................... 277

Claudia Stark and Jakob Walter

Chapter 19Skeletal System .................................................................................................................................................................... 283

Hideki Tsutsumi

Chapter 20Ocular Examination and Background Observations ........................................................................................................... 293

Helmut Ehall

Chapter 21Spontaneous/Background Pathology of GĂśttingen Minipig ................................................................................................ 305

Zuhal Dincer and Mikala Skydsgaard

Section VGenetics and Immunology

Chapter 22A Comparative Assessment of the Pig, Mouse and Human Genomes: Structural and Functional Analysis of Genes Involved in Immunity and Inďż˝ammation ............................................................................................................. 323

Harry D. Dawson

Chapter 23The Immune System of Pigs: Structure and Function ......................................................................................................... 343

Patrick Haley

Chapter 24Transplantation in Miniature Swine .....................................................................................................................................357

John S. Hanekamp, Raimon Duran-Struuck and David H. Sachs

Chapter 25Xenotransplantation ..............................................................................................................................................................373

Henk-Jan Schuurman, Melanie L. Graham, Thomas Spizzo, and Clive Patience

Chapter 26Porcine Endogenous Retroviruses in Xenotransplantation: A Review of the Importance of PERVs in Porcine Studies, with Particular Emphasis on the Minipig .............................................................................................................. 387

Linda Scobie and Olga Garkavenko

Chapter 27Immunotoxicology: Studies in the Minipig ......................................................................................................................... 397

AndrĂŠ H. Penninks and Geertje J.D. van Mierlo

viii CONTENTS

Section VIDisease Models

Chapter 28Creation and Conservation of Genetically Modi¢ed Pigs: Applications to Genetic Disease Model and Xenotransplantation .......................................................................................................................................................415

Hiroshi Nagashima, Hitomi Matsunari, and Kazuhiro Umeyama

Chapter 29Stem Cell Research and Minipigs .........................................................................................................................................431

Vanessa J. Hall, Stoyan G. Petkov, and Poul Hyttel

Chapter 30Minipig Models of Diabetes Mellitus .................................................................................................................................. 445

Dwight A. Bellinger, Elizabeth P. Merricks, and Timothy C. Nichols

Chapter 31Minipig in Biomedical Research: Diet-Induced Atherosclerosis ........................................................................................ 469

James R. Turk and M. Harold Laughlin

Chapter 32Hemorrhage and Resuscitation Models Using the Miniature Swine ....................................................................................479

John W. Burns and Charles E. Wade

Chapter 33Oral Biology and Dental Models ..........................................................................................................................................491

Susan W. Herring, Yiming Li, Yi Liu, Zi Jun Liu, Tracy E. Popowics, Katherine L. Rafferty, and Songlin Wang

Chapter 34Osteoporosis Model in Minipigs ...........................................................................................................................................517

Hideki Tsutsumi, Satoshi Ikeda, and Toshitaka Nakamura

Chapter 35Wound Healing Models ....................................................................................................................................................... 525

Peter Glerup

Chapter 36The Minipig in Chemical, Biological, and Radiological Research ......................................................................................533

Stanley W. Hulet, Maria Moroni, Mark H. Whitnall, and Robert J. Mioduszewski

Chapter 37The Minipig and Pig in Medical Device Research .............................................................................................................. 549

Shayne C. Gad

ixCONTENTS

Section VIIRegulatory Perspective and Use of the Minipig in Developing Marketed Products

Chapter 38Regulatory Aspects: Pharmaceuticals, Medical Devices, Food Additives: Minipigs and Global Safety Regulations ....... 565

Abigail Jacobs and Jan-Willem van der Laan

Chapter 39Adverse Responses to Drugs in Man: Critical Comparison of Reported Toxicological Findings in Minipigs and Humans .......................................................................................................................................573

Niels-Christian Ganderup

Chapter 40Regulatory Acceptance of the Minipig in Non-Pharmaceutical Industry and Research .................................................... 595

Warren Harvey

Section VIIINew Horizons and perspectives

Chapter 41Future Prospects: Possibilities and Perspectives ..................................................................................................................619

Anthony D. Dayan

xi

Preface

Why the minipig, why now and why this book?There is always the need to review the species used in scienti¢c studies, whether in basic research; in toxicological

investigations, especially if done to support hazard and risk assessment and regulatory evaluation; or in other investigations ranging from applied biology to disease models. Over many years, much fundamental and applied scienti¢c work has been done, or at least has been started, in rodents or, less often, in non-rodent species. Its applicability has been examined in larger animals because of their particular anatomical, pharmacological, physiological, biochemical, or immunological char-acteristics, commonly because they are a better model of humans or other target species.

The domestic pig and, more recently, the minipig have been used less often because of the relative unfamiliarity of the general scienti¢c and regulatory communities with the animals, probably some uncertainty about provenance and concern whether ¢ndings in them would be acceptable to of¢cial agencies whose remit is de¢ned by more or less rigid guidelines. All that is changing as there has been increasing awareness of the paramount need to be certain of the scienti¢c appropriateness of animal studies. The value—especially of the minipig—in many areas of animal biology and applied science has become well appreciated as we have learnt more about the physiology, immunology, and molecular biology of these animals, as pro-cedures have become established, and as reagents have become available. At the same time, animals of known provenance and health status have become available, thanks to carefully de¢ned breeding programs and the application of genomic and other techniques to de¢ne the genetic background of diverse breeding nuclei, colonies, and strains.

The domestic pig carries size and the restriction of experimental experience to certain areas of scienti¢c work as major experimental disadvantages. We consider that the time has come for the particular values, strengths, and weaknesses of the minipig to be more widely appreciated as assured supplies of well-de¢ned strains have been available for several years and they offer many advantages in the basic and applied laboratory. There are still some weaknesses in our experience and understanding of them relative to other non-rodent species but those de¢ciencies are being overcome by vigorous coopera-tive workgroups and extensive research programs whose results are being made publicly available.

This book ranges widely over the biology of the minipig and scienti¢c and practical uses of the minipig in the laboratory, extending from its origins and genomics to welfare, health and husbandry, practical dosing and examination procedures, surgical techniques, physiology and all areas of toxicity testing, pharmacokinetics and xenobiotic metabolism, immunology, and aspects of auto- and xenograft research. The regulatory uses of minipigs are discussed in the evaluation of human and veterinary pharmaceuticals, medical devices, and other classes of xenobiotics. Features of normal health, normal laboratory values, and common diseases are described. Ethical and legal considerations in their supply, housing, and transport are care-fully considered.

The request to every author was to discuss the scienti¢c and practical aspects of their area of special expertise, noting the value and strengths of the minipig but never omitting any dif¢culty or weakness, whether practical or due to lack of information from their own or published experience.

The result is a comprehensive and up-to-date manual about the experimental uses of the minipig describing “How to” and “Why” and “What to expect in the normal,” combining enthusiasm and experience with critical assessment of its values and potential problems.

All editors must be grateful to their authors. We thank our expert contributors for their hard work and critical accounts of their own experiences and those of others.

No book as complex as this can succeed without a great deal of administrative hard work and enthusiasm behind the scenes. We appreciate how much Cristina Kragh Thomsen of Ellegaard GĂśttingen Minipigs has put into the book and we are very grateful to her for all that she has done.

We are glad to present this monograph as the ¢rst comprehensive and up to date manual about the minipig in the labora-tory. It is intended to encourage consideration of its more extensive use as its strengths become better understood and there is wider of¢cial acceptance of ¢ndings in it by the scienti¢c and regulatory worlds.

Peter A. McAnultyAnthony D. Dayan

Niels-Christian GanderupKenneth L. Hastings

Denmark, Britain, and the USA

xiii

Editors

Peter A. McAnulty, PhD, DABT, ERT, FSB, was trained at the University of London and worked on various biochemical studies at the Institute of Child Health, part of London University. He then moved to Cambridge University and the Strangeways Research Laboratory and began biochemistry and immunology research for the WHO.

Peter A. McAnulty began his CRO career at Life Science Research (LSR), where he became a toxicologist, and special-ized in reproductive studies. When LSR became Pharmaco LSR, Peter McAnulty became the director of pharmaceutical toxicology and, after that, he was the principal toxicologist at HLS. Following this, Peter McAnulty moved to Denmark and became the scienti¢c director of Scantox. Peter A. McAnulty has been a member of the Board of Directors of the American Board of Toxicology and has been their president (2002–2003). Peter A. McAnulty joined Ferring Pharmaceuticals in 2001 as executive director, Nonclinical Development. In 2010 he became an independent nonclinical consultant.

Anthony D. Dayan, LLB, MD, FRCPath, is an emeritus professor of toxicology, University of London. Anthony D. Dayan worked as a pathologist before joining the pharmaceutical industry as a toxicologist and subsequently returning to head a university department of toxicology in London. He has been a member of of¢cial and industrial advisory committees on animal experimentation and the safety of medicines, foods, and pesticides in the United Kingdom and internationally. He has been a consultant to many companies on drug and chemical safety programs.

Niels-Christian Ganderup, M.Sc., is the chief scienti¢c of¢cer, Ellegaard Göttingen Minipigs. Niels-Christian Ganderup trained in experimental biology and has had special experience of toxicology and ecotoxicology. Since 2005, he has been generally concerned with the best use of the minipig in biomedical sciences. His principal role has been active engagement worldwide with academic, pharmaceutical, and other industrial research organizations and CROs in comparing the value of the minipig and other species in research and testing programs in pharmacology and toxicology. His broad interests cover the “Can I …?,” “How can I …?,” and “Who can show me how to …?” questions. This has led him to facilitate cross-company and inter-organization research consortia to extend scienti¢c knowledge about the minipig and its uses in biomedi-cal research. To further increase collaboration and to improve knowledge of techniques, Niels-Christian Ganderup founded the Minipig Research Forum, a non-pro¢t organization which organizes annual scienti¢c conferences in Europe and North America about all aspects of the use of minipigs in biomedical research. He is a regular speaker at conferences and is often consulted by universities, CROs, and industrial groups about many aspects of the use of the minipig, ranging from health and husbandry to training in experimental techniques and the development of new procedures.

Kenneth L. Hastings, DrPH, DABT, Fellow ATS, was trained at the University of North Carolina at Chapel Hill and the Chemical Industry Institute of Toxicology. After being a part of Peace Corps service with the Ministry of Health, Republic of Fiji, he became a research associate in the Department of Anesthesiology, College of Medicine, University of Arizona. He then joined the U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Division of Anti-Viral Drug Products, where he reviewed many of the early drugs for treatment of HIV/AIDS and related diseases. He served as supervisory toxicologist in the Division of Special Pathogen and Immunologic Drug Products, where he was part of review teams for tropical disease and transplant drugs. He concluded his career at FDA as an associate director in the Of¢ce of New Drugs. He represented the agency on many regulatory initiatives, such as the International Conference on Harmonization (ICH). After government service, he joined Sano¢-Aventis as associate vice-president for regulatory policy. He has served as president of the American College of Toxicology, the American Board of Toxicology, and the Immunotoxicology Specialty Section of the Society of Toxicology.

xv

Contributors

Roberta Scipioni BallMarshall BioResourcesNorth Rose, New York

Paul BarrowCiToxLABEvreux, France

Dwight A. BellingerDepartment of Pathology and

Laboratory MedicineUniversity of North Carolina at

Chapel HillChapel Hill, North Carolina

William J. BrockBrock Scienti¢c ConsultingMontgomery, Maryland

Larry Dale BrownSinclair Research CenterColumbia, Missouri

John W. BurnsU.S. Army Institute of Surgical

ResearchHouston, Texas

David M. CameronHuntingdon Life SciencesHuntingdon, United Kingdom

Peter ClausingDeparment of Non-Clinical Drug

SafetyBoehringer IngelheimBiberach, Germany

Harry D. DawsonDepartment of AgricultureDiet, Genomics, and Immunology

LaboratoryBeltsville, Maryland

Anthony D. DayanDepartment of Toxicology University of LondonLondon, United Kingdom

Zuhal DincerP¢zerSandwich, United Kingdom

Raimon Duran-StruuckTransplantation Biology Research

CenterMassachusetts General Hospital and

Harvard Medical SchoolBoston, Massachusetts

Helmut EhallHuntingdon Life SciencesHuntingdon, United Kingdom

Shayne C. GadGad ConsultingCary, North Carolina

Laust Peter GadeNovo NordiskStenloese, Denmark

Niels-Christian GanderupEllegaard GÖttingen MinipigsDalmose, Denmark

Olga GarkavenkoLiving Cell TechnologiesAuckland, New Zealand

Chris Van GinnekenDepartment of Veterinary

SciencesUniversity of AntwerpAntwerp, Belgium

Peter GlerupCiToxLAB ScantoxEjby, Denmark

Melanie L. GrahamDepartment of SurgeryUniversity of MinnesotaMinneapolis, Minnesota

Nanna GrandCiToxLAB ScantoxEjby, Denmark

Patrick HaleyIncyteWilmington, Delaware

Vanessa J. HallDepartment of Basic Animal and

Veterinary SciencesInstitute of Life SciencesCopenhagen UniversityCopenhagen, Denmark

John S. HanekampTransplantation Biology Research

CenterMassachusetts General Hospital and

Harvard Medical SchoolBoston, Massachusetts

Warren HarveyCharles River LaboratoriesEdinburgh, United Kingdom

Sue HerringDepartment of OrthodonticsUniversity of WashingtonSeattle, Washington

Stanley W. HuletU.S. Army Edgewood Chemical

Biological CenterAberdeen Proving Ground, Maryland

Poul HyttelDepartment of Basic Animal and

Veterinary SciencesInstitute of Life SciencesCopenhagen UniversityCopenhagen, Denmark

Satoshi IkedaDepartment of Orthopaedic SurgeryUniversity of Occupational and

Environmental HealthKitakyushu, Japan

Abigail JacobsCenter for Drug Evaluation and

ResearchOf¢ce of New DrugsSilver Spring, Maryland

xvi CONTRIBUTORS

Friederike KöhnDepartment of Animal Sciences Georg-August-UniversityGÖttingen, Germany

and

Bavarian State Research Center for Agriculture

Institute of Animal BreedingPoing-Grub, Germany

Jan-Willem van der LaanCenter for Biological Medicines and

Medical TechnologyNational Institute for Public Health

and the Environment Bilthoven, The Netherlands

Kathy E. LaberDepartment of Comparative MedicineMedical University of South CarolinaCharleston, South Carolina

M. Harold LaughlinDepartment of Biomedical SciencesUniversity of MissouriColumbia, Missouri

Yiming LiCenter for Dental ResearchLoma Linda University School of

DentistryLoma Linda, California

Yi LiuMolecular Laboratory for Gene

Therapy and Tooth RegenerationCapital Medical University School of

StomatologyBeijing, China

Zi Jun LiuDepartment of OrthodonticsUniversity of WashingtonSeattle, Washington

Andrew MakinCiToxLAB ScantoxEjby, Denmark

Edward MarsdenRicercaLyon, France

Hitomi MatsunariDepartment of Life SciencesMeiji UniversityKawasaki, Japan

Peter A. McAnultyIndependent ConsultantRoskilde, Denmark

Elisabeth P. MerricksDepartment of Pathology and

Laboratory MedicineUniversity of North Carolina at

Chapel HillChapel Hill, North Carolina

Geertje J.D. van MierloDepartment of Toxicology and

Applied PharmacologyTNO Triskelion BVZeist, The Netherlands

Stephane MilanoRicercaLyon, France

Robert J. MioduszewskiU.S. Army Edgewood Chemical

Biological CenterAberdeen Proving Ground, Maryland

Maria MoroniArmed Forces Radiobiology Research

InstituteUniformed Services UniversityBethesda, Maryland

Jens Thing MortensenCiToxLAB ScantoxEjby, Denmark

David MortonUniversity of BirminghamBirmingham, United Kingdom

Hiroshi NagashimaDepartment of Life SciencesMeiji UniversityKawasaki, Japan

Toshitaka NakamuraDepartment of Orthopaedic

SurgeryUniversity of Occupational and

Environmental HealthKitakyushu, Japan

Timothy C. NicholsDepartment of Pathology and

Laboratory MedicineUniversity of North Carolina at

Chapel HillChapel Hill, North Carolina

Clive PatienceBiogen-IdecCambridge, Massachusetts

AndrĂŠ H. PenninksDepartment of Toxicology and

Applied PharmacologyTNO Triskelion BVZeist, The Netherlands

Stoyan G. PetkovDepartment of Basic Animal and

Veterinary SciencesInstitute of Life SciencesCopenhagen UniversityCopenhagen, Denmark

Tracy E. PopowicsDepartment of Oral BiologyUniversity of WashingtonSeattle, Washington

Cornelia PreußeBayer Schering Pharma AGBerlin, Germany

Finn Raaschou-NielsenInternational Transport AdviserHovedstaden, Denmark

Katherine L. RaffertyDepartment of OrthodonticsUniversity of WashingtonSeattle, Washington

Alan Dahl RasmussenH. Lundbeck A/SValby, Denmark

David H. SachsTransplantation Biology Research

CenterMassachusetts General Hospital and

Harvard Medical SchoolBoston, Massachusetts

xviiCONTRIBUTORS

Henk-Jan SchuurmanSpring Point ProjectMinneapolis, Minnesota

Linda ScobieDepartment of Biological and

Biomedical SciencesGlasgow Caledonian UniversityGlasgow, United Kingdom

Mette Tingleff SkaanildDepartment of Veterinary Disease

BiologyUniversity of CopenhagenCopenhagen, Denmark

Mikala SkydsgaardCiToxLAB ScantoxEjby, Denmark

Alison C. SmithDepartment of Comparative MedicineMedical University of South CarolinaCharleston, South Carolina

Thomas SpizzoSpring Point ProjectMinneapolis, Minnesota

Claudia StarkBayer Schering Pharma AGBerlin, Germany

M. Michael SwindleDepartment of Comparative

MedicineMedical University of South CarolinaCharleston, South Carolina

Hideki TsutsumiCentral Institute for Experimental

AnimalsKanagawa, Japan

James R. TurkAmgenThousand Oaks, California

Kazuhiro UmeyamaDepartment of Life SciencesMeiji UniversityKawasaki, Japan

Charles E. WadeU.S. Army Institute of Surgical

ResearchHouston, Texas

Jakob WalterBayer Schering Pharma AGBerlin, Germany

Songlin WangSalivary Gland Disease Center

and the Molecular Laboratory for Gene Therapy and Tooth Regeneration

Capital Medical University School of Stomatology

Beijing, China

Karen Malene WegenerH. Lundbeck A/SValby, Denmark

Mark H. WhitnallArmed Forces Radiobiology Research

InstituteUniformed Services UniversityBethesda, Maryland

SECTION I

Origin and Management of the Minipig

3

CHAPTER 1

History and Development of Miniature, Micro- and Minipigs

Friederike KĂśhn

In this chapter, a short introduction to the evolutionary background of pigs, the use of pigs in history, and the develop-ment of minipig breeds are included. For the most important minipig breeds that are used in biomedical research, a short description is given. To facilitate reading, the term minipig is used as synonym for miniature and micropigs, respectively.

1.1 TAXONOMY, EVOLUTION AND PHYLOGENY

Pigs belong to the order of Artiodactyla, the even-toed ungulates (Figure 1.1).

In contrast to the well-established opinion that the sub-order Suina is monophyletic and consists of three families, Suidae (pigs), Tayassuidae (peccaries) and Hippopota-midae  (hippopotamuses) (Porter, 1993; Ruvinsky and Rothschild, 1998), there are many evidences from molecular studies that Suidae and Tayassuidae belong to the sub-order Suina but  Hippopotamidae build their own sub-order, the Acodonta  (Montgelard et  al., 1997, 1998). The families

Suidae and Tayassuidae are separated by remarkable genetic differences (Randi et al., 1996).

Within the family Suidae there are ¢ve different genera: Babyrousa (babirusa), Hylochoerus (giant forest hog), Phacochoerus (warthog), Potomochoerus (bush pig) and Sus (pig). Several different species belong to the genus Sus,

CONTENTS

1.1 Taxonomy, Evolution and Phylogeny .............................................................................................................................. 31.2 Domestication of the Pig and Breed Development ......................................................................................................... 41.3 Human Use of Pigs ......................................................................................................................................................... 61.4 Minipigs in Biomedical Research ................................................................................................................................... 61.5 Minipig Breeds ............................................................................................................................................................... 7

1.5.1 Clawn Miniature Swine ...................................................................................................................................... 71.5.2 GĂśttingen MinipigÂŽ ............................................................................................................................................ 81.5.3 Hanford™ Miniature Swine ...............................................................................................................................101.5.4 Munich Miniature Swine (Troll) .......................................................................................................................101.5.5 Panepinto Micropig ...........................................................................................................................................111.5.6 Sinclair™ S-1 Miniature Swine (Minnesota Miniature, Hormel Miniature) .....................................................111.5.7 Westran ............................................................................................................................................................. 121.5.8 Yucatan Miniature Swine ................................................................................................................................. 131.5.9 Micro-Yucatan™ Minature Swine ......................................................................................................................14

References .............................................................................................................................................................................. 15

Mammalia

Artiodactyla

Suina

SuidaeTayassuidae

Babyrousa Hylochoerus Phacochoerus PotomochoerusSus

Figure 1.1 Taxonomy of pigs.

4 THE MINIPIG IN BIOMEDICAL RESEARCH

whereas the species Sus scrofa (Eurasian wild boar) seems to be the wild ancestor of all domestic pig breeds (Figure 1.2). The number of species within the genus Sus varies in the lit-erature dependent on which data were used in the study. Morphological studies using the skull or other bones may result in different number of species compared to studies using molecular data. About 16 sub-species of Sus scrofa are assumed to exist around the world (Chen et  al., 2007; Ruvinsky and Rothschild, 1998), usually occurring in spe-ci¢c geographical regions. This reďż˝ects the high adaptability of pigs (e.g., a temperature tolerance of −50°C up to +50°C).

There is still a lot to be learned about the evolution of pigs. Randi et al. (1996) stated that there was an independent evolution of the different ungulate taxa beginning 40–45 million years ago. For the sub-species of Sus scrofa, Randi et al. assumed a common ancestor in the Pleistocene (1.8 mil-lion years up to 11,780 years ago). Giuffra et al. (2000) esti-mated the time since the divergence of ancestors for European and Chinese pigs to be about 500,000 years ago. A probable evolution scenario is proposed by Groves (1981). He sug-gested that the S. barbatus (bearded pig) and the S. verruco-sus (Japanese warty hog) were present in Europe from the beginning of the Pleiocene. Two million years ago, they came to Indonesia and cohabited there with S. celebensis (Sulawesi warty hog). It is assumed that S. celebensis was the ancestor of S. scrofa that came to Europe (origin in Far East) about 700,000 years ago where it displaced the S. verrucosus.

Especially for pigs that are used in biomedical research it is interesting to know the phylogenetic context to other animals used in research and to humans as the species that the studies focus on. Figure 1.3 displays a phylogenetic tree showing an extraction of mammalian animals that are used in biomedical research (Maddison and Schulz, 2007). Only branches and knots that play a role for the relationships of

laboratory animals are shown; others are only indicated. Further, non-mammalian laboratory species such as quails, fruit �ies, or frogs are not included in the graphic to ensure clarity.

1.2 DOMESTICATION OF THE PIG AND BREED DEVELOPMENT

All domesticated pigs have their origin in the Eurasian wild boar. Dependent on the domestication region, the European wild boar (Sus scrofa scrofa), the Asian wild boar (Sus scrofa vittatus), or the Mediterranean wild boar (Sus scrofa meridionalis) formed the basis of the domesticated pig (Pfeiffer, 1978). Mainly the European and the Asian wild boar were involved in the domestication process. These two sub-species have very different phenotypes, whereas there is no indication to split them into two species (Porter, 1993). The main differences occur in size, skull shape (European long, Asian short skull), body shape (European slender, long-legged, Asian round, short-legged) and the colour of the pelage.

Domestication took place in several regions in the world at different times. However, in all domestication cradles a change from nomadic life to that of settled humans was the precondition for using the wild boar as domesticated spe-cies. The Eurasian wild boar was interesting for domestica-tion because it had several advantages. Almost all over the world a huge amount of wild boars existed, they had a long lifespan and offered an acceptable reproduction rate. Further, as wild boars are omnivorous, they were more or less self-feeding in the surrounding of the settlements.

One of the earliest domestication events was documented to take place in the Near East about 9000 years ago (BĂśkĂśnyi, 1974). From there, the domesticated pig reached ancient

Potamochoerus larvatus

Babyrousa babyrussaPhacochoerus africanus Phacochoerus aethiopicus

Hylochoerus meinertzhageniSus salvanius

Sus scrofaSus bucculentus

Sus barbatus

Sus verrucosus

Sus philippensisSus cebifrons

Sus timoriensis

Sus celebensis

Sus heureniPecari tajacu

Catagonus wagneriTayassu pecari

Commonancestor

Potamochoerus porcus

Figure 1.2 Overview over the genera within Suidae and their species.

5HISTORY AND DEVELOPMENT OF MINIATURE, MICRO- AND MINIPIGS

Syria, Jordan and Palestine and about 7000 years ago wild boars were domesticated in Egypt and Sudan (Porter, 1993). Over the years, domestic pigs were introduced in Greece and southeast Europe and ¢nally reached the rest of Europe during the Neolithic Era through human migration. Pigs of these domestication regions were exceptionally in�uenced by the European wild boar.

Another important cradle of domestic pigs was East Asia. There the domestication of the Asian wild boar took place about 7000 years ago (Jones, 1998; Porter, 1993). As with their wild ancestors, the domestic pigs of Europe and Asia differed; the Asian pigs were smaller with convex pro¢les and shorter lacrimal bones. Further, the Chinese pigs developed a pronounced belly over the years. This pot belly could be the result of arti¢cial selection by humans or an environmental selection due to high-¢bre diets (Jones, 1998).

While the process of domestication took place over many years, certain changes between domestic pigs and their wild ancestors manifested. Domestic pigs are polyoes-tric and much more fertile and precocious; the relation between forehand and hind quarters changed (from 70:30% in the European wild boar to 30:70% in the Bacon pig), the head became smaller with an angle between the muzzle and the forehead, the bristles were reduced, much ¢ner and

sometimes curly, different colours and beside erected ears also lop-eared pigs occurred (Pfeiffer, 1978; Porter, 1993).

During the time after domestication, many factors that affected the pigs resulted in different types of pigs. These were environmental factors such as climate or nutritional resources and anthropogenic factors such as husbandry and conscious or unconscious selection. They were changing the domestic but still wild-looking pigs; but for the development of different breeds, usually human involvement was the basis. They selected pigs of common origin that had certain distinguish-able characteristics that made them different from the rest of the population—the foundation of a new breed (Jones, 1998). While the process of domestication and breed development, natural evolution and selection on the basis of the ‘survival of the ¢ttest’ concept was radically changed with pigs surviving that offered desirable characteristics for humans.

As in the case of domestication, Europe and China were the two main centres for breed development. In Europe, the bases for the most important current breeds were the Celtic and Germanic pigs. They could be divided into lop-eared pigs of North-West Europe and erect-eared pigs from Slavic regions, whereas the lop-eared pigs were bigger with ¢ne legs and good muscles and the erect-eared pigs were smaller and more compact (Pfeiffer, 1978). Main selection criteria in

Eutheria

Carnivora

Primates

Rodentia

Lagomorpha

Leporidae(rabbits)

Muroidea MurinaeCricetinae(hamsters)

Cercopithecidae

Hominidae

Feliformia

Caniformia

Rattini(rats)

Murini(mice)

Macaca(macaque)

Felidae (cats)

Canidae (dogs)

Mustelidae (ferrets)

Suidae

RuminantiaBovidae Bovinae (cattle)

CaprinaeCapra (goats)Ovis (sheep)

Suinae Sus Sus scrofa (wild boar)

Artiodactyla

Perissodactyla Equidae (horses, donkeys)

Homo Homo sapiens(modern humans)

Catarrhini

Platyrrhini(new world monkeys)

Figure 1.3 Phylogenetic tree showing mammals that are used in biomedical research. (Adapted from http://tolweb.org.)

6 THE MINIPIG IN BIOMEDICAL RESEARCH

the early time of animal breeding were phenotypic charac-teristics such as colour, size, fertility, or behaviour, whereas lop ears proved to be advantageous in the sense that the ears acted as blinks and the pigs were not so jumpy or even aggressive (Porter, 1993).

In Asia, pig breeds were much more fertile than the European breeds with good fattening characteristics and a high fat production. The most important Asian pig breed is the Meishan breed that was introduced to European breeds about 200 years ago and had an elemental inďż˝uence on pres-ent European pig breeds. Nowadays, Asian alleles with favourable effects like the allele for dominant black colour are ¢xed in many European breeds (Giuffra et  al., 2000; Jones, 1998; Pfeiffer, 1978).

The most intensive period for breed development was the nineteenth century where, especially in England, Northern and Middle Europe, and China, breeds such as the Large White and diverse Landrace were developed. From all the different breeds and strains of pigs that occurred worldwide, only one single breed (Large White) accounts today for about one-third of the slaughter pig’s gene pool in the European Union (Laval et al., 2000).

1.3 HUMAN USE OF PIGS

Even before domestication, wild boars were hunted to obtain meat. This source of protein was also one of the most important reasons for domestication (Jones, 1998). Quite early, humans were able to conserve the meat via curing, salt-ing, or drying (Falkenberg and Hammer, 2006). Porcine fat was also used for oil lamps, heating, for greasing machines, or as body oil in ancient Greece (Doll, 2003; Xylouri-Frangiadaki et al., 1997). In addition to meat and fat, more or less all other parts of the carcass were used. Bones were worked to tools for hunting or daily life before metal was used, tusks served for amulets to adore gods or to fend off evil, and leather was used for saddles, clothes, shoes, or even ďż˝ails. Bristles were used to produce brushes, and the few breeds with wool ¢bre like the Mangalitza were cut. However, not only the products of pigs were used but also the living pig, which was advantageous for the forest and agriculture by rooting and selective feeding. In ancient Egypt and Greece, farmers used pigs for stepping the seeds into the soil. In England they acted as hunting dogs of poor people looking for small game in the eleventh to ¢fteenth centuries (Benecke, 1994; Falkenberg and Hammer, 2006; Hoffmann and Trede, 1976; Hoffmann et al., 1975; Pfeiffer, 1978).

Pigs were early used as an animal model for human beings. Centuries ago they were used in anatomical studies. Dissecting humans was usually forbidden and only dead-born babies and people dying under death penalty were allowed to be used for dissection.

In ancient Greece animals were used for dissection. One of the most famous anatomists of that time was Galen

(129–201 AD) who dissected monkeys, dogs, and pigs to draw conclusions about the human’s anatomy. For more than 1000 years, his descriptions of the human body were formative for the whole of European medicine (Becker, 2002). In Salerno (1000–1200 AD), anatomical studies �ourished again. Pigs were dissected very accurately due to the assumption that there are essential analogies between the anatomia porcis and the anatomia hominis. It was Vesalius (1514–1564) who dissected pigs (Figure 1.4) as well as humans and who revolutionized anatomical medi-cine in that he discovered many discrepancies between his own ¢ndings and Galen’s description of human anatomy. His work De humani corporis fabrica libri septem built the basis for all later anatomical studies.

1.4 MINIPIGS IN BIOMEDICAL RESEARCH

In the 1940s, scientists started to use pigs more fre-quently in biomedical research. The advantages of small pigs, namely the ease of handling, the decreased require-ments for food and space, and the lower amounts of phar-macological products and anaesthetics needed in the studies, led to ¢rst attempts in breeding miniature pigs in the United States. Since that time, a wide variety of breeds were developed and strains of feral miniature pigs were used for biomedical research. Some of the breeds were often developed directly in the laboratories in which they were used, leading sometimes to an extinction of the breed when the research stopped. A geographical distribution of minipig breeds used in biomedical research is given in Figure 1.5. In this ¢gure, breeds are shown according to the list in Panepinto (1996). It has to be stated, that some of these breeds are no longer used in research and thus, these are not introduced in Section 1.5.

Except for some feral miniature pig breeds that are used in biomedical research like the Yucatan, the Westran, or the Vietnamese Potbellied Pig miniature pig, breeds are usually a product of crossbreeding. Mostly, different miniature pig breeds were crossbred with each other whereas in some breeds an introduction of wild boars or normal-sized dominant white pig breeds was conducted. An overview of

Figure 1.4 Vivisection of a pig. (In Vesalius De humani corporis fabrica, 1543. Reprinted with permission from the National Library of Medicine.)

7HISTORY AND DEVELOPMENT OF MINIATURE, MICRO- AND MINIPIGS

miniature pig breeds used in biomedical research and their connections to each other is given in Figure 1.6. In this illus-tration the most important breeds are shown (with no claim to completeness). The breeds developed out of feral strains and the Sinclair as a ¢rst crossbred product are displayed at the top. All connections between the breeds are shown and the year of their ¢rst use in research or their year of develop-ment, respectively, is given within parentheses.

1.5 MINIPIG BREEDS

A short description of the minipig breeds that are cur-rently used in biomedical research is included; however, this list does not purport to be complete. The breeds are intro-duced in alphabetical order. A general overview with the main biological characteristics is given in Table 1.1.

1.5.1 Clawn Miniature Swine

The author gratefully acknowledges Junichi Tottori, DVM, PhD of Japan Farm CLAWN Institute, Tokube Isa-shi, Kagoshima, Japan, for providing information about this breed.

The Clawn Miniature Swine (Figure 1.7) was developed in 1978 at Kagoshima University, Japan. This minipig breed is a crossbreed. In the maternal line, F1 sows from crossing GĂśttingen Miniature with Ohmini minipigs were used and

in the paternal line, F1 boars from crossing Landrace with Large White were used. Today, the breed is managed as an inbred population.

The pigs have an average birth weight of 500 g and an average adult body weight of 40 kg. Sexual maturity occurs at an average age of 6 months and the number of piglets per litter is ¢ve. The pigs are mainly white, but black and spot-ted pigs occur infrequently. They have a very docile temperament.

The main aim of creating the breed was the need of an experimental animal to be used in scienti¢c studies. The main scienti¢c purposes the breed is used for are pharmacological and toxicological research, regenerative medicine, transplanta-tion studies, and the development of medical products and equipment. A special characteristic of the breed is the estab-lishment of two lines (C1 and C2) that differ in the haplotype for the Swine Leukocyte Antigen (SLA). The SLA plays an important role in immunoreactions and the assignment of the haplotype status of transplantation partners is especially impor-tant in xeno- and allo-transplantation (see Section V Genetics and Immunology). With different sequencing methods, the haplotype status of Clawn Miniature Swine can be detected and ¢xed using inbreeding.

At the moment, Clawn Miniature Swine are distributed in Japan, but a worldwide availability will be established in the near future. Reproduction of Clawn Miniature Swine in research institutes needs a licence agreement from the Japan Farm CLAWN Institute.

Micro YucatanNIHHormel-Hanford

MunichGttingen

GttingenClawn

Lee-Sung

Vietnamese

Westran

Pitman-Moore Czech MiniatureBerlin

Mini-LeweMini-Sib

Ohmini

YucatanSinclairHanfordPanepinto

Figure 1.5 Geographical distribution of minipig breeds used in biomedical research. (Adapted from http://digital-vector-maps.com. With permission.)

8 THE MINIPIG IN BIOMEDICAL RESEARCH

Contact:Japan Farm CLAWN Institute2267-1 Tokube Isa-shiKagoshima 895-2707, JapanPhone: +81 995 26 5190Fax: +81 995 26 5192Email: [email protected]/gyokai/gloup-010-1.htm

1.5.2 GĂśttingen MinipigÂŽ

As the ¢rst European minipig breed, the GÜttingen minipig (Figure 1.8) was developed in the 1960s by Professor Fritz Haring at the Institute of Animal Breeding and Genetics at the University of GÜttingen, Germany. The initial breeds were the Minnesota Miniature and the Vietnamese Potbelly

Pitman-Moore(1969)

Hanford(1958)

Ohmini(1945)

GĂśttingen(1960) Mini-sib

Landrace

Hormel-Hanford

Columbianminiature pig

Munich miniature(1993)

NIH(1970’s)

Minipig of CzechRepublic (1980’s)

Panepinto(1990)

Clawn(1978)

PalouseFeral swamp hog

HampshireDurocLandraceManchurian Chinese pig German Landrace

Swedish LandraceEuopean wild boarAsian wild boar

Yucatan(1972)

Sinclair(1949)

Piney WoodRas-n-LansaCatalinaGuam

Vietnamese(1960’s)

Westran(1976)

Lee-Sung(1974)

Figure 1.6 Schematic overview of minipig breeds used in biomedical research and their connections with year of �rst use in research (within parentheses).

Table 1.1 Overview of Minipig Breeds Used in Biomedical Research and Their Main Biological Characteristics

Breed OriginAverage Birth

Weight (g)Average Adult

Weight (kg)Average No. of

Piglets Colour Foundation Yeara

Clawn Crossbred 500 40 5 White 1978

Göttingen Crossbred 450 45 6.5 White 1961–1962

Hanford Crossbred 730 80–95 6.7 White 1958

Munich Crossbred 600–900 60–100 8.5 White, black, red, brown

1993

Panepinto Crossbred 500–800 25–30 7 Grey, black 1990s

Sinclair Crossbred 590 55–70 7.2 Black, red, white, roan

1949

Westran Native 930 80–93 4.6 Mainly white 1993

Yucatan Native 500–900 70–83 6 Black, slate grey 1960

Micro-Yucatan Native 600–700 55–70 6 Black, slate grey 1985a Year of foundation of the breed or year of �rst use in biomedical research in native breeds.

9HISTORY AND DEVELOPMENT OF MINIATURE, MICRO- AND MINIPIGS

Pig. Later, German Landrace was introduced to obtain dominant white pigs. Nowadays, the breed proportion in the GĂśttingen minipig is 59% Vietnamese Potbelly Pig, 33% Minnesota Miniature and 8% German Landrace (Glodek et al., 1977); combining the high fertility of the Vietnamese and of the docile behaviour of the Minnesota Miniature.

After successful years of breeding with a substantial reduction of body weight in the breed, in the year 1992 Ellegaard GĂśttingen Minipigs A/S in Dalmose, Denmark, acquired from the University of GĂśttingen the worldwide exclusive right to breed and distribute the GĂśttingen Minipig. In 2002, Ellegaard GĂśttingen Minipigs A/S entered a licence agreement with Marshall BioResources, United States, which now supplies the United States and Canada with the GĂśttingen Minipig; in 2010 a licence agreement with Oriental Yeast Company (OYC) which will supply the Dr. GĂśttingen Minipig to the Japanese market. The selection of breeders at the full- barrier facility in Denmark and the United States is under supervision of the University of GĂśttingen. A full pedi-

gree of the animals is kept at the University of GÜttingen and selection is based on keeping the colony outbred, with an inbreeding coef¢cient below 10%. Today, there are three breeding facilities worldwide, the University of GÜttingen, Germany, Ellegaard GÜttingen Minipigs A/S, Denmark and Marshall BioResources, United States; and a breeding facil-ity in Japan is under construction.

The average birth weight of Göttingen Minipigs is 450 g and the average adult body weight is about 35 kg. They reach sexual maturity within 3–5 months and sows have an aver-age litter size of 6.5 piglets.

GĂśttingen Minipigs are mainly used for regulatory toxic-ity testing; other areas of special use are cardiovascular, dia-betes, orthopaedic, dental, surgical and other studies. They are available worldwide for non-breeding/non-cloning use.

Contact:DenmarkEllegaard GĂśttingen Minipigs A/SPhone: +45 5818 5818Fax: +45 5818 5880Email: [email protected]

JapanOriental Yeast Company LtdPhone: +81 3 3968 1192Fax: +81 3 3968 4863Email: [email protected]

United StatesMarshall BioResourcesPhone: +1 315 587 2295Fax: +1 315 587 2109Email: [email protected]

Figure 1.7 (See color insert.) Clawn Miniature Swine, non-adult. (Reprinted with permission from the Japan Farm CLAWN Institute, Kagoshima.)

Figure 1.8 (See color insert.) GĂśttingen Minipig, non-adult. (Reprinted with permission from Marshall BioRe-sources, United States.)

10 THE MINIPIG IN BIOMEDICAL RESEARCH

1.5.3 Hanford™ Miniature Swine

The author is grateful to Dr. Guy F. Bouchard, DVM, MS, DACT and Dr. Larry D. Brown, DVM, PhD, DACVPM of Sinclair BioResources, LLC, Auxvasse, MO, United States, for providing information about this breed.

The Hanford Miniature Swine (Figure 1.9) was developed in 1958 at Hanford Laboratories (United States Atomic Energy Commission) in the state of Washington, United States. Individuals involved in the development were Dr. Bustad, Dr. Ensminger, M. E. Kerr, Dr. Horstman and Dr. England. The Hanford National Laboratory was later renamed Battelle Northwest Research Laboratories of Richland, WA (Bustad et al., 1966). The primary aim was the development of a labo-ratory animal for radiation biomedical research.

To establish the new breed, domestic Palouse gilts from the Department of Animal Science, Washington State University, were crossbred with a Pitman-Moore Pharma-ceutical Company (Indianapolis, IN) boar. Feral swamp hogs from Louisiana were later incorporated to reduce body size. In the 1960s, Yucatan miniature pigs were introduced to the new breed. The Hanford miniature was used in develop-ment of other lineages, such as the Munich minipig (Troll), and the FDA Hormel–Hanford.

The main characteristics of this breed are white skin and hair coat, low subcutaneous fat content, and good adaptation to laboratory environment. Pigs of this breed are docile with only infrequent expression of aggression and easy to socialize. Their body size allows serial blood sampling and the size of the heart makes it a well-¢tting model for cardiovascular studies. Further areas of use are dermal studies with a focus on toxicological studies, mus-culoskeletal studies, surgical modelling and research in pharmacology.

Hanford Miniature Swine have an average birth weight of 720 g and an adult body weight of 80–95 kg. They reach

puberty within 4–6 months, reach sexual maturity within 6 months, and have an average litter size of 6.7 piglets.

Today, there is one Hanford breeding population at Sinclair BioResources in Auxvasse, Missouri, United States, that is closed and fully pedigreed. The main breeding goals are high conformity, robustness and docility. The pigs in the breeding facility are free of any common pig disease and are vaccinated. Ear notch skin is banked from all animals in case future genetic analysis is required. From the breeding facil-ity, animals can be shipped worldwide with required permits. Customers must agree to non-breeding/non-cloning uses.

Contact:Sinclair BioResources LLCPO Box 658Columbia, MO 65205, United States562 State Road DD, Auxvasse, MO 65231, United StatesPhone: +1 573 387 4400Fax: +1 573 387 4404Email: [email protected]

1.5.4 Munich Miniature Swine (Troll)

The author thanks Dr. med. vet. Eva Engelhardt, DĂźsseldorf University Hospital, DĂźsseldorf, Germany, for providing information about this breed.

The Munich Miniature Swine (Figure 1.10) is a small breed developed in 1993 from the Hanford Miniature Swine and the Columbian Miniature Swine. The breed was

Figure 1.10 (See color insert.) Munich Miniature Swine. (Reprinted with permission from Dr. Engelhardt, DĂźsseldorf University Hospital, DĂźsseldorf, Germany.)

Figure 1.9 (See color insert.) Young adult Hanford Miniature Swine. (Reprinted with permission from Dr. Guy F. Bouchard, Sinclair BioResources, LLC, Auxvasse, MO, United States.)

11HISTORY AND DEVELOPMENT OF MINIATURE, MICRO- AND MINIPIGS

initially developed for melanoma studies. Munich Miniature Swine are white, red, black, dark brown, or spotted. They have an average birth weight of 600–900 g and an average adult body weight of 60–100 kg. They mature within 5–6 months and have an average litter size of 8.5 piglets. Munich Miniature Swine are docile, curious and vigilant, but not aggressive.

Today, there is only one small population at DĂźsseldorf University Hospital, DĂźsseldorf, Germany. The main breed-ing goals are body size reduction and an increase of number of teats. The availability of the Munich Miniature Swine is limited. In biomedical research they are mainly used for cardiovascular, orthopaedic and implantation studies as well as shock model.

Contact:TVA Universitätsklinikum DßsseldorfMoorenstrasse 540225 Dßsseldorf

1.5.5 Panepinto Micropig

The author acknowledges Linda Panepinto, Managing Director, P&S Farms, Buffalo, Wyoming, United States for providing information about this breed.

The Panepinto breed (Figure 1.11) was initially devel-oped in the 1990s. The background of this breed are Yucatan Micropigs from the Colorado State University breeding stock that have a proportion of 90% in today’s Panepinto micropigs and Vietnamese miniature pigs that have a proportion of 10%. The main aim of the developers of this breed was the use in biomedical research and in chil-dren’s zoos.

Panepinto Micropigs have dark-grey or black skin. They have a calm and docile temperament, a compact appearance, and large ears, and many of them have wattles. The average birth weight is 500–800 g and they have an adult body weight of 25–30 kg. Panepinto Micropigs mature within 5–6 months and have an average litter size of seven piglets.

In biomedical research, they are mainly used for diabe-tes, cardiovascular, and different other studies. For the future, it is planned to establish a special diabetes type II line.

Today, there is one breeding stock in the United States. The population is managed as an outbred population with mating of least-related animals. The main breeding goals are good health, increased fertility including mothering ability, calm temperament and a unique phenotype. Panepinto Micropigs are limited available in North America and are only sold with non-breeding agreements.

Contact:Panepinto & AssociatesEmail: [email protected]

1.5.6 Sinclair™ S-1 Miniature Swine (Minnesota Miniature, Hormel Miniature)

The author acknowledges the help of Dr. Guy F. Bouchard, DVM, MS, DACT and Dr. Larry D. Brown, DVM, PhD, DACVPM of Sinclair BioResources, LLC, Auxvasse, MO, United States, for providing information about this breed.

The Sinclair Miniature Swine (Figure 1.12) was devel-oped in 1949 under the breed name Minnesota or Hormel Miniature Swine at the Hormel Institute in Austin, Minnesota, United States, under the direction of Dr L. M. Winters. Dr. Hormel from the Hormel Institute and Dr. Essex and Dr. Mayo from the Mayo Clinic developed this breed. In

Figure 1.11 (See color insert.) Panepinto Micropig, non-adult. (Reprinted with permission from L. Panepinto, P&S Farms, Buffalo, WY, United States.)

Figure 1.12 (See color insert.) Young adult Sinclair Miniature Swine. (Reprinted with permission from Dr. Guy F. Bouchard, Sinclair BioResources, LLC, Auxvasse, MO, United States.)

12 THE MINIPIG IN BIOMEDICAL RESEARCH

1965, part of the Minnesota Miniature breeding stock was acquired by Dr. Tumbleson of the Sinclair Comparative Medicine Research Farm, University of Missouri, Columbia. Since then, the name Sinclair Miniature Swine has been used for this breed. The breed was developed from four feral pig strains and Ohio Improved Chester Whites. The initial cross was between a Guinea Hog from Alabama and a wild boar from the Catalina Island. Later, Piney-Wood pigs were introduced to the new breed and in 1957, dwarf Ras-n-lansa pig genes from Guam were incorporated to decrease the body size of the Hormel pigs (Dettmers et al., 1965). In the 1960s, the breed was crossbred with Yorkshire to introduce white skin. The proportions of the four basic breeds in the Sinclair Miniature Swine are nowadays 49% Piney-Woods, 22% Ras-n-lansa, 16% Catalina wild boar and 13% Guinea Hog. The Minnesota Miniature breeds 1 and 3 also had a small percentage of Tamworth and Landrace genes, and so this early lineage contained a wide variety of feral and domesticated swine genetics. Minnesota miniature swine were also used as foundation lines for establishment of other breeds of miniature pigs (Nebraska, GĂśttingen, FDA Hormel–Hanford, NIH Minipig, Minipig of Czech Republic).

The main use of Sinclair Miniature Swine at the University of Missouri Sinclair Research Farm was for alco-holism, cancer and paediatric studies, teratology, environ-mental, osteoporosis and other types of biomedical research. Today, Sinclair S-1 miniatures are further used in cardiovas-cular, musculoskeletal, urogenital, immunology, reproduc-tion toxicology, dermatology, gastroenterology, respiration and nutrition research.

Sinclair Miniature Swine phenotypes include solid black, brown, red (roan), grey or white, or spotted haircoats. One animal can have single coat colour up to being tri-coloured with predominant black or red or white with spots. The average birth weight is 590 g and the average adult body weight is 55–70 kg. The Sinclair Miniature is smaller than the standard Yucatan or Hanford and slightly larger than the Micro-Yucatan. Pigs reach puberty within 4–6 months, reach sexual maturity within 6 months, and sows have on average six piglets per litter. Their temperament is docile and calm with good socialization characteristics; they grow slowly and reach a body size that is adequate for serial blood sampling. One lineage of Sinclair Mini-ature Swine develops a malignant spontaneously regressing melanoma.

Nowadays, there exists one breeding population at Sinclair BioResources, LLC, Auxvasse, Missouri, United States. This population is closed and the mating strategy focuses on mating of least-related animals. The main breed-ing goals are the establishment of unique phenotypes, robust health, docility and calm temperament. Ear notch skin is banked from all animals for the case that genetic material is needed. The pigs are currently shipped to the United States and Canada and shipping to Asia and Europe is also possible. Customers must agree to non-breeding/non-cloning uses.

Contact:Sinclair BioResources LLCPO Box 658Columbia, MO 65205, United States562 State Road DD, Auxvasse, MO 65231, United StatesPhone: +1 573 387 4400Fax: +1 573 387 4404Email: [email protected]

1.5.7 Westran

The author thanks Dr. Wayne J. Hawthorne, Director of National Pancreas and Islet Transplant Laboratories, Westmead Hospital, Weastmead, New South Wales, Australia for providing information about this breed.

The Westran pig (Figure 1.13) was developed out of feral pigs from Kangaroo Island in South Australia. This pig breed is believed to have its origin more than 200 years ago when the French explorer Nicholas Baudin released a breed-ing pair of pigs at Hog Bay on Kangaroo Island in 1803. From this one pair, a highly inbred population of feral pigs has developed. While some of those have mixed with domes-tic pigs bred on the island, others have kept their bloodline pure and their gene pool so small that they have become of major interest for biological and medical research (Moran, 2005). Thus, in 1976 some of the feral pigs from Kangaroo Island were captured by the Australian Commonwealth Scienti¢c and Research Organisation (CSIRO), Division of Human Nutrition in Adelaide, to establish a line for biomed-ical research.

From this line, the Westran pigs developed after one full-sib pair was brought to Sydney in 1993 to Westmead Hospital. The name of the breed is a combination of

Figure 1.13 (See color insert.) Westran Minipigs, non-adult. (Reprinted with permission from Dr. Wayne J. Hawthorne, Westmead Hospital, Weastmead, New South Wales, Australia.)

13HISTORY AND DEVELOPMENT OF MINIATURE, MICRO- AND MINIPIGS

Westmead Hospital and transplantation, the unit where the line was developed.

The main focus while establishing the breed was the cre-ation of non-human organs and tissue sources for allo- and xeno-transplantation. Due to the fact that the pigs are highly inbred, advantageous characteristics for transplantation research are ¢xed in this breed. Currently, Westran pigs are used as model for pancreatic islet transplantation as a cure for diabetes type I.

Westran pigs are white or white with black spots with both pigmented hairs and skin. The average birth weight is around 930 g and the average adult body weight is around 80 kg in females and 93 kg in males. Pigs mature within 6–7 months and have an average litter size of 4.6 piglets. Even though the Westran line is a young breed, pigs are well domesticated and relatively docile and easy to handle.

There is one breeding population in Sydney, Australia, which is based on full-sib mating. Thus, a high degree of inbreeding can be achieved and the major histocompatibil-ity complex (MHC) reaches a high similarity between the animals in the population allowing transplantation between animals without rejection. Currently, only one out of 53 alleles chosen for testing the homozygosity in the MHC is segregating. Further, all animals of the breed have blood group type O. A negative side effect of the high inbreeding coef¢cients in the population is the infrequent occurrence of congenital abnormalities of the heart causing sudden death of piglets. Recently, the breeding population was divided in a core population in which full-sib mating is con-ducted and a non-core population where the breeding strat-egy is based on mating animals that are most related within one generation. The main breeding goals are reduced body weight and small size, increased number of piglets born alive, and increased number of weaned piglets. However, due to the fact that full-sib mating is obligatory and the breeding stock is still small, the genetic progress in these traits is slow.

For the Westran pigs, a huge amount of genetic material is banked. Sera samples were kept from all core animals from the very ¢rst pair. Sperm and ova are also kept since the ¢rst generation. Thus, for almost all animals from the start of the breed, DNA material exists.

Due to the geographical isolation of Australia and the limited number of animals available for research until now, no international shipping is conducted. Customers are asked to agree with non-breeding restrictions.

Contact:Dr. Wayne HawthorneSenior Research FellowCentre for Transplant and Renal ResearchC/- Departement of SurgeryWestmead HospitalWestmead NSW 2145, AustraliaPhone: +61 2 9845 6962Fax: +61 2 9633 9351

Email: [email protected]

1.5.8 Yucatan Miniature Swine

The author is grateful to Linda Panepinto, Managing Director, P&S Farms, Buffalo, Wyoming, United States, Dr. Guy F. Bouchard, DVM, MS, DACT and Dr. Larry D. Brown, DVM, PhD, DACVPM of Sinclair BioResources, LLC, Auxvasse, MO, United States for providing informa-tion about this breed.

Like the Westran pig, the Yucatan Miniature Swine (Figure 1.14) is a purebred miniature pig breed derived from one primary natural gene pool and adapted for use in bio-medical research. They originate from Mexico, Central and South America where they are also known as Maya, Pelon, Cuino, Tabasqueno, Birish, or Hairless. In 1960, 25 Yucatan pigs were imported to the United States from Frontera area, Mexican Yucatan Peninsula, by the veterinarian Dr. Harry Quick to develop a research strain of Yucatan pigs. This new research strain was called Labco and was only minimally used. The breeding stock was ¢rstly housed at Thompson Research Farm in Monee, Illinois, United States and was acquired by the Colorado State University in the early 1970s. It was also in the 1970s that the Yucatan Miniature Swine was ¢rstly characterized as an animal model for biomedical research in a scienti¢c paper (Panepinto et al., 1978). Besides the increasing demand for biomedical studies, the pigs were also sold to children’s zoos. Nowadays, the breed is used in biomedical research in the ¢elds of cardiovascular, diabetes, dermal/wound healing, dental, orthopaedic, renal, surgical,

Figure 1.14 (See color insert.) Yucatan Miniature Swine. (Reprinted with permission from Dr. Guy F. Bouchard, Sinclair BioResources, LLC, Auxvasse, MO, United States.)

14 THE MINIPIG IN BIOMEDICAL RESEARCH

mineral metabolism, hyperlipidaemia, exercise physiology, ophthalmic, haemodynamic and other studies.

The purebred Yucatan Miniature Swine has a black to slate grey skin. Typical for this breed is the minimal haircoat; some animals are even hairless. Cervical wattles (skin appendages) are present in certain lines. The birth weight varies from 500 to 900 g and the adult body weight varies from 70 to 80 kg. Pigs reach puberty within 4–6 months and become sexually mature within 5–6 months. The average lit-ter size is six piglets. An important characteristic of Yucatan Miniature Swine is their docile and calm temperament. Additionally, they have a high sensitivity to cold tempera-tures that can be expressed in respiratory problems. However, the Yucatan Miniature Swine can tolerate cooler tempera-tures if housed in social groups and with adequate bedding.

Currently, there are ¢ve breeding and multiplier sites in the United States. The LoneStar Laboratory Swine (Exemplar Genetics), Sioux Center, IA, Sinclair BioResources, Auxvasse, Missouri, S&S Farms in California and Michigan and Cerdo Micro in California. With regard to breeding, a strategy of mating less-related animals is conducted. High levels of inbreeding lead to a susceptibility to atrial septal and ventricular septal defects (VSDs) and to a decrease in reproductive performance due to inbreeding depression. Thus, the main breeding goals are a minimization of inbreed-ing, an increase in reproductive performance combined with good mothering abilities, docile behaviour and robustness.

Yucatan pigs can be shipped to North America and Europe. A non-breeding agreement is required unless the research involves reproductive studies. In reproductive stud-ies, only limited breeding is allowed and the offspring has to be castrated at the end of the study. Other customers must agree to non-breeding/non-cloning uses.

Contact:Cerdo MicroEmail: LPanepinto@netscape.comwww.panepinto.comwww.CerdoMicro.comSinclair BioResources LLCPO Box 658Columbia, MO 65205, United States562 State Road DD, Auxvasse, MO 65231, USAPhone: +1 573 387 4400Fax: +1 573 387 4404Email: [email protected]

1.5.9 Micro-Yucatan™ Minature Swine

Dr. Guy F. Bouchard, DVM, MS, DACT and Dr. Larry D. Brown, DVM, PhD, DACVPM of Sinclair BioResources, LLC, Auxvasse, MO, United States kindly provided infor-mation about this breed.

The Micro-Yucatan Miniature Swine (Figure 1.15) was established in 1985 by selecting and breeding small purebred

Yucatan Miniature Swine by the Charles River Laboratories, CRL), Inc. This effort continued earlier model developmen-tal work conducted at the Colorado State University during the 1970s (Panepinto and Kroc, 1995). The Yucatan micropig is a strain of Yucatan that differs primarily in size  only. In 2002, Sinclair BioResources, LLC acquired the CRL breeding population. Today, they are mainly used  for cardiovascular, dermal, diabetes and preclinical safety studies.

Like Yucatan Miniature Swine, Micro-Yucatan Miniature Swine have grey to dark skin with little or no hair. They are very docile and easy to handle and have an average birth weight of 600–700 g and an adult body weight in the range of 55–70 kg. Puberty is achieved within 4–6 months (14–20 kg), sexual maturity is reached within 6 months (18–20 kg), and the average litter size is 6 piglets.

The breeding population is located at Sinclair BioResources, LLC, in Windham, Maine, United States. It is an outbred and closed population in which the most important breeding goals are small size, unique phenotypes, and further improvement of good temperament and behav-ioural characteristics. Genetic material of all animals in the population is banked in the form of ear notch skin. Currently, animals of this breed are shipped to North America includ-ing Canada and shipping to Asia and Europe is possible. Pigs expressing the VSD are available. Customers must agree to non-breeding/non-cloning uses.

Contact:Sinclair BioResources LLCPO Box 658Columbia, MO 65205, USA562 State Road DD, Auxvasse, MO 65231, United StatesPhone: +1 573 387 4400Fax: +1 573 387 4404Email: [email protected]

Figure 1.15 (See color insert.) Young adult Micro-Yucatan Miniature Swine. (Reprinted with permission from Dr. Guy F. Bouchard, Sinclair BioResources, LLC, Auxvasse, MO, United States.)

15HISTORY AND DEVELOPMENT OF MINIATURE, MICRO- AND MINIPIGS

REFERENCES

Becker, K. W. 2002. Anmerkungen zur Geschichte der anato-mischen Sektion. Paper presented at KunstOrt Anatomie—Künstler auf Visite, Homburg/Saar.

Benecke, N. 1994. Der Mensch und seine Haustiere. Stuttgart: Theiss Verlag.

BĂśkĂśnyi, S. 1974. History of Domestic Mammals in Central and Eastern Europe. Budapest: Akademiai Kiado.

Bustad, L. D., V. G. Horstman, and D. C. England. 1966. Development of the Hanford Miniature Swine. In L. D. Bustad and R. O. McClellan (eds), Swine in Biomedical Research. Richland, WA: Battelle Memorial Institute.

Chen, K., T. Baxter, W. Muir, M. Groenen, and L. Schook. 2007. Genetic resources, genome mapping and evolutionary genomics of the pig. Int J Biol 3(3):153–65.

Dettmers, A. E., W. E. Rempel, and R. E. Comstock. 1965. Selection for small size in swine. J Anim Sci 24:216–20.

Doll, M. 2003. Haustierhaltung und Schlachtsitten des Mittelalters und der Neuzeit, Vol. 78, Rahden: Leidorf, Internat. Archäol.

Falkenberg, H. and H. Hammer. 2006. Zur Geschichte und Kultur der Schweinezucht und -haltung. 2. Mitt.: Schweinezucht und—haltung in Europa im Mittelalter. Züchtungskunde 78:291–308.

Giuffra, E., J. Kijas, V. Amarger, Ö. Carlborg, J.-T. Jeon, and L.  Andersson. 2000. The origin of the domestic pig: Independent domestication and subsequent introgression. Genetics 154:1785–91.

Glodek, P., E. Bruns, B. Oldigs, and W. Holtz. 1977. Das Göttingen Minischwein-ein Laboratoriumstier mit weltweiter Bedeutung. Züchtungskunde 49(1):21–32.

Groves, C. 1981. Ancestor for the pigs: Taxonomy and phylogeny of the genus Sus. In Technical Bulletin No. 3, Department of Prehistory, Research School of Paci�c Studies. Canberra: Australian National University.

Hoffmann, E. and B. Trede. 1976. Schmuck frĂźherer Zeiten, ferner VĂślker. Leipzig: Edition Leipizig.

Hoffmann, H., H. J. Ilgner, and H. Mertens. 1975. Ökonomische Bedeutung der Produktion von Schweinen. In H. J. Schwark, Z. Zebrowski, and V. N. Ovsjannikov (eds), Internationales Handbuch der Tierproduktion—Schweine. Berlin: Deutscher Landwirts chaftsverlag.

Jones, G. F. 1998. Genetic aspects of domestication, common breeds and their origin. In M. F. Rothschild and A. Ruvinsky (eds), The Genetics of the Pig.Oxon: CAB International.

Laval, G., N. Iannuccelli, C. Legault, D. Milan, M. Groenen, E. Giuffra, L. Andersson, P. Nissen, C. Joergensen, P. Beeckmann, H. Geldermann, J.-L. Foulley, C. Chevalet, and L. Ollivier. 2000. Genetic diversity of eleven European pig breeds. Genet Sel Evol 32:187–203.

Maddison, D. R. and K.-S. Schulz. 2007. The Tree of Life Web Project 2007 (cited October 31, 2007). Available from http://tolweb.org.

Montgelard, C., F. M. Catze�is, and E. Douzery. 1997. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochon-drial sequences. Mol Biol Evol 14(5):550–9.

Montgelard, C., S. Ducrocq, and E. Douzery. 1998. What is a Suiforme (Artiodactyla)?: Contribution of cranioskeletal and mitochondrial DNA data. Mol Phylogenet Evol 9(3):528–32.

Moran, C. 2005. Westran—Highly inbred pigs for xenotransplanta-tion research. Austr J Exp Agr 45(3):793–800.

Panepinto, L. M. 1996. Miniature swine breeds used worldwide in research. In M. Tumbleson and B. Lawrence (eds), Advances in Swine in Biomedical Research. New York, NY: Plenum Press.

Panepinto, L. M. and R. L. Kroc. 1995. History, genetic origins and care of Yucatan miniature and micro pigs. Lab Anim 24:31–4.

Panepinto, L. M., R. W. Phillips, L. R. Wheeler, and D. H. Will. 1978. The Yucatan miniature pig as a laboratory animal. Lab Anim Sci 28(3):308–13.

Pfeiffer, H. 1978. Schweinezucht. Berlin: Deutscher Landwirt-schaftsverlag.

Porter, V. 1993. Pigs—A Handbook to the Breeds of the World. Mount¢eld: Helm Information Ltd.

Randi, E., V. Lucchini, and C. H. Diong. 1996. Evolutionary genet-ics of the suiformes as reconstructed using mtDNA sequenc-ing. J Mamm Evol 3(2):163–94.

Ruvinsky, A. and M. F. Rothschild. 1998. Systematics and evolu-tion of the pig. In M. F. Rothschild and A. Ruvinsky (eds), The Genetics of the Pig. Oxon: CAB International.

Xylouri-Frangiadaki, E., H. Karakitsou, and E. Bouga. 1997. The swine in ancient Greece. Paper presented at 48th Ann Meet Eur Ass Anim Prod Wien.

References

1 Chapter 1: History and Development ofMiniature, Micro- and Minipigs

Becker, K. W. 2002. Anmerkungen zur Geschichte deranatomischen Sektion. Paper presented at KunstOrt Anatomie—Künstler auf Visite, Homburg/Saar.

Benecke, N. 1994. Der Mensch und seine Haustiere.Stuttgart: Theiss Verlag.

BĂśkĂśnyi, S. 1974. History of Domestic Mammals in Centraland Eastern Europe. Budapest: Akademiai Kiado.

Bustad, L. D., V. G. Horstman, and D. C. England. 1966.Development of the Hanford Miniature Swine. In L. D.Bustad and R. O. McClellan (eds), Swine in BiomedicalResearch. Richland, WA: Battelle Memorial Institute.

Chen, K., T. Baxter, W. Muir, M. Groenen, and L. Schook.2007. Genetic resources, genome mapping and evolutionarygenomics of the pig. Int J Biol 3(3):153–65.

Dettmers, A. E., W. E. Rempel, and R. E. Comstock. 1965.Selection for small size in swine. J Anim Sci 24:216–20.

Doll, M. 2003. Haustierhaltung und Schlachtsitten desMittelalters und der Neuzeit, Vol. 78, Rahden: Leidorf,Internat. Archäol.

Falkenberg, H. and H. Hammer. 2006. Zur Geschichte undKultur der Schweinezucht und -haltung. 2. Mitt.:Schweinezucht und— haltung in Europa im Mittelalter.Züchtungskunde 78:291–308.

Giuffra, E., J. Kijas, V. Amarger, Ö. Carlborg, J.-T. Jeon,and L. Andersson. 2000. The origin of the domestic pig:Independent domestication and subsequent introgression.Genetics 154:1785–91.

Glodek, P., E. Bruns, B. Oldigs, and W. Holtz. 1977. DasGöttingen Minischwein-ein Laboratoriumstier mit weltweiterBedeutung. Züchtungskunde 49(1):21–32.

Groves, C. 1981. Ancestor for the pigs: Taxonomy andphylogeny of the genus Sus. In Technical Bulletin No. 3,Department of Prehistory, Research School of Paci�cStudies. Canberra: Australian National University.

Hoffmann, E. and B. Trede. 1976. Schmuck frĂźherer Zeiten,ferner VĂślker. Leipzig: Edition Leipizig.

Hoffmann, H., H. J. Ilgner, and H. Mertens. 1975.Ökonomische Bedeutung der Produktion von Schweinen. In H.J. Schwark, Z. Zebrowski, and V. N. Ovsjannikov (eds),Internationales Handbuch der Tierproduktion—Schweine.Berlin: Deutscher Landwirts chaftsverlag. Jones, G. F.1998. Genetic aspects of domestication, common breeds andtheir origin. In M. F. Rothschild and A. Ruvinsky (eds),The Genetics of the Pig.Oxon: CAB International. Laval, G.,N. Iannuccelli, C. Legault, D. Milan, M. Groenen, E.Giuffra, L. Andersson, P. Nissen, C. Joergensen, P.Beeckmann, H. Geldermann, J.-L. Foulley, C. Chevalet, andL. Ollivier. 2000. Genetic diversity of eleven Europeanpig breeds. Genet Sel Evol 32:187–203. Maddison, D. R. andK.-S. Schulz. 2007. The Tree of Life Web Project 2007(cited October 31, 2007). Available from http://tolweb.org. Montgelard, C., F. M. Catze�is, and E. Douzery.1997. Phylogenetic relationships of artiodactyls andcetaceans as deduced from the comparison of cytochrome band 12S rRNA mitochondrial sequences. Mol Biol Evol14(5):550–9. Montgelard, C., S. Ducrocq, and E. Douzery.1998. What is a Suiforme (Artiodactyla)?: Contribution ofcranioskeletal and mitochondrial DNA data. Mol PhylogenetEvol 9(3):528–32. Moran, C. 2005. Westran—Highly inbredpigs for xenotransplantation research. Austr J Exp Agr45(3):793–800. Panepinto, L. M. 1996. Miniature swinebreeds used worldwide in research. In M. Tumbleson and B.Lawrence (eds), Advances in Swine in Biomedical Research.New York, NY: Plenum Press. Panepinto, L. M. and R. L.Kroc. 1995. History, genetic origins and care of Yucatanminiature and micro pigs. Lab Anim 24:31–4. Panepinto, L.M., R. W. Phillips, L. R. Wheeler, and D. H. Will. 1978.The Yucatan miniature pig as a laboratory animal. Lab AnimSci 28(3):308–13. Pfeiffer, H. 1978. Schweinezucht. Berlin:Deutscher Landwirtschaftsverlag. Porter, V. 1993. Pigs—AHandbook to the Breeds of the World. Mount¢eld: HelmInformation Ltd. Randi, E., V. Lucchini, and C. H. Diong.1996. Evolutionary genetics of the suiformes asreconstructed using mtDNA sequencing. J Mamm Evol3(2):163–94. Ruvinsky, A. and M. F. Rothschild. 1998.Systematics and evolution of the pig. In M. F. Rothschildand A. Ruvinsky (eds), The Genetics of the Pig. Oxon: CABInternational. Xylouri-Frangiadaki, E., H. Karakitsou, andE. Bouga. 1997. The swine in ancient Greece. Paperpresented at 48th Ann Meet Eur Ass Anim Prod Wien.

2 Chapter 2: Husbandry and Management

Algers, B. 1993. Nursing in pigs: Communicating needs anddistributing resources. J Anim Sci 71:2826–31.

Allen, C. E., S. T. Bradley, and R. P. Chilcott. 2002. Fourlegs gooda review of pig behavior. The Pig J 49:7–51.

Almond, G. W. 1994. Pregnancy diagnosis-a brief review.Proceedings of the North Carolina Healthy Hogs Seminar.http://mark.asci.ncsu.edu/HealthyHogs/book1994/almond1.htm.

Anil, L., S. S. Anil, J. Deen, S. K. Baidoo, and R. D.Walker. 2006. Effect of group size and structure on thewelfare and performance of pregnant sows in pens withelectronic sow feeders. Can J Vet Res (70)2:128–36.

Arellano, P. E., C. Pijoan, L. D. Jacobson, and B. Algers.1992. Stereotyped behaviour, social interactions andsuckling pattern of pigs housed in groups or in singlecrates. Appl Anim Behav Sci 35:157–66. Arey, D and S.Edwards. 1998. Factors in�uencing aggression between sowsafter mixing and the consequences for welfare andproduction. Livest Prod Sci 56:61–70. AWR 2005. AnimalWelfare Act and Animal Welfare Regulations, USDA, APHIS.Bates, R. O., M. D. Hoge, D. B. Edwards, and B. E. Straw.2003. The in�uence of canine teeth clipping on nursing andnursery pig performance. J Swine Health Prod 11(2): 75–9.Baumans, V. 2005. Environmental enrichment for laboratoryrodents and rabbits: Requirements of rodents, rabbits, andresearch. ILAR J 46(2):162–70. Baumans, V., P. Clausing, R.Hubrecht, A. Reber, A. Vitale, and E. Wyffels. 2006.FELASA working group standardization of enrichment workinggroup report. http://www.lal.org.uk/pdf¢les/FELASA_Enrichment_2006.pdf. Bazer, F. W., J. J.Ford, and R. S. Kensinger. 2001. Reproductive physiology.In W. G. Pond and H. J. Mersmann (eds), Biology of theDomestic Pig. 150–224. Comstock Publishing Associates,Cornell University Press, Ithaca, New York, NY. Blackshaw,J. K. 1986. Behavioural pro¢les of domestic animals. InNotes on Some Topics in Applied Animal Behaviour. http://www.animalbehaviour.net/JudithKBlackshaw/Chapter3e. htm(accessed December 29, 2008). Bollen, P. J., A.K. Hansen,and H. J. Rasmussen. 2000. The laboratory swine. In M. A.Suckow (ed.), A Volume in the Laboratory Animal PocketReference Series. 1–130. CRC Press. Bollen, P. J., L. W.Madsen, O. Meyer, and J. Ritskes-Hoitinga. 2005. Growthdifferences of male and female GÖttingen minipigs duringad libitum feeding: A pilot study. Lab Anim 39:80–93.

Bollen, P., A. Andersen, and L. Ellegaard. 1998. Thebehaviour and housing requirements of minipigs. Scand JLab Anim Sci Suppl 1, 25:23–6. Burrin, D. G. 2001.Nutrient requirements and metabolism. In W. G. Pond, andH. J. Mersmann (eds), Biology of the Domestic Pig. 309–89.Comstock Publishing Associates, Cornell University Press,Ithaca, New York, NY. CCAC-Canadian Council on Animal Carein Science. 2009. CCAC guidelines on: the care and use offarm animals in research, teaching and testing. CanadianCouncil on Animal care, Ottawa ON, Canada. Curtis, S. E.,S. A. Edwards, and H. W. Gonyou. 2001. Ethology andpsychology. In W. G. Pond, and H. J. Mersmann (eds),Biology of the Domestic Pig. 41–78. Comstock Publishing Associates, Cornell University Press, Ithaca,New York, NY. D’Eath, R. 2005. Socialising piglets beforeweaning improves social hierarchy formation when pigs aremixed post- weaning. Appl Anim Behav Sci 93(3):199–211.Directive 2010/63/EU of the European Parliament and of theCouncil of 22 Sept 2010 on the protection of animals usedfor scienti¢c purposes, Of¢cial Journal of the EuropeanUnion, L276. Dopson, D. C. 1993. Laboratoryswine-principles of husbandry and research techniques.Anim Technol 44(3):175–200. Drake, A., D. Fraser, and D. M.Weary. 2008. Parent-offspring resource allocation indomestic pigs. Behav Ecol Sociobiol 62:309–19.

Edwards, S. 2008. Balancing sow and piglet welfare withproduction ef¢ciency. London Swine Conference-Facing theNew Reality 1–2:17–30.

ETS-European Treaty Series 193. 2003. Council of Europe.European convention for the protection of animals duringinternational transport (revised), pp. 1–17.

ETS-European Treaty Series 123. 2006. Council of Europe.Appendix A of the European convention for the protection ofvertebrate animals used for experimental and otherscienti¢c purposes. Guidelines for Accommodation and Careof Animals 6–14:63–77.

Farley, J. L. and W. J. van Riet. Swine care practices.Available fromhttp://www.vetmed.ucdavis.edu/vetext/INF-SW_CarePrax. html(accessed January 25, 2009).

FASS-Federation of Animal Science Societies. 2010. Thirdedition. Guide for the care and use of agriculturalanimals in agricultural research and teaching. Champaign,IL.

Flowers, W. L., J. D. Armstrong, S. L. White, T. O.Woodard, and G. W. Almond. 1999. Real-time ultrasonographyand pregnancy diagnosis in swine. Proc Am Soc Anim Sci,1–9.

Fraser, D. and B. K. Thompson. 1991. Armed sibling rivalryamong suckling piglets. Behav Ecol Sociobiol 29:9–15.

Geisert, R. D. and R. A. Schmitt. 2002. Early embryonicsurvival in the pig: Can it be improved? J Anim Sci80:E54–65.

Gonyou, H. W. 1997. Can odours be used to reduce aggressionin pigs-using odours to familiarize pigs prior tore-grouping. Prairie Swine Center Inc Annu Res Rep, 59–62.

Grandin, R. 1989. Behavioral principles of livestockhandling. Professional Animal Scientist. Am Registry ProfAnim Sci, 1–11.

Graves, H. B. 1984. Behavior and ecology of wild and feralswine (Sus scrofa). J Anim Sci 58:482–92.

Hansen, A.K., H. Farlov, and P. Bollen. 1997.Microbiological monitoring of laboratory pigs. Lab Anim31:193–200.

Hansen, A. K. 1998. Microbiological quality of laboratorypigs. Scand J Lab Anim Sci Suppl 1, 25:145–52.

Hansen, A. K., K. Dahl, and D. B. Sorensen. 2004. Rearingand caring for a future xenograft donor pig. Acta VetScand 45(Suppl 1):S45–50.

Hemsworth, P. H. 1999. Behavioral problems. In B. E. Straw,S. D’Allaire, W. L. Mengeling and D. J. Taylor (eds),Diseases of Swine. 645–54. 8 th edition. Iowa StateUniversity Press, Ames Iowa.

Holtz, W. and P. Bollen. 1999. Pigs and minipigs. In T.Poole (ed), The UFAW Handbook on the Care and Managementof Laboratory Animals. Blackwell Science Ltd, Oxford.

Houpt, T. R. 1986. The handling of swine in research. In H.C. Stanton and H. J. Mersmann (eds), Swine inCardiovascular Research. pp. 25–38. CRC Press, Boca Raton,FL.

Hughes, P. E., G. Philip, and R. Siswadi. 1997. The effectsof contact frequency and transport on the ef¢cacy of the

boar effect. Anim Reprod Sci 46(1–2):159–65.

IATA-LAR-International Air Transport Association (IATA).Live Animal Regulations. Available from http://www.iata.org/ps/publications/lar.htm (accessed December 28, 2008).

ILAR-NRC. 2010. Guide for the care and use of laboratoryanimals: Eighth edition. Institute of Laboratory AnimalResources, National Research Council. The NationalAcademies Press, Washington, D.C. Jorgensen, K. D. 1998.Minipig in reproduction toxicology. Scand J Lab Anim SciSuppl 1, 25:63–75. Jorgensen, K. D., T. S. A. Kledal, O.Svendsen, and N. E. Skakkeboek. 1998. The GÖttingenminipig as a model for studying effects on male fertility.Scand J Lab Anim Sci Suppl 1, 25:161–9. Klotzko, A. J.2000. IBC’s ¢fth annual international conference onxenotransplantation. Conference report, pp. 1–7. Availablefromhttp://medgenmed.medscape.com/viewarticle/408761_print.KSU. 2007. Kansas State University agricultural experimentstation and cooperative extension service. Swine nutritionguide, general nutrition principles for swine, p. 20. LabAnimal 2011 Buyers’ Guide. 2010. Lab Anim 39(12):46–8.Laber, K. E., M. T. Whary, S. A. Bingel, J. A. Goodrich, A.C. Smith, and M. M. Swindle. 2002. Biology and diseases ofswine. In J. G. Fox, L. C. Anderson, F. M. Loew, and F. W.Quimby (eds), Laboratory Animal Medicine, 2nd edition.Academic Press, Elsevier Science. Li, J., A. Rieke, B. N.Day, and R. S. Prather. 1996. Technical note: Porcinenon-surgical embryo transfer. J Anim Sci 74:2263–8. Lund,K. 2002. Welfare review of alternatives to gestationstalls. Alberta agriculture food & rural development.Mabry, J. W., M. T. Coffey, and R. W. Seerley. 1983. Acomparison of an 8-versus 16-hour photoperiod duringlactation on suckling frequency of the baby pig andmaternal performance of the sow. J Anim Sci 57:292–5.Marchant, J. N., D. M. Broom, and S. Corning. 2001. Thein�uence of sow behaviour on piglet mortality due tocrushing in an open farrowing system. Anim Sci 72:19–28.Marchant-Forde, J. N., D. C. Lay, Jr., K. A. McMunn, H. W.Cheng, E. A. Pajor, and R. M. Marchant-Forde. 2009.Postnatal piglet husbandry practices and well-being: Theeffects of alternative techniques delivered separately. JAnim Sci 87:1479–92. McDonnell, G. and A. D. Russell.1999. Antiseptics and disinfectants: Activity, action, andresistance. File://C:\DOCUME~1\Jim\LOCALS~1\Temp\ZWYCOXU6.htm. McGlone, J. J., S. E.Curtis, and T. R. Houpt. 2001. Husbandry, anesthesia andsurgery. In W. G. Pond and H. J. Mersmann (ed) Biology ofthe Domestic Pig. 79–121. Comstock Publishing Associates,

Cornell University Press, Ithaca, New York, NY. Michaels,M. G. 1998. Special topic overview.Xenotransplantassociated infections. Lab Anim Sci48(3):228–33. Mouttotou, N., F. M. Hatchell, and L. E.Green. 1999. Foot lesions in ¢nishing pigs and theirassociations with the type of �oor. Vet Rec144(23):629–32. NCS. North Carolina State. Pigs. Availablefrom http://ori.dhhs.gov/education/products/ncstate/pig.htm, pp. 1–8 (accessedDecember 10, 2008). Neary, M. and A. Yager. 2002. Bodycondition scoring in farm animals. Purdue universitydepartment of animal sciences. Available fromhttp://www.ces.purdue.edu/extmedia/as/ as-550-w.pdf.NRC-National Research Council. Nutrient requirements ofswine. Tenth revised edition, 1998. National AcademiesPress, Washington, D.C. NRC-National Research Council.Nutrient requirements of laboratory animals. Fourth revisededition, 1995. National Academy Press, Washington, D.C.

Nunoya, T., S. Kazumoto, T. Saitoh, H. Yazawa, K. Nakamura,Y. Baba, and T. Hirai. 2007. Use of miniature pig forbiomedical research, with reference to toxicologic studies.J Toxicol Pathol 20:125–32.

Panepinto, L. M. 1986. Character and management ofminiature swine. In H. C. Stanton and H. J. Mersmann(eds), Swine in Cardiovascular Research. Volume 1. pp.11–24. Ames, Iowa: Iowa State University Press.

Panepinto, L. M. 1986. Laboratory methodology andmanagement of swine in biomedical research. In M. E.Tumbleson (ed), Swine in Biomedical Research. 97–109.Plenum press, New York, NY.

Panepinto, L. M., R. W. Phillips, S. Norden, P. C. Pryor,and R. Cox. 1983. A comfortable, minimum stress method ofrestraint for yucatan miniature swine. Lab Anim Sci33(1):95–7.

Pekow, C. 2005. De¢ning, measuring, and interpreting stressin laboratory animals. Contemporary Topics 44(2):41–5.

Pond, W. G. and H. J. Mersmann. 2001. Generalcharacteristics. In W. G. Pond and H. J. Mersmann (eds),Biology of the Domestic Pig. 1–40. Comstock PublishingAssociates, Cornell University Press, Ithaca, New York,NY.

Reese, D. E. 1999. Nutrient de¢ciencies and excesses. In B.E. Straw, S. D’Allaire, W. L. Mengeling, and D. J. Taylor

(eds), Diseases of Swine. 743–55. 8 th edition. IowaState University Press, Ames Iowa.

Rehbinder, C., P. Baneux, and D. Forbes et al. 1998. FELASArecommendations for the health monitoring of breedingcolonies and experimental units of cats, dogs and pigs. LabAnim 32:1–17.

Risdahl, J. Restraint and handling of swine. Available fromhttp:// www.ahc.umn.edu/rar/handling.html (accessedDecember 15, 2008).

Ritskes-Hoitinga, J. and P. Bollen. 1997. Nutrition ofGÖttingen minipigs: Facts, assumptions and mysteries.Pharmacology & Toxicology Suppl II, 80:5–9.

Rutala, W. A. and D. Weber. 2008. Guideline fordisinfection and sterilization in healthcare facilities,2008. Centers for Disease Control, Department of Healthand Human Services, 1–96.

Safron, J. and J. C. Gonder. 1997. The SPF pig in research.Available fromhttp://dels.nas.edu/ilar_n/ilarjournal/38_1/38_1SPFPig.shtml, 1–8.

Sangild, P. T. 2003. Uptake of colostral immunoglobulins bythe compromised newborn farm animal. Acta vet scand Suppl98:105–22.

Smith, A. C. and M. M. Swindle. 2006. Preparation of swinefor the laboratory. ILAR J 47(4):358–63.

Smith, A. C. 2005. Swine behavior, 1–3. 56 th AALASnational meeting St. Louis, MO.

Spinka, M., G. Illmann, B. Algers, and Z. Stetkova. 1997.The role of nursing frequency in milk production indomestic pigs. J Anim Sci 75:1223–8. Svendsen, O., P.Bollen, K. D. Jorgensen, S. Klastrup, and L. WichmannMadsen. 1998. Prevention of anemia in young GÖttingenminipigs after different dosages of colloid irondextran.Scand J Lab Anim Sci Suppl 1, 25:191–6. Swallow, J., D.Anderson, A. C. Buckwell et al. 2005. Guidance on thetransport of laboratory animals. Lab Anim 39:1–39. Swindle,M. M. 2004. Technical bulletin. Handling, husbandry &injection techniques in swine. Available fromwww.sinclairresearch.com. Swindle, M. M., A. C. Smith, K.L. Laber, J. A. Goodrich, and S. A. Bingel. 2003. Biologyand medicine of swine. In J. D. Reuter and M. A. Suckow

(eds), Laboratory Animal Medicine and Management.International Veterinary Information Service, Ithaca, NewYork, NY. Swindle, M. M., A. C. Smith, K. Laber-Laird, andL. Dungan. 1994. Swine in biomedical research: Managementand models. Available fromhttp://dels.nas.edu/ilar_n/ilarjournal/36_1/36_1Swine.shtml (accessed December 15, 2008). Swindle,M. M. and A. C. Smith. 2008. Swine in biomedical research.In P. M. Conn (ed), Sourcebook of models for biomedicalresearch. 233–9. Humana Press, Totowa, New Jersey. Swindle,M. M. 1996. Considerations of speci¢c pathogen-free swine(SPF) in xenotransplantation. J Invest Surg 9(4):267–71.Available from http://www.ncbi.nlm.nih.gov/pubmed/8887064.Swine Care Handbook. 1996. Available from http://sanangelo.tamu.edu/ded/swine/swinecar.htm (accessed February 1,2009). Talling, J. C., N. K. Waran, C. M. Wathes, and J. A.Lines. 1998. Sound avoidance by domestic pigs depends uponcharacteristics of the signal. Abstract. Appl Anim BehavSci 58(3–4):255–66. Taylor, S. 1998. Solving minipigitches. Am Assoc Lab Anim Sci Tech Talk 3(4):1. Tsutsumi,H., N. Morikawa, R. Niki, and M. Tanigawa. 2001.Acclimatization and response of minpigs toward humans. LabAnim 35:236–42. Tuchscherer, M., B. Puppe, A. Tuchscherer,and U. Tiemann. 2000. Early identi¢cation of neonates atrisk: Traits of newborn piglets with respect to survival.Theriogenology 54(3): 371–88. Turner, P. V, K. L. Smiler,M. Hargaden, and M. A. Koch. 2003. Re¢nements in the careand use of animals in toxicology studies-regulation,validation, and progress. Contemp Top 42(6):8–15. Tynes,V. V., B. L. Hart, and M. J. Bain. 2007. Human-directedaggression in miniature pet pigs. JAVMA 230(3):385–9.Vallet, J. L., B. A. Freking, J. R. Miles, J. A. Nienaber,and T. M. Brown-Brandl. 2006. Factors affecting littersize in pigs. Conference proceedings, National SwineImprovement Federation, 1–8. Widowski, T. and S. Torrey.2002. Neonatal management practices. Swine Welfare FactSheet 1(6):1–4. National Pork Board Des Moine, Iowa.

3 Chapter 3: Diseases of Minipigs

Artois, M., Depner, K.R., Guberti, V., Hars, J., Rossi, S.,and Rutili, D., 2002, Classical swine fever (hog cholera)in wild boar in Europe, Rev Sci Tech Off Int Epiz, 21 (2),287–303.

Barden, J.A. and Decker, J.L., 1971, Mycoplasma hyorhinisswine arthritis. 1. Clinical and microbiological features,Arthritis Rheum, 14 (2), 193–201.

Barden, J.A., Decker, J.L., Dalgard, D.W., and Aptekar,R.G., 1973, Mycoplasma hyorhinis swine arthritis. III.Modi¢ed disease in Piney Woods Swine, Infect Immun, 8 (6),887–890.

Beer, R.J.S., 1973, Studies on the bology of the life-cycleof Trichuris suis Schrank, 1788, Parasitology, 67,253–262.

Bélanger, M., Dubreuil, D., Harel, J., Girard, C., andJacqes, M., 1990, Role of lipopolysaccharides in adherenceof Actinobacillus pleuropneumoniae to porcine trachealrings, Infect Immun, 58 (11), 3523–3530.

Billinis, C., Paschaleri-Papadopoulou, E., AnastasiadismG., Psychas, V., Vlemmas, J., Leontides, S., Koumbati, M.,Kyriakis, S.C., and Papadopoulos, O., 1999, A comparativestudy of the pathogenic properties and transmissibility ofa Greek and a Belgian encephalomyocarditis virus (EMCV)for piglets, Vet Microbiol, 70, 179–192.

Blusch, J.H., Patience, C., Takeuchi, Y., Templin, C.,Roos, C., von der Helm, K., Steinhoff, G., and Martin, U.,2000, Infection of nonhuman primate cells by pigendogenous retrovirus, J Virol, 74 (16), 7687–7690

Bolin, C.A., 1994, Diagnosis of leptospirosis is swine,Swine Health Prod, 2 (3), 23–24.

Bolin, C.A., Casselis, J.A., Hill, H.T., Frantz, J.C., andNielsen, J.N., 1991, Reproductive failure associated withLeptospira interrogans serovar bratislava infection inswine, J Vet Diagn Invest, 3, 152–154.

Borst, G.M., Kimman, T.G., Gielkens, A.L., and van derKamp, J.S., 1990, Four sporadic cases of congenitalswinepox, Vet Rec, 127 (3), 61–63.

Boulanger, P., Mitchell, D., Corner, A., and Bourassa, M.,

1959, Observations on leptospirosis in swine, Can J CompMed Vet Sci., 23 (11), 354–359.

Brewer, L.A., Lwamba, H.C.M., Murtaugh, M.P., Palmenberg,A.C., Brown, C., and Njenga, M.K., 2001, Porcineencephalomyocarditis virus persists in pig myocardium andinfects human myocardial cells, J Virol, 75 (23),11621–11629.

Bridger, J.C. and Knowles, N.J., 2006, Porcine entericcaliciviruses and astroviruses, in Diseases of Swine, 9thedn, Straw, B.E., Zimmermann, J.J., D’Allaire, S., andTaylor, D.J. (eds), Blackwell Publishing, Ames, Iowa, IA,pp. 347–352.

Briesebois, L.M., Charlebois, R., Higgins, R., and Nadeau,M., 1990, Prevalence of Streptococcus suis in four toeight week old clinically healthy pigs, Can J Vet Res, 54,174–177.

Brockmeier, S.L., Register, K.B., Magyar, T., Lax, A.J.,Pullinger, G.D., and Kunkle, R.A., 2002, Role ofdermonecrotic toxin of Bordetella bronchiseptica in thepathogenesis of respiratory disaease in swine, InfectImmun, 70 (2), 481–490.

Brooke, C.J. and Riley, T.V., 1999, Erysipelothrixrhusiopathiae: Bacteriology, epidemiology and clinicalmanifestations of an occupational pathogen, J MedMicrobiol, 48, 789–799.

Cargill, C. and Davies, P.R., 2006, External parasites, inDiseases of Swine, 9th edn, Straw, B.E., Zimmermann, J.J.,D’Allaire, S., and Taylor, D.J. (eds), BlackwellPublishing, Ames, Iowa, IA, pp. 875–889. Cheville, N.F.,1966, The cytopathology of swine pox in the skin of swine,Am J Pathol, 49 (2), 339–352. Chmielewicz, B., Goltz, M.,Franz, T., Bauer, C., Brema, S., Ellerbrok, H., Beckmann,S., Rziha, H.J., Lahrmann, K.H., Romero, C., and Ehlers,B., 2003, A normal porcine gammaherpesvirus, Virology, 308(2), 317–329. Christianson, W.T., Collins, J.E., Ben¢eld,D.A., Harris, L., Gorcyca, D.E., Chladek, D.W., Morrison,R.B., and Joo, H.S., 1992, Exeperimental reproduction ofswine infertility and respiratory syndrome in pregnantsows, Am J Vet Res, 53 (4), 485–488. Christianson, W.T.,Choi, C.-S., Collins, J.E., Molitor, T.W., Morrison, R.B.,and Joo, H.-S., 1993, Pathogenesis of porcine reproductiveand respiratory syndrome virus infection in mid-gestationsows and fetuses, Can J Vet Res, 57, 262–268.Christopher-Hennings, J., Nelson, E.A., Hines, R.J.,

Nelson, J.K., Swenson, S.L., Zimmermann, J.J., Chase,C.C.L., Yaeger, M.J., and Ben¢eld, D.A., 1995, Persistenceof porcine reproductive and respiratory syndrome virus inserum and semen of adult boars, J Vet Diagn Invest, 7,456–464. Chu, R.M., Moore, D.M., and Conroy, J.D., 1979,Experimental swine vesicular disease, pathology andimmuno�ourescence studies, Can J Comp Med, 43, 29–38.Clugston, R.E. and Nielsen, N.O., 1974, Experimental edemadisease of swine (E. coli enetrotoxemia). I. Detection andpreparation of an active principle, Can J Comp Med, 38,22–28. Collins, J.E., Bergeland, M.E., Bouley, D.,Ducommun, A.L., Francis, D.H., and Yeske, P., 1989,Diarrhea associated with Clostridium perfringens type Aenterotoxin in neonatal pigs, J Vet Diagn Invest, 1,351–353. Coombs, C.F., Had¢eld, G., and Henson, G.E., 1926,A note on the endocarditis of swine erysipelas and itsrelation to the cardiac infections of man, Proc R Soc Med,19 (section of comparative medicine), 13–19. Cornell, W.D.,Chengappa, M.M., Stuart, L.A., Maddux, R.L., and Hail,R.I., 1989, Brucella suis biovar 3 infection in a Kentuckyswine herd, J Vet Diagn Invest, 1, 20–21. Coussement, W.,Ducatelle, R., Charlier, G., and Hoorens, J., 1981,Adenovirus enteritis in pigs, Am J Vet Res, 42 (11),1905–1911. Coussement, W., Ducatelle, R., Debouck, P., andHoorens, J., 1982, Pathology of experimental CV777coronavirus enteritis in piglets, Vet Pathol, 19, 46–56.Corner, A.H., Beauregard, M., and Mitchell, H.K., 1960,Rabies in piglets, Can J Comp Med Vet Sci, 24, 364–365.Debouck, P and Pensaert, M., 1980, Experimental infectionof pigs with a new porcine enteric coronavirus, CV 777, AmJ Vet Res, 41 (2), 219–223. Delhon, G., Tulman, E.R.,Afonso, C.L., and Rock, D.L., 2006, Swinepox, in Diseasesof Swine, 9th edn, Straw, B.E., Zimmermann, J.J,D’Allaire, S., and Taylor, D.J. (eds), BlackwellPublishing, Ames, Iowa, pp. 483–487. Ditch¢eld, J., Pearce,H.G., Jolly, R.D., and Curtis, R.A., 1967, A viralgastroenteritis of Ontario swine. I. Clinical illness andrecovery of the virus, Can J Comp Med Vet Sci, 31,193–196.Doige, C.E., 1980, Discospondylitis in swine, Can J CompMed, 44, 121–128. Douvres, F.W., Tromba, F.G., andMalakatis, G.M., 1969, Morphogenesis and migration ofAscaris suum larvae developing into fourth stage, JParasitol, 55 (4), 689–712.

Doyle, M.P., Hugdahl, M.B., and Taylor, S.L., 1981,Isolation of virulent Yersinia enterocolitica from porcinetongues, Appl Environ Microbiol, 42 (4), 661–666.

Dubey, J.P., Schlafer, D.H., Urban, J.F., and Lindsay,D.S., 1990, Lesions in fetal pigs with

transplacentally-induced Toxoplasmosis, Vet Pathol, 27,411–418.

Ducatelle, R., Coussement, W., and Hoorens, J., 1982,Sequential pathological study of experimental porcineadenovirus enteritis, Vet Pathol, 19 (2), 179–189.

Dugal, F., Bélanger, M., and Jacques, M., 1992, Enhancedadherence of Pasteurella multocida to porcine trachealrings preinfected with Bordetella bronchiseptica, Can J VetRes, 56, 260–264.

Duhamel, G.E., Bargar, T.W., Schmitt, B.J., Molitor, T.W.,and Lu, W., 1991, Identi¢cation of parvovirus-like virusparticles in intestinal crypt epithelial cells ofpigs withdiarrhea, J Vet Diagn Invest, 3, 96–98.

Duncan, M. and Smith, D., 1992, Isolation of Staphylococcushyicus from aborted piglets, Can Vet J, 33, pp. 75–76.

Edington, N., Watt, R.G., and Plowright, W., 1976,Cytomegalovirus excretion in gnotobiotic pigs, J Hyg, 77(2), 283–290.

Ehlers, B., Ulrich, S., and Goltz, M., 1999, Detection oftwo novel porcine herpesviruses with high similarity togammaherpesviruses, J Gen Virol, 80, 971–978.

Escobar, J., van Alstine, W.G., Baker, D.H., and Johnson,R.W., 2002, Growth performance and whole-body compositionof pigs experimentally infected with Mycoplasmahyopneumoniae, J Anim Sci, 80, 384–391.

Eustis, S.L and Nelson, D.T., 1981, Lesions associated withcoccidiosis in nursing piglets, Vet Pathol, 18, 21–28.

Fairbrother, J.M., 2006, Neonatal Escherichia colidiarrhea, in Diseases of Swine, 9th edn, Straw, B.E.,Zimmermann, J.J., D’Allaire, S., and Taylor, D.J. (eds),Blackwell Publishing, Ames, Iowa, IA, pp. 641–649.

Fairbrother, J.M. and Gyles, C.L., 2006, PostweaningEscherichia coli diarrhea and edema disease, in Diseasesof Swin, 9th edn, Straw, B.E., Zimmermann, J.J.,D’Allaire, S., and Taylor, D.J. (eds), BlackwellPublishing, Ames, Iowa, IA, pp. 649–662.

FELASA Working Party Report, 1998, FELASA recommendationsfor the health monitoring of breeding colonies andexperimental units of cats, dogs and pigs, Lab Anim, 32,

1–17.

Fernández-Barredo, S., Galiana, C., García, A., Vega, S.,Gómez, M.T., and Pérez-Gracia, M.T., 2006, Detection ofhepatitis E virus shedding in feces of pigs at differentstages of production using revers transcription-polymerasechain reaction, J Vet Diagn Invest, 18, 462–465.

Fish, N.A., Ryu, E., and Hulland, T.J., 1963,Bacteriological and pathological studies of natural andexperimental swine abortion due to Leptospira pomona, CanVet J., 4 (12), 317–327.

Flynn, W.T., Saif, L.J., and Moorhead, P.D., 1988,Pathogenesis of porcine enteric calicivirus-like virus infour-day-old gnotobiotic pigs, Am J Vet Res, 49 (6),819–825.

Frey, J., Bosse, J.T., Chang, Y.-F., Cullen, J.M., Fenwick,B., Gerlach, G.F., Gygi, D., et al., 1993, Actinobacilluspleuropneumoniae RTX toxins: Uniform designation ofhaemolysins, cytolysins, pleurotoxin and their genes,J.General Microbiol., 139, 1723–1728.

Friis, N.F and Feenstra, A.A., 1994, Mycoplasma hyorhinisin the etiology of serositis among piglets, Acta VetScand, 35 (1), 93–98. Fryer, J.F.L, Grif¢ths, P.D.,Fishman, J.A., Emery, V.C., and Clark, D.A., 2001,Quantitation of porcine cytomegalovirus in pig tissues byPCR, J Clin Microbiol, 39 (3), 1155–1156. Gagnon, A.N. andDulac, G.C., 1979, Porcine parvovirus infection inOntario: Incidence and diagnosis in herds with reproductivefailure, Can. Vet. J., 20 (11), 338. Gelmetti, D., Meroni,A., Brocchi, E., Koenen, F., and Cammarata, G., 2006,Pathogenesis of encephalomyocarditis experimental infectionin young piglets: A potential animal model to study viralmyocarditis, Vet Res, 37, 15–23. Glock, R.D., Harris, D.L.,and Kluge, J.P., 1974, Localisation of spirochetes withthe structural characteristics of Treponema hyodysenteriaein the lesions of swine dysentery, Infect Immun, 9 (1),167–178. Gómez-Villamandos, J.C., Hervás, J., Méndez, A.,Carrasco, L., Villeda, C.J., Wilkinson, P.J., and Sierra,M.A., 1995, Ultrastructural study of the renal tubularsystem in acute experimental African swine fever: Virusreplication in gloemrular mesangial cells and in thecollecting ducts, Arch Virol, 140, 581–589.Gómez-Villamandos, J.C., Salguero, F.J., Ruiz-Villamor, E.,Sánchez-Cordón, P.J., Bautista, M.J., and Sierra, M.A.,2003, Classical swine fever: Pathology of bone marrow, VetPathol, 40, 157–163. Goyal, S.M., 1993, Porcine

reproductive and respiratory syndrome, J Vet Diagn Invest,5, 656–664. Greig, A.S., Mitchell, D., Corner, A.H.,Bannister, G.L., Meads, E.B., and Julian, R.J., 1962, Ahaemaglutinating virus producing encephalomyelitis in babypigs, Can J Comp Med Vet Sci, 26, 49–56. Halbur, P.G.,Paul, P.S., Vaughn, E.M., and Andrews, J.J., 1993,Experimental reproduction of pneumonia in gnotobiotic pigswith porcine coronavirus isolate AR310, J Vet Diagn Invest,5, 184–188. Halbur, P.G., Kasorndorkbua, C., Gilbert, C.,Guenette, D., Potters, M.B., Purcell, R.H., Emerson, S.U.,Toth, T.E., and Meng, X.J., 2001, Comparative pathogenesisof infection of pigs with Hepatitis E viruses recoveredfrom a pig and a human, J Clin Microbiol, 39 (3), 918–923.Hale, O.M. and Marti, O.G., 1983, In�uence of anexperimental infection of swine kidneyworm (Stephanaurusdentatus) on performance of pigs, J Anim Sci, 56, 616–620.Hall, W.H. and Manion, R.E., 1970, In vitro susceptility ofBrucella to various antibiotics, Appl Microbiol, 20 (4),600–604. Hall, L.B., Kluge, J.P., Evans, L.E., and Hill,H.T., 1984, The effect of pseudorabies (Aujeszky’s) virusinfection on youngmature boars and boar fertility, Can JComp Med, 48, 192–197. Hall, W.F., Bane, D.P., Kilroy,C.R., and Essex-Sorlie, D.L., 1990, A model for inductionof Pasteurella multocida type-A pneumonia in pigs, Can JVet Res, 54, 238–243. Hamilton, T.D.C., Roe, J.M., andWebster, A.J.F., 1996, Synergistic role of gaseous ammoniain etiology of Pasteurella multocida-induced atrophicrhinitis in swine, J Clin Microbiol, 34 (9), 2185–2190.Hampson, D.J., Fellström, C., and Thomson, J.R., 2006,Swine dysentery, in Diseases of Swine, 9th. edn, Straw,B.E., Zimmerman, J.J., D’Allaire, S., and Taylor, D.J.(eds), Blackwell Publishing, Ames, Iowa, IA, pp. 785–805.Haesebruck, F., Chiers, K., van Overbeke, I., andDucatelle, R., 1997, Actinobacillus pleuropneumoniaeinfections in pigs: The role of virulence factors inpathogenesis and protection, Vet Microbiol, 58, 239–249.

Haresnape, J.M., 1988, Isolation of African swine fevervirus from ticks of the Ornithodorus moubata complex(Ixodoidea: Argasidae) collected within the African swinefever enzootic area of Malawi, Epidem Inf, 101, 173–185.

Hariharan, H., MacDonald, J., Carnat, B., Bruenton, J., andHeaney, S., 1992, An investigation of bacterial causes ofarthritis in slaughter hogs, J Vet Diagn Invest, 4, 28–30.

Hay, P.E., Cuniffe, J.G., Kramer, France, A.J., Gray, J.A.,and Watt, B., 1989, Two cases of Streptococcus suismeningitis, Br J Ind Med, 46, 352–353.

Hazlett, M.J. and Koller, M.A., 1986, Porcine rabies in aclosed feeder barn, Can Vet J, 27, 116–118.

Henry, S.C., 1979, Clinical observations oneperythrozoonosis, J Am Vet Med Assoc, 174 (6), 601–603.

Hoe�ing, D.C., 1991, Acute myositis associated withHaemophilus parasuis in primary SPF sows, J Vet DiagnInvest, 3, 354–355.

Howerth, E.W., Stallknecht, D.E., Dorminy, M., Pisell, T.,and Clarke, G.R., 1997, Experimental vesicular stomatitisin swine: Effects of route of inoculation and steroidtreatment, J Vet Diagn Invest, 9, pp.136–142.

Hurst, E.W., 1933, Studies on pseudorabies (infectiousbulbar paralysis, mad itch). I. Histology of the disease,with a note on the symptomatology, JEM, 58 (4), 415–433.

ICTVdB Management, 2006, 00.058.1.06. Suipoxvirus, inICTVdB—The Universal Virus Database, Version 4.Büchen-Osmond, C. (ed.), Columbia University, New York,NY.

Ishikawa, K., Sekiguchi, H., Ogino, T., and Suzuki, S.,1997, Direct and rapid detection of porcine epidemicdiarrhea virus by RT-PCR, J Virol Methods, 69 (1–2),191–195.

Jabrane, A., Girard, C., and Elazhary, Y., 1994,Pathogenecity of porcine respiratory coronavirus isolatedin Québec, Can Vet J, 35, 86–92.

Jacobs, L., 1974, Toxoplasma gondii: Parasitology andtransmission, Bull NY Acad Med, 50 (2), 128–145.

Jauregui, L.H., Higgins, J., Zarlenga, D., Dubey, J.P., andLunney, J.K., 2001, Development of a real-time PCR assayfor detection of Toxoplasma gondii in pig and mousetissues, J Clin Microbiol, 39 (6), 2065–2071.

Jiang, Y., Yu, X., Wang, L., Lu, Z., Liu, H., Xuam, H., Hu,Z., and Tu, C., 2008, An outbreak of pig rabies in hunanprovince, China, Epidemiol Infect, 136, 504–508.

Jung, K., Ha, Y., Kim, S.-H., and Chae, C., 2004,Development of polymerase chain reaction and comparisonwith In situ hybridization for the detection ofHaemophilus parasuis in formalin-¢xed paraf¢n-embeddedtissues, J. Vet Med Sci, 66 (7), 841–845.

Jones, G.W. and Rutter, J.M., 1972, Role of the K88 antigenin the pathogenesis of neonatal diarrhea caused byEschericia coli in piglets, Infect Immun, 6 (6), 918–927.

Kielstein, P. and Rapp-Gabrielson, V.J., 1992, Designationof 15 servers of Haemophilus parasuis on the basis ofimmunodiffusion using heat-stable antigen extract, J ClinMicrobiol, 30 (4), 862–865.

Kim, B., Lee, K., Han, K., Kim, D., Ha, Y., Kim, C.H., Oh,Y., Kang, I., Lee, J., and Chae, C., 2010, Development ofin situ hybridization for the detection of Mycoplasmahyorhinis in formalin-¢xed paraf¢n-embdded tissues fromnaturally infected pigs with polyserositis, J Vet Med Sci,72 (9), 1225–1227. Kim, H.S., Joo, H.S., and Bergeland,M.E., 1989, Serologic, virologic, and histopathologicobservations of encephalomyocarditis virus infection inmummi¢ed and stillborn pigs, J Vet Diagn Invest, 1,101–104. Kim, J.-H., Kang, K.-I., Kang, W.-C., Sohn, H.-J.,Jean, Y.-H., Park, B.K., Kim, Y., and Kim, D.-Y., 2009,Porcine abortion outbreak associated with Toxoplasma gondiiin Jeju Island, Korea, J Vet Sci, 10 (2), 147–151. Kim, Oand Chae, C., 2000, In situ hybridization for the detectionand localisation of porcine epidemic diarrhea virus in theintestinal tissues from naturally infected pigs, VetPathol, 37, 62–67. Kitching, R.P. and Alexandersen, S.,2002, Clinical variation in foot and mouth diseaese: Pigs,Rev Sci Tech Off Int Epiz, 21 (3), 513–518. Kleiboeker,S.B., Burrage, T.G., Scoles, G.A., Fish, D., and Rock,D.L., 1998, African swine fever virus infection in theargasid host, Ornithodoros porcinus porcinus, J Virol, 72(3), 1711–1724. Koenen, F., 2006, Encephalomyocarditisvirus, in Diseases of Swine, 9th edn, Straw, B.E.,Zimmermann, J.J., D’Allaire, S., and Taylor, D.J. (eds),Blackwell Publishing, Ames, Iowa, 331–336. Kramer, T.,1960, Edema disease of swine. I. Study of haemolyticEscherichia coli strains isolated from cases of edemadisease of swine in western Canada, Can J Comp Med Vet Sci,24, 289–294. Kubuta, S., Sasaki, O., Animoto, K., Okada,N., Kitazima, T., and Yasuhara, H., 1999, Detection ofporcine epidemic diarrhea virus using polymerase chainreaction and comparison of the nucleocapsid protein genesamong strains of the virus, J Vet Med Sci, 61 (7),827–830. Kwon, D., Choi, C., and Chae, C., 2002,Chronological localisation of Mycoplasma hyopneumoniae inexperimentally infected pigs, Vet Pathol, 39, 584–587.Lager, K.M and Mengeling, W.L., 1994, Porcine parvovirusassociated with cutaneous lesions in piglets, J Vet DiagnInvest, 6, 357–359. LaRue, R., Myers, S., Brewer, L.,

Shaw, D.P., Brown, C., Seal, B.S., and Njenga, M.K., 2003,A wild-type porcine encephalomyocarditis virus containing ashort poly(C) tract is pathogenic to mice, pigs, andcynomolgus macaques, J Virol, 77 (17), 9136–9146. LePotier, M.-F., Mesplede, A., and Vannier, P., 2006,Classical swine fever virus and other pestiviruses, inDiseases of Swine, 9th edn, Straw, B.E., Zimmermann, J.J.,D’Allaire, S., and Taylor, D.J. (eds), BlackwellPublishing, Ames, Iowa, 309–322. L’Ecuyer, C., 1966,Exudative epidermitis in pigs. Clinical studies andpreliminary transmission trials, Can J Comp Med Vet Sci,30, 9–16. L’Ecuyer, C and Jericho, K., 1966, Exudativeepidermitis in pigs: Etiological studies an pathology, CanJ Comp Med Vet Sci, 30, 94–101. L’Ecuyer, 1967, Exudativeepidermitis in pigs. Bacteriological studies on thecausative agent, Can J Comp Med Vet Sci, 31, 243–247.

L’Ecuyer, C., 1969, Enzootic pneumonia in pigs: Propagationof a causative mycoplasma in cell cultures and inarti¢cial medium, Can J Comp Med, 33, 10–19.

L’Ecuyer, C and Boulanger, P., 1970, Enzootic pneumonia ofpigs: Identi¢cation of a causative Mycoplasma in infectedpigs and in cultures by immuno�uorescent staining, Can JComp Med, 34, 38–46.

Lindsay, D.S and Blagburn, B.L., 1985, Experimentalcoccidosis (Isospora suis) in a litter of feral swine, JWildl Dis, 21 (3), 309–310.

Lindsay, D.S., Blagburn, B.L., and Boosinger, T.R., 1987,Experimental Eimeria debliecki infections in nursing andweaned pigs, Vet Parasitol, 25 (1), 39–45.

Lindsay, D.S., Dubey, J.P., and Blagburn, B.L.,1997,Biology of isospora spp. from humans, nonhuman primatesand domestic animals, Clin Microbiol Rev, 10 (1), 19–34.

Macleod, D.L., Gyles, C.L., and Wilcock, B.P., 1991,Reproduction of edema disease of swine with puri¢edShiga-Like toxin-II variant, Vet Pathol, 28, 66–73.

MacMillan, A.P., Schleichner, H., Korslund, J., andStoffregen, W., 2006, Brucellosis, in Diseases of Swine,9th edn, Straw. B.E., Zimmermann, J.J., D’Allaire, S., andTaylor, D.J. (eds), Blackwell Publishing, Ames, Iowa, pp.603–611.

Madec, F., Eveno, E., Morvan, P., Hamon, L., Blanchard, P.,Cariolet, R., Amenna, N., Morvan, H., Truong, C., MahĂŠ, D.,

Albina, E., and Jestin, A., 2000, Post-weaningmultisystemic wasting syndrome (PMWS) in pigs in France:Clinical observations from follow-up studies on affectedfarms, Livestock Prod Sci, 63 (3), 223–233.

Madin, S.H and Traum, J., 1955, Vesicular exanthema ofswine, Bacteriol Rev, 19 (1), 6–21.

Mann, J.A and Hutchings, G.H., 1980, Swine vesiculardisease: Pathways of infection, J Hyg, 84, 355–363.

Martineau-Doizé, B., Trépanier, H., and Martineau, G.-P.,1991, Histological changes in the nasal ventral conchae ofpiglets infected with Bordetella bronchiseptica, Can J VetRes, 55, 42–49.

Maurice, H., Nielen, M., Brocchi, E., Nowotny, N., Kassimi,L.B., Billinis, C., Loukaides, P., O’Hara, R.S., andKoenen, F., 2005, The occurrence of encephalomyocarditisvirus (EMCV) in European pigs from 1990 to 2001, EpidemiolInfect, 133 (3), 547–557.

McLendon, B.F., Bron, A.J., and Mitchell, C.J., 1978,Streptococcus suis type II (group R) as a cause ofendophthalmitis, Br J Ophthalmol, 62, 729–731.

Mead, D.G., Gray, E.W., Noblet, R., Murphy, M.D., Howerth,E.W., and Stallknecht, D.E., 2004, Biological transmissionof Vesicular Stomatitis Virus (New Jersey Serotype) bySimulinum vittatum (Diptera: Simuliidae) to domestic swine(Sus scrofa), J Med Entomol, 41 (1), 78–82.

Meng, X.-J., Purcell, R.H., Halbur, P.G., Lehman, J.R.,Webb, D.M., Tsareva, T.S., Haynes, J.S., Thacker, B.J.,and Emerson, S.U., 1997, A novel virus in swine is closelyrelated to the human hepatitis E virus, Proc Natl Acad SciUSA, 94, 9860–9865.

Meng, X.-J., Halbur, P.G., Shapiro, M.S., Govindarajan, S.,Bruna, J.D., Mushahwar, I.K., Purcell, R.H., and Emerson,S.U., 1998, Genetiv and experimental evidence frocrossspecies infection by swine Hepatitis E virus, J Virol,9714–9721. Mengeling, W.L., 1979, Prenatal infectionfollowing maternal exposure to porcine parvovirus oneither the seventh or fourteenth day of gestation, Can JComp Med, 43, 106–109. Mengeling, W.L., Lager, K.M.,Zimmermann, J.J., Samarikermani, N., and Beran, G.W.,1991, A current assesment of the role of porcineparvovirus as a cause of fetal porcine death, J Vet DiagnInvest, 3, 33–35. Messick, J.B., Cooper, S.K., and Huntley,

M., 1999, Development and evaluation of a polymerase chainreaction assay using the 16S rRNA gene for detection ofEperythrozoon suis infection, J Vet Diagn Invest, 11,229–236. Messick, J.B., 2004, Hemotropic mycoplasmas(hemoplasmas): A review and new insights into pathogenicpotential, Vet Clin Pathol, 33 (1), 2–13. Meyer, R.C. andBeamer, P.D., 1973, Bordetella bronchiseptica infectionsin germ-free swine: An experimental pneumonia, Vet Pathol,10, 550–556. Miniats, O.P., Smart, N.L., and Ewert, E.,1991, Vaccination of gnotobiotic primary speci¢cpathogen-free pigs against Haemophilus parasuis, Can J VetRes, 55, 33–36. Mitchell, D. and Corner, A.H., 1958, Anoutbreak of “inclusionbody” rhinitis in pigs, Can J CompMed, 22 (6), 199–202. Moon, H.W. and Bergeland, M.E., 1965,Clostridium perfringens type C enterotoxaemia of thenewborn pig, Can Vet J, 6 (7), 159–161. Moreno-López, J.,Correa-Girón, P., Martinez, A., and Ericsson, A., 1986,Characterization of a paramyxovirus isolated from thebrain of a piglets in Mexico, Arch Virol, 91, 221–231.Morin, M., Magar, R., and Robinson, Y., 1990, Porcine groupC Rotavirus as a cause of neonatal diarrhea in a Quebecswine herd, Can J Vet Res, 54, 385–389. Morita, T.,Fikuda, H., Awakura, T., Shimada, A., Umemura, T., Kazama,S., and Yagihashi, T., 1995, Demonstration of Mycoplasmahyorhinis as a possible primary pathogen for porcineotitis media, Vet Pathol, 32, 101–111. Morita, T., Haruta,K.-I., Shibata-Haruta, A., Kanda, E., Imai, S., and Ike,K., 2007, Lung worms of wild boars in the western regionof Tokyo, Japan, J Vet Med Sci, 69 (4), 417–420. Morrison,R.B., Pijoan, C., Hilley, H.D., and Rapp, V., 1985,Microorganisms associated with pneumonia in slaughterweight swine, Can J Comp Med, 49, 129–137. Mueller, N.J.,Barth, R.N., Yamamoto, S., Kitamura, H., Patience, C.,Yamada, K., Cooper, D.K., Sachs, D.H., Kaur, A., andFishman, J.A., 2002, Activation of Cytomegalovirus inpigto-primate organ xenotransplantation, J Virol, 76 (10),4734–4740. Mueller, N.J., Livingston, C., Knosalla, C.,Barth, R.N., Yamamoto, S., Gollackner, B., Dor, F. J. M.F., Buhler, L., Sachs, D.H., Yamada, K., Cooper, D.K.C.,and Fishman, J.A., 2004, Activation of porcineCytomegalovirus, but not porcine lymphotropic herpesvirus,in pig-to-baboon xenotransplantation, JID, 189, 1628–1633.Neef, N.A., Lysons, R.J., Trott, D.J., Hampson, D.J.,Jones, P.W., and Morgan, J.H., 1994, Pathogenecity ofporcine intestinal spirochetes in gnotobiotic pigs, InfectImmun, 62 (6), 2395–2403. Neimark, H., Johansson, K.E.,Rikihisa, Y., and Tully, J.G., 2001, Proposal to transfersome members of the genera Haemobartonella andEperythrozoon to the genus Mycoplasma with descriptions of“Candidatus Mycoplasma haemofelis,” “Candidatus Mycoplasma

haemomuris,” “Candidatus Mycoplasma haemosuis” and“Candidatus Mycoplasma wenyonii,” Int J Syst EvolMicrobiol, 51, 891–899.

Neimark, H., Johansson, K.E., Rikihisa, Y., and Tully,J.G., 2002, Revision of haemotropic Mycoplasma speciesnames, Int J Syst Evol Microbiol, 52, 683–683.

Nietfeld, J.C. and Leslie-Steen, P., 1993, Interstitialnephritis in pigs with adenovirus infection, J Vet DiagnInvest, 5, 269–273.

Niilo, L., 1988, Clostridium perfringens type Centerotoxemia, Can Vet J, 29, 658–664.

Nordengrahn, A., Svenda, M., Moreno-Lopez, J., Bergvall,A., Hernandes, P., McNeilly, F., Allan, G., and Merza,M., 1999, Development of a blocking ELISA for screeningantibodies to porcine rubulavirus, La Piedad Michoacanvirus, J Vet Diagn Invest, 11 (4), 319–323.

Olieveira, S., Galina, L., and Pijoan, C., 2001,Development of a PCR test to diagnose Haemophilus parasuisinfection, J Vet Diagn Invest, 13, 495–501.

Opriessnig, T., Meng, X.-J., and Halbur, P.G., 2007,Porcine circovirus type 2 associated disease: Update oncurrent terminology, clinical manifestations, pathogenesis,diagnosis and intervention strategies, J Vet Diagn Invest,19, 591–615.

Orr, J.P., Althouse, E., Dulac, G.C., and Durham, P.J.K.,1988, Epizootic infection of a minimal disease swine herdwith a herpesvirus, Can Vet J, 29, 45–50.

Oura, C.A.L., Powell, P.P., Anderson, E., and Parkhouse,R.M.E., 1998, The pathogenesis of African swine fever inthe resistant bushpig, J Gen Virol, 79, 1439–1443.

Pedersen, K.B. and Elling, F., 1984, The pathogenesis ofatrophic rhinitis in pigs induced by toxigenic Pasteurellamultocida, J Comp Pathol, 94 (2), 203–214.

Pensaert, M.B. and Callebaut, P.E., 1974, Characteristicsof a Coronavirus causing vomition and wasting in pigs,Archiv für die gesamte Virusforschung, 44, 35–50.

Pensaert, M.B. and Yeo, S.-G., 2006, Porcine epidemicdiarrhea, in Diseases of Swine, 9th edn., Straw, B.E.,Zimmermann, J.J., D’Allaire, S., and Taylor, D.J. (eds),

Blackwell Publishing, Ames, Iowa, pp. 367–372.

Pijoan, C., 2006, Pneumonic pasteurellosis, in Diseases ofSwine, 9th edn, Straw, B.E., Zimmermann, J.J., D’Allaire,S., and Taylor, D.J. (eds), Blackwell Publishing, Ames,Iowa, pp. 7198–726.

Platt, K.B and Joo, H.S., 2006, Japanese encephalitis andwest nile viruses, in Diseases of Swine, Straw, B.E.,Zimmermann, J.J., D’Allaire, S., and Taylor, D.J. (eds),Blackwell Publishing, Ames, Iowa, pp. 359–365.

Plowright, W., Brown, F., and Parker, J., 1966, Evidencefor the type of nucleic acid in African swine fever virus,Arch Virol, 19 (3), 289–304.

Plowright, W., Perry, C.T., Peirce, M.A., and Parker, J.,1970, Experimental infection of Argasid tick, Ornithodorosmoubata porcinus, with African swine fever virus, Archivfür die gesamte Virusforschung, 31, 33–50.

Poelvoorde, J, 1978, Some characteristics of a laboratoryproduced strain of Oesophagostomum dentatum, VetParasitol, 4 (4), 369–376.

Rapp-Gabrielson, V.J., Oliveira, S.R., and Pijoan, C.,2006, Haemophilus parasuis, in Diseases of Swine, 9th edn,Straw, B.E., Zimmermann, J.J., D’Allaire, S., and Taylor,D.J. (eds), Blackwell Publishing, Ames, Iowa, pp. 681–690.Reams, R.Y., Lawrence, T., Glickman, T., Harrington, D.D.,Thacker, H.L., and Bowersock, T.L., 1994, Streptococcissuis infection in swine: A retrospective study of 256cases. Part II. Clinical signs, gross and microscopiclesions, and coexisting microorganisms, J Vet DiagnInvest, 6, 326–334. Reboli, A.C. and Farrar, W.E., 1989,Erysipelothrix rhusiopathiae: An occupational pathogen,Clin Microbiol Rev, 2 (4), 354–359. Redman, D.R., Bohl,E.H., and Ferguson, L.C., 1974, Porcine parvovirus: Naturaland experimental infections of the porcine fetus andprevalence in mature swine, Infect Immun, 10 (4), 718–723.Ressang, A.A., 1973, Studies on the pathogenesis of hogcholera. I. Demonstration of hog cholera virus subsequentto oral exposure, Zentralblatt fur Veterinärmedizin B, 20(4), 256–271. Richardson, J.A., Morter, R.L., Rebar, A.H.,and Olander, H.J., 1984, Lesions of porcine necrotic earsyndrome, Vet Pathol, 21, 152–157. Robertson, J.F.,Wilson, D., and Smith, W.J., 1990, Atrophic rhinitis: Thein�uence of the aerial environment, Animal Prod, 50,173–182. Robins-Browne, R.M., Tzipori, S., Gonis, G.,Hayes, J., Withes, M., and Prpic, J.K., 1985, The

pathogenesis of Yersinia enetrocolitica infection ingnotobiotic piglets, J Med Microbiol, 19, 297–308.Robinson, Y. and Morin, M., 1982, Porcine neonatalcoccidiosis in Quebec, Can Vet J, 23, 212–216. Rosell, C.,Segalés, J., Ramos-Vara, J.A., Folch, J.M.,RodriguesArriooja, G.M., Duran, C.O., Balasch, M.,Plana-Durán, J., and Domingo, M., 2000, Identi¢cation ofporcine circovirus in tissues of pigs with porcinedermatitis and nephropathy syndrome, Vet Rec, 146 (2),pp-40–43. Rossow, K.D., Bautista, E.M., Goyal, S.M.,Moltor, T.W., Murtaugh, M.P., Morrison, R.B., Ben¢eld,D.A., and Collins, J.E., 1994, Experimental porcinereproductive and respiratory syndrome virus infection inone-, four- and 10-week old pigs, J Vet Diagn Invest, 6,3–12. Rossow, K.D., 1998, Porcine reproductive andrespiratory syndrome, Vet Pathol, 35, 1–20. Royer, R.L.,Nawagitgul, P., Halbur, P.G., and Paul, P.S., 2001,Susceptibillity of porcine circovirus type 2 to commercialand laboratory disinfectants, J Swine Health Prod, 9 (6),281–284. Saeki, H., Fujii, T., Fukumoto, S.-I., Kagota, K.,Taneichi, A., Takeda, S., and Tsukaguchi, M., 1997,Ef¢cacy of doramectin against intestinal nematodes andsarcoptic mange mites in naturally infected swine, J VetMed Sci, 59 (2), 129–132. Saif, L.J. and Sestak, K., 2006,Transmissible gastroenteritis and porcine respiratorycoronavirus, in Diseases of Swine, 9th edn, Straw, B.E.,Zimmermann, J.J., D’Allaire, S., and Taylor, D.J. (eds),Blackwell Publishing, Ames, Iowa, 489–516. Sanford, S.E.,1987, Enteric cryptosporidial infection in pigs: 184 cases(1981–1985), J Am Vet Med Assoc, 190 (6), 695–698. Sanford,S.E., 1992, Arthritis caused by Mycoplasma hyosynoviae ingrower pigs, Can Vet J, 33, 616. Sanford, S.E. and Hoover,D.M., 1983, Enteric adenovirus infection in pigs, Can JComp Med, 47, 396–400.

Sato, H., Tanabe, T., Kuramoto, M., Tanaka, K., Hashimoto,T., and Saito, H., 1991, Isolation of exfoliative toxinfrom Staphylococcus hyicus subsp. Hyicus and itsexfoliative activity in the piglet, Vet Microbiol, 27(3–4), 263–275.

Schiemann, D.A., 1988, The pathogenecity of Yersiniaenterocolitica for piglets, Can J Vet Res, 52, 325–330.

Schlafer, D.H. and Mebus, C.A., 1987, Abortion in sowsexperimentally infected with African swine fever virus:Pathogenesis studies, Am J Vet Res, 48 (2), 246–254.

Seeliger, F.A., Brßgmann, Krßger, L., Greiser-Wilke, I.,Verspohl, J., SegalÊs, and J., Baumgärtner, W., 2007,

Porcine Circovirus type 2-associated cerebellar vasculitisin postweaning multisystemic wasting syndrome(PMWS)-affected pigs, Vet Pathol, 44, pp.621–634.

Sellers. R.F. and Parker, J., 1969, Airborne excretion offoot-andmouth disease, J Hyg, 67 (4), 671–677.

Sellers, R.F. and Daggupaty, S.M., 1990, The epidemic offoot and mouth disease in Saskatchewan, Canada, 1951–1952,Can J Vet Res, 54, 457–464.

Shadduck, J.A., Koestner, A., and Kasza, L., 1967, Thelesions of porcine adenoviral infection in germfree andpathogen-free pigs, Path Vet, 4, 537–552.

Shankar, B.P., Chandan, S., Madhusudan, H.S., and Ranjith,D., 2009, Pathology of erysipelas in piglets, Vet World, 2(6), 243–235.

Shope, R.E., 1931, An experimental study of “mad itch” withespecial reference to its relationship to pseudorabies, JExp Med, 54, 233–248.

Shope, R.E., 1964, Porcine contagious pleuropneumonia. I.Experimental transmission, etiology, and pathology, J ExpMed, 119, 357–368.

Sikes, D., Neher, G.M., and Douyle, L.P., 1956, Thepathology of chronic arthritis following natural andexperimental Erysipelothrix rhusiopathiae infection ofswine, Am J Pathol, 32 (6), 1241–1251.

Smart, N.L., Hurnik, D., and MacInnes, J.I., 1993, Aninvestigation of enzootic Glasser’s disease in aspeci¢c-pathogenfree grower-¢nisher facility usingrestriction endonuclease analysis, Can Vet J, 34, 487–490.

Songer, J.G. and Glock, R., 1998, Enteric infection ofswine with Clostridium perfringens types A and C, SwineHealth Prod, 6 (5), 223–225.

Songer, J.G., Post, K.W., Larson, D.J., Jost, B.H., andGlock, R.D., 2000, Infection of neonatal swine withclostridium dif¢cile, Swine Health Prod, 8 (4), 185–189.

Spyrou, V., Maurice, H., Billinis, C., Papanastassopoulou,M., Psalla, D., Nielen, M., Koenen, F., and Papadopoulos,O., 2004, Transmission and pathogenecity ofencephalomyocarditis virus (EMCV) among rats, Vet Res, 35,113–122.

Stevenson, G.W., Van Alstine, W.G., Kanitz, C.L., andKeffaber, K.K., 1993, Endemic porcine reproductive andrespiratory syndrome virus infection of nursery pigs intwo swine herds without current reproductive failure, J VetDiagn Invest, 5, 432–434.

Stewart, T.B and Hoyt, P.G., 2006, Internal parasites, inDiseases of Swine, 9th. edn, Straw, B.E., Zimmermann,J.J., D’Allaire, S., and Taylor, D.J. (eds), BlackwellPublishing, Ames, Iowa, pp. 901–914.

Stone, W.M. and Simpson, C.F., 1967, Larval distributionand histopathology of experimental strongyloides ransomiinfection in young swine, Can J Comp Med Vet Sci, 31, 202.Stuart, B.P., Gosser, H.S., Allen, C.B., and Bedell, D.M.,1982, Coccidiosis in swine: Dose and age response toIsospora suis, Can J Comp Med, 46, 317–320. Susa, M.,König, M., Saalmuller, A., Reddehase, M.J., and Thiel,H.-J., 1992, Pathogenesis of classical swine fever:B-lymphocyte de¢ciency caused by Hog Cholera virus,J Virol, 66 (2), 1171–1175. Swenson, S.L., Hill, H.T.,Zimmermann, J.J., Evans, L.E., Landgraf, J.G., Wills,R.W., Sanderson, T.P., McGinley, M.J., Brevik, A.K.,Ciszewski, D.K., and Frey, M.L., 1994, Excretion ofporcine reproductive and respiratory syndrome virus insemen after experimentally induced infection in boars, JAm Vet Med Assoc, 204 (12), 1943–1948. Syrjälä. P.,Oksanen, A., Hälli, O., Peltoniemi, O., and Heinonen, M.,2010, Metastrongylus spp. infection in a farmed wild boar(Sus scrofa) in Finland, Acta Vet Scand, 52 (Suppl 1),521–522. Takeuchi, Y., Patience, C., Magre, S., Weiss,R.A., Banerjee, P., le Tissier, P., and Stoye, J.P., 1998,Host range and interference studies of three classes ofpig endogenous retroviruses, J Virol, 72 (12), 9986–9991.Tesh, R.B. and Wallace, G.D., 1978, Observations on thenatural history of encephalomyocarditis virus, Am J TropMed Hyg, 27 (1), 133–143. Thacker, E.L., 2006, Mycoplasmaldiseases, in Diseases of Swine, 9th edn, Straw, B.E.,Zimmerman, J.J., D’Allaire, S., and Taylor, D.J. (eds),Blackwell Publishing, Ames, Iowa, pp. 701–718. Thake,D.C., 1968, Jejunal epitheliumin transmissiblegastroenteritis of swine, Am J Pathol (1), 149–168. Theil,K.W., Saif, L.J., Moorhead, P.D., and Whitmoyer, R.E.,1985, Porcine rotavirus-like virus (Group B rotavirus):Characterization and pathogenecity for gnotobiotic pigs,J Clin Microbiol, 21 (3), 340–345. Thibault, S., Drolet,R., Alain, R., and Deea, S., 1998, Congenital swine pox: Asporadic skin disorder in nursing piglets, Swine HealthProd, 6 (6), 276–278. Todd, D. and McNulty, M.S., 1976,

Characterization of pig rotavirus RNA, J Gen Virol, 33,147–150. Udeze, F.A. and Kadis.S., 1992, Effects ofActinobacillus pleuropneumoniae haemolysin on porcineneutrophil function, Infect Immun, 60 (4), 1558–1567.Udeze, F.A., Latimer, K.S., and Kadis, S., 1987, Role ofHaemophilus pleuropneumoniae lipopolysacchiride endotoxinin the pathogenesis of porcine Haemophilus pleuropneumonia,Am J Vet Res, 48 (5), 768–773. Vahle, J.L., Haynes, J.S.,and Andrews, J.J., 1995, Experimental reproduction ofHaemophilus parasuisinfection in swine: Clinicalbacteriological and morphologic ¢ndings, J Vet DiagnInvest, 7, 476–448. Villeda, C.J., Williams, S.M.,Wilkinson, P.J., and Viñuela, E., 1993, Haemostaticabnormalities in African swine fever—A comparison of twovirus strains of different virulence (Dominician Republic‘78 and Malta ‘78), Arch Virol, 130, 71–83. Wardley, R.C.,de M. Andrade, C., Black, D.N., de Castro Portugal, F.L.,Enjouanes, L., Hess, W.R., Mebus, C., Ordas, A., Rutili,D., Sanchez Vizcaino, J., Vigario, J.D., Wilkinson, P.J.,Moura Nunes, J.F., and Thomson, G., 1983, African swinefever virus, Arch Virol, 76, 73–90.

Waters, E.H., Orr, J.P., Clark, E.G., and Schaufele, C.M.,1998, Typhlocolitis caused by Clostridium dif�cile insuckling piglets, J Vet Diagn Invest, 10, 104–108.

Weinstein, D.L., Jackson, M.P., Samuel, J.E., Holmes, R.K.,and O’Brien, A.D., 1988, Cloning and sequencing of aShigalike toxin type II variant from amn Eschericia colistrain responsible for edema disease of swine, JBacteriol, 170 (9), 4223–4230.

Weingartl, H., Czub, S., Copps, J., Berhane, Y., Middleton,D., Marszal, P., Gren, J., Smith, G., Ganske, S., Manning,L., and Czub, M., 2005, Invasion of the central nervoussystem in a porcine host by Nipah virus, J Virol, 79 (12),7528–7534.

Wesley, R.D., Woods, R.D., Hill, H.T., and Biwer, J.D.,1990, Evidence for a porcine respiratory coronavirus,antigenetically similar to transmissible gastroenteritisvirus, in the United States, J Vet Diagn Invest, 2,312–317.

West, K.H., Bystrom, J.M., Wojnarowicz, C., Shantz, N.,Jacobson, M., Allan, G.M., Haines, D.M., et al., 1999,Myocarditis and abortion associated with intrauterineinfection of sows with porcine circovirus 2, J Vet DiagnInvest, 11, 530–532.

Wilcock, B.P., Armstrong, C.H., and Olander, H.J., 1976,The signi¢cance of the serotype in the clinical andpathological features of naturally occurring porcinesalmonellosis, Can J Comp Med, 40, 80–88.

Wilcock, B.P. and Olander, H.J., 1977, The pathogenesis ofporcine rectal stricture: II. Experimental salmonellosisand ischemic proctitis, Vet Pathol, 14, 43–55.

Williams, T.P.E., Kasorndorkbua, C., Halbur, P.G.,Haqshenas, G., Guenette, D.K., Toth, T.E., and Meng, X.J.,2001, Evidence of extrahepatic sites of replication of theHepatitis E virus in a swine model, J Clin Microbiol, 39(9), 3040–3046.

Wills, R.W., Zimmermann, J.J., and Yoon, K.-J., 1997,Porcine reproductive and respiratory syndrome virus:Routes of excretion, Vet Microbiol, 57 (1), 69–81.

Wilson, R.W. and Carman, P.S., 1991, Abortions andstillbirths associated with generalized cytomegalovirusinfection in a swine herd, Can Vet J, 32, p. 370. Windsor,R.S. and Elliot, S.D., 1975, Streptococcal infection inyoung pigs. IV. An outbreak of streptococcal meningitis inweaned pigs, J Hyg Camb, 75, 69–78. Wittmann, G. and Rziha,H.-J., 1989, Aujeszky’s disease (pseudorabies) in pigs, inHerpesvirus Diseases of Cattle, Horses and Pigs, G.Wittmann (ed.), Kluwer Academic Publishers, Norwell, MA,pp. 230–325. Wong, K.T., Shieh, W.-J., Kumar, S., Norain,K., Abdullah, W., Guarner, J., Goldsmith, C.S., Chua,K.B., Lam, S.K., Tan, C.T., Goh, K.J., Chong, H.T., Jusoh,R., Rollin, P.E., Ksiazek, T.G., Zaki, S.R. and the NipahVirus Pathology Working Group, 2002, Pathology andpathogenesis of an emerging Paramyxal zoonosis, Am JPathol, 161 (6), 2153–2167. Wood, G.W., Hendricks, J.B.,and Goodman, D.E., 1976, Brucellosis in feral swine, JWildl Dis, 12, 579–582. Woode, G.N., Bridger, J., Hall,G.A., Jones, J.M., and Jackson, G., 1976, The isolation ofreovirus-like agents (rotaviruses) from acutegastroenteritis of piglets, J Med Microbiol, 9 (2),203–209. Wright, W.H., 1939, Studies on trichinosis. XI.The epimiology of trichinella spiralis infestation andmeasures indicated for the control of trichinosis, Am JPublic Health, 29, 119–127. Wu, J., Yu, J., Song, C., Sun,S., and Wang, Z., 2006, Porcine eperythrozoonosis inChina, Ann. NY Acad. Sci, 1080, 280–285 Yamada, M.,Nakamura, K., Yoshii, M., Kaku, Y., 2004, Nonsuppurativeencephalitis in piglets after experimental inoculation ofJapanese encephalitis Flavivirus isolated from pigs, VetPathol, 41, 62–67. Yoo, D. and Giulivi, 2000,

Xenotransplantation and the potential risk of xenogeneictransmission of porcine viruses, Can J Vet Res, 64,193–203. Yoon, K.-J. and Edington, N., 2006, Porcinecytomegalovirus, in Diseases of Swine, 9th edn, Straw,B.E., Zimmerman, J.J., D’Allaire, S., and Taylor, D.J.(eds), Blackwell Publishing, Ames, Iowa, pp. 323–330.http://www.oie.int/eng/OIE/en_about.htm?e1d1e

5 Chapter 5: Ethical Issues in the Use ofMinipigs in Animal Research

Hawkins, P. (Editor), D. B. Morton (Chair), O. Burman, N.Dennison, P. Honess, M. Jennings, S. Lane, V. Middleton,J. V. Roughan, S. Wells, and K. Westwood. 2011. A guideto de¢ning and implementing protocols for the welfareassessment of laboratory animals: 11th report of theBVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Re¢nement.Laboratory Animals 45, 1–13. DOI: 10.1258/ la.2010.010031.

Herzog, H. A. 1988. The moral status of mice. Am Psychol43, 473–4.

Hursthouse, R. 2000. Ethics, Humans and Other Animals: AnIntroduction with Readings. Routledge, 11 Fetter New Lane,London EC4P 4EE, 266pp. Paperback (ISBN 0-415-21242-1).

Marshall Hall. 1831.http://en.wikipedia.org/wiki/Marshall-Hall (physiologist).

Midgley, M. 1983. Animals and Why They Matter. Athens,Georgia: University of Georgia Press. ISBN 0-8203-0704-1.158pp.

Morton, D. B. 1998. The importance of non-statisticaldesign in re¢ning animal experimentation. ANZCCART FactsSheet. ANZCCART News 11, No. 2 June 1998 Insert. 12pp.ANZCCART PO Box 19 Glen Osmond, SA5064, Australia. Morton,D.B. 2002. The importance of non-statistical experimentaldesign in re¢ning animal experiments for scientists,IACUCs, and other ethical review panels. In: AppliedEthics in Animal Research: Philosophy, Regulation, andLaboratory Applications. Eds John P. Gluck, T. DiPasquale,F. Barbara Orlans. Publrs Purdue University Press, WestLayfayette, Indiana. ISBN 1-55753-136-4. 149–178pp.Orlans, F. B. 1993. In the Name of Science. New York:Oxford University Press. ISBN 0-19-507043-7, 295pp. Regan,T. 2004. Empty Cages: Facing the Challenge of AnimalRights. Lanham, MD: Rowmand and Little¢eld. ISBN74253352-2. 229pp. Ryder, R. 1998. The Political Animal.The Conquest of Speciesism. London: McFarland and Co. ISBN0-786405309-9. 147pp. Singer, P. 2006. In Defense ofAnimals: The Second Wave. P. Singer (Ed.), Blackwell Pub.Ltd. ISBN 1-4051-1941-1, 248pp. Smith, J. A., and Boyd, K.(Eds.) 1991. Lives in the Balance. The Ethics of UsingAnimals in Biomedical Research. The Report of the WorkingParty of the Institute of Medical Ethics. p. 352. UK:Oxford University Press. ISBN 0-19-854744-7.

6 Chapter 6: Animal Welfare Issues

Academy of Surgical Research, Guidelines for training insurgical research in animals, 1989. J Invest Surg 2:263–8.

Bayne, K. and P. deGreeve. 2003. An overview of globallegislation, regulation and policies on the use of animalsfor scienti¢c research, testing or education. In J. Hau andVan Hoosier Jr (eds), Handbook of Laboratory AnimalScience (2nd Ed.), Boca Raton, FL: CRC Press, pp. 31–50.

Bollen, P. and M. Ritskes-Hoitinga. 2007. The welfare ofpigs and minipigs. In E. Kaliste (ed.), The Welfare ofLaboratory Animals, Vol. 2, New York, NY: SpringerPublishing, pp. 275–89.

Broom, D. M. 1991. Animal welfare: Concepts andmeasurement. J Anim Sci 69(10):4167–75.

Brown, M. J., P. T. Pearson, and F. N. Tomson. 1993.Guidelines for animal surgery in research and teaching. AmJ Vet Res, 9:1544–59.

Candiani, D., G. Salamano et al. 2008. A combination ofbehavioral and physiological indicators for assessing pigwelfare on the farm. J Appl Anim Welf Sci 11(1):1–13.

Casey, B., D. Abney, and E. Skoumbourdis. 2007. A playroomas novel swine enrichment. Lab Anim (NY) 36(3):32–4.

Curtis, S., S. Edwards, and H. Gonyou. 2001. Biology of thedomestic pig. In J. E. Wilson Pond (ed.), Ethology andPsychology. Ithaca, NY: AMM, Cornell University Press,pp. 41–78.

Dawkins, M. S. 2006. A user’s guide to animal welfarescience. Trends Ecol Evol 21(2):77–82.

Ernst, K., M. Tuchscherer et al. 2006. Effects ofattention and rewarded activity on immune parameters andwound healing in pigs. Physiol Behav 89(3):448–56.

Grandin, T. 2000. Comfortable Quarters for Pigs in ResearchInstitutions. From http://www.awionline.org/www.awionline.org/ pubs/cq02/Cq-pigs.html.

Graves, H. 1984. Behaviour and ecology of wild and feralswine (Sus scrofa). J Anim Sci 58:482–92.

Jensen, P. and J. Yngvesson. 1998. Aggression between

unacquainted pigs, sequential assessment and effects offamiliarity and weight. Appl Anim Behav Sci 58(1–2):49–61.Korte, S. M., B. Olivier et al. 2007. A new animal welfareconcept based on allostasis. Physiol Behav 92(3):422–8.Laber, K. and M. M. Swindle. 2006. Laboratory Animals:Ethics and Regulations for Care and Use Encyclopedia ofBiomaterials and Biomedical Engineering (EBBE). W. Bowlin,Marcel Dekker/Taylor & Francis Books. Lipman, N. S. and S.Perkins. 2002. Factors that may in�uence animal research.In L. A. James Fox, F. Loew, and F. Quimby (eds.),Laboratory Animal Medicine, NY: Academic Press. McGlone, J.1994. Animal Behavior. Encyclopedia of Agricul turalSciences. New York, NY: Academic Press, Vol. 1, pp. 41–7.OIE. 2009. Fromhttp://www.oie.int/eng/normes/Mcode/en_titre_ 1.7.htm.Petersen, V. 1994. The development of feeding andinvestigatory behaviour in free-ranging domestic pigsduring their ¢rst 18 weeks of life. Appl Anim Behav Sci42:87–8. Rahman, S. A., L. Walker et al. 2005. Globalperspectives on animal welfare: Asia, the Far East, andOceania. Rev Sci Tech 24(2):597–612. Rich, B. 2000.Informing the Public: Foundation and National Associationfor Biomedical Research Perspective. Bioethics and the Useof Laboratory Animals. AL Kraus, GC Denoit Publishing,Dubuque Iowa, ACLAM. Rushen, J. 1996. Using aversionlearning techniques to assess the mental state, suffering,and welfare of farm animals. J Anim Sci 74(8):1990–5.Swindle, M. M. 2007. Swine in the Laboratory: Surgery,Anesthesia, Imaging and Experimental Techniques, 2nd Ed.,Boca Raton, FL: CRC Press, pp. 1–33. Swindle, M. M. 2008.Perioperative management of swine, ESLAVLAVA Brie¢ngs,11(2):12–16. Swindle, M. M. and A.C. Smith. 2007. Swine inbiomedical research. In P. M. Conn (ed.), Sourcebook ofModels for Biomedical Research. Totowa, NJ: Humana Press,pp. 233–240. Swindle, M. M., A. C. Smith, K. Laber-Laird,and L. Dungan. 1994. Swine in biomedical research:Management and models. ILAR News, 36(1):1–4. Ttsutsumi, H.,N. Morikawa, R. Niki, and A. Tanigawa, 2001.Acclimatization and response of minipigs toward humans.Laboratory Animals 35:236–42. Van Zutphen, L. F. M. and A.V., Deynen. 1993. Principles of Laboratory Animal Science.Amsterdam: Elsevier. Veissier, I. and A. Boissy, 2007.Stress and welfare: Two complementary concepts that areintrinsically related to the animal’s point of view.Physiol Behav 92(3):429–33. Weary, D. M, S. Ross, and D.Frazer, 1997. Vocalizations by isolated piglets: Areliable indicator of piglet need directed towards thesow. Appl Anim Behav Sci 53:249–57. Wiegand, R. M., H. W.Gonyou, and S. E. Curtis, 1994. Pen shape and size:Effects on pig behavior and performance. Appl Anim Behav

Sci 39:49–61. Young, R. J. and J. R. Alistair Lawrence.1994. The effect of a foraging device on the behaviour ofpigs. Appl Anim Behav Sci 39:237–47.

7 Chapter 7: Stress in Experiments :Stress Issues in Porcine Research

Báilie, M.B., Wixson, S.K., Landi, M.S. 1986.Vascular-AccessPort implantation for serial blood samplingin conscious swine. Lab Anim Sci 36:431–433.

Balcombe, J. 2004. Laboratory Routines Cause Animal Stress.Contemporary Topics in Laboratory Animal Science, Autumn.

Becker, B.A., Nienaber, J.A., Christenson, R.K., Manak,R.C., Deshazer, J.A., Hahn, G.L. 1985. PeripheralConcentrations of Cortisol as an Indicator of Stress inthe Pig. AmJ Vet Res 46:1034–1038.

Bradshaw, R.H., Parrott, R.F., Forsling, M.L., Goode, J.A.,Lloyd, D.M., Rodway, R.G., Broom, D.M. 1996. Stress andtravel sickness in pigs: Effects of road transport onplasma concentrations of cortisol, beta-endorphin andlysine vasopressin. Anim Sci 63:507–516.

Breazile, J.E. 1987. Physiological basis and consequencesof distress in animals. JAVMA 191(10):1212–1215.

Breineková, K., Svoboda, M., Smutná, M., Vorlová, L. 2007.Markers of acute stress in pigs. Physiol Res 56(3):323–329.

Carlsson, H.-E., Lyberg, K., Royo, F., Hau, J. 2007.Quanti¢cation of stress sensitive markers in single fecalsamples do not accurately predict excretion of these inthe pig. Res Vet Sci, 82(3):423–428.

Celander, M. 1999. Impact of stress on Animal Toxicology,Ch 7. In: Balm, P.H.M. (ed), Stress Physiology in Animals.Shef¢eld Biological Sciences, Shef¢eld, UK, pp. 246–268.

Chapinal, N., Devant, M., Ruiz-de-la-Torres, J.L., Saco,Y., Bassols, A., Coma, J., Baucells, M., Manteca, X. 2003.Preliminary results comparing physiological markers ofstress in different housing systems for pregnant sows.Proceedings of the 4th European Colloquium on Acute PhaseProteins, Segovia, Spain: 120.

Cronin, G.M., Wiepkema, P.R. 1984. An analysis ofstereotyped behaviour in tethered sows. Ann Rech Vet15:263–270.

Dawkins, M.S. 1990. From an animal’s point of view:motivation, ¢tness and animal welfare. Behav Brain Sci13:1–61.

De Jong, I,C., Prelle, I.T, Burgwal. J.A., Lambooij, E.,Korte, S.M., Blokhuis, H.J. 2000. Effects of environmentalenrichment on behavioural responses to novelty, learning,and memory, and the circadian rhythm in cortisol ingrowing pigs. Physiol Behav 68:571–578.

Desautes, C., Sarrieau, A., Caritez, J.C., Mormede, P.1999. Behavior and pituitary–adrenal function in largewhite and Meishan pigs. Domest Anim Endocrinol 16:193–205.

Dhabhar, F.S., McEwen, B.S. 1997. Acute stress enhanceswhile chronic stress suppresses cell-mediated immunity invivo: A potential role for leukocyte traf¢cking. BrainBehav Immun 11(4):286–306.

Ege, C.A., Parra, N.C., Johnson, T.E. 2006. Noninfectiouscomplications due to vascular access ports (VAPs) inYucatan Minipigs. J the Am Ass for Lab Anim Sci45(6):27–34.

Elenkov, I.J., Chrousos, G.P. 2002. Stress hormones,proin�ammatory and anti-in�ammatory cytokines, andautoimmunity. Ann NY Acad Sci 966:290–303.

Ewbank, R. 1968. The behavior of animals in restraint. In:Fox, M.W. (ed), Abnormal Behavior in Animals. W.B.Saunders Co., Philadelphia, pp. 159–178. Farmer, C.,Dubreuil, P., Couture, Y., Brazeau, P., Petitclerc, D.1991. Hormonal changes following an acute stress in controland somatostatin-immunized pigs. Domest Anim Endocrinol8:527–536. FELASA. 1994. Nevalainen, T., Convenor, H.J.M.Blom, A., Guitanai, P., Hardy, B.R., Howard, P. Vargara.Felasa recommendations for the accreditation of laboratoryanimal science education and training. Federation ofEuropean Laboratory Animal Science Associations. CentralAnimal Facility, University Medical Center, St. Radboud,Nijmegen, The Netherlands, Merel Ritskes-Hoitinga, FELASAPresident, www.felasa.org. Friedman, L., Panepinto, L.,Gaines, D.W., Chi, R., Braunberg, R.C., Terris, J. 1996.Biochemical indices of stress associated with short-termrestraint in Hormel and Yucatan Miniature Swine, Ch 47.In: Tumbleson, M.E., and Shook, L.B. (eds). Advances inSwine in Biomedical Research, New York, NY: Plenum Press,pp. 557–579. Gad, S.C., Dincer, Z., Svendsen, O., andSkaanild, M.T. 2008. The minipig, Ch 10. In: God, S.C.(ed), Animal Models in Toxicology. Informa Healthcare, pp.731–771. Garner, J.P., Meehan, C.P., Mench, J.A. 2003.Stereotypies in caged parrots, schizophrenia and autism:Evidence for a common mechanism. Behav Brain Res

145(1–2):125–134. Goldstein, D.S. 1995. Stress,Catecholamines, and Cardiovascular Disease. New York, NY:Oxford University Press. Gonyou, H.W., Hernsworth, P.H.,Barnett, J.L. Productivity and Behavior of Pigs Subjectedto Different Handling Treatments During the Growth Period.Paper presented at the Canadian Society of Animal Science,Charlottetown, Prince Edward Island, Canada (Abstract),1985. Grandin, T. (ed). Genetics and Behaviour of DomesticAnimals. San Diego, CA: Academic Press, 1998. Grandin, T.Minimizing Stress in Pig Handling in the Research Lab. LabAnimal, Vol 15 No 3 April 1986. Gwenn, S.F.O., Prentice,E.D., Garnett, N.L., Schwindaman, D.F., Wigglesworth, C.Y.1996. Model For Performing Institutional Animal Care andUse Committee: Continuing Review of Animal Research,USDHHS NIH OER, Bethesda, MD, Contemp Top 35(5):53–56.Harvey-Clark, C.J., Gilespie, K., Riggs, K.W. 2000.Transdermal fentanyl compared with parenteral buprenorphinein post-surgical pain in swine: a case study. Lab AnimOct. 34(4):386–398. Hau, J. 2003. Animal models. In: Hau,J., and Van Hoosier, G.L. (eds). Handbook of LaboratoryAnimal Science, 2nd edn. London: CRC press. Haussmann,M.F., Carroll, J.A., Weesner, G.D., Daniels, M.J.,Matteri. R.L., Lay, D.C. Jr. 2000. Administration of ACTHto restrained, pregnant sows alters their pigs’hypothalamic– pituitary–adrenal (HPA) axis. J Anim Sci78:2399–2411. Hawkins, P. 2002. Recognizing and assessingpain, suffering and distress in laboratory animals: Asurvey of current practice in the UK with recommendations.Lab Anim 36(4): 378–395. Hay, M., Orgeur, P., Levy, F., LeDividich, J., Concordet, D., Nowak, R., Schaal, B.,Mormede, P. 2001. Neuroendocrine consequences of veryearly weaning in swine. Physiol Behav 72:263–269. Heim,C., Owens, M.J., Plotsky, P.M., Nemeroff, C.B. 1997. Therole of early adverse life events in the etiology ofdepression and posttraumatic stress disorder. Focus oncorticotropinreleasing factor. Ann N Y Acad Sci821:194–207.

Hemsworth, P.H., Barnett, J.L., Hansen, C. 1981. Thein�uence of handling by humans on the behavior, growth,and corticosteroids in the juvenile female pig. HormBehav15:396–403.

Hemsworth, P.H., Brand, A., Willems, P. 1981. Thebehavioural response of sows to the presence of humanbeings and their productivity. Livestock Prod Sci 8:67–74.

Hemsworth, P.H., Cronin, G.M. 2006. Behavioral problems,In: Straw, B.E., Zimmerman, J.J., Taylor, D.J., D’Allaire.S. (eds), Diseases of swine, Chapter 51. Wiley-Blackwell,

pp. 847–859.

Herskin, M.S., Jensen, K.H. 2000. Effects of differentdegrees of social isolation on the behaviour of weanedpiglets kept for experimental purposes. Anim Welf 9,237–249.

Heyden, R. 2002. Psychoneuropharmacology and Use ofAlternatives. Department of Psychoneuropharmacology,University of Nijmegen, Netherlands. Available from http://

Holton, L.L., Scott, E.M., Nolan, A.N., Ried, J., Welch,E., Flaherty, D. 1998. Comparison of three methods forassessing pain in dogs. J Am Vet Assoc 212:61–66.

Hwang, P.T., McGrath, C.J., Addis, P.B., Rempel, W.E.,Thompson, E.W., Antonik, A. 1978. Blood creatine kinase asa predictor of the porcine stress syndrome. J Anim Sci47:630–633.

Jarvis, S., Moinard, C., Robson, S.K., Baxter, E., Ormandy,E., Douglas, A.J., Seckl, J.R., Russell, J.A., LawrenceA.B. 2006. Programming the offspring of the pig byprenatal social stress: Neuroendocrine activity andbehaviour. Horm Behav 49:68–80.

Jensen, K.H., Pedersen, L.J., Giersing Hagelsø, A.M.,Heller, K.E., Jørgensen, E., Ladewig, J. 1995.Intermittent stress in pigs: Behavioural andpituitary-adrenocortical reactivity. Acta AgriculturaeScand: Section A—Anim Sci 45:276–285.

Johannes, S., Hartinger, J., Hendriksen, C.F., Morton,D.B., Cussler, K. 2003. Humane endpoints in the ef¢cacytesting of swine erysipelas vaccines. ALTEX 20(1):11–15.

Kanitz, E., Tuchscherer, M., Puppe, B., Tuchscherer, A.,Stabenow, B. 2004. Consequences of repeated earlyisolation in domestic piglets (Sus scrofa) on theirbehavioural, neuroendocrine, and immunological responses.Brain Behav Immun 18:35–45.

Koopmans, S.J., Ruis, M., Dekker, R., Diepen, J.T.M. van,Korte. M., Mroz, Z. 2005. Surplus dietary tryptophanreduces plasma cortisol and noradrenaline concentrationsand enhances recovery after social stress in pigs. PhysiolBehav 85(4):469–478.

Kranendonk, G., Hopster, H., Fillerup, M., Ekkel, E.D.,Mulder, E.J., Wiegant, V.M., Taverne, M.A. 2006. Lower

birth weight and attenuated adrenocortical response toACTH in offspring from sows that orally received cortisolduring gestation. Domest Anim EndocrinolMar,30(3):218–238.

Kranendonk, G., Mulder, E.J., Parvizi, N., Taverne, M.A.2008. Prenatal stress in pigs: Experimental approaches and¢eld observations. Exp Clin Endocrinol DiabetesJul,116(7):413–422.

Kuwahara, M., Tsujino, Y., Tsubone, H., Kumagai, E.,Tsutsumi, H., Tanigawa, M. 2004. Effects of pair housingon diurnal rhythms of heart rate and heart ratevariability in miniature swine. Exp Anim Jul,53(4):303–309. Langner, P.H., Benson, G.J. 1986.Morphologic and physiologic indicators of environmentalstress in swine. In: Tumbleson, M.E. (ed). Swine inBiomedical Research. Proceedings of a Conference on Swinein Biomedical Research, Symposium held at University ofMissouri, Columbia, MO, June 17–20, 1985, 3 Vols, PlenumPress, pp. 229–232. LASA. 1990. The assessment and controlof the severity of scienti¢c procedures on laboratoryanimals. Lab Anim 24:97–130. Lanier, E.K., Friend, T.H.,Bushong, D.M., Knabe, D.A., Champney, T.H., Lay, D.G. Jr.1995. Swim habituation as a model for eustress anddistress in the pig. J Anim Sci 73(Suppl. 1):126(Abstract). Laughlin, M.H., Witt, W.M., Whittaker, R.N. Jr.1980. Renal blood �ow in miniature swine during +GZ stressand anti-G suit in�ation. J Appl Physiol 49(3):471–475.Laughlin, M.H. 1982. An analysis of the risk of humancardiac damage during +Gz stress: A review. Aviat SpaceEnviron Med May, 53(5):423–431. Lay, D.C. Jr, Kattesh,H.G., Cunnick, J.E., Daniels, M.J., McMunn, K.A., Toscano,M.J., Roberts, M.P. 2008. Prenatal stress effects on pigdevelopment and response to weaning. J Anim Sci 2008 Jun,86(6):1316–1324. LeDoux, J.E. 1994. Emotion, memory and thebrain. Sci Am 271:50. Lind, N.M., Moustgaard, A., Jelsing,J., Vajtac, G., Cumming, P., Hansen, A.K. 2007. The use ofpigs in neuroscience: Modeling brain disorders. NeurosciBiobehav Rev 31: 728–751. Manteca-Vilanov, X. 2003.Assessment of stress during handling, transport andslaughter. Proceedings of the 4th European Colloquium onAcute Phase Proteins, Segovia, Spain: 39–43. Mason, G.J.,Latham, N.R. 2004. Can’t Stop, won’t stop: Is stereotypy areliable animal welfare indicator? Anim Welfare 13:S57–S69. McEwen, B.S. 2002. Protective and damaging effectsof stress mediators: The good and bad sides of theresponse to stress. Metabolism. Jun, 51(6 Suppl 1):2–4.McGlone, J.J., Nicholson, R.I., Hellman, J.M., Herzog, D.N.1993. The development of pain in young pigs associated

with castration and attempts to prevent castration inducedbehavioral changes. J Anim Sci 71:1441–1446. McGlone,J.J., Salak, J.L., Lumpkin, E.A., Nicholson, R.I., Gibson,M., Norman, R.L. 1993. Shipping stress and social-statuseffects on pig performance, plasma-cortisol,natural-killercell activity, and leukocyte numbers. J AnimSci 71:888–896. Mertsching, H.J., Kelley, K.W. 1983.Restraint Reduces Size of Thymus Gland and PHA SkinSwelling in Pigs. J Anim Sci Suppl 1, 57:175–176. Miller,N.E., Twohill, S. 1993. A method for measuring systolicblood pressure in conscious swine. Lab Anim 12(6):51.Moberg, G.P., Mench, J.A. (eds). The Biology of AnimalStress: Basic Principles and Implications for AnimalWelfare. CABI Publishing, UK, 2000, p. 392. Morton, D.B.,Hau, J. 2003. Welfare assessment and humane endpoints. In:Hau, J., Van Hoosier, G.L. Jr. (eds), CRC Handbook ofLaboratory Animal Science, Vol 1 : Essential Principlesand Practices, 2nd edn. Boca Raton, FL: CRC Press,457–486. Neubert, E., Gurtler, H., Vallentin, G. 1996.Effects of snare restraint on plasma levels ofcatecholamines, cortisol, insulin and metabolic parametersin growing pigs. Berliner und Munchener TierarztlicheWochenschrift 109: 409–413.

Niekamp, S.R., Sutherland, M.A., Dahl, G.E., Salak-Johnson,J.L. 2007. Immune responses of piglets to weaning stress:Impacts of photoperiod. J Anim Sci Jan, 85(1):93–100.

Nielsen, J.P., Petersen, H.H., Pedersen, K.S. 2003. Effectof handling, transport, lairage and slaughter ¢ndings inporcine serum haptoglobin and C-reactive protein.Proceedings of the 4th European Colloquium on Acute PhaseProteins, Segovia, Spain: 125–126.

Niewold, T.A., Gruys, E. 2003. Monitoring health by acutephase proteins. Proceedings of the 4th European Colloquiumon Acute Phase Proteins, Segovia, Spain: 57–67.

NRC/ILAR. Institute for Laboratory Animal Research (ILAR).Recognition and Alleviation of Pain and Distress inLaboratory Animals. National Academies Press, Washington,DC, 1992.

NRC/ILAR. De�nition of Pain and Distress and ReportingRequirements for Laboratory Animals. The NationalAcademies Press, Washington, DC, 2000, p. 119.

NRC/ILAR. Institute for Laboratory Animal Research (ILAR).Guidelines for the Humane Transportation of ResearchAnimals. National Academies Press, Washington, DC, 2006.

NRC/ILAR. Recognition and Allevation of Distress inLaboratory Animals. The National Academies Press,Washington, DC, 2008, p. 14.

O’Brein, P.J., Ball, R.O. 2006. Porcine Stress Syndrome. Ch58. In: Straw, B.E., Zimmerman, J.J., Taylor, D.J.,D’Allaire, S. (eds), Diseases of swine. Wiley-Blackwell,pp. 945–963.

Omelka, R., Vasícek, D., Martiniaková, M., Bulla, J.,Bauerová, M. 2004. Simultaneous detection of malignanthyperthermia and genetic predisposition for improvedlitter size in pigs by multiplex PCR-RFLP. Folia Biol(Krakow). 52(1–2):113–115.

Otten, W., Kanitz, E., Tuchscherer, M., Nurnberg, G. 2001.Effects of prenatal restraint stress onhypothalamic-pituitary-adrenocortical andsympatho-adrenomedullary axis in neonatal pigs. Anim Sci73:279–287.

Panepinto, L.M., Phillips, R.W., Norden, S., Pryor, P.C.,Cox, R. 1983. A comfortable, minimum stress method ofrestraint for Yucatan miniature swine. Lab Anim Sci. Feb,33(1):95–97.

Piñeiro, M., Alava, M.A., Lampreave, F. 2003. Acute phaseproteins in different species: a review. Proceedings of the4th European Colloquium on Acute Phase Proteins, Segovia,Spain: 77–82.

PiĂąeiro, C., Lorenzo, E., Morales, J., Gomez, E., PiĂąeiro,M., Mateos, G.G. 2003. Effect of induced stressors onserum concentration of acute phase proteins andperformance in pigs. Proceedings of the 4th EuropeanColloquium on Acute Phase Proteins, Segovia, Spain: 122.

Piñeiro, M., Piñeiro, C., Carpintero, R., Morales, J.,Campbell, F.M., Eckersall, P.D., Toussaint, M.J.M.Lampreave, F. 2007. Characterisation of the pig acutephase protein response to road transport. Vet Jl173(3):669–674.

Parrott, R.F., Lloyd, D.M. 1995. Restraint, but notfrustration, induces prostaglandin-mediated hyperthermiain pigs. Physiol Behav 57:1051–1055.

Parrott, R.F., Misson, B.H. 1989. Changes in pig salivarycortisol in response to transport simulation, food and

water-deprivation, and mixing. Br Vet J 145:501–505.Perremans, S., Randall, J.M., Allegaert, L., Stiles, M.A.,Rombouts, G., Geers, R. 1998. In�uence of verticalvibration on heart rate of pigs. J Anim Sci 76(2):416–420.Petroianu, G.A., Altmannsberger, S.H., Maleck, W., Jatzko,A., Rüfer, R. 1997. Stress free anesthesia inductionZESTRANI (ZEro STRess ANesthesia Induction) in Göttingenminipigs. An experimental method. Tierarztl Prax Ausg GGrosstiere Nutztiere. Nov, 25(6):587–593. Poletto, R.,Steibel, J.P., Siegford, J.M., Zanella, A.J. 2006. Effectsof early weaning and social isolation on the expression ofglucocorticoid and mineralocorticoid receptor and 11betahydroxysteroid dehydrogenase 1 and 2 mRNAs in thefrontal cortex and hippocampus of piglets. Brain Res1067:36–42. Prentice, E.D., Crouse, D.A., Mann, M.D. 1992.Scienti¢c merit review: The role of the IACUC. ILAR News34(1–2):15–19. Prentice, E.D., Crouse, D.A., Rings, R.W.1990. Approaches to increasing the ethical consistency ofprior review of Animal Research. Invest Radiol25(3):271–274. Prince, J.S. 1977. The Eye and Vision. In:Swenson, M.J. (ed), Dukes Physiology of Domestic Animals.New York, NY: Cornell University Press, pp. 696–712.Prunier, A., Mounier, A.M., Hay, M. 2005. Effects ofcastration, tooth resection, or tail docking on plasmametabolites and stress hormones in young pigs. J Anim Sci83:216–222. Risdahl, J.M., Chao, C., Murtaugh, M.P.,Peterson, P.K., Molitor, T.W. 1992. Acute and chronicmorphine administration in swine. Pharmacol Biochem BehavNov, 43(3):799–806. Ritskes-Hoitinga, M, Jilge, B. 2000.Felasa-Quick reference paper on laboratory animal feedingand nutrition. Available fromhttp://www.felasa.eu/Documents/Nutrition.rtf. Jun 2000/updates Nov 2000, Feb 2001. Ruis, M.A., Te Brake, J.H.,Engel, B., Ekkel, E.D., Buist, W.G., Blokhuis, H.J.,Koolhaas, J.M. The circadian rhythm of salivary cortisol ingrowing pigs: effects of age, gender, and stress. PhysiolBehav 1997 Sep, 62(3):623–630. Russell, W.M.S., Burch, R.L.1959. The Principles of Humane Experimental Technique.London: Methuen & Co. Ltd. [Reissued: 1992, UniversitiesFederation for Animal Welfare, Herts, England.]<http://altweb.jhsph.edu/publications/humane_exp/het-toc.htm>. Salak-Johnson, J.L., McGlone, J.J.2007. Making sense of apparently con�icting data: Stressand immunity in swine and cattle. J Anim Sci Mar, 85(13Suppl):E81–8. Santoro, M.G. 2000. Heat shock factors andthe control of the stress response. Biochem Pharmacol Jan,59(1):55–63. Sapolsky, R.M. 1998. Why Zebras Don’t GetUlcers: A Guide to Stress, Stress-Related Disease, andCoping. W.H. Freeman and Company, New York, Henry Hold &Co., LLC, New York. Schouten, W.G., Wiegant, V.M. 1997.

Individual responses to acute and chronic stress in pigs.Acta Physiol Scand Suppl 640:88–91. Schwerin, M., Kanitz,E., Tuchscherer, M., Brüssow, K.P., Nürnberg, G., Otten,W. 2005. Stress-related gene expression in brain andadrenal gland of porcine fetuses and neonates.Theriogenology. Mar 1, 63(4):1220–1234. Seabrook, M.F.1984. The psychological interaction between the stockmanand his animals and its in�uence on the performance of pigsand dairy cows. Vet Rec 115(4):84–87.

Selye, H. 1975. Stress and distress. Compr Ther 1:9–13.

Sepponen, K., Pösö, A.R. 2006. The inducible form of heatshock protein 70 in the serum, colon and small intestineof the pig: Comparison to conventional stress markers. VetJ May, 171(3):519–524.

Sta�eu, F.R., Rivas, E., Rivas, T., Vorstenbosch. J.,Heeger, F.R., Beynen, A.C. 1992. The use of analogousreasoning for assessing discomfort in laboratory animals.Anim Welf 1:77–84.

Spencer, G.S.G., Hallett, K.S. 1986. Hormone and metabolitechanges with stress in pigs. In: Tumbleson, M.E. (ed),Swine in Biomedical Research. Proceedings of a Conferenceon Swine in Biomedical Research, Symposium, University ofMissouri, Columbia, MO, June 17–20, 1985, 3 Vols., PlenumPress, pp. 159–165.

Sutherland, M.A., Bryer, P.J., Krebs, N., McGlone, J.J.2008. Tail docking in pigs: Acute physiological andbehavioural response. Animal 2:292–297.

Swindle, M. 2003. Swine in the laboratory. Second Edition.2. Anaesthesia, Analgesia, and Perioperative Care. BocaRaton, FL: CRC Press, pp. 35–79.

Tournier, J.N., Mathieu, J., Mailfert, Y., Multon, E.,Drouet, C., Jouan, A., Drouet, E. 2001. Chronic restraintstress induces severe disruption of the T-cell speci¢cresponse to tetanus toxin vaccine. Immunology Jan,102(1):515–523.

Tranquilli, W.J., Thurman, J.C., Grimm, K.A. Lumb & Jones’Veterinary Anesthesia and Analgesia, 2007, Wiley-BlackwellPublishing, p. 315.

Tsutsumi, H., Morikawa, R., Niki, R., Tanigawa, M. 2001.Acclimatization and response of minipigs towards humans.Lab Anim 35:236–242.

Tumbleson, M.E. 1986. (ed). Swine in Biomedical Research.Proceedings of a Conference on Swine in BiomedicalResearch, Symposium held at University of Missouri,Columbia, MO, June 17–20, 3 Vols, Plenum Press.

Tumbleson, M.E., Schook, L.B. 1996. (eds). Advances inSwine in Biomedical Research. Proceedings of anInternational Symposium on Advances in Swine in BiomedicalResearch held at the University of Maryland, UniversityCollege Park, MD, October 22–25, 1995, 2 Vols, PlenumPress.

van der Beek, E.M., Wiegant, V.M., Schouten, W.G., vanEerdenburg, F.J., Loijens, L.W., Plas, C., Benning, M.A.,Vries, H de, de Kloet, E.R., Lucassen, P.J. 2004. Neuronalnumber, volume, and apoptosis of the left dentate gyrus ofchronically stressed pigs correlate negatively with basalsaliva cortisol levels. Hippocampus 14:688–700.

Vellucci, S.V., Parrott, R.F. 2000. Gene expression in theforebrain of dexamethasone-treated pigs: Effects on stressneuropeptides in the hypothalamus and hippocampus andglutamate receptor subunits in the hippocampus. Res Vet Sci69:25–31. Vellucci, S.V., Parrott, R.F. 1995.Prostaglandin-dependent c-fos expression in the medianpreoptic nucleus of pigs subjected torestraint—correlation with hyperthermia. Neurosci Lett198:49–51. Vieville-Thomas, C., Signoret, J.P. 1992.Pheromonal transmission of an aversive experience indomestic pigs. J Chem Endocrinol 18:1551. von Borell, E.,Özpinar, A., Eslinger, K.M., Schnitz, A. L., Zhao, Y.,Mitloehner, F.M. 2007. Acute and prolonged effects ofammonia on hematological variables, stress responses,performance, and behavior of nursery pigs. J Swine HealthProd 15(3):137–145. Walvoort, H. 1991. Assesment ofdistress through pathological examination. In: Hendricke,C.F.M., Koëter, H.B.W.M. (eds), Replacement, Reduction andRe�nement. Amsterdam. Elsevier, p. 265. Weary, D.M.,Braithwaite, L.A., Fraser, D. 1998. Vocal responses topain in piglets. Appl Anim Behav Sci 56:161–172. Weaver,S.A., Aherne, F.X., Meaney, M.J., Schaefer, A.L., Dixon,W.T. 2000. Neonatal handling permanently altershypothalamic–pituitary–adrenal axis function, behaviour,and body weight in boars. J Endocrinol 164:349–359. White,R.G., DeShazer, J.A., Tressler, C.J., Borcher, G.M., Davey,S., Waninge, A., Parkhurst, A.M., Milanuk, M.J., Clemens,E.T. 1995. Vocalization and physiological response of pigsduring castration with or without local anesthetic. J AnimSci 73:381–386. White, S,D. 1990. Naltrexone for the

treatment of acral lick dermatitis in dogs. J Am Vet MedAssoc 196(7):1073–1076. Wrona, D., Trojniar, W., Borman,A., Ciepielewski, Z., Tokarski, J. 2001. Stress-inducedchanges in peripheral natural killer cell cytotoxicity inpigs may not depend on plasma cortisol. Brain Behav ImmunMar, 15(1):54–64. Wurbel, H. 2001. Ideal homes? Housingeffects on rodent brain and behavior. Trends Neurosci24(4):207–211. Yu, H., Bao, E.D., Zhao, R.Q., Lv, Q.X.2007. Effect of transportation stress on heat shock protein70 concentration and mRNA expression in heart and kidneytissues and serum enzyme activities and hormoneconcentrations of pigs. Am J Vet Res 68(11):1145–1150.Zanella, A.J., Brunner, P., Unshelm, J., Mendl, M.T.,Broom, D.M. 1998. The relationship between housing andsocial rank on cortisol, bendorphin and dynorphin (1–13)secretion in sows. Appl Anim Behav Sci 59:1–10. Zubin, J.,Spring, B. 1977. Vulnerability—A new view of schizophrenia.J Abnorm Psychol 86:103–126.

8 Chapter 8: Dosing Methods

Ange, K. D., J. H. Eisemann, R. A. Argenzio, G. M. Almond,and A. T. Blikslager. 2000. Effects of feed physical formand buffering solutes on water disappearance and proximalstomach pH in swine. J. Anim Sci 78:2344–52.

Bailie, M. B., S. K. Wixson, and M. S. Landi. 1986.Vascular access port implantation for serial bloodsampling in conscious swine. Lab Anim Sci 36:431–3.

Bode, G., P. Clausing, F. Gervais et al. 2010. The utilityof the minipig as an animal model in regulatory toxicology.J Pharmacol Toxicol Meth 62:196–220.

Brinck, P. 2000a. Surgical preparation of the minipig. InG. Healing and D. Smith (eds), Handbook of Pre-ClinicalContinuous Intravenous Infusion, pp. 225–32. London:Taylor & Francis.

Brinck, P. 2000b. Multidose infusion toxicity. In G.Healing and D. Smith (eds), Handbook of Pre-ClinicalContinuous Intravenous Infusion, pp. 233–40. London:Taylor & Francis.

Chuang, M. S., M. A. Orvieto, B. A. Laven et al. 2005.Comparison of external catheters with subcutaneousvascular access ports for chronic vascular access in aporcine model. Contemp Top 44:24–7.

Cowart, R. P., J. T. Payne, J. R. Turk, J. W. Tyler, and S.W. Casteel. 1999. Factors optimizing the use of vascularaccess ports in weaned pigs. Contemp Top 38:67–70.

Cox, M. 2010. Training Göttingen minipigs. Using operantconditioning behaviour analysis (“clicker training”) fordermal safety studies. Ellegaard Göttingen MinipigsNewsletter 33:10–13. Diehl, K.-H., R. Hull, D. Mortonet al. 2001. A good practice guide to the administrationof substances and removal of blood, including routes andvolumes. J Appl Toxicol 21:15–23. Dincer, Z., S. Jones, andR. Haworth. 2006. Preclinical safety assessment of a DNAvaccine using particle-mediated epidermal delivery indomestic pig, minipig and mouse. Exper Toxicol Pathol57:351–7. Ege, C., N. C. Parra, and T. E. Johnson. 2006.Noninfectious complications due to vascular access ports(VAPs) in Yucatan minipigs (Sus scrofa domestica). J AmAssoc Lab Anim Sci 45:27–34. Eggleston, T. A., W. P.Roach, M. A. Mitchell, K. Smith, D. Oler, and T. E.Johnson. 2000. Comparison of two porcine (Sus scrofa

domestica) skin models for in vivo near-infrared laserexposure. Comp Med 50:391–7. Fornhem, C., M. Dahlbäck, M.Kumlin, J. M. Lundberg, and K. Alving. 1996. Effects oflocal and systemic budesonide on allergen-induced airwayreactions in the pig. Br J Pharmacol 118:989–97. Gad, S.C., C. D. Cassidy, N. Aubert, B. Spainhour, and H. Robbe.2006. Nonclinical vehicle use in studies by multiple routesin multiple species. Int J Toxicol 25:499–521. Glerup, P.2005. Intravenous access in pigs and minipigs. Posterpresented at the third European Congress of ToxicologicPathology. Copenhagen, Denmark. Glerup, P. 2008. Continuousinfusion in minipigs. The Science Corner. Newsletter No.11, LAB Research. Grand, N. 2004. The Gottingen minipig inbiomedical research— How to work with it? ESLAV technicalarticle, www.eslav.org. Hulet, S. W., D. S. Sommerville, R.B. Crosier et al. 2006. Comparison of low-level sarin andcyclosarin vapor exposure on pupil size of the Gottingenminipig: Effects of exposure concentration and duration.Inhal Toxicol 18:143–53. ICH. 2009. Guidance onnonclinical safety studies for the conduct of humanclinical trials and marketing authorization forpharmaceuticals, M3(R2) Current Step 4 version, June 11,2009. http://www.ich.org/¢leadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/M3_R2/Step4/M3_R2_Guideline.pdf. Karges, H. E., K. A. Funk, and H.Ronneberger. 1994. Activity of coagulation and ¢brinolysisparameters in animals. Arzneimittelforschung 44:793–7.Koch, W., H. Windt, M. Walles, J. Borlak, and P. Clausing.2001. Inhalation studies with the Göttingen minipig. InhalToxicol 13:249–59. Kubaszky, R. 2008. A method developmentstudy for continuous intravenous infusion in Gottingenminipigs. The Science Corner. Newsletter No. 7, LABResearch. Lin, S. Y., S. J. Hou, T. H. Hsu, and F. L. Yeh.1992. Comparison of different animal skins with human skinin drug percutaneous penetration studies. Meth Find ExpClin Pharmacol 14:645–54. Maggiorini, M., C. Mélot, E.Gilbert, F. Vermeulen, and R. Naeije. 1998. Pulmonaryvascular resistance in dogs and minipigs— Effects ofhypoxia and inhaled nitric oxide. Respir Physiol111:213–22. Mahl, J. A., B. E. Vogel, M. Court, M. Kolopp,D. Roman, and V. Nogués. 2006. The minipig indermatotoxicology: Methods and challenges. Exp ToxicolPathol 57:341–5.

Monteiro-Riviere, N. A. and J. Riviere. 1996. The pig as amodel for cutaneous pharmacology and toxicology research.In M. E. Tumbleson, and L. B. Schook (eds), Advances inSwine in Biomedical Research, pp. 425–58.

Mortensen, J. T., P. Brinck, and J. Lichtenberg. 1998. The

minipig in dermal toxicology. A literature review. Scand JLab Anim Sci 25(Suppl. 1):77–83.

Morton, D. B., M. Jennings, A. Buckwell et al. 2001.Re¢ning procedures for the administration of substances.Report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Groupon Re¢nement. Lab Anim 35:1–41.

Ngawhirunpat, T., P. Opanasopit, and S. Prakongpan. 2004.Comparison of skin transport and metabolism of ethylnicotinate in various species. Eur J Biopharm 8:645–51.

Purbrick, S., S. Moore, G. McPhie et al. 2008. Inhalationsafety pharmacology in the minipig. Validation ofprocedures. Poster presented at Minipig Research Forum,Copenhagen, Denmark.

Rankløve, L., M. M. Kaae Thorhauge, C. S. Eriksen, and P.Glerup. 2006. The use of minipigs in the local intranasaltoxicity of fentanyl. Scand. J Lab Anim Sci 33:1–5. Roos,P. H., S. Tschirbs, P. Welge et al. 2002. Induction ofcytochrome P450 1A1 in multiple organs of minipigs afteroral exposure to soils contaminated with polycyclicaromatic hydrocarbons (PAH). Arch Toxicol 76:326–34.Schlesinger, R. B. 1985. Comparative deposition of inhaledaerosols in experimental animals and humans: A review. JToxicol Environ Health 15:197–214. Simon, G. A. and H. I.Maibach. 2000. The pig as an experimental model ofpercutaneous permeation in man: Qualitative andquantitative observations—An overview. Skin Pharmacol ApplSkin Physiol 13:229–34. Swindle, M. M., T. Nolan, A.Jacobson, P. Wolf, M. J. Dalton, and A. C. Smith. 2005.Vascular access port (VAP) usage in large animal species.Contem Top 44:7–17. Windt, H., Kock, H., Runge, F., Hübel,U., and Koch, W. 2010. Particle deposition in the lung ofthe Göttingen minipig. Inhal Toxicol 22:828–34. Yabe, T.,M. Honma, S. Katsuki et al. 1997. Single and repeated dosetoxicity studies of meloxicam by oral administration inminipigs. Pharmacometrics 53:197–212.

9 Chapter 9: In-Life Clinical Observations

Abaigar, T., Holt, W.V., Harrison, R.A.P., and del Barrio,G. 1999. Sperm subpopulations in boar (Sus scrofa) andgazelle (Gazella dama mhorr) semen as revealed by patternanalysis of computer assisted motility assessments. BiolReprod 60:32–41.

Auletta, C.S. 2004. Current in vivo assays for cutaneoustoxicity: Local and systemic toxicity testing. Basic ClinPharmacol Toxicol 95:201–208.

Bastos, R.G., Federizzi, J., Deschamps, J.C., Cardellino,R., and Dellagostin, O.A. 2000. Characterisation of swinestress gene by DNA testing using plucked hair as a sourceof DNA. Genet Mol Biol 23(4):815–817.

Becker, S.T., Rennekampff, H.-O., Alkatout, I. et al.2010. Comparison of vacuum and conventional wounddressings for full thickness skin grafts in the minipigmodel. Int J Oral Maxillofac Surg 39:699–704.

Bode, G., Clausing, P., Gervais, F. et al. 2010. Theutility of the minipig as an animal model in regulatorytoxicology. J Pharmacol Toxicol Methods 62:196–220.

Bollen, P.J.A. 2001. Nutrition of GÜtingen minipigs: Astudy of the in�uence of ad libitum and restricted feedingon the physiology of the GÜtingen minipig. PhD thesis,University of Southern Denmark.

Bollen, P.J.A., Lemmens, A.G., Beynen, A.C., Meyer, O., andRitskes-Hoitinga, J. 2006. Bone composition in male andfemale Göttingen minipigs fed variously restrictedly andnear ad libitum. Scand J Lab Anim Sci 33(3):149–158.

Bollen, P.J.A., Madsen, L.W., Meyer, O., andRitskes-Hoitinga, J. 2005. Growth differences of male andfemale Göttingen minipigs during ad libitum feeding: Apilot study. Lab Anim 39:80–93.

Bollen, P.J.A. 2001. Nutrition of GÜttingen minipigs: Astudy of the in�uence of ad libitum and restricted feedingon the physiology of the GÜttingen minipig. PhD thesis,University of Southern Denmark.

Borah, B., Dufresne, T.E., Cockman, M.D. et al. 2000.Evaluation of changes in trabecular bone architecture andmechanical properties of minipig vertebrae bythree-dimensional magnetic resonance microimaging and

¢nite element modelling. J Bone Mineral Res15(9):1786–1797. Brown, D.C., Boston, R.C., Coyne, J.C.and Farrar, J.T. 2008. Ability of the Canine Brief PainInventory to detect response to treatment in dogs withosteoarthritis. J Am Vet Med Assoc 233(8):1278–1283.Bylski-Austrow, D., Wall, E.J., Glos, D.l., Ballard, E.T.,Montgomery, A., and Crawford, A.H. 2009. Spinalhemiepiphysiodesis decreases the size of vertebral growthplate hypertrophic zone and cells. J Bone Joint Surg Am91:594–593. Carrasco, L., Madsen, L.W., Salguero, F.J.,Núñez, A., SánchezCordón, P., and Bollen, P. 2003. Immunecomplex-associated thrombocytopenic purpura syndrome insexually mature Göttingen minipigs. J Comp Path 128:25–32.Christoffersen, B., Ribel, U., Raun, K., Golozoubova, V.,and Pacini, G. 2009. Evaluation of different methods forassessment of insulin sensitivity in Göttingen minipigs:Introduction of a new, simpler method. Am J Physiol RegulIntegr Comp Physiol 297:R1195–R1201. Cirera, S., Birck,M., Busk, P.K., and Fredholm, M. 2010. Expression pro¢lesof miRNA-122 and its target CAT1 in minipigs (Sus scrofa)fed a high-cholesterol diet. Comp Med 60(no.2):136–141.Del Ry, S., Cabiati, M., Lionetti, V., Emdin, M., Recchia,F.A., and Giannessi, D. 2008. Expression of C-typenatrurietic peptide and of its receptor NPR-B in normaland failing heart. Peptides 29:2208–2215. Done, S. 1995.Diagnosis of central nervous disorders in the pig. InPractice 17:318–327. Dusza, L., Opałka, M., Kamin´ska, B.,Kamin´ski, T., and Ciereszko, R.E. 1996. The relationshipbetween electrical resistance of vaginal mucus and plasmahormonal parameters during periestrus in sows.Theriogenology 45:1491–1503. D’cruz, O.J., Erbeck, D., andUckun, F.M. 2005. A study of the potential of the pig as amodel for the vaginal irritancy of benzalkonium chloridein comparison to the non-irritant microbicide PHI-443 andthe spermicide vanadocene dithiocarbamate. Toxicol Pathol33(4):465–476. Ellegaard, L., Cunningham, A., Edwards, S.et al. 2010. Welfare of the minipig with special referenceto use in regulatory toxicology studies. J PharmacolToxicol Methods 62:167–183. Ferguson, S.A., Opee, N.V.,Paule, M.G., and Howard, P.C. 2009. Female mini-pigperformance of temporal response differentiation,incremental repeated acquisition, and progressive ratiooperant tasks. Behav Processes 80:28–34. Gad, S.C. andGad, S.E. 2003. A functional observational battery for usein canine toxicity studies: Development and validation. IntJ Toxicol 22(6):415–422. Gauvin, D.V. and Baird, T.J.2008. A functional observational battery in non-humanprimates for regulatory-required neurobehaviouralobservations. J Pharmacol Toxicol Methods 58(2):85–93.Glud, A.N., Hedegaard, C., Nielsen, M.S. et al. 2010.

Direct gene transfer in the Göttingen minipig CNS usingstereotaxic lentiviral microinjections. Acta NeurobiolExp (Wars). 70(3):308-315. Golovkin, M., Spitsin, S.,Andrianov, V. et al. 2007. Small subunit vaccine producedin prsxs protection in mice. PNAS 104:6864–6869. Haynes,N.B. 1971. Changes in pig cervical mucus in relation tothe oestrous cycle. J Reprod Fert 27:211–218.

Imai, H., Konno, K., Nakamura, M. et al. 2006. A new modelof focal cerebral ischaemia in the miniature pig. JNeurosurg(2 Suppl. Pediatrics) 104:123–132.

Jackson, P. and Cockroft, P. 2005. Clinical examination ofthe pig. In Practice 27:93–102.

Jackson, P.G.G. and Cockroft, P.D. 2002. ClinicalExamination of Farm Animals. Blackwell Science.

Jankord, R., Ganjam, V.K., Turk, J.R., Hamilton, M.T., andLaughlin, M.H. 2008. Exercise training alters effect ofhighfat feeding on the ACTH stress response in pigs. ApplPhysiol Nutr Metab 33(3):461–469.

Johansen, T., Hansen, H.S., Richelsen, B., and Malmlöf, K.2001. The obese Göttingen minipig as a model of themetabolic syndrome: Dietary effects on obesity, insulinsensitivity and growth hormone pro¢le. Comp Med51(2):150–155.

JØrgenssen, K.D., Kledal, T.S.A., Svendsen, O., andSkakkebæk, N.E. 1998. The GÖttingen minipig as a model forstudying effects on male fertility. Scand J Lab Anim Sci25(1):161–169.

Kornum, B.R. 2009. A pig model for studies of serotonergicmechanisms in memory disorders. PhD Thesis, University ofCopenhagen.

Krohn, T.C., Ellegaard, L., and Hansen, A.K. 2000. Apreliminary study of the impact of stocking density on thebehaviour of group housed Göttingen minipigs. Scand J LabAnim Sci 4(27):203–210.

Kuluz, J., Samdani, A., Benglis, D. et al. 2010. Pediatricspinal cord injury in infant piglets: Description of a newlarge animal model and review of the literature. J SpinalCord Med 33(1):43–57.

Köhn, F., Shari¢, A.R., and Simianer, H. 2007. Modellingthe growth of the Göttingen minipig. J Anim Sci 85:84–92.

Langenskiøld, A., Videman, T., and Nevalainen, T. 1986. Thefate of fat transplants in operations for partial closureof the growth plate: Clinical examples and an experimentalstudy. J Bone Joint Surg 68B(2):234–238.

Lehmann, H. 1998. The minipig in general toxicology. ScandJ Lab Anim Sci Suppl. 1, 25:59–62.

Lind, N.M., Arnfred, S.M., Hemmingsen, R.P., Hansen, A.K.,and Jensen, K.H. 2005. Open ¢eld behaviour and reaction tonovelty in Göttingen minipigs: Effects of amphetamine andhaloperidol. Scand J Lab Anim Sci 32(2):103–112.

Lind, N.M., Moustgaard, A., Jelsing, J., Vajta, G.,Cumming, P., and Hansen, A.K. 2007. The use of pigs inneuroscience: Modelling brain disorders. Neurosci BiobehavRev 31:728–751.

Mai, R., Reinstorf, A., Pilling, E. et al. 2008. Histologicstudy of incorporation and resorption of a bonecement-collagen composite: An in vivo study in the minipig.Oral Surg Oral Med Oral Pathol Oral Radiol Endod105:e9–e14.

Maratea, K.A., Snyder, P.W., and Stevenson, G.W. 2006.Vascular lesions in nine Göttingen minipigs withthrombocytopenic purpura syndrome. Vet Pathol 43:447–454.

Markert, M., Klumpp, A., Trautmann, T., Mayer, K., Stubhan,M., and Guth, B. 2007. The value added by measuringmyocardial contractility ‘in vivo’ in safetypharmacological pro¢ling of drug candidates. J PharmacolToxicol Methods 56:203–211.

Markert, M., Stubhan, M., Mayer, K. et al. 2009. Validationof the normal, freely moving Göttingen minipig forpharmacological safety testing. J Pharmacol Toxicol Methods60:79–87.

Martínez-González, J.M., Cano-Sánchez, J., Campo-Trapero,J., Gonzalo-Lafuente, J.C., Díaz-Regañón, J., andVázquez-Piñeiro, M.T. 2005. Evaluation of minipigs as ananimal model for alveolar distraction. Oral Surg Oral MedOral Pathol Oral Radiol Endod 99:11–16. McGowan, K.M. andCoulombe, P.A. 2000. Keratin 17 expression in the hardepithelial context of the hair and nail, and its relevancefor the pachyonychia congenita phenotype. J InvestDermatol 114:1101–1107. Mikkelsen, M., Møller, A., Jensen,L.H., Pedersen, A., Berg Harajeshi, J., and Pakkenberg, H.

1999. MPTP-induced Parkinsonism in minipigs: Abehavioural, biochemical and histological study.Neurotoxicol Teratol 21(2):169–175. Moreaux, B., Advenier,C., and Gustin, P. 2001. Role of bradykinin andtachykinins in the potentiation by enalapril of coughinginduced by citric acid in pigs. Fundam & Clin Pharmacol16(l):23–29. Morton, D.B. 2000. A systematic approach forestablishing humane endpoints. ILAR Journal Online, Volume41 (2).

Raun, K., von Voss, P., and Knudsen, L.B. 2007.Liraglutide, a oncedaily human glucagon-like peptide-1analog, minimizes food intake in severely obese minipigs.Obesity 15(7):1710–1716.

Rayner, V. and Wenham, G. 1986. Small intestinal motilityand transit by electromyography and radiology in thefasted and fed pig. J Physiol 379:245–256.

Roesner, J.P., Petzelbauer, P., Koch, A. et al. 2009. Adouble blind, single centre, sub-chronic reperfusion trialevaluating FX06 following haemorrhagic shock in pigs.Resuscitation 80:264–271.

Rosendal, F., Pedersen, M., Sangill, R. et al. 2009. MRIprotocol for in vivo visualisation of the Göttingenminipig brain improves targeting in experimentalfunctional neurosurgery. Brain Res Bull 79:41–45.

Ross, J.F., Mattsson, J.L., and Fix, A.S. 1998. Expandedclinical observations in toxicity studies: Historicalperspectives and contemporary issues. Regul ToxicolPharmacol 28:17–26.

Rybnicˇek, J., Lau-Gillard, P.J., Harvey, R., and Hill,P.B. 2008. Further validation of a pruritus severity scalefor use in dogs. Vet Dermatol 20(2):115–122.

Schmidt, H. and Kamp, G. 2004. Induced hyperactivity inboar spermatozoa and its evaluation by computer-assistedsperm analysis. Reproduction 128:171–179.

Schuleri, K.H., Boyle, A.J., Centola, M. et al. 2008. Theadult Göttingen minipig as a model for chronic heartfailure after myocardial infarction: Focus oncardiovascular imaging and regenerative therapies. CompMed 58(6):568–579.

Singer, B.A., Tresser, N.J., Frank, J.A., McFarland, H.F.,and Biddison, W.E. 2000. Induction of experimental

allergic encephalomyelitis in the NIH minipig. JNeuroimmunol 105:7–19.

Skovgaard, K., Mortensen, S., Boye, M. et al. 2009. Rapidand widely disseminated acute phase protein response afterexperimental bacterial infection of pigs. Vet Res40(3):23.

Stokhof, S.J.H., Soede, N.M., and Kemp, B. 1996. Vaginalmucus conductivity as measured by the Walsmeta MKIV doesnot accurately predict the moment of ovulation or theoptimum time for insemination in sows. Anim Reprod Sci41:305–310. Špinka, M., Illmann, G., de Jonge, F.,Andersson, M., Schuurman, T., and Jensen, P. 2000.Dimensions of maternal behaviour characteristics indomestic and wild × domestic crossbred sows. Appl AnimBehav Sci 70:99–114. Straw, B.E., Dewey, C.E., and Wilson,M.R. 2006. Differential diagnosis of disease. In B.E.Straw and D.J. Taylor (eds), Diseases of Swine, ninethEdition. Blackwell Publishing. Szelenyi, I., Herold, H.,and GÖthert, M. 1994. Emesis induced in domestic pigs: anew experimental tool for detection of antiemetic drugs andfor evaluation of emetogenic potential of new anticanceragents. J Pharmacol Toxicol Methods 32:109–116. Toro, H.,van Ginkel, F.W., Tang, D.C., Schemera, B., Rodning, S.,and Newton, J. 2010. Avian in�uenza vaccination in chickensand pigs with replication-competent adenovirus-free humanrecombinant adenovirus 5. Avian Dis 54(1 Suppl.):224–231.Trummer, G., Foerster, K., Buckberg, G.D. et al. 2010.Successful resuscitation after prolonged periods ofcardiac arrest: A new ¢eld in cardiac surgery. J ThoracCardiovasc Surg 139(5):1325–1332. Tsutsumi, H., Katagiri,K., Takeda, S. et al. 2004. Standardised data andrelationship between bone growth and bone metabolism infemale Göttingen minipigs. Exp Anim 53(4):331–337. Vana,G. and Meingassner, J.G. 2000. Morphological andimmunohistochemical features of experimentally inducedallergic contact dermatitis in Göttingen minipigs. VetPathol 37:565–580. Vogel, B.E., Kolopp, M., Singer, T.,and Cordier, A. 1998. Dermal toxicity testing in minipigs:Assessment of skin reactions by non-invasive examinationtechniques. Scand J Anim Sci 25(Suppl. 1):117–120.Weingand, K., Bloom, M.C., Hall, R. et al. 1992. Clinicalpathology testing recommendations for nonclinical toxicityand safety studies. Toxicol Pathol 20(3):539–543.Weingand, K.W., Hartke, G.T., Noordsy T.W., and Ledeboer,D.A. 1989. A minipig model of body adipose tissuedistribution. Int J Obes 13(3):347–355. Wells, G.A.H.1984. Locomotor disorders of the pig. In Practice 6:43–53.SECTION III Pharmacology and ADME Studies in the Minipig

10 Chapter 10: Minipigs in Absorption,Distribution, Metabolism, and Excretion(ADME) Studies

Akimoto, M., Nagahata, N., Furuya, A., Fukushima K.,Higuchi, S., and Suwa, T. Gastric pH pro¢les of beagledogs and their use as an alternative to human testing. EurJ Pharm Biopharm 2000 Mar; 49(2):99–102.

Alvaro, D., Cantafora, A., Attili, A.F., Ginanni-Corradini,D., De Luca, C., Minervini, G., Di Biase, A., andAngelico, M. Relationships between bile salthydrophilicity and phospholipid composition in bile ofvarious animal species. Comp Biochem Physio 1986;83B:551–4.

Amato, G., Grasso, E., Longo, V., and Gervasi, P.G.Oxidation of N,N-dimethylformamide andN,N-deethylformamide by recombinant liver microsomes andhuman recombinant P4540s. Toxicol Lettr 2001; 124:11–19.

Andrew, M. A., Hebert, M. F., and Vicini, P.Physiologically based pharmacokinetic model of midazolamdisposition during pregnancy. Conf Proc IEEE Eng Med BiolSoc 2008; 5454–7.

Anzenbacher, P., Soucek, P., Anzenbacherova, E., Gut, I.,Hruby, K., Svoboda, Z., and Kvetina, J. Presence andactivity of cytochrome P450 isoforms in minipig livermicrosomes. Drug Metab Dispos 1998; 26:56–9.

Aoyagi, N., Ogata, H., Kaniwa, N., Uchiyama, M., Yasuda,Y., and Tanioka, Y. Gastric emptying of tablets andgranules in humans, dogs, pigs, andstomach-emptying-controlled rabbits. J Pharm Sci. 1992 Dec;81(12):l170–4.

Artursson, P. and Karlsson, J. Correlation between oraldrug absorption in humans and apparent drug permeabilitycoef¢cients in human intestinal epithelial (Caco-2) cells.Biochem Biophys Res Commun 1991 Mar 29; 175(3):880–5.Avdeef, A. Absorption and Drug Development. Hoboken, NJ:Wiley/ Interscience, 2003. Behnia, K., Bhatia, S.,Jastromb, N., Balis, U., Sullivan, S., Yarmush, M., andToner, M. Xenobiotica metabolism by cultured primaryporcine hepatocytes. Tissue Engin 2000; 6(5):467–79.Bogaards, J. J. P., Bertrand, M., Jackson, P., Oudshoorn,M. J., Weaver, R. J., van Bladeren, P. J., and Walther, B.Determining the best animal model for human cytochromeP450 activities:A comparison of mouse, rat, rabbit, dog,

micropig, monkey and man. Xenobiotica 2000;30(12):1131–52. Buur, J. L., Baynes, R. E., and Riviere, J.E. Estimating meat withdrawal times in pigs exposed tomelamine contaminated feed using a physiologically basedpharmacokinetic model. Regul Toxicol Pharmacol 2008 Aug;51(3):324–31. Chauret, N., Gauthier, N., Martin, J., andNicoll-Grif¢th, D. A. In vitro comparison of cytochromeP450-mediated metabolic activities in human, dog, cat andhorse. Drug Met Disp 1997; 25:1130–6. Chiou, W. L., Chung,S. M., Wu, T. C., and Ma, C. A comprehensive account onthe role of ef�ux transporters in the gastrointestinalabsorption of 13 commonly used substrate drugs in humans.Int J Clin Pharmacol Ther 2001 Mar; 39(3):93–101. Davies,B. and Morris, T., Physiological parameters in laboratoryanimals and humans, Pharm Res 1993; 10:1093–5. de Lange,J., van Eck, P., Elliott, G. R., de Kort, W. L., andWolthuis, O. L. The isolated blood-perfused pig ear: aninexpensive and animal-saving model for skin penetrationstudies. J Pharmacol Toxicol Methods 1992 Apr; 27(2):71–7.Desille, M., Corcos, L., L’Helgoualc’h, A., Fremond, B.,Campion, J. P., Guillouzo, A., and Clement, B. Detoxifyingactivity in pig livers and hepatocytes intended forxenotherapy. Transplantation 1999; 68(10):1437–43.Drescher, S., Glaeser, H., Mürdter, T., Hitzl, M.,Eichelbaum, M., and Fromm, M. F. P-glycoprotein-mediatedintestinal and biliary transport in humans. Clin PharmacolTher 2003; 73:223–31. Dressman, J. B. and Yamada, K.Animal models for oral drug absorption. In: Welling, P.and Tse, F. L. (eds), Pharmaceutical Bioequivalence,Dekker, New York, 1991, pp. 235–66. Edginton, A. N., Theil,F. P., Schmitt, W., and Willmann, S. Whole bodyphysiologically-based pharmacokinetic models: their use inclinical drug development. Expert Opin Drug Metab Toxicol2008 Sep; 4(9):l143–52. Emi, Y., Tsunashima, D., Ogawara,K., Higaki, K., and Kimura, T. Role of P-glycoprotein as asecretory mechanism in quinidine absorption from rat smallintestine. J Pharm Sci 1998; 87(3):295–9. Fagerholm, U.Prediction of human pharmacokinetics—Biliary andintestinal clearance and enterohepatic circulation. JPharm Pharmacol 2008; 60:535–42. Forbes, P. D. Vascularsupply of the skin and hair in swine. In: Montagna, W. andDobson, R. (eds), Advances in Biology of Skin Vol. 9,Oxford, NY: Pergamon, pp. 419–32. Ghosheh, O. and Hawes, E.M. Microsomal N-glucuronidation of nicotine and cotinine:human hepatic interindividual, human intertissue, andinterspecies hepatic variation. Drug Met Disp 2002;30:1478–83.

Gillberg, M., Skaanild, M. T., and Friis, C. Changes inhepatic cytochrome 2A, 2E, and 3A expression in the

GĂśttingen minipig following castration. J Vet Pharm Ther2003; 26 (suppl): 157.

Glodek, P., Oldigs, B. (eds.), Das GöttingenMiniaturschwein. Berlin: Paul Parey, pp. 32–43 and pp.75–85, 1982.

Gore, A. V., Liang, A. C., and Chien, Y. W. Comparativebiomembrane permeation of tacrine using Yucatan minipigsand domestic pigs as the animal model. J Pharm Sci 1998Apr; 87(4):441–7.

Gray, G. M., White, R. J., and Majer, J. R.

Guengerich, F. P. Comparison of catalytic selectivity ofcytochrome P450 subfamily enzymes from different species.Chemico Biol Interac 1997; 106:161–82.

Gyrd-Hansen, N. Differences in renal Clearances measured inDanish pigs. Act Vet Scand 1970; 11:443–51.

Gyrd-Hansen, N. Renal Clearences in pigs. Act Vet Scand1968; 9:183–98.

Hansen, T., Borlak, J., and Bader, A. Cytochrome P450enzyme activity and protein expression in primary porcineenterocytes and hepatocyte cultures. Xenobiotica 2000;30:27–46.

Heiskanen, T., Heiskanen, T., and Kairemo, K. Developmentof a PBPK model for monoclonal antibodies and simulationof human and mice PBPK of a radiolabeled monoclonalantibody. Curr Pharm Des 2009; 15(9):988–1007.

Henriques, F. C. and Moritz, A. R. Studies of thermalinjury: I. the conduction of heat to and through skin andthe temperatures attained therein. A theoretical and anexperimental investigation. Am J Pathol 1947 Jul;23(4):530–49.

Herkenne, C., Naik, A., Kalia, Y. N., Hadgraft, J., andGuy, R. H. Pig ear skin ex vivo as a model for in vivodermatopharmacokinetic studies in man. Pharm Res 2006 Aug;23(8):1850–6.

Hosagrahara, V. P., Hansen, L. K., and Remmel, R. P.Induction of the metabolism of midazolam by rifampin incultured porcine hepatocytes: Preliminary evidence forCYP3A isoforms in pigs. Drug Met Disp 1999; 27(12):1512–8.

Hossain, M., Abramowitz, W., Watrous, B. J., Szpunar, G.J., and Ayres, J. W. Gastrointestinal transit ofnondisintegrating, nonerodible oral dosage forms in pigs.Pharm Res 1990 Nov; 7(l1):1163–6.

Hunter, J., Hirst, B. H., and Simmons, N. L. Drugabsorption limited by P-glycoprotein-mediated secretorydrug transport in human intestinal epithelial Caco-2 celllayers. Pharm Res 1993 May; 10(5):743–9.

ICRP Publication 89: Basic anatomical and physiologicaldata for use in radiological protection: Reference values,Annals of the ICRP, 2002; 32 (3–4), ISBN 0080442668.

Ikenoue, N., Tagawa, Y., Shimoda, M., and Kokue, E.Non-linear pharmacokinetics of o�oxacin after a singleintravenous bolus dose in pigs. Son DS. J Vet PharmacolTher 2000; 23(5):311–5.

Ilett, K. F., Tee, L. B. G., Reeves, P. T., and Minchin, R.F. Metabolism of drugs and other xenobiotics in the gutlumen and wall. Pharmacol Ther 1990; 46:67–93.

Itagaki, S., Sumi, Y., Shimamoto, S., Itoh, T., Hirano, T.,Takemoto, I., and Iseki, K. Secretory transport ofirinotecan metabolite SN-38 across isolated intestinaltissue. Cancer Chemother Pharmacol 2005; 55(5):502–6. EpubFeb 12, 2005. Jewell, C., Prusakiewicz, J. J., Ackermann,C., Payne, N. A., Fate, G., and Williams, F. M. (2007) Thedistribution of esterases in the skin of the minipig.Toxicol Lett 2007 Sep; 173(2): 118–23. Jewell, C.,Prusakiewicz, J. J., Ackermann, C., Payne, N. A., Fate,G., Voorman, R., and Williams, F. M. (2007a) Hydrolysis ofa series of parabens by skin microsomes and cytosol fromhuman and minipigs and in whole skin in short-term culture.Toxicol Appl Pharmacol 2007 Dec; 225(2):221–8. Jutabha, P.,Kanai, Y., Hosoyamada, M., Chairoungdua, A., Kim, D. K.,Iribe, Y., Babu, E., Kim, J. Y., Anzai, N., Chatsudthipong,V., Endou H. Identi¢cation of a novel voltage-drivenorganic anion transporter present at apical membrane ofrenal proximal tubule. J Biol Chem 2003; 278(30):27930–8.Kararli, T. T. Comparison of the gastrointestinal anatomy,physiology, and biochemistry of humans and commonly usedlaboratory animals. Biopharm Drug Dispos 1995 Jul;16(5):351–80. Klein, C. 1999. Ein�uβ von PTHrP (ParathyroidHormone-related Peptide) in der Milch auf den intestinalenCalciumtransport bei Saugferkeln. PhD-Thesis, UniversityHannover, Germany. Kornum, B. R., Lind, N. M., Gillings,N., Marner, L., Andersen, F., and Knudsen, G. M.Evaluation of the novel 5-HT4 receptor PET ligand

[11C]SB207145 in the GÖttingen minipig. J Cereb Blood FlowMetab 2009 Jan; 29(l):186–96. Lampen, A., Christians, U.,Gonschior, A. K., Bader, A., Hackbarth, I., vonEngelhardt, W., and Sewing, K. F. Metabolism of themacrolide immunosuppressant, tacrolimus, by the pig gutmucosa in the Ussing chamber, Br J Pharmacol 1996;117(8):1730–4. Lampen, A., Zhang, Y., Hackbarth, I., Benet,L. Z., Sewing, K. F., and Christians, U. Metabolism andtransport of the macrolide immunosuppressant sirolimus inthe small intestine, J Pharmacol Exp Ther 1998;285(3):1104–12. Lewis, D. F. V. and Lake B. G. Speciesdifferences in coumarin metabolism: A molecular modelingevaluation of CYP2A interaction. Xenobiotica 2002;32(7):547–61. Lewis, D. F. V. Human cytochrome P450associated with phase 1 metabolism of drugs and otherxenobiotics: a compilation of substrates and inhibitor ofthe CYP1, CYP2 and CYP3 families. Cur Med Chem 2003;10:1955–72. Lin, J. H. Applications and limitations ofinterspecies scaling and in vitro extrapolation inpharmacokinetics. Drug Metab Dispos 1998 Dec;26(12):1202–12. Lin, J. H. Species similarities anddifferences in pharmacokinetics. Drug Metab Dispos 1995;23:1008–21. Liu, Y., Zeng, B. H., Shang, H. T., Cenn, Y.Y., and Wei, H. Bama miniature pigs (Sus scrofa domestica)as a model for drug evaluation for humans: Comparison ofin vitro metabolism and in vivo pharmacokinetics oflovastatin. Comp Med 2008; 58:580–7. Lu, C. and Li, A. P.Species comparison in P450 induction: Effects ofdexamethasone, omeprazole, and rifampicin on P450 isoforms1A and 3A in primary cultured hepatocytes from man,Sprague–Dawley rat, minipig, and beagle dog. Chemico-BiolInterac 2001; 134:271–81. Madan, A., Graham, R. A.,Carroll, K. M., Mudra, D. R., Burton, L. A., Krueger, L.A., Downey, A. D., et al. Effects of prototypicalmicrosomal enzyme inducers on cytochrome P450 expressionin cultured human hepatocytes. Drug Met Disp 2003;31(4):421–31.

Madden, S., Gentile, D., Crawford, G., Simpson, A., andJohnston, A. Cytochrome P450 activities in hepaticmicrosomes from the minipig. ISSX (Int Soc StudyXenobiotics) Proc 1998; 13:75.

Messina, E. S., Tyndale, R. F., and Sellers, E. M. A majorrole for CYP2A6 in nicotine C-oxidation by human livermicrosomes. J Pharmacol Exp Ther 1997; 282(3):1608–14.

Meyer, W. and Neurand, K. The distribution of enzymes inthe skin of the domestic pig. Lab Anim 1976; 10:237–47.

Meyer, W., Neurand, K., and Radke, B. Elastic ¢brearrangement in the skin of the pig. Arch Dermatol Res1981; 270(4):391–401.

Meyer, W., Neurand, K., and Radke, B. Collagen ¢brearrangement in the skin of the pig. J Anat 1982 Jan;134(Pt l):139–48.

Mezzomo, K., Cumming, P., and Minuzzi, L. Comparison of thebinding distribution of agonist and antagonist ligands forhistamine H3 receptors in pig brain by quantitativeautoradiography. Eur J Pharmacol 2007 Jun; 564(l–3):75–9.

MÖeller, H., Geisbe, H., Schmolke, M., and Sewing, K. F.Gastric acid secretion in conscious miniature pigs. NaunynSchmiedebergs Arch Pharmacol 1974; 283(l):83–92.

Monshouwer, M., van’t Klooster, G. A. E., Nijmeijer, S. M.,and Witkamp, R. F., van Miert, A.S.J.P.A.M.Characterization of cytochrome P450 enzymes in primarycultures of pig hepatocytes. Toxicol In vitro 1998;12:715–23.

Monteiro-Riviere, N. A. Ultrastructural evaluation of theporcine integument. In: Tumbleson, M. E. (ed.). Swine inBiomedical Research, Plenum, New York, 1986, pp. 641–55.

Mutch, E., Blain, P. G., and Williams, F. M. The role ofmetabolism in determining susceptibility to parathiontoxicity in man. Toxicol Lettr 1999; 107:177–87.

Myers, M. J., Farrell, D. E., Howard, K. D., and Kawalek,J. C. Identi¢cation of multiple constitutive and induciblehepatic cytochrome P450 enzymes in market weight swine.Drug Metab Disp 2001; 29:908–15.

Nakayama, F. Composition of gallstone and bile: Speciesdifference. J Lab Clin Med 1969; 7:623–30.

Nebbia, C., Dacasto, M., Rossetto Giaccherino, A., GuilianoAlbo, A., and Carletti, M. Comparative expression of livercytochrome P-450 dependent monooxygenases in the horse andin other agricultural and laboratory species. The Vet J2003; 165:53–64.

Niwa, T., Shiraga, T., Hashimoto, T., and Kagayama, A.Effect of ce¢xime and cefdinir, oral cephalosporines, oncytochrome P450 activities in human hepatic microsomes.Biol Pharm Bull 2004; 27(1):97–9.

Oberle, R. L. and Das, H. Variability in gastric pH anddelayed gastric emptying in Yucatan miniature pigs. PharmRes 1994 Apr; l l(4):592–4.

Olsen, A. K., Hansen, K. T., and Friis, C. Pig hepatocytesas an in vitro model to study the regulation of humanCYP3A4: prediction of drug–drug interaction with 17alfa-ethynylestradiol. Chem Biol Interact 1997; 107:93–108.

Pelkonen, O., Rautio, A., Raunio, H., and Pasanen, M.CYP2A6: A human coumarin 7-hydroxylalse. Tocicology 2000;144:139–47.

Peter, G. and Oldigs, B. Das Göttinger Miniaturschwein.Berlin and Hamburg: Paul Parey, 1981. Postlind, H., Axen,E., Bergman, T., and Wikvall, K. Cloning, structure, andexpression of cDNA encoding vitamin D 3 25-hydroxylase.Biochem Biophys Res Com 1997; 241:491–7. Pritchard, J. B.,Miller, D. S. Mechanisms mediating renal secretion oforganic anions and cations. Physiol Rev 1993; 73:765–96.Qvist, M. H., Hoeck, U., Kreilgaard, B., Madsen, F., andFrokjaer S. Evaluation of GÖttingen minipig skin fortransdermal in vitro permeation studies Eur J Pharm Sci2000 Jul; 11 (1):59–68. Rettie, R., Bogucki, B., Lim, I.,and Meier, P. Stereoselective sulfoxidation of a series ofalkyl P-totyl sulphides by microsomal and puri¢ed �avincontaining monooxygenases. Mol Pharmacol 1990; 37:634–51.Riviere, J. E., Bowman, K. F., Monteiro-Riviere, N. A.,Dix, L. P., and Carver, M.P. The isolated perfused porcineskin �ap (IPPSF). I. A novel in vitro model forpercutaneous absorption and cutaneous toxicology studies.Fundam Appl Toxicol 1986; 7:444–53. Roberts, M. S.,Magnusson, B. M., Burczynski, F. J., and Weiss, M.Enterohepatic circulation. Physiological, pharmacokineticand clinical implications. Clin Pharmacokin 2002;41:751–90. Rollins, D. E. Pharmacokinetics and drugexcretion in bile. In: L. Z. Benet, N. Massoud, and J. G.Gambertoglio (eds.), Pharmacokinetic Basis for DrugTreatment, NY: Raven Press. 1984. Rolsted, K., Kissmeyer,A. M., Rist, G. M., and Hansen, S. H. Evaluation ofcytochrome P450 activity in vitro, Using Dermal andHepatic Microsomes from Four Species and Two KeratinocyteCell Lines in Culture. Arch Dermatol Res 2008 Jan;300(1):11–8. Rowland, I. R., Mallett, A. K., Bearne, C. A.,and Farthing, M. J. M. Enzyme activity of the hindgutmicro�ora of laboratory animals and man. Xenbiotica 1986;16:519–23. Rowland, I. R. Reduction by the gut micro�ora ofanimals and man. Biochem Pharmacol 1986; 35:27–32. Sai,Y., Dai, R., Yang, T. J., Krausz, K. W., Gonzales, F. J.,Gelboin, H. V., and Shou, M. Assessment of speci¢city of

eight chemical inhibitors using cDNA-expressed cytochromesP450. Xenobiotica 2000; 30 (4):327–43. Saitoh, H andAungst, B. J. Possible involvement of multipleP-glycoprotein-mediated ef�ux systems in the transport ofverapamil and other organic cations across rat intestine.Pharm Res 1995; 12(9):1304–10. Schmook, F. P., Meingassner,J. G., and Billich, A. Comparison of human skin orepidermis models with human and animal skin in in-vitropercutaneous absorption. J Pharm 2001 Mar; 215(l–2):51–6.Schuhmacher, J., Kohlsdorfer, C., Bühner, K.,Brandenburger, T., and Kruk, R. High-throughputdetermination of the free fraction of drugs strongly boundto plasma proteins. J Pharm Sci 2004; 93(4):816–30.Shimada, T., Yamazaki, H., Mimura, M., and Guengerich, P.Interindividual variations in human liver cytochrome P450enzyme involved in the oxidation of drugs, carcinogens andtoxic chemicals: Studies with microsomes of 30 Japaneseand 30 Caucasians. J Pharm Exp Therap 1994; 270:414–23.Shono, Y., Jantratid, E., Janssen, N., Kesisoglou, F., Mao,Y., Vertzoni, M., Reppas, C., and Dressman, J. B.Prediction of food effects on the absorption of celecoxibbased on biorelevant dissolution testing coupled withphysiologically based pharmacokinetic modeling. Eur JPharm Biopharm 2009 Sep; 73(l):107–14.

Sica, D. A. and Schoolwerth, A. C. Renal handling oforganic anions and cations: Excretion of uric acid. In: B.M. Brenner, (ed.), The Kidney, 6th edn. Philadelphia:Saunders, 2000, pp. 680–700.

Skaanild, M. T. and Friis, C. Cytochrome P450 sexdifferences in minipigs and conventional pigs. Pharmacol &Toxicol 1999; 85:174–80.

Skaanild, M. T. and Friis, C. Expression changes of CYP2Aand CYP3A in microsomes from pig liver and culturedhepatocytes. Pharmacol & Toxicol 2000; 87:174–78.

Skaanild, M. T. and Friis, C. Is bupropion a more speci¢csubstrate for Porcine CYP2E than chlorzoxazone andp-nitrophenol? Basic Clin Pharm Toxol 2007; 101:159–62.

Skaanild, M. T. and Friis, C. Is CYP2D activity present inpig liver microsomes? Pharmacol Toxicol 2002; 91:198–203.

Skaanild, M. T. and Friis, C. Analysis of CYP2C in porcinemicrosomes. Basic Clin Pharm Toxicol 2008a; 103:487–92.

Skaanild, M. T. and Friis, C. Porcine CYP2A polymorphismsand activity. Basic Clin Pharmacol Toxicol 2008b;

103:487–92.

Smith, D. S., Peterson, R. E., and Fujimoto, J. M. Speciesdifferences in the biliary excretion of morphine,morphine-3- glucuronide and morphine-3-ethereal sulfate inthe cat and rat. Biochem Pharmacol 1973 Feb; 22(4):485–92.

Son, D. S., Ikenoue, N., Tagawa, Y., Shimoda, M., andKokue, E. Non-linear pharmacokinetics of o�oxacin after asingle intravenous bolus dose in pigs. J Vet PharmacolTher 2000 Oct; 23(5):311–5. Tannergren, C., Evilevitch,L., Pierzynowski, S., Piedra, J. V., WestrÖm, B.,Erlwanger, K., Tatara, M., and Lennernas, H. The effect ofpancreatic and biliary depletion on the in vivopharmacokinetics of digoxin in pigs. Eur J Pharm Sci 2006Nov; 29(3–4):198–204. Troutman, M. D. and Thakker, D. R.Ef�ux ratio cannot assess P-glycoprotein-mediatedattenuation of absorptive transport: asymmetric effect ofP-glycoprotein on absorptive and secretory transport acrossCaco-2 cell monolayers. Pharm Res 2003 Aug; 20(8):1200–9.Tynes, R. and Hodgson, E. The measurement of FAD-containingoxygenase activity in microsomes containing cytochromeP-450. Xenobiotica 1984; 14:515–20. Weinstein, G. D.Comparison of turnover time and of keratinous proteinfractions in swine and human epidermis. In: Bustad, L. K.,McClellan, R. O., and Burns, M. P. (eds), Swine inBiomedical Research, Richland, WA: Battelle MemorialInstitute, Paci¢c Northwest Laboratory, 1966, pp. 287–97.Winckler, C., Breves, G., Boll, M., and Daniel, H.Characteristics of dipeptide transport in pig jejunum invitro. J Comp Physiol B 1999 Oct; 169(7):495–500. Yaun,R., Madani, S., and Wei, X.-X., Reynolds, K., Huang, S.-M.Evaluation of cytochrome P450 probe substrates commonlyused by the pharmaceutical industry to study in vitrodrug interaction. Drug Met and Disp 2002; 30:1311–19.

11 Chapter 11: The Minipig in SafetyPharmacology

Adam, L., Schneider, D. A., Schertel, E. R., Strong, E. B.,and Green, J. F. 1987. Respiratory re�exes in theanesthetized miniature swine. Respir Physiol 70(3):343–57.

Aguggini, G., Clement, M. G., and Widdicombe, J. G. 1987.Lung re�exes affecting the larynx in the pig, and theeffect of pulmonary embolism. Q J Exp Physiol 72(1):95–104.

Andersen, F., Watanabe, H., Bjarkam, C., Danielsen, E., theDaNeX Study Group and Cumming, P. 2005. Pig brainstereotaxic standard space: mapping of cerebral blood �ownormative values and effect of MPTP-lesioning. Br Res Bull66:17–29.

Andrews, R. J., Knight, R. T., and Kirby, R. P. 1990.Evoked potential mapping of auditory and somatosensorycortices in the miniature swine. Neurosci Lett114(1):27–31.

Arnfred, S. M., Lind, N. M., Hansen, A. K., and Hemmingsen,R. 2004. Pre-pulse inhibition of the acoustic startleeye-blink in the Göttingen minipig. Behav Brain Res151:295–301.

Ast, I., Heydeck, D., Mothes, E., and Christ, B. 2002.Standardised in vitro electrophysiologic measurementsusing isolated perfused porcine hearts—Assessment of QTinterval alterations. Altex 19(1):3–8.

Authier, S., Paquette, D., Gauvin, D., Sammut, V.,Fournier, S., Chaurand, F. et al. 2009.Video-electroencephalography in conscious non humanprimate using radiotelemetry and computerized analysis:Re¢nement of a safety pharmacology model. J PharmacolToxicol Methods 60:88–93.

Benharkate, M., Zanini, V., Blanc, R. et al. 1993.Hemodynamic parameters of anesthetized pigs: A comparativestudy of farm piglets and Göttingen and Yucatan miniatureswine. Lab Anim Sci 43(1):68–72.

Berlinger, R., Becker, M., Eggenberger, E., and Lombard, C.1975. The Göttingen minipig as a laboratory animal. ResExp Med 165(3):251–63.

Bianchi, A. L. and Gestreau, C. 2009. The brainstemrespiratory network: An overview of a half century of

research. Respir Physiol Neurobiol 168:4–12.

Bjarkman, C. R., Nielsen, M. S., Glud, A. N., Rosendal, F.,Mogensen, P., Bender, D. et al. 2008. Neuromodulation in aminipig MPTP model of Parkison disease. Br J Neurosurg22(Suppl. 1):S9–12.

Boillat, C. S., Gaschen, F. P., Gaschen, L., Stout, R. W.,and Hosgood, G. L. 2010. Variability associated withrepeated measurements of gastrointestinal tract motilityin dogs obtained by use of a wireless motility capsulesystem and scintigraphy. Am J Vet Res 71(8):903–8.

Brain, J. D., Molina, R. M., DeCamp, M. M., and Warner, A.E. 1999. Pulmonary intravascular macrophages: Theircontribution to the mononuclear phagocyte system in 13species. Am J Physiol 276 (Lung Cell Mol Physiol20):L146–54.

Brown, D. R. and Terry, J. M. 1996. Swine in physiologicaland pathological research. In M. E. Tumbleson and L. B.Schook (eds.), Advances in Swine in Biomedical Research,Vol 1, pp. 5–6. New York, NY: Plenum Press. Bruley desVarannes, S., Mizrahi, M., and Dubois, A. 1991. Relationbetween postprandial gastric emptying and cutaneouselectrogastrogram in primates. Am J Physiol 261(2 Pt1):G248–55. Buchardi, H., Stokke, T., Hensel, I.,Köstering, H., Rahlf, G., Schlag, G. et al. 1984. Adultrespiratory distress syndrome (ARDS): Experimental modelswith elastase and thrombin infusion in pigs. Adv Exp MedBiol 167:319–33. Charniot, J. C., Bonnefont-Rousselot, D.,Albertini, J-P., Zerhouni, K., Dever, S., Richard, I.et al. 2007. Oxidative stress implication in a new ex-vivocardiac concordant xenotransplantation model. Free RadicRes 41(8):911–18. Chui, R. W., Fosdick, A., Conner, R.,Jiang, J., Bruenner, B. A., and Vargas, H. M. 2009.Assessment of two external telemetry systems (PhysioJacketand JET) in beagle dogs with telemetry implants. JPharmacol Toxicol Methods 60(1):58–68. Cibulskyte, D.,Engber, A. S., Hanefelt Kristensen, D., Ringer Ellingsen,A., Pedersen, M., Hoerlyck, A. et al. 2007. Renal effectsof long-term ciclosporin a treatment in a large animalmodel. Nephron Exp Nephrol 105:e91–7. Cooper, D. K. C., Ye,Y., Rolf, L. L., and Zuhdi, N. 1991. The pig as potentialorgan donor for man. In D. K. C. Cooper, E. Kemp, K.Reemtsam, and D. J. G. White (eds.), Xenotransplantation:The Transplantation of Organs and Tissues between Species,pp. 480–500. Berlin: Springer. Crick, S. J., Sheppard, M.N., Ho, S. Y., Gebstein, L., and Anderson, R. H. 1998.Anatomy of the pig heart: Comparison with normal human

structure. J Anat 193:105–19. Crick, S. J., Sheppard, M.N., Ho, S. Y., and Anderson, R. H. 1999a. Localisation andquanti¢cation of autonomic innervation in the porcineheart I: Conduction system. J Anat 195:341–57. Crick, S.J., Anderson, R. H., Ho, S. Y., and Sheppard, M. N. 1999b.Localisation and quanti¢cation of autonomic innervation inthe porcine heart II: Endocardium, myocardium andepicardium. J Anat 195:341–57. Denac, M., Spörri, H., andBeglinger, R. 1977. The Göttingen minipig as a laboratoryanimal. 4. Communication: Respiration parameters. Res ExpMed (Berl) 170(3):283–8. De Smet, B. J., Van der Zande, J.,Van der Helm, Y. J. et al. 1998. The atheroscleroticYucatan animal model to study the arterial response afterballoon angioplasty: The natural history of remodeling.Cardiovasc Res 39(1):224–32. Dexter, J. D., Tumbleson, M.E., Hutcheson D. P., and Middleton, C. C. 1976. Sinclair(S-1) miniature swine as a model for the study of humanalcoholism. Ann N Y Acad Sci 273:188–93. Douglas, W. R.1972. Of pigs and men and research: A review ofapplications and analogies of the pig, Sus scrofa, in humanmedical research. Space Life Sci 3(3):226–34. Dukes, T. W.and Szabuniewicz, M. 1969. The electrocardiogram ofconventional and miniature swine (Sus scrofa). Can J CompMed 33(2):118–27. Durmuller, N., Lacroix, P., Porsolt, R.D., and Moser, P. 2007. Dog EEG in safety pharmacology. JPharmacol Toxicol Methods 56(2):e24. Eckenfels, A. andSchuler, S. 1988. On the normal electrocardiogram of theconscious minipig. Arzneimittelforschung. 38(2):253–9.

Fang, M., Lorke, D. E., Li, J., Gong, X., Yew, J. C. C.,and Yew, D. T. 2005. Postnatal changes in functionalactivities of the pig’s brain: A combined functionalmagnetic resonance imaging and immunohistochemical study.Neurosignals 14:222–33.

Fornhem, C., Peterson, C. G., Dahlbäck, M., Scheynius, A.,and Alving, K. 1996. Granulocyte function in the airwaysof allergen-challenged pigs effects of inhaled andsystemic budesonide. Clin Exp Allergy 26(12):1436–8.

Friess, S. H., Ichord, R. N., Owens, K., Ralston, J.,Rizol, R., Overall, K. L. et al. 2007. Neurobehavioralfunctional de¢cits following closed head injury in theneonatal pig. Exp Neurol 204(1):234–43.

Friess, S. H., Ichord, R. N., Ralston, J., Ryall, K.,Helfaer, M. A. Smith, C. et al. 2009. Repeated traumaticbrain injury affects composite cognitive function inpiglets. J Neurotrauma 26:1111–21.

Ganderup, N.-C. 2009. The Göttingen minipig incardiovascular safety pharmacology––A consortia projectpreliminary report. J Pharmacol Toxicol Methods 60:213(abstract).

Gauvin, D. V. and Baird, T. J. 2008. A functionalobservational battery in non-human primates forregulatory-required neurobehavioral assessments. JPharmacol Toxicol Methods 58:88–93.

Gintant, G. A., Limberis, J. T., McDermott, J. S., Wegner,C. D., and Cox, B. F. 2001. The canine Purkinje ¢ber: Anin vitro model system for acquired long QT syndrome anddruginduced arrhythmogenesis. J Cardiovasc Pharmacol37(5):607–18.

Gizewski, E. R., Schanze, T., Bolle, I., de Greiff, A.,Forsting, M., and Laube, T. 2007. Visualization of thevisual cortex in minipig using fMRI. Res Vet Sci82(3):281–6.

Grover, R. F., Wagner, W. W., McMutry, I. F., and Reeves,J. T. 1985. Pulmonary circulation. In: Handbook ofPhysiology. Bethesda, MD: Am Physiol Soc, Section 2, Vol.III, pp. 103–36.

Halloy, D. J., Kirschvink, N. A., Vincke, G. L., Hamoir, J.N., Delvaux, F. H., and Gustin, P. G. 2004. Whole bodybarometric plethysmography: A screening method toinvestigate airway reactivity and acute lung injuries infreely moving pigs. Vet J 168:276–84.

Hamburger, S. A., Kopaciewicz, L. J., and Valocik, R. E.1991. A new model of myocardial infarction in Yucatanminipigs. J Pharmacol Methods 25(4):291–301.

Hirt, R. A., Leinker, S., Mosing, M., and Wiederstein, I.2008. Comparison of barometric whole body plethysmographyand its derived parameter enhanced pause (PENH) withconventional respiratory mechanics in healthy Beagle dogs.Vet J 176:232–9.

Ho, S. Y., Thompson, R. P., Gibbs, S. R. et al. 1991.Ventricular septal defects in a family of Yucatanminiature pigs. Int J Cardiol 33(3):419–25.

Hughes, H. C. 1986. Swine in cardiovascular research. LabAnim Sci 36(4):348–50.

Irwin, S. 1962. Drug screening and evaluative procedures.

Sci 136:123–8.

Jacobsson L. 1989. Comparison of experimentalhypercholesterolemia and atherosclerosis in male and femalemini-pigs of the Göttingen strain. Artery 16(2):105–17.

Jelsing, J., Gundersen, H. J., Nielsen, R., Hemmingsen, R.,and Pakkenberg, B. 2006. The postnatal development ofcerebellar Purkinje cells in the Göttingen minipigestimated with a new stereological sampling technique—Thevertical bar fractionator. J Anat 209(3):321–31. Jones, R.D., Stuart, B. P., Greufe, N. P., and Landes, A. M. 1999.Electrophysiology and pathology evaluation of the Yucatanpig as a non-rodent animal model for regulatory andmechanistic toxicology studies. Lab Anim 33:356–65.Kamimura, R., Miura, N., and Suzuki, S. 2003. Thehemodynamic effects of acute myocardial ischemia andreperfusion in Clawn miniature pigs. Exp Anim 52(4):335–8.Kano, M., Toyoshi, T., Iwasaki, S., Kato, M., Shimizu, M.,and Ota, T. 2005. QT PRODACT: Usability of miniature pigsin safety pharmacology studies: Assessment fordrug-induced QT interval prolongation. J Pharmacol Sci99:501–11. Kim, Y. H., Xie, F., Yashima, M., Wu, T. J.,Valderrábano, M., Lee, M. H. et al. 1999. Role ofpapillary muscle in the generation and maintenance ofreentry during ventricular tachycardia and ¢brillation inisolated swine right ventricle. Circulation100(13):1450–9. Koch, H., Tröger, U., and Vollmerhaus, B.1973. Gross anatomy of the lungs of the Göttingenminiature pig. Zentrabl Veterinarmed C 2(2):105–19. Koch,W., Windt, H., Walles, M., and Borlak, J. 2001. Inhalationstudies with the Göttingen minipig. Inhal Tox 13:249–59.Kopácˇová, M., Tachecí, I., Kveˇtina, J., Bures, J., Kunes,M., Spelda, S. et al. 2010. Wireless video capsuleenteroscopy in preclinical studies: Methodical design ofits applicability in experimental pigs. Dig Dis Sci55(3):626–30. Kornum, B. R., Thygesen, K. S., Nielsen, T.R., Knudsen, G. M., and Lind N. M. 2007. The effects ofthe inter-phase interval on the spontaneous objectrecognition test for pigs. Behav Brain Res 181:210–17.Kragh, P. M., Nielsen, A. L., Li, J., Du, Y., Lin, L.,Schmidt, M., Bogh, I. B. et al. 2009. Hemizygous minipigsproduced by random gene insertion and handmade cloningexpress the Alzheimer’s disease-causing dominant mutationAPPsw. Transgenic Res 18(4):545–58. Kuckelt, W.,Dauberschmidt, R., Bender, V., Hieronymi, U., Mrochen, H.,Winsel, K. et al. 1979. Gas exchange, pulmonary mechanicsand haemodynamics in adult respiratory distress syndrome:Experimental results in Lewe miniature pigs. Resuscitation7(1):13–33. Kvetina, J., Varayil, J. E., Ali, S. M., Kunes,

M., Bures, J., Tacheci, I. et al. 2010. Preclinicalelectrogastrography in experimental pigs. InterdiscToxicol 3(2):53–8. Lacroix, D., Extramiana, F., Delfaut,P., Adamantidis, M., Grandmougin, D., Klug, D. et al.1999. Factors affecting epicardial dispersion ofrepolarization: A mapping study in the isolated porcineheart. Cardiovasc Res 41(3):563–74. Larks, S. D., Wescott,R. B., and Larks, G. G. 1971. Electrocardio graphicstudies of miniature swine: Normal values. Lab Anim Sci21(4):553–7. Laursen, M., Olesen, S. P., Grunnet, M., Mow,T., and Jespersen, T. 2011. Characterization of cardiacrepolarization in the Göttingen minipigs. J PharmacolToxicol Methods, 63:186–95. Li, G. R., Du, X. L., Siow, Y.L., O, K., Tse, H. F., and Lau, C. P. 2003.Calcium-activated transient outward chloride current andphase 1 repolarization of swine ventricular actionpotential. Cardiovasc Res 58(1):89–98.

Li, G. R., Sun, H., To, J., Tse, H. F., and Lau, C. P.2004. Demonstration of calcium-activated transient outwardchloride current and delayed recti¢er potassium currents inSwine atrial myocytes. J Mol Cell Cardiol 36(4):495–504.

Lind, N. M., Arnfred, S. M., Hemmingsen, R. P., Hansen, A.K., and Jensen, K. H. 2005. Open ¢eld behaviour andnovelty in Göttingen minipigs: Effects of amphetamine andhaloperidol. Scand Anim Sci 2(32):103–14.

Lind, N. M., Moustgaard, A., Jelsing, J., Vajita, G.,Cumming, P., and Hanson, A. K. 2007. The use of pigs inneuroscience: Modeling brain disorders. Neurosci BiobehavRev 31:728–51.

Lonergan, R. P. III, Ware, J. C., Atkinson, R. L., Winter,W. C., and Suratt, P. M. 1998. Sleep apnea in obeseminiature pigs. J Appl Physiol 84(2):531–6.

Maggiorini, M., Mélot, C., Gilbert, E., Vermeulen, F., andNaeije, R. 1998. Pulmonary vascular resistance in dogs andminipigs— Effects of hypoxia and inhaled nitric oxide. RespPhysiol 111(2):213–22.

Mahl, J. A., Vogel, B. E., Court, M., Kolopp, M., Roman,D., and Nogués, V. 2006. The minipig in dermatotoxicology:Methods and challenges. Exp Toxicol Pathol 57(5–6):341–5.

Markert, M., Stubhan, M., Mayer, K., Trautmann, T., Klumpp,A., Schuler-Metz, A. et al. 2009. Validation of thenormal, freely moving GĂśttingen minipig forpharmacological safety testing. J Pharmacol Toxicol Methods

60(1):79–87.

Masumiya, H., Saito, M., Ito, M., Matsuda, T., Noguchi, K.,IidaTanaka, N. et al. 2004. Lack of actionpotential—Prolonging effect of terfenadine on rabbitmyocardial tissue preparations. Biol Pharm Bull27(1):131–5.

McKenzie, J. E. 1996. Swine as a model in cardiovascularresearch. In: Tumbleson, M. E. and Schook, L. B. (eds.),Advances in Swine in Biomedical Research, pp. 7–18. NewYork: Plenum Press.

McKirnan, M. D., White, F. C., Guth, B. D., Longhurst, J.C., and Bloor, C. M. 1986. Validation of a respiratorymask for measuring gas exchange in exercising swine. J ApplPhysiol 61(3):1226–9.

Milano, S., Blower, P., Romain, D., and Grélot, L. 1995.The piglet as a suitable animal model for studying thedelayed phase of cisplatin-induced emesis. J Pharmacol ExpTher 74(2):951–61.

Milano, S. and Oliveira, M. 1998. Effet d’une lipasegastrique dans un modèle d’insuf¢sance pancréatiqueexocrine chez le miniporc. Gastroentérol Clin Biol 22:A885.

Milano, S., Guesne, G., Chalencon, E., Boucheix, O., Lege,P., Gyselinck, N. et al. 2006. A novel method for chronicmeasurement of respiratory function in the telemeteredanimal. J Pharmacol Toxicol Methods 54(2):238.

Moreaux, B., Nemmar, A., Vincke, G., Halloy, D., Beerens,D., Advenier, C., et al. 2000. Role of substance P andtachykinin receptor antagonists in citric acid-inducedcough in pigs. Eur J Pharmacol 408:305–12.

Moscardo, E., Fasdelli, N., Giarola, A., Tontodonati, M.,and Dorigatti, R. 2009. An optimized neurobehaviouralobservation battery integrated with the assessment ofcardiovascular function in the beagle. J Pharmacol ToxicolMethods 60(2):198–209.

Moss I. R., Scott, S. C., and Inman, J. D. 1993. Mu- vs.delta-opioid in�uence on respiratory and sleep behaviorduring development. Am J Physiol 264(4 Pt 2):R754–60. Moss,I. R., Laferrière, A., and Faltus, R. E. 1995. Prenatalcocaine alters diaphragmatic EMG responses to hypoxia indeveloping swine. Am J Respir Crit Care Med. 152(6 Pt1):1961–6. Moustgaard, A., Arnfred, S. M., Lind, N. M.,

Hansen, A. K., and Hemmingsen, R. 2004. Discriminations,reversals, and extradimensional shifts in the Göttingenminipig. Behav Processes 67:27–37. Murphy, D. J.,Renninger, J. P., and Coatney, R. W. 2001. A novel methodfor chronic measurement of respiratory function in theconscious monkey. J Pharmacol Toxicol Methods 46(1):13–20.Nahas, K., Baneux, P., and Detweiler, D. 2002.Electrocardiographic monitoring in the Göttingen minipig.Comp Med 52(3):258–64. Newton, J. C., Smith, W. M., andIdeker, R. E. 2004. Estimated global transmuraldistribution of activation rate and conduction block duringporcine and canine ventricular ¢brillation. Circ Res94(6):836–42. Nielsen, T. R., Kornum, B. R., Moustgaard,A., Gade, A., Lind, N. M., and Knudsen, G. M. 2009. Anovel spatial delayed nonmatch to sample (DNMS) task in theGöttingen minipig. Behav Brain Res 196:93–8. Oberle, R. L.and Das, H. 1994. Variability in gastric pH and delayedgastric emptying in Yucatan miniature pigs. Pharm Res11:592–4. Ono, K., Shibata, S., and Iijima, T. 2000.Properties of the delayed recti¢er potassium current inporcine sino-atrial node cells. J Physiol (Lond)524:51–62. O’Hagan, K. P., Hora, D. F., and Zambraski, E.J. 1992. Indomethacin attenuates exercise-inducedproteinuria in hypertensive miniature swine. Am J Physiol263(4 Pt 2):R954–61. Ott, M., Fricker, G., and Bauer, B.2009. Pregnane X receptor (PXR) regulates P-glycoproteinat the blood-brain barrier: Functional similaritiesbetween pig and human PXR. J Pharmacol Exp Ther329(1):141–9. Pak, H. N., Kim, Y. H., Lim, H. E., Chou, C.C., Miyauchi, Y., Fang, Y. H. et al. 2006. Role of theposterior papillary muscle and purkinje potentials in themechanism of ventricular ¢brillation in open chest dogsand Swine: Effects of atheter ablation. J CardiovascElectrophysiol 17(7):777–83. Pennington, L. R. 1992. Renaltransplantation in swine. In M. M. Swindle, (ed.), Swineas Models in Biomedical Research, pp. 35–43. Ames, IA:Iowa State University Press. Perrin, M. J., Subbiah, R. N.,Vandenberg, J. I., and Hill, A. P. 2008. Humanether-a-go-go related gene (hERG)K+ channels: Function anddysfunction. Prog Biophys Mol Biol 98(2–3):137–48. Prior,H., McMahon, N., Scho¢eld, J., and Valentin, J. P. 2009.Non-invasive telemetric electrocardiogram assessment inconscious beagle dogs. J Pharmacol Toxicol Methods60(2):167–73. Purohit, D. M., Swindle, M. M., Smith, C. D.,Othersen, H. B. Jr., and Kazanovicz, J. M. 1993. Hanfordminiature swine model for extracorporeal membraneoxygenation. J Invest Surg 6(6):503–8. Reinhardt, W.,Konda, N., MacLeod, N., and Ellendorff, F. 1981.Electrophysiology of olfacto-limbic-hypothalamicconnections in the pig. Exp Brain Res 43(1):1–10.

Renninger, J., Schramek, D., and Murphy, D. 2009.Evaluation of respiratory inductive plethysmography as amethod for measuring ventilatory parameters in conscious,non-restrained dogs. J Pharmacol Toxicol Methods 60:217.

Saito, T., Watanabe, Y., Nemoto, T., Kasuya, E., andSakumoto R. 2005. Radiotelemetry recording ofelectroencephalogram in piglets during rest. Physiol Behav84(5):725–31.

Salazar, I., Sánchez Quinteiro, P., Lombardero, M., Aleman,N., and Fernández de Trocóniz, P. 2004 .The prenatalmaturity of the accessory olfactory bulb in pigs. ChemSenses 29(1):3–11.

Sasaki, K., Nakamura, Y., Lizuka, H., Imaizumi, M., andAtai, H. 2008. Measurement of respiratory function bywhole body plethysmography in unanesthetized andunrestrained monkeys. J Pharmacol Toxicol Methods58(2):173.

Schuleri, K. H., Boyle, A. J., Centola, M., Amado, L. C.,Evers, R., Zimmet, J. M. et al. 2008. The Adult GöttingenMinipig as a model for chronic heart failure aftermyocardial infarction: Focus on cardiovascular imaging andregenerative therapies. Comp Med 58(6):568–79.

Schulz, R., Gres, P., and Heusch, G. 2001. Role ofendogenous opiods in ischemic preconditioning but not inshort-term hibernation in pigs. Am J Physiol Heart CircPhysiol 280(5):H2175–81.

Schulz, R., Belosjorow, S., Gres, P., Jansen, J., Michel,M. C., and Heusch, G. 2002. p38 MAP kinase is a mediatorof ischemic preconditioning in pigs. Cardiovasc Res55(3):690–700.

Scott, S. C., Inman, J. D., Butsch, R. W., and Moss, I. R.1993. Respiratory electromyography estimates ofventilatory function in piglets. Respir Physiol92(1):39–51.

Seaman, D. L., De la Mora Levy, J., Gostout, C. J., Rajan,E., Herman, L., and Knipschield M. 2007. An animaltraining model for endoscopic treatment of Zenker’sdiverticulum. Gastrointest Endosc 65(7):1050–3.

Skarsfeldt, M. A. Pharmacological characterization of theminipig ERG ion channel. 2009. Bachelor Thesis. Faculty of

Science. Denmark: University of Copenhagen,.

Smith, A. C., Spinale, F. G., and Swindle, M. M. 1990.Cardiac function and morphology of Hanford miniature swineand Yucatan miniature and micro swine. Lab Anim Sci 40(1):47–50.

Smith, A. C., Knick, B., Gilette, P. C., and Swindle, M. M.1997. A technique for conducting noninvasive cardiacelectrophysiology studies in conscious swine. J Invest Surg10(1–2):25–9.

Smith, A. C. and Swindle, M. M. 2006. Preparation of swinefor the laboratory. ILAR J 47(4):358–63.

Spence, S., Soper, K., Hoe, C.-M., and Coleman, J. 1998.The heart rate-corrected QT interval of conscious beagledogs: A formula based on analysis of covariance. ToxicolSci 45:247–58.

Stankovicová, T., Szilard, M., De Scheerder, I., andSipido, K. R. 2000. M cells and transmural heterogeneityof action potential con¢guration in myocytes from the leftventricular wall of the pig heart. Cardiovasc Res45(4):952–60.

Stankovicová, T., Bito, V., Heinzel, F., Mubagwa, K., andSipido, K. R. 2003. Isolation and morphology of singlePurkinje cells from the porcine heart. Gen Physiol Biophys22(3):329–40.

Stanley, W. C., Hall, J. L., Hacker, T. A., Hernandez, L.A., and Whitesell, L. F. 1997. Decreased myocardialglucose uptake during ischemia in diabetic swine.Metabolism 46(2): 168–72.

Strauch, J. T., Lauten, A., Zhang, N., Wahlers, T., andGriepp, R. B. 2007. Anatomy of spinal cord blood supply inthe pig. Ann Thorac Surg 83(6):2130–4. Stubhan, M.,Markert, M., Mayer, K., Trautmann, T., Klumpp, A., Henke,J. et al. 2008. Evaluation of cardiovascular and ECGparameters in the normal, freely moving Göttingen minipig.J Pharmacol Toxicol Methods 57:202–11. Suzuki, A.,Tsutsumi, H., Kusakabe, K., Kuwahara, M., Sugano, S., andTanigawa, M. 1998. Establishment of a 24-hourelectrocardiogram recording system using a Holter recorderfor miniature swine. Lab Anim 32(2):165–72. Svendsen, O.2006. The minipig in toxicology. Exp Toxicol Pathol57(5–6):335–9. Swindle, M. M., Thompson, R. P., Carabello,B. A. et al. 1990. Heritable ventricular septal defect in

Yucatan miniature swine. Lab Anim Sci 41(3):293–4.Swindle, M. M. 2007. Cardiovascular cathetherization,electrophysiology, and imaging laboratory procedure. InSwine in the laboratory. Surgery, anesthesia, imaging andexperimental techniques, 2nd edition. Taylor & FrancisGroup. Boca Raton, FL: CRC Press. Talavera, J.,Kirschvink, N., Schuller, S., Le Garrérès, A., Gustin, P.,Detilleux, J. et al. 2006. Evaluation of respiratoryfunction by barometric whole-body plethysmography inhealthy dogs. Vet J 172:67–77. Terndrup, T. E., Paskanik,A. M., Fordyce, W. E., and Kanter, R. K. 1993. Developmentof a piglet model of status epilepticus: preliminaryresults. Ann Emerg Med 22(2):164–70. Terndrup, T. E. Starr,F., and Fordyce, W. E. 1994. A piglet model of statusepilepticus: comparison of cardiorespiratory and metabolicchanges with two methods of pentylenetetrazoladministration. Ann Emerg Med 23(3):470–9. Terrar, D. A.,Wilson, C. M., Graham, S. G., Bryant, S. M., and Heath, B.M. 2007. Comparison of guinea-pig ventricular myocytes anddog Purkinje ¢bres for in vitro assessment of drug-induceddelayed repolarization. J Pharmacol Toxicol Methods56(2):171–85. Tuck, S. A. and Remmers, J. E. 2002a.Mechanical properties of the passive pharynx in Vietnamesepot-bellied pigs. I. Statics. J Appl Physiol92(6):2229–35. Tuck, S. A. and Remmers, J. E. 2002b.Mechanical properties of the passive pharynx in Vietnamesepot-bellied pigs. II. Dynamics. J Appl Physiol92(6):2236–44. Van der Staay, F. J., Pouzet, B., Mahieu,M., Nordquist, R. E., and Schuurman, T. 2009. Thed-amphetamine-treated Göttingen miniature pig: An animalmodel for assessing behavioral effects of antipsychotics.Psychopharmacol 206(4): 715–29. Verbrugghe, C., LaurentP., and Bouverot, P. 1982. Chemore�ex drive of ventilationin the awake miniature pig. Respir Physiol 47(3):379–91.Warren, M. S., Zerangue, N., Woodford, K., Roberts, L. M.,Tate, E. H., Feng, B., et al., 2009. Comparative geneexpression pro¢les of ABC transporters in brainmicrovessel endothelial cells and brain in ¢ve speciesincluding human. Pharmacol Res 59(6):404–13. Epub 2009 Feb24. Watanabe, H., Andersen, F., Simonsen, C. Z., Evans, S.M., Gjedde, A., Cumming, P., and the DaNeX Study Group.2001. MR-based statistical atlas of the Göttingen minipigbrain. Neuroimage 14:1089–96. Weerts, E. M., Fantegrossi,W. E., and Goodwin, A. K. 2007. The value of nonhumanprimates in drug abuse research. Exp Clin Psychopharmacol.15(4):309–27.

Wyrzykowski, Z. 1989. The ultrastructure of capillary wallsand perivascular space of the pineal gland in threerepresentatives of suidae species. Folia Morphol

48(1–4):97–106.

Yan, S., Laferrière, A., Zhang, C., and Moss, I.R. 1995.Microdialyzed adenosine in nucleus tractus solitarii andventilatory response to hypoxia in piglets. J Appl Physiol79(2):405–10. Zehelein, J., Zhang, W., Koenen, M., Graf,M., Heinemann, S. H., and Katus, H. A. 2001. Molecularcloning and expression of cERG, the ether à go-go-relatedgene from canine myocardium. P«ugers Arch 442(2):188–91.Zhang, W., Ying, D. J., and Sun, J. S. 2003. Anatomy ofheart in banna mini-pigs inbred lines. Zhongguo Xiu FuChong Jian Wai Ke Za Zhi. 17:69–72. SECTION IV SafetyAssessment in the Minipig—Principal Body Systems

12 Chapter 12: Dermal Toxicity Studies :Skin Architecture, Metabolism,Penetration and Toxicological andPharmacological Methods

Baron, J.M., D. Holler, R. Schiffer, S. Franekenberg, M.Neis, H.F. Merk, and F.K. Jugert. 2001a. Expression ofmultiple cytochrome P450-dependent enzymes and multidrugresistanceassociated transport proteins in human skinkeratinocytes. J. Invest. Dermatol. 116: 541–548.

Baron, J.M., L.B. Goh, D. Yao, C.R. Wolf, and T. Friedberg.2001b. Modulation of P450 CYP3A4-dependent metabolism byP-glycoprotein: Implications for P450 phenotyping.J. Pharmacol. Exp. Ther. 296: 351–358.

Baron, J.M. and H.F. Merk. 2001. Drug metabolism in theskin. Curr. Opin. Allergy Clin. Immunol. 1: 287–291.

Baron, J.M., T. Wiederholt, R. Heise, H.F. Merk, and D.R.Bickers. 2008. Expression and function of cytochromeP450dependent enzymes in human skin cells. Curr. Med. Chem.15: 2258–2264.

Bartek, M.J., J.A. LaBudde, and H.I. Maibach. 1972. Skinpermeability in vivo: Comparison in rat, rabbit, pig andman. J. Invest. Dermatol. 58: 114–123.

Bauerova, K., D. Matusova, and Z. Kassai. 2001. Chemicalenhancers for transdermal drug transport. Eur. J. DrugMetab. Pharm. 26: 85–94.

Baumann, A., R. Seefeld, I. Werner, B. Seifert, M. Witte,S. Pollex, and A. Grisk. 1989. Biotransformation of B24/76in rat, minipig, dog and man. Pharmazie 44: 215–218.

Bellemere, G., G.N. Stamatas, V. Bruere, C. Beertin, N.Isschar, and T. Oddos. 2009. Antiaging action of retinol:From molecular to clinical. Skin Pharmacol. Physiol. 22:200–209.

Bieber, K., S. Sun, N. Ishii, M. Kasperkiewicz, E. Schmidt,M. Hirose, J. Westermann, X. Yu, D. Zillikens, and R.J.Ludwig. 2009. Animal models for autoimmune bullousdermatoses. Exp. Dermatol. 19: 2–11.

Bollen, P. 2000. Age differences in thickness of theepidermis of miniature and domestic swine. Comp. Med. 50:584–585.

Bolund, L., P.M. Kragh, K. Kristiansen, C.B. Sorensen, J.G.Mikkelson, N.H. Staunstrup, T.K. Petersen and L. Svensson.2010. Pig model for psoriasis. United States Patentapplication number 20100122356.

Borovansky, J., V. Horak, M. Elleder, K. Fortyn, N. Smit,and A. Kolb, 2003. Biochemical characterization of a newmelanoma model—The minipig MeLiM strain. Melanoma Res. 13:543–548.

Bostick, A., D. Stoffregen, and T. Johnson, 2006. Responsesof lightly and highly pigmented porcine skin (Sus scrofadomestica) to single 3.8-µm laser radiation pulses. J. Am.Assoc. Lab. Anim. Sci. 45(3): 33–37.

Brisson, P. 1974. Percutaneous absorption. CMA J. 110:1182–1185.

Bronaugh, R.L., R.F. Stewart, and E.R. Condon. 1982.Methods for in vitro percutaneous absorption studies. II.Animal models for human skin. Toxicol. Appl. Pharmacol.62: 481–488.

Butler, V.J., T. Ebner, and M.W.H. Cougtrie. 2004.Functional characteristics of sulfotransferase enzymes inminipig, human and rat. Drug Metab. Rev. 36 (Suppl. 1):334.

Callaghan, T.M. and K.P. Wilhelm. 2008. A review of ageingand an examination of clinical methods in the assessmentof ageing skin. Part I: Cellular and molecular perspectivesof skin ageing. Int. J. Cosmet. Sci. 30: 313–322. Chen,B., S. Thomsen, R. Thomas, J. Oliver, and A. Welch, 2008.Histological and modelling study of skin thermal injury to2.0 µm laser irradiation. Lasers Surg. Med. 40: 358–370.CPMP. Note for Guidance on photosafety testing (CPMP/SWP/398/01. June 2002). www.ema.europa.eu (accessedNovember 11, 2010). Dame, M.K., D.M. Spahlinger, M.DeSilva, P. Perone, R. Duncan, and J. Varani. 2008.Establishment and characteristics of Gottingen minipigskin in organ culture and monolayer cell culture:Relevance to drug safety testing. In Vitro Cell. Develop.Biol. Anim. 44: 245–252. Dame, M.K., T. Pruchari, M.DeSilva, N. Bhagavathula, W. Ridder, and J. Varani. 2009.The Gottingen minipig for assessment of retinoid ef¢cacyin the skin: Comparison of results from topically treatedanimals with results from organ-cultured skin. In VitroCell. Develop. Biol. Anim. 45: 551–557. Dao, H. and R.A.Kazin. 2007. Gender differences in skin: A review of theliterature. Gend. Med. 4: 308–328. DEREK for Windows:

www.lhasalimited.org/derek (accessed November 11, 2010).Dincer, Z., S. Jones, and R. Haworth. 2006. Preclinicalsafety assessment of a DNA vaccine using particle-mediatedepidermal delivery in domestic pig, minipig and mouse. Exp.Toxicol. Pathol. 57: 351–357. Dressler, W.E. and T.Appelqvist. 2006. Plasma/blood pharmacokinetics andmetabolism after dermal exposure to para-aminophenol orpara-phenylenediamine. Food Chem. Toxicol. 44: 371–379.Eggleston, T., W. Roach, M. Mitchell, K. Smith, D. Oler,and T. Johnson. 2000. Comparison of two porcine (Susscrofa domestica) skin models for in vivo near-infraredlaser exposure. Comp. Med. 50(4): 391–397. Egidy, G., S.Julé, P. Bossé, F. Bernex, C. Geffrotin, S.VincentNaulleau, V. Horak, X. Sastre-Garau, and J.J.Panthier. 2008. Transcription analysis in the MeLiM swinemodel identi¢es RACK1 as a potential marker of malignancyfor human melanocytic proliferation. Mol. Cancer 7: 34–45.El-Maghraby, G.M., A.C. Williams, and B.W. Barry. 2004.Interactions of surfactants (edge activators) and skinpenetration enhancers with liposomes. Int. J. Pharm. 276:143–161. FDA. Guidance for Industry: Photosafety testing.May 2003. www. fda.gov/cder (accessed November 11, 2010).Forbes, P.D., F. Urbach, and R.E. Davies, 1977.Phototoxicity testing of fragrance raw materials. FoodCosmet. Toxicol. 15 (1): 55–60. Fujii, M., S. Yamanouchi,N. Hori, N. Iwanaga, N. Kawaguchi, and M. Matsumoto. 1997.Evaluation of Yucatan micropig skin for use as an in vitromodel for skin permeation study. Biol. Pharm. Bull. 20:249–254. Fujimori, K., A. Takahashi, H. Numata, and A.Takanaka. 1986. Drug metabolism enzyme system of Gottingenminiature pig. In Swine in Biomedical Research, M.E.Tumbelson (ed.), pp. 533–543. Plenum Press, New York, NY.Gattu, S. and H.I. Maibach. 2010a. Enhanced absorptionthrough damaged skin: An overview of the in vitro humanmodel. Skin Pharmacol. Physiol. 23: 171–176. Gattu, S. andH.I. Maibach. 2010b. Modest but increased penetrationthrough damaged skin: An overview of the in vitro humanmodel. Skin Pharmacol. Physiol. 24: 2–9.

Gschwind, H.P., F. Waldmeier, M. Zollinger, A. Schweitzer,and M. Grassberger. 2008. Pimecrolimus: Skin depositionafter topical administration in minipigs in vivo and inhuman skin in vitro. Eur. J. Pharm. Sci. 33: 9–19.

Hadgraft, J. and R. Guy. 2004. Biotechnological aspects oftransport across human skin. In Biotechnology and GeneticEngineering Reviews, S.E. Harding and M.P. Tombs (eds),Vol. 21, pp. 183–193. Intercept, Ltd., UK.

Hadgraft, J. and C. Valenta. 2000. pH, pK a and dermal

delivery. Int. J. Pharm. 200: 243–247.

ICH guideline M3(R2): Guidance on Non-Clinical SafetyStudies for the Conduct of Human Clinical Trials andMarketing Authorization for Pharmaceuticals, June 11,2009. www.ich. org. (website accessed November 11, 2010).

Ishiwatari, S., T. Suzuki, T. Hitomi, T. Yoshino, S.Matsukuma, and T. Tsuji. 2007. Effects of methyl parabenon skin keratinocytes. J. Appl. Toxicol. 27: 1–9.

Jacobs, A.C., P.C. Brown, C. Chen, A. Ellis, J. Farrelly,and R. Osterberg. 2004. CDER photosafety guidance forindustry. Toxicol. Pathol. 32 (Suppl. 2): 17–18.

Jewell, C., J.J. Prusakiewicz, C. Ackermann, N.A. Payne, G.Fate, R. Voorman, and F.M. Williams. 2007a. Hydrolysis ofa series of parabens by skin microsomes and cytosol fromhuman and minipigs and in whole skin in short-term culture.Toxicol. Appl. Pharmacol. 225: 221–228.

Jewell, C., C. Ackermann, N.A. Payne, G. Fate, R. Voorman,and F.M. Williams. 2007b. Speci¢city of procaine and esterhydrolysis by human, minipig, and rat skin and liver. DrugMetab. Dispos. 35: 2015–2022.

Jewell, C., J.J. Prusakiewicz, C. Ackermann, N.A. Payne, G.Fate, and F.M. Williams. 2007c. The distribution ofesterases in the skin of the minipig. Toxicol. Lett. 173:118–123.

Kahn, M.A. 1984. Minipig: Advantages and disadvantages as amodel in toxicity testing. J. Am. Coll. Toxicol. 3:337–342.

Kanikkannan, N., S. Burton, R. Patel, T. Jackson, M.S.Shaik, and M. Singh. 2001. Percutaneous permeation andskin irritation of JP-8 + 100 jet fuel in a porcine model.Toxicol. Lett. (Shannon), 119(2): 133–142.

Karan, A., A. Alikhan, and H.I. Maibach. 2009. Toxicologicimplications of cutaneous barriers: A molecular, cellularand anatomical overview. J. Appl. Toxicol. 29: 551–559.

Kawakubo, Y., H.F. Merk, T.A. Massaoudi, S. Sieben, and B.Blomeke. 2000. N-Acetylation of para-phenylenediamine inhuman skin and keratinocytes. J. Pharmacol. Exp. Ther.292: 150–155.

Kim, D. et al. 2006. Dermal absorption of jet fuel

components in humans. Toxicol. Lett. 165: 11–21.

Kimber, I., D.A. Basketter, K. Berthold, M. Butler, J.L.Garrigue, L. Lea, C. Newsome, R. Roggeband, W. Steiling,G. Stropp, S. Waterman, and C. Wiemann. 2001. Skinsensitization testing in potency and risk assessment.Toxicol. Sci. 59(2): 198–208.

Korting, H.C. and M. Schaefer-Korting. 2010. Carriers inthe topical treatment of skin disease. Handbook Exp.Pharmacol. 197: 435–468.

Kurihara-Bergstrom, T., M. Woodworth, S. Feisullin, and P.Beall. 1986. Characterization of the Yucatan miniature pigskin and small intestine for pharmaceutical application.Lab. Anim. Sci. 36: 396–399.

Kushner, J. 4th, D. Blankschtein, and R. Langer. 2007.Evaluation of the porosity, the tortuosity and thehindrance factor for the transdermal delivery ofhydrophilic permeants in the context of the aqueous porepathway hypothesis using dual-radiolabeled permeabilityexperiments. J. Pharm. Sci. 96: 3263–3282. Lavker, R.M.,G. Dong, P. Zheng and G.F. Murphy. 1991. Hairless micropigskin: A novel model for studies of cutaneous biology. Am.J. Pathol. 138: 687–697. Lawson, C., H. Leigh, L. Brown, J.Liu, and G.F. Bouchard. 2008. Cutaneous phototoxicity inwhite Hanford and variably pigmented Yucatan miniatureswine (abstract). Int. J. Toxicol. 28(1): 64–65. Leong,P.L. 2008. Aging changes in the male face. Facial Plast.Surg. Clin. North Am. 16: 277–279. Lin, S-Y. S-J. Hou,T.H.-S. Hsu, and F-L. Yeh. 1992. Comparison of differentanimal skins with human skin in drug percutaneouspenetration studies. Method Find. Exp. Clin. Pharmacol.14: 645–654. Lynch, A.M. and Wilcox, P. 2011. Review of theperformance of the 3T3 NRU in vitro phototoxicity assay inthe pharmaceutical industry. Exp. Toxicol. Pathol. 63:209–214. Mahl, J.A., B.E. Vogel, M. Court, M. Kolopp, D.Roman, and V. Nogues. 2006. The minipig indermatotoxicology: Methods and challenges. Exp. Toxicol.Pathol. 57: 341–345. McAnulty, P.A. 1999. The value of theminipig in toxicity and other studies supporting thedevelopment of new pharmaceuticals. Europ. Pharmaceut.Contractor: 82–86. Meyer, W., R. Schwarz, and K. Neurand.1978. The skin of domestic mammals as model for the humanskin, with special reference to the domestic pig. Curr.Probl. Dermatol. 7: 39–52. Meyer, W. and K. Neurand. 1991.Comparison of skin pH in domesticated and laboratorymammals. Arch. Dermatol. Res. 283: 16–18. Misfeldt, M. andD. Grimm, 1994. Sinclair miniature swine. An animal model

of human melanoma. Vet. Immunol. Immunopathol. 43:167–175. Montagna, W. and J.S Yun, 1964. The skin of thedomestic pig. J. Invest. Dermatol. 43: 11–21.Monteiro-Reviere, N.A. 2001. Integument. In Biology of theDomestic Pig, Pond, W.G. and Mersmann, H.J (eds.), pp.625–652 (Chapter 14). Cornell University Press , NY.Monteiro-Riviere, N.A., D.G. Bristol, T.O. Manning, R.A.Rogers, and J.E. Riviere. 1990. Blood �ow measurements at¢ve cutaneous sites in nine species. J. Invest. Dermatol.95: 582–586. Mortensen, J.T., P. Brinck, and J.Lichtenberg. 1998. The minipig in toxicology: A literaturereview. Scand. J. Lab. Anim. Sci. 25(Suppl. 1): 77–83.Nair, X. and K.M. Tramposch, 1991a. The Yucatan miniatureswine as an in vivo model for screening skindepigmentation. J. Dermatol. Sci. 2(6): 428–433. Nair, X.and K.M. Tramposch, 1991b. Ultraviolet light inducedmelanogenesis in skin of the Yucatan miniature swine(abstract). Pigment Cell Res. 4(3): 135. Nuhaily, S., B.Damaj, and M. Maghazachi, 2009. Oxaxoloneinduceddelayed-type hypersensitivity reaction in the adultYucatan pigs. A useful model for drug development andvalidation. Toxins 1: 25–36. OECD. 2002. Acute DermalIrritation/Corrosion. OECD Test Guideline 404. Paris,France. www.oecd-ilibrary.org (accessed November 11,2010).

OECD. 1992. Test Guideline 406: Skin sensitization.www.oecdilibrary.org (accessed November 11, 2010).

OECD. 2004. Test Guideline 432: The In Vitro 3T3Phototoxicity Test. www.oecd-ilibrary.org (accessedNovember 11, 2010).

OECD. 2010a. Test Guideline 439: In Vitro Skin Irritation:Reconstructed Human Epidermis Test Method.www.oecdilibrary.org (website accessed November 11, 2010).

OECD. 2010b. Test Guideline 429: Skin sensitization: LocalLymph Node Assay. www.oecd-ilibrary.org (website accessedNovember 11, 2010).

Oh, S.Y., M. Fujii, Y. Takeda, K. Yoda, N. Utoguchi, M.Matsumoto, and Y. Watanabe. 2002. The effect of ethanol onthe simultaneous transport and metabolism of methylp-hydroxybenzoate in excised skin of Yucatan micropig.Int. J. Pharm. 236: 35–42.

Olivry, T., M.L. Mirsky, W. Singleton, S.M. Dunston, A.K.Borrillo, L. Xu, T. Traczyk, D.L. Rosolia, and L.S. Chan.2000. A spontaneously arising porcine model of bullous

pemphigoid. Arch. Dermatol. Res. 292: 37–45.

Panchagnula, R., K. Stemmer, and W.A. Ritschel. 1997.Animal models for transdermal drug delivery. Method Find.Exp. Clin. Pharmacol. 19: 335–341.

Pilling, A.M., R.M. Harman, S.A. Jones, N.A.M. McCormack,D. Lavender, and R. Haworth. 2002. The assessment of localtolerance, acute toxicity and DNA biodistribution followingparticle-mediated delivery of a DNA vaccine to minipigs.Toxicol. Pathol. 30: 298–305.

Poet, T.S. and J.N. McDougal. 2002. Skin absorption andhuman risk assessment. Chemico-Biol. Interact. 140: 19–34.

Priborsky, J and E. Muhlbachova. 1990. Evaluation of invitro percutaneous absorption across human skin and inanimal models. J. Pharm. Pharmacol. 42: 468–472.

Prusakiewicz, J.J., C. Ackermann, and R. Voorman. 2006.Comparison of skin esterase activities from differentspecies. Pharm. Res. 23: 1517–1524.

Qvist, M.H., U. Hoeck, B. Kreilgaard, F. Madsen, and S.Frokjaer. 2000. Evaluation of Gottingen minipig skinfor transdermal in vitro permeation studies. Eur. J. Pharm.Sci. 11: 59–68.

Reifenrath, W.G., E.M. Chellquist, E.A. Shipwash, and W.W.Jedernerg. 1984. Evaluation of animal models for predictingskin penetration in man. Fund. Appl. Toxicol. 4:S224–S230.

Riviere, J.E. 2006. Dermal Absorption Models in Toxicologyand Pharmacology. Taylor & Francis, Boca Raton, FL.

Riviere, J.E. and N.A. Monteiro-Riviere, 1991. The isolatedperfused porcine skin �ap as an in vitro model forpercutaneous absorption and cutaneous toxicology. Crit.Rev. Toxicol, 21(5): 329–344.

Rolsted, K., A.M. Kissmeyer, G.M. Rist, and S.H. Hansen.2008. Evaluation of cytochrome P450 activity in vitrousing dermal and hepatic microsomes from four species andtwo keratinocyte cell lines in culture. Arch. Dermatol.Res. 300: 11–18.

Sambuco, C., P. Forbes, R. Davies, and F. Urbach, 1987.Protective value of skin tanning induced by ultravioletradiation plus a sunscreen containing bergamot oil. J.

Soc. Cosmet. Chem. 38:11–19.

Sambuco, C.P. 1985. Miniature swine as an animal model inphotodermatology: Factors in�uencing sunburn cellformation. Photodermatology, 2, 144–150. Schiffer, R., M.Neis, D. Holler, F. Rodriguez, A. Geier, C. Gartung, F.Lammert, et al. 2003. Active in�ux transport is mediatedby members of the organic anion transporting polypeptidefamily in human epidermal keratinocytes. J. Invest.Dermatol. 120: 285–291. Schmid-Wendtner, M.H. and H.C.Korting. 2006. The pH and the skin barrier surface and itsimpact on the barrier function. Skin Pharmacol. Physiol.19: 296–308. Schmook, F.P., J.G. Meingassner, and A.Billich. 2001. Comparison of human skin or epidermismodels with the human and animal skin in vitro percutaneousabsorption. Int. J. Pharm. 215: 51–56. Schreiber, S., A.Mahmoud, A. Vuia, M.K. Rubbelke, E. Schmidt, M. Schaller,H. Kandarova, A. Haberland, U.F. Schäfer, U. Bock, H.C.Korting, M. Liebsch, and M. Schäfer-Korting. 2005.Reconstructed epidermis versus human and animal skin inskin absorption studies. Toxicol. In Vitro. 19: 813–822.Serup, J. 2006. Handbook of Non-Invasive Methods and theSkin (2nd edn), Jemec, G.B.E. and Grove, G.L. (eds.),Taylor & Francis, Boca Raton, FL. Simon, G. and H.Maibach, 2000. The pig as an experimental animal model ofpercutaneous permeation in man: Qualitative andquantitative observations—An overview. Skin Pharmacol.Appl. Skin Physiol. 13: 229–234. Skaanild, M.T. and C.Friis. 1999. Cytochrome P450 sex differences in minipigsand conventional pigs. Pharmacol. Toxicol. 85: 174–180.Svendsen, O. 2006. The minipig in toxicology. Exp. Toxicol.Pathol. 57: 335–339. Therkildsen, P., M. Haedersdal, J.Lock-Andersen, F. de Fine Olivarius, T. Poulsen, and H.C.Wulf. 1998. Epidermal thickness measured by lightmicroscopy: A methodological study. Skin Res. Technol. 4:174–179. Topham, S.J. and A.C. Dempster. 2000. A comparisonbetween the skin of humans and other mammalian species.PowerJect Technologies Report PJT RN 163, Oxford, UK.Vaclavikova, R. P. Soucek, L. Svobodova, P. Anzenacher, P.Simek, F.P. Guengerich, and I. Gut. 2004. Different invitro metabolism of paclitaxel and docetaxel in humans,rats, pigs and minipigs. Drug Metab. Dispos. 32: 666–674.Vana, G. and Meingassner, J.G. 2000. Morphological andimmunohistochemical features of experimentally inducedallergic dermatitis in Göttingen minipigs. Vet. Pathol. 37,565–580. Vincent-Naulleau, S., C. Le Chalony, J.J. Leplat,S. Bouet, C. Bailly, A. Spatz, P. Vielh, M.F. Avril, Y.Tricaud, J. Gruand, V. Horak, G. Frelat, and C. Geffrotin.2004. Clinical and histopathological characterisation ofcutaneous melanomas in the melanoblastoma-bearing Libechov

minipig model. Pigment Cell Res. 17: 24–35. Vogel, B., M.Kolopp, T. Singer, and A. Cordier. 1998. Dermal toxicitytesting in minipigs: Assessment of skin reactions bynoninvasive examination techniques. Scand. J. Lab. Anim.Sci. 25(Suppl 1): 117–120. Williams, J.P., S.L. Brown, G.E.Georges, M. Hauer-Jensen, R.P. Hill, A.K. Huser, D.G.Kirsch, T.J. Macvittie, K.A. Mason, M.M. Medhora, J.E.Moulder, P. Okunieff, M.F. Otterson, M.E. Robbins, J.B.Smathers, and W.H. McBride. 2010. Animal models formedical countermeasures to radiation exposure. Radiat.Res. 173:557–578.

Witkamp, R.F. and M. Monshouwer. 1998. Pharmacokinetics invivo and in vitro in swine. Scand. J. Lab. Anim. Sci. 25(Suppl. 1): 45–56.

Xing, Q-F., S. Lin, and Y.W. Chien. 1998. Transdermaltestosterone delivery in castrated Yucatan minipigs:Pharmacokinetics and metabolism. J. Control. Rel. 52:89–98. Yao, F., S. Visovatti, C.S. Johnson, M. Chen, J.Slama, A. Wenger, and E. Eriksson. 2001. Age and growthfactors in porcine full-thickness wound healing. WoundRep. Reg. 9: 371–377. Zhai, H. and H.I. Maibach. 2004.Dermatotoxicology. CRC Press, Boca Raton, FL.

13 Chapter 13: Gastrointestinal Tract

Bach Knudsen, K. E., B. B. Jensen, J. O. Andersen, and I.Hansen. 1991. Gastrointestinal implications in pigs ofwheat and oat fractions. Br J Nutr 65:233–48.

Bach, T. A. and H. V. Carey. 1994. Developmental changes inneurally mediated ion transport in piglet distal colon.Pediatr Res 36:144–51.

Baintner, K. 1994. Demonstration of acidity in intestinalvacuoles of the suckling rat and pig. J Histochem Cytochem42:231–8.

Baintner, K. 2002. Vacuolation in the young. In R.Zabielski, P. C. Gregory, and B. Weström (eds), Biology ofthe Intestine of Growing Animals, pp. 55–110. Amsterdam:Elsevier Science.

Balemba, O. B., A. Hay-Smith, R. J. Assey, C. K. B. Kahwa,W. D. Semuguruka, and V. Dantzer. 2002. Animmunohistochemical study of the organization of gangliaand nerve ¢bres in the mucosa of the porcine intestine.Anat Histol Embryol 31:237–46.

Ball, R. O., J. D. House, L. J. Wykes, and P. B. Pencharz.1996. A piglet model for neonatal amino acid metabolismduring total parenteral nutrition. InM. E. Tumbleson andL. B. Schook (eds), Advances in Swine in BiomedicalResearch, pp. 713– 31. New York, NY: Plenum Press.

Banks, W. J. 1981. Digestive system. In W. J. Banks (ed),Applied Veterinary Histology, pp. 399–403. Baltimore:Williams & Wilkins.

Barbiers, M., J. P. Timmermans, D. Adriaensen, M. H. A. DeGroodt-Lasseel, and D. S. Scheuermann. 1995. Projectionsof neurochemically speci¢ed neurons in the porcine colon.Histochemistry 103:115–26.

Bardon, T. and J. Fioramonti. 1983. Nature of the effectsof bran on digestive transit time in pigs. Br J Nutr 50:685–90.

Barone, R. 1997. Anatomie ComparÊe Des MammifèresDomestiques. Paris: Editions Vigot.

Binder, H. J., V. Rajendran, V. Sadasivan, and J. P.Geibel. 2005. Bicarbonate secretion. A neglected aspect ofcolonic ion transport. J Clin Gastroenterol 39:S53–8.

Blat, S., S. Guérin, A. Chauvin, E. Bobillier, J. LeCloirec, P. Bourguet, and H. C. Malbert. 2001. Role ofvagal innervation on intragastric distribution and emptyingof liquid and semisolid meals in conscious pigs.Neurogastroenterol Mot 13:73–80.

Boudry, G., V. Péron, I. Le Huërou-Luron, J.-P. Lallès, andB. Sève. 2004. Weaning induces both transient andlong-lasting modi¢cations of absorptive, secretory, andbarrier properties of piglet intestine. J Nutr134:2256–62.

Brehmer, A., F. Schrödl, and W. Neuhuber. 1999a.Morphological classi¢cation of enteric neurons—100 yearsafter Dogiel. Anat Embryol 200:125–35.

Brehmer, A., F. Schrödl, W. Neuhuber, J. Hens, and J. P.Timmermans. 1999b. Comparison of enteric neuronalmorphology as demonstrated by Dil-tracing under differenttissue-handling conditions. Anat Embryol 199:57–62.

Breves, G., B. Schröder, and J. Stein. 1995.Transepithelial transport of short chain fatty acids andtheir metabolism in pig hindgut. Dtsch TierarztlWochenschr 102:159–60.

Bröer, S. 2008. Amino acid transport across mammalianintestinal and renal epithelia. Physiol Rev 88:249–86.

Broughton, C. W. and J. G. Lecce. 1970.Electron-microscopic studies of the jejunal epitheliumfrom neonatal pigs fed different diets. J Nutr 100:445–9.Brown, D. C., C. V. Maxwell, G. F. Erf, M. E. Davis, S.Sing, and Z. B. Johnson. 2006. Ontogeny of T lymphocytesand intestinal morphological characteristics in neonatalpigs at different ages in the postnatal period. J Anim Sci84:567–78. Buddington, R. K., J. Elnif, A. A.Puchal-Gardiner, and P. T. Sangild. 2001. Intestinalapical amino acid absorption during development of thepig. Am J Physiol 280:R241–7. Buddington, R. K. and C.Malo. 1996. Intestinal brush-border membrane enzymeactivities and transport functions during prenataldevelopment of pigs. J Pedriatr Gastroenterol Nutr23:51–64. Bunn, C. M. and D. A. Titchen. 1984. Plasmagastrin in the pig from birth to weaning. Res Vet Sci37:362–3. Burrin, D. G., M. A. Dudley, P. J. Reeds, R. J.Shulman, S. Perkinson, and J. Rosenberg. 1994. Feedingcolostrum rapidly alters enzymatic activity and therelative isoform abundance of jejunal lactase in neonatal

pigs. J Nutr 124:2350–7. Burrin, D. G. and B. Stoll. 2009.Metabolic fate and function of dietary glutamate in thegut. Am J Clin Nutr 90:850S–6S. Burrows, C. F., A. M.Merrit, and J. Tash. 1986. Jejunal myoelectrical activityin the conscious neonatal pig. J Physiol 374:349–57.Burton, K. A. and M. W. Smith. 1977. Endocytosis andimmunoglobulin transport across the small intestine of thenewborn pig. J Physiol 270: 473–88. Carey, H. V., U. L.Hayden, S. S. Spicer, B. A. Schulte, and D. J. Benos.1994. Localizaton of amiloride-sensitive Na+ channels inintestinal epithelia. Am J Physiol 266:G504–10. Case, G.L., L. D. Lewis, R. W. Phillips, and J. L. Cleek. 1981.Effects of osmolality of liquid nutrient diets on mealpassage and nutrient absorption in Yucatan miniatureswine. Am J Clin Nutr 34:1868–78. Cera, K. R., D. C.Mahan, R. F. Cross, G. A. Reinhart, and R. E. Whitmoyer.1988. Effect of age, weaning and postweaning diet on smallintestinal growth and jejunal morphology in young swine. JAnim Sci 66:574–84. Che, C., X. Pang, X. Hua, B. Zhang, J.Shen, J. Zhu, H. Wei, L. Sun, L. Cui, L. Zhao, and Q.Yang. 2009. Effects of human fecal �ora on intestinalmorphology and mucosal immunity in human �ora-associatedpiglet. Scand J Immunol 69:223–333. Chey, W. Y. and T. M.Chang. 2003. Secretin, 100 years later. J Gastroenterol38:1025–35. Clemens, E. T., C. E. Stevens, and M.Southworth. 1975. Sites of organic acid production andpattern of digesta movement in the gastrointestinal tractof swine. J Nutr 105:759–68. Cooper, J. E. 1975. The use ofthe pig as an animal model to study problems associatedwith low birthweight. Lab Anim 9:329–36. Corleto, V. D.2010. Somatostatin and the gastrointestinal tract. CurrOpin Endocrinol Dieabetes Obes 17:63–8. Cranwell, P. D.1985. The development of acid and pepsin (EC 3.4.23.1)secretory capacity in the pig:The effects of ageand weaning. Br J Nutr 54:305–20. Cranwell, P. D. and J.Hansky. 1980. Serum gastrin in newborn, suckling andweaned pigs. Res Vet Sci 29:85–8. Cranwell, P. D., D. E.Noakes, and K. J. Hill. 1976. Gastric secretion andfermentation in the suckling pig. Br J Nutr 36:71–86.

Cremaschi, D., D. R. Ferguson, S. Hénin, P. S. James, G.Meyer, and M. W. Smith. 1979. Postnatal development ofamiloride sensitive sodium transport in pig distal colon.J Physiol 292:481–94.

Cserni, T., S. Paran, and P. Puri. 2007. The effect of ageon colocalization of acetylcholinesterase and nicotinamideadenine dinucleotide phosphate diaphorase staining inenteric neurons in an experimental model. J Pediatr Surg42:300–4.

Cuche, G., J. C. Cuber, and H. C. Malbert. 2000. Ilealshort-chain fatty acids inhibit gastric motility by ahumoral pathway. Am J Physiol 279:G925–30.

Daniel, E. E. 2004. Communication between interstitialcells of Cajal and gastrointestinal muscle.Neurogastroenterol Motil 16:118–22.

de Zwart, L. L., H. E. Haenen, C. H. Versantvoort, G.Wolterink, J. G. van Engelen, and A. J. Sips. 2004. Roleof biokinetics in risk assessment of drugs and chemicalsin children. Regul Toxicol Pharmacol 39:282–309.

Decuypere, J. A., R. M. Dendooven, and H. K. Henderickx.1986. Stomach emptying of milk diets in pigs. Amathematical model allowing description and comparison ofthe emptying pattern. Arch Tierenahr 36:679–96.

Dekaney, C. M., F. W. Bazer, and L. A. Jaeger. 1997.Mucosal morphogenesis and cytodifferentiation in fetalporcine small intestine. Anat Rec 249:517–23.

DeSesso, J. M. and A. L. Williams. 2008. Contrasting thegastrointestinal tracts of mammals: Factors that in�uenceabsorption. Annu Rep Med Chem 43:353–71.

Dick, J. M. and R. A. Lefebvre. 2000. Interplay betweennitric oxide and vasoactive intestinal polypeptide in thepig gastric fundus smooth muscle. Eur J Pharmacol397:389–97.

Dong, X.-Y., J. Xu, S.-Q. Tang, H.-Y. Li, Q.-Y. Jiang, andX.-T. Zou. 2009. Ghrelin and its biological effects onpigs. Peptides 30:1203–11.

Doster, A. R. 2000. Porcine gastric ulcer. Vet Clin NorthAm Food Anim Pract 16:163–74.

Dressman, J. B. and K. Yamada. 1991. Animal models for oraldrug absorption. In P. Welling and F. L. Tse (eds),Pharmaceutical Bioequivalence, pp. 235–266. New York, NY:Dekker.

Dunsford, B. R., W. E. Haensly, and D. A. Knabe. 1991.Effects of diet on acidic and neutral goblet cellpopulations in the small intestine of early weaned pigs.Am J Vet Res 52:1743–6.

Fan, M. Z., J. C. Matthews, N. M. Etienne, B. Stoll, D.

Lackeyram, and D. G. Burrin. 2004. Expression of apicalmembrane l-glutamate transporters in neonatal porcineepithelial cells along the small intestinal crypt-villusaxis. Am J Physiol 287:G385–98.

Fan, M. Z., B. Stoll, R. Jiang, and D. G. Burrin. 2001.Enterocyte digestive enzyme activity along thecrypt-villus and longitudinal axes in the neonatal pigsmall intestine. J Anim Sci 79:371–81.

Ferguson, D. R., P. S. James, J. Y. Paterson, J. C.Saunders, and M. W. Smith. 1979. Aldosterone inducedchanges in colonic sodium transport occuring naturallyduring development in the neonatal pig. J Physiol292:495–504.

Fioramonti, J. and L. Bueno. 1977. Electrical activity ofthe large intestine in normal and megacolon pigs. Ann RechVét 8:275–83. Fleming, S. E., M. D. Fitch, and W.Chansler. 1989. High-¢ber diets: In�uence oncharacteristics of cecal digesta including short-chainfatty acid concentrations and pH. Am J Clin Nutr 50:93–9.Flemström, G. and A. Garner. 1984. Some characteristics ofduodenal epithelium. Ciba Found Symp 109:94–108. Fox, J. E.1984. Motilin—An update. Life Sci 35:695–706. Gaudichon,C., N. Roos, S. Mahé, H. Sick, C. Bouley, and D. Tomé.1994. Gastric emptying regulates the kinetics of nitrogenabsorption from 15 N-labeled milk and 15 N-labeledYoghurt in miniature pigs. J Nutr 124:1970–7. Georgieva,R. and K. Gerov. 1975a. The morphological and functionaldifferentiation of the alimentary canal of the pig duringontogeny. I. Development and differentiation of the fundicportion of the stomach. Anat Anz 137:12–5. Georgieva, R.and K. Gerov. 1975b. The morphological and functionaldifferentiation of the alimentary canal of the pig duringontogeny. II. Development and differentiation of thejejunum. Anat Anz 137:16–20. Gershon, M. D. 2004. Reviewarticle: Serotonin receptors and transporters—Roles innormal and abnormal gastrointestinal motility. AlimentPharmacol Ther Suppl 7:3–14. Glad, H., M. A. Ainsworth, P.Svendsen, J. Fahrenkrug, and O. B. Schaffalitzky deMuckadell. 2003. Effect of vasoactive intestinal peptideand pituitary adenylate cyclase-activating polypeptide onpancreatic, hepatic and duodenal mucosal bicarbonatesecretion in the pig. Digestion 67:56–66. Gonkowski, S. andJ. Calka. 2010. Changes in the somatostatin (SOM)-likeimmunoreactivity within nervous structures of the porcinedescending colon under various pathological factors. ExpMol Pathol 88:416–23. Goyal, R. K. and I. Hirano. 1996. Theenteric nervous system. N Engl J Med 334:1106–15.

Greenwood-Van Meerveld, B., D. E. Neeley, K. R. Tyler, L.J. Peters, and J. W. McRorie. 1999. Comparison of effectson colonic motility and stool characteristics associatedwith feeding olestra and wheat bran to ambulatorymini-pigs. Dig Dis Sci 44:1282–7. Gregory, P. C., M.McFadden, and D. V. Rayner. 1995. Control of gastricemptying in the pig: In�uence of cholecystokinin,somatostatin and prokinetic agents. Exp Physiol 80:159–65.Gregory, P. C., M. McFayden, and D. V. Rayner. 1989.Control of gastric emptying in the pig: In�uence ofduodenal infusions of glucose and emulsi¢ed fat. Quartery JExp Physiol 74:109–19. Gregory, P. C., M. McFayden, and D.V. Rayner. 1990. Pattern of gastric emptying in the pig:Relation to feeding. Br J Nutr 64:45–58. Gritti, I., G.Ban¢, and G. S. Roi. 2000. Pepsinogens: Physiology,pharmacology, pathophysiology and exercise. Pharmacol Res41:265–81. Groner, J. I., S. M. Alschuler, and M. M.Ziegler. 1990. The newborn piglet: A model of neonatalgastrointestinal motility. J Pediatr Surg 25:315–18.Guilloteau, P., M. Biernat, J. Wolinski, and R. Zabielski.2002. Gut regulatory peptides and hormones of the smallintestine. In R. Zabielski, P. C. Gregory, and B. Weström(eds), Biology of the Intestine in Growing Animals, pp.325–62. Amsterdam: Elsevier Science.

Guise, H. J., R. H. Penny, P. J. Baynes, T. A. Abbott, J.E. Hunter, and A. M. Johnston. 1995. Abbatoir observationsof the weights of stomachs and their contents in pigsslaughtered at known times after their last feed. Br Vet J151:659–70.

Hampson, D. J. and D. E. Kidder. 1986. In�uence of creepfeeding and weaning on brush border enzyme activities inthe piglet small intestine. Res Vet Sci 40:24–31.

Hansen, G. H., L. L. Niels-Christiaensen, M. D. Poulsen, O.Norén, and H. Sjöström. 1994. Distribution of threemicrovillar enzymes along the small intestinalcrypt-villus axis. J Submicrosc Cytol Pathol 26:453–60.

Hansen, M. B. 2003. Neurohumoral control ofgastrointestinal motility. Physiol Res 52:1–30.

Hansen, M. B. and A. B. Witte. 2008. The role of serotoninin intestinal luminal sensing and secretion. Acta Physiol(Oxf) 193:311–23.

Hardy, R. N., A. R. Hockaday, and R. L. Tapp. 1971.Observations on the structure of the small intestine infoetal, neonatal and suckling pigs. Philos Trans R Sco

Lond B Biol Sci 259:517–31.

Hedemann, M. S., S. Højsgaard, and B. B. Jensen. 2003.Small intestinal morphology and activity of intestinalpeptidases in piglets around weaning. J Anim Physiol AnimNutr 87:32–41.

Hedemann, M. S. and B. B. Jensen. 2004. Variations inenzyme activity in stomach and pancreatic tissue anddigesta in piglets around weaning. Arch Anim Nutr 58:47–59.

Holle, G. E., W. G. Forssmann, J. F. Rehfeld, and F. Holle.1989. Effects of superior mesenteric and coeliacganglionectomy on peptide-producing cells of the smallintestinal mucosa in the Hanford mini pig. II.Immunohistochemical study. J Auton Nerv Sys 26:147–56.

Holm, M., B. Johansson, A. Pettersson, and L. Fändriks.1998. Acid-induced duodenal mucosal nitric oxide outputparallels bicarbonate secretion in the anaesthetized pig.Acta Physiol Scand 162:461–8.

Holst, J. J. 2004. On the physiology of GIP and GLP-1. HormMetab Res 36:747–54.

Holst, J. J., S. Knuhtsen, C. Orskov, T. Skak-Nielsen, S.S. Poulsen, S. L. Jensen, and O. V. Nielsen. 1987. GRPnerves in pig antrum: Role of GRP in vagal control ofgastric secretion. Am J Physiol 253:G643–9.

Holst, J. J., T. Skak-Nielsen, C. Orskov, and S.Seier-Poulsen. 1992. Vagal control of the release ofsomatostatin, vasoactive intestinal polypeptide,gastrin-releasing peptide, and HCl from porcine non-antralstomach. Scand J Gastroenterol, 27: 677–85.

Houen, G., M. T. Madsen, K. W. Harlow, P. Lønblad, and B.Foltmann. 1996. The primary structure and enzymicproperties of porcine prochymosin and chymosin. Int JBiochem Cell Biol 28:667–75.

Hübscher, G. 1969. Transport of lipid across the smallintestine. Biochem J 114:46P–7P.

Imoto, S. and S. Namioka. 1978. VFA production in the piglarge intestine. J Anim Sci 47:467–78.

Ito, H., J. Yamada, N. Kitamura, T. Yamashita, and N.Yanaihara. 1985. Histological and immunohistochemicalstudies of the Segi’s cap: A large aggregation of

endocrine cells on the intestinal villi of porcine fetusesand neonates. Arch Histol Jpn 48:399–409. Jain, R. N. andL. C. Samuelson. 2006. Differentiation of the gastricmucosa II. Role of gastrin in gastric epithelial cellproliferation and maturation. Am J Physiol 291:G762–5.Jarvis, L. G., G. Morgan, M. W. Smith, and F. B. Wooding.1977. Cell replacement and changing transport function inthe neonatal pig colon. J Physiol 273:717–29. Jensen, A.R., J. Elnif, D. G. Burrin, and P. R. Sangild. 2001.Development of intestinal immunoglobulin absorption andenzyme activities in neonatal pigs is diet dependent. JNutr 131:3259–65. Jensen, B. B. and H. Jørgensen. 1994.Effect of dietary ¢ber on microbial activity and microbialgas production in various regions of the gastrointestinaltract of pigs. Appl Environ Microbiol 60:1897–904. Jensen,M. S., S. K. Jensen, and K. Jakobsen. 1997. Development ofdigestive enzymes in pigs with emphasis on lipolyticactivity in the stomach and pancreas. J Anim Sci 75:437–45.Jørgensen, H., T. Larsen, X. Q. Zhao, and B. O. Eggum.1997. The energy value of short-chain fatty acids infusedinto the caecum of pigs. Br J Nutr 77:745–56. Kaleczyc, J.,M. Klimczuk, A. Franke-Radowiecka, W. Sienkiewicz, M.Majewski, and M. Lakomy. 2007. The distribution andchemical coding of intramural neurons supplying the porcinestomach—The study on normal pigs and on animals sufferingfrom swine dysentery. Anat Histol Embryol 36:186–93.Karlsson, B. W. 1972. Ultrastructure of the smallintestinal epithelium of the developing pig foetus. AnatEmbryol 135:253–64. Kelly, D., T. P. King, M. McFayden, andA. J. Travis. 1991. Effect of lactation on the decline ofbrush border lactase activity in neonatal pigs. Gut32:386–92. Kidder, D. E. and M. J. Manners. 1980. The levelof distribution of carbohydrases in the small intestinemucosa of pigs from 3 weeks of age to maturity. Br J Nutr43:141–53. Klang, J. E., L. A. Brunworth, Y. X. Pan, K. E.J. Webb, and E. A. Wong. 2005. Functional characterizationof a cloned pig intestinal peptide transporter (pPepT1). JAnim Sci 83:172–81. Knuthsen, S., J. J. Holst, U. Knigge,M. Olsesen, and O. V. Nielsen. 1984. Radioimmunoassay,pharmacokinetics and neuronal release of gastrin-releasingpeptide in anaesthesized pigs. Gastroenterology 87:372–8.Konstantinov, S. R., A. A. Awati, B. A. Williams, B. G.Miller, P. Jones, C. R. Stokes, A. D. Akkermans, H. Smidt,and W. M. de Vos. 2006. Postnatal development of theporcine microbiota composition and activities. EnvironMicrobiol 8:1191–9. Krause, W. J. 2000. Brunner’s glands: Astructural, histochemical and pathological pro¢le. ProgHistochem Cytochem 35:259–367. Kunzelmann, K. and M. Mall.2002. Electrolyte transport in the mammalian colon:Mechanisms and implications for disease. Physiol Rev

82:245–89. Kurihara-Bergstrom, T., M. Woodworth, S.Feisullin, and P. Beall. 1986. Characterization of theYucatan miniature pig skin and small intestine forpharmaceutical applications. Lab Anim Sci 36:396–99. Lang,I. M. and M. F. Tansy. 1982. Neural and hormonal control ofBrunner’s gland secretion. Life Sci 30:409–17. LeHuërou-Luron, I. 2002. Production and gene expression ofbrush border disaccharidases and peptidases duringdevelopment in pigs and calves. In R. Zabielski, P. C.Gregory and B. Weström (eds), Biology of the Intestine inGrowing Animals, pp. 491–513. Amsterdam: Elsevier Science.

Lefebvre, R. A., J. M. Dick, S. Guérin, and H. C. Malbert.2005. Involvement of NO in gastric emptying of semi-solidmeal in conscious pigs. Neurogastroenterol Mot 17:229–35.

Lefebvre, R. A., G. J. M. Smits, and J. P. Timmermans.1995. Study on NO and VIP as non-adrenergicnon-cholinergic neurotransmitters in the pig gastricfundus. Br J Pharmacol 116:2017–26.

Len, N. T., T. T. T. Hong, B. Ogle, and J. E. Lindberg.2009. Comparision of total tract digestibility,development of visceral organs and digestive tract of Mongcai and Yorkshire × Landrace piglets fed diets withdifferent ¢bre sources. J Anim Physiol Anim Nutr93:181–91.

Li, F.-C., Y.-N. Jiang, and T. F. Shen. 2001. Developmentof lipase in nursing piglets. Proc Natl Sci Counc 25:12–6.

Lindemann, M. D., S. G. Cronelius, and S. M. El Kandelgy.1986. Effect of age, weaning and diets on digestive enzymelevels in the piglet. J Anim Sci 62:1298–307.

Liu, Z. P. and L. J. Martin. 2001. Motor neurons rapidlyaccumulate DNA single-strand breaks after in vitroexposure to nitric oxide and peroxynitrite and in vivoaxotomy. J Comp Neurol Mar 432:35–60.

Low, A. G. 1990. Nutritional regulation of gastricsecretion, digestion and emptying. Nutr Res Revs 3:229–52.

Low, M. J. 2004. Clinical endocrinology and metabolism. Thesomatostatin neuroendocrine system: Physiology and clinicalrelevance in gastrointestinal and pancreatic disorders.Best Pract Res Clin Endocrinol Metab 18:607–22.

Mann, N. S. and S. K. Mann. 1994. Enterokinase. Proc SocExp Biol Med 206:114–18.

Manners, M. J. 1976. The development of digestive functionin the pig. Proc Nutr Soc 35:49–55.

Mason, V. C. 1984. Metabolism of nitrogenous compounds inthe large gut. Proc Nutr Soc 43:45–53.

Maxwell, F. J. and C. S. Stewart. 1995. The microbiology ofthe gut and the role of pro-biotics. InM. A. Varley (ed),The Neonatal Pig, Development and Survival, pp. 155–86.Edinburgh: CAB International.

McGillivery, D. J. and P. D. Cranwell. 1992. Anaerobicmicro�ora associated with the pars oesophagea of the pig.Res Vet Sci 53:110–15.

Mikkelsen, L. L., P. J. Naughton, M. S. Hedemann, and B. B.Jensen. 2004. Effects of physical properties of feed onmicrobial ecology and survival of Salmonelle entericaSerovar Typhimurium in the pig gastrointestinal tract.Appl Environ Microbiol 70:3485–92.

Miller, E. R. and D. E. Ullrey. 1987. The pig as a modelfor human nutrition. Ann Rev Nutr 7:361–82.

Moeser, A. J., C. V. Klok, K. A. Ryan, J. G. Wooten, D.Little, V. Cook, and A. T. Blikslager. 2007. Stresssignaling pathways activated by weaning mediate intestinaldysfunction in the pig. Am J Physiol 291:G173–81.

Montagne, L., G. Boudry, C. Favier, I. Le Huërou-Luron,J.-P. Lallès, and B. Sève. 2007. Main intestinal markersassociated with the changes in gut architecture andfunction in piglets after weaning. Br J Nutr 97:45–57.

Montedonico, S., T. S. Paran, M. Pirker, U. Rolle, and P.Puri. 2006. Developmental changes in submucosal nitrergicneurons in the porcine distal colon. J Pediatr Surg41:1029–35. Mortensen, K., L. L. Christensen, J. J. Holst,and C. Orskov. 2003. GLP-1 and GIP are colocalized in asubset of endocrine cells in the small intestine. Reg Pept114:189–96. Mortensen, K., L. Petersen, C. Orskov, and J.J. Holst. 2000. Colocalization of G LP-1 and GIP in thehuman and porcine small intestine. Ann NY Acad Sci921:469–72. Moughan, P. J., M. J. Birtles, P. D. Cranwell,W. C. Smith, and M. Pedraza. 1992. The piglet as a modelanimal for studying aspects of digestion and absorption imilk-fed human infants. World Rev Nutr Diet 67:40–113. Mu,G. M., Z. M. Shi, X. H. Wei, M. J. Liu, L. Zhang, and R. Q.Zhao. 2007. Expression of gastric ghrelin and H + -K +

-ATPase mRNA in weaning piglets and effect of ghrelin on H+ -K + ATPase expression and activity in gastric mucosalcells in vitro. Res Vet Sci 82:99–104. Munck, L. K., M. L.Grondahl, J. E. Throboll, E. Skadhauge, and B. G. Munck.2000. Transport of neutral, cationic and anionic aminoacids by systems B, b 0/+ , X AG and ASC in swine smallintestine. Comp Biochem Physiol 126:527–37. Musial, F., M.D. Crowell, A. W. French, and N. Guiv. 1992. Effect ofprolonged, continuous rectal distension on mouth-to-cecumand colonic transit time in pigs. Physiol Behav 52:1021–4.Nagell, C. F., A. Wettergren, C. Orskov, and J. J. Holst.2006. Inhibitory effect of GLP-1 on gastric motilitypersists after vagal deafferentation in pigs. Scand JGastroenterol 41:667–72. Neutra, M. R., T. L. Phillips,and T. E. Phillips. 1984. Regulation of intestinal gobletcells in situ, in mucosal explants and in the isolatedepithelium. Ciba Found Symp 109:20–39. Ochia, B. A. 1973.Gastric emptying in young pigs. J Physiol 233(3):467–80.Ohara, S., K. Ishihara, and K. Hotta. 1993. Regionaldifferences in pig gastric mucins. Comp Biochem Physiol B106:153–8. Olsson, C. and S. Holmgren. 2001. The control ofgut motility. Comp Biochem Physiol 128:481–503. Paran, T.S., U. Rolle, and P. Puri. 2006. Postnatal development ofthe mucosal plexus in the porcine small and largeintestine. Pediatr Surg Int 22:997–1001. Pfannkuche, H.and G. Gäbel. 2009. Glucose, epithelium, and entericnervous system: Dialogue in the dark. J Anim Physiol AnimNutr 93:277–86. Pié, S., J.-P. Lallès, J. Laf¢tte, B. Sève,and I. P. Oswald. 2003. Weaning is associated with anupregulation of expression of in�ammatory cytokines in theintestine of piglets. J Nutr 134:641–7. Pohl, D., M. Fox,B. Goke, C. Prinz, H. Mönnikes, G. Rogler, M. Dauer, J.Keller, F. Lippl, I. Schiefke, U. Seidler, and H. D.Allescher. 2008. Do we need gastric acid? Digestion77:184–97. Polak, J. M. 1989. Endocrine cells of the gut.InB. B. Rauner (ed), Handbook of Physiology, pp. 79–96.Bethesda: Am Physiological Society. Rasmussen, T. N., P.Schmidt, S. S. Poulsen, and J. J. Holst. 2001. Efffect ofcalcitonin gene-related peptide (CGRP) on motility and onthe release of substance P, neurokinin A, somatostatin andgastrin in the isolated perfused porcine antrum.Neurogastroenterol Mot 13:353–9. Ratcliffe, B. 1985. Thein�uence of the gut micro�ora on the digestive processes.InA. Just, H. Jørgensen, and J. A. Fernandez (eds),Proceedings of the 3rd International Seminar on DigestivePhysiology in the Pig, pp. 245–67. Copenhagen: BeretningStatens Husdyrbrugsforsøg.

Rehfeld, J. F. 2004. Clinical endocrinology and metabolism.Cholecystokinin. Best Pract Res Clin Endocrinol Metab

18:569–86.

Rérat, A. A. 1985. Intestinal absorption of end productsfrom digestion of carbohydrates and proteins in the pig.Arch Tierenahr 35:461–80.

Ritzhaupt, A., A. Ellis, K. B. Hosie, and S. P.Shirazi-Beechey. 1998a. The characterization of butyratetransport across pig and human colonic luminal membrane. JPhysiol 507:819–30.

Ritzhaupt, A., I. S. Wood, A. Ellis, K. B. Hosie, and S. P.ShiraziBeechey. 1998b. Identi¢cation and characterizationof a monocarboxylate transporter (MCT1) in pig and humancolon: Its potential to transport l-lactase as well asbutyrate. J Physiol 513.

Sanders, K. M. 1996. A case for interstitial cells of Cajalas pacemakers and mediators of neurotransmission in thegastrointestinal tract. Gastroenterology 111:492–515.

Sangild, P. R., M. Silver, M. Schmidt, and A. L. Fowden.1996. The perinatal pig in pediatric gastroentereology. InM. E. Tumbleson and L. B. Schook (eds), Advances in Swinein Biomedical Research, pp. 745–54. New York, NY: PlenumPress.

Sangild, P. T., P. D. Cranwell, and L. Hilsted. 1992.Ontogeny of gastric function in the pig: Acid secretionand the synthesis and secretion of gastrin. Biol Neonate62:363–72.

Sangild, P. T., B. Foltmann, and P. D. Cranwell. 1991.Development of gastric proteases in fetal pigs and pigsfrom birth to thirty six days of age. The effect ofadrenocorticotropin (ACTH). J Dev Physiol 16:229–38.

Sangild, P. T., L. Hilsted, E. Nexø, A. L. Fowden, and M.Silver. 1994a. Secretion of acid, gastrin and cobalaminbinding proteins by the fetal pig stomach: Developmentalregulation by cortisol. Exp Physiol 79: 135–46.

Sangild, P. T., M. Silver, A. L. Fowden, A. Turvey, and B.Foltmann. 1994b. Adrenocortical stimulation of stomachdevelopment in the prenatal pig. Biol Neonate 65:378–89.

Sangild, P. T., H. Sjostrom, O. Noren, A. L. Fowden, and M.Silver. 1995. The prenatal development and glucocorticoidcontrol of brush-border hydrolases in the pig smallintestine. Pediatr Res 37:207–12.

Sase, M., I. Miwa, M. Sumie, M. Nakata, N. Sugino, and M.G. Ross. 2005. Ontogeny of gastric emptying in the humanfetus. J Matern Fetal Neonatal Med 17:213–17.

Schemann, M., D. Reiche, and K. Michel. 2001. Entericpathways in the stomach. Anat Rec 262:45–57.

Schmidt, P. T., C. Orskov, T. N. Rasmussen, and J. J.Holst. 2003. Nitric oxide has tonic inhibitory effect, butis not involved in the vagal control or VIP effects onmotility of the porcine antrum. Scand J Gastroenterol38:955–61.

Schmidt, P. T., T. N. Rasmussen, and J. J. Holst. 1999.Tachykinins stimulate acid and pepsinogen secretion in theisolated porcine stomach. Acta Physiol Scand 166:335–40.

Scholten, R. H., C. M. van der Peet-Schwering, L. A. denHartog, M. Balk, J. W. Schrama, and M. W. A. Verstegen.2002. Fermented wheat in liquid diets: Effects ongastrointestinal characteristics in weaning piglets. JAnim Sci 80:1179–86.

Schubert, M. L. 2009. Gastric exocrine and endocrinesecretion. Curr Opin Gastroenterol 25:529–36. Sepponen,K., M. Ruusunen, J. A. Pakkanen, and A. R. Pösö. 2007.Expression of CD147 and monocarboxylate transporters MCT1,MCT2 and MCT4 in porcine small intestine and colon. Vet J174:122–8. Sepulveda, F. V. and M. W. Smith. 1979.Different mechanisms for neutral amino acid uptake bynewborn pig colon. J Physiol 286:479–90. Sharma, R., U.Schumacher, V. Ronaasen, and M. Coates. 1995. Ratintestinal mucosal responses to a microbial �ora anddifferent diets. Gut 36:209–14. Shulman, R. J., S. J.Henning, and B. L. Nichols. 1988. The miniature pig as ananimal model for the study of intestinal enzymedevelopment. Pediatr Res 23:311–15. Skak-Nielsen, T., J. J.Holst, and O. V. Nielsen. 1988. Role of gastrin-releasingpeptide in the neural control of pepsinogen secretion fromthe pig stomach. Gastroenterology 95:1216–20. Skrzypek,T., J. L. Valverde Piedra, H. Skrzypek, W. Kazimierczak,M. Biernat, and R. Zabielski. 2007. Gradual disappearanceof vacuolated enterocytes in the small intestine ofneonatal piglets. J Physiol Pharmacol 58:87–95. Specian,R. D. and M. R. Neutra. 1982. Regution of intestinal gobletcell secretion. I. Role of parasympathetic stimulation. AmJ Physiol 242:G370–9. Sri Paran, T., U. Rolle, and P. Puri.2009. Age-related changes in the myenteric plexus of theporcine bowel. J Pediatr Surg 44:1771–7. Stanoglas, G. and

G. R. Pearce. 1985. The digestion of ¢bre by pigs. 2.Volatile fatty acid concentrations in large intestinedigesta. Br J Nutr 53:531–36. Su, Y., W. Yao, O. N.Perez-Gutierrez, H. Smith, and W. Y. Zhu. 2008. Changes inabundance of Lactobacillus spp and Streptococcus suis inthe stomach, jejunum and ileum of piglets after weaning.FEMS Microbiol Ecol 66:546–55. Swords, W. E., C. C. Wu, F.R. Champlin, and R. K. Buddington. 1993. Postnatal changesin selected bacterial groups of the pig colonic micro�ora.Biol Neonate 63:191–200. Tanaka, A., H. H. J. Meiselman, E.Engel, P. H. Guth, O. Furukawa, R. B. Wenby, B. A. Lee,and J. D. Kaunitz. 2002. Regional differences of H + , HCO3 − , and CO 2 diffusion through native porcinegastroduodenal mucus. Dig Dis and Sci 47:967–73.Timmermans, J. P., J. Hens, and D. Adriaensen. 2001. Outersubmucous plexus: an intrinsic nerve network involved inboth secretory and motility processes in the intestine oflarge mammals and humans. Anat Rec 262:71–8. Traynor, T.R., D. R. Brown, and S. M. O’Grady. 1991. Regulation ofion transport in porcine distal colon: Effects of putativeneurotransmitters. Gastroenterology 100:703–10. Traynor, T.R., D. R. Brown, and S. M. O’Grady. 1993. Effects ofin�ammatory mediators on electrolyte transport across theporcine distal colon epithelium. J Pharmacol Exp Ther264:61–6. Treacy, P. J., G. G. Jamieson, and J. Dent. 1990.Pyloric motor function during emptying of a liquid mealfrom the stomach in the conscious pig. J Physiol422:523–38. Treacy, P. J., G. G. Jamieson, and J. Dent.1994. Pyloric motility and liquid gastric emptying duringbarostatic control of gastric pressure in pigs. J Physiol474:361–6. Treacy, P. J., G. G. Jamiesson, J. Dent, P. G.Devitt, and R. Hedde. 1992. Duodenal intramural nerves incontrol of pyloric motility and gastric emptying. Am JPhysiol 263:G1–5.

Van Ginneken, C., F. Van Meir, G. Sommereyns, S. Sys, andA. Weyns. 1998. Nitric oxide synthase expression inenteric neurons during development in the pig duodenum.Anat Embryol 198:399–408.

Van Ginneken, C., F. Van Meir, S. Sys, and A. Weyns. 2001a.A stereologic description of the changing expression ofconstitutive nitric oxide synthase and heme oxygenase inthe enteric plexuses of the pig small intestine duringdevelopment. J Comp Neurol 437:118–28.

Van Ginneken, C., F. Van Meir, S. Sys, and A. Weyns. 2001b.Developmental changes in heme-oxygenase-2 andbNOSexpression in enteric neurons in the pig duodenum. AutonNeurosci Basic Clin 91:16–25.

Van Ginneken, C., F. Van Meir, S. Sys, and A. Weyns. 2002a.Stereologic characteristics of pig small intestine duringnormal development. Dig Dis Sci 47:868–78.

Van Ginneken, C., K. Verlinden, F. Van Meir, S. Sys, and A.Weyns. 2002b. A stereologic evaluation of glucagon-likepeptide-1 (GLP-1) mucosal cells in the small intestine ofthe developing pig. Anat Embryol 205:153–7.

Van Ginneken, C. and A. Weyns. 2004. A stereologicevaluation of secretin and gastric inhibitorypeptide-containing mucosal cells of the perinatal smallintestine of the pig. J Anat 205:267–75.

Varel, V. H. 1987. Activity of ¢ber-degradingmicroorganisms in the pig large intestine. J Anim Sci65:488–96.

Varel, V. H. and W. G. Pond. 1992. Characteristics of a newcellulolytic Clostridium sp. isolated from pig intestinaltract. Appl Environ Microbiol 58:1645–59.

Varel, V. H. and J. T. Yen. 1997. Microbial perspective on¢ber utilization by swine. J Anim Sci 75:2715–22.

Varum, F. J. O., F. Veiga, J. S. Sousa, and A. W. Basit.2010. An investigation into the role of mucus thickness onmucoadhesion in the gastrointestinal tract of pig. Eur JPharm Sci 40:335–41.

Vega, Y. M., A. A. Puchal, and R. K. Buddington. 1992.Intestinal amino acid and monosaccharide transport insuckling pigs fed replacers with different sources ofcarbohydrate. J Nutr 122:2430–9.

von Rosenvinge, E. C. and J.-P. Raufman. 2010.Gastrointestinal peptides and regulation of gastric acidsecretion. Curr Opin Endocrinol Dieabetes Obes 17:40–3.

Wang, W., W. Gu, X. Tang, M. Geng, M. Fan, T. Li, W. Chu,C. Shi, R. Huang, H. Zhang, and Y. Yin. 2009. Molecularcloning, tissue distribution and ontogenetic expression ofthe amino acid transporter b 0,+ cDNA in the smallintestine of Tibetan suckline piglets. Comp BiochemPhysiol 154:157–64.

Weber, E. and H. J. Erhlein. 1998. Relationships betweengastric emptying and intetial absorption of nutrients andenergy in minipigs. Dig Dis and Sci 43:1141–53.

Wettergren, A., M. Wøjdemann, and J. J. Holst. 1998.Glucagon-like peptide-1 inhibits gastropancreatic functionby inhibiting central parasympathetic out�ow. Am J Physiol275:G984–92.

Wierup, N., M. Björkvist, B. Weström, S. Pierzynowski, F.Sundler, and K. Sjölund. 2007. Ghrelin and motilin arecosecreted from a prominent endocrine cell population inthe small intestine. J Clin Endocrinol Metab 92:3573–81.Wilfart, A., L. Montagne, H. Simmins, J. Noblet, and J. vanMilgen. 2007. Digesta transit in different segments of thegastrointestinal tract of pigs as affected by insoluble¢bre supplied by wheat bran. Br J Nutr 98:54–62. Willing,B. P. and A. G. Van Kessel. 2007. Enterocyte proliferationand apoptosis in the cuadal small intestine is in�uenced bythe composition of colonizing commensal bacterial in theneonatal gnotobiotic pig. J Anim Sci 85:3256–66. Winckler,C., G. Breves, M. Boll, and H. Daniel. 1999.Characteristics of dipeptide transport in pig jejunum invitro. J Comp Physiol B 169:495–500. Wood, A. K. and D. E.Kidder. 1982. Radiologic observations of gastric mixingand emptying of food in growing pigs. Am J Vet Res43:1401–8. Wooding, F. B., M. W. Smith, and H. Craig. 1978.The ultrastructure of the neonatal pig colon. Am J Anat152:269–85. Xu, R. J. and P. D. Cranwell. 1990. Developmentof gastric acid secretion in pigs from birth to thirty sixdays of age: The response to pentagastrin. J Dev Physiol13:315–26. Xu, R. J. and P. D. Cranwell. 1991. Gastrin infetal and neonatal pigs. Comp Biochem Physiol B 98:615–21.Xu, R. J. and P. D. Cranwell. 1992. Gastrin metabolism inneonatal pigs and grower-pigs. Comp Biochem Physiol A CompPhysiol 10:177–82. Xu, R. J., D. J. Mellor, P.Tungthanatanich, M. J. Birtles, G. W. Reynolds, and H. V.Simpson. 1992a. Growth and morphological changes in thesmall and large intestine in piglets during the ¢rst threedays after birth. J Dev Physiol 18:161–72. Xu, R. J., P.Tungthanatanich, M. J. Birtles, D. J. Mellor, G. W.Reynolds, and H. V. Simpson. 1992b. Growth andmorphological changes in the stomach of newborn pigs duringthe ¢rst three days after birth. J Dev Physiol 17:7–14.Yin, Q. and Q. Zheng. 2005. Isolation and identi¢cation ofthe dominant Lactobacillus in gut and faeces of pigs usingcarbohydrate fermentation and 16S rDNA analysis. J BiosciBioeng 99:68–71. Zabielski, R., M. M. Godlewski, and P.Guilloteau. 2008. Control of development ofgastrointestinal system in neonates. J Physiol Pharmacol59:35–54. Zhang, H., C. Malo, C. R. Boyle, and R. K.Buddington. 1998. Diet in�uences development of the pig(Sus scrofa) intestine during the ¢rst 6 hours after birth.

J Nutr 128:1302–10. Zhang, H., C. Malo, and R. K.Buddington. 1997. Suckling induces rapid intestinal growthand changes in brush border digestive functions of newbornpigs. J Nutr 127:418–26. Zhang, H., T. Zhang, T. Wang, andK. Teng. 2009. Immunohistochemical location of serotoninand serotonin 2B receptor in the small intestine of pigs.Acta Histochem 111:35–41. Zhao, D. and C. Pothoulakis.2006. Effects of NT on gastrointestinal motility andsecretion, and role in intestinal in�ammation. Peptides27:2434–44.

14 Chapter 14: Heart and Cardiotoxicity

Haschek, W. M., Beasley, V. R., Buck, W. B., and Finnell,J. H., 1989. Cottonseed meal (gossypol) toxicosis in aswine herd. J Am Vet Med Assoc, 195(5):613–15.

Herman, E. H., Ferrans, V. J., Young, R. S., and Balazs,T., 1988. Examination of minoxidil-induced acutecardiotoxicity in miniature swine. Toxicology,48(1):41–51.

Herman, E. H., Ferrans, V. J., Young, R. S., and Balazs,T., 1989. A comparative study of minoxidil-inducedmyocardial lesions in beagle dogs and miniature swine.Toxicol Pathol, 17(1 Pt 2):182–92.

Hill, G. M., Ku, P. K., Miller, E. R., Ullrey, D. E.,Losty, T. A., and O’Dell, B. L., 1983. A copper de¢ciencyin neonatal pigs induced by a high zinc maternal diet. JNutr, 113(4):867–72.

Hystad, M. E., Klinge, R., Spurkland, A., Attramadal, H.,and Hall C., 2000. Contrasting cardiac regional responsesof A-type and B-type natriuretic peptide to experimentalchronic heart failure. Scand J Clin Lab Invest,60(4):299–309.

Ji, X., Takahashi, R., Hiura, Y., Hirokawa, G., Fukushima,Y., and Iwai, N., 2009. Plasma miR-208 as a biomarker ofmyocardial injury. Clin Chem, 55(11):1944–9.

Kano, M., Toyoshi, T., Iwasaki, S., Kato, M., Shimizu, M.,and Ota, T., 2005. QT PRODACT: Usability of miniature pigsin safety pharmacology studies: Assessment fordrug-induced QT interval prolongation. J Pharmacol Sci,99(5):501–11.

Lee, M. Y., Lee, S. H., Lee, S. G., Park, S. H., Lee, C.Y., Kim, K. H., et al., 2007. Comparative analysis ofheart functions in micropigs and conventional pigs usingechocardiography and radiography. J Vet Sci, 8(1):7–14.

Lu, L., Zhang, Q., Pu, L. J., Peng, W. H, Yan, X. X., Wang,L. J., et al., 2008. Dysregulation of matrixmetalloproteinases and their tissue inhibitors is relatedto abnormality of left ventricular geometry and function instreptozotocin-induced diabetic minipigs. Int J ExpPathol, 89(2):125–37.

Markert, M., Klumpp, A., Trautmann, T., Mayer, K., Stubhan,

M., and Guth, B., 2007. The value added by measuringmyocardial contractility ‘in vivo’ in safetypharmacological pro¢ling of drug candidates. J PharmacolToxicol Methods, 56(2):203–11.

Markert, M., Stubhan, M., Mayer, K., Trautmann, T., Klumpp,A., Schuler-Metz, A., et al., 2009. Validation of thenormal, freely moving Göttingen minipig forpharmacological safety testing. J Pharmacol ToxicolMethods, 60(1):79–87.

O’Brien, P. J., Smith, D. E., Knechtel, T. J., Marchak, M.A., Pruimboom-Brees, I., Brees, D. J., et al., 2006.Cardiac troponin I is a sensitive, speci¢c biomarker ofcardiac injury in laboratory animals. Lab Anim,40(2):153–71.

Perna, A. M., Masini, E., Nistri, S., Briganti, V.,Chiappini, L., Stefano, P., et al., 2005. Novel drugdevelopment opportunity for relaxin in acute myocardialinfarction: Evidences from a swine model. FASEB J,19(11):1525–7.

Reddy, A. M., Zheng, Y., Jagadeeswaran, G., Macmil, S. L.,Graham, W. B., Roe, B. A., et al., 2009. Cloning,characterization and expression analysis of porcinemicroRNAs. BMC Genom, 10:65.

Reichenbach, D. D., and Benditt, E. P., 1970.Catecholamines and cardiomyopathy; the pathogenesis andpotential importance of myo¢brillar degeneration. HumPathol, 1:125–50.

Seifert, C. F., Nesser, M. E., and Thompson, D. F., 1994.Dexrazoxane in the prevention of doxorubicin-inducedcardiotoxicity. Ann Pharmacother, 28(9):1063–72. Smith, G.W., Constable, P. D., Bacon, C. W., Meredith, F. I., andHaschek, W. M., 1996. Cardiovascular effects of fumonisinsin swine. Fundam Appl Toxicol, 31(2):169–72. Torrado, M.,López, E., Centeno, A., Medrano, C., Castro-Beiras, A.,and Mikhailov, A. T., 2003. Myocardin mRNA is augmented inthe failing myocardium: Expression pro¢ling in the porcinemodel and human dilated cardiomyopathy. J Mol Med,81(9):566–77. Turk, J. R., 2000. Reference Point.Physiologic and patho physiologic effects of natriureticpeptides: Implications in cardiopulmonary disease. J Am VetMed Assoc, 216(12):1970–6. Vadlamudi, R. K., McCormick, R.J., Medeiros, D. M., Vossoughi, J., and Failla, M. L.,1993. Copper de¢ciency alters collagen types and covalentcross-linking in swine myocardium and cardiac valves. Am J

Physiol, 264(6 Pt 2):H2154–61. Van Gelder, G. A., Buck, W.B., Osweiler, G. D., and Stahr, H. M., 1972. Researchactivities of a veterinary toxicology laboratory. ClinToxicol, 5(2):271–81. Van Vleet, J. F., Boon, G. D., andFerrans, V. J., 1981. Induction of lesions ofselenium-vitamin E de¢ciency in weanling swine fed silver,cobalt, tellurium, zinc, cadmium, and vanadium. Am J VetRes, 42(5):789–99. Van Vleet, J. F., Herman, E. H., andFerrans, V. J., 1984. Cardiac morphologic alterations inacute minoxidil cardiotoxicity in miniature swine. Exp MolPathol, 41(1):10–25. Van Vleet, J. F., and Ferrans, V. J.,1986. Myocardial diseases of animals. Am J Pathol,124(1):98–178. Van Vleet, J. F., Runnels, L. J., Cook, J.R. Jr, and Scheidt, A. B., 1987. Monensin toxicosis inswine: Potentiation by tiamulin administration andameliorative effect of treatment with selenium and/orvitamin E. Am J Vet Res, 48(10):1520–4. Vick, J., Joseph,X., Whitehurst, V., Herman, E., and Balazs, T., 1989.Cardiotoxic effects of the combined use of caffeine andisoproterenol in the minipig. J Toxicol Environ Health,26(4):425–35. Vikenes, K., Westby, J., Matre, K., Kuiper,K. K., Farstad, M., and Nordrehaug, J. E., 2002. Releaseof cardiac troponin I after temporally graded acutecoronary ischaemia with electro cardiographic STdepression. Int J Cardiol, 85(2–3):243–51. Vadlamudi, R.K., McCormick, R. J., Medeiros, D. M., Vossoughi, J., andFailla, M. L., 1993. Copper de¢ciency alters collagentypes and covalent cross-linking in swine myocardium andcardiac valves. Am J Physiol, 264(6 Pt 2):H2154–61. Wang,G. K., Zhu, J. K., Zhang, J. T. Li, Q., Li, Y., He, J.,et al., 2010. Circulating microRNA: A novel potentialbiomarker for early diagnosis of acute myocardialinfarction in humans. Eur Heart J, 31(6):659–66. Wildman,R. E., Medeiros, D. M., Hamlin, R. L., Stills, H., Jones,D. A., and Bonagura, J. D., 1996. Aspects of cardiomyopathy in copper-de¢cient pigs. Electrocardiography,echocardiography, and ultrastructural ¢ndings. Biol TraceElem Res, 55(1–2):55–70. Wisialowski, T., Crimin, K.,Engtrakul, J., O’Donnell, J., Fermini, B., and Fossa, A.A., 2006. Differentiation of arrhythmia risk of theantibacterials moxi�oxacin, erythromycin, andtelithromycin based on analysis of monophasic actionpotential duration alternans and cardiac instability. JPharmacol Exp Ther, 318(1):352–9.

15 Chapter 15: Central and PeripheralNervous Systems

Arnfred, S.M., Lind, N.M., Hansen, A.K., and Hemmingsen,R.P. 2004. Pre-pulse inhibition of the acoustic startleeye-blink in the Göttingen minipig. Behavioural brainresearch 151(1–2):295–301.

Arts, J. A. 2007. Modi�ed holeboard test for pigs.Presentation at the Johnson & Johnson Juvenile ToxicitySymposium in Beerse, Belgium, November, pp. 29–30.

Barlow, S.M., Greig, J.B., Carere, A., Carpy, A.J.M.,Galli, C.L., Kleiner, J., Knudsen, I. et al., 2002. Hazardidenti¢cation by methods of animal-based toxicology. Foodand Chemical Toxicology 40:145–91.

Bjarkam, C.R., Nielsen, M.S., Glud, A.N., and Rosendal, F.2008. Neuromodulation in minipig MPTP model of Parkisondisease. British Journal of Neurosurgery. 22(suppl.1):S9–S12.

Bollen, P., Hansen, A.K., and Rasmussen, H.J. 2000. Thelaboratory Swine., Boca Raton, FL, USA: CRC Press.

Bolon, B., Anthony, D.C., Butt, M., Dorman, D., Green,M.V., Little, P.B., Valentine, W.M., Weinstock, D., Yan,J., and Sills, R.C. 2008. “Current pathology techniques”Symposium review: Advances and issues in neuropathology.Toxicologic Pathology 36:871–89.

Borsook, D., Becerra, L., and Hargreaves, R. 2006. A rolefor fMRI in optimising CNS drug development. NatureReviews Drug Discovery. Advance Online Publication.

Bucci, T.J. 2002. Basic Techniques. In Haschek, W.M.,Rousseaux, C.G., Wallig, M.A (eds), Handbook ofToxicologic Pathology. 2nd edition. San Diego, New York,Boston: Academic Press. Chapter 8.

Cammermeier, J. 1968. Nonspeci¢c changes of the centralnervous system in normal and experimental material. InBourne, G.H. (ed), The Structure and Function of NervousTissue, Vol. 6, pp. 131–251, New York: Academic Press.

Cumming, P., Møller, M., Benda, K., Minuzzi, L., Jakobsen,S., Jensen, S.B., Pakkenberg, B., et al., 2007. A PETstudy on effects of chronic3,4-methylenedioxymethamphetamine (MMDA, “Ecstasy”) onserotonin markers in Göttingen minipig brain. SYNAPSE.

61:478–87.

CPMP/SWP/1042/99. 2000. Committee for proprietary medicinalproducts. Note for guidance on repeated dose toxicity.EMEA.

Depoortére, R., Barret-Grévoz, C., Bardin, L., andNewmanTrancredi, A. 2008. Apomorphine-induced emesis indogs: Differential sensitivity to established and noveldopamine D 2 /5-HT 1A antipsychotic compounds. EuropeanJournal of Pharmacology. 597:34–8.

Dorman, D.C. 2000. An integrative approach toneurotoxicology. Toxicological Pathology. 28(1):37–42.Dorman, D.C., Brenneman, K.A., and Bolon, B. 2002. Nervoussystem. In Haschek, W.M., Rousseaux, C.G., Wallig, M.A.(eds), Handbook of Toxicologic Pathology. 2nd edition. SanDiego: Academic Press. Chapter 37. Easter, A., Bell, M.E.,Damewood Jr, J.R., Redfern, W.S., Valentin, J.-P., Winter,M.J., Fonck, C., and Bialecki, R.A. 2009. Approaches toseizure risk assessment in preclinical drug discovery.Drug Discovery Today. 14(17/18):876–84.EMEA/CHMP/SWP/169215/2005. 2008. Guideline on the need fornon-clinical testing in juvenile animals of pharmaceuticalsfor paediatric indications. European Medicines Agency.Ferguson, S.A., Gopee, N.V., Paule, M.G., and Howard, P.C.2009. Female mini-pig performance of temporal responsedifferentiation, incremental repeated acquisition, andprogressive ration operant tasks. Behavioural Processes80:28–34. Fix, A.S, Garman, R.H. 2000. Practical Aspects ofneuropathology: A technical guide for working with thenervous system. Toxicologic Pathology 28:122–31. Garman,R.H. 2003. Evaluation of large-sized brains for neurotoxicendpoints. Toxicologic Pathology 31:32–43. Jelsing, J.,Olsen, A.K., Cumming, P., Gjedde, A., Hansen, A.K.,Arnfred, S., Hemmingsen, R., and Pakkenberg, B. 2005. Avolumetric screening procedure for the Göttingen minipig.Experimental Brain Research 162:428–35. Jelsing, J.,Nielsen, R., Olsen, A.K., Grand N., Hemmingsen, R., andPakkenberg B. 2006a. The postnatal development ofneocortical neurons and glial cells in the Göttingenminipig and the domestic pig brain. The Journal ofExperimental Biology 209:1454–62. Jelsing, J.,Hay-Schmidt, A., Dyrby, T., Hemmingsen, R., Uylings,H.B.M., and Pakkenberg B. 2006b. The prefrontal cortex inthe Göttingen minipig brain de¢ned by neural projectioncriteria and cytoarchitecture. Brain Research Bulletin70:322–36. Jelsing, J., Gundersen, H.J.G., Nielsen, R.,Hemmingsen, R., and Pakkenberg B. 2006c. The postnataldevelopment of cerebellar Pyrkinje cells in the Göttingen

minipig estimated with a new stereological samplingtechnique—The vertical bar fractionator. Journal of Anatomy209:321–31. Jørgensen, A.L. and Holm, I.E. 2009. ClonedAlzheimer’s model in Göttingen minipigs. Newsletter 32,Autumn 2009, Ellegaard Göttingen Minipigs A/S. Denmark.Data presented at the Opening of Barrier 3, EllegaardGöttingen Minipigs A/S, 12th June 2009. Kornum, B.R.,Lind, N.M., Gillings, N., Marner, L., Andersen, F., andKnudsen, G.M. 2009. Evaluation of the novel 5-HT 4 receptorPET ligand [ 11 C]SB207145 in the Göttingen minipig.Journal of cerebral blood «ow & metabolism 29:186–96.Larsen, M., Bjarkam, C., Østergaard, K., West, M., andSørensen, J. 2004. The anatomy of the porcine subthalamicnucleus evaluated with immunohistochemistry anddesign-based stereology. Anatomy and Embryology. 208:239–47. Lind, N.M., Gjedde, A., Moustgaard, A., Olsen,Aa.K., Jensen, S.B., Jakobsen, S., Arnfred, S.M., Hansen,A.K., Hemmingsen, R.P., and Cumming, P. 2005a. Behaviouralresponse to novelty correlated with dopamine receptoravailability in striatum of Göttingen minipigs.Behavioural Brain Research 164:172–7. Lind, N.M., Arnfred,S.M., Hemmingsen, R.P., Hansen, A.K., and Jensen, K.H.2005b. Open ¢eld behaviour and reaction to novelty inGöttingen minipigs: Effects on amphetamine andhaloperidol. Scandinavian Journal of Laboratory AnimalSciences 32(2):103–12.

Lind N.M., Moustgaard, A., Jelsing, J., Vajta, G., Cumming,P., and Hansen, A.K. 2007. The use of pigs inneuroscience: Modeling brain disorders. Neuroscience &Behavioural Reviews 31(5):728–51.

Mikkelsen, M., Møller, A., Jensen, L.H., Pedersen, A., BergHarajehi, J., and Pakkenberg, H. 1999. MPTP-inducedParkinsonism in minipigs: A behavioural, biomedical andhistological study. Neurotoxicology and Teratology 21(2):169–75.

Moser, V.C., Ascher, M., Richardson, R.J., and Philbert,M.A. 2008. Toxic responses of the nervous system. InKlaassen. C.D (eds), Toxicology: The Basic Science ofPoisons. 7th edition. New York: McGraw-Hill, Chapter 16.

Moustgaard, A., Arnfred, S.M., Lind, N.M., Hemmingsen, R.,and Hansen, A.K. 2005. Acquisition of visually guidedconditional associative tasks in Göttingen minipigs.Behavioural Processed 68:97–102.

Nielsen, M.S., Sørensen J.C., and Bjarkam C.R. 2009. Thesubstantia nigra pars compacta of the GÜttingen minipig: an

anatomical and stereological study. Brain Structure &Function 213:481–8.

Orlowska-Majdak, M. 2004. Microdialysis of the brainstructures: application in behavioural research onvasopressin and oxytocin. Acta NeurobiologiaeExperimentalis 64:177–88.

Paule, M.G., Chelonis, J.J., Buffalo, E.A., Blake, D.J.,and Casey, P.H. 1999. Operant test battery performance inchildren: Correlation with IQ. Neurotoxicology andTeratology 21(3): 223–30.

Rasmussen, A.D., Nelson, J., Chellman, G., Golub, M., andMcAnulty, P.A. 2007. Use of barusiban in a novel studydesign for evaluation of tocolytic agents in pregnant andneonatal monkeys, including behavioural and immunologicalendpoints. Reproductive Toxicology 23:471–9.

Rosendal, F., Pedersen, M., Sangill, R.,Stødkilde-Jørgensen, H., Nielsen, M.S., Bjarkam, C.R., andSørensen, J.C. 2009a. MRI protocol for in vivovisualization of the Göttingen minipig brain improvestargeting in experimental functional neurosurgery. BrainResearch Bulletin 79:41–5. Rosendal, F., Frandsen, J.,Chakravarty, M.M., Bjarkam, C.R., Pedersen, M., Sangill,R., and Sørensen, J.C. 2009b. New surgical techniquesreduces the susceptibility artefact at airtissue interfaceson in vivo cerebral MRI in the Göttingen minipig. BrainResearch Bulletin 80:403–7. Saxena, A., Sun, W., Dabisch,P.A., Hulet, S.W., Hastings, N.B., Jakubowski, E.M.,Mioduszewski, R.J., and Doctor, B.P. 2008. Ef¢cacy ofhuman serum butyrylcholinesterase against sarin vapor.Chemico-Biological Interactions 175:267–72. Skytte, C. andSøeborg, H. 2009. Convulsions in minipigs. Newsletter 32,Autumn 2009, Ellegaard Göttingen Minipigs A/S. Denmark.Data presented at the Opening of Barrier 3, EllegaardGöttingen Minipigs A/S, June 12, 2009. Switzer, R.C.I.2000. Application of silver degeneration stains toneurotoxicity testing. Toxicologic Pathology 28:70–83.Syvänen, S., Lindhe, Ö., Palner, M., Kornum, B.R., Rahman,O., Långström, B., Knudsen, G.M., and Hammarlund-Udenaes,M. 2009. Species differences in blood-brain barriertransport of three position emission tomographyradioligands with emphasis on p-glycoprotein transport. TheAmerican Society for Pharmacology and ExperimentalTherapeutics 37:635–43. Vezina, M., Patel, A., and Wise, S.2009. Short-term EEG recording in conscious Göttingenminipigs as an alternative to nonhuman primates and dogs.Journal of Pharmacological and Toxicological Methods

60(2):232. Watanabe, H., Andersen, F., Simonsen, C.Z.,Evans, S.M., Gjedde, A., and Cumming, P. 2001. MR-basedstatistical atlas of the Göttingen minipig brain.NeuroImage 14:1089–96. Wood, S.L., Beyer, B.K., and Cappon,G.D. 2003. Species comparison of postnatal CNS development:Functional measures. Birth Defects Research Part B68:391–407. Yoshikawa, T., Yoshida, N., and Oka, M. 2001.The broad-spectrum anti-emetic activity of AS-8112, anovel domamine D 2 , D 3 and 5-HT 3 receptor antagonist.British Journal of Pharmacology 133:253–60.

16 Chapter 16: The Kidney

Coulthard, M.G., Flecknell, P., Orr, H. et al., 2002. Renalscarring caused by vesicoureteric re�ux and urinaryinfection: A study in pigs. Pediatr Nephrol 17: 481–4.

Dalmose, A.L., Hvistendahl, J.J., Olsen, L.H. et al., 2000.Surgically induced urologic models in swine. J Invest Surg13: 133–45.

Dekel, B., Buracova, T., Arditti, F.D. et al., 2002. Humanand porcine early kidney precursors as a new source fortransplantation. Nat Med 9: 53–60.

Elashry, O.M., Wolf, J.S., Rayala, H.J. et al., 1997.Recent advances in laparoscopic partial nephrectomy:Comparative study of electrosurgical snare electrode andultrasound dissection. J Endourol 11: 15–22.

EMEA 2005. Pramipexole. Product Names: Mirapexin & Sifrol.

EMEA/H/C/169/X/38 and EMEA/H/C/255/X/39. 2007. RivastigmineScienti�c Discussions. Product Names: Exelon (London,September 17, 2007) & Prometax (London, September 25,2007).

EMEA/465248/2008. CHMP Assessment Report for Protopic(INN: Tacrolimus). London, February 26, 2009.

EMEA/533232/2009. CHMP Assessment Report for A¢nitor (INN:Everolimus). London, May 29, 2009.

Figenshau, R.S., Clayman, R.V., McDougall, E.M. et al.,1994. Laparoscopic creation of ureteropelvic junctionobstruction in the porcine animal model (abstract). JEndoural 8: S50.

Fink-Gremmels, J. 1999. Mycotoxins: Their implications forhuman and animal health. Vet Q 21: 115–20.

Friedman, L., Gaines, D.W., Newell, R.F. et al., 1995.Growth patterns in selected organs of the miniature swineas determined by gross macromolecular composition. J AnimSci 73: 1340–50.

Friis, C. 1983. Renal excretion of drugs during postnataldevelopment in piglets. Vet Res Commun 7: 349–52.

Gaines, D.W., Friedman, L., Newell, R.F. et al., 1994.Ornithine decarboxylase, fatty acid synthetase, and lipid

levels in selected organs of the postnatal developing maleminature pig. Lab Anim 28: 380–6.

Gallentine, M.L. and Harmon, W.J. 2001. Ureteralsubstitution with a stapled neoureter: A simpli¢ed Boari�ap. J Urol 166: 1869–72.

Green¢eld, S.P., Lewis III, W., Perry, B. et al., 1995.Regional renal blood �ow measurements using radioactivemicrospheres in a chronic porcine model with unilateralvesicoureteral re�ux. J Urol 154: 816–19.

Grøn, M.C., Kristensen, D.H., Cibulskyte, D. et al., 2006.Changes in renal dimensions evaluated by magneticresonance imaging and ultrasonography during long-termciclosporin—A treatment. Acta Radiol 47: 58–64.

Halsted, C.H., Villanueva, J., Chandler, C.J. et al.,1993. Centrilobular distribution of acetaldehyde andcollagen in the ethanol-fed micropig. Alchol Clin Exp Res25: 415–20.

Hama, T., Okada, M., Kojima, K. et al., 1982. Puri¢cationof dipeptidyl-aminopeptidase IV from human kidney by antidipeptidyl-aminopeptidase IV af¢nity chromatography. MolCell Biochem 43: 35–42.

Herrera, B., Eisenberg, G., Desco, M.M. et al., 2000.Perfusate lactate dehydrogenase level and intrarenalresistence could not be adequate markers of perfusionquality during isolated kidney perfusion. Artif Organs 24:899–918.

Kawarasaki, T., Uchiyama, K., Hirao, A. et al., 2009.Pro¢le of new green �uorescent protein transgenic Jinhuapigs as an imaging source. J Biomed Opt 14: 054017. Khan,M.A. 1984. Minipig: Advantages and disadvantages as amodel in toxicity testing. J Am Coll Toxicol 3: 337–42.Kissmeyer, A.-M. and Mortensen, J.T. 2000. Pharmacokineticsand metabolism of a vitamin D analogue (Seocalcitol) inrat and minipig. Xenobiotica 30: 815–30. Lifshitz, D.A.,Beck, S.D.W., Barret, E. et al., 2001. Laparoscopictransverse hemicystectomy with ileocystoplasty in a porcinemodel. J Endourol 15: 199–203. Lledó-Garcia, E.,Hernández-Fernández, C., Diez-Cordero, J.H. et al., 2003.Hydrodynamic and biochemical effects of isolatedhypothermic renal perfusion depending on the pump modeland perfusion solution. Transplant Proc 35: 1661–3. Lozano,F.S., López-Novoa, J.M., Rodriguez, J.M. et al., 2005.Exogenous nitric oxide modulates the systemic in�ammatory

response and improves kidney function after risk-situationabdominal aortic surgery. J Vasc Surg 42: 129–39. Marini,C.P., Russo, G.C., Nathan, I.M. et al., 2000. Effect ofhematocrit on regional oxygen delivery and extraction in anadult respiratory distress syndrome animal model. Am J Surg180: 108–14. Marquardt, R.R. and Frohlich, A.A. 1992. Areview of recent advances in understanding ochratoxicosis.J Anim Sci 70: 3968–88. Marr, B., Wright, K.C., Carrasco,C.H. et al., 1997. Experimental evaluation of a new devicefor percutaneous transrenal ureteral occlusion. J VascInterv Radiol 8: 775–80. McDougall, E.M., Elashry, O.M.,Clayman, R.V. et al., 1997. Laparoscopic pyeloplasty inthe animal model. J Soc Laparoendosc Surg 1: 113–18.Nakada, S.Y., Soble, J.J., Gardner, S.M. et al., 1996.Comparison of Acucise endopyelotomy and endoballoonrupture for management of secondary proximal ureteralstricture in the porcine model. J Endourol 10: 312–18.Nielsen, T.W., Maaske, C.A., Booth, N.H. 1969. Somecomparative aspects of porcine renal function. In L.K.Bustad and R.O. McClellan (eds.), Swine in BiomedicalResearch, pp. 529– 36. Seattle, WA: Paci¢c NorthwestLaboratory. Olsen, L.H., Dalmose, A.L., Swindle, M.M.et al., 2001. Male fetal pig lower urinary tract functionin mid second and early third trimester of gestation. JUrol 165: 2331–4. Olweny, E.O., Portis, A.J., Sundaram,C.P. et al., 2000. Evaluation of a chronic indwellingprototype mesh ureteral stent in a porcine model. Urology56: 857–62. Ozono, R., Wang, Z.Q., Moore, A.F. et al.,1997. Expression of the subtype 2 angiotensin (AT2)receptor protein in rat kidney. Hypertension 30: 1238–46.Paltiel, H.J., Mulkern, R.V., Perez-Atayde, A. et al.,2000. Effect of chronic low pressure, sterilevesicoureteral re�ux on renal growth and function in aporcine model: A radiologic and pathologic study.Radiology 217: 507–15. Paterson, R.F., Barret, E.,Siqueira, T.M. et al., 2003. Laparoscopic partial kidneyablation with high intensity focused ultrasound. J Urol169: 347–51. Ransley, P.G. and Risdon, R.A. 1978. Re�ux andrenal scarring. Br J Radiol (Suppl)14:1–35. Ransley, P.G.,Risdon, R.A., and Godley, 1984. High pressuresterile vesicoureteral re�ux and renal scarring: Anexperimental study in the pig and minipig. Contrib Nephrol39: 320–43. Rossi, R.M., Kist, T., Wurster, U. et al.,1994. Estimation of ifosfadmide/cisplatinum-induced renaltoxicity by urinary protein analysis. Pediatr Nephrol 8:151–6.

Sansing, G.A., Lillihoj, E.B. and Detroy, R.W. 1976.Synergistic toxic effect of citrinin, ochratoxin A andpenicillic acid in mice. Toxicon 14: 213–20.

Schieber, A. and Ghisla, S. 1992. Prostaglandin9-ketoreductase from pig and human kidney: Puri¢cation,properties and identity with human carbonyl reductase.Eicosanoids 5: 37–8.

Shah, G., Azizian, M., Bruch, D. et al., 2004.Cross-species comparison of gene expression between humanand porcine tissue, using single microarrayplatform—Preliminary results. Clin Transplan 18: 76–80.

Siskin, G.P., Dowling, K., Virmani, R. et al., 2003.Pathologic evaluation of a spherical polyvinyl alcoholembolic agent in a porcine renal model. J Vasc IntervRadiol 14: 89–98.

Soucek, P., Zuber, R., Anzenbacherova, E. et al., 2001.Minipig cytochrome P450 3A, 2A and 2C enzymes have similarproperties to human analogs. BMC Pharmacol 1: 11–15.

Stamp�, S., Stamp�, U., Rehnitz, C. et al., 2007.Experimental evaluation of early and long-term effects ofmicroparticle embolization in two different mini-pigmodels. Part 1: Kidney. Cardiovasc Interv Radiol 30:257–67.

Stamp�, S., Stamp�, U., Bellemann, N. et al., 2008a.Biocompatability and recanalisation characterisitics ofhydrogel microspheres with Polyzene-F as polymer coating.Cardiovasc Interv Radiol 31: 799–806.

Stamp�, S., Bellemann, N., Stamp�, U. et al., 2008b.In�ammation and recanalization of four different sphericalembolization agents in the porcine kidney model. J VascInterv Radiol 19: 577–86.

Stamp�, S., Stamp�, U., Bellemann, N. et al., 2009.Immunohistochemical characterization of speci¢c in�ammatorytissue reactions following embolization with four differentspherical agents in the minipig kidney model. J Vasc IntervRadiol 20: 936–45. Suarez, C.A., Guerrero, A.A., Musil, G.et al., 1968. Renal function and nephron structure in theminiature pig. Am J Vet Res 29: 995–1007. Sun, X., Zhang,L., Cheng, J. et al., 2004. Study of renal functionmatching between Banna minipig inbred line and human.Transplant Proc 36: 2488–9. Swindle, M.M. and Smith. A.C.1998. Comparative anatomy and physiology of the pig. ScandJ Lab Anim Sci 25 (Suppl 1): 11–21. Swindle, M.M. andSmith, A.C. 2000. Animal models in biomedical research:Swine. AWIC Resource Series No 11. US Department of

Agriculture, Beltsville, MD: Animal Welfare InformationCenter. Terris, J.M. 1986. Swine as a model in renalphysiology and nephrology: An overview. In M.E. Tumbleson(ed.), Swine in Biomedical Research, (3rd edn), 1673–89.New York, NY: Plenum Press. Villanueva, J., Chandler,C.J., Shimasaki, N. et al., 1994. Effects of ethanolfeeding on liver, kidney and jejunal membranes ofmicropigs. Hepatology 19: 1229–40. Villanueva, J.A.,Devlin, A.M., and Halsted, C.H. 2001. Reduced folatecarrier: Tissue distribution and effects of chronicethanol intake in the micropig. Alcohol Clin Exp Res 25:415–20. Wiederschain, G.Y. and Beyer, E.M. 1977.α-d-Fucosidase activity of human and pig kidney: Aproperty of α-d-galactosidase. Arch Biochem Biophys 182:335–42. Willis, L.R., Evan, A.P., Connors, B.A. et al.,1996. Effects of extracorporeal shock wave lithotripsy toone kidney on bilateral glomerular ¢ltration rate and PAHclearance in minipigs. J Urol 156: 1502–6. Willis, L.R.,Evan, A.P., Connors, B.A. et al., 1997. Effects of SWL onglomerular ¢ltration rate and renal plasma �ow inuninephrectomized minipigs. J Endourol 11: 27–32.

17 Chapter 17: Reproductive SystemIncluding Studies in Juvenile Minipigs

Dantzer, V. 1985. Electron microscopy of the initial stagesof placentation in the pig. Anat Embryol (Berl) 172:281–93.

Diehl, J.R., Lipetz, K.J., Stuart, L.D. et al. 1986. Use ofexogenous gonadotropin and embryo transfer to studyreproductive ef¢ciency in altrenogest synchronizedminiature swine. In Tumbleson, M.E. (ed), Swine inbiomedical research, pp. 135–42. New York, NY: PlenumPress.

Einspanier, A., Jarry, H., Pitzel, L. et al. 1991.Determination of secretion rates in estradiol,progesterone, oxytocin, and angiotensin II from tertiaryfollicles and freshly formed corpora lutea in freelymoving sows. Endocrinology 129:3403–9.

Ellendorff, F., Parvizi, N., Elsaesser, F. et al. 1977. Theminiature pig as an animal model in endocrine andneuroendocrine studies of reproduction. Lab Anim Sci27:822–30.

Elsaesser, F., Parvizi, N., and Ellendorff, F. 1978.Steroid feedback on luteinizing hormone secretion duringsexual maturation in the pig. J Endocr 78:329–42.

EMEA. 2008. Guideline on the need for non-clinical testingin juvenile animals on human pharmaceuticals forpaediatric indications. Ref. EMEA/CHMP/SWP/169215/2008.

European Commission. 2006. Regulation (EC) No 1901/2006 ofthe European Parliament and of the Council of 12 December2006 on medicinal products for paediatric use and amendingRegulation (EEC) No 1768/92, Directive 2001/20/EC,Directive 2001/83/EC and Regulation (EC) No 726/2004.

FDA. 2006. Guidance for industry: Nonclinical safetyevaluation of pediatric drug products. Available atwww.fda.gov/.

Ford, S.P., Schwartz, N.K., Rothschild, M.F. et al. 1988.In�uence of SLA haplotype in preimplantation embryoniccell number in miniature pigs. J Reprod Fertil 84:99–104.

Forsling, M.L., Taverne, M.A.M., Parvizi, N. et al. 1979.Plasma oxytocin and steroid concentrations during latepregnancy, parturition and lactation in the miniature pig.J Endocr 82:61–9.

Fungbrant Berggren, K. and Moeller Jensen, M. 2008. TheIncidence of External and Visceral Congenital Malformationsin the GĂśttingen Minipig. Veterinary thesis.

Gad, S.C., Dincer, Z., and Svendsen, O. 2007. The minipig.In Gad, S.C. (ed.), Animal Models in Toxicology, 2ndEdition. New York, NY: CRC Taylor & Francis.

Glodek, P. 1986. Breeding program and population standardsof the Göttingen miniature swine. In Tumbleson, M.E.(ed.), Swine in Biomedical Research, pp. 23–8. New York,NY: Plenum Press.

Goodrich, J.A., Clarkson, T.B., Cline, J.M. et al. 2003.Value of the micropig model of menopause in the assessmentof bene¢ts and risks of postmenopausal therapies forcardiovascular and reproductive tissues. Fertil Steril 79Suppl 1:779–88.

Grote, W., Schulz, L.-C., Drommer, W. et al. 1977.Überprüfung einer Kombination der Wirkstoffe Cumarin undTroxerutin auf embryotoxische und teratogeneNebenwirkungen und Göttingen Miniaturschweinen.Arzneim-Forsch 27:613–7.

Hamm, B. and Kelâmi, A. 1984. How to increase the motilityof spermatozoa from the epididymis of bulls andalloplastic spermatoceles in minipigs. Andrologia16:26–33.

Hew, K.W. and Keller, K.A 2003. Postnatal anatomical andfunctional development of the heart: A species comparison.Birth Defects Res Part B Dev Reprod Toxicol 68:309–20.

Horand, F., Condevaux, F., Briffaux, J.P., and Phothirath,P. 2008. Phenotypic characterization of lymphocytesubpopulations in the minipig. Prog. no. 2145. ItineraryPlanner. Society of Toxicology, Seattle, WA. Howard,P.K., Chakraborty, P.K., Camp, J.C. et al. 1982. Correlatesof ovarian morphology, estrous behaviour, and cyclicity inan inbred strain of miniature swine. Anat Rec 203:55–65.Howard, P.K., Chakraborty, P.K., Camp, J.C. et al. 1983.Pituitary– ovarian relationships during the estrous cycleand the in�uence of parity in an inbred strain of miniatureswine. J Anim Sci 57:1517–24. ICH Harmonised TripartiteGuideline. 2005. Detection of Toxicity to Reproduction forMedicinal Products & Toxicity to Male Fertility S5(R2).Jørgensen, K.D., Ellegaard, L., Klastrup, S. et al. 1998.Haematological and clinical and chemical values in pregnant

and juvenile Göttingen minipigs. Scan J Lab Anim Sci Suppl25:181–90. Jørgensen, K.D., Kledal, T.J., Svendsen, O. et al. 1997. The Göttingen minipig as a model for studyingeffects on male fertility. Teratology 56:403. Kano, M.,Toyoshi, T., Iwasaki, S. et al. 2005. QT Prodact: Usabilityof miniature pigs in safety pharmacology studies:Assessment for drug-induced QT interval prolongation. JPharmacol Sci 99:501–11. Kawano, N., Shimada, M., andTerada, T. 2004. Motility and penetration competence offrozen-thawed miniature pig spermatozoa are substantiallyaltered by exposure to seminal plasma before freezing.Theriogenology 61:351–64. Kuge, T., Iwata, H., Kuwayama,T. et al. 2006. Induction of estrus by prostaglandin F 2αadministration in the vaginal vestibules of miniaturepigs. J Reprod Dev 52:391–6. Lind, N.M., Moustgaard, A.,and Jelsing, J. 2007. The use of pigs in neuroscience:Modelling brain disorders. Neurosci Biobehav Rev31:728–51. Lindloff, G., Holtz, W., Elsaesser, F. et al.1976. The effect of prostaglandin F 2α on corpus luteumfunction in the Göttingen miniature pig. Biol Reprod15:303–10. Lipetz, K.J., Diehl, J.R., and Stuart, L.D.1989. Interstrain inseminations and embryo transfersbetween the SLA miniature pig and standard crossbred pig.Theriogenology 31:323–9. Lussier, S., Bolte, E.,Bidallier, M. et al. 1977. Cyclic �uctuations of plasmacholesterol in the female miniature swine and itsrelationship to progesterone secretion. Proc Soc Exp BiolMed 154:471–4. McElhatton. 1994. The effects ofbenzodiazepine use during pregnancy and lactation. ReprodToxicol 8:461–75. Mallard, B.A., Wilkie, B.N., Croy, B.A.et al. 1987. In�uence of the swine majorhistocompatability complex on reproductive traits inminiature swine. J Reprod Immunol 12:201–14. McFee, A.F.and Eblen, J.R. 1967. Testicular development in miniatureswine. J Anim Sci 26:772–6. Mortensen, J.T., Brink, P.,and Lichtenberg, J. 1998. The minipig in dermaltoxicology. A literature review. Scand J Lab Anim SciSuppl 25:77–83. National Research Council. 1996. Guide forthe Care and Use of Laboratory Animals, Institute ofLaboratory Animal Resources. Pinkert, C.A. and Murray,K.A. 1993. Superovulation and egg transfer in Yucatanminiature swine. Anim Reprod Sci 31:155–63. Pope, W.F.,Xie, S., Broermann, D.M. et al. 1990. Cases andconsequences of early embryonic diversity in pigs. J ReprodFertil 40:251–60.

Rasmussen, A.D., Nelson, J.K., Chellman, G.J. et al. 2005.Use of barusiban in a novel study design for evaulation oftocolytic agents in pregnant and neonatal monkeys,including behavioural and immunological endpoints. Reprod

Toxicol 23:471–9.

Rothkötter, H.J., Sowa, E., and Pabst, R. 2002. The pig asa model of developmental immunology. Hum Exp Toxicol21:533–6.

Sakairi, A., Tsukise, A., and Meyer, W. 2005.Glycoconjugate histochemistry of the secretory epitheliumlining the seminal vesicles of the miniature pig. ArchHistol Cytol 68:193–204.

Shimatsu, Y., Uchida, M., Niki, R. et al. 2002. Liquidstorage of miniature boar semen. Exp Anim 51:143–7.

Shimatsu, Y., Uchida, M., Niki, R. et al. 2004. Effects ofa synthetic progestogen, altrenogest, on oestrussynchronisation and fertility in miniature pigs. Vet Rec155:633–5.

Smidt, D. and Kather. L. 1975. Untersuchungen zurBeein�ussung der sexuellen Entwicklung bei infantilenweiblichen Göttinger Miniaturschweinen mittelsgonadotroper Homone. Z Versuchstierk 17:4–10.

Taverne, M.A.M., van der Weyden, G.C., Fontijne, P. et al.1977. Uterine position and presentation of minipig-fetusesand their order and presentation at birth. Am J Vet Res38:1761–4.

Taverne, M.A.M., Naaktgeboren, C., Elsaesser, F. et al.1979. Myometrial electrical activity and plasmaconcentrations of progesterone, estrogens and oxytocinduring late pregnancy and parturition in the miniaturepig. Biol Reprod 21:1125–34.

Tumbleson, M.E., Burks, M.F., Spate, M.P. et al. 1970.Serum biochemical and haematological parameters of Sinclair(S-1) miniature sows during gestation and lactation. Can JComp Med 34:312–19. Wakai, T., Tanaka, H., Yamanaka, K.et al. 2008. Induction of estrus in pubertal miniaturegilts. Anim Reprod Sci 103:193–8. Walthall, K., Cappon,G.D., Hurtt, M.E. et al. 2005. Postnatal development of thegastrointestinal system: A species comparison. BirthDefects Res Part B Dev Reprod Toxicol 74:132–56. Weiss,C.F., Glazko, A.J., and Weston, J.K. 1960. Chloramphenicolin the newborn infant: A physiological explanation of itstoxicity when given at excessive doses. N Engl J Med262:787. Wood, S.L., Beyer, B.K., and Cappon, G.D. 2003.Species comparison of postnatal CNS development: Functionalmeasures. Birth Defects Res Part B Dev Reprod Toxicol

68:391–407. Wuttke, W., Spiess, S., Knoke, I. et al. 1998.Synergistic effects of prostaglandin F 2α and tumornecrosis factor to induce luteolysis in the pig. BiolReprod 58:1310–15. Zeng, W.X., Shimada, M., Isobe, N.et al. 2001. Survival of boar spermatozoa frozen indiluents of varying osmolality. Theriogenology 56:447–58.Zoetis, T., Tassinari, M.S., Bagi, C. et al. 2003a. Speciescomparison of postnatal bone growth and development. BirthDefects Res Part B Dev Reprod Toxicol 68:86–110. Zoetis,T. and Hurtt, M.E. 2003b. Species comparison of lungdevelopment. Birth Defects Res Part B Dev Reprod Toxicol68:121–4. Zoetis, T. and Hurtt, M.E. 2003c. Speciescomparison of anatomical and functional renal development.Birth Defects Res Part B Dev Reprod Toxicol 68:111–20.

18 Chapter 18: The Endocrine System

1. Estill, C.T. Current concepts in estrus synchronizationin swine. Proc Am Soc Anim Sci 1999;2000:1–9.

2. Day, B.N., Anderson, L.L., Hazel, L.N., and Melampy,R.M. Synchronization of estrus and ovulation in swine. JAnim Sci 1959;18(3):909–17.

3. Bougnon, C. Les types cellulaires de la pars distalis del’adénohypophyse chez le porc, leurs modi¢cations dansdivers ètats endocriniens: Castration, gestation,lactation. Arch Anat Histol Embryol 1963;47:395–407.

4. Gutte, G. and Seeger, J. Zur Histologie derAdenohypophyse beim Schwein (Sus scrofa dom.). Arch ExpVeterinärmed 1988;42(5):683–92.

5. Ford, J.J., Klindt, J., and Wise, T.H. Endocrinology.In: Pond, W.G., Mersman, H.J., editors. Biology of theDomestic Pig. New York, NY: Cornell University Press;2001, pp. 653–87.

6. Sorensen, M.T., Sejrsen, K., and Purup, S. Mammary glanddevelopment in gilts. Livestock Prod Sci 2002;75:143–8.

7. Farmer, C. and Palin, M.F. Exogenous prolactinstimulates mammary development and alters expression ofprolactinrelated genes in prepubertal gilts. J Anim Sci2005; 83(4):825–32.

8. Farmer, C., Robert, and S., Rushen, J. Bromocriptinegiven orally to periparturient of lactating sows inhibitsmilk production. J Anim Sci 1998;76(3):750–7.

9. Farmer, C., Sorensen, M.T., and Petitclerc, D.Inhibition of prolactin in the last trimester of gestationdecreases mammary gland development in gilts. J Anim Sci2000;78(5):1303–9. 10. Howard, P.K., Chakraborty, P.K.,Camp, J.C., Stuart, L.D., and Wildt, D.E. Correlates ofovarian morphology, estrous behavior, and cyclicity in aninbred strain of miniature swine. Anat Rec1982;203(1):55–65. 11. Holtz, W. and Smidt, D.Fortp�anzung. In: Glodek P and Oldigs B, editors. Berlin:Verlag Paul Parey; 1981. pp. 121–42. 12. Young, K.H.,Kraeling, R.R., and Bazer, F.W. Effect of pregnancy andexogenous ovarian steroids on endometrial prolactinreceptor ontogeny and uterine secretory response in pigs.Biol Reprod 1990;43(4):592–9. 13. Trott, J.F., Horigan,K.C., Gloviczki, J.M., Costa, K.M., Freking, B.A., Farmer,

C. et al. Tissue-speci¢c regulation of porcine prolactinreceptor expression by estrogen, progesterone, andprolactin. J Endocrinol 2009;202(1):153–66. 14. Tellmann,A. Wirkung von Levonorgestrel auf den Ovarialzyklus vonGöttinger Minischweinen. Berlin: Inauguraldissertation;2008. 15. Brussow, K.P., Schneider, F., Tuchscherer, A.,Ratky, J., Kraeling, R.R., and Kanitz, W. Luteinizinghormone release after administration of thegonadotropin-releasing hormone agonist Fertilan(goserelin) for synchronization of ovulation in pigs. JAnim Sci 2007;85(1):129–37. 16. Smidt, D. and Roth, E.Vergleichende Untersuchungen zur Keimdrüsenentwicklung beimännlichen veredelten Landschweinen und Miniaturschweinen.Reprod Domestic Anim 1970;5(2):65–73. 17. Tagliaferro,A.R. and Ronan, A.M. Physiological levels and action ofdehydroepiandrosterone in Yucatan miniature swine. Am JPhysiol Regul Integr Comp Physiol 2001;281(1):R1–R9. 18.Schülke, B. Zur Kenntnis der Funktion der Nebenniererindedes Schweines. Monatsh Veterinarmed 1965;20(17): 703–9.19. Hermansson, V., Cantillana, T., Hovander, L., Bergman,A., Ljungvall, K., Magnusson, U. et al. Pharmacokineticsof the adrenocorticolytic compounds 3-methylsulphonyl-DDEand o,p’-DDD (mitotane) in Minipigs. Cancer ChemotherPharmacol 2008;61(2):267–74. 20. Caylor, H.D. andSchlotthauer, C.F. The thyroid gland of swine. The AnatomRecord 1927;34(5):331–9. 21. Swindle, M.M. and Smith, A.C.editors. Comparative anatomy and physiology of the pig.Scand J Lab Anim Sci 25(Suppl 1):1–10. 22. Wild, P. andSetoguti, T. Mammalian parathyroids: Morphological andfunctional implications. Microsc Res Tech.1995;32(2):120–8. 23. Foster, G.V. Calcitonin. A review ofexperimental and clinical investigations. Postgrad Med J1968;44(511): 411–22. 24. Manzano, H., de Sousa, A.,Soto-Blanco, B., Guerra, J., Maiorka, P., and G+¦rniak, S.Effects of long-term cyanide ingestion by pigs. VeterinaryRes Commun 2007; 31(1):93–104. 25. Sekulic, M.,Sosic-Jujevic, B., Filipovic, B., Nestorovic, N., Negic,N., Stojanoski, M.M. et al. Effect of estradiol andprogesterone on thyroid gland in pigs: A histochemical,stereological, and ultrastructural study. Microsc Res Tech2007;70(1):44–9. 26. Wieczorek, G., Pospischil, A., andPerentes, E. A comparative immunohistochemical study ofpancreatic islets in laboratory animals (rats, dogs,minipigs, nonhuman primates). Exp Toxicol Pathol1998;50(3):151–72.

27. Larsen, M.O., Rolin, B., Wilken, M., Carr, R.D., andGotfredsen, C.F. Measurements of insulin secretory capacityand glucose tolerance to predict pancreatic beta-cell massin vivo in the nicotinamide/streptozotocin Gottingen

minipig, a model of moderate insulin de¢ciency anddiabetes. Diabetes 2003;52(1):118–23. 28. Larsen, M.O.,Wilken, M., Gotfredsen, C.F., Carr, R.D., Svendsen, O.,and Rolin, B. Mild streptozotocin diabetes in theGottingen minipig. A novel model of moderate insulinde¢ciency and diabetes. AJP—Endocrinology and Metabolism2002;282(6):E1342–E51.

19 Chapter 19: Skeletal System

1. Glorieux, F. H., Travers, R., Taylor, A., Bowen, J. R.,Rauch, F., Norman, M., and Par¢tt, A. M. 2000. Normativedata for iliac bone histomorphometry in growing children.Bone 26: 103–109. 2. Johnson-Delaney, C. A. 1994.Primate. Vet. Clin. North. Am. Small Anim. Pract. 24:121–156. 3. Lees, C. J. and Ramsay, H. 1999.Histomorphometry and bone biomarkers in cynomolgusfemales: A study in young, mature, and old monkeys. Bone24: 25–28. 4. Masaro, E. J. 1995. Aging: current concepts.In: Masaro, E. J. (ed.), Handbook of Physiology, SectionII: Aging, pp. 4–5. New York: Oxford University Press. 5.Mosekilde, L. 1995. Assessing bone quality—Animal modelsin preclinical osteoporosis research. Bone 17: 343S–352S.6. Mosekilde, L. 1998. Age-related changes in spinal bonemass, structure and strength. Jpn. Soc. Bone Morphom. 8:9–18. 7. Nakamura, T. 1999. The front line of bonehistomorphometry. Clin. Calcium 9: 478–483 (in Japanese).8. Nishizawa, Y. 2001. Meaning of bone biomarkers inclinical ¢elds. In: Nishizawa, Y. (ed.), Bone Biomarkers,pp. 16–27. Tokyo: Iyaku Journal Co. Ltd. (in Japanese).9. Nishizawa, Y., Nakamura, T., Ohata, H., Kushida, K.,Gorai, I., Shiraki, M., Fukunaga, M. et al., 2001.Guidelines on the use of biochemical markers of boneturnover in osteoporosis. J. Bone Miner. Metabol. 19:338–344. 10. Panepinto, L. M. 1996. Miniature swine breedsused worldwide in research. In: Tumblesson, M. E. andSchook L. B. (eds), Advances in Swine in BiomedicalResearch, pp. 681– 691. New York: Plenum Press. 11.Par¢tt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J.A., Malluche, H., Meunier, P. J., Ott, S. M., and Recker,R. R. 1987. Bone histomorphometry: Standardization ofnomenclature, symbols, and units. Report of the ASBMRHistomorphometry Nomenclature Committee. J. Bone Miner.Res. 2: 595–610. 12. Recker, R. R., Kimmel, D. B., Par¢tt,A. M., Davies, K. M., Keshawarz, N., and Hinders, S. 1988.Static and tetracycline-based bone histomorphometric datafrom 34 normal postmenopausal females. J. Bone Miner. Res.3: 133–144. 13. Schönau, E. and Rauch, F. 1997. Markers ofbone and collagen metabolism—Problems and perspectives inpaediatrics. Hormone Res. 48 (Suppl. 5): 50–59. 14.Swaminathan, R. 2001. Biochemical markers of bone turnover.Clin. Chem. Acta 313: 95–105. 15. Swindle, M. M. 1998.Biology, husbandry, handling and anatomy. In: Swindle, M.M. (ed.), Surgery, Anesthesia and Experimental Techniquesin Swine, pp. 3–32. Iowa: Iowa State University Press.16. Szulc, P., Seeman, E., and Delmas, P. D. 2000.Biochemical measurements of bone turnover in children andadolescents. Osteoporos. Int. 11: 281–294.

20 Chapter 20: Ocular Examination andBackground Observations

1. Moore, C.P. and Whitley, R.D.: Ophthalmic diseases ofsmall domestic ruminants. Vet. Clin. North Am. Large Anim.Pract. 6, 641–665, 1984.

2. Linton, L.L. and Collins, B.K.: Entropion repair in aVietnamese pot bellied pig. J. Small Anim. Exotic Anim.Med. 2, 124–127, 1993.

3. Kirschner, S.E.: Modi¢ed brow sling technique for uppereyelid entropion. Proc. Am. Coll. Vet. Ophthalmol. 25, 68,1994.

4. Elder, M.J.: Mersilene mesh and fascia lata in browsuspension: A comparative study. Ophthalmic Surg. 24,105–108, 1993.

5. Brightman, A.H., Everitt, J., and Bevier, G.: Epibulbarsolid dermoid choristoma in a pig. Vet. Pathol. 22,292–294, 1984.

6. Barkyomb, S.D. and Leipold, H.W.: Nature and cause ofbilateral ocular dermoids in Hereford cattle. Vet. Pathol.21, 316–324, 1984.

7. Magli, A., DeMarco, R., and Capasso, L.: Presence ofbilateral limbal dermids and choroidal osteomas in a familywith inherited limbal dermoids. Ophthalmic Genetics. 20,101– 106, 1999.

8. Loget, O.: Spontaneous ocular ¢ndings and esthesiometry/tonometry measurement in the Göttingen minipig. In I.Weise (ed), Ocular Toxicology, pp. 351–362, New York:Plenum Press, 1995.

9. Sandfeld, N.L. and Lind, N.M.: Measurement of threeocular parameters in the Göttingen minipig. Scand. J.Anim. Sci. 1, 35, 9–15, 2005.

10. Townsend, W.M.: Food and Fiber-producing animalophthalmology. In K.N. Gelatt (ed), VeterinaryOphthalmology, 4th edition, Vol. 2, pp. 1275–1335, Iowa:Blackwell Publishing, 2007. 11. Gelatt, K.N., Rempel, W.,Makambera, T., and Anderson, J.: Heterochromia irides inminiature swine. J. Hered. 64, 343– 347, 1973. 12.Barnett, K.C. and Knight, G.C.: Persistent pupillarymembrane and associated defects in the basenji. Vet.Rec.85, 242– 249, 1969. 13. Cook, C.S.: Embryogenesis of

congenital eye malformations. Vet. Comp. Ophthalmol. 5,109–123, 1995. 14. Martin, C.L. and Leipold, H.: Aphakiaand multiple ocular defects in Saint Bernard puppies. Vet.Med. Sm. Anim. Clin. 69, 448–453, 1974. 15. Eagle, R. andSpencer, W.: Lens. In: W. Spencer (ed.), OphthalmicPathology, 4th edition. Philadelphia: WB Saunders. pp.372–427, 1996. 16. Rubin, L.: Hereditary microphakia andmicrophthalmia syndrome in the Beagle. Proc Am. Coll.Vet. Ophthalmol. 2, 50–55, 1971. 17. Pfeiffer, R.L. Jr.and Fischer, C.A.: Microphthalmia, retinal dysplasia andanterior segment dysgenesis in a litter of DobermanPinchers. J. Am. Vet. Med. Assoc. 183, 875–878, 1983. 18.Bayon, A., Tovar, M.C., Fernandez del Palacio, M.J. andAgut, A.: Ocular complications of persistent hyperplasticprimary vitreous in three dogs. Vet. Ophthalmol. 4, 35–40,2001. 19. Saint-Macary, G. and Berthoux, C.: Ophthalmicobservations in the young Yucatan micropig. Lab. Anim.Sci. 44, 334–337, 1994. 20. Loget, O. and Saint-Macary,G.: Comparative study of ophthalmological observations inthe Yucatan micropig and in the Göttingen minipig. Scand.J. Lab. Anim. Sci. 25(Suppl.1), 173–179, 1998. 21. Rubin,L.F.: Atlas of Veterinary Ophthalmoscopy. Philadelphia:Lea & Febiger, 1974. 22. Ollivier, F.J., Plummer, C.E.,and Barrie, K.P.: Opthalmic Examination and diagnostics.Part 1: The eye examination and diagnostic procedures. InK.N. Gelatt (ed), Veterinary Ophthalmology, 4th edition,Vol. 1, pp. 438–483, Iowa: Blackwell Publishing, 2007.23. Hampson, E.C., Smith, R.I., and Bernays, M.E.: Primaryglaucoma in Burmese cats. Ast. Vet. J. 80, 672–680, 2002.24. Plummer, C.E., Ramsey, D.T., and Hauptmann, J.G.:Assessment of corneal thickness, intraocular pressure,optical corneal diameter, and axial globe dimension inMiniature horses. Am. J. Vet. Res. 64, 661–665, 2003.

21 Chapter 21: Spontaneous/BackgroundPathology of GĂśttingen Minipig

Figure 21.33 (See color insert.) Mouse skin (abdominalarea): partial epidermal regeneration (reepithelization)with minimal in¥ammation in the dermis at 48 h aftertreatment (HE-stain ×20). (From Dincer, Z., Jones, S., andHaworth, R. 2006. Exp Tox Path 57:351– 357. Withpermission.)

Figure 21.34 (See color insert.) Cerebellum, meninges:Mineralized foci in the meninges. (HE-stain ×20).

Jacobsson, L. 1989. Comparison of experimentalhypercholesterolemia and atherosclerosis in male and femaleminipig of the Göttingen strain. Artery, 16(2):105–117.

Jacobsson, L. 1986. Comparison of experimentalhypercholesterolemia and atherosclerosis in Göttingenminipigs and Swedish domestic swine. Atherosclerosis59:205–213.

Ladds, P.W. 1993. The male genital system. In: Pathology ofDomestic Animals, Jubb, K.V.F., Kennedy, P.C., and Palmer,N. (eds), 4th ed., Academic Press, San Diego, CA, Vol. 3,pp. 471–529.

Lavker, R.M., Dong, G., Zheng, P., and Murphy, G.F. 1991.Hairless micropig skin: A novel model for studies ofcutaneous biology. Am J Pathol 138:687–697.

Madsen, W.L., Aalbæk, B., Nielsen, O.L., and Jensen, H.E.2001. Aerogenous infection of microbiologically de¢nedminipigs with Streptococcus suis serotype 2: A new model.APMIS 109:412–418.

Madsen, W.L., Jensen, A.L., and Larsen, S. 1998.Spontaneous lesions in clinically healthy,microbiologically de¢ned Göttingen minipigs. Scand J LabAnim Sci 25(3):159–166.

Maratea, K.A., Snyder, P.W., and Stevenson, G.W. 2006.Vascular lesions in nine Göttingen minipigs withthrombocytopenic purpura syndrome. Vet Pathol 43:447–454.

Meyer, W. 1996. Bemerkungen zur eignung der Sweinhaut alsbiologishes modell für die haut des menschen. Hautarzt47:178–182.

Meyer, W., Schwartz, R., and Neurand, K. 1978. The skin of

domestic mammals as a model for human skin, with specialreference to the domestic pig. Curr Probl Dermatol7:39–52.

Mikkelsen, M., Møller, A., Jensen, L.H., Pedersen, A.,Harajeni, J.B., and Pakkenberg, H. 1999. MPTP-inducedParkinsonism in minipigs: A behavioral, biochemical, andhistological study. Neurotox Teratol 21(2):169–175.

Montagna, W. and Yun, J.S. 1964. The skin of the domesticpig. J Invest Dermatol 43:11–21.

Nicander, L., Brown, E.M., Dellmann, H.D., and Landsverk,T. 1993. Lymphatic organs. In: Textbook of VeterinaryHistology. Dellmann, H.D. (ed.), 4th ed., Lea&Febiger,Philadelphia, PA, pp. 120–135.

Oxenhandler, R.W., Berkelhammer, J., Smith, G.D., and Hook,R.R.Jr. 1982. Growth and regression of cutaneous melanomasin Sinclair miniature swine. Am J Pathol 109:259–269.

Platt, B.S. 1965. Nutritional in�uences on the skin:Experimental evidence. In: Comparative PhysiologyPathology of the Skin. Rook, A.J. and Walton G.S. (eds),Blackwell Scienti¢c Publications, Oxford, pp. 245–260.Rinke, M. 1997. How clean is a mini-pig? Impressions andsuggestions of a pathologist working in the ¢eld oftoxicology. Pharmacol Toxicol 25(2):16–22.Ritskes-Hoitinga, J. and Bollen, P. 1998. Minipig anddietary aspects. The formulation of a test diet inestablishing the nutrient requirements and optimum feedingschedules for minipigs. Scand J Lab Anim Sci Suppl1(25):27–30. Sambuco, C.P. 1985. Miniature swine as ananimal model in photodermatology: Factors in�uencingsunburn cell formation. Photodermatology 2:144–150.Schantz, L.D., Laber-Laird, K., Bingel, S., and Swindle,M.M. 1996. Applied anatomy of the gastrointestinal tract.Essentials of Experimental Surgery: Gastroenterology,Harwood Academic Publishers, NY, pp. 2611–2619. Strauss,H.S. and Bloom, G.E. 1965. Von Willebrand’s disease: Useof a platelet-adhesiveness test in diagnosis of familyinvestigation. N Engl J Med 273:171–181. Svendsen, O.2006. The minipig in toxicology. Exp Tox Path 57:335–339.Svendsen, O., Skydsgaard, M., Aarup, V., and Klastrup, S.1998. Spontaneously occurring lesions in selected organsof the Göttingen minipig. Scand J Lab Anim Sci Suppl1(25):231–234. Swindle, M.M. 2007. In: Swine in theLaboratory: Surgery, Anesthesia, Imaging, and ExperimentalTechniques. Swindle, M.M. (ed) 2nd ed., Boca Raton, FL:CRC Press, Taylor & Francis. Swindle, M.M. and Smith,

A.C. 1998. Comparative anatomy and physiology of the pig.Scand J Lab Anim Sci Suppl 1(25):11–21. Swindle, M.M.,Smith, A.C., Laber-Laird, K., and Dungan, L. 1994. Swinein biomedical research: Management and models. ILAR News36(1):1–5. Swindle, M.M., Hepburn, B.J.S., and Smith, A.C.1988. Swine as models in experimental surgery. J InvestSurg 1:65–79. Swindle, M.M., Horneffer, P.J., Gardner,T.J., Gott, V.L., Hall, T.S., Sturat, R.S., Baumgartner,W.A., Borkon, A.M., Galloway, E., and Reitz, B.A. 1986.Anatomic and anesthetic considerations in experimentalcardiopulmonary surgery in swine. Lab Anim Sci36(4):357–361. Zhang, Z. and Monteiro-Riviere, N.A. 1997.Comparison of integrins in human skin, pig skin, andperfused skin: An in vitro skin toxicology model. J ApplToxicol 17(4):247–253. SECTION V Genetics and Immunology

22 Chapter 22: A Comparative Assessmentof the Pig, Mouse and Human Genomes :Structural and Functional Analysis ofGenes Involved in Immunity andInflammation

17. Hein, W.R. and P.J. Griebel, A road less travelled:Large animal models in immunological research. Nat RevImmunol, 2003. 3(1):79–84.

18. Brooks, D.L., P.C. Tillman, and S.M. Niemi, Ungulatesas Laboratory Animals, in Fox, J.G., B.J. Cohen, and F.M.Loew (eds), Laboratory Animal Medicine, 2002, AcademicPress: New York, NY.

19. Bendixen, E. et al., Advances in porcine genomics andproteomics—A toolbox for developing the pig as a modelorganism for molecular biomedical research. Brief FunctGenomics, 2010. 9(3):208–19.

20. Entrican, G. et al., A current perspective onavailability of tools, resources and networks forveterinary immunology. Vet Immunol Immunopathol, 2009.128(1–3):24–9.

21. Archibald, A.L. et al., Pig genome sequence—Analysisand publication strategy. BMC Genomics, 2010. 11:438.

22. Lander, E.S. et al., Initial sequencing and analysisof the human genome. Nature, 2001. 409(6822):860–921.

23. Venter, J.C. et al., The sequence of the human genome.Science, 2001. 291(5507):1304–51.

24. Waterston, R.H. et al., Initial sequencing andcomparative analysis of the mouse genome. Nature, 2002.420(6915):520–62.

25. Chen, K. et al., Genetic resources, genome mapping andevolutionary genomics of the pig (Sus scrofa). Int J BiolSci, 2007. 3(3):153–65.

26. Wernersson, R. et al., Pigs in sequence space: A 0.66Xcoverage pig genome survey based on shotgun sequencing. BMCGenomics, 2005. 6(1):70.

27. Kapranov, P. et al., RNA maps reveal new RNA classesand a possible function for pervasive transcription.Science, 2007. 316(5830):1484–8.

28. Cordaux, R. and M.A. Batzer, The impact ofretrotransposons on human genome evolution. Nat Rev Genet,2009. 10(10):691–703.

29. Piriyapongsa, J. et al., Exonization of the LTRtransposable elements in human genome. BMC Genomics, 2007.8:291.

30. Sironen, A. et al., An intronic insertion in KPL2results in aberrant splicing and causes the immotileshort-tail sperm defect in the pig. Proc Natl Acad Sci U SA, 2006. 103(13): 5006–11.

31. Wiedmann, R.T., D.J. Nonneman, and J.W. Keele, Novelporcine repetitive elements. BMC Genomics, 2006. 7:304.

32. Ostertag, E.M. and H.H. Kazazian, Jr., Biology ofmammalian L1 retrotransposons. Annu Rev Genet, 2001.35:501–38.

33. Goodier, J.L. et al., A novel active L1 retrotransposonsubfamily in the mouse. Genome Res, 2001. 11(10):1677–85.

34. Thomsen, P.D. and J.R. Miller, Pig genome analysis:Differential distribution of SINE and LINE sequences isless pronounced than in the human and mouse genomes. MammGenome, 1996. 7(1):42–6.

35. Kim, D.S. et al., LINE FUSION GENES: A database of LINEexpression in human genes. BMC Genomics, 2006. 7:139.

36. Yamamoto, R. et al., Porcine TCR CD3zeta-chain andetachain. Mol Immunol, 2005. 42(12):1485–93.

37. Donnelly, S.R., T.E. Hawkins, and S.E. Moss, Aconserved nuclear element with a role in mammalian generegulation. Hum Mol Genet, 1999. 8(9):1723–8.

38. Mancini, G., S.H. Kan, and G. Gallagher, A novelinsertion variant of the human IL-23 receptor-alpha chaintranscript. Genes Immun, 2008. 9(6):566–9. 39. Crow,M.K., Long interspersed nuclear elements (LINE-1):Potential triggers of systemic autoimmune disease.Autoimmunity, 2010. 43(1):7–16. 40. Ponicsan, S.L., J.F.Kugel, and J.A. Goodrich, Genomic gems: SINE RNAs regulatemRNA production. Curr Opin Genet Dev, 2010. 20(2):149–55.41. Shimamura, M. et al., Genealogy of families of SINEsin cetaceans and artiodactyls: The presence of a hugesuperfamily of tRNA(Glu)-derived families of SINEs. MolBiol Evol, 1999. 16(8):1046–60. 42. Belshaw, R. et al.,

Long-term reinfection of the human genome by endogenousretroviruses. Proc Natl Acad Sci U S A, 2004.101(14):4894–9. 43. Benarafa, C. et al., Characterizationof four murine homologs of the human ov-serpin monocyteneutrophil elastase inhibitor MNEI (SERPINB1). J BiolChem, 2002. 277(44):42028–33. 44. Balada, E., M.Vilardell-Tarres, and J. Ordi-Ros, Implication of humanendogenous retroviruses in the development of autoimmunediseases. Int Rev Immunol, 2010. 29(4): 351–70. 45. Jung,W.Y. et al., Comparison of PERV genomic locations betweenAsian and European pigs. Anim Genet, 2010. 41(1):89–92.46. Scobie, L. and Y. Takeuchi, Porcine endogenousretrovirus and other viruses in xenotransplantation. CurrOpin Organ Transpl, 2009. 14(2):175–9. 47.Valdes-Gonzalez, R. et al., No evidence of porcineendogenous retrovirus in patients with type 1 diabetesafter longterm porcine islet xenotransplantation. J MedVirol, 2010. 82(2):331–4. 48. Dorrschuck, E., C. Munk,and R.R. Tonjes, APOBEC3 proteins and porcine endogenousretroviruses. Transpl Proc, 2008. 40(4):959–61. 49.Seemann, S.E. et al., Detection of RNA structures inporcine EST data and related mammals. BMC Genomics, 2007.8:316. 50. Xiao, B. et al., Identi¢cation, bioinformaticanalysis and expression pro¢ling of candidate mRNA-likenon-coding RNAs in Sus scrofa. J Genet Genomics, 2009.36(12): 695–702. 51. Fedorova, N. and A. Fedorov, Puzzlesof the human genome: Why do we need our introns? CurrentGenomics, 2005. 6:589–595. 52. Christov, C.P. et al.,Functional requirement of noncoding Y RNAs for humanchromosomal DNA replication. Mol Cell Biol, 2006.26(18):6993–7004. 53. Kelly, K.M. et al., “Endogenousadjuvant” activity of the RNA components of lupusautoantigens Sm/RNP and Ro 60. Arthritis Rheum, 2006.54(5):1557–67. 54. Perreault, J., J.P. Perreault, and G.Boire, Ro-associated Y RNAs in metazoans: Evolution anddiversi¢cation. Mol Biol Evol, 2007. 24(8):1678–89. 55.Pruijn, G.J. et al., Ro RNP associated Y RNAs are highlyconserved among mammals. Biochim Biophys Acta, 1993.1216(3):395–401. 56. Berezikov, E. et al., Many novelmammalian microRNA candidates identi¢ed by extensivecloning and RAKE analysis. Genome Res, 2006.16(10):1289–98. 57. Lu, M. et al., An analysis of humanmicroRNA and disease associations. PLoS ONE, 2008.3(10):e3420.

58. O’Connell, R.M. et al., Physiological and pathologicalroles for microRNAs in the immune system. Nat Rev Immunol,2010. 10(2):111–22.

59. Jones, M.R. et al., Zcchc11-dependent uridylation of

microRNA directs cytokine expression. Nat Cell Biol, 2009.11(9):1157–63.

60. Federico, C. et al., The pig genome: Compositionalanalysis and identi¢cation of the gene-richest regions inchromosomes and nuclei. Gene, 2004. 343(2):245–51.

61. Varriale, A. and G. Bernardi, Distribution of DNAmethylation, CpGs, and CpG islands in human isochores.Genomics, 2010. 95(1):25–8.

62. Tuller, T. et al., Translation ef¢ciency is determinedby both codon bias and folding energy. Proc Natl Acad SciU S A, 2010. 107(8):3645–50.

63. Kosiol, C. et al., Patterns of positive selection insix Mammalian genomes. PLoS Genet, 2008. 4(8): e1000144.

64. Rodriguez-Manzanet, R. et al., The costimulatory roleof TIM molecules. Immunol Rev, 2009. 229(1):259–70.

65. Hwang, D.G. and P. Green, Bayesian Markov chain MonteCarlo sequence analysis reveals varying neutralsubstitution patterns in mammalian evolution. Proc NatlAcad Sci U S A, 2004. 101(39):13994–4001.

66. Wang, W. et al., Origin and evolution of new exons inrodents. Genome Res, 2005. 15(9):1258–64.

67. Zhu, J. et al., Comparative genomics search for lossesof long-established genes on the human lineage. PLoSComput Biol, 2007. 3(12):e247.

68. Murphy, W.J. et al., Dynamics of mammalian chromosomeevolution inferred from multispecies comparative maps.Science, 2005. 309(5734):613–17.

69. Tanaka, M. et al., Genomic structure and gene order ofswine chromosome 7q1.1– > q1.2. Anim Genet, 2006.37(1):10–6.

70. Petersen, C.B. et al., Cloning, characterization andmapping of porcine CD14 reveals a high conservation ofmammalian CD14 structure, expression and locusorganization. Dev Comp Immunol, 2007. 31(7):729–37.

71. Wimmers, K. et al., Molecular characterization of thepig C3 gene and its association with complement activity.Immunogenetics, 2003. 54(10):714–24.

72. Harraghy, N. and T.J. Mitchell, Isolation andcharacterization of the promoter and partial enhancerregion of the porcine inter-alpha-trypsin inhibitor heavychain 4 gene. Clin Diagn Lab Immunol, 2005. 12(11):1336–9.

73. Yang, J. et al., Molecular characterization ofminiature porcine RANTES and its chemotactic effect onhuman mononuclear cells. Transplantation, 2006.82(9):1229–33.

74. Yang, J. et al., Molecular characterization of cDNAencoding porcine IP-10 and induction of porcineendothelial IP-10 in response to human TNF-alpha. VetImmunol Immunopathol, 2007. 117(1–2):124–8.

75. Uenishi, H. et al., Genomic organization and assignmentof the interleukin 7 gene (IL7) to porcine chromosome4q11– > q13 by FISH and by analysis of radiation hybridpanels. Cytogenet Cell Genet, 2001. 93(1–2):65–72.

76. Wimmers, K. et al., Porcine IL12A and IL12B genemapping, variation and evidence of association with lyticcomplement and blood leucocyte proliferation traits. Int JImmunogenet, 2008. 35(1):75–85. 77. Kuhnert, P. et al.,The porcine tumor necrosis factor-encoding genes: Sequenceand comparative analysis. Gene, 1991. 102(2):171–8. 78.Honma, D. et al., Cloning and characterization of porcinecommon gamma chain gene. J Interferon Cytokine Res, 2003.23(2):101–11. 79. Chen, K. et al., Isolation and molecularcharacterization of the porcine transforming growth factorbeta type I receptor (TGFBR1) gene. Gene, 2006. 384:62–72.80. Tennant, L.M. et al., Regulation of porcine classicaland nonclassical MHC class I expression. Immunogenetics,2007. 59(5):377–89. 81. Thomas, A.V. et al., Genomicstructure, promoter analysis and expression of the porcine(Sus scrofa) TLR4 gene. Mol Immunol, 2006. 43(6):653–9.82. Rupec, R.A. et al., Structural analysis, expression,and chromosomal localization of the mouse ikba gene.Immunogenetics, 1999. 49(5):395–403. 83. Tungtrakoolsub,P. et al., Polymorphisms in the promoter region of theporcine antiviral MX1 and MX2 genes. Anim Genet, 2008.39(1):22–7. 84. Baena, A. et al., Primate TNF promotersreveal markers of phylogeny and evolution of innateimmunity. PLoS ONE, 2007. 2(7):e621. 85. Godwin, J.W.et al., Towards endothelial cell-speci¢c transgeneexpression in pigs: Characterization of the pig ICAM-2promoter. Xenotransplantation, 2006. 13(6):514–21. 86.Willson, T.A., D. Metcalf, and N.M. Gough, Cross-speciescomparison of the sequence of the leukaemia inhibitoryfactor gene and its protein. Eur J Biochem, 1992.

204(1):21–30. 87. Rehli, M., Of mice and men: Speciesvariations of Toll-like receptor expression. TrendsImmunol, 2002. 23(8):375–8. 88. Raymond, C.R. and B.N.Wilkie, Toll-like receptor, MHC II, B7 and cytokineexpression by porcine monocytes and monocyte-deriveddendritic cells in response to microbialpathogen-associated molecular patterns. Vet ImmunolImmunopathol, 2005. 107(3–4):235–47. 89. Ben-Asouli, Y.et al., Human interferon-gamma mRNA autoregulates itstranslation through a pseudoknot that activates theinterferon-inducible protein kinase PKR. Cell, 2002.108(2):221–32. 90. Cahen-Kramer, Y., I.L. Martensson, andF. Melchers, The structure of an alternate form ofcomplement C3 that displays costimulatory growth factoractivity for B lymphocytes. J Exp Med, 1994.180(6):2079–88. 91. Rogatcheva, M.B. et al.,Characterization of the porcine ATM gene: Towards thegeneration of a novel non-murine animal model forAtaxia-Telangiectasia. Gene, 2007. 405(1–2): 27–35. 92.Halees, A.S., R. El-Badrawi, and K.S. Khabar, AREDOrganism: Expansion of ARED reveals AU-rich elementcluster variations between human and mouse. Nucleic AcidsRes, 2008. 36(Database issue):D137–40. 93. Hel, Z., S. DiMarco, and D. Radzioch, Characterization of the RNAbinding proteins forming complexes with a novel putativeregulatory region in the 3’-UTR of TNF-alpha mRNA.Nucleic Acids Res, 1998. 26(11):2803–12. 94. Beutler, B.and T. Brown, Polymorphism of the mouse TNFalpha locus:Sequence studies of the 3’-untranslated region and ¢rstintron. Gene, 1993. 129(2):279–83.

95. Stoecklin, G. et al., A novel mechanism of tumorsuppression by destabilizing AU-rich growth factor mRNA.Oncogene, 2003. 22(23):3554–61.

96. Osman, F. et al., A cis-acting element in the3’-untranslated region of human TNF-alpha mRNA renderssplicing dependent on the activation of protein kinase PKR.Genes Dev, 1999. 13(24):3280–93.

97. Nygard, A.B. et al., A study of alternative splicing inthe pig. BMC Res Notes, 2010. 3:123.

98. Haines, B.P. et al., Complex conserved organization ofthe mammalian leukemia inhibitory factor gene: Regulatedexpression of intracellular and extracellular cytokines. JImmunol, 1999. 162(8):4637–46.

99. Gurney, A.L. et al., Genomic structure, chromosomallocalization, and conserved alternative splice forms of

thrombopoietin. Blood, 1995. 85(4):981–8.

100. Straubinger, A.F., M.M. Viveiros, and R.K.Straubinger, Identi¢cation of two transcripts of canine,feline, and porcine interleukin-1 alpha. Gene, 1999.236(2):273–80.

101. Ye, L. et al., Identi¢cation and characterization ofan alternatively spliced variant of the MHC class I-relatedporcine neonatal Fc receptor for IgG. Dev Comp Immunol,2008. 32(8):966–79.

102. Church, D.M. et al., Lineage-speci¢c biology revealedby a ¢nished genome assembly of the mouse. PLoS Biol,2009. 7(5):e1000112.

103. Puente, X.S. et al., Human and mouse proteases: Acomparative genomic approach. Nat Rev Genet, 2003. 4(7):544–58.

104. Kaiserman, D. et al., The major human and mousegranzymes are structurally and functionally divergent. JCell Biol, 2006. 175(4):619–30.

105. Kelley, J., L. Walter, and J. Trowsdale, Comparativegenomics of natural killer cell receptor gene clusters.PLoS Genet, 2005. 1(2):129–39.

106. Zhao, X. et al., Characterization and virus-inducedexpression pro¢les of the porcine interferon-omegamultigene family. J Interferon Cytokine Res, 2009.29(10):687–93.

107. Zhang, J., K.D. Dyer, and H.F. Rosenberg, Evolution ofthe rodent eosinophil-associated RNase gene family byrapid gene sorting and positive selection. Proc Natl AcadSci U S A, 2000. 97(9):4701–6.

108. Barreiro, L.B. and L. Quintana-Murci, Fromevolutionary genetics to human immunology: How selectionshapes host defence genes. Nat Rev Genet, 2010.11(1):17–30.

109. den Dunnen, J., S.I. Gringhuis, and T.B. Geijtenbeek,Innate signaling by the C-type lectin DC-SIGN dictatesimmune responses. Cancer Immunol Immunother, 2009.58(7):1149–57.

110. Svajger, U. et al., C-type lectin DC-SIGN: Anadhesion, signalling and antigen-uptake molecule that

guides dendritic cells in immunity. Cell Signal, 2010.22(10):1397–405.

111. Tailleux, L. et al., DC-SIGN induction in alveolarmacrophages de¢nes privileged target host cells formycobacteria in patients with tuberculosis. PLoS Med,2005. 2(12):e381.

112. Caminschi, I. et al., Functional comparison of mouseCIRE/ mouse DC-SIGN and human DC-SIGN. Int Immunol, 2006.18(5):741–53.

113. Huang, Y.W. et al., Porcine DC-SIGN: Molecularcloning, gene structure, tissue distribution and bindingcharacteristics. Dev Comp Immunol, 2009. 33(4):464–80.114. Powlesland, A.S. et al., Widely divergent biochemicalproperties of the complete set of mouse DC-SIGN-relatedproteins. J Biol Chem, 2006. 281(29):20440–9. 115.Gramberg, T. et al., Evidence that multiple defects inmurine DC-SIGN inhibit a functional interaction withpathogens. Virology, 2006. 345(2):482–91. 116. Mosmann,T.R. et al., Species-speci¢city of T cell stimulatingactivities of IL 2 and BSF-1 (IL 4): Comparison of normaland recombinant, mouse and human IL 2 and BSF-1 (IL 4). JImmunol, 1987. 138(6):1813–16. 117. Collins, R.A. et al.,Cloning and expression of bovine and porcine interleukin-2in baculovirus and analysis of species crossreactivity. VetImmunol Immunopathol, 1994. 40(4):313–24. 118. Farrar,J.D. et al., Selective loss of type I interferon-inducedSTAT4 activation caused by a minisatellite insertion inmouse Stat2. Nat Immunol, 2000. 1(1):65–9. 119. Persky,M.E., K.M. Murphy, and J.D. Farrar, IL-12, but notIFN-alpha, promotes STAT4 activation and Th1 developmentin murine CD4+ T cells expressing a chimeric murine/humanStat2 gene. J Immunol, 2005. 174(1):294–301. 120.Parisien, J.P. et al., Selective STAT protein degradationinduced by paramyxoviruses requires both STAT1 and STAT2but is independent of alpha/beta interferon signaltransduction. J Virol, 2002. 76(9):4190–8. 121.Chatziandreou, N. et al., Relationships and host range ofhuman, canine, simian and porcine isolates of simian virus5 (parain�uenza virus 5). J Gen Virol, 2004. 85(Pt10):3007–16. 122. Dawson, H. et al., Localized Th1-, Th2-,T regulatory cell-, and in�ammation-associated hepatic andpulmonary immune responses in Ascaris suum-infected swineare increased by retinoic acid. Infect Immun, 2009.77(6):2576–87. 123. Blanchard, C. et al., Eotaxin-3 and auniquely conserved gene-expression pro¢le in eosinophilicesophagitis. J Clin Invest, 2006. 116(2):536–47. 124.Pope, S.M. et al., Identi¢cation of a cooperative mechanism

involving interleukin-13 and eotaxin-2 in experimentalallergic lung in�ammation. J Biol Chem, 2005.280(14):13952–61. 125. Petkovic, V. et al.,Eotaxin-3/CCL26 is a natural antagonist for CC chemokinereceptors 1 and 5. A human chemokine with a regulatoryrole. J Biol Chem, 2004. 279(22):23357–63. 126. Shinkai,A. et al., N-terminal domain of eotaxin-3 is important foractivation of CC chemokine receptor 3. Protein Eng, 2002.15(11):923–9. 127. Weaver, B.K. et al., ABIN-3: Amolecular basis for species divergence ininterleukin-10-induced anti-in�ammatory actions. Mol CellBiol, 2007. 27(13):4603–16. 128. Vaughan, A.N. et al.,Porcine CTLA4-Ig lacks a MYPPPY motif, binds inef¢cientlyto human B7 and speci¢cally suppresses human CD4+ T cellresponses costimulated by pig but not human B7. J Immunol,2000. 165(6):3175–81. 129. Jonsson, S.R. et al.,Evolutionarily conserved and non-conserved retrovirusrestriction activities of artiodactyl APOBEC3F proteins.Nucleic Acids Res, 2006. 34(19):5683–94. 130. Puttagunta,R. et al., Comparative maps of human 19p13.3 and mousechromosome 10 allow identi¢cation of sequences atevolutionary breakpoints. Genome Res, 2000. 10(9):1369–80.131. Hillarp, A. et al., Molecular cloning of rat C4bbinding protein alpha- and beta-chains: Structural andfunctional relationships among human, bovine, rabbit,mouse, and rat proteins. J Immunol, 1997. 158(3):1315–23.

132. Lamkan¢, M. et al., INCA, a novel human caspaserecruitment domain protein that inhibits interleukin-1betageneration. J Biol Chem, 2004. 279(50):51729–38.

133. Eckhart, L. et al., Identi¢cation andcharacterization of a novel mammalian caspase withproapoptotic activity. J Biol Chem, 2005.280(42):35077–80.

134. Zlotnik, A., O. Yoshie, and H. Nomiyama, The chemokineand chemokine receptor superfamilies and their molecularevolution. Genome Biol, 2006. 7(12):243.

135. Eguchi-Ogawa, T. et al., Analysis of the genomicstructure of the porcine CD1 gene cluster. Genomics, 2007.89(2):248–61.

136. Brossay, A. et al., Porcine CD58: cDNA cloning andmolecular dissection of the porcine CD58-human CD2interface. Biochem Biophys Res Commun, 2003. 309(4):992–8.

137. Bussink, A.P. et al., Evolution of mammalianchitinase(-like) members of family 18 glycosyl hydrolases.

Genetics, 2007. 177(2): 959–70.

138. Plog, S. et al., Genomic, tissue expression andprotein characterization of pCLCA1, a putative modulator ofcystic ¢brosis in the pig. J Histochem Cytochem, 2009.57(12):1169–81.

139. Fitzgerald, J. and J.F. Bateman, Why mice have lostgenes for COL21A1, STK17A, GPR145 and AHRI: Evidence forgene deletion at evolutionary breakpoints in the rodentlineage. Trends Genet, 2004. 20(9):408–12.

140. Sol-Church, K. et al., Evolution of placentallyexpressed cathepsins. Biochem Biophys Res Commun, 2002.293(1):23–9.

141. Hagemann, S. et al., The human cysteine proteasecathepsin V can compensate for murine cathepsin L in mouseepidermis and hair follicles. Eur J Cell Biol, 2004.83(11–12): 775–80.

142. Patil, A.A. et al., Cross-species analysis of themammalian beta-defensin gene family: Presence of syntenicgene clusters and preferential expression in the malereproductive tract. Physiol Genomics, 2005. 23(1):5–17.

143. Bjarnadottir, T.K. et al., The human and mouserepertoire of the adhesion family of G-protein-coupledreceptors. Genomics, 2004. 84(1):23–33.

144. Hamann, J. et al., Inactivation of the EGF-TM7receptor EMR4 after the Pan-Homo divergence. Eur JImmunol, 2003. 33(5):1365–71.

145. Endo, Y. et al., Identi¢cation of the mouse H-¢colingene as a pseudogene and orthology between mouse ¢colinsA/B and human L-/M-¢colins. Genomics, 2004. 84(4):737–44.

146. Davis, R.S., Fc receptor-like molecules. Annu RevImmunol, 2007. 25:525–60.

147. Huang, H. et al., Evolutionary conservation andselection of human disease gene orthologs in the rat andmouse genomes. Genome Biol, 2004. 5(7):R47.

148. Krucken, J. et al., Comparative analysis of the humangimap gene cluster encoding a novel GTPase family. Gene,2004. 341:291–304.

149. Endsley, J.J. et al., Characterization of bovine

homologues of granulysin and NK-lysin. J Immunol, 2004.173(4):2607–14.

150. Rompler, H. et al., The rise and fall of thechemoattractant receptor GPR33. J Biol Chem, 2005.280(35):31068–75.

151. MacIvor, D.M., C.T. Pham, and T.J. Ley, The 5’ �ankingregion of the human granzyme H gene directs expression toT/natural killer cell progenitors and lymphokine-activatedkiller cells in transgenic mice. Blood, 1999. 93(3):963–73.152. Renard, C. et al., The genomic sequence and analysisof the swine major histocompatibility complex. Genomics,2006. 88(1):96–110. 153. Arimura, Y. et al., MouseHLA-DPA homologue H2-Pa: A pseudogene that maps betweenH2-Pb and H2-Oa. Immunogenetics, 1996. 43(3):152–5. 154.Leeb, T. and M. Muller, Comparative human–mouse–ratsequence analysis of the ICAM gene cluster on HSA 19p13.2and a 185-kb porcine region from SSC 2q. Gene, 2004.343(2):239–44. 155. Parker, N. and A.C. Porter,Identi¢cation of a novel gene family that includes theinterferon-inducible human genes 6-16 and ISG12. BMCGenomics, 2004. 5(1):8. 156. Bu�er, P. et al., A complexof the IL-1 homologue IL-1F7b and IL-18-binding proteinreduces IL-18 activity. Proc Natl Acad Sci U S A, 2002.99(21):13723–8. 157. Fickenscher, H. and H. Pirzer,Interleukin-26. Int Immunopharmacol, 2004. 4(5):609–13.158. Fox, B.A., P.O. Sheppard, and P.J. O’Hara, The role ofgenomic data in the discovery, annotation and evolutionaryinterpretation of the interferon-lambda family. PLoS ONE,2009. 4(3):e4933. 159. Shimanuki, S., E. Kobayashi, and T.Awata, Genomic structure of the porcine Interleukin 8 geneand development of a microsatellite marker within intron1. Anim Genet, 2002. 33(6):470–1. 160. Bjornholm, M.et al., Absence of functional insulin receptor substrate-3(IRS-3) gene in humans. Diabetologia, 2002.45(12):1697–702. 161. Carlyle, J.R. et al., Evolution ofthe Ly49 and Nkrp1 recognition systems. Semin Immunol,2008. 20(6):321–30. 162. Yokoyama, W.M. and B.F.Plougastel, Immune functions encoded by the natural killergene complex. Nat Rev Immunol, 2003. 3(4):304–16. 163.Seyfarth, J., P. Garred, and H.O. Madsen, The ‘involution’of mannose-binding lectin. Hum Mol Genet, 2005.14(19):2859–69. 164. Liang, Y. et al., Structuralorganization of the human MS4A gene cluster on Chromosome11q12. Immunogenetics, 2001. 53(5):357–68. 165.Biesbrock, A.R., L.A. Bobek, and M.J. Levine, MUC7 geneexpression and genetic polymorphism. Glycoconj J, 1997.14(4):415–22. 166. Hollyoake, M., R.D. Campbell, and B.Aguado, NKp30 (NCR3) is a pseudogene in 12 inbred and wild

mouse strains, but an expressed gene in Mus caroli. MolBiol Evol, 2005. 22(8):1661–72. 167. Tian, X., G. Pascal,and P. Monget, Evolution and functional divergence of NLRPgenes in mammalian reproductive systems. BMC Evol Biol,2009. 9:202. 168. Geiszt, M., NADPH oxidases: New kids onthe block. Cardiovasc Res, 2006. 71(2):289–99. 169.Perelygin, A.A. et al., The Mammalian 2’-5’ OligoadenylateSynthetase Gene Family: Evidence for Concerted Evolutionof Paralogous Oas1 Genes in Rodentia and Artiodactyla. JMol Evol, 2006. 63(4):562–76. 170. Cousin, W. et al.,Cloning of hOST-PTP: The only example of aprotein–tyrosine–phosphatase the function of which hasbeen lost between rodent and human. Biochem Biophys ResCommun, 2004. 321(1):259–65.

171. Yang, R.Z. et al., Comparative studies of resistinexpression and phylogenomics in human and mouse. BiochemBiophys Res Commun, 2003. 310(3):927–35.

172. Fuellen, G. et al., Computational searches for missingorthologs: The case of S100A12 in mice. Omics, 2004. 8(4):334–40.

173. Wolf, R. et al., The mouse S100A15 ortholog parallelsgenomic organization, structure, gene expression, andprotein-processing pattern of the human S100A7/A15subfamily during epidermal maturation. J Invest Dermatol,2006. 126(7):1600–8.

174. Larson, M.A. et al., Induction of humanmammary-associated serum amyloid A3 expression by prolactinor lipopolysaccharide. Biochem Biophys Res Commun, 2003.301(4):1030–7.

175. Angata, T. et al., Cloning and characterization ofhuman Siglec-11. A recently evolved signaling that caninteract with SHP-1 and SHP-2 and is expressed by tissuemacrophages, including brain microglia. J Biol Chem, 2002.277(27):24466–74.

176. Tateno, H., P.R. Crocker, and J.C. Paulson, MouseSiglec-F and human Siglec-8 are functionally convergentparalogs that are selectively expressed on eosinophils andrecognize 6’-sulfo-sialyl Lewis X as a preferred glycanligand. Glycobiology, 2005. 15(11):1125–35.

177. Ellison, J.W. et al., Rapid evolution of humanpseudoautosomal genes and their mouse homologs. MammGenome, 1996. 7(1):25–30.

178. Leavenworth, J.W. et al., SUMO conjugation contributesto immune deviation in nonobese diabetic mice bysuppressing c-Maf transactivation of IL-4. J Immunol,2009. 183(2):1110–19.

179. Eguchi-Ogawa, T., D. Toki, and H. Uenishi, Genomicstructure of the whole D-J-C clusters and the upstreamregion coding V segments of the TRB locus in pig. Dev CompImmunol, 2009. 33(10):1111–19.

180. Hasan, U. et al., Human TLR10 is a functionalreceptor, expressed by B cells and plasmacytoid dendriticcells, which activates gene transcription through MyD88. JImmunol, 2005. 174(5):2942–50.

181. Shinkai, H. et al., Porcine Toll-like receptor 1, 6,and 10 genes: Complete sequencing of genomic region andexpression analysis. Mol Immunol, 2006. 43(9):1474–80.

182. Reed, J.C. et al., Comparative analysis of apoptosisand in�ammation genes of mice and humans. Genome Res,2003. 13(6B):1376–88.

183. Plog, S. et al., Genomic, tissue expression, andprotein characterization of pCLCA1, a putative modulatorof cystic ¢brosis in the pig. J Histochem Cytochem, 2009.57(12):1169–81.

184. Grossman, W.J. et al., The orphan granzymes of humansand mice. Curr Opin Immunol, 2003. 15(5):544–52.

185. Cheng, G. et al., Characterization of the porcinealpha interferon multigene family. Gene, 2006. 382:28–38.

186. Layton, D.S. et al., Development of an anti-porcineCD34 monoclonal antibody that identi¢es hematopoietic stemcells. Exp Hematol, 2007. 35(1):171–8.

187. Perez de la Lastra, J.M. et al., Pigs express multipleforms of decay-accelerating factor (CD55), all of whichcontain only three short consensus repeats. J Immunol,2000. 165(5):2563–73. 188. Yim, D. et al., Molecularcloning, expression pattern and chromosomal mapping of pigCD69. Immunogenetics, 2002. 54(4):276–81. 189. BiePetersen, C. et al., Various domains of the B-cellregulatory molecule CD72 has diverged at different rates inmammals: Cloning, transcription and mapping of porcineCD72. Dev Comp Immunol, 2006. 31(5):530–8. 190.Yamanishi, Y. et al., Analysis of mouse LMIR5/CLM-7 as anactivating receptor: Differential regulation of LMIR5/

CLM-7 in mouse versus human cells. Blood, 2008.111(2):688–98. 191. Deiuliis, J.A. et al., Alternativesplicing of delta-like 1 homolog (DLK1) in the pig andhuman. Comp Biochem Physiol B Biochem Mol Biol, 2006.145(1):50–9. 192. Haase, B. et al., Molecularcharacterization of the porcine deleted in malignant braintumors 1 gene (DMBT1). Gene, 2006. 376(2):184–91. 193.Yim, D. et al., Molecular cloning and characterization ofpig immunoreceptor DAP10 and NKG2D. Immunogenetics, 2001.53(3):243–9. 194. Muller, M., E.L. Winnacker, and G. Brem,Molecular cloning of porcine Mx cDNAs: New members of afamily of interferon-inducible proteins with homology toGTP-binding proteins. J Interferon Res, 1992. 12(2):119–29.195. Gatphayak, K. et al., Structural and expressionanalysis of the porcine FUS2 gene. Gene, 2004. 337:105–11.196. Matesanz, F. and A. Alcina, Glutamine and tetrapeptiderepeat variations affect the biological activity ofdifferent mouse interleukin-2 alleles. Eur J Immunol,1996. 26(8): 1675–82. 197. Alvarez, B. et al., Molecularcloning characterization and expression of porcineimmunoreceptor SIRPalpha. Dev Comp Immunol, 2007.31(3):307–18. 198. Liu, Y. et al., SIRPbeta1 is expressedas a disul¢de-linked homodimer in leukocytes andpositively regulates neutrophil transepithelial migration.J Biol Chem, 2005. 280(43): 36132–40. 199. Tohno, M.et al., Molecular cloning and functional characterizationof porcine nucleotide-binding oligomerization domain-2(NOD2). Mol Immunol, 2007. 45(1):194–203. 200. Tsang, Y.T.et al., Porcine E-selectin: Cloning and functionalcharacterization. Immunology, 1995. 85(1):140–5. 201.Goureau, A. et al., Conserved synteny and gene orderdifference between human chromosome 12 and pig chromosome5. Cytogenet Cell Genet, 2001. 94(1–2):49–54. 202. Tsang,Y.T., D.O. Haskard, and M.K. Robinson, Cloning andexpression kinetics of porcine vascular cell adhesionmolecule. Biochem Biophys Res Commun, 1994. 201(2):805–12. 203. Vogt, L., et al., VSIG4, a B7 family-relatedprotein, is a negative regulator of T cell activation. JClin Invest, 2006. 116(10): 2817–26. 204. Xie, L.,et al., Molecular cloning and functional characterizationof porcine DNA-dependent activator of IFNregulatory factors(DAI). Dev Comp Immunol, 2010. 34(3):293–9.

23 Chapter 23: The Immune System of Pigs: Structure and Function

Kaser T, W. Gerner, S. E. Hammer, M. Payzi, and A.Saalmüller. 2008a. Detection of Foxp3 protein expressionin porcine T lymphocytes. Vet Immunol Immunopathol125:92–101.

Kaser T, W. Gerner, S. E. Hammer, M. Payzi, and A.Saalmüller. 2008b. Phenotypic and functionalcharacterization of porcine regulatory CD4 + CD25 high Tcells. Vet Immunol Immunopathol 122:153–8.

Lee S. J., S. J. Kim, C. G. Park, J. Park, J. H. Kim, andChun T. 2008. Molecular cloning and expression analysis ofpig CD79α. Vet Immunol Immunopathol 125:368–74.

Liebler-Tenorio E. M. and R. Pabst. 2006. MALT structureand function in farm animals. Vet Res 37:257–80.

Lunney J. K. 1993. Characterization of swine leukocytedifferentiation antigen. Immunol Today 14:147–48.

McFarlin D. E. and R. M. Binns. 1973. Lymph node functionand lymphocyte circulation in the pig. Adv Exp Med Biol29:87–93.

Pabst R. and R. M. Binns. 1982. The three-dimensionalreticular structure of the pig spleen demonstrated bylabeling with �uorescein isothiocyanate. Cell Tissue Res226:319–25.

Pabst R., R. M. Binns, and S. T. Licence. 1985. Surfacemarkers on lymphocytes leaving pig lymph nodes. Immunol56:301–06.

Pabst R. and E. Nowara. 1982. Organ distribution and fateof newly formed splenic lymphocytes in the pig. Anat Rec202:85–94.

Pabst R. and R. Geisler. R 1981.The route of migration oflymphocytes from blood to spleen and mesenteric lymph nodesin the pig. Cell Tissue Res 221:361–70.

Pabst R., H. J. Rothkotter, and F. J. Fritz. 1988.Postnatal development and lymphocyte production of jejunaland ileal Peyer’s patches in normal and gnotobiotic pigs.Immunol 64:539–44.

Pabst R. and J. Westermann. 1991. The unique role of the

spleen and its compartments in lymphocyte migration. ResImmunol 142:339–42.

Pescovitz M. D., M. A. Lowman, and D. H. Sachs. 1988.Expression of T-cell associated antigens by porcinenatural killer cells. Immunol 65:267–71.

Pescovitz M. D., B. K. Book, B. Aasted, J. Dominguez, A.Ezquerra, I. Trebichavsky, B. Novikov et al. 1998. Summaryof workshop ¢ndings for antibodies reacting with porcineT-cells and activation antigens: Results from the SecondInternational Swine CD Workshop. Vet Immunol Immunopathol60(3–4):251–60.

Pilon C., B. Levast, F. Meurens, Y. Le Vern, D. Kerboeuf,H. Salmon, F. Velge-Roussel, Y. Lebranchu, and C. Baron.2009. CD40 engagement strongly induces CD25 expression onporcine dendritic cells and polarizes the T cell immuneresponse toward Th1. Mol Immunol 46:437–47.

Piriou L., S. Chilmonczyk, N. Genetet, and E. Albina. 2000.Design of a �ow cytometric assay for the determination ofnatural killer and cytotoxic T-lymphocyte activity inhuman and in different animal species. Cytometry412:289–97.

PugaYung G., M. K. Schneider MK, and J. D. Seebach. 2009.Immune response to alpha 1.3 galactosyltransferase knockoutpigs. Curr Opin Organ Transplant 14:154–60.

Rothkotter H. J. and R. Pabst. 1989. Lymphocyte subsets injejunal and ileal Peyer’s patches of normal andgnotobiotic minipigs. Immunol 67: 103–8.

Rothkotter H. J., H. Ulbrich, and R. Pabst. 1991. Thepostnatal development of gut lamina propria lymphocytes:Number, proliferation and T and B cell subsets inconventional and germ-free pigs. Pediatric Res 29:237–42.Rothkotter H. J. and R. Pabst. 1994.Lymphoid andnon-lymphoid cells in the epithelium and lamina propria ofintestinal mucosa of pigs. Gut 35:1582–9. Rothkotter H.J., S. Mollhoff, and R. Pabst. 1999. The in�uence of ageand breeding conditions on the number and proliferation ofintraepithelial lymphocytes in pigs. Scan J Immunol50:31–8. Rothkotter H. J., E. Sowa, and R. Pabst.2002.Human Exp Toxicol 21:533–6. Saalmüller A., W, HirtM. and J. Reddehase 1990. Porcine γδ T lymphocyte subsetsdiffer in their propensity to home to lymphoid tissue. EurJ Immunol 20:2343–46. Saalmüller A, W. Hirt, S. Maurer,and E. Weiland. 1994. Discrimination between two subsets

of porcine CD8 + cytolytic T lymphocytes by the expressionof CD5 antigen. Immunol 81:578–83. Saalmüller A., T.Pauly, J. K. Lunney, P. Boyd, B. Aasted, D. H. Sachs, S.Arn et al. 1998. Overview of the second internationalworkshop to de¢ne swine cluster of differentiation (CD)antigens. Vet Immunol Immunopathol Jan 30; 60(3–4):207–28.Saalmüller A, G. Kuebart, E. Hollemweguer, Z. Chen, J.Nielsen, F. Zuckermann, and K. Haverson. 2001. Summary ofworkshop ¢ndings for porcine T-lymphocyte-speci¢cmonoclonal antibodies. Vet Immunol Immunopathol80(1–2):35–52. Sack W. O. 1982. Essentials of Pig Anatomy.Veterinary Textbooks, New York, NY: Ithaca. Sasaki K., R.Pabst, and H. J. Rothkotter. 1994. The uniqueultrastructure of high-endothelial venules in inguinallymph nodes of the pig. Cell Tissue Res 276:85–90.Schmidt D. A. 1986. Swine hematology. In. Swine inBiomedical Research vol 2. ed. ME Tumbleson, Plenum Press,New York, NY, pp. 767–82. Šinkora J.; Z. Rehakaova, M.Šinkora, B. Cukrowska, H. TlaskalovaHogenova, A. T. J.Bianchi, and B. De Geus. 1998. Expression of CD2 onporcine B lymphocytes. Immunol 95: 443–9. Takamatsu H. H.,M. S. Denyer, C. Stirling, S. Cox, N. Aggarwal, P. Dash,T. E Wileman, and P. V. Barnett. 2006. Porcine γδ T cells:Possible roles on the innate and adaptive immune responsesfollowing virus infection. Vet Immunol Immunopathol112:49–61. Takamatsu H. H., M. S. Denyer, and T. E.Wileman. 2002. A subpopulation of circulating porcine γδ Tcells can act as professional antigen presenting cells. VetImmunol Immunopathol 87:223–4. Terszowski G., S. M.Müller, C. C. Bleul, C. Blum, R. Schirmbeck, J. Reimann,L. Du Pasquier, T. Amagai, T. Boehm, and H.-R. Rodewald.2006. Evidence for a functional second thymus in mice.Science 312:284–7. Thielke K. H., A. Hoffman-Moujahid, C.Weisser, E. Walkich, R. Pabst, W. Holtmeier, and H. J.Rothkotter. 2003. Proliferating intestinal γ/δ T cell poolin the peripheral blood. Eur J Immunol 33: 1649–56.Vaerman J. P., A. Langendries, R. Pabst, and H. J.Rothkotter. 1997. Contribution of serum IgA to intestinallymph IgA and vice versa, in minipigs. Vet Immunol andImmunopath 58:301–8. Yang H. and R. M. E. Parkhouse.1996. Phentotypic classi¢cation of porcine lymphocytesubpopulations in blood and lymphoid tissues. Immunol89:76–83.

Zuckermann F. A. and R. J. Husmann. 1996. Functional andphenotypic analysis of porcine peripheral blood CD4/CD8doublepositive T cells. Immunol 87:500–12.

Zuckermann F. A. and H. R. Gaskins. 1996. Distribution ofporcine CD4/CD8 double-positive T lymphocytes in

mucosaassociated lymphoid tissues. Immunol 87:493–9.

Zuckermann F. A., C. Peavey, W. M. Schnitzlein, D.Schabacker, R. J. Husmann, H. Yang, A. Saalmüller, and J.K. Lunney. 1998a. De¢nition of the speci¢city ofmonoclonal antibodies against percine CD45 and CD45R;report from th eCD45/ CD45R and CD44 subgroup of the SecondInternational Swine CD workshop. Vet Immunol andImmunopath 60:367–87. Zuckermann F. A., M. D. Pescovitz,B. Aastad, J. Domingues, I. Trebichavsky, B. Novilov, I.Valpotic et al. 1998b. Report on the analyses of mABreactive with porcine CD8 for the second internationalswine CD workshop. Vet Immunol and Immunopath 60:291–303.

24 Chapter 24: Transplantation inMiniature Swine

6. Deane, M., Singer, C., Lawler, M., McElwaine, S., Gomez,K., and Prentice, H.G., Acute skin GVHD followingsyngeneic BMT for CLL. Bone Marrow Transplant22:1207–1209, 1998.

7. Vallabhajosyula, P., Griesemer, A., Yamada, K., andSachs, D.H., Vascularized composite islet-kidneytransplantation in a miniature swine model. Cell BiochemBiophys 48:201–207, 2007.

8. Menard, M.T., Schwarze, M.L., Allan, J.S., Johnston,D.R., Mawulawde, K., Shimizu, A., Yamada, K., Houser,S.L., Allison, K.S., Sachs, D.H., and Madsen, J.C.,Composite “thymoheart” transplantation improves cardiacallograft survival. Am J Transplant 4:79–86, 2004.

9. Mezrich, J.D., Yamada, K., Lee, R.S., Mawulawde, K.,Houser, S.L., Schwarze, M.L., Maloney, M.E., Amoah, H.C.,Pillsbury, E.P., Sachs, D.H., and Madsen, J.C., Mechanismsof tolerance induction in the heart/kidney model inminiature swine. J Heart Lung Transplant 20:172–173, 2001.

10. Horner, B.M., Cina, R.A., Wikiel, K.J., Lima, B.,Ghazi, A., Lo, D.P., Yamada, K., Sachs, D.H., and Huang,C.A., Predictors of organ allograft tolerance followinghematopoietic cell transplantation. Am J Transplant6:2894–2902, 2006.

11. Kolber-Simonds, D., Lai, L., Watt, S.R., Denaro, M.,Arn, S., Augenstein, M.L., Betthauser, J., Carter, D.B.,Greenstein, J.L., Hao, Y., Im, G.S., Liu, Z., Mell, G.D.,Murphy, C.N., Park, K.W., Rieke, A., Ryan, D.J., Sachs,D.H., Forsberg, E.J., Prather, R.S., and Hawley, R.J.,Production of α-1,3galactosyltransferase null pigs by meansof nuclear transfer with ¢broblasts bearing loss ofheterozygosity mutations. Proc Natl Acad Sci U S A101:7335–7340, 2004.

12. Sachs, D.H. and Galli, C., Genetic manipulation inpigs. Curr Opin Organ Transplant 14:148–153, 2009.

13. Matsunari, H. and Nagashima, H., Application ofgenetically modi¢ed and cloned pigs in translationalresearch. J Reprod Dev 55:225–230, 2009.

14. Sachs, D.H., Leight, G., Cone, J., Schwartz, S.,Stuart, L., and Rosenberg, S., Transplantation in

miniature swine. I. Fixation of the majorhistocompatibility complex. Transplantation 22:559–567,1976.

15. Sachs, D.H., MHC homozygous miniature swine. InSwindle, M.M., Moody, D.C., and Phillips, L.D. (Eds),Swine as Models in Biomedical Research, pp. 3–15. Iowa:State University Press, Ames, Iowa, 1992.

16. Leight, G.S., Kirkman, R., Rasmusen, B.A., Rosenberg,S.A., Sachs, D.H., Terrill, R., and Williams, G.M.,Transplantation in miniature swine. III: Effects of MSLAand A-O blood group matching on skin allograft survival.Tissue Antigens 12:65–74, 1978.

17. Kirkman, R.L., Flye, M.W., Williams, G.M., Colvin,R.B., and Sachs, D.H., Evidence for cellular immunemechanisms in hyperacute rejection of renal allografts inminiature swine. Transplant Proc 11:790–792, 1979.

18. Kirkman, R.L., Colvin, M.W., Flye, G.S., Leight, S.A.,Rosenberg, S.A., Williams, G.M., and Sachs, D.H.,Transplantation in miniature swine. VI. Factors in�uencingsurvival of renal allografts. Transplantation 28:18–23,1979.

19. Pescovitz, M.D., Thistlethwaite, J.R. Jr., Auchincloss,H. Jr., Ildstad, S.T., Sharp, T.G., Terrill, R., andSachs, D.H., Effect of class II antigen matching on renalallograft survival in miniature swine. J Exp Med160:1495–1508, 1984. 20. Pennington, L.R., Flye, M.W.,Kirkman, R.L., Thistlethwaite, J.R. Jr, Williams G.M., andSachs D.H., Transplantation in miniature swine. X.Evidence for non-SLA-linked immune response gene(s)controlling rejection of SLA-matched kidney allografts.Transplantation 32:315–320, 1981. 21. Gianello, P.,Fishbein, J.M., and Sachs, D.H., Tolerance to primarilyvascularized allografts in miniature swine. Immunol Rev133:19–44, 1993. 22. Gianello, P.R., Lorf, T., Yamada, K.,Fishbein, J.M., Nickeleit, V., Vitiello, D., and Sachs,D.H., Induction of tolerance to renal allografts acrosssingle- haplotype MHC disparities in miniature swine.Transplantation 59:884–890, 1995. 23. Gianello, P.R.,Fishbein, J.F., Rosengard, B.R., Lorf, T., Vitiello, D.M.,Arn, J.S., and Sachs, D.H., Tolerance to class I disparaterenal allografts in miniature swine: Maintenance oftolerance despite induction of speci¢c antidonor CTLresponses. Transplantation 59:772–777, 1995. 24.Pescovitz, M.D., Auchincloss, H. Jr., Thistlethwaite, J.R.Jr., and Sachs, D.H., Transplantation in miniature swine:

Acceptance of Class I antigen mismatched renal allografts.Transplant Proc 15:1124–1126, 1983. 25. Rosengard, B.R.,Ojikutu, C.A., Guzzetta, P.C., Smith, C.V., Sundt IIIT.M., Nakajima, K., Boorstein, S.M., Hill G.S., Fishbein,J.M., and Sachs, D.H., Induction of speci¢c tolerance toclass I disparate renal allografts in miniature swine withcyclosporine. Transplantation 54:490–497, 1992. 26.Rosengard, B.R., Kortz, E.O., Guzzetta, P.C., Sundt, T.M.,III, Ojikutu, C.A., Alexander, R.B., and Sachs, D.H.,Transplantation in miniature swine: Analysis ofgraft-in¢ltrating lymphocytes provides evidence for localsuppression. Hum Immunol 28:153–158, 1990. 27. Griesemer,A.D., LaMattina, J.C., Okumi, M., Etter, J.D., Shimizu,A., Sachs, D.H., and Yamada, K., Linked suppression acrossan MHC-mismatched barrier in a miniature swine kidneytransplantation model. J Immunol 181:4027–4036, 2008. 28.Vage¢, P.A., Ierino, F.L., Gianello, P.R., Shimizu, A.,Kamano, C., Sachs, D.H., and Yamada, K., Role of the thymusin transplantation tolerance in miniature Swine: IV. Thethymus is required during the induction phase, but not themaintenance phase, of renal allograft tolerance.Transplantation 77:979–985, 2004. 29. Yamada, K.,Gianello, P.R., Ierino, F.L., Lorf, T., Shimizu, A.,Meehan, S., Colvin, R.B., and Sachs, D.H., Role of thethymus in transplantation tolerance in miniature swine. I.Requirement of the thymus for rapid and stable induction oftolerance to class I-mismatched renal allografts. J Exp Med186:497–506, 1997. 30. Yamada, K., Gianello, P.R., Ierino,F.L., Fishbein, J., Lorf, T., Shimizu, A., Colvin, R.B.,and Sachs, D.H., Role of the thymus in transplantationtolerance in miniature swine: II. Effect of steroids andage on the induction of tolerance to class I mismatchedrenal allografts. Transplantation 67:458–467, 1999. 31.Yamada, K., Sachs, D.H., and DerSimonian, H., Direct andindirect recognition of pig class II antigens by human Tcells. Transplant Proc 27:258–259, 1995. 32. Yamada, K.,Gianello, P.R., Ierino, F.L., Shimizu, A., Meehan, S.,Colvin, R.B., and Sachs, D.H., In�uence of the thymus ontransplantation tolerance in miniature swine. TransplantProc 29:1076, 1997.

33. Mezrich, J.D., Haller, G.W., Arn, J.S., Houser, S.L.,Madsen, J.C., and Sachs, D.H., Histocompatible miniatureswine: An inbred large-animal model. Transplantation75:904–907, 2003.

34. Pennington, L.R., Lunney, J.K., and Sachs, D.H.,Transplantation in miniature swine. VIII. Recombinationwithin the major histocompatibility complex of miniatureswine. Transplantation 31:66–71, 1981.

35. Lunney, J.K., Pescovitz, M.D., and Sachs, D.H., Theswine major histocompatibility complex: Its structure andfunction. In: Tumbleson, M.E. (Ed), Swine in biomedicalresearch, pp. 1821–1836. Plenum Press, New York, NY, 1986.

36. Tobian, A.A., Shirey, R.S., Montgomery, R.A., Ness,P.M., and King, K.E., The critical role of plasmapheresisin ABOincompatible renal transplantation. Transfusion48:2453– 2460, 2008.

37. Colvin, R.B., Antibody-mediated renal allograftrejection: Diagnosis and pathogenesis. J Am Soc Nephrol18:1046– 1056, 2007.

38. Rasmusen, B.A., Gene interaction and the A–Oblood-group system in pigs. Genetics 50:191–198, 1964.

39. Sautner, T., Gnant, M., Banhegyi, C., Wamser, P.,Gotzinger, P., Steininger, R., and Muhlbacher, F., Riskfactors for development of panel reactive antibodies andtheir impact on kidney transplantation outcome. Transpl Int5 (Suppl 1):S116–S120, 1992.

40. Gjertson, D.W., A multi-factor analysis of kidneyregraft outcomes. Clin Transpl 2(1):335–349, 2002.

41. Rosengard, B.R., Kortz, E.O., Ojikutu, C.A., Guzzetta,P.C., Sundt, T.M., Smith, C.V., Nakajima, K., Boorstein,S.M., Hill, G.S., and Sachs, D.H., The failure of skingrafting to break tolerance to class I disparate renalallografts in miniature swine despite inducing markedanti-donor cellular immunity. Transplantation52:1044–1052, 1991.

42. Okumi, M., Fishbein, J.M., Griesemer, A.D., Gianello,P.R., Hirakata, A., Nobori, S., Moran, S., Samelson-Jones,E., Shimizu, A., Sachs, D.H., and Yamada, K., Role ofpersistence of antigen and indirect recognition in themaintenance of tolerance to renal allografts.Transplantation 85:270–280, 2008.

43. Rosengard, B.R., Ojikutu, C.A., Fishbein, J., Kortz,E.O., and Sachs, D.H., Selective breeding of miniatureswine leads to an increased rate of acceptance ofMHC-identical, but not of class-I disparate, renalallografts. J Immunol 149:1099– 1103, 1992.

44. Wu, A., Yamada, K., Ierino, F.L., Vage¢, P.A., andSachs, D.H., Regulatory mechanism of peripheral tolerance:

in vitro evidence for dominant suppression of hostresponses during the maintenance phase of tolerance torenal allografts in miniature swine. Transpl Immunol11:367–374, 2003.

45. Wu, A., Yamada, K., Baron, C., Mathes, D.W., Monajati,L.M., Vage¢, P.A., and Sachs, D.H., Detection of regulatorycells as an assay for allograft tolerance in miniatureswine. J Heart Lung Transplant 23:210–217, 2004.

46. Mezrich, J., Yamada, K., Sachs, D.H., and Madsen, J.C.,Regulatory T cells generated by the kidney may mediate thebene¢cial immune effects of combining kidney with hearttransplantation. Surgery 135:473–478, 2004. 47. Ierino,F.L., Yamada, K., Hatch, T., Rembert, J., and Sachs, D.H.,Peripheral tolerance to class I mismatched renalallografts in miniature swine: Donor antigen-activatedperipheral blood lymphocytes from tolerant swine inhibitantidonor CTL reactivity. J Immunol 162:550–559, 1999. 48.Kortz, E.O., Sakamoto, K., Suzuki, T., Guzzetta, P.C.,Chester, C.H., Lunney, J.K., and Sachs, D.H., Mechanism oftolerance following class I disparate renal allografts inminiature swine: Cellular responses of tolerant animals.Transplantation 49:1142–1149, 1990. 49. Fishbein, J.M.,Rosengard, B.R., Gianello, P., Nickeleit, V., Guzzetta,P.C., Smith, C.V., Nakajima, K., Vitiello, D., Hill, G.S.,and Sachs, D.H., Development of tolerance to class IImismatched renal transplants following a short course ofcyclosporine therapy in miniature swine. Transplantation57:1303–1308, 1994. 50. Kahan, B.D., Cyclosporine. N EnglJ Med 321:1725–1737, 1989. 51. Gianello, P.R., Blancho,G., Fishbein, J.F., Lorf, T., Nickeleit, V., Vitiello, D.,and Sachs, D.H., Mechanism of cyclosporininduced toleranceto primarily vascularized allografts in miniature swine.Effect of administration of exogenous IL-2. J Immunol153:4788–4797, 1994. 52. Sachs, D.H., Tolerance: Of miceand men. J Clin Invest 111:1819–1821, 2003. 53. Choo,J.K., Seebach, J.D., Nickeleit, V., Shimizu, A., Lei, H.,Sachs, D.H., and Madsen, J.C., Species differences in theexpression of major histocompatibility complex class IIantigens on coronary artery endothelium—Implications forcellmediated xenoreactivity. Transplantation 64:1315–1322,1997. 54. Utsugi, R., Barth, R.N., Lee, R.S., Kitamura,H., LaMattina, J.C., Ambroz, J., Sachs, H., and Yamada,K., Induction of transplantation tolerance with a shortcourse of tacrolimus (FK506): I. Rapid and stabletolerance to two-haplotype fully MHC-mismatched kidneyallografts in miniature swine. Transplantation71:1368–1379, 2001. 55. Rosengard, B.R., Fishbein, J.M.,Gianello, P.R., Ojikutu, C.A., Guzzetta, P., Smith, C.V.,

Sundt, T.M., Nakajima, K., Hill, G.S., and Sachs, D.H.,Retransplantation in miniature swine: Lack of arequirement for graft adaptation for maintenance of speci¢crenal allograft tolerance. Transplantation 57:794–799,1994. 56. Sachs, D.H., Transplantation tolerance.Transplant Proc 30:1627–1629, 1998. 57. Gianello, P.R.,Yamada, K., Fishbein, J.M., Lorf, T., Nickeleit, V.,Colvin, R.B., Arn, J.S., and Sachs, D.H., Long-termacceptance of primarily vascularized renal allografts inminiature swine. Systemic tolerance versus graftadaptation. Transplantation 61:503–506, 1996. 58. Baron,C., McMorrow, I., Sachs, D.H., and LeGuern, C.,Persistence of dominant T cell clones in accepted solidorgan transplants. J Immunol 167:4154–4160, 2001. 59.Shimizu, A., Yamada, K., Meehan, S.M., Sachs, D.H., andColvin, R.B., Acceptance reaction: Intragraft eventsassociated with tolerance to renal allografts in miniatureswine. J Am Soc Nephrol 11:2371–2380, 2000. 60. Blancho,G., Gianello, P.R., Lorf, T., Germana, S., Giangrande, I.,Mourad, G., Colvin, R.B., Sachs, D.H., and LeGuern, C.,Molecular and cellular events implicated in localtolerance to kidney allografts in miniature swine.Transplantation 63:26–33, 1997.

61. Yamamoto, S., Teranishi, K., Kamano, C.,Samelson-Jones, E., Arakawa, H., Nobori, S., Okumi, M.,Houser, S., Shimizu, A., Sachs, D.H., and Yamada, K., Roleof the thymus in transplantation tolerance in miniatureswine: V. De¢ciency of the graft-to-thymus pathway oftolerance induction in recipients of cardiac transplants.Transplantation 81:607–613, 2006.

62. Nobori, S., Shimizu, A., Okumi, M., Samelson-Jones, E.,Griesemer, A., Hirakata, A., Sachs, D.H., and Yamada, K.,Thymic rejuvenation and the induction of tolerance by adultthymic grafts. Proc Natl Acad Sci U S A 103:19081–19086,2006.

63. Yamada, K., Ierino, F.L., Gianello, P.R., Shimizu, A.,Colvin, R.B., and Sachs, D.H., Role of the thymus intransplantation tolerance in miniature swine. III.Surgical manipulation of the thymus interferes with stableinduction of tolerance to class I-mismatched renalallografts. Transplantation 67:1112–1119, 1999.

64. Sachs, D.H., The pig as a potential xenograft donor.Path Biol 42:217–219, 1994.

65. Sachs, D.S.M.Y.K., Achieving tolerance inpig-to-primate Xenotransplantation: Reality or fantasy.

Transpl Immunol 21:101–105, 2009.

66. Griesemer, A.D., Hirakata, A., Shimizu, A., Moran, S.,Tena, A., Iwaki, H., Ishikawa, Y., Schule, P., Arn, J.S.,Robson, S.C., Fishman, J.A., Sykes, M., Sachs, D.H., andYamada, K., Results of Gal-knockout porcine thymokidneyxenografts. Am J Transplant 9(12):2669–2678, 2009.

67. Yamada, K., Shimizu, A., Ierino, F.L., Utsugi, R.,Barth, R., Esnaola, N., Colvin, R.B., and Sachs, D.H.,Thymic transplantation in miniature swine. I. Developmentand function of the “thymokidney.” Transplantation68:1684–1692, 1999.

68. Yamada, K., Shimizu, A., Utsugi, R., Ierino, F.L.,Gargollo, P., Haller, G.W., Colvin, R.B., and Sachs, D.H.,Thymic transplantation in miniature swine. II. Inductionof tolerance by transplantation of composite thymokidneysto thymectomized recipients. J Immunol 164:3079–3086, 2000.

69. Yamada, K., Vage¢, P.A., Utsugi, R., Kitamura, H.,Barth, R.N., LaMattina, J.C., and Sachs, D.H., Thymictransplantation in miniature swine: III. Induction oftolerance by transplantation of composite thymokidneysacross fully major histocompatibility complex-mismatchedbarriers. Transplantation 76:530–536, 2003.

70. Miller, J.F.A.P., Immunity and the thymus. Lancet281(7271):43–45, 1963.

71. Miller, J.F.A.P., Effect of neonatal thymectomy on theimmunological responsiveness of the mouse. Proc R SocLond,Ser B, Biol Sci 156:415–428, 1962.

72. Miller, J.F.A.P., Role of the thymus in transplantationimmunity. Ann N Y Acad Sci 99:340–354, 1962.

73. LaMattina, J.C., Kumagai, N., Barth, R.N., Yamamoto,S., Kitamura, H., Moran, S.G., Mezrich, J.D., Sachs, D.H.,and Yamada, K., Vascularized thymic lobe transplantationin miniature swine: I. Vascularized thymic lobe allograftssupport thymopoiesis. Transplantation 73:826–831, 2002.

74. Kamano, C., Vage¢, P.A., Kumagai, N., Yamamoto, S.,Barth, R.N., LaMattina, J.C., Moran, S.G., Sachs, D.H.,and Yamada, K., Vascularized thymic lobe transplantationin miniature swine: Thymopoiesis and tolerance inductionacross fully MHC-mismatched barriers. Proc Natl Acad Sci US A 101:3827–3832, 2004. 75. Giangrande, I., Yamada, K.,Arn, S., Lorf, T., Sachs, D.H., and LeGuern, C., Selective

increase in CD4-positive graftin¢ltrating mononuclear cellsamong the in¢ltrates in class I disparate kidney graftsundergoing rejection. Transplantation 63:722–728, 1997.76. Blancho, G., Gianello, P., Germana, S., Baetscher, M.,Sachs, D.H., and LeGuern, C., Molecular identi¢cation ofporcine interleukin-10: Regulation of expression in akidney allograft model. Proc Natl Acad Sci USA92:2800–2804, 1995. 77. Pescovitz, M.D., Lunney, J.K., andSachs, D.H., Preparation and characterization ofmonoclonal antibodies reactive with porcine PBL. J Immunol133:368–375, 1984. 78. Pescovitz, M.D., Hsu, S.M., Katz,S.I., Lunney, J.K., Shimada, S., and Sachs, D.H.,Characterization of a porcine CD1-speci¢c mAb thatdistinguishes CD4/CD8 double- positive thymic fromperipheral T lymphocytes. Tissue Antigens 35:151–156,1990. 79. Saalmuller, A., Aasted, B., Canals, A.,Dominguez, J., Goldman, T., Lunney, J.K., Pauly, T.,Pescovitz, M.D., Pospisil, R., and Salmon, H., Analysis ofmAb reactive with the porcine SWC1. Vet ImmunolImmunopathol 43:255–258, 1994. 80. Saalmuller, A., Aasted,B., Canals, A., Dominguez, J., Goldman, T., Lunney, J.K.,Maurer, S., Pescovitz, M.D., Pospisil, R., and Salmon, H.,Analyses of mAb reactive with porcine CD8. Vet ImmunolImmunopathol 43:249–254, 1994. 81. Saalmuller, A., Aasted,B., Canals, A., Dominguez, J., Goldman, T., Lunney, J.K.,Maurer, S., Pauly, T., Pescovitz, M.D., and Pospisil, R.,Analyses of monoclonal antibodies reactive with porcineCD6. Vet Immunol Immunopathol 43:243–247, 1994. 82.Saalmuller, A., Aasted, B., Canals, A., Dominguez, J.,Goldman, T., Lunney, J.K., Maurer, S., Pescovitz, M.D.,Pospisil, R., and Salmon, H., Analyses of monoclonalantibodies reactive with porcine CD5. Vet ImmunolImmunopathol 43:237–242, 1994. 83. Saalmuller, A.,Aasted, B., Canals, A., Dominguez, J., Goldman, T.,Lunney, J.K., Maurer, S., Pescovitz, M.D., Pospisil, R.,and Salmon, H., Summary of workshop ¢ndings for porcineT-lymphocyte antigens. Vet Immunol Immunopathol43:219–228, 1994. 84. Saalmuller, A., Denham, S.,Haverson, K., Davis, B., Dominguez, J., Pescovitz, M.D.,Stokes, C.C., Zuckermann, F., and Lunney, J.K., The SecondInternational Swine CD Workshop. Vet Immunol Immunopathol54:155–158, 1996. 85. Zuckermann, F.A., Pescovitz, M.D.,Aasted, B., Dominguez, J., Trebichavsky, I., Novikov, B.,Valpotic, I., Nielsen J., Arn, S., Sachs, D.H., Lunney,J.K., Boyd, P., Walker, J., Lee, R., Davis, W.C., Barbosa,I.R., and Saalmuller, A., Report on the analyses of mAbreactive with porcine CD8 for the second internationalswine CD workshop. Vet Immunol Immunopathol 60:291–303,1998. 86. Pescovitz, M.D., Book, B.K., Aasted, B.,Dominguez, J., Bullido, R., Trebichavsky, I., Novikov, B.,

Valpotic, I., Nielsen, J., Arn, S., Sachs, D.H., Lunney,J.K., Boyd, P.C., Walker, J., Lee, R., Petrinec, N., andSaalmuller, A., Analyses of monoclonal antibodies reactingwith porcine wCD6: Results from the Second InternationalSwine CD Workshop. Vet Immunol Immunopathol 60:285–289,1998.

87. Pescovitz, M.D., Book, B.K., Aasted, B., Dominguez, J.,Bullido, R., Trebichavsky, I., Novikov, B., Valpotic, I.,Tomaskovic, M., Nielsen, J., Arn, S., Sachs, D.H., Lunney,J.K., Boyd, P.C., Walker, J., Lee, R., and Saalmuller, A.,Analyses of monoclonal antibodies reacting with porcineCD5: Results from the second international swine CDworkshop. Vet Immunol Immunopathol 60:269–273, 1998.

88. Pescovitz, M.D., Book, B.K., Aasted, B., Dominguez, J.,Ezquerra, A., Trebichavsky, I., Novikov, B., Valpotic, I.,Nielsen, J., Arn, S., Sachs, D.H., Lunney, J.K., Boyd,P.C., Walker, J., Lee, R., Lackovic, G., Kirkham, P.,Parkhouse, R.M., and Saalmuller, A., Analyses ofmonoclonal antibodies reacting with porcine CD3: Resultsfrom the second international swine CD workshop. VetImmunol Immunopathol 60:261–268, 1998.

89. Pescovitz, M.D., Book, B.K., Aasted, B., Dominguez, J.,Ezquerra, A., Trebichavsky, I., Novikov, B., Valpotic, I.,Sver, L., Nielsen, J., Arn, S., Sachs, D.H., Lunney, J.K.,Boyd, P.C., Walker, J., Lee, R., Davis, W., Barbosa, I.R.,Zuckermann, F., and Saalmuller, A., Summary of workshop¢ndings for antibodies reacting with porcine T-cells andactivation antigens: Results from the second internationalswine CD workshop. Vet Immunol Immunopathol 60:251–260,1998.

90. Saalmuller, A., Pauly, T., Aasted, B., Jensen, K.T.,Sachs, D.H., Arn, S., Davis, W.C., Park, Y.H., McCullough,K., Summer¢eld, A., Murtaugh, M., Pampusch, M.S., Burger,K.D., Laber, J., Nielsen, J., Pescovitz, M.D., Stokes, C.,Haverson, K., Boyd, P., and Lunney, J.K., Summary of the¢rst round analyses of the second international swine CDworkshop. Vet Immunol Immunopathol 60:237–249, 1998.

91. Haverson, K., Saalmuller, A., Alvarez, B., Alonso, F.,Bailey, M., Bianchi, A.T., Boersma, W.J., Chen, Z., Davis,W.C., Dominguez, J., Engelhardt, H., Ezquerra, A.,Grosmaire, L.S., Hamilton, M.J., Hollemweguer, E., Huang,C.A., Khanna, K.V., Kuebart, G., Lackovic, G., Ledbetter,J.A., Lee, R., Llanes, D., Lunney, J.K., McCullough, K.C.,Molitor, T., Nielsen, J., Niewold, T.A., Pescovitz, M.D.,de la Lastra, J.M., Rehakova, Z., Salmon, H., Schnitzlein,

W.M., Seebach, J., Simon, A., Sinkora, J., Sinkora, M.,Stokes, C.R., Summer¢eld, A., Sver, L., Thacker, E.,Valpotic, I., Yang, H., Zuckermann, F.A., and Zwart, R.,Overview of the third international workshop on swineleukocyte differentiation antigens. Vet ImmunolImmunopathol 80:5–23, 2001.

92. Haverson, K., Bailey, M., Stokes, C.R., Simon, A.,LeFlufy, L., Ban¢eld, G., Chen, Z., Hollemweguer, E., andLedbetter, J.A., Monoclonal antibodies raised to humancells— Speci¢city for pig leukocytes. Vet ImmunolImmunopathol 80:175–186, 2001.

93. Sinkora, J., Rehakova, Z., Haverson, K., Sinkora, M.,Dominguez, J., and Huang, C.A., Monoclonal antibodiesputatively recognising activation and differentiationantigens. Vet Immunol Immunopathol 80:143–164, 2001.

94. Haverson, K., Saalmuller, A., Chen, Z., Huang, C.A.,Simon, A., Seebach, J., Boersma, W.J., Zwart, R., Niewold,T.A., Thacker, E., Llanes, D., de la Lastra, J.M.,Engelhardt, H., Ezquerra, A., Alonso, F., Dominguez, J.,Ledbetter, J.A., Grosmaire, L., Lee, R., Nielsen, J.,Salmon, H., Valpotic, I., Sver, L., Lackovic, G.,Summer¢eld, A., and Khanna, K.V., Summary of the ¢rstround analyses of the third international workshop onswine leukocyte differentiation antigens. Vet ImmunolImmunopathol 80:25–34, 2001. 95. Pennington, L.R.,Sakamoto, K., Popitz-Bergez, F.A., Pescovitz, M.D.,McDonough, M.A., MacVittie, T.J., Gress, R.E., and Sachs,D.H., Bone marrow transplantation in miniature swine. I.Development of the model. Transplantation 45:21–26, 1988.96. Popitz-Bergez, F.A., Sakamoto, K., Pennington, L.R.,Pescovitz, M.D., McDonough, M.A., MacVittie, T.J., Gress,R.E., and Sachs, D.H., Bone marrow transplantation inminiature swine. II. Effect of selective geneticdifferences on marrow engraftment and recipient survival.Transplantation 45:27–31, 1988. 97. Sakamoto, K.,Pennington, L.R., Popitz-Bergez, F.A., Pescovitz, M.D.,Gress, R.E., McDonough, M.A., Shimada, S., Katz, S.I.,Sachs, D.H., and Swine, G.V.H.D, Model and the effect of Tcell depletion of marrow by monoclonal antibodies. In:Gale, R.P. and Champlin, R. (Eds), Progress in bone marrowtransplantation, pp. 449–453. Alan R. Liss, Inc., NewYork, NY, 1987. 98. Sakamoto, K., Sachs, D.H., Shimada,S., Popitz-Bergez, F.A., Pennington, L.R., Pescovitz,M.D., McDonough, M.A., MacVittie, T.J., Katz, S.I., andGress, R.E., Bone marrow transplantation in miniatureswine. III Graft-versus-host disease and the effect of Tcell depletion of marrow. Transplantation 45:869–875,

1988. 99. Copelan, E.A., Hematopoietic stem-celltransplantation. N Engl J Med 354:1813–1826, 2006. 100.Gibbons, C. and Sykes, M., Manipulating the immune systemfor anti-tumor responses and transplant tolerance via mixedhematopoietic chimerism. Immunol Rev 223:334–360, 2008.101. Ildstad, S.T., Wren, S.M., Bluestone, J.A., Barbieri,S.A., Stephany, D., and Sachs, D.H., Effect of selective Tcell depletion of host and/or donor bone marrow onlymphopoietic repopulation, tolerance, and graft-vs-hostdisease in mixed allogeneic chimeras (B10 + B10.D2–B10). JImmunol 136:28–33, 1986. 102. Sharabi, Y., Sachs, D.H.,and Sykes, M., T cell subsets resisting induction of mixedchimerism across various histocompatibility barriers. Proc8th Intl Cong Immunol pp. 801–805, 1992. 103. Smith,C.V., Suzuki, T., Guzzetta, P.C., Nakajima, K., Sundt,T.M., Mixon, A., Spitzer, T.R., Eckhaus, M., and Sachs,D.H., Bone marrow transplantation in miniature swine: IV.Development of myeloablative regimens that allowengraftment across major histocompatibility barriers.Transplantation 56:541–549, 1993. 104. Smith, C.V.,Fishbein, J., Nakajima, K., Rosengard, B.R., Guzzetta,P.C., and Sachs, D.H., Effect of tolerance to allogeneicmajor histocompatibility complex antigens on rejectionacross minor antigen differences. Transplant Proc 25:364–365, 1993. 105. Cina, R.A., Wikiel, K.J., Lee, P.W.,Cameron, A.M., Hettiarachy, S., Rowland, H., Goodrich, J.,Colby, C., Spitzer, T.R., Neville, D.M. Jr., and Huang,C.A., Stable multilineage chimerism without graft versushost disease following nonmyeloablative haploidenticalhematopoietic cell transplantation. Transplantation81:1677–1685, 2006. 106. Fuchimoto, Y., Huang, C.A.,Yamada, K., Shimizu, A., Kitamura, H., Colvin, R.B.,Ferrara, V., Murphy, M.C., Sykes, M., White-Scharf, M.,Neville, D.M. Jr., and Sachs, D.H., Mixed chimerism andtolerance without whole body irradiation in a large animalmodel. J Clin Invest 105:1779– 1789, 2000.

107. Huang, C.A., Fuchimoto, Y., Scheier-Dolberg, R.,Murphy, M.C., Neville, D.M. Jr., and Sachs, D.H., Stablemixed chimerism and tolerance using a nonmyeloablativepreparative regimen in a large-animal model. J Clin Invest105:173–181, 2000.

108. Rogatcheva, M.M., Rund, L.A., Swanson, K.S., Marron,B.M., Beever, J.E., Counter, C.M., and Schook, L.B.,Creating porcine biomedical models through recombineering.Comp Funct Genomics 5:262–267, 2004.

109. Yang, L., Jackson, E., Woerner, B.M., Perry, A.,PiwnicaWorms, D., and Rubin, J.B., Blocking CXCR4-mediated

cyclic AMP suppression inhibits brain tumor growth in vivo.Cancer Res 67:651–658, 2007.

110. Morrison, S.J. and Weissman, I.L., The long-termrepopulating subset of hematopoietic stem cells isdeterministic and isolatable by phenotype. Immunity1:661–673, 1994.

111. Nemunaitis, J., Appelbaum, F.R., Singer, J.W.,Lilleby, K., Wolff, S., Greer, J.P., Bierman, P., Resta,D., Campion, M., and Levitt, D., Phase I trial withrecombinant human interleukin-3 in patients with lymphomaundergoing autologous bone marrow transplantation. Blood82:3273–3278, 1993.

112. Nemunaitis, J., Anasetti, C., Buckner, C.D.,Appelbaum, F.R., Shannon-Dorcy, K., Hansen, J., andSinger, J.W., Longterm follow-up of 103 patients whoreceived recombinant human granulocyte–macrophagecolony-stimulating factor after unrelated donor bonemarrow transplantation. Blood 81:865, 1993.

113. Ferrara, J.L., Levine, J.E., Reddy, P., and Holler,E., Graftversus-host disease. Lancet 373:1550–1561, 2009.

114. Duran-Struuck, R. and Reddy, P., Biological advancesin acute graft-versus-host disease after allogeneichematopoietic stem cell transplantation. Transplantation85:303–308, 2008.

115. Fuchimoto, Y., Yamada, K., Shimizu, A., Yasumoto, A.,Sawada, T., Huang, C.A., and Sachs, D.H., Relationshipbetween chimerism and tolerance in a kidney transplantationmodel. J Immunol 162:5704–5711, 1999.

116. Gleit, Z.L., Fuchimoto, Y., Yamada, K., Melendy, E.,ScheierDolberg, R., Monajati, L., Coburn, R.C., Neville,D.M. Jr., Sachs, D.H., and Huang, C.A., Variablerelationship between chimerism and tolerance followinghematopoietic cell transplantation without myelosuppressiveconditioning in miniature swine. Transplantation74:1535–1544, 2002.

117. Gleit, Z.L., Cameron, A.M., Fuchimoto, Y., Melendy,E., Monajati, L., Coburn, R.C., Sachs, D.H., and Huang,C.A., Persistent chimerism despite anti-donor MHC in vitroresponses in miniature swine following allogeneichematopoietic cell transplantation. Transplantation74:1260–1266, 2002.

118. Kunisaki, S.M., Haller, G.W., Fuchimoto, Y., Huang,C.A., and Sachs, D.H., Peripheral regulation ofgraft-versus-host alloreactivity in mixed chimericminiature swine. Transplantation 72:523–526, 2001.

119. Cho, P.S., Meuller, N.J., Cameron, A.M., Cina, R.A.,Coburn, R.C., Hettiaratchy, S., Melendy, E., Neville, D.M.Jr, Patience, C., Fishman, J.A., Sachs, D.H., and Huang,C.A., Risk factors for the development of post-transplantlymphoproliferative disorder in a large animal model. AmJTranspl 4:1274–1282, 2004. 120. Huang, C.A., Fuchimoto,Y., Gleit, Z.L., Ericsson, T., Griesemer, A.,Scheier-Dolberg, R., Melendy, E., Kitamura, H., Fishman,J.A., Ferry, J.A., Harris, N.L., Patience, C., and Sachs,D.H., Posttransplant lymphoproliferative disease inminiature swine after allogeneic hematopoietic celltransplantation: Similarity to human PTLD and associationwith a porcine gammaherpesvirus. Blood 97:1467–1473, 2001.121. Horner, B.M., Randolph., M.A., Duran-Struuck, R.,Hirsh, E.L., Ferguson, K.K., Teague, A.G., Butler, P.E.,and Huang, C.A., Induction of tolerance to an allogeneicskin �ap transplant in a preclinical large animal model.Transpl Proc 41:539–541, 2009. 122. Lima, B., Gleit,Z.L., Cameron, A.M., Germana, S., Murphy, M.C., Consorti,R., Chang, Q., Down, J.D., LeGuern, C., Sachs, D.H., andHuang, C.A., Engraftment of quiescent progenitors andconversion to full chimerism following nonmyelosuppressiveconditioning and hematopoietic cell transplantation inminiature swine. Biol Blood Marrow Transpl 9:571–582,2003. 123. Spitzer, T.R., McAfee, S.L., Dey, B.R., Colby,C., Hope, J., Grossberg, H., Preffer, F., Shaffer, J.,Alexander, S.I., Sachs, D.H., and Sykes, M.,Nonmyeloablative haploidentical stemcell transplantationusing anti-CD2 monoclonal antibody (MEDI-507)-basedconditioning for refractory hematologic malignancies.Transplantation 75:1748–1751, 2003. 124. Rubio, M.T., Kim,Y.M., Sachs, T., Mapara, M., Zhao, G., and Sykes, M.,Antitumor effect of donor marrow graft rejection induced byrecipient leukocyte infusions in mixed chimeras preparedwith nonmyeloablative conditioning: Critical role forrecipient-derived IFN-gamma. Blood 102:2300– 2307, 2003.125. Goltz, M., Ericsson, T., Patience, C., Huang, C.A.,Noack, S., Sachs, D.H., and Ehlers, B., Sequence analysisof the genome of porcine lymphotropic herpesvirus 1 andgene expression during posttransplant lymphoproliferativedisease of pigs. Virology 294:383–393, 2002. 126. Dor,F.J., Doucette, K.E., Mueller, N.J., Wilkinson, R.A.,Bajwa, J.A., McMorrow, I.M., Tseng, Y.L., Kuwaki, K.,Houser, S.L., Fishman, J.A., Cooper, D.K., and Huang, C.A.,Posttransplant lymphoproliferative disease after allogeneic

transplantation of the spleen in miniature swine.Transplantation 78:286–291, 2004. 127. Cho, P.S., Lo,D.P., Wikiel, K.J., Rowland, H.C., Coburn, R.C., McMorrow,I.M., Goodrich, J.G., Arn, J.S., Billiter, R.A., Houser,S.L., Shimizu, A., Yang, Y.G., Sachs, D.H., and Huang,C.A., Establishment of transplantable porcine tumor celllines derived from MHC inbred miniature swine. Blood110:3996–4004, 2007. 128. Duran-Struuck, R., Cho, P.S.,Teague, A.G., Fishman, B., Fishman, A.S., Hanekamp, J.S.,Moran, S.G., Wikiel, K.J., Ferguson, K.K., Lo, D.P.,Duggan, M., Arn, J.S., Billiter, B., Horner, B., Houser,S., Yeap, B.Y., Westmoreland, S.V., Spitzer, T.R.,McMorrow, I.M., Sachs, D.H., Bronson, R.T., and Huang,C.A., Myelogenous leukemia in adult inbred MHC-de¢nedminiature swine: A model for human myeloid leukemias. VetImmunol Immunopathol 135:243–256, 2010. 129. Sachs, D.H.,The pig as a potential xenograft donor. Vet ImmunolImmunopathol 43:185–191, 1994.

25 Chapter 25: Xenotransplantation

1. Bloom, E.T. 2003. Xenotransplantation—federal regulatoryconsiderations. Curr. Top. Microbiol. Immunol. 278:239–251.

2. Organ Procurement and Transplantation Network (OPTN).2010. Available at http://optn.transplant.hrsa.gov/data/

3. Pierson III, R.N., A. Dorling, D. Ayares et al. 2009.Current status of xenotransplantation and prospects forclinical application. Xenotransplantation 16:263–280.

4. Schuurman, H.-J., and R.N. Pierson III. 2008. Progresstowards clinical xenotransplantation. Front. BioSci. 13:204–220.

5. Yang, Y.-G., and M. Sykes. 2007. Xenotransplantation:current status and a perspective on the future. Nature Rev.7:519–531.

6. Hammer, C. Physiological obstacles afterxenotransplantation. Ann. N.Y. Acad. Sci. 30:19–27.

7. Hammer, C., and E. Thein. 2002. Physiological aspectsof xenotransplantation, 2001. Xenotransplantation 9:303–305.

8. Swindle, M.M. 2007. Swine in the laboratory: surgery,anesthesia, imaging, and experimental techniques, 2ndedition, Boca Raton, Taylor & Francis.

9. Ekser, B., P. Rigotti, B. Gridelli, and D.K.C. Cooper.2009. Xenotransplantation of solid organs in thepig-to-primate model. Transpl. Immunol. 21:87–92.

10. Soin, B., K.G. Smith, A. Zaidi et al. 2001.Physiological aspects of pig-to-primate renalxenotransplantation. Kidney Int. 60:1592–1597.

11. Ramirez, R., R. Chavez, M. Majado et al. 2000.Lifesupporting human complement regulator decayaccelerating factor transgenic pig liver xenograftmaintains the metabolic function and coagulation in thenonhuman primate for up to 8 days. Transplantation70:989–998.

12. Ekser, B., G.J. Echeverri, A.C. Hassett, et al. 2010.Hepatic function after genetically engineered pig livertransplantation in baboons. Transplantation 90:483–493.

13. Chamuleau, R.A., P.P. Poyck, and M.P. van de Kerkhove.2006. Bioarti¢cial liver: its pros and cons. Ther. Apher.Dial. 10:168–174.

14. Pascher, A., I.M. Sauer, C. Hammer, J.C. Gerlach, andP. Neuhaus. 2002. Extracorporeal liver perfusion ashepatic assist in acute liver failure: a review of worldexperience. Xenotransplantation 9:309–324.

15. Cowan, P.J., J.C. Roussel, and A.J. d’Apice. 2009. Thevascular and coagulation issues in xenotransplantation.Curr. Opin. Organ Transpl. 4:161–167.

16. Lin, C.C., D.K.C. Cooper, and A.J. Dorling. 2009.Coagulation dysregulation as a barrier toxenotransplantation in the primate. Transpl. Immunol.21:75–80.

17. Robson, S.C., D.K.C. Cooper, and A.J. d’Apice. 2000.Disordered regulation of coagulation and plateletactivation in xenotransplantation. Xenotransplantation7:166–176. 18. Hering, B.J., and N. Walawalkar. 2009.Pig-to-nonhuman primate islet xenotransplantation.Transpl. Immunol. 21:81–86. 19. Dufrane, D., and P.Gianello. 2008. Pig islet xenotransplantation intonon-human primate model. Transplantation 86:753–760. 20.Cozzi, E., and E. Bosio. 2008. Islet xenotransplantation:current status of preclinical studies in thepig-to-nonhuman primate model. Curr. Opin. Organ Transpl.13:155–158. 21. Schuurman, H.-J. 2008.Xenotransplantation. Drug Discov Today: Dis Models5:81–87. 22. Rees, M.A., A.J. Butler, I.G. Brons, M.C.Negus, J.N. Skepper, and P.J. Friend. 2005. Evidence ofmacrophage receptors capable of direct recognition ofxenogeneic epitopes without opsonization.Xenotransplantation 12:13–19. 23. Nguyen, B.H., E. Zwets,C. Schroeder, R.N. Pierson III, and A.M. Azimzadeh. 2005.Beyond antibody-mediated rejection: hyperacute lungrejection as a paradigm for dysregulated in�ammation. Curr.Drug Targets Cardiovasc. Haematol. Disord. 5:255–269. 24.Schuurman, H.-J., J. Cheng, and T. Lam. 2003. Pathology ofxenograft rejection: a commentary. Xenotransplantation10:293–299. 25. Kirchhof, N., S. Shibata, M. Wijkstromet al. 2004. Reversal of diabetes in non-immunosuppressedrhesus macaques by intraportal porcine islet xenograftsprecedes acute cellular rejection. Xenotransplantation11:396–407. 26. Rayat, G.R., R.V. Rajotte, B.J. Hering,T.M. Binette, and G.S. Korbutt. 2003. In vitro and in vivoexpression of Galalpha-(1,3)Gal on porcine islet cells is

age dependent. J. Endocrinol. 77:127–135. 27. Dor,F.J.M.F., J. Cheng, A. Alt, D.K.C. Cooper, and H.-J.Schuurman. 2004. Gal-alpha1,3gal expression on porcinepancreatic islets, testis, spleen, and thymus.Xenotransplantation 11:101–106. 28. Wijkstrom, M., N.S.Kenyon, N. Kirchhof et al. 2004. Islet allograft survivalin nonhuman primates immunosuppressed with basiliximab,RAD, and FTY720. Transplantation 77:827–835. 29. Cooper,D.K., A. Dorling, R.N. Pierson III et al. 2007.Alpha1,3-galactosyltransferase gene-knockout pigs forxenotransplantation: where do we go from here?Transplantation 84:1–7. 30. d’Apice, A. J., and P.J.Cowan. 2008. Gene-modi¢ed pigs. Xenotransplantation15:87–90. 31. Sachs, D.H., M. Sykes, and K. Yamada. 2009.Achieving tolerance in the pig-to-primatexenotransplantation, reality or fantasy. Transpl. Immunol.21:101–105. 32. Fudaba, Y., T.R. Spitzer, J. Shaffer et al. 2006. Myeloma responses and tolerance followingcombined kidney and nonmyeloablative marrowtransplantation: in vivo and in vitro analyses. Am. J.Transplant. 6:2121–2133. 33. Bühler, L., M. Basker, I.P.Alwayn et al. 2000. Coagulation and thrombotic disordersassociated with pig organ and hematopoietic celltransplantation in nonhuman primates. Transplantation70:1323–1331. 34. Bühler L, C. Goepfert, H. Kitamuraet al. 2001. Porcine hematopoietic cell xenotransplantationin nonhuman primates is complicated by thromboticmicroangiopathy. Bone Marrow Transplant. 27:1227–1236.

35. Schuurman, H.-J. 2009. The InternationalXenotransplantation Association consensus statement onconditions for undertaking clinical trials of porcine isletproducts in type 1 diabetes—chapter 2: source pigs.Xenotransplantation 16:215–222.

36. Schuurman, H.-J. 2008. Regulatory aspects ofxenotransplantation. Xenotransplantation 15:116–120.

37. Onions, D., D.K.C. Cooper, T.L.J. Alexander et al.2000. An approach to the control of disease transmissionin pig-tohuman xenotransplantation. Xenotransplantation7:143–155.

38. Fishman, J.A. 2001. Infection in xenotransplantation.J. Card. Surg. 16:363–373.

39. Huang, C.A. Y. Fuchimoto, Z.L. Gleit et al. 2001.Posttransplantation lymphoproliferative disease inminiature swine after allogeneic hematopoietic celltransplantation: similarity to human PTLD and association

with a porcine gammaherpesvirus. Blood 97:1467–1473.

40. Mueller, N.J., K. Kuwaki, F.J. Dor et al. 2004.Reduction of consumptive coagulopathy using porcinecytomegalovirusfree cardiac porcine grafts inpig-to-primate xenotransplantation. Transplantation78:1449–1453.

41. Chapman, L.E. 2003. Xenotransplantation: public healthrisks—patient vs. society in an emerging ¢eld. Curr. Top.Microbiol. Immunol. 278:23–45.

42. Oxford, J.S. 2000. In�uenza A pandemic of the 20thcentury with special reference to 1918: virology,pathology and epidemiology. Rev. Med. Virol. 10:119–133.

43. Perrone, L.A., and T.M. Tumpey. 2007. Reconstruction ofthe 1918 pandemic in�uenza virus: how revealing themolecular secrets of the virus responsible for the worstpandemic in recorded history can guide our response tofuture in�uenza pandemics. Infect. Disord. Drug Targets7:294–303.

44. Smith, G.J., D. Vijaykrishna, J. Bahl et al. 2009.Origins and evolutionary genomics of the 2009 swine-originH1N1 in�uenza A epidemic. Nature 459:1122–1125.

45. Parashar, U.D., L.M. Sunn, F. Ong et al. 2000.Case–control study of risk factors for human infectionwith a new zoonotic paramyxovirus, Nipah virus, during a1998–1999 outbreak of severe encephalomyelitis inMalaysia. J. Infect. Dis. 181:1755–1759.

46. Wells, D.L., D.J. Hopfensperger, N.H. Arden et al.1991. Swine in�uenza virus infections. transmission fromill pigs to humans at a Wisconsin agricultural fair andsubsequent probable person-to-person transmission. JAMA.265:478–481.

47. Roux, F.A., P. Saï, and J.Y. Deschamps. 2007. Someethical issues regarding xenotransfusion.Xenotransplantation 14:217–221.

48. McLean, S.A.M., and L. Williamson. 2005.Xenotransplantation: Law and Ethics. Aldershot, UK,Ashgate.

49. Nuf¢eld Council on Bioethics. 1996. Animal-to-HumanTransplants: The Ethics of Xenotransplantation. London,Nuf¢eld Council on Bioethics.

50. The Advisory Group on the Ethics ofXenotransplantation. 1996. Animal Tissue Into Humans.London, The Stationary Of¢ce Publications Centre.

51. Bowman, D.M. 2004. Bioethical and legal perspectives onxenotransplantation. Monash Bioethic Rev. 23:16–29. 52.Hagelin, J. 2004. Public opinion surveys aboutxenotransplantation. Xenotransplantation 11:551–558. 53.Deschamps, J.Y., L. Chaillous, E. Gouin, and P. Saï. 2000.Acceptability of pig xenografts by patients with type 1diabetes and the general population. Diabetes Care 23:412–414. 54. Deschamps, J.Y., F.A. Roux, E. Gouin, and P.Sai. 2005. Reluctance of French patients with type 1diabetes to undergo pig pancreatic isletxenotransplantation. Xenotransplantation 12:175–180. 55.Ríos, A., C. P. Conesa, P. Ramírez et al. 2006. Hospitalpersonnel faced with organ xenotransplantation: anattitudinal survey in a hospital with a pre-clinical liverxenotransplantation program. Xenotransplantation13:447–454. 56. Omnell Persson, M., N.H. Persson, J.Ranstam, and G. Hermerén. 2003. Xenotransplantation publicperceptions, rather cells than organs. Xenotransplantation10:72–79. 57. Breen, K.J. 2002. The xenotransplantationresearch debate: time to involve the community. Med. J.Aust. 177:175. 58. Thomas, C. 2007. Public dialogue andxenotransplantation. Med. Law. 26:801–815. 59.Rubaltelli, E., P. Burra, D. Canova et al. 2009. People’sattitude toward xenotransplantation: affective reactionsand the in�uence of the evaluation context.Xenotransplantation 16:129–134. 60. Canadian PublicHealth Association. 2001. Animal-toHuman Transplantation:Should Canada Proceed? A Public Consultation onXenotransplantation. Ottawa, Canadian Public HealthAssociation. http://www.xeno.cpha.ca 61. Einsiedel, E.F.,and H. Ross. 2002. Animal spare parts? A anadian publicconsultation on xenotransplantation. Sci. Eng. Ethics.8:579–591. 62. Wright Jr, J.R. 2002. Alternativeinterpretations of the same data: �aws in consulting theCanadian public about xenotransplantation issues. CMAJ.167:40–42. 63. Allspaw, K.M. 2004. Engaging the public inthe regulation of xenotransplantation: would the Canadianmodel of public consultation be effective in the US?Public Understand. Sci. 13:417–428. 64. Sykes, M., A.d’Apice, and M. Sandrin. 2003. Position paper of theEthics Committee of the International XenotransplantationAssociation. Xenotransplantation 10:194–203. 65. EuropeanWorking Party on Xenotransplantation. 2003. Report on thestate of the art in the �eld of xenotransplantation.Available at

69. Hering, B.J., D.K.C. Cooper, E. Cozzi et al. 2009. TheInternational Xenotransplantation Association consensusstatement on conditions for undertaking clinical trials ofporcine islet products in type 1 diabetes—executivesummary. Xenotransplantation 16:196–202.

70. Fifty-seventh World Health Assembly, Agenda Item 12.14,May 22, 2004. Resolution 57.18. http://www.who.int/gb/ebwha/pdf_¢les/WHA57/A57_R18-en.pdf

71. World Health Organization. 2008. First WHO globalconsultation on regulatory req-uirements forxenotransplantation clinical trials. Changsha: theChangsha CommuniquĂŠ. http://www.who.int/transplantation/xeno/ChangshaCommunique. pdf

72. Bloom, E.T. 2001. Xenotransplantation: regulatorychallenges. Curr. Opin. Biotechnol. 12:312–316.

73. Council of Europe, Committee of Ministers. 2003.Recommendation Rec(2003)10 of the committee of ministersto member states on xenotransplantation.https://wcd.coe.int/ViewDoc.jsp?id=45827&BackColorInternet=9999CC&BackColorIntranet=FFBB55&BackColorLogged=FFAC75

74. Tibell, A., and T. Lundgren. 2002. Xenotransplantation—clinical activities and regulatory development. Acta Vet.Scand. Suppl. 99:19–23.

75. Yamanouchi, K. 2005. Regulatory considerations in thedevelopment and application of biotechnology in Japan. Rev.Sci. Tech. Off. Int. Epiz. 24:109–115.

76. Cozzi, E., M. Tallacchini, E.B. Flanagan, R.N. PiersonIII, M. Sykes, and H.Y. Vanderpool. 2009. TheInternational Xeno transplantation Association consensusstatement on conditions for undertaking clinical trials ofporcine islet products in type 1 diabetes—chapter 1: keyethical requirements and progress toward the de¢nition ofan international regulatory framework. Xenotransplantation16:203–214.

77. US Public Health Service guideline on infectiousdisease issues in xenotransplantation. 2001. MMWR 50:1–46.

78. Food and Drug Administration. 2003. Guidance forindustry: source animal, product, preclinical, andclinical issues concerning the use of xenotransplantation

products in humans. Available athttp://www.fda.gov/cber/guidelines.htm

79. Regulation (EC) No 1394/2007 of the European Parliamentand of the Council of 13 November 2007 on Advanced TherapyMedicinal Products and Amending Directive 2001/83/EC andRegulation (EC) No 726/2004 (Text with EEA relevance).Available athttp://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:324:0121:0137:EN:PDF

80. European Medicines Agency, committee for medicinalproducts for human use (CHMP). 2009. Guideline onxenogeneic cell-based medicinal products. Available athttp://www.ema. europa.eu/pdfs/human/cpwp/8350809en¢n.pdf

81. Institute of Laboratory Animal Resources, Commission onLife Sciences, National Research Council. 1996. Guide forthe Care and Use of Laboratory Animals. Washington:National Academy Press. Available athttp://oacu.od.nih.gov/ regs/guide/guide.pdf

82. Institute of Food and Agricultural Sciencs, Universityof Florida. 2007. Chapter 10: Guidelines for SwineHusbandry : from the First Revised Edition (January 1999)of the GUIDE For the Care and Use of Agricultural Animalsin Agricultural Research and Teaching. Federation ofAnimal Science Societies (FASS). Available athttp://research.ifas.u�.edu/¢les/arc/trainingMaterials/GuidelinesForSwineHusbandry. pdf83. Heath, C.A., R.A. Barker, T.F.G. Esmonde et al. 2006.Dura mater associated Creutzfeldt-Jacob disease:Experience from surveillance in the UK. J. Neurol.Neurosurg. Psychiatry 77:880–882. 84. Denner, J., H.-J.Schuurman, and C. Patience. 2009. The InternationalXenotransplantation Association consensus statement onconditions for undertaking clinical trials of porcine isletproducts in type 1 diabetes—chapter 5: strategies toprevent transmission of porcine endogenous retroviruses.Xenotransplantation 16:239–248. 85. Chapman, L.E. 2009.Xenotransplantation, xenogeneic infections, biotechnology,and public health. Mt. Sinai J. Med. 76:435–441. 86.Bühler, L., A. Sgroi, M. Sykes, and L. Noel. 2006.International inventory of xenotransplantation practices inhumans. Xenotransplantation 13:482. Available at www.humanxenotransplant.org. 87. Vanderpool, H.Y. 2009. TheInternational Xenotransplantation Association consensusstatement on conditions for undertaking clinical trials ofporcine islet products in type 1 diabetes—chapter 7:informed consent and xenotransplantation clinical trials.

Xenotransplantation 16:255–262. 88. Spillman, M.S., andR.M. Sade. 2007. Clinical trials of xenotransplantation:waiver of the right to withdraw from a clinical trialshould be required. J. Law Med. Ethics 35:265–272. 89.Tuttle-Newhall, J. E., S.M. Krishnan, M.F. Levy, V.McBride, J.P. Orlowski, and R.S. Sung. 2009. Organdonation and utilization in the United States: 1998–2007.Am. J. Transplant. 9:879–893. 90. Fishman, J.A., and C.Patience. 2004. Xenotransplantation: infectious riskrevisited. Am. J. Transplant. 4:1383–1390. 91. Patience,C., and J. Stoye. 2004. Infectious risks of clinicalxenotransplantation. Curr. Opin. Organ Transplant. 9:176–180. 92. Mullon, C., and Z. Pitkin. 1999. TheHepatAssist bioarti¢cial liver support system: clinicalstudy and pig hepatocyte process. Expert Opin. Investig.Drugs 8:229–235. 93. Demetriou, A.A., R.S. Brown Jr, R.W.Busuttil et al. 2004. Prospective, randomized,multicenter, controlled trial of a bioarti¢cial liver intreating acute liver failure. Ann. Surg. 239:660–667. 94.Mazariegos, G.V., J.F. Patzer II, R.C. Lopez et al. 2002.First clinical use of a novel bioarti¢cial liver supportsystem (BLSS). Am. J. Transplant. 2:260–266. 95.Morsiani, E., P. Pazzi, A.C. Puviani et al. 2002. Earlyexperiences with a porcine hepatocyte-based bioarti¢cialliver in acute hepatic failure patients. Int. J. Artif.Organs 25:192–202. 96. Groth, C.G., O. Korsgren, A.Tibell et al. 1994. Transplantation of porcine fetalpancreas to diabetic patients. Lancet 344:1402–1404. 97.Elliott, R.B., Escobar, L., O. Garkavenko et al. 2000. Noevidence of infection with porcine endogenous retrovirus inrecipients of encapsulated porcine islet xenografts. Cell.Transplant. 9:895–901. 98. Elliott, R.B., L. Escobar,P.L.J. Tan, M. Muzina, S. Zwain, and C. Buchanan. 2007.Live encapsulated porcine islets from a type 1 diabeticpatient 9.5 yr after xenotransplantation.Xenotransplantation 14:157–161.

99. Valdes-Gonzalez, F.R.A., L.M. Dorantes, G.N Garibayet al. 2005. Xenotransplantation of porcine neonatalislets of Langerhans and Sertoli cells: A 4-year study.Eur. J. Endocrinol. 153:419–427.

100. Living Cell Technologies. Available athttp://www.lctglobal. com

101. Schuurman, H.J. 2011. Xenotransplantation: from thelab to the clinic: sunrise Symposium at the XXIIIInternational Congress of the Transplantation Society,Vancouver, Canada, August 2010 (symposium summary). Clin.Transpl. April 28. doi: 10.1111/j.1399-0012.2011.01471.x.

102. O’Connell, P.J. 2009. The InternationalXenotransplantation Association consensus statement onconditions for undertaking clinical trials of porcine isletproducts in type 1 diabetes—Chapter 6: Patient selectionfor pilot clinical trials of islet xenotransplantation.Xenotransplantation 16:249–254. 103. Cooper, D.K.C., andA. Casu. 2009. The International XenotransplantationAssociation consensus statement on conditions forundertaking clinical trials of porcine is let products intype 1 diabetes—chapter 4: preclinical ef¢cacy andcomplication data required to justify a clinical trial.Xenotransplantation 16:229–238.

26 Chapter 26: Porcine EndogenousRetroviruses in Xenotransplantation : AReview of the Importance of PERVs inPorcine Studies, with Particular Emphasison the Minipig

9. Clemenceau, B. et al., Porcine endogenous retroviralmRNAs in pancreas and a panel of tissues from speci¢cpathogen-free pigs. Diabetes Metab, 1999; 25(6): 518–25.

10. Wilson, C.A. et al., Type C retrovirus released fromporcine primary peripheral blood mononuclear cells infectshuman cells. J Virol, 1998; 72(4): 3082–7.

11. Patience, C., Y. Takeuchi, and R.A. Weiss, Infection ofhuman cells by an endogenous retrovirus of pigs. Nat Med,1997; 3(3): 282–6.

12. Martin, U. et al., Transmission of pig endogenousretrovirus to primary human cells. Transplant Proc, 2000;32(5): 1157.

13. Martin, U. et al., Productive infection of primaryhuman endothelial cells by pig endogenous retrovirus(PERV). Xenotransplantation, 2000; 7(2): 138–42.

14. Dieckhoff, B. et al., Distribution and expression ofporcine endogenous retroviruses in multi-transgenic pigsgenerated for xenotransplantation. Xenotransplantation,2009; 16(2): 64–73.

15. Mang, R. et al., Identi¢cation of a novel type Cporcine endogenous retrovirus: Evidence that copy numberof endogenous retroviruses increases during hostinbreeding. J Gen Virol, 2001; 82(Pt 8): 1829–34.

16. Garkavenko, O. et al., Porcine endogenous retrovirustransmission characteristics from a designatedpathogen-free herd. Transplant Proc, 2008; 40(2): 590–3.

17. Scobie, L. et al., Characterization of germline porcineendogenous retroviruses from Large White pig. J Gen Virol,2004; 85(Pt 8): 2421–8.

18. Wood, J.C. et al., Identi¢cation of exogenous forms ofhuman-tropic porcine endogenous retrovirus in miniatureSwine. J Virol, 2004; 78(5): 2494–501.

19. Lee, D. et al., Transmissible infection of human 293Tcells with porcine endogenous retroviruses subgroup a from

NIHminiature pig. Transplant Proc, 2008 40(10): 3742–5.

20. Niebert, M., R. Kurth, and R.R. Tonjes, Retroviralsafety: Analyses of phylogeny, prevalence andpolymorphisms of porcine endogenous retroviruses. AnnTransplant, 2003; 8(3): 56–64.

21. Cof¢n, J.M., S. H. Hughes, and H. E. Varmus., ed.Retroviruses. 1997, Cold Spring Harbor Laboratory Press:Cold Spring Harbor, N.Y.

22. Wilson, C.A., Endogenous retroviruses : Porcineendogenous retroviruses and xenotransplantation. Cell MolLife Sci, 2008; 65(21): 3399–3412.

23. Le Tissier, P. et al., Two sets of human-tropic pigretrovirus. Nature, 1997; 389(6652): 681–2.

24. Takeuchi, Y. et al., Host range and interferencestudies of three classes of pig endogenous retrovirus. JVirol, 1998; 72(12): 9986–91.

25. Bouillant, A.M. and A.S. Greig, Type C virus productionby a continuous line of pig oviduct cells (PFT). J GenVirol, 1975; 27(2): 173–80.

26. Armstrong, J.A., J.S. Porter¢eld, and A.T. De Madrid,C-type virus particles in pig kidney cell lines. J GenVirol, 1971; 10(2): 195–8.

27. Todaro, G.J. et al., Characterization of a type C virusreleased from the porcine cell line PK(15). Virology,1974; 58(1): 65–74. 28. Moennig, V. et al., C-typeparticles produced by a permanent cell line from aleukemic pig. II. Physical, chemical, and serologicalcharacterization of the particles. Virology, 1974; 57(1):179–88. 29. Wilson, C.A. et al., Extended analysis of thein vitro tropism of porcine endogenous retrovirus. JVirol, 2000; 74(1): 49–56. 30. Czauderna, F. et al.,Establishment and characterization of molecular clones ofporcine endogenous retroviruses replicating on human cells.J Virol, 2000; 74(9): 4028–38. 31. Tarlinton, R., J.Meers, and P. Young, Biology and evolution of theendogenous koala retrovirus. Cell Mol Life Sci, 2008;65(21): 3413–21. 32. Onions, D.E., ed. Viruses as theaetiological agents of leukaemia and lymphoma. In A.J.Burnett, A. Newland, and A. Keating (Eds), HaematologicalOncology, Cambridge Medical Reviews, Vol. 3, pp. 35–71,1994. Cambridge: Cambridge University Press. 33. Fischer,N. et al., Prevalence of human gammaretrovirus XMRV in

sporadic prostate cancer. J Clin Virol, 2008; 43(3):277–83. 34. Lombardi, V.C. et al., Detection of aninfectious retrovirus, XMRV, in blood cells of patientswith chronic fatigue syndrome. Science, 2009; 326(5952):585–9. 35. Purcell, D.F. et al., An array of murineleukemia virus-related elements is transmitted andexpressed in a primate recipient of retroviral genetransfer. J Virol, 1996; 70(2): 887–97. 36. Akiyoshi, D.E.et al., Identi¢cation of a full-length cDNA for anendogenous retrovirus of miniature swine. J Virol, 1998;72(5): 4503–7. 37. Herring, C. et al., Mapping full-lengthporcine endogenous retroviruses in a large white pig. JVirol, 2001; 75(24): 12252–65. 38. Niebert, M. et al.,Characterization of chromosomally assignedreplication-competent gamma porcine endogenousretroviruses derived from a large white pig and expressionin human cells. J Virol, 2002; 76(6): 2714–20. 39.Niebert, M. and R.R. Tonjes, Analyses of prevalence andpolymorphisms of six replication-competent andchromosomally assigned porcine endogenous retroviruses inindividual pigs and pig subspecies. Virology, 2003; 313(2):427–34. 40. Garkavenko, O. et al., Porcine endogenousretrovirus (PERV) and its transmission characteristics: Astudy of the New Zealand designated pathogen-free herd.Cell Transplant, 2008; 17(12): 1381–8. 41. Bosch, S., C.Arnauld, and A. Jestin, Study of full-length porcineendogenous retrovirus genomes with envelope genepolymorphism in a speci¢c-pathogen-free Large White swineherd. J Virol, 2000; 74(18): 8575–81. 42. Lee, J.H.et al., Characterizing and mapping porcine endogenousretroviruses in Westran pigs. J Virol, 2002; 76(11):5548–56. 43. Krach, U. et al., Comparison ofreplication-competent molecular clones of porcineendogenous retrovirus class A and class B derived from pigand human cells. J Virol, 2001; 75(12): 5465–72. 44. Jin,H. et al., Expression of porcine endogenous retrovirus inperipheral blood leukocytes from ten different breeds.Transpl Infect Dis, 2000; 2(1): 11–4.

45. Scobie, L. et al., Absence of replication-competenthuman-tropic porcine endogenous retroviruses in the germline DNA of inbred miniature Swine. J Virol, 2004; 78(5):2502–9.

46. Wu, J. et al., Large-scale survey of porcine endogenousretrovirus in Chinese miniature pigs. Comp ImmunolMicrobiol Infect Dis, 2008; 31(4): 367–71.

47. Li, Z. et al., Variation of host cell tropism ofporcine endogenous retroviruses expressed in chinese Banna

minipig inbred. Intervirology, 2006; 49(4): 185–91.

48. Li, Z. et al., In vivo screening of porcine endogenousretrovirus in Chinese Banna minipig inbred. TransplantProc, 2006; 38(7): 2261–3.

49. Langford, G.A. et al., In vivo analysis of porcineendogenous retrovirus expression in transgenic pigs.Transplantation, 2001; 72(12): 1996–2000.

50. Scheef, G. et al., Transcriptional regulation ofporcine endogenous retroviruses released from porcine andinfected human cells by heterotrimeric protein complexNF-Y and impact of immunosuppressive drugs. J Virol, 2002;76(24): 12553–63.

51. Nellaker, C. et al., Transactivation of elements in thehuman endogenous retrovirus W family by viral infection.Retrovirology, 2006; 3: 44.

52. Ruprecht, K. et al., Regulation of human endogenousretrovirus W protein expression by herpes simplex virustype 1: implications for multiple sclerosis. J Neurovirol,2006; 12(1): 65–71.

53. Quinn, G. and G. Langford, The porcine endogenousretrovirus long terminal repeat contains a singlenucleotide polymorphism that confers distinct differencesin estrogen receptor binding af¢nity between PERV A andPERV B/C subtypes. Virology, 2001; 286(1): 83–90.

54. Bartosch, B., R.A. Weiss, and Y. Takeuchi, PCR-basedcloning and immunocytological titration of infectiousporcine endogenous retrovirus subgroup A and B. J GenVirol, 2002; 83(Pt 9): 2231–40.

55. Ritzhaupt, A. et al., Porcine endogenous retrovirusinfects but does not replicate in nonhuman primate primarycells and cell lines. J Virol, 2002; 76(22): 11312–20.

56. Martin, U. et al., Expression of pig endogenousretrovirus by primary porcine endothelial cells andinfection of human cells. Lancet, 1998; 352(9129): 692–4.

57. Bartosch, B. et al., Evidence and consequence ofporcine endogenous retrovirus recombination. J Virol,2004; 78(24): 13880–90.

58. Denner, J., Recombinant porcine endogenous retroviruses(PERV-A/C): A new risk for xenotransplantation? Arch Virol,

2008; 153(8): 1421–6.

59. Gemeniano, M. et al., The infectivity and host range ofthe ecotropic porcine endogenous retrovirus, PERV-C, ismodulated by residues in the C-terminal region of itssurface envelope protein. Virology, 2006; 346(1): 108–17.

60. Martin, S.I., R. Wilkinson, and J.A. Fishman, Genomicpresence of recombinant porcine endogenous retrovirus intransmitting miniature swine. Virol J, 2006; 3: 91.

61. Hector, R.D. et al., Pre-screening of miniature swinemay reduce the risk of transmitting human tropicrecombinant porcine endogenous retroviruses.Xenotransplantation, 2007; 14(3):222–6. 62. Kurth, R. andN. Bannert, Bene¢cial and detrimental effects of humanendogenous retroviruses. Int J Cancer, 2010;126(2):306–14. 63. Suling, K. et al., Packaging of humanendogenous retrovirus sequences is undetectable in porcineendogenous retrovirus particles produced from human cells.Virology, 2003; 312(2):330–6. 64. Mattiuzzo, G., M.Matouskova, and Y. Takeuchi, Differential resistance tocell entry by porcine endogenous retrovirus subgroup A inrodent species. Retrovirology, 2007; 4:93. 65.Hermida-Prieto, M. et al., Lack of cross-speciestransmission of porcine endogenous retrovirus (PERV) totransplant recipients and abattoir workers in contact withpigs. Transplantation, 2007; 84(4):548–50. 66. Moscoso,I. et al., Lack of cross-species transmission of porcineendogenous retrovirus in pig-to-baboon xenotransplantationwith sustained depletion of anti-alphagal antibodies.Transplantation, 2005; 79(7):777–82. 67. Specke, V. et al., Virus safety in xenotransplantation: Firstexploratory in vivo studies in small laboratory animalsand non-human primates. Transpl Immunol, 2002;9(2–4): 281–8. 68. Denner, J. et al., No transmission ofporcine endogenous retroviruses (PERVs) in a long-term pigto rat xenotransplantation model and no infection ofimmunosuppressed rats. Ann Transplant, 2008; 13(1): 20–31.69. Garkavenko, O. et al., Absence of transmission ofpotentially xenotic viruses in a prospective pig to primateislet xenotransplantation study. J Med Virol, 2008;80(11): 2046–52. 70. Paradis, K. et al., Search forcross-species transmission of porcine endogenousretrovirus in patients treated with living pig tissue. TheXEN 111 Study Group. Science, 1999; 285(5431): 1236–41.71. Levy, M.F. et al., No evidence of PERV infection inhealthcare workers exposed to transgenic porcine liverextracorporeal support. Xenotransplantation, 2007; 14(4):309–15. 72. Denner, J. et al., Porcine endogenous

retroviruses (PERVs): Adaptation to human cells andattempts to infect small animals and non-human primates.Ann Transplant, 2001; 6(3): 25–33. 73. van der Laan, L.J.et al., Infection by porcine endogenous retrovirus afterislet xenotransplantation in SCID mice. Nature, 2000;407(6800): 90–4. 74. Martina, Y. et al., Pseudotyping ofporcine endogenous retrovirus by xenotropic murine leukemiavirus in a pig islet xenotransplantation model. Am JTransplant, 2005; 5(8): 1837–47. 75. Martina, Y. et al.,Mice transgenic for a human porcine endogenous retrovirusreceptor are susceptible to productive viral infection. JVirol, 2006; 80(7): 3135–46. 76. Popp, S.K. et al.,Transient transmission of porcine endogenous retrovirus tofetal lambs after pig islet tissue xenotransplantation.Immunol Cell Biol, 2007; 85(3): 238–48. 77. Dorrschuck,E., C. Munk, and R.R. Tonjes, APOBEC3 proteins and porcineendogenous retroviruses. Transplant Proc, 2008;40(4):959–61. 78. Barnor, J.S. et al., Inhibition of HIV-1replication by longterm treatment with a chimeric RNAcontaining shRNA and TAR decoy RNA. Antiviral Res, 2009;83(2): 156–64.

79. Lee, S.W., Y.L. Lee, Y.J. Lee, S.Y. Park, I.S. Kimb,T.H. Choi, J.H. Ha, B.C. Ahn, and J. Lee, Enhancedantitumor effects by combination gene therapy using MDR1gene shRNA and HSV1-tk in a xenograft mouse model. CancerLett, 2010 May 1; 291(1):83–9. Epub 2009 Nov 6.

80. Li, Z. et al., Inhibition of HBV replication and geneexpression in vitro and in vivo with a single AAV vectordelivering two shRNA molecules. BMB Rep, 2009; 42(1):59–64.

81. Manjunath, N. et al., Lentiviral delivery of shorthairpin RNAs. Adv Drug Deliv Rev, 2009; 61(9): 732–45.

82. Karlas, A., R. Kurth, and J. Denner, Inhibition ofporcine endogenous retroviruses by RNA interference:Increasing the safety of xenotransplantation. Virology,2004; 325(1): 18–23.

83. Dieckhoff, B. et al., Knockdown of porcine endogenousretrovirus (PERV) expression by PERV-speci¢c shRNA intransgenic pigs. Xenotransplantation, 2008; 15(1): 36–45.

84. Ramsoondar, J. et al., Production of transgenic pigsthat express porcine endogenous retrovirus smallinterfering RNAs. Xenotransplantation, 2009; 16(3):164–80.

85. Jouvenet, N. et al., Broad-spectrum inhibition ofretroviral and ¢loviral particle release by tetherin. JVirol, 2009; 83(4): 1837–44.

86. Wolf, D. and S.P. Goff, Host restriction factorsblocking retroviral replication. Annu Rev Genet, 2008; 42:143–63.

87. Martin-Serrano, J., The role of ubiquitin in retroviralegress. Traf�c, 2007; 8(10): 1297–303.

88. Jonsson, S.R. et al., The restriction of zoonotic PERVtransmission by human APOBEC3G. PLoS ONE, 2007; 2(9): e893.

89. Wood, A. et al., Porcine endogenous retroviruses PERVA and A/C recombinant are insensitive to a range ofdivergent mammalian TRIM5alpha proteins including humanTRIM5alpha. J Gen Virol, 2009; 90(Pt 3): 702–9.

90. Ozato, K. et al., TRIM family proteins and theiremerging roles in innate immunity. Nat Rev Immunol, 2008;8(11): 849–60.

91. Carthagena, L. et al., Human TRIM gene expression inresponse to interferons. PLoS ONE, 2009; 4(3): e4894.

92. Qari, S.H. et al., Susceptibility of the porcineendogenous retrovirus to reverse transcriptase andprotease inhibitors. J Virol, 2001; 75(2): 1048–53.

93. Stephan, O. et al., Porcine endogenous retroviruses(PERVs): Generation of speci¢c antibodies, development ofan immunoperoxidase assay (IPA) and inhibition by AZT.Xenotransplantation, 2001; 8(4): 310–6. 94. Powell, S.K.et al., Antiretroviral agents inhibit infection of humancells by porcine endogenous retroviruses. AntimicrobAgents Chemother, 2000; 44(12): 3432–3. 95. Garkavenko, O.et al., Monitoring for presence of potentially xenoticviruses in recipients of pig islet xenotransplantation. JClin Microbiol, 2004; 42(11): 5353–6. 96. Mattiuzzo, G.,Y. Takeuchi, and L. Scobie, Xenotransplantation: Methodsand Protocols. Eds C. Costa Vallès and R. Máñez Mendiluce.2011, Humana Press, New York. 97. Argaw, T., A. Ritzhaupt,and C.A. Wilson, Development of a real time quantitativePCR assay for detection of porcine endogenous retrovirus.J Virol Methods, 2002; 106(1): 97–106. 98. Niebert, M. andR.R. Tonjes, Molecular cloning and functionalcharacterization of infectious PERV and development ofdiagnostic tests. Curr Top Microbiol Immunol, 2003; 278:217–37. 99. Rodrigo, A.G. et al., Quantitation of target

molecules from polymerase chain reaction-based limitingdilution assays. AIDS Res Hum Retroviruses, 1997; 13(9):737–42. 100. Heneine, W. et al., No evidence of infectionwith porcine endogenous retrovirus in recipients ofporcine islet-cell xenografts. Lancet, 1998; 352(9129):695–9. 101. Di Nicuolo, G. et al., No evidence of in vitroand in vivo porcine endogenous retrovirus infection afterplasmapheresis through the AMC-bioarti¢cial liver.Xenotransplantation, 2005; 12(4): 286–92. 102. Kuddus, R.et al., Clinical and laboratory evaluation of the safetyof a bioarti¢cial liver assist device for potentialtransmission of porcine endogenous retrovirus.Transplantation, 2002; 73(3): 420–9. 103. Fiebig, U.et al., Neutralizing antibodies against conserved domainsof p15E of porcine endogenous retroviruses: Basis for avaccine for xenotransplantation? Virology, 2003; 307(2):406–13. 104. Irgang, M. et al., Porcine endogenousretroviruses: No infection in patients treated with abioreactor based on porcine liver cells. J Clin Virol,2003; 28(2): 141–54. 105. Krach, U. et al., Generation andtesting of a highly speci¢c anti-serum directed againstporcine endogenous retrovirus nucleocapsid.Xenotransplantation, 2000; 7(3): 221–9. 106. Preuss, T.et al., Isolation and characterization of an infectiousreplication-competent molecular clone of ecotropic porcineendogenous retrovirus class C. J Virol, 2006; 80(20):10258–61. 107. Weiss, R.A., The discovery of endogenousretroviruses. Retrovirology, 2006; 3: 67.

27 Chapter 27: Immunotoxicology : Studiesin the Minipig

Cockburn, I. 1987. Transplant. Proc. 19:625–631.

Coe, C. L., G. R. Lubach, and J. W. Karaszewski. 1999.Prenatal stress and immune recognition of self and nonselfin the primate neonate. Biol. Neonate 76( 5):301–310.

Descotes, J., Horand, F., and Ravel, G. 2007. Humoralresponse to KLH and lymphocyte subset analysis in dogstreated with dexamethasone. The Toxicologist 96(1):357.

De Waal, E. J., H. H. Timmerman, P. M. Dortant, M. A.Kranjc, and Loveren H. van. 1995. Investigation of ascreening battery for immunotoxicity of pharmaceuticalswithin a 28-day oral toxicity study using azathioprine andcyclosporin A as model compounds. Regul. Toxicol.Pharmacol. 21(3):327–338.

Di Padova, F. E. 1990. Pharmacology of cyclosporine(sandimmune). V. Pharmacological effects on immunefunction: In vitro studies. Pharmacol. Rev. 41(3):373–405.

Dietert, R. R., J. E. Lee, J. Olsen, K. Fitch, and J. A.Marsh. 2003. Developmental immunotoxicity ofdexamethasone: Comparison of fetal versus adult exposures.Toxicology 194(1–2):163–176.

Draize, J. H., G. Woodard, and H. O. Calvery. 1944. Methodsfor the study of irritation and toxicity of substancesapplied topically to the skin and mucous membranes. J.Pharmacol. Exp. Ther. 82:377–390.

EMEA Guideline on immunogenicity assessment ofbiotechnology-derived therapeutic proteins’.(EMEA/CHMP/BMWP/ 14327/2006).

Exon, J. H., J. L. Bussiere, and G. G. Mather. 1990.Immunotoxicity testing in the rat: An improved multipleassay model. Int. J. Immunopharmacol. 12(6):699–701.

Exon, J. H., L. D. Koller, P. A. Talcott, C. A. O’Reilly,and G. M. Henningsen. 1986. Immunotoxicity testing: Aneconomical multiple-assay approach. Fundam. Appl. Toxicol.7(3):387–397.

Finco-Kent, D. and T. T. Kawabata. 2005. Development andvalidation of a canine T-cell-dependent antibody responsemodel for immunotoxicity evaluation. J. Immunotoxicol.

2(4):197–201.

Gore, E. R., J. Gower, E. Kurali, J. L. Sui, J. Bynum, D.Ennulat, and D. J. Herzyk. 2004. Primary antibody responseto keyhole limpet hemocyanin in rat as a model forimmunotoxicity evaluation. Toxicology 197(1):23–35.

Herzyk, D. J. and E. R. Gore. 2004. Adequate immunotoxicitytesting in drug development. Toxicol. Lett.149(1–3):115–122.

Horand, F., F. Condevaux, J. Briffaux, and P. Phothirath.2008. Phenotypic characterization of lymphocytesubpopulations in the minipig. The Toxicologist102(1):441. Abstract 2145.

ICH Harmonized Tripartite Guideline (S6): Preclinicalsafety evaluation of biotechnology-derived pharmaceuticals.Step 5 document EMEA/CPMP/ICH/302/95 - ICH, October 2005.

ICH Harmonized Tripartite Guideline (S8): Immunotoxicitystudies for human pharmaceuticals. Step 4 document EMEA/CHMP/167235/2004 - ICH, 13 October 2005.

IILP study: The immunotox inter laboratory project on thevalidation of the KLH assay in rats. Unpublished results.

Joling, P., A. T. Bianchi, A. L. Kappe, and R. J. Zwart.1994. Distribution of lymphocyte subpopulations in thymus,spleen, and peripheral blood of speci¢c pathogen free pigsfrom 1 to 40 weeks of age. Vet. Immunol. Immunopathol.40(2):105–117.

Kim, Y. B., N. D. Huh, H. S. Koren, and D. B. Amos. 1980.Natural killing (NK) and antibody-dependent cellularcytotoxicity (ADCC) in speci¢c pathogen-free (SPF)miniature swine and germfree piglets. I. Comparison of NKand ADCC. J. Immunol. 125(2):755–762. Kuper, C. F., M. VanZijverden, C. Klaassen, M. TegelenboschSchouten, and A. P.M. Wolterbeek. 2007. Effects of cyclosporin A andcyclophosphamide on Peyer’s patches in rat, exposed inutero and neonatally or during adult age. Toxicol. Pathol.35:226–232. Ladics, C. S., C. Smith, T. L. Bunn, R. R.Dietert, P. K. Anderson, C. M. Wiescinski, and M. P.Holsapple. 2000. Characterization of an approach todevelopmental immunotoxicology assessment in the rat usingSRBC as the antigen. Toxicol. Meth. 10(4):283–311. Liu,J., J. D. Farmer, Jr., W. S. Lane, J. Friedman, I.Weissman, and S. L. Schreiber. 1991. Calcineurin is acommon target of cyclophilin-cyclosporin A and FKBP-FK506

complexes. Cell 66(4):807–815. Lunney, J. K. and M. D.Pescovitz. 1987. Phenotypic and functional characterizationof pig lymphocyte populations. Vet. Immunol. Immunopathol.17(1–4):135–144. Luster, M. I., C. Portier, D. G. Pait, K.L. White, Jr., C. Gennings, A. E. Munson, and G. J.Rosenthal. 1992. Risk assessment in immunotoxicology. I.Sensitivity and predictability of immune tests. Fundam.Appl. Toxicol. 18(2):200–210. Luster, M. I., A. E. Munson,P. T. Thomas, M. P. Holsapple, J. D. Fenters, K. L. White,Jr., L. D. Lauer, et al. 1988. Development of a testingbattery to assess chemical-induced immunotoxicity:National Toxicology Program’s guidelines for immunotoxicityevaluation in mice. Fundam. Appl. Toxicol. 10(1):2–19.Munson, A. E., V. M. Sanders, K. A. Douglas, L. E. Sain, B.M. Kauffmann, and K. L. White, Jr. 1982. In vivoassessment of immunotoxicity. Environ. Health Perspect.43:41–52. Nakamura, T., H. Yamatoya, J. Hayashi, T. Fukuda,N. Matsuo, Y. Takahashi, H. Izumi, H. Tokado, and R.Nagata. 2008. T-cell dependent antibody response incynomolgus monkeys for immunotoxicity evaluation. TheToxicologist 102(1):442. Abstract 2149. Palestine, A. G.,F. Roberge, B. L. Charous, H. C. Lane, A. S. Fauci, and R.B. Nussenblatt. 1985. The effect of cyclosporine onimmunization with tetanus and keyhole limpet hemocyanin(KLH) in humans. J. Clin. Immunol. 5(2):115–121. Piccotti,J. R., J. D. Alvey, J. F. Reindel, and R. E. Guzman. 2005.T-cell-dependent antibody response: Assay development incynomolgus monkeys. J. Immunotoxicol. 2(4):191–196.Ramirez, F., D. J. Fowell, M. Puklavec, S. Simmonds, and D.Mason. 1996. Glucocorticoids promote a TH2 cytokineresponse by CD4+ T cells in vitro. J. Immunol.156(7):2406–2412. Richter-Reichhelm, H. B. and A. E.Schulte. 1998. Results of a cyclosporin A ringstudy.Toxicology 129(1):91–94. Saalmuller, A., T. Werner, and V.Fachinger. 2002. T-helper cells from naive to committed.Vet. Immunol. Immunopathol. 87(3–4):137–145. Saalmuller,A., M. J. Reddehase, H. J. Buhring, S. Jonjic, and U. H.Koszinowski. 1987. Simultaneous expression of CD4 and CD8antigens by a substantial proportion of resting porcine Tlymphocytes. Eur. J. Immunol. 17(9):1297–1301. Schulte, A.,J. Althoff, S. Ewe, and H. B. Richter-Reichhelm. 2002. Twoimmunotoxicity ring studies according to OECD TG407-comparison of data on cyclosporin A andhexachlorobenzene. Regul. Toxicol. Pharmacol. 36(1):12–21.

Schwab, C. L., R. Fan, Q. Zheng, L. P. Myers, P. Hebert,and S. B. Pruett. 2005. Modeling and predictingstress-induced immunosuppression in mice using bloodparameters. Toxicol. Sci. 83(1):101–113.

Sigal, N. H. and F. J. Dumont. 1992. Cyclosporin A, FK-506,and rapamycin: Pharmacologic probes of lymphocyte signaltransduction. Annu. Rev. Immunol. 10:519–560.

Smith, H. W., C. J. Winstead, K. K. Stank, B. W. Halstead,and D. Wierda. 2003. A predictive F344 ratimmunotoxicology model: Cellular parameters combined withhumoral response to NP-CgammaG and KLH. Toxicology194(1–2): 129–145.

Solano-Aguilar, G. I., K. G. Vengroski, E. Beshah, L. W.Douglass, and J. K. Lunney. 2001. Characterization oflymphocyte subsets from mucosal tissues in neonatal swine.Dev. Comp Immunol. 25(3):245–263.

Sovcikova, A., J. Tulinska, J. Kubova, A. Liskova, D.Syrova, and K. Horakova. 2002. Effect of cyclosporin A inLewis rats in vivo and HeLa cells in vitro. J. Appl.Toxicol. 22(3):153–160.

Stepanova, H., P. Samankova, L. Leva, J. Sinkora, and M.Faldyna. 2007. Early postnatal development of the immunesystem in piglets: The redistribution of T lymphocytesubsets. Cell Immunol. 249(2):73–79. The ICICIS GroupInvestigators. 1998. Report of validation study ofassessment of direct immunotoxicity in the rat. The ICICISGroup Investigators. International CollaborativeImmunotoxicity Study. Toxicology 125(2–3):183–201. White,K. L., Jr., C. M. Sheth, and V. L. Peachee. 2007.Comparison of primary immune responses to SRBC and KLH inrodents. J. Immunotoxicol. 4(2):153–158. Yabu, K., V. S.Warty, E. Gorelik, and H. Shinozuka. 1991. Cyclosporinepromotes the induction of thymic lymphomas in C57BL/6 miceinitiated by a single dose of gamma-radiation.Carcinogenesis 12(1):43–46. Yanagihara, R. H. and W. H.Adler. 1982. Inhibition of mouse natural killer activityby cyclosporin A. Immunology 45(2):325–332. Zuckermann, F.A. and R. J. Husmann. 1996. Functional and phenotypicanalysis of porcine peripheral blood CD4/CD8double-positive T cells. Immunology 87(3):500–512.Zuckermann, F. A. 1999. Extrathymic CD4/CD8 double positiveT cells. Vet. Immunol. Immunopathol. 72(1–2):55–66.SECTION VI Disease Models

28 Chapter 28: Creation and Conservationof Genetically Modified Pigs :Applications to Genetic Disease Model andXenotransplantation

Abe, H., Yamashita, S., Itoh, T., Satoh, T., and Hoshi, H.1999. Ultrastructure of bovine embryos developed from invitromatured and -fertilized oocytes: Comparativemorphological evaluation of embryos cultured either inserum-free medium or in serum-supplemented medium. MolReprod Dev 53:325–335.

Abe, H., Yamashita, S., Satoh, T., and Hoshi, H. 2002.Accumulation of cytoplasmic lipid droplets in bovineembryos and cryotolerance of embryos developed in differentculture systems using serum-free or serum-containingmedia. Mol Reprod Dev 61:57–66. Du, Y., Kragh, P. M.,Zhang, Y., Li, J., Schmidt, M., Bøgh, I. B., Zhang, X. etal., 2007a. Piglets born from handmade cloning, aninnovative cloning method without micromanipulation.Theriogenology 68(8):1104–1010. Du, Y., Li, J., Kragh, P.M., Zhang, Y., Schmidt, M., Bøgh, I. B., Zhang, X. et al.,2007b. Piglets born from vitri¢ed cloned blastocystsproduced with a simpli¢ed method of delipation and nucleartransfer. Cloning Stem Cells 9(4):469–476. Du, Y., Lin,L., Schmidt, M., Bøgh, I. B., Kragh, P. M., Sørensen, C.B., Li, J. et al., 2008. High hydrostatic pressuretreatment of porcine oocytes before handmade cloningimproves developmental competence and cryosurvival. Cloningand Stem Cells 10(3):325–330. Esaki, R., Ueda, H., Kurome,M., Hirakawa, K., Tomii, R., Yoshioka, H., Ushijima, H.,Kuwayama, M., and Nagashima, H. 2004. Cryopreservation ofporcine embryos derived from in vitro matured oocytes.Biol Reprod 71:432–437. Esteban, M. A., Xu, J., Yang, J.,Peng, M., Qin, D., Li, W., Jiang, Z. et al., 2009.Generation of induced pluripotent stem cell lines fromtibetan miniature pig. J Biol Chem 284(26): 17634–17640.Ezashi, T., Telugu, B. P., Alexenko, A. P., Sachdev, S.,Sinha, S., and Roberts, R. M. 2009. Derivation of inducedpluripotent stem cells from pig somatic cells. Proc NatlAcad Sci USA 106(27):10993–10998. Faast, R., Harrison, S.J., Beebe, L. F., McIlfatrick, S. M., Ashman, R. J., andNottle, M. B. 2006. Use of adult mesenchymal stem cellsisolated from bone marrow and blood for somatic cellnuclear transfer in pigs. Cloning and Stem Cells8(3):166–173. Fujimura, T., Murakami, H., Kurome, M.,Takahagi, Y., Shigehisa, T., and Nagashima, H. 2008a.Effects of recloning on the ef¢ciency of production ofα1,3-galactosyltransferase-knockout pigs. J Reprod Dev54(1):58–62. Fujimura, T., Takahagi, Y., Shigehisa, T.,

Nagashima, H., Miyagawa, S., Shirakura, R., and Murakami,H. 2008b. Production of alpha 1,3-galactosyltransferasegene-de¢cient pigs by somatic cell nuclear transfer: Anovel selection method for gal alpha 1,3-Galantigen-de¢cient cells. Mol Reprod Dev 75(9):1372–1378.Geurts, A. M., Cost, G. J., Freyvert, Y., Zeitler, B.,Miller, J. C., Choi, V. M., Jenkins, S. S. et al., 2009.Knockout rats via embryo microinjection of zinc-¢ngernucleases. Sci 325(5939):433.

Table 28.6 Production Efficiency of Cloned Piglets fromCryopreserved or Noncryopreserved Embryos

Cryopreservation NT Embryos Produced Normally Cleaved(%) Developed to the Morula Stage (%) VitriÂĄed (%)Recovered and Cultured (%) Developed to the BlastocystStage (%) Transferred to Recipients (%) Cloned PigletsDelivered (%) Live Offspring (%)

+ 532 382 (71.8) 257 (48.3) 236 (44.4) 232 (43.6) 130(24.4) 103 (19.4) a 6 (1.1) 5 (0.9)

– 635 154/325 c (47.4) — — — — 400 (63.0) b 17 (2.7) 10(1.6)

Source: Adapted from. Nakano, K. et al., 2011. J ReprodDev 55: submitted.

a Cloned embryos were transferred to the uterine horns ofthe recipients.

b Cloned embryos were transferred to the oviducts of therecipients.

c Embryos cultured for 2 days before transfer wereevaluated for normal cleavage.

Gibbons, J., Arat, S., Rzucidlo, J., Miyoshi, K.,Waltenburg, R., Respess, D., Venable, A., and Stice, S.2002. Enhanced survivability of cloned calves derived fromroscovitine-treated adult somatic cells. Biol Reprod66:895–900.

Hockemeyer, D., Soldner, F., Beard, C., Gao, Q.,Mitalipova, M., DeKelver, R. C., Katibah, G. E. et al.,2009. Ef¢cient targeting of expressed and silent genes inhuman ESCs and iPSCs using zinc-¢nger nucleases. NatBiotechnol 27(9):851–857.

Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M.,

Noguchi, J., Kaneko, H., Akita, T., and Nagai, T. 2002.Successful piglet production after transfer of blastocystsproduced by a modi¢ed in vitro system. Biol Reprod66:1033–1041.

Kues, W. A., Anger, M., Carnwath, J. W., Paul, D., Motlik,J., and Niemann, H. 2000. Cell cycle synchronization ofporcine ¢broblasts: Effects of sperm deprivation andreversible cell cycle inhibitors. Biol Reprod 62:412–419.

Kues, W. A., Carnwath, J. W., Paul, D., and Niemann, H.2002. Cell cycle synchronization of porcine fetal¢broblasts by serum deprivation initiates anonconventional form of apoptosis. Cloning Stem Cells4(3):231–243.

Kurome, M., Fujimura, T., Murakami, H., Takahagi, Y., Wako,N., Ochiai, T., Miyazaki, K., and Nagashima, H. 2003.Comparison of electro-fusion and intracytoplasmic nuclearinjection methods in pig cloning. Cloning and Stem Cells5(4):367–378.

Kurome, M., Hisatomi, H., Matsumoto, S., Tomii, R., Ueno,S., Hiruma, K., Saito, H. et al., 2008a. Productionef¢ciency and telomere length of the cloned pigs followingserial somatic cell nuclear transfer. J Reprod Dev54:254–258.

Kurome, M., Ishikawa, T., Tomii, R., Ueno, S., Shimada, A.,Yazawa, H., and Nagashima, H. 2008b. Production oftransgenic and non-transgenic clones in miniature pigs bysomatic cell nuclear transfer. J Reprod Dev 54(3):156–163.

Kurome, M., Saito, H., Tomii, R., Ueno, S., Hiruma, K., andNagashima, H. 2007. Effects of sperm pretreatment onef¢ciency of ICSI-mediated gene transfer in pigs. J ReprodDev 53(6):1217–1226.

Kurome, M., Tomii, R., Ueno, S., Hiruma, K., Matsumoto, S.,Okumura, K., Nakamura, K., Matsumoto, M., Kaji, Y., Endo,F., and Nagashima, H. 2008c. Production of cloned pigs fromsalivary gland-derived progenitor cells. Cloning and StemCells 10(2):277–285.

Kurome, M., Ueda, H., Tomii, R., Naruse, K., and Nagashima,H. 2006. Production of transgenic-clone pigs by thecombination of ICSI-mediated gene transfer with somaticcell nuclear transfer. Trans Res 15:229–240.

Kuwayama, M., and Kato, O. 2000. All-round vitri¢cation

method for human oocytes and embryos. J Assist ReprodGenet 17(8):477.

Kuwayama, M., Vajta, G., Kato, O., and Leibo, S. P. 2005.Highly ef¢cient vitri¢cation method for cryopreservationof human oocytes. Reprod Biomed Online 11(3):300–308.

Li, J., Svarcova, O., Villemoes, K., Kragh, P. M., Schmidt,M., Bøgh, I. B., Zhang, Y. et al., 2008. High in vitrodevelopment after somatic cell nuclear transfer andtrichostatin A treatment of reconstructed porcine embryos.Therio 70:800–808.

Li, R., Lai, L., Wax, D., Hao, Y., Murphy, C. N., Rieke,A., Samuel, M. et al., 2006. Cloned transgenic swine viain vitro production and cryopreservation. Biol Reprod75(2):226–230.

Li, R., Murphy, C. N., Spate, L., Wax, D., Isom, C., Rieke,A., Walters, E. M., Samuel, M., and Prather, R. S. 2009.Production of piglets after cryopreservation of embryosusing a centrifugation-based method for delipation withoutmicromanipulation. Biol Reprod 80(3):563–567. Matsunari,H., Onodera, M., Tada, N., Mochizuki, H., Karasawa, S.,Haruyama, E., Nakayama, N. et al., 2008. Transgenic-clonedpigs systemically expressing red �uorescent protein,kusabira-orange. Cloning and Stem Cells 10(3):313–324.Miquerol, L., Lopez, S., Cartier, N., Tulliez, M.,Raymondjean, M., and Kahn, A. 1994. Expression of theL-type pyruvate kinase gene and the hepatocyte nuclearfactor 4 transcription factor in exocrine and endocrinepancreas. J Biol Chem 269(12):8944–8951. Miyagawa, S.,Murakami, H., Murase, A., Nakai, R., Koma, M., Koyota, S.,Matsunami, K. et al., 2001. Transgenic pigs with humanN-acetylglucosaminyltransferase III. Transplant Proc33:742–743. Miyano, T., Hiro-Oka, R. E., Kano, K., Miyake,M., Kusunoki, H., and Kato, S. 1994. Effects of hyaluronicacid on the development of 1- and 2-cell porcine embryos tothe blastocyst stage in vitro. Theriogenol41(6):1299–1305. Mizutani, E., Ohta, H., Kishigami, S., VanThuan, N., Hikichi, T., Wakayama, S., Kosaka, M., Sato,E., and Wakayama, T. 2006. Developmental ability of clonedembryos from neural stem cells. Reprod 132:849–857.Murakami, H., Nagashima, H., Takahagi, H., Fujimura, S.,Miyagawa, S., Okabe, M., Seya, T. et al., 2000. Productionof transgenic pigs expressing human DAF (CD55) regulatedby the porcine MCP gene promoter. Transplant Proc32:2505–2506. Murakami, H., Nagashima, H., Takahagi, Y.,Miyagawa, S., Fujimura, T., Toyomura, K., Nakai, R. etal., 2002. Transgenic pigs expressing human

decay-accelerating factor regulated by porcine MCP genepromoter. Mol Reprod Dev 61(3):302–311. Nagashima, H.,Cameron, R. D., Kuwayama, M., Young, M., Beebe, L.,Blackshaw, A. W., and Nottle, M. B. 1999. Survival ofporcine delipated oocytes and embryos aftercryopreservation by freezing or vitri¢cation. J Reprod Dev45(2):167–176. Nagashima, H., Hiruma, K., Saito, H., Tomii,R., Ueno, S., Nakayama, N., Matsunari, H., and Kurome, M.2007. Production of live piglets followingcryopreservation of embryos derived from in vitro-maturedoocytes. Biol Reprod 76:900–905. Nagashima, H.,Kashiwazaki, N., Ashman, R., Grupen, C. G., and Nottle, M.B. 1995. Cryopreservation of porcine embryos. Nature 374(March 30):416. Nagashima, H., Kashiwazaki, N., Ashman, R.J., Grupen, C. G., Seamark, R. F., and Nottle, M. B.1994a. Recent advances in cryopreservation of porcineembryos. Theriogenol 41:113–118. Nagashima, H.,Kashiwazaki, N., Ashman, R. J., Grupen, C. G., Seamark, R.F., and Nottle, M. B. 1994b. Removal of cytoplasmic lipidenhances the tolerance of porcine embryos to chilling.Biol Reprod 51:618–622. Nagashima, H., Kato, Y., Yamakawa,H., Matsumoto, T., and Ogawa, S. 1989. Changes in freezingtolerance of pig blastocysts in peri-hatching stage. Jpn JAnim Reprod 35(3):130–134. Nagashima, H., Kato, Y.,Yamakawa, H., and Ogawa, S. 1988. Survival of pig hatchedblastocysts exposed below 15 °C. Jpn J Anim Reprod34(2):123–131.

Nagashima, H., Yamakawa, H., and Niemann, H. 1992.Freezability of porcine blastocysts at differentperi-hatching stages. Theriogenol 37(4):839–850.

Nakano, K., Matsunari, H., Nakayama, N., Ogawa, B., Kurome,M., Takahashi, M., Matsumoto, M., Murakami, H., Kaji, Y.,and Nagashima, H. 2011. Cloned porcine embryos canmaintain developmental ability after cryopreservation atthe morula stage. J Reprod Dev 57:312–316.

Nguyen, V. T., Kurebayashi, S., Harayama, H., and Miyake,M. 2003. Stage-speci¢c effect of the osmolarity of aculture medium on the development of parthenogeneticdiploids in the pig. Theriogenol 59:719–734.

Nicosia, A., Monaci, P., Tomei, L., De Francesco, R.,Nuzzo, M., Stunnenberg, H., and Cortese, R. 1990. Amyosin-like dimerization helix and an extra-largehomeodomain are essential elements of the tripartite DNAbinding structure of LFB1. Cell 61(7):1225–1236.

Nottle, M. B., Nagashima, H., Verma, P. J., Du, Z-T.,

Grupen, C. G., Ashman, R. J., and MacIlfatrick, S. 1997.Developments in transgenic techniques in pigs. J ReprodFert Suppl. 52:237–244.

Peng, X., Maruo, T., Matsuo, H., Takekida, S., and Deguchi,J. 1998. Serum deprivation-induced apoptosis in culturedporcine granulosa cells is characterized by increasedexpression of p53 protein, Fas antigen and Fas ligand andby decreased expression of PCNA. Endocr J 45(2):247–253.

Perry, A. C., Wakayama, T., Kishikawa, H., Kasai, T.,Okabe, M., Toyoda, Y., and Yanagimachi, R. 1999. Mammaliantransgenesis by intracytoplasmic sperm injection. Sci284(5417):1097–1098.

Petters, R. M. and Wells, K. D. 1993. Culture of pigembryos. J Reprod Fert Suppl. 48:61–73.

Rideout, W. M. 3rd, Wakayama, T., Wutz, A., Eggan, K.,JacksonGrusby, L., Dausman, J., Yanagimachi, R., andJaenisch, R. 2000. Generation of mice from wild-type andtargeted ES cells by nuclear cloning. Nat Genet24:109–110.

Santiago, Y., Chan, E., Liu, P. Q., Orlando, S., Zhang, L.,Urnov, F. D., Holmes, M. C. et al., 2008. Targeted geneknockout in mammalian cells by using engineered zinc-¢ngernucleases. Proc Natl Acad Sci USA 105(15):5653–5654.

Tomii, R., Kurome, M., Ochiai, T., Wako, N., Ueda, H.,Hirakawa, K., Kano, K., and Nagashima, H. 2005. Productionof cloned pigs by nuclear transfer of preadipocytesestablished from adult mature adipocytes. Cloning and StemCells 7(4):279–288.

Tomii, R., Kurome, M., Wako, N., Ochiai, T., Matsunari, H.,Kano, K., and Nagashima, H. 2009. Production of clonedpigs by nuclear transfer of preadipocytes following cellcycle synchronization by differentiation induction. JReprod Dev 55(2):121–127.

Tuomi, T. 2005. Type 1 and type 2 diabetes: What do theyhave in common? Diab 54 Suppl 2:S40–S45.

Umeyama, K., Watanabe, M., Saito, H., Kurome, M., Tohi, S.,Matsunari, H., Miki, K., and Nagashima, H. 2009.Dominant-negative mutant hepatocyte nuclear factor 1alphainduces diabetes in transgenic-cloned pigs. Trans Res18:697–706. Ushijima, H., Yoshioka, H., Esaki, R.,Takahashi, K., Kuwayama, M., Nakane, T., and Nagashima, H.

2004. Improved survival of vitri¢ed in vivo-derivedporcine embryos. J Reprod Dev 50:481–486. Vacková, I.,Engelová, M., Marinov, I., and Tománek, M. 2003. Cellcycle synchronization of porcine granulosa cells in G1stage with mimosine. Anim Reprod Sci 77:235–245. Vajta, G.,Booth, P. J., Holm, P., Greve, T., and Callesen, H. 1997.Successful vitri¢cation of early stage bovine in vitroproduced embryos with the open pulled straw (OPS) method.Cryo-Lett 18:191–195. Vajta, G., Zhang, Y., and Macháty, Z.2009. Somatic cell nuclear transfer in pigs: Recentachievements and future possibilities. Reprod Fertil Dev21(1):60–66. Wakayama, T. 2007. Production of cloned miceand ES cells from adult somatic cells by nuclear transfer:How to improve cloning ef¢ciency? J Reprod Dev 53:13–26.Wakayama, T., Rodriguez, I., Perry, A. C., Yanagimachi, R.,and Mombaerts, P. 1999. Mice cloned from embryonic stemcells. Proc Natl Acad Sci U S A 96:14984–14989. Walker, S.C., Shin, T., Zaunbrecher, M. Z., Romano, J. E., Johnson,G. A., Bazer, F. W., and Piedrahita, J. A. 2002. A highlyef¢cient method for porcine cloning by nuclear transferusing in vitro-matured oocytes. Cloning and Stem Cells4(2):105–112. Wild, S., Roglic, G., Green, A., Sicree, R.,and King, H. 2004. Global prevalence of diabetes:Estimates for the year 2000 and projections for 2030. DiabCare 27(5):1047–1053. Wu, Z., Chen, J., Ren, J., Bao, L.,Liao, J., Cui, C., Rao, L. et al., 2009. Generation of piginduced pluripotent stem cells with a drug-induciblesystem. J Mol Cell Biol 1(1):46–54. Yamagata, K. 2003.Regulation of pancreatic beta-cell function by the HNFtranscription network: Lessons from maturity-onsetdiabetes of the young (MODY). Endocr J 50(5):491–499.Yamagata, K., Oda, N., Kaisaki, P. J., Menzel, S., Furuta,H., Vaxillaire, M., Southam, L. et al., 1996. Mutations inthe hepatocyte nuclear factor-1alpha gene inmaturity-onset diabetes of the young (MODY3). Nat384(6608):407–408. Yin, X-J., Tani, T., Yonemura, I.,Kawakami, M., Miyamoto, K., Hasegawa, R., Kato, Y., andTsunoda, Y. 2002. Production of cloned pigs from adultsomatic cells by chemically assisted removal of maternalchromosomes. Biol Reprod 67:442–446. Yoshioka, K., Suzuki,C., and Onishi, A. 2008. De¢ned system for in vitroproduction of porcine embryos using a single basic medium.J Reprod Dev 54(3):208–213. Yoshioka, K., Suzuki, C.,Tanaka, A., Anas, I. M., and Iwamura, S. 2002. Birth ofpiglets derived from porcine zygotes cultured in achemically de¢ned medium. Biol Reprod 66(1):112–119. Zhao,J., Ross, J. W., Hao, Y., Spate, L. D., Walters, E. M.,Samuel, M. S., Rieke, A., Murphy, C. N., and Prather, R.S. 2009. Signi¢cant improvement in cloning ef¢ciency of aninbred miniature pig by histone deacetylase inhibitor

treatment after somatic cell nuclear transfer. Biol Reprod81:525–530.

29 Chapter 29: Stem Cell Research andMinipigs

Alberio, R., Croxall, N., and Allegrucci, C. 2010. Pigepiblast stem cells depend on activin/nodal signaling forpluripotency and self renewal. Stem Cells Dev19(10):1627–1636.

Amariglio, N., Hirshberg, A., Scheithauer, B., Cohen, Y.,Loewenthal, R., Trakhtenbrot, L., Paz, N. et al. 2009.Donor-derived brain tumor following neural stem celltransplantation in an ataxia telangiectasia patient. PLoSMed 6(2):e1000029.

Armstrong, R., Tyers, P., Jain, M., Richards, A., Dunnett,S., Rosser, A., and Barker, R. 2003. Transplantation ofexpanded neural precursor cells from the developing pigventral mesencephalon in a rat model of Parkinson’sdisease. Exp Brain Res 151:204–217.

Biernaskie, J., McKenzie, I., Toma, J., and Miller, F.2006. Isolation of skin-derived precursors (SKPs) anddifferentiation and enrichment of their Schwann cellprogeny. Nat Protoc 1:2803–2812. Bjarkam, C., Nielsen, M.,Glud, A., Rosendal, F., Mogensen, P., Bender, D., Doudet,D., Moller, A., and Sorensen, J. 2008. Neuromodulation ina minipig MPTP model of Parkinson disease. Br J Neurosurg22(Suppl 1):S9–S12. Brons, I., Smithers, L., Trotter, M.,Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S., Howlett,S. et al. 2007. Derivation of pluripotent epiblast stemcells from mammalian embryos. Nat 448:191–195. Chen, L.,Shiue, Y., Bertolini, L., Medrano, J., BonDurant, R., andAnderson, G. 1999. Establishment of pluripotent cell linesfrom porcine preimplantation embryos. Theriogenol52:195–212. Durcova-Hills, G., Prelle, K., Müller, S.,Stojkovic, M., Motlik, J., Wolf, E., and Brem, G. 1998.Primary culture of porcine PGCs requires LIF and porcinemembrane-bound stem cell factor. Zygote 6:271–275.Durcova-Hills, G., Adams, I., Barton, S., Surani, A., andMcLarren, A. 2006. The role of exogenous ¢broblast growthfactor-2 on the reprogramming of primordial germ cellsinto pluripotent stem cells. Stem Cells 24:1441–1449.Durcova-Hills, G., Tang, F., Doody, G., Tooze, R., andSurani, A. 2008. Reprogramming primordial germ cells intopluripotent stem cells. PLoS ONE 3(10):e3531. Esteban, M.,Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z.et al. 2009. Generation of induced pluripotent stem celllines from Tibetan miniature pig. J Biol Chem284(26):17634–17640. Evans, M. and Kaufman, M. 1981.Establishment in culture of pluripotential cells from mouse

embryos. Nat 292:154–156. Evans, M., Notarianni, E.,Laurie, S., and Moor, R. 1990. Derivation and preliminarycharacterization of pluripotent cell lines from porcineand bovine blastocysts. Theriogenol 33:125–128. Ezashi, T.,Telugu, B., Alexenko, A., Sachdev, S., Sinha, S., andRoberts, M. 2009. Derivation of induced pluripotent stemcells from pig somatic cells. PNAS 106:10993–10998. Go, T.,Jungebluth, P., Baiguero, S., Asnaghi, A., Martorell, J.,Ostertag, H., Mantero, S., Birchall, M., Bader, A., andMacchiarini, P. 2010. Both epithelial cells and mesenchymalstem cell-derived chondrocytes contribute to the survivalof tissue-engineered airway transplants in pigs. J ThoracCardiovasc Surg 139:437–443. Greber, B., Wu, G., Bernemann,C., Joo, J., Han, D., Ko, K., Tapia, N. et al. 2010.Conserved and divergent roles of FGF signaling in mouseepiblast stem cells and human embryonic stem cells. CellStem Cell 6:215–226. Hall, V. 2008. Porcine embryonic stemcells: a possible source for cell replacement therapy.Stem Cell Rev 4:275–282. Hall, V., Christensen, J, Gao, Y,Schmidt, M.H., and Hyttel, P. 2009. Porcine pluripotencycell signaling develops from the inner cell mass to theepiblast during early development. Dev Dyn 238:2014–2024.Harrower, T., Tyers, P., Hooks, Y., and Barker, R. 2006.Long-term survival and integration of porcine expandedneural precursor cell grafts in a rat model of Parkinson’sdisease. Exp Neurol 197:56–69. Henderson, J., Draper, J.,Baillie, H., Fishel, S., Thomson, J., Moore, H., andAndrews, P. 2002. Preimplantation human embryos andembryonic stem cells show comparable expression ofstage-speci¢c embryonic antigens. Stem Cells 20:329–337.

Hua, J., Yu, H., Liu, S., Dou, Z., Sun, Y., Jing, X., Yang,C., Lei, A., Wang, H., and Gao, Z. 2009. Derivation andcharacterization of human embryonic germ cells: Serum-freeculture and differentiation potential. Reprod Biomed Online19:238–249.

Jung, M., Kaszap, B., Redohl, A., Steck, E., Breusch, S.,Richter, W., and Gotterbarm, T. 2009. Enhanced earlytissue regeneration after matrix-assisted autologousmesenchymal stem cell transplantation in full thicknesschondral defects in a minipig model. Cell Transplant18:923–932.

Karasiewicz, J., Sacharczuk, M., Was, B., Guszkiewicz, A.,Korwin-Kossakowski, M., Gorniewska, M., Szablisty, E., andModlinski, J. 2008. Experimental embryonic-somaticchimaerism in the sheep con¢rmed by random ampli¢edpolymorphyc DNA assay. Int J Dev Biol 52:315–322.

Kim, J., Zaehres, H., Wu, G., Gentile, L., Ko, K.,Sebastiano, V., Arauzo-Bravo, M. et al. 2008. Pluripotentstem cells induced from adult neural stem cells byreprogramming with two factors. Nat 454:646–651.

Kim, S., Kim, J., Lee, E., Jeong, Y., Hossein, M., Park,S., Park, S. et al. 2010. Establishment andcharacterization of embryonic stem-like cells from porcinesomatic cell nuclear transfer blastocysts. Zygote18:93–101.

Kragh, P., Nielsen, A., Li, J., Du, Y., Lin, L., Schmidt,M., Bøgh, I. et al. 2009. Hemizygous minipigs produced byrandom insertion and handmade cloning express theAlzheimer’s diseasecausing dominant mutation APPsw.Transgenic Res 8:545–558.

Labosky, P., Barlow, D., and Hogan, B. 1994. Mouseembryonic germ (EG) cell lines: Transmission through thegermline and differences in the methylation imprint ofinsulin-like growth factor 2 receptor (Igf2r) genecompared with embryonic stem (ES) cell lines. Dev120(11):3197–3204.

Lee, C.-K. and Piedrahita, J. 2000. Effects of growthfactors and feeder cells on porcine primordial germ cellsin vitro. Cloning 2(4):197–205.

Lee, C.-K., Weaks, R., Johnson, G., Bazer, F., andPiedrahita, J. 2000. Effects of protease inhibitors andantioxidants on in vitro survival of porcine primordialgerm cells. Biol Reprod 63(3):887–897.

Li, M., Ma, W., Hou, Y., Sun, X., Sun, Q., and Wang, W.2004. Improved isolation and culture of embryonic stemcells from Chinese miniature pig. J Reprod Dev 50:237–244.

Liard, O., Segura, S., Pascual, A., Gaudreau, P., Fusai,T., and Moyse, E. 2009. In vitro isolation of neuralprecursor cells from the adult pig subventricular zone. JNeurosci Meth 182:172–179.

Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S.,Abujarour, R., Lin, X., Hahm, H., Hao, E., Hayek, A., andDing, S. 2009. A chemical platform for improved inductionof human iPSCs. Nat Methods 6(11):805–808.

Liu, J., Lu, X., Wan, L., Li, Y., Li, S., Zeng, L., Zeng,Y., Cheng, L., Lu, Y., and Cheng, J. 2004. Suppression ofhuman peripheral blood lymphocyte proliferation by

immortalized mesenchymal stem cells derived from bonemarrow of Banna Minipig inbred-line. Transplant Proc36:3272–3275.

Ma, D., Bonaguidi, M., Ming, G., and Song, H. 2009. Adultneural stem cells in the mammalian central nervous system.Cell Res 19:672–682.

Matsui, Y., Zsebo, K., and Hogan, B. 1992. Derivation ofpluripotential embryonic stem cells from murine primordialgerm cells in culture. Cell 70(5):841–847. McLaren, A.2003. Primordial germ cells in the mouse. Dev Biol262(1):1–15. Müller, S., Prelle, K., Rieger, N., Petznek,H., Lassnig, C., Luksch, U., Aigner, B. et al. 1999.Chimeric pigs following blastocyst injection of transgenicporcine primordial germ cells. Mol Reprod Dev54(3):244–254. Nakagawa, M., Koyanagi, M., Tanabe, K.,Takahashi, K., Ichisaka, T., Aoi, T., Okita, K.,Mochiduki, Y., Takizawa, N., and Yamanaka, S. 2008.Generation of induced pluripotent stem cells without Mycfrom mouse and human ¢broblasts. Nat Biotechnol26(1):101–106. Oestrup, O., Hall, V., Petkov, S., Wolf, X.,Hyldig, S., and Hyttel, P. 2009. From zygote toimplantation: morphological and molecular dynamics duringembryo development in the pig. Reprod Domest Anim 44(Suppl3):39–49. Okita, K., Ichisaka, T., and Yamanaka, S. 2007.Generation of germline-competent induced pluripotent stemcells. Nat 448:313–317. Okita, K., Nakagawa, M., Hyenjong,H., Ichisaka, T., and Yamanaka, S. 2008. Generation ofmouse induced pluripotent stem cells without viral vectors.Sci 322:949–953. Pera, R., DeJonge, C., Bossert, N., Yao,M., Hwa Yang, J., Asadi, N., Wong, W., Wong, C., andFirpo, M. 2009. Gene expression pro¢les of human inner cellmass cells and embryonic stem cells. Differen 78:18–23.Pesce, M., Farrace, M., Piacentini, M., Dolci, S., andFelici, M. 1993. Stem cell factor and leukemia inhibitoryfactor promote primordial germ cell survival bysuppressing programmed cell death (apoptosis). Dev118(4):1089–1094. Petkov, S. and Anderson, G. 2008. Cultureof porcine embryonic germ cells in serum-supplemented andserum-free conditions: The effects of serum and growthfactors on primary and longterm culture. Cloning Stem Cells10(2):263–276. Petkov, S., Marks, H., Klein, T., Garcia,R., Gao, Y., Stunnenberg, H., and Hyttel, P. 2011. Invitro culture and characterization of putative porcineembryonic germ cells derived from domestic breeds andYucatan mini pig embryos at days 20–24 of gestation. StemCell Res 6(3):226–237. Piedrahita, J., Anderson, G., andBonDurant, R. 1990a. In�uence of feeder layer type on theef¢ciency of isolation of porcine embryo-derived cell

lines. Theriogenol 34:865–877. Piedrahita, J., Anderson,G., and BonDurant, R. 1990b. On the isolation ofembryonic stem cells: Comparative behavior of murine,porcine and ovine embryos. Theriogenol 34:879–901.Piedrahita, J., Moore, C., Oetama, B., Lee, C-K., Scales,N., Jagdeece, R., Bazer, F., and Ott, T. 1998. Generationof transgenic porcine chimeras using primordial germcell-derived colonies. Biol Reprod 58(5):1321–1329. Pieri,F., Lucarelli, E., Corinaldesi, G., Iezzi, G., Piattelli,A., Giardino, R., Bassi, M., Donati, D., and Marchetti, C.2008. Mesenchymal stem cells and platelet-rich plasmaenhance bone formation in sinus grafting: ahistomorphometric study in minipigs. J Clin Periodontol35:539–546. Piliszek, A., Modlinski, J., Pysniak, K., andKarasiewicz, J. 2007. Foetal ¢broblasts introduced tocleaving mouse embryos contribute to full-termdevelopment. Reprod 133:207–218. Poncelet, A., Vercruysse,J., Saliez, A., and Gianello, P. 2007. Although pigallogeneic mesenchymal stem cells are not immunogenic invitro, intracardiac injection elicits an immune responsein vivo. Transplan 83:783–790.

Puy, L., Chuva de Sousa Lopes, S., Haagsman, H., andRoelen, B. 2010. Differentiation of porcine inner cellmass cells into proliferating neural cells. Stem Cells Dev19:61–70.

Quevedo, H., Hatzistergos, K., Oskouei, B., Feigenbaum, G.,Rodriguez, J., Valdes, D., Pattany, P. et al. 2009.Allogeneic mesenchymal stem cells restore cardiac functionin chronic ischemic cardiomyopathy via trilineagedifferentiating capacity. PNAS 106:14022–14027.

Resnick, J., Bixler, L., Cheng, L., and Donovan, P. 1992.Longterm proliferation of mouse primordial germ cells inculture. Nat 359(6395):550–551.

Rho, G., Kumar, B., and Balasubramanian, S. 2009. Porcinemesenchymal stem cells—current technological status andfuture perspective. Front Biosci 14:3942–3961.

Rohwedel, J., Sehlmeyer, U., Shan, J., Meister, A., andWobus, A. 1996. Primordial germ cell-derived mouseembryonic germ (EG) cells in vitro resembleundifferentiated stem cells with respect todifferentiation capacity and cell cycle distribution. CellBiol Int 20(8):579–587.

Shamblott, M., Axelman, J., Little¢eld, J., Blumenthal, P.,Huggins, G., Cui, Y., Cheng, L., and Gearhart, J. 2000.

Human embryonic germ cell derivatives express a broad rangeof developmentally distinct markers and proliferateextensively in vitro. PNAS 98:113–118.

Sheu, J., Yuen, C., Sun, C., Chang, L., Yen, C., Chiang,C., Ko, S. et al. 2009. Six-month angiographic study ofimmediate autologous bone marrow mononuclear cellimplantation on acute anterior wall myocardial infarctionusing a mini-pig model. Int Heart J 50:221–234.

Shi, Y., Do, J.T., Desponts, C., Hahm, H.S., Scholer, H.R.,and Ding, S. 2008. A combined chemical and geneticapproach for the generation of induced pluripotent stemcells. Cell Stem Cell 2:525–528.

Shim, H., Gutiérres-Adán, A., Chen, L-R., BonDurant, R.,Behboodi, E., and Anderson, G. 1997. Isolation ofpluripotent stem cells from cultured porcine primordialgerm cells. Biol Reprod 57(5):1089–1095.

Shim, S., Han, D., Yang, J., Lee, B., Kim, S., Shim, H.,and Lee, H. 2008. Derivation of embryonic germ cells frompost migratory primordial germ cells, and methylationanalysis of their imprinted genes by bisul¢te genomicsequencing. Mol Cells 25(3):358–367.

Shin, S., Sun, Y., Liu, Y., Khaner, H., Svant, S., Cai, J.,Xu, Q. et al. 2007. Whole genome analysis of human neuralstem cells derived from embryonic stem cells and stem andprogenitor cells isolated from fetal tissue. Stem Cells25:1298–1306.

Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., andHochedlinger, K. 2008. Induced pluripotent stem cellsgenerated without viral integration. Sci 322:945–949.

Strojek, R., Reed, M., Hoover, J., and Wagner, T. 1990. Amethod for cultivating morphologically undifferentiatedembryonic stem cells from porcine blastocysts. Theriogenol33:901–913.

Surani, A., Hayashi, K., and Hajkova, P. 2007. Genetic andepigenetic regulators of pluripotency. Cell 128(4):747–762.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M.,Ichisaka, T., Tomoda, K., and Yamanaka, S. 2007. Inductionof pluripotent stem cells from adult human ¢broblasts byde¢ned factors. Cell 131:1–12. Takahashi, K. and Yamanaka,S. 2006. Induction of pluripotent stem cells from mouseembryonic and adult ¢broblast cultures by de¢ned factors.

Cell 126:663–676. Tesar, P., Chenoweth, J., Brook, F.,Davies, T., Evans, E., Mack, D., Gardner, R., and McKay,R. 2007. New cell lines from mouse epiblast share de¢ningfeatures with human embryonic stem cells. Nat 448:196–199.Thomson, J., Itskovitz-Eldor, J., Shapiro, S., Waknitz, M.,Swiergiel, J., Marshall, V., and Jones, J. 1998. Embryonicstem cell lines derived from human blastocysts. Sci282:1145–1147. Tomita, S., Mickle, D., Weisel, R., Jia, Z.,Tumiati, L., Allidina, Y., Liu, P., and Li, R. 2002.Improved heart function with myogenesis and angiogenesisafter autologous porcine bone marrow stromal celltransplantation. J Thorac Cardiovasc Surg 123:1132–1140.Tsung, H., Du, Z., Rui, R., Li, X., Bao, L., Wu, J., Bao,S., and Yao, Z. 2003. The culture and establishment ofembryonic germ (EG) cell lines from Chinese mini swine.Cell Res 13(3):195–202. Turnpenny, L., Brickwood, S.,Spalluto, C., Piper, K., Cameron, I., Wilson, D., Hanley,N. 2003. Derivation of human embryonic germ cells: analternative source of pluripotent stem cells. Stem Cells21(5):598–609. Turnpenny, L., Cameron, I., Spalluto, C.,Hanley, K., Wilson, D., and Hanley, N. 2005. Humanembryonic germ cells for future neuronal replacementtherapy. Brain Res Bull 68:76–82. Vassiliev, I.,Vassilieva, S., Beebe, L., Harrison, S., McIlfatrick, S.,and Nottle, M. 2010. In vitro and in vivo characterizationof putative porcine embryonic stem cells. Cell Reprogram12:223–230. Vodicka, P., Smetana, K., Dvorankova, B.,Emerick, T., Xu, Y., Ourednik, J., Ourednik, V., andMotlik, J. 2005. The miniature pig as an animal model inbiomedical research. Ann N. Y. Acad Sci 1049:161–171. Wei.L., Gao, K., Liu, P., Lu, X., Li, S., Cheng, J., Li, Y.,and Lu, Y. 2008. Mesenchymal stem cells from ChineseGuizhou minipig by hTERT gene transfection. TransplantProc 40:547–550. West, F., Terlouw, S., Kwon, D., Mumaw,J., Dhara, S., Hasneen, K., Dobrinsky, J., and Stice, S.2010. Porcine induced pluripotent cells produce chimericoffspring. Stem Cells Dev 19(18):1211–1220. Woltjen, K.,Michael, I., Mohseni, P., Desai, R., Mileikovsky, M.,Hämäläinen, R., Cowling, R. et al. 2009. piggyBactransposition reprograms ¢broblasts to induced pluripotentstem cells. Nat 458:766–771. Wu, Z., Chen, J., Ren, J.,Bao, L., Liao, J., Cui, C., Rao, L. et al. 2009.Generation of pig-induced pluripotent stem cells with adrug-inducible system. J Mol Cell Biol 1(1):45–54. Yusa,K., Rad, R., Takeda, J., and Bradley, A. 2009. Generationof transgene-free induced pluripotent mouse stem cells bythe piggy Bac transposon. Nat Meth 6(5):363–369. Yu, J.,Vodyanik, M., Smuga-Otto, K., Antosiewicz-Bourget, J.,Frane, J., Tian, S., Nie, J. et al. 2007. Inducedpluripotent stem cell lines derived from human somatic

cells. Sci 318:1917–1920. Zhao, M., Isom, S., Lin, H.,Hao, Y., Zhang, Y., Zhao, J., Whyte, J., Dobbs, K., andPrather, R. 2009. Tracing the stemness of porcineskin-derived progenitors (pSKP) back to speci¢c markergene expression. Cloning Stem Cells 11:111–122. Zhou, H.,Wu, S., Joo, J., Zhu, S., Han, D., Lin, T., Trauger, S. etal. 2009. Generation of induced pluripotent stem cellsusing recombinant proteins. Cell Stem Cell 4:1–4.

30 Chapter 30: Minipig Models of DiabetesMellitus

Askari, B., M. A. Carroll et al. 2002. Oleate and linoleateenhance the growth-promoting effects of insulin-likegrowth factor-I through a phospholipase D-dependentpathway in arterial smooth muscle cells. J Biol Chem277(39): 36338–44.

Barb, C. R., N. M. Cox et al. 1992. Growth hormonesecretion, serum, and cerebral spinal �uid insulin andinsulin-like growth factor-I concentrations in pigs withstreptozotocininduced diabetes mellitus. Proc Soc Exp BiolMed 201(2): 223–8.

Barth, C., M. Pfeuffer et al. 1990. Animal models for thestudy of lipid metabolism, with particular reference toGottingen minipig. Adv Anim Physiol Anim Nutr S20: 39–49.

Battell, M., V. Yuen et al. 1999. Other models of type onediabetes. Experimental Models of Diabetes. J. McNeill, ed.Boca Raton, FL: CRC Press LLC, pp. 219–29.

Bergman, R. N., D. T. Finegood et al. 1985. Assessment ofinsulin sensitivity in vivo. Endocr Rev 6(1): 45–86.

Bergman, R. N., R. Prager et al. 1987. Equivalence of theinsulin sensitivity index in man derived by the minimalmodel method and the euglycemic glucose clamp. J ClinInvest 79(3): 790–800.

Betsholtz, C., V. Svensson et al. 1989. Islet amyloidpolypeptide (IAPP): cDNA cloning and identi¢cation of anamyloidogenic region associated with the species-speci¢coccurrence of agerelated diabetes mellitus. Exp Cell Res183(2): 484–93.

Biester, H. 1925. Diabetes in a pig showing pancreaticlesions. J Am Vet Med Assoc 67: 99–109.

Black, M. H., T. E. Fingerlin et al. 2008. Evidence ofinteraction between PPARG2 and HNF4A contributing tovariation in insulin sensitivity in Mexican Americans.Diabetes 57(4): 1048–56.

Boirie, Y., K. R. Short et al. 2001. Tissue-speci¢cregulation of mitochondrial and cytoplasmic proteinsynthesis rates by insulin. Diabetes 50(12): 2652–8.

Bollen, P. J., L. W. Madsen et al. 2005. Growth differences

of male and female Gottingen minipigs during ad libitumfeeding: a pilot study. Lab Anim 39(1): 80–93.

Bolzan, A. D. and M. S. Bianchi 2002. Genotoxicity ofstreptozotocin. Mutat Res 512(2–3): 121–34.

Boodhwani, M., N. R. Sodha et al. 2007. Functional,cellular, and molecular characterization of the angiogenicresponse to chronic myocardial ischemia in diabetes.Circulation 116(11 Suppl): I31–7.

Borbouse, L., G. M. Dick et al. 2009. Impaired function ofcoronary BK(Ca) channels in metabolic syndrome. Am JPhysiol Heart Circ Physiol 297(5): H1629–37.

Boullion, R. D., E. A. Mokelke et al. 2003. Porcine modelof diabetic dyslipidemia: Insulin and feed algorithms formimicking diabetes mellitus in humans. Comp Med 53(1):42–52.

Bratz, I. N., G. M. Dick et al. 2008. Impairedcapsaicin-induced relaxation of coronary arteries in aporcine model of the metabolic syndrome. Am J Physiol HeartCirc Physiol 294(6): H2489–96.

Buhlinger, C. A., P. J. Wangsness et al. 1978. Bodycomposition, in vitro lipid metabolism and skeletal musclecharacteristics in fast-growing, lean and in slow-growing,obese pigs at equal age and weight. Growth 42(2): 225–36.

Cai, M., W. Yin et al. 2006. Effects of NO-1886 onin�ammationassociated cytokines inhigh-fat/high-sucrose/high-cholesterol diet-fed miniaturepigs. Eur J Pharmacol 540(1–3): 139–46. Carter, A. J., L.Bailey et al. 2000. The effects of uncontrolledhyperglycemia on thrombosis and formation of neointimaafter coronary stent placement in a novel diabetic porcinemodel of restenosis. Coron Artery Dis 11(6): 473–9.Christoffersen, B., U. Ribel et al. 2009. Evaluation ofdifferent methods for assessment of insulin sensitivity inGottingen minipigs: Introduction of a new, simpler method.Am J Physiol Regul Integr Comp Physiol 297(4): R1195–201.Christoffersen, B. O., N. Grand et al. 2007.Gender-associated differences in metabolic syndrome-relatedparameters in Gottingen minipigs. Comp Med 57(5): 493–504.Christoffersen, C., J. P. Goetze et al. 2002.Chamber-dependent expression of brain natriuretic peptideand its mRNA in normal and diabetic pig heart. Hypertension40(1): 54–60. Clark, A., C. A. Wells et al. 1988. Isletamyloid, increased A-cells, reduced B-cells and exocrine

¢brosis: Quantitative changes in the pancreas in type 2diabetes. Diabetes Res 9(4): 151–9. Clements, R. T., N. R.Sodha et al. 2009. Impaired coronary microvascular dilationcorrelates with enhanced vascular smooth muscle MLCphosphorylation in diabetes. Microcirculation 16(2):193–206. Clerico, A., F. A. Recchia et al. 2006. Cardiacendocrine function is an essential component of thehomeostatic regulation network: Physiological and clinicalimplications. Am J Physiol Heart Circ Physiol 290(1):H17–29. Cozzi, E. 2009. On the road to clinicalxenotransplantation. Transpl Immunol 21(2): 57–9. Dixon,J. L., S. Shen et al. 2002. Increased atherosclerosis indiabetic dyslipidemic swine: protection by atorvastatininvolves decreased VLDL triglycerides but minimal effectson the lipoprotein pro¢le. J Lipid Res 43(10): 1618–29.Dixon, J. L., J. D. Stoops et al. 1999. Dyslipidemia andvascular dysfunction in diabetic pigs fed an atherogenicdiet. Arterioscler Thromb Vasc Biol 19(12): 2981–92.Dyson, M., M. Alloosh et al. 2005. Glucose Intolerance andInsulin Resistance in Ossabaw Compared to Yucatan Swine.Swine in Biomedical Research Conference, Chicago, IL.Dyson, M. C., M. Alloosh et al. 2006. Components ofmetabolic syndrome and coronary artery disease in femaleOssabaw swine fed excess atherogenic diet. Comp Med 56(1):35–45. Edwards, J. M., M. A. Alloosh et al. 2008. AdenosineA1 receptors in neointimal hyperplasia and in-stentstenosis in Ossabaw miniature swine. Coron Artery Dis19(1): 27–31. Edwards, J. M., Z. P. Neeb et al. 2010.Exercise training decreases store-operated Ca 2+ entryassociated with metabolic syndrome and coronaryatherosclerosis. Cardiovasc Res 85(3): 631–40. Ekoé, J.,P. Zimmet et al. 2008. The Clinical Syndrome and theBiochemical de¢nition. In J.-M. Ekoé, Rewers, M., andWilliams, R. (eds), The Epidemiology of Diabetes Mellitus,(2nd edn., pp. 5–9). West Sussex UK: John Wiley and SonsLtd. Etherton, T. D. and P. M. Kris-Etherton 1980.Characterization of plasma lipoproteins in swine withdifferent propensities for obesity. Lipids 15(10): 823–9.Etherton, T. D., P. J. Wangsness et al. 1982. Effect ofdietary restriction on carcass composition and adipocytecellularity of swine with different propensities forobesity. J Nutr 112(12): 2314–23.

Fall, T., H. H. Hamlin et al. 2007. Diabetes mellitus in apopulation of 180,000 insured dogs: Incidence, survival,and breed distribution. J Vet Intern Med 21(6): 1209–16.

Ferrannini, E., O. Bjorkman et al. 1985. The disposal ofan oral glucose load in healthy subjects. A quantitativestudy. Diabetes 34(6): 580–8.

Ferrer, J., W. E. Scott, 3rd et al. 2008. Pig pancreasanatomy: Implications for pancreas procurement,preservation, and islet isolation. Transplantation 86(11):1503–10.

Ganong, W. 1991. Endocrine functions of the pancreas.Review of Medical Physiology. W. Ganong. Hartford,Appleton and Lange, pp. 312–33.

Gepts, W. and P. M. Lecompte 1981. The pancreatic islets indiabetes. Am J Med 70(1): 105–15.

Gerrity, R. G., R. Natarajan et al. 2001. Diabetes-inducedaccelerated atherosclerosis in swine. Diabetes 50(7):1654–65.

Gerstein, H. C. and L. Waltman 2006. Why don’t pigs getdiabetes? Explanations for variations in diabetessusceptibility in human populations living in adiabetogenic environment. Cmaj 174(1): 25–6.

Gianello, P. and D. Dufrane 2007. Encapsulation of pigislets by alginate matrix to correctstreptozotocin-induced diabetes in primates withoutimmunosuppression. Joint Meeting of the InternationalXenotransplantation Association IXA), the InternationalPancreas and Islet Transplant Association IPITA), and theCell Transplant Society (CTS), Minneapolis, MN, USA,Blackwell Munksgaard.

Grundy, S. M. 2008. Metabolic syndrome pandemic.Arterioscler Thromb Vasc Biol 28(4): 629–36.

Hainsworth, D. P., M. L. Katz et al. 2002. Retinalcapillary basement membrane thickening in a porcine modelof diabetes mellitus. Comp Med 52(6): 523–9.

Hall, J. L., W. C. Stanley et al. 1996. Impaired pyruvateoxidation but normal glucose uptake in diabetic pig heartduring dobutamine-induced work. Am J Physiol 271(6 Pt 2):H2320–9.

Hand, M. S., R. S. Surwit et al. 1987. Failure ofgenetically selected miniature swine to model NIDDM.Diabetes 36(3): 284–7.

Hara, H., Y. J. Lin et al. 2008. Safe induction of diabetesby highdose streptozotocin in pigs. Pancreas 36(1): 31–8.

Hausman, G. J. and R. J. Martin 1981. Subcutaneous adiposetissue development in Yorkshire (lean) and Ossabaw (obese)pigs. J Anim Sci 52(6): 1442–9.

Henson, M. S. and T. D. O’Brien 2006. Feline models of type2 diabetes mellitus. Ilar J 47(3): 234–42.

Hering, B. J. and N. Walawalkar 2009. Pig-to-nonhumanprimate islet xenotransplantation. Transpl Immunol 21(2):81–6.

Herr, R. R., J. K. Jahnke et al. 1967. The structure ofstreptozotocin. J Am Chem Soc 89(18): 4808–9.

Higgins, P. J., R. L. Garlick et al. 1982. Glycosylatedhemoglobin in human and animal red cells. Role of glucosepermeability. Diabetes 31(9): 743–8.

Hill, B. J., J. L. Dixon et al. 2001. Effect ofatorvastatin on intracellular calcium uptake in coronarysmooth muscle cells from diabetic pigs fed an atherogenicdiet. Atherosclerosis 159(1): 117–24.

Hsueh, W., E. D. Abel et al. 2007. Recipes for creatinganimal models of diabetic cardiovascular disease. Circ Res100(10): 1415–27.

Hu, G., E. A. Oboukhova et al. 2009. Canonical transientreceptor potential channels expression is elevated in aporcine model of metabolic syndrome. Mol Endocrinol 23(5):689–99. Hu, X., M. She et al. 2007. Adiponectin decreasesplasma glucose and improves insulin sensitivity indiabetic Swine. Acta Biochim Biophys Sin (Shanghai) 39(2):131–6. Jay, T. R., K. A. Heald et al. 1999. Thedistribution of porcine pancreatic beta-cells at ages 5, 12and 24 weeks. Xenotransplantation 6(2): 131–40. Johansen,T., H. S. Hansen et al. 2001. The obese Gottingen minipigas a model of the metabolic syndrome: Dietary effects onobesity, insulin sensitivity, and growth hormone pro¢le.Comp Med 51(2): 150–5. Johnson, G. J., T. R. Griggs et al.1999. The utility of animal models in the preclinicalstudy of interventions to prevent human coronary arteryrestenosis: Analysis and recommendations. On behalf of theSubcommittee on Animal, Cellular and Molecular Models ofThrombosis and Haemostasis of the Scienti¢c andStandardization Committee of the International Society onThrombosis and Haemostasis. Thromb Haemost 81(5): 835–43.Kasser, T. R., R. J. Martin et al. 1981. Fasting plasmahormones and metabolites in feral and domestic newbornpigs. J Anim Sci 53(2): 420–6. Kaufman, F. R. 2005. Type 2

diabetes in children and youth. Endocrinol Metab ClinNorth Am 34(3): 659–76, ix–x. Kim, H. I., S. Y. Lee et al.2009. Parameters for successful pig islet isolation asdetermined using 68 speci¢c-pathogen-free miniature pigs.Xenotransplantation 16(1): 11–18. Kirchhof, N., B. J.Hering et al. 1994. Evidence for breed-dependentdifferences in porcine islets of Langerhans. TransplantProc 26(2): 616–17. Kjems, L. L., B. M. Kirby et al. 2001.Decrease in beta-cell mass leads to impaired pulsatileinsulin secretion, reduced postprandial hepatic insulinclearance, and relative hyperglucagonemia in the minipig.Diabetes 50(9): 2001–12. Kloppel, G., M. Lohr et al. 1985.Islet pathology and the pathogenesis of type 1 and type 2diabetes mellitus revisited. Surv Synth Pathol Res 4(2):110–25. Kobayashi, T., K. Nakanishi et al. 1997. In situcharacterization of islets in diabetes with amitochondrial DNA mutation at nucleotide position 3243.Diabetes 46(10): 1567–71. Korte, F. S., E. A. Mokelkeet al. 2005. Exercise improves impaired ventricularfunction and alterations of cardiac myo¢brillar proteinsin diabetic dyslipidemic pigs. J Appl Physiol 98(2):461–7. Kruszynska, Y. T., A. Meyer-Alber et al. 1993.Metabolic handling of orally administered glucose incirrhosis. J Clin Invest 91(3): 1057–66. Kullo, I. J., K.R. Bailey et al. 2003. Ethnic differences in peripheralarterial disease in the NHLBI Genetic Epidemiology Networkof Arteriopathy (GENOA) study. Vasc Med 8(4): 237–42.Laber-Laird, K., A. Smith et al. 1992. Effects of iso�uraneanesthesia on glucose tolerance and insulin secretion inYucatan minipigs. Lab Anim Sci 42(6): 579–81. Langohr, I.M., H. HogenEsch et al. 2008. Vascular-associated lymphoidtissue in swine (Sus scrofa). Comp Med 58(2): 168–73.Larin, K. V., M. Motamedi et al. 2003. Speci¢city ofnoninvasive blood glucose sensing using optical coherencetomography technique: A pilot study. Phys Med Biol 48(10):1371–90. Larsen, M. O., C. B. Juhl et al. 2005. Beta-cellfunction and islet morphology in normal, obese, and obesebeta-cell mass-reduced Gottingen minipigs. Am J PhysiolEndocrinol Metab 288(2): E412–21.

Larsen, M. O. and B. Rolin 2004. Use of the Gottingenminipig as a model of diabetes, with special focus on type1 diabetes research. Ilar J 45(3): 303–13.

Larsen, M. O., B. Rolin et al. 2004. Reduction of beta cellmass: Partial insulin secretory compensation from theresidual beta cell population in thenicotinamide-streptozotocin Gottingen minipig after oralglucose in vivo and in the perfused pancreas. Diabetologia47(11): 1873–8.

Larsen, M. O., B. Rolin et al. 2007. Evaluation ofbeta-cell mass and function in the Gottingen minipig.Diabetes Obes Metab 9(Suppl 2):170–9.

Larsen, M. O., B. Rolin et al. 2003a. Valine pyrrolididepreserves intact glucose-dependent insulinotropic peptideand improves abnormal glucose tolerance in minipigs withreduced betacell mass. Exp Diabesity Res 4(2): 93–105.

Larsen, M. O., B. Rolin et al. 2006. Measurements ofinsulin responses as predictive markers of pancreaticbeta-cell mass in normal and beta-cell-reduced lean andobese Gottingen minipigs in vivo. Am J Physiol EndocrinolMetab 290(4): E670–7.

Larsen, M. O., B. Rolin et al. 2003b. Measurements ofinsulin secretory capacity and glucose tolerance topredict pancreatic beta-cell mass in vivo in thenicotinamide/streptozotocin Gottingen minipig, a model ofmoderate insulin de¢ciency and diabetes. Diabetes 52(1):118–23.

Larsen, M. O., B. Rolin et al. 2002a. High-fat high-energyfeeding impairs fasting glucose and increases fastinginsulin levels in the Gottingen minipig: Results from apilot study. Ann N Y Acad Sci 967: 414–23.

Larsen, M. O., B. Rolin et al. 2001. Parameters of glucoseand lipid metabolism in the male Gottingen minipig:In�uence of age, body weight, and breeding family. CompMed 51(5): 436–42.

Larsen, M. O., M. Wilken et al. 2002b. Mild streptozotocindiabetes in the Gottingen minipig. A novel model ofmoderate insulin de¢ciency and diabetes. Am J PhysiolEndocrinol Metab 282(6): E1342–51.

Lauritsen, T. L., N. Grunnet et al. 2002. The effect ofhepatectomy on glucose homeostasis in pig and in man. JHepatol 36(1): 99–104.

Le, T. T., I. M. Langohr et al. 2007. Label-free molecularimaging of atherosclerotic lesions using multimodalnonlinear optical microscopy. J Biomed Opt 12(5): 054007.

Lee, D. L., B. R. Wamhoff et al. 2003. Increasedendothelininduced Ca 2+ signaling, tyrosinephosphorylation, and coronary artery disease in diabeticdyslipidemic Swine are prevented by atorvastatin. J

Pharmacol Exp Ther 306(1): 132–40.

Lee, L., M. Alloosh et al. 2009. Nutritional model ofsteatohepatitis and metabolic syndrome in the Ossabawminiature swine. Hepatology 50(1): 56–67.

Li, Q., W. Yin et al. 2010. NO-1886 suppresses diet-inducedinsulin resistance and cholesterol accumulation throughSTAT5dependent upregulation of IGF1 and CYP7A1. JEndocrinol 204(1): 47–56.

Lin, S., L. L. Chen et al. 1998. Comparativepharmacokinetic and pharmacodynamic studies of humaninsulin and analogues in chronic diabetic Yucatanminipigs. J Pharmacol Exp Ther 286(2): 959–66. Liu, Y., Z.Wang et al. 2007. Severe insulin resistance and moderateglomerulosclerosis in a minipig model induced by high-fat/high-sucrose/high-cholesterol diet. Exp Anim 56(1): 11–20.Lloyd, P. G., A. J. Sheehy et al. 2008. Leukemia inhibitoryfactor is upregulated in coronary arteries of Ossabawminiature swine after stent placement. Coron Artery Dis19(4): 217–26. Lohr, M., J. Lubbersmeyer et al. 1989.Increase in B-cells in the pancreatic remnant afterpartial pancreatectomy in pigs. An immunocytochemical andfunctional study. Virchows Arch B Cell Pathol Incl MolPathol 56(4): 277–86. Lowe, H. C., R. S. Schwartz et al.2003. The porcine coronary model of in-stent restenosis:current status in the era of drugeluting stents. CatheterCardiovasc Interv 60(4): 515–23. Lu, L., Q. Zhang et al.2007. Elevation of tumor necrosis factoralpha,interleukin-1beta and interleukin-6 levels in aorticintima of Chinese Guizhou minipigs withstreptozotocininduced diabetes. Chin Med J (Engl) 120(6):479–84. Lu, L., Q. Zhang et al. 2008. Dysregulation ofmatrix metalloproteinases and their tissue inhibitors isrelated to abnormality of left ventricular geometry andfunction in streptozotocininduced diabetic minipigs. Int JExp Pathol 89(2): 125–37. Luchner, A., T. L. Stevens et al.1998. Differential atrial and ventricular expression ofmyocardial BNP during evolution of heart failure. Am JPhysiol 274(5 Pt 2): H1684–9. Lukinius, A., O. Korsgrenet al. 1996. Expression of islet amyloid polypeptide infetal and adult porcine and human pancreatic islet cells.Endocrinology 137(12): 5319–25. Marcelli-Tourvieille, S.,T. Hubert et al. 2007. In vivo and in vitro effect ofsirolimus on insulin secretion. Transplantation 83(5):532–8. Martinez, D. A., D. J. Guhl et al. 2003.Extracellular matrix maturation in the left ventricle ofnormal and diabetic swine. Diabetes Res Clin Pract 59(1):1–9. Mattern, H. M., P. G. Lloyd et al. 2007. Gender and

genetic differences in bladder smooth muscle PPAR mRNA in aporcine model of the metabolic syndrome. Mol Cell Biochem302(1– 2): 43–9. Meier, J. J., L. L. Kjems et al. 2006.Postprandial suppression of glucagon secretion depends onintact pulsatile insulin secretion: Further evidence forthe intraislet insulin hypothesis. Diabetes 55(4): 1051–6.Mesangeau, D., D. Laude et al. 2000. Early detection ofcardiovascular autonomic neuropathy in diabetic pigs usingblood pressure and heart rate variability. Cardiovasc Res45(4): 889–99. Meyer, T., C. Buhler et al. 1998. Selectionof donor pigs for pancreatic islet transplantation maydepend on the expression level of connective tissueproteins in the islet capsule. Transplant Proc 30(5):2471–3. Mokelke, E., M. Dyson et al. 2005a. OssabawMiniature Swine as a Novel Model of the Metabolic Syndromeand Subsequent Cardiovascular Disease. Swine in BiomedicalResearch Conference, Chicago, IL. Mokelke, E. A., N. J.Dietz et al. 2005b. Diabetic dyslipidemia and exerciseaffect coronary tone and differential regulation ofconduit and microvessel K + current. Am J Physiol HeartCirc Physiol 288(3): H1233–41.

Mokelke, E. A., Q. Hu et al. 2003. Altered functionalcoupling of coronary K + channels in diabeticdyslipidemic pigs is prevented by exercise. J Appl Physiol95(3): 1179–93.

Moses, A. C., S. C. Young et al. 1996. Recombinant humaninsulin-like growth factor I increases insulin sensitivityand improves glycemic control in type II diabetes.Diabetes 45(1): 91–100.

Mullen, Y., Y. Taura et al. 1992. Swine as a model forpancreatic beta cell transplantation. Swine as models inBiomedical Researach. M. D. Swindle MM, Phillips Ld. Ames,IA, Iowa State University Press, pp. 16–34.

Na¢kov, R. A. and D. C. Beitz 2007. Carbohydrate and lipidmetabolism in farm animals. J Nutr 137(3): 702–5.

Natarajan, R., R. G. Gerrity et al. 2002. Role of12-lipoxygenase and oxidant stress inhyperglycaemia-induced acceleration of atherosclerosis ina diabetic pig model. Diabetologia 45(1): 125–33.

Nichols, T. and D. Clemmons. 2005. Frequently sampledinsulin glucose tolerance test. Animal Models DiabeticComplications Consortium protocols. from http:wwwamdcc.org/shared/ showFile.aspx?doctypeid=3&docid=50.

O’Connell, T. and D. R. Clemmons 2002. IGF-I/IGF-bindingprotein-3 combination improves insulin resistance byGH-dependent and independent mechanisms. J Clin EndocrinolMetab 87(9): 4356–60.

Orci, L., Y. Stefan et al. 1979. Instability of pancreaticendocrine cell populations throughout life. Lancet1(8116): 615–16.

Otis, C. R., B. R. Wamhoff et al. 2003.Hyperglycemia-induced insulin resistance in diabeticdyslipidemic Yucatan swine. Comp Med 53(1): 53–64.

Ozaki, K., M. Monnai et al. 2008. Effects of mitemcinal(GM-611), an orally active erythromycin-derived prokineticagent, on delayed gastric emptying and postprandialglucose in a new minipig model of diabetes. J DiabetesComplications 22(5): 339–47.

Phillips, R. and L. Panepinto 1986. Swine as a model forhuman diabetes. Swine in Biomedical Research. New York:Plenum Press. 1: 1549–560.

Phillips, R. W., L. M. Panepinto et al. 1982a. Yucatanminiature swine as a model for the study of human diabetesmellitus. Diabetes 31(Suppl 1 Pt 2): 30–6.

Phillips, R. W., L. M. Panepinto et al. 1980. The effectsof alloxan diabetes on Yucatan miniature swine and theirprogeny. Metabolism 29(1): 40–5.

Phillips, R. W., N. Westmoreland et al. 1982b. Dietaryeffects on metabolism of Yucatan miniature swine selectedfor low and high glucose utilization. J Nutr 112(1):104–11.

Prabhakaran, S. and B. J. Hering 2008. What strain of pigshould be used? Xenotransplantation 15(2): 83–6.

Rahier, J., J. Wallon et al. 1981. Cell populations in theendocrine pancreas of human neonates and infants.Diabetologia 20(5): 540–6.

Ramsay, T. G. and M. E. White 2000. Insulin regulation ofleptin expression in streptozotocin diabetic pigs. J AnimSci 78(6): 1497–503.

Raun, K., P. von Voss et al. 2007. Liraglutide, aonce-daily human glucagon-like peptide-1 analog, minimizesfood intake in severely obese minipigs. Obesity (Silver

Spring) 15(7): 1710–16. Resnick, H., R. Lindsay et al.2004. Macrovascular complications of diabetes mellitus. InD. LeRoith, Taylor, L.S., and Olefsky J.M. (eds.),Diabetes Mellitus: A fundamental and clinical text (pp.1401–9). Philadelphia, PA: Lippincott Williams andWilkins. Ribel, U., M. O. Larsen et al. 2002. NN2211: Along-acting glucagon-like peptide-1 derivative withanti-diabetic effects in glucose-intolerant pigs. Eur JPharmacol 451(2): 217–25. Richardson, M. R., X. Lai et al.2009. Diabetic dyslipidemia and exercise alter the plasmalow-density lipoproteome in Yucatan pigs. Proteomics 9(9):2468–83. Roberts, T. M., M. Sturek et al. 2001. Alterationsin the oxidative metabolic pro¢le in vascular smoothmuscle from hyperlipidemic and diabetic swine. Mol CellBiochem 217(1–2): 99–106. Rodrigues, B., P. Poucheret et al. 1999. Streptozotocin-Induced Diabetes: Induction,Mechanism (s), and Dose Dependency. In J. H. McNeill(ed.), Experimental Models of Diabetes (pp. 3–17). BocaRaton, FL: CRC Press LLC. Rolandsson, O., M. F. Haneyet al. 2002. Streptozotocin induced diabetes in minipig: Acase report of a possible model for type 1 diabetes?Autoimmunity 35(4): 261–4. Rosenthal, M., L. Doberne et al. 1982. Effect of age on glucose tolerance, insulinsecretion, and in vivo insulin action. J Am Geriatr Soc30(9): 562–7. Sabat, M., E. Godlewska et al. 2003.Assessment of some porcine strains as donors of islets ofLangerhans. Transplant Proc 35(6): 2343–4. Sam, S., Y. A.Sung et al. 2008. Evidence for pancreatic beta-celldysfunction in brothers of women with polycystic ovarysyndrome. Metabolism 57(1): 84–9. Sebert, S. P., G. Lecannuet al. 2005a. Childhood obesity and insulin resistance in aYucatan mini-piglet model: Putative roles of IGF-1 andmuscle PPARs in adipose tissue activity and development.Int J Obes (Lond) 29(3): 324–33. Sebert, S. P., G. Lecannuet al. 2005b. Obesity induced during sexual maturation islinked to LDL-triacylglycerols in Yucatan miniature swine.Br J Nutr 94(2): 282–9. Sisson, S. and J. Grossman 1953.The Anatomy of the Domestic Animals. Philadelphia: W.B.Saunders Co. Sodha, N. R., M. Boodhwani et al. 2008.Increased antiangiogenic protein expression in theskeletal muscle of diabetic swine and patients. Arch Surg143(5): 463–70. Stanley, W. C., J. J. Dore et al. 2001.Diabetes reduces right atrial beta-adrenergic signalingbut not agonist stimulation of heart rate in swine. Can JPhysiol Pharmacol 79(4): 346–51. Stanley, W. C., J. L. Hallet al. 1997. Decreased myocardial glucose uptake duringischemia in diabetic swine. Metabolism 46(2): 168–72.Stefan, Y., S. Grasso et al. 1983. A quantitativeimmuno�uorescent study of the endocrine cell populationsin the developing human pancreas. Diabetes 32(4): 293–301.

Strauss, A., C. Tiurbe et al. 2008. Use of the continuousglucose monitoring system in Goettingen Minipigs, with aspecial focus on the evaluation of insulin-dependentdiabetes. Transplant Proc 40(2): 536–9. Stump, K. C., M.M. Swindle et al. 1988. Pancreatectomized swine as a modelof diabetes mellitus. Lab Anim Sci 38(4): 439–43.

Sturek, M., M. Alloosh et al. 2007. Ossabaw Islandminiature swine: Cardiometabolic syndrome assessment. InM.M. Swindle (ed.), Swine in the Laboratory: Surgery,Anesthesia, Imaging, and Experimental Techniques (pp.397–402). S. MM. Boca Raton, FL: CRC Press.

Suzuki, L. A., M. Poot et al. 2001. Diabetes acceleratessmooth muscle accumulation in lesions of atherosclerosis:Lack of direct growth-promoting effects of high glucoselevels. Diabetes 50(4): 851–60.

Swindle, M. M. 2008. Diabetes mellitus and thecardiometabolic syndrome in swine. Technical Bulletin -Sinclair Research Center, from www.sinclairresearch.com.

Thyssen, S., E. Arany et al. 2006. Ontogeny of regenerationof betacells in the neonatal rat after treatment withstreptozotocin. Endocrinology 147(5): 2346–56.

Truty, M. J. and R. L. Smoot 2008. Animal models inpancreatic surgery: A plea for pork. Pancreatology 8(6):546–50.

Ulrichs, K., M. Bosss et al. 1995. Histomorphologicalcharacteristics of the porcine pancreas as a basis for theisolation of islets of Langerhans. Xenotransplantation2(3): 176–87.

Wagner, J. E., K. Kavanagh et al. 2006. Old world nonhumanprimate models of type 2 diabetes mellitus. Ilar J 47(3):259–71.

Wang, H. W., I. M. Langohr et al. 2009. Imaging andquantitative analysis of atherosclerotic lesions byCARS-based multimodal nonlinear optical microscopy.Arterioscler Thromb Vasc Biol 29(9): 1342–8.

Wang, Y. X., R. Fitch et al. 2002. Reduction of cardiacfunctional reserve and elevation of aortic stiffness inhyperlipidemic Yucatan minipigs with systemic and coronaryatherosclerosis. Vascul Pharmacol 39(1–2): 69–76.

Wang, Z. and H. Gleichmann 1998. GLUT2 in pancreatic

islets: Crucial target molecule in diabetes induced withmultiple low doses of streptozotocin in mice. Diabetes47(1): 50–6. Wangsness, P. J., R. J. Martin et al. 1980.Insulin induced growth hormone response in fast-growing,lean and in slow-growing, obese pigs. Growth 44(4):318–26. Wieczorek, G., A. Pospischil et al. 1998. Acomparative immunohistochemical study of pancreatic isletsin laboratory animals (rats, dogs, minipigs, nonhumanprimates). Exp Toxicol Pathol 50(3): 151–72. Xi, S., W.Yin et al. 2004. A minipig model of high-fat/high-sucrosediet-induced diabetes and atherosclerosis. Int J Exp Pathol85(4): 223–31. Yamamoto, H., Y. Uchigata et al. 1981.Streptozotocin and alloxan induce DNA strand breaks andpoly (ADP-ribose) synthetase in pancreatic islets. Nature294(5838): 284–6. Yin, W., D. Liao et al. 2004. NO-1886inhibits size of adipocytes, suppresses plasma levels oftumor necrosis factor-alpha and free fatty acids, improvesglucose metabolism in highfat/high-sucrose-fed miniaturepigs. Pharmacol Res 49(3): 199–206. Zafar, M., S. Kaseret al. 2005. Ossabaw Swine Having the Metabolic SyndromeExhibit Greater Neointimal Hyperplasia After CoronaryStent Placement Than Lean Yucatan Swine. Swine inBiomedical Research Conference, Chicago, IL. Zahner, D.and W. J. Malaisse 1990. Kinetic behaviour of liverglucokinase in diabetes. I. Alteration in streptozotocin-diabetic rats. Diabetes Res 14(3): 101–8. Zhang, C., W.Yin et al. 2006. NO-1886 upregulates ATP binding cassettetransporter A1 and inhibits diet-induced atherosclerosis inChinese Bama minipigs. J Lipid Res 47(9): 2055–63. Zhang,Q., L. Lu et al. 2007. Neointimal hyperplasia persists atsix months after sirolimus-eluting stent implantation indiabetic porcine. Cardiovasc Diabetol 6: 16.

31 Chapter 31: Minipig in BiomedicalResearch : Diet-Induced Atherosclerosis

Andersson, R. G., Jacobsson, L., and Persson, K., 1994.Angiotensin converting enzyme inhibitors andatherosclerosis. J Physiol Pharmacol, 45(1), 13–25.

Badimon, L., Steele, P., Badimon, J. J., Bowie, E. J., andFuster, V., 1985. Aortic atherosclerosis in pigs withheterozygous von Willebrand disease. Comparison withhomozygous von Willebrand and normal pigs.Arteriosclerosis, 5(4), 366–70.

Barbeau, M. L., Klemp, K. F., Guyton, J. R., and Rogers, K.A., 1997. Dietary ¢sh oil. In�uence on lesion regressionin the porcine model of atherosclerosis. ArteriosclerThromb Vasc Biol, 17(4), 688–94.

Benharkate, M., Zanini, V., Blanc, R., Boucheix, O., Coyez,F., Genevois, J. P. et al., 1993. Hemodynamic parametersof anesthetized pigs: a comparative study of farm pigletsand Göttingen and Yucatan miniature swine. Lab Anim Sci,43(1), 68–72.

Bocan, T. M., Mueller, S. B., Uhlendorf, P. D., Brown, E.Q., Mazur, M. J., and Black, A. E., 1993. Inhibition ofacyl-CoA cholesterol O-acyltransferase reduces thecholesteryl ester enrichment of atherosclerotic lesions inthe Yucatan micropig. Atherosclerosis, 99(2), 175–86.

Brisset, A. C., Hao, H., Camenzind, E., Bacchetta, M.,Geinoz, A., Sanchez, J. C. et al., 2007. Intimal smoothmuscle cells of porcine and human coronary artery expressS100A4, a marker of the rhomboid phenotype in vitro. CircRes, 100(7), 1055–62.

Bushi, D., Assaf, Y., Grad, Y., Nishri, B., Yodfat, O., andTanne, D., 2008. Similarity of the swine vasculature tothe human carotid bifurcation: Analysis of arterialdiameters. J Vasc Interv Radiol, 19(2 Pt 1), 245–51.

Casey, D. P., Nichols, W. W., Conti, C. R., and Braith, R.W., 2009. Relationship between endogenous concentrationsof vasoactive substances and measures of peripheralvasodilator function in patients with coronary arterydisease. Clin Exp Pharmacol Physiol, Epub ahead of print.Cerda, J. J., Normann, S. J., Sullivan, M. P., Burgin, C.W., Robbins, F. L., Vathada, S. et al., 1994. Inhibitionof atherosclerosis by dietary pectin in microswine withsustained hypercholesterolemia. Circulation, 89(3),

1247–53. Chamorro, S., Revilla, C., Alvarez, B., Alonso,F., Ezquerra, A., and Domínguez, J., 2005. Phenotypic andfunctional heterogeneity of porcine blood monocytes and itsrelation with maturation. Immunology, 114(1), 63–71.Christoffersen, B. O., Grand, N., Golozoubova, V.,Svendsen, O., Raun, K., 2007. Gender-associateddifferences in metabolic syndrome-related parameters inGöttingen minipigs. Comp Med, 57(5), 493–504. Corretti, M.C., Anderson, T. J., Benjamin, E. J., Celermajer, D.,Charbonneau, F., Creager, M. A. et al., 2002. Guidelinesfor the ultrasound assessment of endothelial-dependent�owmediated vasodilation of the brachial artery: a reportof the International Brachial Artery Reactivity TaskForce. J Am Coll Cardiol, 39(2), 257–265. de Lemos. J. A.,Morrow, D. A., Sabatine, M. S., Murphy, S.A., Gibson, C.M., Antman, E. M. et al., 2003. Association betweenplasma levels of monocyte chemoattractant protein-1 andlong-term clinical outcomes in patients with acutecoronary syndromes. Circulation, 107(5), 690–5. Deo, R.,Khera, A., McGuire, D. K., Murphy, S. A., Meo Neto Jde.P., Morrow, D. A. et al., 2004. Association among plasmalevels of monocyte chemoattractant protein-1, traditionalcardiovascular risk factors, and subclinicalatherosclerosis. J Am Coll Cardiol, 44(9), 1812–18. Dwyer,T., Emmanuel, S. C., Janus, E. D., Wu Z., Hynes, K. L., andZhang, C., 2003. The emergence of coronary heart diseasein populations of Chinese descent. Atherosclerosis, 167(2),303–10. Dyson, M. C., Alloosh, M., Vuchetich, J. P.,Mokelke, E. A., and Sturek M., 2006. Components ofmetabolic syndrome and coronary artery disease in femaleOssabaw swine fed excess atherogenic diet. Comp Med,56(1), 35–45. Ege, C. A., Parra, N. C., and Johnson, T. E.,2006. Noninfectious complications due to vascular accessports (VAPs) in Yucatan minipigs (Sus scrofa domestica). JAm Assoc Lab Anim Sci, 45(6), 27–34. Fernández delPalacio, M. J., Luis Fuentes, V., Bonagura, J. D.,Schober, K. E., Hat¢eld, D. G., and Laughlin, M. H., 2003.Evaluation of transcutaneous Doppler ultrasonography forthe measurement of blood �ow in the femoral artery of pigs.Am J Vet Res, 64(1), 43–50. Gal, D., Rongione, A. J.,Slovenkai, G. A., DeJesus, S. T., Lucas, A., Fields, C. D.et al., 1990. Atherosclerotic Yucatan microswine: An animalmodel with high-grade, ¢brocalci¢c, nonfatty lesionssuitable for testing catheter-based interventions. AmHeart J, 119(2 Pt 1), 291–300. Gerrity, R. G., Naito, H.K., Richardson, M., and Schwartz, C.J., 1979. Dietaryinduced atherogenesis in swine. Morpho logy of the intimain prelesion stages. Am J Pathol, 95(3), 775–92. Gerrity,R. G., 1981a. The role of the monocyte in atherogenesis: I.Transition of blood-borne monocytes into foam cells in

fatty lesions. Am J Pathol, 103(2), 181–90.

Gerrity, R. G., 1981b. The role of the monocyte inatherogenesis: II. Migration of foam cells fromatherosclerotic lesions. Am J Pathol, 103(2), 191–200.

Gerrity, R. G., Goss, J.A., and Soby, L., 1985. Control ofmonocyte recruitment by chemotactic factor(s) inlesion-prone areas of swine aorta. Arteriosclerosis, 5(1),55–66.

Getz, G. S. and Reardon C. A., 2007. Nutrition andcardiovascular disease. Arterioscler Thromb Vasc Biol,27(12), 2499–506.

Goldsmith, D. P. and Jacob, H. P., 1978. Atherogenesis inswine fed several types of lipid-cholesterol diets.Lipids, 13(3), 174–80.

Goldstein, J. L. and Brown, M. S., 2009. The LDL receptor.Arterioscler Thromb Vasc Biol, 29(4), 431–8.

Goodrich, J. A., Clarkson, T. B., Cline, J. M., Jenkins, A.J., and Del Signore, M. J., 2003. Value of the micropigmodel of menopause in the assessment of bene¢ts and risksof postmenopausal therapies for cardiovascular andreproductive tissues. Fertil Steril, 79 (Suppl 1), 779–88.

Gootman, P. M., Buckley, B. J., DiRusso, S. M., Gootman,N., Yao, A. C., Pierce, P. E. et al., 1986. Age-relatedresponses to stimulation of cardiopulmonary receptors inswine. Am J Physiol, 251(4 Pt 2), H748–55.

Gorodkin, J., Cirera, S., Hedegaard, J., Gilchrist, M. J.,Panitz, F., Jørgensen, C. et al., 2007. Porcinetranscriptome analysis based on 97 non-normalized cDNAlibraries and assembly of 1,021,891 expressed sequencetags. Genome Biol, 8(4), R45.

Granada, J. F., Kaluza, G. L., Wilensky, R. L., Biedermann,B. C., Schwartz, R. S., and Falk, E., 2009. Porcine modelsof coronary atherosclerosis and vulnerable plaque forimaging and interventional research. EuroIntervention,5(1), 140–8.

Griggs, T. R., Reddick, R. L., Sultzer, D., and Brinkhous,K. M., 1981. Susceptibility to atherosclerosis in aortasand coronary arteries of swine with von Willebrand’sdisease. Am J Pathol, 102(2), 137–45.

Griggs, T. R., Bauman, R. W., Reddick, R. L., Read, M. S.,Koch, G. G, and Lamb, M. A., 1986. Development of coronaryatherosclerosis in swine with severe hypercholesterolemia.Lack of in�uence of von Willebrand factor or acute intimalinjury. Arteriosclerosis, 6(2), 155–65.

Guyard-Dangremont, V., Desrumaux, C., Gambert, P.,Lallemant, C., and Lagrost, L., 1998. Phospholipid andcholesteryl ester transfer activities in plasma from 14vertebrate species. Relation to atherogenesissusceptibility. Comp Biochem Physiol B Biochem Mol. Biol,120(3), 517–25.

Hasler-Rapacz, J., Ellegren, H., Fridolfsson, A. K.,Kirkpatrick, B., Kirk, S., Andersson, L. et al., 1998.Identi¢cation of a mutation in the low density lipoproteinreceptor gene associated with recessive familialhypercholesterolemia in swine. Am J Med Genet, 76(5),379–86.

Henderson, K. K., Mokelke, E. A., Turk, J. R., Rector, R.S., Laughlin, M. H., and Sturek M., 2003. Maintainingvascular access port patency and asepsis in Yucatanminiature swine. Contemp Topics Lab Anim Sci, 42(6), 16–20

Henderson, K. K., Turk, J. R., Rush, J. W., and Laughlin,M. H., 2004. Endothelial function in coronary arteriolesfrom pigs with early stage coronary disease induced byhigh fat/cholesterol diet: Effect of exercise. J ApplPhysiol, 97(3), 1159–68.

Holvoet, P., Vanhaecke, J., Janssens, S., Van de Werf, F.,and Collen, D., 1998. Oxidized LDL andmalondialdehyde-modi¢ed LDL in patients with acutecoronary syndromes and stable coronary artery disease.Circulation, 98(15), 1487–94. Holvoet, P., Theilmeier, G.,Shivalkar, B., Flameng, W., and Collen, D., 1998. LDLhypercholesterolemia is associated with accumulation ofoxidized LDL, atherosclerotic plaque growth, andcompensatory vessel enlargement in coronary arteries ofminiature pigs. Arterioscler Thromb Vasc Biol, 18(3),415–22. Holvoet, P., Davey, P. C., De Keyzer, D., Doukouré,M., Deridder, E., Bochaton-Piallat, M. L. et al., 2006.Oxidized low- density lipoprotein correlates positivelywith toll-like receptor 2 and interferon regulatoryfactor-1 and inversely with superoxide dismutase-1expression: studies in hypercholesterolemic swine andTHP-1 cells. Arterioscler Thromb Vasc Biol, 26(7),1558–65. Huang, G., Zhong, X. N., Zhong, B., Chen, Y. Q.,Liu, Z. Z., Su, L., et al., 2009. Signi¢cance of white

blood cell count and its subtypes in patients with acutecoronary syndrome. Eur J Clin Invest, 39(5), 348–58.Hughes, G. C., Post, M. J., Simons, M., and Annex, B. H.,2003. Translational physiology: Porcine models of humancoronary artery disease: Implications for preclinicaltrials of therapeutic angiogenesis. J Appl Physiol, 94(5),1689–701. Ishibashi, S., Herz, J., Maeda, N., Goldstein, J.L., and Brown, M. S., 1994. The two-receptor model oflipoprotein clearance: tests of the hypothesis in“knockout” mice lacking the low density lipoproteinreceptor, apolipoprotein E, or both proteins. Proc NatlAcad Sci USA, 91(10), 4431–5. Itabe, H., 2009. Oxidativemodi¢cation of LDL: Its pathological role inatherosclerosis. Clin Rev Allergy Immunol, 37(1), 4–11.Jankord, R., Turk, J. R., Schadt, J. C., Casati, J.,Ganjam, V. K., Price, E. M. et al., 2007. Sex differencein link between interleukin-6 and stress. Endocrinology,148(8), 3758–64. Jiang, Z. and Rothschild, M. F., 2007.Swine genome science comes of age. Int J Biol Sci, 3(3),129–31. Kassab, G. S., Choy, J. S., Svendsen, M., Sinha, A.K., Alloosh, M., Sturek, M. et al., 2009. A novel systemfor the reconstruction of a coronary artery lumen pro¢lein real time: A preclinical validation. Am J Physiol HeartCirc Physiol, 297(1), H485–92. Kim, D. N., Schmee, J.,Lee, C. S., Eastman, A., Ross, J. S., and Thomas, W. A.,1991. Comparison of effects of ¢sh oil and corn oilsupplements on hyperlipidemic diet induced atherogenesis inswine. Atherosclerosis, 89(2–3), 191–201. Kim, D. N.,Schmee, J., Baker, J. E., Lunden, G. M., Sheehan, C. E.,Lee C. S. et al., 1993. Dietary ¢sh oil reducesmicrothrombi over atherosclerotic lesions in hyperlipidemicswine even in the absence of plasma cholesterol reduction.Exp Mol Pathol, 59(2), 122–35. Kobari, Y., Koto, M., andTanigawa, M., 1991. Regression of dietinducedatherosclerosis in Göttingen miniature swine. Lab Anim,25(2), 110–16. Koenig, W., and Khuseyinova, N., 2007.Biomarkers of atherosclerotic plaque instability andrupture. Arterioscler Thromb Vasc Biol, 27(1), 15–26.Konrad, D., Weber, K., Corney, S., Allen, T. R., andTerrier, C., 2000. Echocardiography, color-coded Dopplerimaging, and abdominal sonography, a non-invasive methodfor investi gation of heart and aortic morphology andfunction in female Göttingen minipigs: method andreference values for M-mode, B-mode, and �ow parameters.Comp Med, 50(4), 405–9.

Kuwahara, M., Tsujino, Y., Tsubone, H., Kumagai, E.,Tsutsumi, H., and Tanigawa, M., 2004. Effects of pairhousing on diurnal rhythms of heart rate. Exp Anim, 53(4),303–9.

Langohr, I. M., HogenEsch, H., Stevenson, G. W., andSturek, M., 2008. Vascular-associated lymphoid tissue inswine (Sus scrofa). Comp Med, 58(2), 168–73.

Larsen, M. O., Rolin, B., Wilken, M., Carr, R. D.,Svendsen, O., and Bollen, P., 2001. Parameters of glucoseand lipid metabolism in the male Göttingen minipig:In�uence of age, body weight, and breeding family. CompMed, 51(5), 436–42.

Le, T. T., Langohr, I. M., Locker, M. J., Sturek, M., andCheng, J. X., 2007. Label-free molecular imaging ofatherosclerotic lesions using multimodal nonlinear opticalmicroscopy. J Biomed Opt, 12(5), 054007.

Lerman, A., Edwards, B. S., Hallett, J. W., Heublein, D.M., Sandberg, S. M., and Burnett, J. C. Jr: 1991.Circulating and tissue endothelin immunoreactivity inadvanced atherosclerosis. N Engl J Med, 325(14), 997–1001.

Lerman, A., Webster, M. W., Chesebro, J. H., Edwards, W.D., Wei, C. M., Fuster, V. et al., 1993. Circulating andtissue endothelin immunoreactivity in hypercholesterolemicpigs. Circulation, 88(6), 2923–8.

Li, R., Lai, L., Wax, D., Hao, Y., Murphy, C. N., Rieke, A.et al., 2006. Cloned transgenic swine via in vitroproduction and cryopreservation. Biol Reprod, 75(2),226–30.

Libby, P., 2002. In�ammation in atherosclerosis. Nature,420, 868–74.

Libby, P., 2007. In�ammatory mechanisms: The molecularbasis of in�ammation and disease. Nutr Rev, 65(12 Pt 2),S140–6.

Liu, Y., Rector, R. S., Thomas, T. R., Taylor, J. A.,Holiman, D. A., Henderson, K. K. et al., 2004.Lipoproteins during the estrous cycle in swine.Metabolism, 53(2), 140–1.

Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T.,Murray, C. J., 2006. Global and regional burden of diseaseand risk factors, 2001: Systematic analysis of populationhealth data. Lancet, 367(9524), 1747–57.

MartĂ­nez-GonzĂĄlez, J., AlfĂłn, J., Berrozpe, M., andBadimon, L., 2001. HMG-CoA reductase inhibitors reduce

vascular monocyte chemotactic protein-1 expression in earlylesions from hypercholesterolemic swine independently oftheir effect on plasma cholesterol levels.Atherosclerosis, 159(1), 27–33.

Maxwell, M. P., Hearse, D. J., and Yellon, D. M., 1987.Species variation in the coronary collateral circulationduring regional myocardial ischaemia: A criticaldeterminant of the rate of evolution and extent ofmyocardial infarction. Cardiovasc Res, 21(10), 737–46.

Mazurek, T., Zhang, L., Zalewski, A., Mannion, J. D.,Diehl, J. T., Arafat, H. et al., 2003. Human epicardialadipose tissue is a source of in�ammatory mediators.Circulation, 108(20), 2460–6.

Nahas, K., Baneux, P., and Detweiler, D., 2002.Electrocardiographic monitoring in the Göttingen minipig.Comp Med, 52(3), 258–64.

Nakazawa, G., Finn, A. V., Ladich, E., Ribichini, F.,Coleman, L., Kolodgie, F. D. et al., 2008. Drug-elutingstent safety: Findings from preclinical studies. ExpertRev Cardiovasc Ther, 6(10), 1379–91. Newcomer, S. C.,Turk, J. R., Kreutzer, K. V., Sikes, D., Rector, R. S.,Laughlin, M. H., 2009. Differential effects of diet andexercise on endothelial phenotype of porcine brachial andfemoral artery. Unpublished manuscript. Nicholls, S. J.,and Hazen, S. L., 2009. Myeloperoxidase, modi¢edlipoproteins, and atherogenesis. J Lipid Res, 50(Suppl),S346–51 Nichols, T. C., Bellinger, D. A., Tate, D. A.,Reddick, R. L., Read, M. S., Koch, G. G. et al., 1990. vonWillebrand factor and occlusive arterial thrombosis. Astudy in normal and von Willebrand’s disease pigs withdiet-induced hypercholesterolemia and atherosclerosis.Arteriosclerosis, 10(3), 449–61. Nichols, T. C.,Bellinger, D. A., Davis, K. E., Koch, G. G., Reddick, R.L., Read, M. S. et al., 1992. Porcine von Willebranddisease and atherosclerosis. In�uence of polymorphism inapolipoprotein B100 genotype. Am J Pathol, 140(2), 403–15.Packard, R. R., and Libby, P., 2008. In�ammation inatherosclerosis: From vascular biology to biomarkerdiscovery and risk prediction. Clin Chem, 54(1), 24–38.Panepinto, L. M., and Phillips, R. W., 1986. The Yucatanminiature pig: characterization and utilization inbiomedical research. Lab Anim Sci, 36(4), 344–7. Plass, C.A., Schmid, W., Holy, E. W., Kreatschitsch, U., Laggner,H., and Volf, I., 2007. Redox-sensitive impairment ofporcine coronary artery vasodilation byhypochlorite-modi¢ed LDL. Atherosclerosis, 190(2), 330–7.

Prather, R. S., Shen, M., and Dai, Y., 2008. Geneticallymodi¢ed pigs for medicine and agriculture. Biotechnologyand Genetic Engineering Reviews, 25, 245–66. Prescott, M.F., McBride, C. H., Hasler-Rapacz, J., Von Linden J., andRapacz, J., 1991. Development of complex atheroscleroticlesions in pigs with inherited hyper-LDL cholesterolemiabearing mutant alleles for apolipoprotein B. Am J Pathol,139,139–47. Qamirani, E., Ren, Y., Kuo, L., and Hein, T.W., 2005. C-reactive protein inhibitsendothelium-dependent NO-mediated dilation in coronaryarterioles by activating p38 kinase and NAD(P)H oxidase.Arterioscler Thromb Vasc Biol, 25(5), 995–1001. Rapacz, J.,Hasler-Rapacz, J., Taylor, K. M., Checovich, W. J., andAttie, A. D., 1986. Lipoprotein mutations in pigs areassociated with elevated plasma cholesterol andatherosclerosis. Science, 234,1573–7. Ray, B. K., Shakya,A., Turk, J. R., Apte, S. S., and Ray, A., 2004. Inductionof the MMP-14 gene in macrophages of the atheroscleroticplaque. Role of SAF-1 in the induction process. Circ Res,95(11),1082–90. Rector, R. S., Thomas, T. R., Liu, Y.,Henderson, K. K., Holiman, D. A., Sun, G.Y. et al., 2004.Effect of exercise on postprandial lipemia following ahigher calorie meal in Yucatan miniature swine. Metabolism,53(8), 1021–6. Reifenberger, M. S., Turk, J. R., Newcomer,S. C., Booth, F. W., and Laughlin, M. H., 2007.Perivascular fat alters reactivity of coronary artery:Effects of diet and exercise. Med Sci Sports Exerc,39(12), 2125–34. Reitman, J. S., Mahley, R. W., and Fry, D.L., 1982. Yucatan miniature swine as a model fordiet-induced atherosclerosis. Atherosclerosis, 43(1),119–32.

Rothschild, M. F. and Plastow, G. S., 2008. Impact ofgenomics on animal agriculture and opportunities foranimal health. Trends Biotechnol, 26(1), 21–5.

Ruelius, H. W., 1987. Extrapolation from animals to man:predictions, pitfalls and perspectives. Xenobiotica, 17(3),255–65.

Schook, L. B., Kuzmuk, K., Adam, S., Rund, L., Chen, K.,Rogatcheva, M. et al., 2008. DNA-based animal models ofhuman disease: from genotype to phenotype. Dev Biol(Basel), 132, 15–25.

Schuleri, K. H., Boyle, A. J., Centola, M., Amado, L. C.,Evers, R., Zimmet, J. M. et al., 2008. The adult Göttingenminipig as a model for chronic heart failure aftermyocardial infarction: Focus on cardiovascular imaging andregenerative therapies. Comp Med, 58(6), 568–79.

Shi, Z. S., Feng, L., He, X., Ishii, A., Goldstine, J.,Vinters, H. V. et al., 2009. Vulnerable plaque in a Swinemodel of carotid atherosclerosis. AJNR Am J Neuroradiol,30(3), 469–72.

Sipido, K. R., Tedgui, A., Kristensen, S. D., Pasterkamp,G., Schunkert, H., Wehling, M. et al., 2009. Identifyingneeds and opportunities for advancing translationalresearch in cardiovascular disease. Cardiovasc Res, 83,425–35.

Spurlock, M. E., and Gabler, N. K., 2008. The developmentof porcine models of obesity and the metabolic syndrome. JNutr, 138(2), 397–402.

Stary, H. C., Chandler, A. B., Dinsmore, R. E., Fuster, V.,Glagov, S., Insull, W. Jr. et al., 1995. A de¢nition ofadvanced types of atherosclerotic lesions and ahistological classi¢cation of atherosclerosis. A reportfrom the Committee on Vascular Lesions of the Council onArteriosclerosis, American Heart Association. ArteriosclerThromb Vasc Biol, 15(9), 1512–31.

Stary, H. C., 2000. Natural history and histologicalclassi¢cation of atherosclerotic lesions: An update.Arterioscler Thromb Vasc Biol, 20(5), 1177–8.

Strauss-Ayali, D., Conrad, S. M., and Mosser, D. M., 2007.Monocyte subpopulations and their differentiation patternsduring infection. J Leukoc Biol, 82(2), 244–52.

Stubhan, M., Markert, M., Mayer, K., Trautmann, T., Klumpp,A., Henke, J. et al., 2008. Evaluation of cardiovascularand ECG parameters in the normal, freely moving Göttingenminipig. J Pharmacol Toxicol Methods, 57(3), 202–11.

Svendsen, O., 2006. The minipig in toxicology. Exp ToxicolPathol, 57(5–6), 335–9.

Takai, H., Miyoshi, A., Yamazaki, M., Adachi, K., Katagiri,K., Arakawa, H. et al., 2008. Granulocytecolony-stimulating factor has no adverse effects onatherosclerotic lesions in high cholesterol-fed miniatureswine. J Vet Med Sci, 70(9), 943–50.

Taylor, A. M., Li, F., Thimmalapura, P., Gerrity, R. G.,Sarembock, I. J., Forrest, S. et al., 2006. Hyperlipemiaand oxidation of LDL induce vascular smooth muscle cellgrowth: An effect mediated by the HLH factor Id3. J Vasc

Res, 43(2), 123–30.

Terpstra, A. H., Sanchez-Muniz, F. J., West, C. E., andWoodward, C. J., 1982. The density pro¢le and cholesterolconcentration of serum lipoproteins in domestic andlaboratory animals. Comp Biochem Physiol B, 71(4), 669–73.

Theilmeier, G., Verhamme, P., Dymarkowski, S., Beck, H.,Bernar, H., Lox, M. et al., 2002. Hypercholesterolemia inminipigs impairs left ventricular response to stress:Association with decreased coronary �ow reserve andreduced capillary density. Circulation, 106(9), 1140–6.Thomas, T. R., Pellechia, J., Rector, R. S., Sun, G. Y.,Sturek, M. S., and Laughlin, M. H., 2002. Exercisetraining does not reduce hyperlipidemia in pigs fed ahigh-fat diet. Metabolism, 51(12), 1587–95. Thompson, M.A., Henderson, K. K., Woodman, C. R., Turk, J. R., Rush,J. W. E., Price, E. et al., 2004. Exercise preservesendothelium-dependent relaxation in coronary arteries ofhypercholesterolemic male pigs. J Appl Physiol, 96(3),1114–26. Thorpe, P. E., Hunter, W. J. 3rd, Zhan, X. X.,Dovgan, P. S., and Agrawal, D. K., 1996. A noninjury,diet-induced swine model of atherosclerosis forcardiovascular-interventional research. Angiology, 47(9),849–57. Tiefenbacher, C. P., Bleeke, T., Vahl, C., Amann,K., Vogt, A., and Kübler, W., 2000. Endothelialdysfunction of coronary resistance arteries is improved bytetrahydrobiopterin in atherosclerosis. Circulation,102(18), 2172–9. Tumbleson, M. E., Hicklin, K. W., andBurks, M. F., 1976. Serum cholesterol, triglyceride,glucose and total bilirubin concentrations, as functions ofage and sex, in Sinclair(S-1) miniature swine. Growth,40(3), 293–300. Turk, J. R., Carroll, J. A., Laughlin, M.H., Thomas, T. R., Casati, J., Bowles, D. K. et al., 2003.C-reactive protein correlates with macrophage accumulationin coronary arteries of hypercholesterolemic pigs. J ApplPhysiol, 95(3), 1301–4. Turk, J. R. and Laughlin, M. H.,2004) Physical activity and atherosclerosis: Which animalmodel? Invited review Canad J Appl Physiol, 29(5), 657–83.Turk, J. R., Henderson, K. K., Vanvickle, G. D., Watkins,J. T., and Laughlin, M. H., 2005. Arterial endothelialfunction in a porcine model of early stage atheroscleroticvascular disease. Int J Exp Pathol, 86(5) 335–45. Uno, M.,Kitazato, K. T., Suzue, A., Itabe, H., Hao, L., andNagahiro, S., 2005. Contribution of an imbalance betweenoxidant–antioxidant systems to plaque vulnerability inpatients with carotid artery stenosis. J Neurosurg, 103(3),518–25. van der Zwan, L. P., Teerlink, T., Dekker, J. M.,Henry, R. M., Stehouwer, C. D., Jakobs, C. et al., 2009.Circulating oxidized LDL: Determinants and association with

brachial �owmediated dilation. J Lipid Res, 50(2), 342–9.Verhamme, P., Quarck, R., Hao, H., Knaapen, M.,Dymarkowski, S., Bernar, H. et al., 2002. Dietarycholesterol withdrawal reduces vascular in�ammation andinduces coronary plaque stabilization in miniature pigs.Cardiovasc Res, 56(1), 135–44. Videm, V., Wiseth, R.,Gunnes, S., Madsen, H. O., and Garred, P., 2007. Multiplein�ammatory markers in patients with signi¢cant coronaryartery disease. Int J Cardiol, 118(1), 81–7. Vita, J. A.,and Losenlzo, J., 2002. Shouldering the risk factor burden:Infection, atherosclerosis, and the vascular endothelium.Circulation, 106(2), 164–6. Vita, J. A., Brennan, M. L.,Gokce, N., Mann, S. A., Goormastic, M., Shishehbor, M. H.et al., 2004. Serum myeloperoxidase levels independentlypredict endothelial dysfunction in humans. Circulation,110(9), 1134–9. von Duvillard, S. P., Foxall, T. L., Davis,W. P., and Terpstra, A. H., 2000. Effects of exercise onplasma high-density lipoprotein cholesteryl estermetabolism in male and female miniature swine. Metabolism,49(7), 826–32.

Wang, H. W., Langohr, I. M., Sturek, M., and Cheng, J. X.,2009. Imaging and quantitative analysis of atheroscleroticlesions by CARS-based multimodal nonlinear opticalmicroscopy. Arterioscler Thromb Vasc Biol, Jun 11. [Epubahead of print]

Wang, Y. X., Fitch, R., Li, W., Werner, M., Halks-Miller,M., Lillis, B. et al., 2002. Reduction of cardiacfunctional reserve and elevation of aortic stiffness inhyperlipidemic Yucatan minipigs with systemic and coronaryatherosclerosis. Vascul Pharmacol, 39(1–2), 69–76.

Weber, C., Zernecke, A., and Libby, P. L., 2008. Themultifaceted contributions of leukocyte subsets toatherosclerosis: Lessons from mouse models. Nat RevImmunol, 8(10), 802–15.

Wernersson, R., Schierup, M. H., Jørgensen, F. G.,Gorodkin, J., Panitz, F., Staerfeldt, H. H. et al., 2005.Pigs in sequence space: A 0.66X coverage pig genome surveybased on shotgun sequencing. BMC Genomics, 6(1):70.

Whyte, J. J. E., Mahan, M., Samuel, K. M., Whitworth, Y.,Hao, C., Murphy, R. S. et al., 2009. Production of clonedpigs carrying an endothelial-speci¢c transgene designed tooverexpress human catalase to study the vasodilatoryeffects of hydrogen peroxide. SSR annual meeting. Biol.Reprod. Abstract 81, 92.

Woodman, C. R., Turk, J. R., Williams, D. P., and Laughlin,M. H., 2003. Exercise training preservesendothelium-dependent relaxation in brachial arteries fromhyperlipidemic pigs. J Appl Physiol, 94(5), 2017–26.Woodman, C. R., Turk, J. R., Rush, J. W. E., and Laughlin,M. H., 2004. Exercise attenuates the effects ofhypercholesterolemia on endothelium-dependent relaxationin coronary arteries from adult female pigs. J ApplPhysiol, 96(3), 1105–13. Woodman, C. R., Thompson, M. A.,Turk, J. R., and Laughlin, M. H., 2005. Endurance exercisetraining improves endotheliumdependent relaxation inbrachial arteries from hypercholesterolemic male pigs. JAppl Physiol, 99(4), 1412–21. Zhang, J., Burridge, K. A.,and Friedman, M. H., 2008. In vivo differences betweenendothelial transcriptional pro¢les of coronary and iliacarteries revealed by microarray analysis. Am J PhysiolHeart Circ Physiol, 295(4), H1556–61. Zhang. R., Brennan,M. L., Fu, X., Aviles, R. J., Pearce, G. L., Penn, M. S.et al., 2001. Association between myeloperoxidase levelsand risk of coronary artery disease. JAMA, 286(17),2136–42. Zhao, J., Ross, J. W., Hao, Y., Spate, L. D.,Walters, E. M., Samuel, M. S. et al., 2009. Signi¢cantimprovement in cloning ef¢ciency of an inbred miniature pigby histone deacetylase inhibitor treatment after somaticcell nuclear transfer. Biol Reprod, Apr 22. [Epub ahead ofprint]Cat acerum hilis eatur?

32 Chapter 32: Hemorrhage andResuscitation Models Usingthe Miniature Swine

Bickell, W. H., S. P. Bruttig, and C. E. Wade. 1989.Hemodynamic response to abdominal aortotomy in theanesthetized swine. Circ Shock 28(4):321–32.

Bilynskyj, M. C., M. L. Errington, I. T. Velasco, and M.Rocha e Silva. 1992. Effect of hypertonic sodium chloride(7.5%) on uncontrolled hemorrhage in rats and itsinteraction with different anesthetic procedures. CircShock 36(1):68–73.

Boyd, C. R., M. A. Tolson, and W. S. Copes. 1987.Evaluating trauma care: the TRISS method. Trauma Score andthe Injury Severity Score. J Trauma 27(4):370–8.

Buchholz, D. H., J. F. Borgia, M. Ward, J. E. Miripol, andJ. M. Simpson. 1999. Comparison of Adsol and CPDA-1 bloodpreservatives during simulated massive resuscitation afterhemorrhage in swine. Transfusion 39(9):998–1004.

Burns, J. W., L. A. Baer, E. J. Hagerman, B. S. Jordan, J.J. Nelson, Jr., A. I., Batchinsky, L. C. Cancio, J. A.Jones, M. A. Dubick, and C. E Wade. 2011. Development andresuscitation of a sednted, mature male miniature swinesevere hemorrhage modal. J Trauma 71(1):148–56.

Cho, S. D., J. B. Holcomb, B. H. Tieu, M. S. Englehart, M.S. Morris, Z. A. Karahan, S. A. Underwood et al. 2009.Reproducibility of an animal model simulating complexcombat-related injury in a multiple-institution format.Shock 31(1):87–96.

Choudhry, M. A., K. I. Bland, and I. H. Chaudry. 2007.Trauma and immune response—Effect of gender differences.Injury 38(12):1382–91.

Choudhry, M. A., M. G. Schwacha, W. J. Hubbard, J. D.Kerby, L. W. Rue, K. I. Bland, and I. H. Chaudry. 2005.Gender differences in acute response to trauma-hemorrhage.Shock 24 Suppl 1:101–6.

Clavijo-Alvarez, J. A., C. A. Sims, M. Menconi, I. Shim, C.Ochoa, and J. C. Puyana. 2004. Bladder mucosa pH and PCO 2as a minimally invasive monitor of hemorrhagic shock andresuscitation. J Trauma 57 (6):1199–209; discussion1209–10.

Clavijo-Alvarez, J. A., C. A. Sims, M. R. Pinsky, and J. C.Puyana. 2005. Monitoring skeletal muscle and subcutaneoustissue acid–base status and oxygenation during hemorrhagicshock and resuscitation. Shock 24(3):270–5.

Delgado, A. V., B. S. Kheirabadi, T. M. Fruchterman, M.Scherer, D. Cortez, C. E. Wade, M. A. Dubick, and J. B.Holcomb. 2008. A novel biologic hemostatic dressing (¢brinpatch) reduces blood loss and resuscitation volume andimproves survival in hypothermic, coagulopathic Swine withgrade V liver injury. J Trauma 64(1):75–80.

Diehl, K. H., R. Hull, D. Morton, R. P¢ster, Y.Rabemampianina, D. Smith, J. M. Vidal, and C. van deVorstenbosch. 2001. A good practice guide to theadministration of substances and removal of blood,including routes and volumes. J Appl Toxicol 21(1):15–23.

Dong, F., C. H. Hall, S. A. Golech, N. B. Philbin, J. P.Rice, J. Gurney, F. G. Arnaud et al. 2006. Immune effectsof resuscitation with HBOC-201, a hemoglobin-based oxygencarrier, in swine with moderately severe hemorrhagic shockfrom controlled hemorrhage. Shock 25(1):50–5.

Eastridge, B. J., J. Salinas, J. G. McManus, L. Blackburn,E. M. Bugler, W. H. Cooke, V. A. Convertino, C. E. Wade,and J. B. Holcomb. 2007. Hypotension begins at 110 mmHg:Rede¢ning “hypotension” with data. J Trauma 63(2):291–7;discussion 297–9. Frankel, D. A., J. A. Acosta, D. J.Anjaria, R. D. Porcides, P. L. Wolf, R. Coimbra, and D. B.Hoyt. 2007. Physiologic response to hemorrhagic shockdepends on rate and means of hemorrhage. J Surg Res143(2):276–80. Gurney, J., N. Philbin, J. Rice, F. Arnaud,F. Dong, M. WulsterRadcliffe, L. B. Pearce, L. Kaplan, R.McCarron, and D. Freilich. 2004. A hemoglobin based oxygencarrier, bovine polymerized hemoglobin (HBOC-201) versusHetastarch (HEX) in an uncontrolled liver injuryhemorrhagic shock swine model with delayed evacuation. JTrauma 57(4):726–38. Hall, C., N. Malkevich, M. Handrigan,C. Vandermolen, F. Arnaud, J. Hong, F. Dong et al. 2007.Innate immune responses in swine resuscitated from severetraumatic hemorrhagic shock with hemoglobin-based oxygencarrier-201. Artif Cells Blood Substit Immobil Biotechnol35(3):259–74. Hannon, J. P. 1992. Hemorrhage andhemorrhagic shock in swine: a review. Swine as Models inBiomedical Research, M. D. Swindle and L. D. Phillips,Eds. Ames: Iowa State University Press, pp. 197–245.Hannon, J.P., and Bossone, C.A. 1986. The conscious pig asa large animal model for studies of hemorrhagichypotension. Swine in Biomedical Research, M. Tumbleson,

Ed., Vol. 3. New York, NY: Plenum Press, pp. 1413–28.Hannon, J. P., C. A. Bossone, and C. E. Wade. 1990. Normalphysiological values for conscious pigs used in biomedicalresearch. Lab Anim Sci 40(3):293–8. Hannon, J. P., C. E.Wade, C. A. Bossone, M. M. Hunt, R. I. Coppes, and J. A.Loveday. 1990. Blood gas and acid–base status of consciouspigs subjected to ¢xed-volume hemorrhage and resuscitatedwith hypertonic saline dextran. Circ Shock 32(1):19–29.Hannon, J. P., C. E. Wade, C. A. Bossone, M. M. Hunt, andJ. A. Loveday. 1989. Oxygen delivery and demand inconscious pigs subjected to ¢xed-volume hemorrhage andresuscitated with 7.5% NaCl in 6% Dextran. Circ Shock29(3):205–17. Hansard, S. L., H. E. Sauberlich, and C. L.Comar. 1951. Blood volume of swine. Proc Soc Exp Biol Med78(2):544–5. Johnson, T., F. Arnaud, F. Dong, N. Philbin,J. Rice, L. Asher, M. Arrisueno et al. 2006. Bovinepolymerized hemoglobin (hemoglobin-based oxygencarrier-201) resuscitation in three swine models ofhemorrhagic shock with militarily relevant delayedevacuation—Effects on histopathology and organ function.Crit Care Med 34(5):1464–74. Kaplan, L. J., N. Philbin, F.Arnaud, J. Rice, F. Dong, and D. Freilich. 2006.Resuscitation from hemorrhagic shock: Fluid selection andinfusion strategy drives unmeasured ion genesis. J Trauma61(1):90–7; discussion 97–8. Kelly, J. F., A. E. Ritenour,D. F. McLaughlin, K. A. Bagg, A. N. Apodaca, C. T. Mallak,L. Pearse et al. 2008. Injury severity and causes of deathfrom Operation Iraqi Freedom and Operation EnduringFreedom: 2003–2004 versus 2006. J Trauma 64(2Suppl):S21–6; discussion S26–7. Lomas-Niera, J. L., M.Perl, C. S. Chung, and A. Ayala. 2005. Shock andhemorrhage: An overview of animal models. Shock 24 Suppl1:33–9. Lundeen, G., M. Manohar, and C. Parks. 1983.Systemic distribution of blood �ow in swine while awake andduring 1.0 and 1.5 MAC iso�urane anesthesia with orwithout 50% nitrous oxide. Anesth Analg 62(5):499–512.

Majde, J. A. 2003. Animal models for hemorrhage andresuscitation research. J Trauma 54(5 Suppl):S100–5.

Malkevich, N. V., F. Dong, C. A. Vandermolen, N. B.Philbin, J. P. Rice, A. Scultetus, J. Hong et al. 2008.Innate immune response after resuscitation withhemoglobin-based oxygen carrier and recombinant factor VIIAin uncontrolled hemorrhagic shock in a swine model. JTrauma 64 (6):1498–510.

Marshall, J. C., E. Deitch, L. L. Moldawer, S. Opal, H.Redl, and T. van der Poll. 2005. Preclinical models ofshock and sepsis: What can they tell us? Shock 24(Suppl

1):1–6.

Meyer, M. R., E. Haas, and M. Barton. 2006. Genderdifferences of cardiovascular disease: New perspectivesfor estrogen receptor signaling. Hypertension47(6):1019–26.

Moore, F. A., A. Sauaia, E. E. Moore, J. B. Haenel, J. M.Burch, and D. C. Lezotte. 1996. Postinjury multiple organfailure: A bimodal phenomenon. J Trauma 40(4):501–10;discussion 510–12.

Orshal, J. M., and R. A. Khalil. 2004. Gender, sexhormones, and vascular tone. Am J Physiol Regul IntegrComp Physiol 286(2):R233–49.

Philbin, N., M. Handrigan, J. Rice, K. McNickle, G. McGwin,R. Williams, M. Warndorf et al. 2007. Resuscitationfollowing severe, controlled hemorrhage associated with a24 h delay to surgical intervention in swine using ahemoglobin based oxygen carrier as an oxygen bridge tode¢nitive care. Resuscitation 74(2):332–43.

Philbin, N., J. Rice, J. Gurney, G. McGwin, F. Arnaud, F.Dong, T. Johnson et al. 2005. A hemoglobin-based oxygencarrier, bovine polymerized hemoglobin (HBOC-201) versushexastarch (HEX) in a moderate severity hemorrhagic shockswine model with delayed evacuation. Resuscitation66(3):367–78.

Phillips, RW. 1989. Circulatory shock in long and shortpigs. Perspectives in Shock Research: Immunology,Mediators and Models, R. S. Passmore, D. G. Reynolds andD. L. Traber, Eds. New York, NY: Liss.

Porter, J. M. 2000. The search for an optimal end point ofresuscitation. J Trauma 48(2):360.

Pusateri, A. E., J. B. Holcomb, B. S. Kheirabadi, H. B.Alam, C. E. Wade, and K. L. Ryan. 2006. Making sense ofthe preclinical literature on advanced hemostaticproducts. J Trauma 60 (3):674–82.

Rice, J., N. Philbin, M. Handrigan, C. Hall, G. McGwin, S.Ahlers, L. B. Pearce, F. Arnaud, R. McCarron, and D.Freilich. 2006. Vasoactivity of bovine polymerizedhemoglobin (HBOC-201) in swine with traumatic hemo rrhagicshock with and without brain injury. J Trauma 61(5):1085–99.

Rice, J., N. Philbin, R. Light, F. Arnaud, T. Steinbach, G.McGwin, S. Collier et al. 2008. The effects of decreasinglow-molecular weight hemoglobin components ofhemoglobin-based oxygen carriers in swine with hemorrhagicshock. J Trauma 64(5):1240–57.

Rice, J., N. Philbin, G. McGwin, F. Arnaud, T. Johnson, W.S. Flournoy, L. B. Pearce et al. 2006. Bovine polymerizedhemoglobin versus Hextend resuscitation in a swine modelof severe controlled hemorrhagic shock with delay tode¢nitive care. Shock 26(3):302–10. Senthil, M., M. Brown,D. Z. Xu, Q. Lu, E. Feketeova, and E. A. Deitch. 2006.Gut-lymph hypothesis of systemic in�ammatory responsesyndrome/multiple-organ dysfunction syndrome: Validatingstudies in a porcine model. J Trauma 60 (5):958–65;discussion 965–7. Sondeen, J. L., V. G. Coppes, and J. B.Holcomb. 2003. Blood pressure at which rebleeding occursafter resuscitation in swine with aortic injury. J Trauma54(5 Suppl):S110–17. Sondeen, J. L., M. A. Dubick, J. B.Holcomb, and C. E. Wade. 2007. Uncontrolled hemorrhagediffers from volume- or pressure-matched controlledhemorrhage in swine. Shock 28 (4):426–33. Sondeen, J. L.,G. A. Gonzaludo, J. A. Loveday, G. E. Deshon, C. B.Clifford, M. M. Hunt, W. G. Rodkey, and C. E. Wade. 1990a.Renal responses to graded hemorrhage in conscious pig. AmJ Physiol 259(1 Pt 2):R119–25. Sondeen, J. L., G. A.Gonzaludo, J. A. Loveday, W. G. Rodkey, and C. E. Wade.1990b. Hypertonic saline/dextran improves renal functionafter hemorrhage in conscious swine. Resuscitation20(3):231–41. Sondeen, J. L., A. E. Pusateri, U. Hedner, L.D. Yantis, and J. B. Holcomb. 2004. Recombinant factorVIIa increases the pressure at which rebleeding occurs inporcine uncontrolled aortic hemorrhage model. Shock22(2):163–8. Stanton, H.C., and H.J. Mersmann. 1986. Swinein Cardiovascular Research. Vols. 1 and 2. Boca Raton, FL:CRC Press, Inc. Stern, S., J. Rice, N. Philbin, G. McGwin,F. Arnaud, T. Johnson, W. S. Flournoy et al. 2009.Resuscitation with the hemoglobin-based oxygen carrier,HBOC-201, in a swine model of severe uncontrolledhemorrhage and traumatic brain injury. Shock 31 (1):64–79.Traverso, L. W., R. F. Bellamy, S. J. Hollenbach, and J. D.O’Benar. 1985. Naloxone does not prevent death after rapidhemorrhage in swine. Surg Gynecol Obstet 161(3):229–39.Traverso, L. W., S. J. Hollenbach, R. B. Bolin, M. J.Langford, and L. R. DeGuzman. 1986a. Fluid resuscitationafter an otherwise fatal hemorrhage: II. Colloid solutions.J Trauma 26 (2):176–82. Traverso, L. W., W. P. Lee, and M.J. Langford. 1986b. Fluid resuscitation after an otherwisefatal hemorrhage: I. Crystalloid solutions. J Trauma26(2):168–75 Traverso, L. W., C. C. Moore, and F. J.

Tillman. 1984. A clinically applicable exsanguinationshock model in swine. Circ Shock 12(1):1–7. Trunkey, D. D.1983. Trauma. Accidental and intentional injuries accountfor more years of life lost in the U.S. than cancer andheart disease. Among the prescribed remedies are improvedpreventive efforts, speedier surgery and further research.Sci Am 249(2):28–35. Tsukamoto, T., and H. C. Pape. 2009.Animal models for trauma research: What are the options?Shock 31(1):3–10. VanderMolen, C., N. Malkevich, N.Philbin, J. Rice, S. Collier, C. Hall, S. Ahlers et al.2007. Immune effects of decreasing lowmolecular weighthemoglobin components of hemoglobinbased oxygen carriers(HBOC) in a swine model of severe controlled hemorrhagicshock. Artif Cells Blood Substit Immobil Biotechnol35(5):507–17.

Wade, C. E. and J. P. Hannon. 1988. Confounding factors inthe hemorrhage of conscious swine: A retrospective studyof physical restraint, splenectomy, and hyperthermia. CircShock 24(3):175–82.

Wade, C. E. and J. P. Hannon. 1991. Modi¢cation ofpituitary– adrenal axis responses to hemorrhage by handlingtechniques in conscious swine. Circ Shock 34(4):379–84.

Wade, C. E., J. P. Hannon, C. A. Bossone, and M. M. Hunt.1990. Superiority of hypertonic saline/dextran overhypertonic saline during the ¢rst 30 min of resuscitationfollowing hemorrhagic hypotension in conscious swine.Resuscitation 20(1):49–56.

Wade, C. E., J. P. Hannon, C. A. Bossone, M. M. Hunt, J. A.Loveday, R. Coppes, and V. L. Gildengorin. 1989a.Resuscitation of conscious pigs following hemorrhage:Comparative ef¢cacy of small-volume resuscitation. CircShock 29 (3):193–204. Wade, C. E., J. P. Hannon, C. A.Bossone, M. M. Hunt, J. A. Loveday, R. I. Coppes, Jr., andV. L. Gildengorin. 1991. Neuroendocrine responses tohypertonic saline/dextran resuscitation followinghemorrhage. Circ Shock 35(1):37–43. Wade, C. E., F. J.Tillman, J. A. Loveday, A. Blackmon, E. Potanko, M. M.Hunt, and J. P. Hannon. 1992. Effect of dehydration oncardiovascular responses and electrolytes after hypertonicsaline/dextran treatment for moderate hemorrhage. AnnEmerg Med 21(2):113–19. Wade, C. E., D. S. Trail, V. L.Gildengorin, and J. P. Hannon. 1989b. Blood lactate as aprognosticator of survival following hemorrhage inconscious swine. Lab Anim Sci 39(1):44–6.

33 Chapter 33: Oral Biology and DentalModels

ANSI/ADA. 2005. American National Standard/American DentalAssociation Speci�cation No. 41 for Recommended StandardPractices for Biological Evaluation of Dental Materials.Chicago: ADA.

Aoba, T., M. Fukae, T. Tanabe, M. Shimizu, and E. C.Moreno. 1987. Selective adsorption of porcine-amelogeninsonto hydroxyapatite and their inhibitory activity onhydroxyapatite growth in supersaturated solutions. CalcifTissue Int 41:281–9.

Aoba, T., J. Collins, and E. C. Moreno. 1989. Possiblefunction of matrix proteins in �uoride incorporation intoenamel mineral during porcine amelogenesis. J Dent Res68:1162–8.

Atieh, M. A., A. G. Payne, W. J. Duncan, and M. P.Cullinan. 2009. Immediate restoration/loading ofimmediately placed single implants: Is it an effectivebimodal approach? Clin Oral Implants Res 20:645–59.

Baron, M., R. Haas, O. Dörtbudak, and G. Watzek. 2000.Experimentally induced peri-implantitis: A review ofdifferent treatment methods described in the literature.Int J Oral Maxillofac Implants 15:533–44.

Beatty, M. W., J. C. Nickel, L. R. Iwasaki, and M. Leiker.2003. Mechanical response of the porcine temporomandibularjoint disc to an impact event and repeated tensileloading. J Orofacial Pain 17:160–6.

Blosser, R. L., N. W. Rupp, H. R. Stanley, and R. L. Bowen.1989. Pulpal and micro-organism responses to twoexperimental dental bonding systems. Dent Mater 5:140–4.

Bodegom, J. C. 1969. Experiments on tooth eruption inminiature pigs. Orthodontics Diss., University ofNijmegen, Netherlands.

Bollen, A.-M., K. J. McCulloch, and S. W. Herring. 1997.Whole body bone resorption in the growing pig. Growth DevAging 61:181–9.

Büchter, A., J. Kleinheinz, H. P. Wiesmann et al. 2004.Biological and biomechanical evaluation of boneremodelling and implant stability after using an osteotometechnique. Clin Oral Implants Res 16:1–8.

Büchter, A., J. Kleinheinz, H. P. Wiesmann, M. Jayaranan,U. Joos, and U. Meyer. 2005. Interface reaction at dentalimplants inserted in condensed bone. Clin Oral ImplantsRes 16:509–17.

Buck, D. L. and M. E. Weaver. 1965. Tooth movement inminiature swine labeled with tetracycline. J Dent Res44:450.

BuSha, B., J. C. Leiter, A. K. Curran, A. Li, E. E. Nattie,and R. A. Darnall. 2001. Spontaneous arousals during quietsleep in piglets: A visual and wavelet-based analysis.Sleep 24:499–513.

Buser, D., R. K. Schenk, S. Steinemann, J. P. Fiorellini,C. H. Fox, and H. Stich. 1991. In�uence of surfacecharacteristics on bone integration of titanium implants.A histomorphometric study in miniature pigs. J BiomedMater Res 25:889–902.

Buser, D., T. Nydegger, H. P. Hirt, D. L. Cochran, and L.P. Nolte. 1998a. Removal torque values of titaniumimplants in the maxilla of miniature pigs. Int J OralMaxillofac Implants 13:611–19.

Buser, D., B. Hoffmann, J. P. Bernard, A. Lussi, D.Mettler, and R. K. Schenk. 1998b. Evaluation of ¢llingmaterials in membrane-protected bone defects. A comparativehistomorphometric study in the mandible of miniature pigs.Clin Oral Implants Res 9:137–50.

Buser, D., T. Nydegger, T. Oxland et al. 1999. Interfaceshear strength of titanium implants with a sandblasted andacidetched surface: A biomechanical study in the maxilla ofminiature pigs. J Biomed Mater Res 45:75–83. Buser, D., N.Broggini, M. Wieland et al. 2004. Enhanced boneapposition to a chemically modi¢ed SLA titanium surface. JDent Res 83:529–33. Chen, L. and S. M. Scharf. 2000.Effects of aortic nerve on hemodynamic response toobstructive apnea in sedated pigs. J Appl Physiol89:1455–61. Cheung, L. K., X. J/ Shi, and L. W. Zheng.2007. Surgical induction of temporomandibular jointankylosis: An animal model. J Oral Maxillofac Surg65:993–1004. Ciochon, R. L., R. A. Nisbett, and R. S.Corruccini. 1997. Dietary consistency and craniofacialdevelopment related to masticatory function in minipigs. JCraniofac Gen Dev Biol 17:96–102. Clokie, C. M. and R. C.Bell. 2003. Recombinant human transforming growth factorbeta-1 and its effects on osseointegration. J Craniofac

Surg 14:268–77. Craig, R. G., S. P. Kallur, M. Inoue, P. A.Rosenberg, and R. Z. LeGeros. 2004. Effect of enamelmatrix proteins on the periodontal connectivetissue-material interface after wound healing. J BiomedMater Res 69A:180–7. Crismani, A. G., T. Bernhart, S. Tanglet al. 2008. Osseointegration of a subperiosteal anchoringdevice in the minipig mandible. Am J Orthod DentofacialOrthop 133:743–7. Crompton, A. W., R. Z. German, and A. J.Thexton. 2008. Development of the movement of theepiglottis in infant and juvenile pigs. Zool 111:339–49.Daculsi, G., P. Weiss, J. M. Bouler, O. Gauthier, F.Millot, and E. Aguado. 1999. Biphasic calciumphosphate/hydrosoluble polymer composites: A new conceptfor bone and dental substitution biomaterials. Bone25(Suppl. 2):59S–61S. Davies, A. S. 1990. Postnataldevelopment of the lower canine and cheek teeth of thepig. Anat Histol Embryol 19:269–75. Depprich, R., H.Zipprich, M. Ommerborn et al. 2008a. Osseointegration ofzirconia implants: An SEM observation of the bone-implantinterface. Head Face Med 4:25. Depprich, R., H. Zipprich,M. Ommerborn et al. 2008b. Osseointegration of zirconiaimplants compared with titanium: An in vivo study. HeadFace Med 4:3024. Dorow, C., N. Krstin, and F.-G. Sander.2002. Experiments to determine the material properties ofthe periodontal ligament. J Orofac Orthop 63:94–104. Dorow,C., N. Krstin, and F.-G. Sander. 2003. Determination ofthe mechanical properties of the periodontal ligament ina uniaxial tensional experiment. J Orofac Orthop64:100–7. Dostálová, T., L. Himmlová, M. Jélinek, and C.Grivas. 2001. Osseointegration of loaded dental implantwith KrF laser hydroxylapatite ¢lms on Ti6Al4V alloy byminipigs. J Biomed Opt 6:239–43. Eubanks, D. L. and K.Gilbo. 2005. Trimming tusks in the Yucatan minipig. LabAnim 34:35–8. Fang, D. J., B. M. Seo, Y. Liu et al. 2007.Transplantation of mesenchymal stem cells is an optimalapproach for plastic surgery. Stem Cells 25:1021–8.Ferrari, C. S. and S. W. Herring. 1995. Use of abite-opening appliance in the miniature pig: Modi¢cation ofcraniofacial growth. Acta Anat 154:205–15. Fontenot, M. G.1995. Temporomandibular joint devices: Past, present, andfuture. In B. J. Sessle, P. S. Bryant, and R. A. Dionne(eds.), Temporomandibular Disorders and Related PainConditions, 309–22. Seattle: IASP Press.

Froum, S. J., D. Tarnow, A. Caiazzo, and M. N. Hochman.2000. Histologic response to intraligament injectionsusing a computerized local anesthetic delivery system. Apilot study in mini-swine. J Periodontol 71:1453–9.

German, R. Z., A. W. Crompton, and A. J. Thexton. 2008.

Variation in EMG activity: A hierarchical approach. IntegrComp Biol 48:283–93.

Germanier, Y., S. Tosatti, N. Broggini, M. Textor, and D.Buser. 2006. Enhanced bone apposition aroundbiofunctionalized sandblasted and acid-etched titaniumimplant surfaces. A histomorphometric study in miniaturepigs. Clin Oral Implants Res 17:251–7.

Gier, R. E. 1986. Dentition and other oral conditions ofthe Sinclair strain of miniature swine. In M. E. Tumbleson(ed.), Swine in Biomedical Research, vol. 1, 633–9. NewYork: Plenum Press.

Giunta, D., J. Keller, F. F. Nielsen, and B. Melsen. 1993.Dentin formation in miniature pigs with special referenceto indomethacin and orthodontic treatment. Scand J Dent Res101:261–4.

Giunta, D., J. Keller, F. F. Nielsen, and B. Melsen. 1995.In�uence of indomethacin on bone turnover related toorthodontic tooth movement in miniature pigs. Am J OrthodDentofacial Orthop 108:361–6.

Gonzalo, M., M. A. Atieh, A. H. Atieh, A. G. Payne, and W.J. Duncan. 2009. Immediate loading with single implantcrowns: A systematic review and meta-analysis. Int JProsthodont 22:378–87.

Grimm, A. F. and K. V. Katele. 1979. “Silver dust”–a toolto study growth interrelationships between bone,periosteum and muscle. Anat Rec 194:539–46.

Gruber, R. M., A. Ludwig, H. A. Merten, S. Pippig, F. J.Kramer, and H. Schliephake. 2009. Sinus �oor augmentationwith recombinant human growth and differentiation factor-5(rhGDF-5): A pilot study in the Gottingen miniature pigcomparing autogenous bone and rhGDF-5. Clin Oral ImplantsRes 20:175–82.

Hai, B., X. Yan, A. Voutetakis et al. 2009. Long-termtransduction of miniature pig parotid glands usingserotype 2 adeno-associated viral vectors. J Gene Med11:506–14.

Hale, T. M., B. B. Boretsky, M. J. Scheidt, M. J. McQuade,S. L. Strong, and T. E. Van Dyke. 1991. Evaluation oftitanium dental implant osseointegration in posterioredentulous areas of micro swine. J Oral Implantol17:118–24.

Herford, A. S., R. Hoffman, S. Demirdji et al. 2005. Acomparison of synovial �uid pressure after immediateversus gradual mandibular advancement in the miniaturepig. J Oral Maxillofac Surg 63:775–85.

Herring, S. W. 1976. The dynamics of mastication in pigs.Arch Oral Biol 21:473–80.

Herring, S. W. 2003. TMJ anatomy and animal models. JMusculoskelet Neuronal Interact 3:391–4.

Herring, S. W. and Z. J. Liu. 2001. Loading of the TMJ:Anatomical and in vivo evidence from the bones. CellsTissues Organs 169:193–200.

Herring, S. W. and R. P. Scapino. 1973. Physiology offeeding in miniature pigs. J Morphol 141:427–60.

Herring, S. W. and S. Teng. 2000. Strain in the braincaseand its sutures during function. Am J Phys Anthropol112:575–93. Herring, S. W., A. F. Grimm, and B. R. Grimm.1979. Functional heterogeneity in a multipinnate muscle.Am J Anat 154:563–76. Herring, S. W., L. E. Wineski, andF. C. Anapol. 1989. Neural organization of the massetermuscle in the pig. J Comp Neurol 280:563–76. Herring, S.W., Z. F. Muhl, and A. Obrez. 1993. Bone growth andperiosteal migration control masseter muscle orientation inpigs (Sus scrofa). Anat Rec 235:215–22. Herring, S. W., K.L. Rafferty, Z. J. Liu, and C. D. Marshall. 2001. Jawmuscles and the skull in mammals: The biomechanics ofmastication. Comp Biochem Physiol A 131:207–19. Herring, S.W., J. D. Decker, Z. J. Liu, and T. Ma. 2002. Thetemporomandibular joint in miniature pigs: Anatomy, cellreplication, and relation to loading. Anat Rec 266:152–66.Herring, S. W., S. C. Pedersen, and X. Huang. 2005.Ontogeny of bone strain: The zygomatic arch in pigs. J ExpBiol 208:4509–21. Herring, S. W., K. L. Rafferty, Z. J.Liu, and Z. Sun. 2008. A nonprimate model for the fusedsymphysis: In vivo studies in the pig. In C. J. Vinyard,M. J. Ravosa and C. E. Wall (eds.), Primate CraniofacialFunction and Biology, 19–37. New York: Springer. Hickey,J. S., R. B. O’Neal, M. J. Scheidt, S. L. Strong, D.Turgeon, and T. E. Van Dyke. 1991. Microbiologiccharacterization of ligature-induced peri-implantitis inthe microswine model. J Periodontol 62:548–53. Huang, G.T., W. Sonoyama, Y. Liu, H. Liu, S. L. Wang, and S. T.Shi. 2008. The hidden treasure in apical papilla: Thepotential role in pulp/dentin regeneration and bio-rootengineering. J Endod 34:645–51. Huang, X., G. Zhang, and

S. W. Herring. 1993a. Alterations of muscle activities andjaw movements after blocking individual closing muscles inthe miniature pig. Arch Oral Biol 38:291–7. Huang, X., G.Zhang, and S. W. Herring. 1993b. Effects of oralperipheral afferents on mastication in the miniature pig. JDent Res 72:980–6. Huang, X., G. Zhang, and S. W. Herring.1994. Age changes in mastication in the pig. Comp BiochemPhysiol A 107:647–54. Hylander, W. L. 1979. An experimentalanalysis of temporomandibular joint reaction force inmacaques. Am J Phys Anthropol 51:433–56. Hylander, W. L.and R. Bays. 1979. An in vivo strain-gauge analysis of thesquamosal-dentary joint reaction force during masticationand incisal biting in Macaca mulatta and Macacafascicularis. Arch Oral Biol 24:689–97. Hyvönen, P. M., H.Hanhijarvi, and K. Ahosilta. 1986. The effect ofclodronate (dichloromethylene diphosphonate) on the mineralconcentration of dental enamel and bone of the miniatureswine. Acta Pharmacol Toxicol (Copenh) 59:129–34.International Organization for Standardization. 2005.ISO/TS 22911: Dentistry–Preclinical evaluation of dentalimplant systems–Animal test methods. Geneva: ISO.International Organization for Standardization. 2008. ISO7405: Dentistry–Evaluation of biocompatibility of medicaldevices used in dentistry. Geneva: ISO. Ioannidou, E. andA. Doufexi. 2005. Does loading time affect implantsurvival? A meta-analysis of 1,266 implants. J Periodontol76:1252–8. Jensen, J., J. Kragskov, A. Wenzel, and S.Sindet-Pedersen. 1998. Volumetry of bone grafts bythree-dimensional computed tomographic reconstruction: Ananimal study in the minipig. Dentomaxillofac Radiol27:41–4.

Jensen, S. S., N. Broggini, G. Weibrich, E.Hjorting-Hansen, R. Schenk, and D. Buser. 2005. Boneregeneration in standardized bone defects with autograftsor bone substitutes in combination with plateletconcentrate: A histologic and histomorphometric study inthe mandibles of minipigs. Int J Oral Maxillofac Implants20:703–12.

Jensen, S. S., N. Broggini, E. Hjorting-Hansen, R. Schenk,and D. Buser. 2006. Bone healing and graft resorption ofautograft, anorganic bovine bone and beta-tricalciumphosphate. A histologic and histomorphometric study in themandibles of minipigs. Clin Oral Implants Res 17:237–43.

Jump, E. B. and M. E. Weaver. 1966. The miniature pig indental research. In L. K. Bustad and R. O. McClellan(eds.), Swine in Biomedical Research, 543–57. Seattle:Paci¢c Northwest Lab., Battelle Memorial Inst.

Kaban, L. B., P. Thurmüller, M. J. Troulis et al. 2003.Correlation of biomechanical stiffness with plainradiographic and ultrasound data in an experimentalmandibular distraction wound. Int J Oral Maxillofac Surg32:296–304.

Kalkwarf, K. L. and R. F. Krejci. 1983. Effect ofin�ammation on periodontal attachment levels in miniatureswine with mucogingival defects. J Periodontol 54:361–4.

Karagianes, M. T., R. E. Westerman, J. J. Rasmussen, and A.M. Lodmell. 1976. Development and evaluation of porousdental implants in miniature swine. J Dent Res 55:85–93.

Kayalioglu, M., V. Shcherbatyy, A. Sei¢, and Z. J. Liu.2007. Roles of intrinsic and extrinsic tongue muscles infeeding: Electromyographic study in pigs. Arch Oral Biol52:786–96.

Kierdorf, H., U. Kierdorf, A. Richards, and K. Josephsen.2004. Fluoride-induced alterations of enamel structure: Anexperimental study in the miniature pig. Anat Embryol207:463–74.

Kirkham, J., C. Robinson, J. A. Weatherell, A. Richards, O.Fejerskov, and K. Josephsen. 1988. Maturation in developingpermanent porcine enamel. J Dent Res 67:1156–60.

Ko, C. C., W. H. Douglas, R. DeLong et al. 2003. Effects ofimplant healing time on crestal bone loss of acontrolled-load dental implant. J Dent Res 82:585–91.

Ko, W. L., J. C. Wang, C. C. Chen, Y. M. Wu, and C. C.Tsai. 1999. TGF-beta 1 in the experimentally inducedin�ammatory periodontal tissues in miniature swines.Kaohsiung J Med Sci 15:315–21.

Lang, H., N. Schüler, S. Arnhold, R. Nolden, and T.Mertens. 1995. Formation of differentiated tissues in vivoby periodontal cell populations cultured in vitro. J DentRes 74:1219–25.

Lang, H., N. Schüler, and R. Nolden. 1998. Attachmentformation following replantation of cultured cells intoperiodontal defects–a study in minipigs. J Dent Res77:393–405.

Larson, J. E. and S. W. Herring. 1996. Movement of theepiglottis in mammals. Am J Phys Anthropol 100:71–82.

Larsson, E., B. Øgaard, R. Lindsten, N. Holmgren, M.Brattberg, and L. Brattberg. 2005. Craniofacial anddentofacial development in pigs fed soft and hard diets. AmJ Orthod Dentofacial Orthop 128:731–9.

Li, D., S. J. Ferguson, T. Beutler et al. 2002.Biomechanical comparison of the sandblasted and acid-etchedand the machined and acid-etched titanium surface fordental implants. J Biomed Mater Res 60:325–32. Li, J., C.Y. Zheng, X. Zhang et al. 2004. Developing a convenientlarge animal model for gene transfer to salivary glands invivo. J Gene Med 6:55–63. Li, J., Z. Shan, G. Ou et al.2005. Structural and functional characteristics ofirradiation damage to parotid glands in the miniature pig.Int J Radiat Oncol Biol Phys 62:1510–16. Li, Y., S. S. Lee,W. Zhang, S. L. Zunt, M. Rohrer, and J. Kim. 2008.Dentin/pulp biocompatibility of an adhesive system forsilorane restorative. J Dent Res 87(Spec. Iss. B):#1012.Liu, Y., L. Enggist, A. F. Kuffer, D. Buser, and E. B.Hunziker. 2007. The in�uence of BMP-2 and its mode ofdelivery on the osteoconductivity of implant surfacesduring the early phase of osseointegration. Biomater28:2677–86. Liu, Y., Y. Zheng, G. Ding et al. 2008.Periodontal ligament stem cell-mediated treatment forperiodontitis in miniature swine. Stem Cells 26:1065–73.Liu, Z. J. 2010. Effects of surgical tongue volumereduction: Outcome measure on tongue and growth. In J. A.McNamara and S. D. Kapila (eds), Surgical Enhancements toOrthodontic Treatment, Craniofacial Growth Series, vol.47, pp. 283–308. Ann Arbor: Univ. Michigan Press. Liu, Z.J. and S. W. Herring. 2000a. Masticatory strains on osseousand ligamentous components of the jaw joint in miniaturepigs. J Orofacial Pain 14:265–78. Liu, Z. J. and S. W.Herring. 2000b. Bone surface strains and internal bonypressures at the jaw joint of the miniature pig duringmasticatory muscle contraction. Arch Oral Biol 45:95–112.Liu, Z. J., Y. Masuda, T. Inoue et al. 1993. Coordinationof cortically induced rhythmic jaw and tongue movements inthe rabbit. J Neurophysiol 69:569–84. Liu, Z. J., V.Shcherbatyy, and J. A. Perkins. 2008a. Functional loads ofthe tongue and consequences of volume reduction. J OralMaxillofac Surg 66:1351–61. Liu, Z. J., V. Shcherbatyy, G.Gu, and J. A. Perkins. 2008b. Effects of tongue volumereduction on craniofacial growth: A longitudinal study onorofacial skeletons and dental arches. Arch Oral Biol53:991–1001. Liu, Z. J., B. Yamamura, V. Shcherbatyy, andJ. R. Green. 2008c. Regional volumetric change of thetongue during mastication in pigs. J Oral Rehabil35:604–12. Liu, Z. J., V. Shcherbatyy, M. Kayalioglu, and

A. Sei¢. 2009. Internal kinematics of the tongue inrelation to muscle activity and jaw movement in the pig. JOral Rehabil 36:660–74. Loma Linda University School ofDentistry. 2007. Implant Dentistry. DVD-ROM. Lonergan, R.P. 3rd, J. C. Ware, R. L. Atkinson, W. C. Winter, and P.M. Suratt. 1998. Sleep apnea in obese miniature pigs. JAppl Physiol 84:531–6. Lussi, A. and A. Linde. 1993.Mineral induction in vivo by dentin proteins. Caries Res.27:241–8. Mack, A., A. Singh, C. Gilroy, and W. Ireland.1997. Porcine lingual taste buds: A quantitative study.Anat Rec 247:33–7. Marks, L., S. Teng, J. Årtun, and S.Herring. 1997. Reaction strains on the condylar neckduring mastication and maximum muscle stimulation indifferent condylar positions: An experimental study in theminiature pig. J Dent Res 76:1412–20. Matthiessen, M. E.,B. Sögaard-Pedersen, and P. Römert. 1985. Electronmicroscopic demonstration of non-mineralized andhypomineralized areas in dentin and cementum by silvermethenamine staining of collagen. Scand J Dent Res93:385–95.

McKee, M. D., T. Aoba, and E. C. Moreno. 1991. Morphologyof the enamel organ in the miniature swine. Anat Rec230:97–113.

McKelvey, G. M., E. J. Post, A. K. Wood, and H. E. Jeffery.2001. Airway protection following simulatedgastro-oesophageal re�ux in sedated and sleeping neonatalpiglets during active sleep. Clin Exp Pharmacol Physiol28:533–9.

Meikle, M. C. 2007. Remodeling the dentofacial skeleton:The biological basis of orthodontics and dentofacialorthopedics. J Dent Res 86:12–24.

Meister, R., R. Berg, and P. Berg. 1973. Beiträge zurtopographischen und angewandten Anatomie des Kiefergelenkes(Articulatio temporomandibularis) einiger Haussäugetiereunter besonderer Berücksictigung derResektionsmöglichkeiten des Discus articularis. 4. Schwein(Sus scrofa domesticus). Z Exp Chirurg 6:437–48.

Meng, H., H. Xie, and Z. Chen. 1996. Evaluation ofligatureinduced periodontitis in minipig. Zhonghua KouQiang Yi Xue Za Zhi 31:333–6. (In Chinese).

Moretti Neto, R. T., I. Mello, A. B. Moretti, C. R.Robazza, and A. A. Pereira. 2008. In vivo qualitativeanalysis of the biocompatibility of differentcyanoacrylate-based adhesives. Braz Oral Res 22:43–7.

Myers, C. L., H. R. Stanley, J. B. Heyde, and J.Chamberlain. 1976. Primate pulpal response to ultravioletlight-polymerized direct-bonding material systems. J DentRes 55:1118–24.

Nakamura, Y., L. Hammarström, E. Lundberg, H. Ekdahl, andK. Matsumoto. 2001. Enamel matrix derivative promotesreparative processes in the dental pulp. Adv Dent Res15:105–7.

Nakamura, Y., L. Hammarström, K. Matsumoto, and S. P.Lyngstadaas. 2002. The induction of reparative dentine byenamel proteins. Int Endod J 35:407–17.

Nakamura, Y., I. Slaby, K. Matsumoto, H. H. Ritchie, and S.P. Lyngstadaas. 2004. Immunohistochemical characterizationof rapid dentin formation induced by enamel matrixderivative. Calcif Tissue Int 75:243–52.

Nakamura, Y., I. Slaby, A. Spahr, G. Pezeshki, K.Matsumoto, and S. P. Lyngstadaas. 2006. Ameloblastinfusion protein enhances pulpal healing and dentinformation in porcine teeth. Calcif Tissue Int 78:278–84.

Natali, A. N., E. L. Carniel, P. G. Pavan, C. Bourauel, A.Ziegler, and L. Keilig. 2007. Experimental-numericalanalysis of minipig’s multi-rooted teeth. J Biomech40:1701–8.

Navarro, R. de L., P. V. P. Oltramari, E. Sant’Ana et al.2008. Histological and molecular temporomandibular jointanalyses after mandibular advancement surgery: Study inminipigs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod106:331–8.

Navarro, R. de L., P. V. P. Oltramari-Navarro, E. Sant’Anaet al. 2009. Histologic and tomographic analyses of thetemporomandibular joint after mandibular advancementsurgery: Study in minipigs. Oral Surg Oral Med Oral PatholOral Radiol Endod 107:477–84.

Neugebauer J., G. Iezzi, V. Perrotti et al. 2009.Experimental immediate loading of dental implants inconjunction with grafting procedures. J Biomed Mater Res BAppl Biomater 91: 604–12. Nkenke, E., B. Lehner, K.Weinzierl et al. 2003. Bone contact, growth, and densityaround immediately loaded implants in the mandible of minipigs. Clin Oral Implants Res 14:312–21. Nkenke, E., M.Fenner, E. G. Vairaktaris, F. W. Neukam, and M.

Radespiel-Tröger. 2005a. Immediate versus delayed loadingof dental implants in the maxillae of minipigs: Follow-upof implant stability and implant failures. Int J OralMaxillofac Implants 20:39–47. Nkenke, E., M. Fenner, E.Vairaktaris, F. Neukam, and M. RadespielTröger. 2005b.Immediate versus delayed loading of dental implants in themaxillae of minipigs. Part II: Histomorphometric analysis.Int J Oral Maxillofac Implants 20:540–6. Nour, S. G., J. S.Lewin, M. Gutman et al. 2004. Percutaneous MRimaging-guided radiofrequency interstitial thermal ablationof tongue base in porcine models: Implications forobstructive sleep apnea syndrome. Radiol 230:359–68.Oguntebi, B. R., A. E. Clark, and J. Wilson. 1993. Pulpcapping with Bioglass and autologous demineralized dentinin miniature swine. J Dent Res 72:484–9. Oguntebi, B. R.,T. Heaven, A. E. Clark, and F. E. Pink. 1995. Quantitativeassessment of dentin bridge formation followingpulp-capping in miniature swine. J Endod 21:79–82. Olsen,M. L., M. Aaboe, E. Hjorting-Hansen, and AK. Hansen. 2004.Problems related to an intraoral approach for experimentalsurgery on minipigs. Clin Oral Implants Res 15:333–8.Oltramari, P., R. Navarro, J. Henriques, A. Capelozza, andJ. Granjeiro. 2007a. Dental and skeletal characterizationof the BR-1 minipig. Vet J 173:399–407. Oltramari. P. V.P., R. L. Navarro, J. F. C. Henriques et al. 2007b.Evaluation of bone height and bone density after toothextraction: An experimental study in minipigs. Oral SurgOral Med Oral Pathol Oral Radiol Endod 104:e9–16.Oltramari, P. V. P., R. L. Navarro, J. F. C. Henriqueset al. 2007c. Orthodontic movement in bone defects ¢lledwith xenogenic graft: An experimental study in minipigs.Am J Orthod Dentofacial Orthop 131:302.e10–17. Organ, J.M., C. B. Ruff, M. E. Teaford, and R. A. Nisbett. 2006. Domandibular cross-sectional properties and dental microweargive similar dietary signals? Am J Phys Anthropol130:501–7. Oyen, M. L. and C. C. Ko. 2007. Examination oflocal variations in viscous, elastic, and plasticindentation responses in healing bone. J Mater Sci: MaterMed 18:623–8. Palmer, J. B., K. M. Hiiemae, and J. Liu.1997. Tongue-jaw linkages in human feeding: A preliminaryvideo�uorographic study. Arch Oral Biol 42:429–41.Panepinto, L. M. 1996. Miniature swine breeds usedworldwide in research. In M. E. Tumbleson and L. B. Schook(eds), Advances in Swine in Biomedical Research, 681–91.New York: Plenum. Panepinto, L. M. and R. L. Kroc. 1995.History, genetic origins, and care of Yucatan miniatureand micro pigs. Lab Anim. June:31–43. Perkins, J. A., V.Shcherbatyy, and Z. J. Liu. 2008. Morphologic andhistologic outcomes of tongue reduction surgery in ananimal model. Otolaryngol Head Neck Surg 139:291–7. Pieri,

F., E. Lucarelli, G. Corinaldesi et al. 2008. Mesenchymalstem cells and platelet-rich plasma enhance bone formationin sinus grafting: A histomorphometric study in minipigs. JClin Periodontol 35:539–46.

Popowics, T. E., J. M. Rensberger, and S. W. Herring. 2001.The fracture behaviour of human and pig molar cusps. ArchOral Biol 46:1–12.

Popowics, T. E., J. M. Rensberger, and S. W. Herring. 2004.The relationship between enamel structure and strain inthe fracture behaviour of human and pig molar cusps. ArchOral Biol 49:595–605.

Popowics, T., K. Yeh, K. Rafferty, and S. Herring. 2009.Functional cues in the development of osseous toothsupport in the pig, Sus scrofa. J Biomech 42:1961–6.

Powell, N. B., R. W. Riley, R. J. Troell, M. B. Blumen, andC. Guilleminault. 1997. Radiofrequency volumetricreduction of the tongue. A porcine pilot study for thetreatment of obstructive sleep apnea syndrome. Chest.111:1348–55.

Präger, T. M., R. Mischkowski, N. Laube, P. G.Jost-Brinkmann, and R. Müller-Hartwich. 2008. Remodelingalong the bonescrew interface. J Orofac Orthop 69:337–48.

Preti, G., G. Martinasso, B. Peirone et al. 2007.Cytokines and growth factors involved in theosseointegration of oral titanium implants positioned usingpiezoelectric bone surgery versus a drill technique: Apilot study in minipigs. J Periodontol 78:716–22.

Radfar, L. and D. A. Sirois. 2003. Structural andfunctional injury in minipig salivary glands followingfractionated exposure to 70 Gy of ionizing radiation: Ananimal model for human radiation-induced salivary glandinjury. Oral Surg Oral Med Oral Pathol Oral Radiol Endod96:267–74.

Rafferty, K. L. and S. W. Herring. 1999. Craniofacialsutures: Morphology, growth and in vivo masticatorystrains. J Morphol 242:167–79.

Rafferty, K. L., S. W. Herring, and F. Artese. 2000.Threedimensional loading and growth of the zygomatic arch.J Exp Biol 203:2093–3004.

Rafferty, K. L., S. W. Herring, and C. D. Marshall. 2003.

The biomechanics of the rostrum and the role of facialsutures. J Morphol 257:33–44.

Rafferty, K. L., Z. Sun, M. A. Egbert, and S. W. Herring.2004. Bony strains in response to distractor activation.In Z. Davidovitch and J. Mah (eds), Biological Mechanismsof Tooth Movement and Craniofacial Adaptation, pp. 59–62.Bangkok: Harvard Soc. Adv. Orthodontics.

Rafferty, K. L., Z. Sun, M. A. Egbert, D. W. Bakko, and S.W. Herring. 2007. Changes in growth and morphology of thecondyle following mandibular distraction in minipigs:Overloading or underloading? Arch Oral Biol 52:967–76.

Rimondini, L., G. B. Bruschi, A. Scipioni et al. 2005.Tissue healing in implants immediately placed intopostextraction sockets: A pilot study in a mini-pig model.Oral Surg Oral Med Oral Pathol Oral Radiol Endod100:e43–50.

Robert, S. and A. Dallaire. 1986. Polygraphic analysis ofthe sleepwake states and the REM sleep periodicity indomesticated pigs (Sus scrofa). Physiol Behav 37:289–93.

Robinson, C., J. Kirkham, J. A. Weatherell, A. Richards, K.Josephsen, and O. Fejerskov. 1987. Developmental stages inpermanent porcine enamel. Acta Anat 128:1–10.

Romanos, G. E. 2004. Present status of immediate loading oforal implants. J Oral Implantol 30:189–97.

Schierano, G., R. A. Canuto, R. Navone et al. 2005.Biological factors involved in the osseointegration of oraltitanium implants with different surfaces: A pilot studyin minipigs. J Periodontol 76:1710–20. Schliephake, H., F.W. Neukam, D. Hutmacher, and H. Wustenfeld. 1995.Experimental transplantation of hydroxylapatite-bonecomposite grafts. J Oral Maxillofac Surg 53:46–51;discussion 52. Schumacher, G. H., R. Becker, A. Hübner, andF. Pommerenke. 1991. Stimulating effect of tongue oncraniofacial growth. Proc. Finn Dent Soc 87:69–83. Seldin,E. B., M. J. Troulis, and L. B. Kaban. 1999. Evaluation ofa semiburied, ¢xed-trajectory, curvilinear, distractiondevice in an animal model. J Oral Maxillofac Surg57:1442–6. Shan, Z., J. Li, C. Zheng et al. 2005. Increased�uid secretion after adenoviral-mediated transfer of thehuman aquaporin-1 cDNA to irradiated miniature pig parotidgland. Mol Ther 11:444–51. Shcherbatyy, V. and Z. J. Liu.2007. Internal kinematics of the tongue during feeding inpigs. Anat Rec 290:1288–99. Shcherbatyy, V., J. A. Perkins,

and Z. J. Liu. 2008. Internal kinematics of the tonguefollowing volume reduction. Anat Rec 291:886–93. Shimada,Y., Y. Seki, M. A. Uzzaman et al. 2005. Monkey pulpalresponse to an MMA-based resin cement as adhesive lutingfor indirect restorations. J Adhes Dent 7:247–51. SindelarB. J. and S. W. Herring. 2005. Soft tissue mechanics of thetemporomandibular joint. Cells Tissues Organs 180:36–43.Sindelar, B. J, S. P. Evanko, T. Alonzo, S. W. Herring, andT. Wight. 2000. Effects of intraoral splint wear onproteoglycans in the temporomandibular joint disc. ArchBiochem Biophys 379:64–70. Sindelar, B. J., S. Edwards,and S. W. Herring. 2002. Morphologic changes in the TMJfollowing splint wear. Anat Rec. 266:167–76. Singh, G., R.B. O’Neal, W. A. Brennan, S. L. Strong, J. A. Horner, andT. E Van Dyke. 1993. Surgical treatment of inducedperiimplantitis in the micro pig: Clinical and histologicalanalysis. J Periodontol 64:984–9. Smith, D. C. 1993. Dentalimplants: Materials and design considerations. Int JProsthodont 6:106–17. Smith, M. H., C. L. Flanagan, J. M.Kemppainen et al. 2007. Computed tomography-basedtissue-engineered scaffolds in craniomaxillofacialsurgery. Int J Med Robot 3:207–16. Sonoyama, W., Y. Liu, D.J. Fang et al. 2006. Mesenchymal stem cell-mediatedfunctional tooth regeneration in swine. PLoS ONE.1:e79:1–8. Sonoyama, W., Y. Liu, T. Yamaza et al. 2008.Characterization of the apical papilla and its residingstem cells from human immature permanent teeth: A pilotstudy. J Endod 34: 166–71. Spilker, R. L., J. C Nickel,and L. R. Iwasaki. 2009. A biphasic ¢nite element model ofin vitro plowing tests of the temporomandibular joint disc.Ann Biomed Eng 37:1152–64. Springer, I. N. G., M. Suhr, andB. Fleiner. 2002. Adaptive adjustment of the adolescentporcine mandibular condyle. Bone 31:230–5. Squier, C. A.and P. W. Wertz. 1996. Structure and function of oralmucosa and implication for drug delivery. In M. J. Rathbone(ed), Oral Mucosal Drug Delivery, pp. 16–18. New York:Marcel Dekker.

Stadlinger, B., E. Pilling, M. Huhle et al. 2008.Suitability of differently designed matrix-based implantsurface coatings: An animal study on bone formation. JBiomed Mater Res B Appl Biomater 87:516–24.

Stanley, H. R., C. L. Myers, J. B. Heyde, and J.Chamberlain. 1972. Primate pulp response to an ultravioletlight cured restorative material. J Oral Pathol 1:108–14.

Storer, P. 1992. Pot Bellies and Other Miniature Pigs. HongKong: Barron’s Educational Series.

Ström, D., S. Holm, E. Clemensson, T. Haraldson, and G. E.Carlsson. 1986. Gross anatomy of the mandibular joint andmasticatory muscles in the domestic pig (Sus scrofa). ArchOral Biol 31:763–8.

Sun, T., J. Zhu, X. L. Yang, and S. L. Wang. 2006. Growthof miniature pig parotid cells on biomaterials in vitro.Arch Oral Biol 51:351–8.

Sun, Z. and S. W. Herring. 2009. The effect of periostealinjury and masticatory micromovement on the healing of amandibular distraction osteogenesis site. Arch Oral Biol54:205–15.

Sun, Z., Z. J. Liu, and S. W. Herring. 2002. Movement oftemporomandibular tissues during mastication and passivemanipulation in miniature pigs. Arch Oral Biol 47:293–305.

Sun, Z., E. Lee, and S. W. Herring. 2004. Cranial suturesand bones: Growth and fusion in relation to masticatorystrain. Anat Rec 276A:150–61.

Sun, Z., K. L. Rafferty, M. A. Egbert, and S. W. Herring.2007. Masticatory mechanics of a mandibular distractionosteogenesis site: Interfragmentary micromovement. Bone41:188–96.

Tanabe, T., T. Aoba, E. C. Moreno, and M. Fukae. 1988.Effect of �uoride in the apatitic lattice on adsorption ofenamel proteins onto calcium apatites. J Dent Res67:536–42.

Tanabe, T., T. Aoba, E. C. Moreno, M. Fukae, and M.Shimuzu. 1990. Properties of phosphorylated 32 kdnonamelogenin proteins isolated from porcine secretoryenamel. Calcif Tissue Int 46:205–15.

Tanaka, E., E. Yamano, D. A. Dalla-Bona et al. 2006.Dynamic compressive properties of the mandibular condylarcartilage. J Dent Res 85:571–5.

Teng, S. and S. W. Herring. 1996. Anatomical anddirectional variation in the mechanical properties of themandibular condyle in pigs. J Dent Res 75:1842–50.

Teng, S. and S. W. Herring. 1998. Compressive loading onbone surfaces from muscular contraction: An in vivo studyin the miniature pig, Sus scrofa. J Morphol 238:71–80.

Terheyden, H., C. Muhlendyck, M. Sprengel, K. Ludwig, and

F. Harle. 1999. Self-adapting washer system for lag screw¢xation of mandibular fractures. Part II: In vitromechanical characterization of 2.3 and 2.7 mm lag screwprototypes and in vivo removal torque after healing. JCraniomaxillofac Surg 27:243–51.

Thexton, A., J. McGarrick, K. Hiiemae, and A. Crompton.1982. Hyo-mandibular relationships during feeding in thecat. Arch Oral Biol 27:793–801.

Thexton, A. J., A. W. Crompton, and R. Z. German. 1998.Transition from suckling to drinking at weaning: Akinematic and electromyographic study in miniature pigs. JExp Zool 280:327–43.

Thexton, A. J., A. W. Crompton, and R. Z. German. 2007.Electromyographic activity during the re�ex pharyngealswallow in the pig: Doty and Bosma (1956) revisited. J ApplPhysiol 102:587–600. Thoma, D. S., G. A. Halg, M. M. Dard,R. Seibl, C. H. Hammerle, and R. E. Jung. 2009. Evaluationof a new biodegradable membrane to prevent gingivalingrowth into mandibular bone defects in minipigs. ClinOral Implants Res 20:7–16. Thurmüller, P., M. J. Troulis,A. Rosenberg, and L. B. Kaban. 2002. Changes in thecondyle and disc in response to distraction osteogenesisof the minipig mandible. J Oral Maxillofac Surg60:1327–33. Thurmüller, P., M. J. Troulis, A. Rosenberg,S.-K. Chuang, and L. B. Kaban. 2006. Microscopic changesin the condyle and disc in response to distractionosteogenesis of the minipig mandible. J Oral MaxillofacSurg 64:249–58. Traini, T., J. Neugebauer, U. Thams, J. E.Zöller, S. Caputi, and A. Piattelli. 2009. Peri-implantbone organization under immediate loading conditions:Collagen ¢ber orientation and mineral density analyses inthe minipig model. Clin Implant Dent Relat Res 11:41–51.Triplett, R. G., U. Frohberg, N. Sykaras, and R. D. Woody.2003. Implant materials, design, and surface topographies:Their in�uence on osseointegration of dental implants. JLong Term Eff Med Implants 13:485–501. Troulis, M. J., J.Glowacki, D. H. Perrott, and L. B. Kaban. 2000. Effects oflatency and rate on bone formation in a porcine mandibulardistraction model. J Oral Maxillofac Surg 58:507–13. Tuck,S. A., J. C. Dort, M. E. Olson, and J. E. Remmers. 1999.Monitoring respiratory function and sleep in the obeseVietnamese pot-bellied pig. J Appl Physiol 87:444–51.Ulrici, V., L. Händel, A. Vogel, and D. Reissig. 1988.Microscopicalanatomical changes of the temporomandibularjoint of miniature pig due to the unilateral occlusaldisturbances. Anat Anz 167:329–33. Van Vlierberghe, M., L.Dermaut, and H. Jansen. 1986. In�uence of the digastric

muscle and occlusion on the sagittal growth of themandible. An experimental investigation in minipigs. Eur JOrthod 8:1–11. Verdonck, H. W. D., G. J. Meijer, T. Laurinet al. 2007. Assessment of vascularity in irradiated andnonirradiated maxillary and mandibular minipig alveolarbone using laser doppler �owmetry. Int J Oral MaxillofacImplants 22:774–8. Wang, S. L., J. Li, X. Z. Zhu, K. H.Sun, X. Y. Liu, and Y. G. Zhang. 1998. Sialographiccharacterization of the normal parotid gland of theminiature pig. Dentomaxillofac Radiol 27: 178–81. Wang,S., Y. Liu, D. Fang, and S. Shi. 2007. The miniature pig: Auseful large animal model for dental and orofacialresearch. Oral Dis. 13:530–7. Weaver, M. E. 1964. X-Raydiffraction study of calculus of the miniature pig. ArchOral Biol 16:75–82. Weaver, M. E., E. B. Jump, and C. F.McKean. 1969. The eruption pattern of permanent teeth inminiature swine. Arch Oral Biol 14: 323–31. Williams, D.F. 1999. The Williams Dictionary of Biomaterials.Liverpool: Liverpool Univ. Press. Yan, X., A. Voutetakis,C. Zheng et al. 2007. Sorting of transgenic secretoryproteins in miniature pig parotid glands followingadenoviral mediated gene transfer. J Gene Med 9:779–87.

Zhang, G., X. Huang, and S. W. Herring. 1994. Effects of aunilateral bite splint on mastication in the pig. J OralRehab 21:613–22.

Zhang, W., H. Abukawa, M. J. Troulis, L. B. Kaban, J. P.Vacanti, and P. C. Yelick. 2009. Tissue engineered hybridtooth-bone constructs. Meth 47:122–8.

Zhang, X., J. Li, X. Y. Liu, Y. L. Sun, C. M. Zhang, and S.L. Wang. 2005. Morphological characterization ofsubmandibular glands of miniature pig. Chin Med J118:1368–73. Zheng, Y., Y. Liu, C. M. Zhang et al. 2009.Stem cells from deciduous tooth repair mandibular defect inswine. J Dent Res 88: 249–54. Zimmermann, C. E., P.Thurmüller, M. J. Troulis, D. H. Perrott, B. Rahn, and L.B. Kaban. 2005. Histology of the porcine mandibulardistraction wound. Int J Oral Maxillofac Surg 34:411–19.

34 Chapter 34: Osteoporosis Model inMinipigs

1. Adinoff, A. D. and Hollister, J. R. 1983.Steroid-induced fractures and bone loss in patients withasthma. N. Engl. J Med. 309: 265–268.

2. Akahoshi S., Sakai A., Arita S. et al. 2005. Modulationof bone turnover by alfacalcidol and/or alendronate doesnot prevent glucocorticoid-induced osteoporosis in growingminipigs. J. Bone Miner Metab. 23: 341–350.

3. Birkebaek, N. H., Esberg, G., Andersen, K., Wolthers,O., and Hassager, C. 1995. Bone and collagen turnoverduring treatment with inhaled dry powder budesonide andbeclomethasone dispropionate. Arch. Dis. Child. 73:524–527.

4. Bollen, P. and Ellegaard, L. 1997. The Göttingen minipigin pharmacology and toxicology. Pharmacol. Toxicol. 80(Suppl. 2): 3–4.

5. Bonjour, J. P., Ammann, P. And Rizzoli, R. 1999.Importance of preclinical studies in the development ofdrugs for treatment of osteoporosis: a review related tothe 1998 WHO guidelines. Osteoporos. Int. 9: 379–393.

6. Borah, B., Dufresne, T. E., Chmielewski, P. A., Gross,G. J., Prenger, M. C., and Phipps, R. J. 2002. Risedronatepreserves trabecular architecture and increases bonestrength in vertebra of ovariectomized minipigs as measuredby three-dimensional microcomputed tomography. J. BoneMineral Res. 17: 1139–1147.

7. Borah, B., Dufresne, T. E., Cockman, M. D., Gross, G.J., Sod, E. W., Myers, W. R., Combs, K. H., Higgins, R.E., Pierce, S. A., and Stevens, M. L. 2000. Evaluation ofchanges in trabecular bone architecture and mechanicalproperties of minipig vertebrae by three-dimensionalmagnetic resonance microimaging and ¢nite elementmodeling. J. Bone Mineral Res. 15: 1786–1797.

8. Bouchard, G. F., Boyce, R. W., Paddock, C. L., Durham,E., and Reddy, C. S. 1996. Evaluation of Sinclairminiature swine as an osteopenia model. In: Tumbleson, M.E. and Schook, L. B. (eds), Advances in Swine inBiomedical Research, Vol. 2, pp. 647–651., New York:Plenum Press.

9. Boyce, R. W., Ebert, D. C., Youngs, T. A., Paddock, C.

L., Mosekilde, L., Stevens, M. L., and Gundersen, H. J. G.1995. Unbiased estimation of vertebral trabecularconnectivity in calcium-restricted ovariectomizedminipigs. Bone. 16: 637–642.

10. Chen, Y., Shimizu, M., Sato, K., Koto, M., Tsunemi, K.,Yoshida, T., and Yoshikawa., Y. 2000. Effects of aging onbone mineral content and bone biomarkers in femalecynomolgus monkeys. Exp. Anim. 49: 163–170.

11. Dalle Carbonare L., Arlot ME., Chavassieux PM., et al.2001. Comparison of trabecular bone microarchitecture andremodeling in glucocorticoid-induced and postmenopausalosteoporosis. J. Bone Miner. Res. 16: 97–103.

12. Gadelete, S. J., Boskey, A. L., Paschalis, E., Carlson,C., Menschik, F., Baldini, T., Peterson, M., and Rimnac,C. M. 2000. A physical, chemical, and mechanical study oflumbar vertebrae from normal, ovariectomized, andNandrolone Decanoate-treated cynomolgus monkeys (Macacafascicularis), Bone 27: 541–550. 13. Itoh F., Kojima M.,Furihata-Komatsu H., Aoyagi S., Kusama H., Komatsu H., andNakamura T. 2002. Reductions in bone mass, structure, andstrength in axial and appendicular skeltons associated withincreased turnover after ovariectomy in mature cynomolgusmonkeys and preventive effects of Clodronate. J. BoneMineral Res. 17: 534–543. 14. Jayo M. J., Jerome C. P.,Lees C. J., Rankin S. E., and Weaver D. S. 1994. Bone massin female cynomolgus macaques: A cross-sectional andlongitudinal study by age. Calcif. Tissue Int. 54:231–236. 15. Jerome C. P., Carlson C. S., Register T. C.,Bain F. T., Jayo M. J., Weaver D. S., and Adams M. R.1994. Bone functional changes in intact, ovariectomized,and ovariectomized, hormone-supplemented adult cynomolgusmonkeys (Macaca fascicularis) evaluated by serum markersand dynamic histomorphometry. J. Bone Mineral Res. 9:527–540. 16. Jerome, C. P. 1998. Primate models ofosteoporosis. Lab. Anim. Sci. 48: 618–622. 17. Jerome, C.P., Johnson C. S., Vafai H. T., Kaplan K. C., Bailey J.,Capwell B., Fraser F. et al., 1999. Effect of treatment for6 months with human parathyroid hormone (1–34) peptide inovariectomozed cynomolgus monkeys (Macaca fascicularis).Bone 25: 301–309. 18. Jerome, C. P. and Peterson, P. E.2001. Nonhuman primate models in skeletal research. Bone29: 1–6. 19. Kimmel, D. B. 1996. Animal models for in vivoexperimentation in osteoporosis research. In: Marcus, R.,Feldman, D. and Kelsey, J. (eds), Osteoporosis, pp.671–690, New York: Academic Press 20. Lee, C. J.,Register T. C., Turner C. H., Wang T., Stancill M., andJerome C. P. 2002. Effects of raloxifene on bone density,

biomarkers, and histomorphometric and biomechanicalmeasures in ocariectomized cynomolgus monkeys. J. North Am.Menopause Soci. 9: 320–328. 21. Miller, S. C., Bowman, B.M., and Jee, W. S. S. 1995. Available animal models ofosteopenia—Small and large. Bone 17: 117S–123S. 22.Mosekilde L. 1995. Assessing bone quality—Animal models inpreclinical osteoporosis research. Bone 17: 343S–352S. 23.Mosekilde, L., Weisbrode, S. E., Safron, J. A., Stills, H.F., Jankowsky, M. L., Ebert, D. C., Danielsen, C. C. etal., 1993. Calcium-restricted ovariectomized Sinclair S-1minipigs: An animal model of osteopenia and trabecularplate perforation. Bone 14: 379–382. 24. Mosekilde, L.,Weisbrode, S. E., Safron, J. A., Stills, H. F., Jankowsky,M. L., Ebert, D. C., Danielsen, C. C. et al., 1993.Evaluation of the skeletal effects of combined mild dietarycalcium restriction and ovariectomy in Sinclair S-1Minipigs: A pilot study. J. Bone Mineral Res. 8:1311–1321. 25. Nakamura, T. 1999. The front line of bonehistomorphometry. Clin. Calcium 9: 478–483 (in Japanese).26. Paschalis E. P., Burr D. B., Mendelsohn R., Hock J. M.,and Boskey, A. L. 2003. Bone mineral and collagen qualityin humeri of ovariectomized cynomolgus monkeys given rhPTH(1–34) for 18 months. J. Bone Mineral Res. 18: 769–775.27. Rodgers, J. B., Monier-Faugere, M. C., and Malluche, H.1993. Animal models for the study of bone loss aftercessation of ovarian function. Bone 14: 369–377.

28. Roschger, P., Fratzl, P., Klaushofer, K., and Rodan, G.1997. Mineralization of cancellous bone after Alendronateand sodium �uoride treatment: a quantitative backscatteredelectron imaging study on minipig ribs. Bone 20: 393–397.

29. Swindle, M. M. 1998. Biology, husbandry, handling andanatomy. In: Swindle, M. M. (ed.), Surgery, Anesthesia andExperimental Techniques in Swine, pp. 3–32. (Iowa: IowaState University Press.

30. Stellon, A. J., Davis, A., Compston, J., and Williams,R. 1985. Bone loss in autoimmune chronic active hepatitison maintenance corticosteroid therapy. Gastroenterology89: 1078–1083. 31. Szulc, P., Seeman, E., and Delmas, P.D. 2000. Biochemical measurements of bone turnover inchildren and adolescents. Osteoporos. Int. 11: 281–294.32. Wolthers O. C., and Pedersen, S. 1991. Growth ofasthmatic children during treatment with budesonide: abouble blind trial. Br. Med. J. 303: 163–165. 33. WorldHealth Organization. 1998. Preclinical studies. In:Guideline for Preclinical Evaluation and Clinical Trials inOsteoporosis. Geneva: WHO Library Cataloguing inPublication Data, pp. 7–20.

36 Chapter 36: The Minipig in Chemical,Biological, and Radiological Research

Table 36.5 Occurrence of Hemorrhages (%) in SelectedOrgans of Irradiated GĂśttingen Minipigs ( 60 Co, 0.6Gy/min) Lethal Irradiation (n = 9) Sublethal Irradiation)(n = 6) Hematopoietic Organs

Lymph nodes 100% 67%

Bone marrow 100% 67%

Spleen 100% 67%

Tonsil 100% 50%

Adrenal gland 33% 0% Nonhematopoietic Organs

Brain/cerebellum 100% 0%

Heart 100% 0%

Lungs 90% 17%

Urinary bladder 90% 0%

Kidney 90% 17%

Stomach 90% 17%

GALT 90% 30%

Testis 87% 50%

Intestine, large 75% 0%

Intestine, small 55% 0%

Pancreas 62% 0%

Liver 33% 17% Cholinesterase Levels in Rats. US GovernmentTechnical Report ECBC-TR-428; US Army Edgewood ChemicalBiological Center: Aberdeen Proving Ground, MD.

Bide, R. W., Armour, S. J, and E. Yee. 2004. Estimation ofhuman toxicity from animal toxicity data: GB toxicityreassessed using newer techniques for estimation of humantoxicity. DRDC Suf�eld Technical Report 167.

Bostick, A. C., D. E. Stoffregen, and T. E. Johnson. 2006.

Response of lightly and highly pigmented porcine skin (Susscrofa domestica) to single 3.8-micron laser radiationpulses. J Am Assoc Lab Anim Sci 45(3):33–7.

Brown, R. F. and P. Rice. 1997. Histopathological changesin Yucatan minipig skin following challenge with sulphurmustard. A sequential study of the ¢rst 24 hours followingchallenge. Int J Exp Pathol 78(1):9–20.

Byers, C. E., McGuire J. M., Hulet, S. W., Burnett, D. C.,Gaviola, B. I., Jakubowski, E. M., and Thomson, S. A,2008. Gas chromatography–tandem mass spectrometry analysisof red blood cells from GÖttingen minipig followingwhole-body vapor exposure to VX. J Anal Toxicol32(1):57–62.

Callahan, J. H., Cresthull, P., Christensen, M. K., Crook,J. W., Wiles, J. S., Owens, E., Hart, J., and Worden, F.X. 1959. Intravenous Toxicity of VX, in Marzulli et al.,“Biological Studies on VX during Fiscal Year 1958,” CWLSpecial Publication 2–18.” US Army Chemical WarfareLaboratories, MD, Unclassi¢ed Report (AD 313 760).

Cerveny, T. J., T. J. MacVittie, and R. W. Young. 1989.Acute radiation syndrome in humans. In R. I. Walker, and T.J. Cerveny, (eds.), Medical Consequences of NuclearWarfare, TMM Publications, Of¢ce of the Surgeon General,Falls Church, Virginia. 15–36.

Chaput, R. L. and D. Wise. 1970. Miniature pigincapacitation and performance decrement after mixedgamma-neutron irradiation. Aerospace Med 41(3):290–3.

Chaput, R. L. and R. T. Kovacic. 1970. Miniature pigperformance after fractionated supralethal doses ofionizing radiation. Rad Res 44:807–20.

Chen, B., S. L. Thomsen, R. J. Thomas, J. Oliver, and A. J.Welch. 2008. Histological and modeling study of skinthermal injury to 2.0 microm laser irradiation. LasersSurg Med 40(5):358–70.

Chen, B., D. C. O’Dell, S. L. Thomsen, B. A. Rockwell, andA. J. Welch. 2005. Porcine skin ED50 damage thresholds for2,000 nm laser irradiation. Lasers Surg Med 37(5): 373–81.

Chomette, G., F. Daburon, M. Auriol, and H. Garnier. 1977.Highdose irradiation in the pig small intestine.Histoenzymology and electron microscopic study. VirchowsArch B Cell Pathol 23(3):237–56.

Cina, R. A., Wikiel, K. J. Lee, P. W. Cameron, A. M.Hettiarachy, S. Rowland, H. Goodrich, J. Colby, T. R.Spitzer, D. M. Jr. Neville, and C. A. Huang. 2006. Stablemultilineage chimerism without graft versus host diseasefollowing nonmyeloablative haploidentical hematopoieticcell transplantation. Trans 81(12):1677–85.

Clement, J. G. 1992. Ef¢cacy of various oximes against GFpoisoning in mice. Arch Toxicol 66:143–4.

Clement, J. G. 1994. Toxicity of the combined nerve agentsGB/GF in mice: Ef¢cacy of atropine and various oximes asantidotes. Arch Toxicol 68:64–6. Cresthull, P., Koon, W.S., McGrath, F. P., and F. W. Oberst. 1957. Inhalationeffects (incapacitation and mortality) for monkeys exposedto GA, GB, and GF vapors. CWLR #2179. Cronkite, E. P. 1950.The hemorrhagic syndrome of acute ionizing radiationillness produced in goats and swine by exposure to theatomic bomb at Bikini, 1946. Blood 5:32–45. Dalmose, A.L.,Hvistendahl, J.J., Olsen, L.H., Eskild-Jensen, A.,Djurhuus, J.C. and Swindle, M.M. 2000. Surgically inducedurologic models in swine. J Invest Surg 13:133–45. Dalton,C.H., Hattersley, I. J., Rutter, S. J. and Chilcott, R. P.2006. Absorption of the nerve agent VX (O-ethyl-S-[2(di-isopropylamine)ethyl] methyl phosphonothioate) throughpig, human and guinea pig skin in vitro. Toxicol in Vitro20:1532–6. Deckhut Augustine, A., A.T. Gondre-Lewis, W.McBride, L. Miller, T. C. Pellmar, and Rockwell, S. 2005.Animal models for radiation injury, protection and therapy.Radiat Res 164:100–9. Denac, M., Sporri, H., and RBeglinger. 1977. The Gottingern minipig as a laboratoryanimal. Resp exp Med 170:283–8. Diehl, K. H., Hull, R.,Morton, D., P¢ster, R., Rabemampianina, Y., Smith, D.,Vidal, J. M., van de Vorstenbosch, C. 2001. A goodpractice guide to the administration of substances andremoval of blood, including routes and volumes. J Appl Tox21:15–23. Donnadieu-Claraz, M., Benderitter, M., Joubert,C., and Voisin P. 1999. Biochemical indicators ofwhole-body gamma-radiation effects in the pig. Int J RadiatBiol 75:165–74. Dorandeu, F., Mikler, J. R., Thiermann, H.,Tenn, C., Davidson, C., Sawyer, T. W., Lallement, G.,Worek, F. 2007. Swine models in the design of moreeffective medical countermeasures against organophosphoruspoisoning. Toxicol Apr 20:233(1– 3):128–44. Epub 2006 Sep29. Dublineau, I., Dudoignon, N., Monti, P., Combes, O.,Wysocki, J., Grison, S., Baudelin, C., Grif¢ths, N. M.,and Scanff, P. 2004. Screening of a large panel ofgastrointestinal peptide plasma levels is not adapted forthe evaluation of digestive damage following irradiation.

Can J Physiol Pharmacol 82:103–13. Duncan, E. J. S., BrownA., Lundy P., Sawyer, T. W., Hamilton, M., Hill, I. andConley, J. D. 2002. Site-speci¢c percutaneous absorptionof methyl salicylate and VX in domestic swine. J AppToxicol 22: 141–8. Eggleston, T. A., Roach, W. P.,Mitchell, M., Smith, K., Oler, D, and Johnson, T. E. 2000.Comparison of in vivo skin models for near infrared laserexposure. Comp Med 50:391–7. Eltringham, J. R. 1991.Hematology and survival data from rhesus monkeys exposedto gamma radiation (unpublished results). Evans, R. A.,Jakubowski, E. M., Muse, W. T., Matson, K., Hulet S. W.,Mioduszewski, R. J., Thomson, S. A., Totura, A. L.,Renner, J. A. and C. L. Crouse. 2008. Quanti¢cation ofsarin and cyclosarin metabolites isopropylmethylphosphonic acid and cyclohexyl methylphosphonic acidin minipig plasma using isotope-dilution and liquidchromatography-time of �ight mass spectrometry. J Anal Tox32:78–85. Fliedner, T. M., W. Nothdurft, and H. Heit. 1984.Biological factors affecting the occurrence of radiationsyndromes. In J. J. Broerse and T. J. MacVittie (eds.),Response of Different Species to Total Body Irradiation.Boston: Martinus Nijhoff Publishers, 209–19. Fliedner, T.M., Dörr H., and Meineke, V. 2005. Multi-organ involvementas a pathogenetic principle of the radiation syndromes: Astudy involving 110 case histories documented in SEARCHand classi¢ed as the bases of haematopoietic indicators ofeffect. BJR Suppl 27:1–8.

Goransson-Nyberg, A., Fredrikson, S.-A., Karlsson, B.,Lundstrom, M., and G. Cassel. 1998. Toxicokinetics ofsoman in cerebrospinal �uid and blood of anaesthetizedpigs. Arch Toxicol 72: 459–67.

Grotte, J. H. and Yang, L. 2001. Report of the workshop onchemical agent toxicity for acute effects. Institute forDefense Analyses May 11–12, 1998. IDA-D-1276, Unclassi¢edReport (AD A392 849).

Hai, B, X. Yan, A. Voutetakis, C. Zheng, A. P. Cotrim, Z.Shan, G. Ding, C. Zhang, J. Xu, C. M. Goldsmith, S. A¢one,J. A. Chiorini, B. J. Baum, and S. J. Wang. 2009.Long-term transduction of miniature pig parotid glandsusing serotype 2 adeno-associated viral vectors. Gene Med11(6):506–14.

Haskin, F. E., Harper, F. T., Goossens, L. H., Kraan, B. C.P., Grupa, J. B., Randall, J. 1997. Probabilistic AccidentConsequence Uncertainty Analysis: Early Health EffectsUncertainty Assessment. NUREG/CR 6545, EUR 15855.Washington, D.C.: U.S. Nuclear Regulatory Commission.

Hirama, T.S. Tanosaki, S. Kandatsu, N. Kuroiwa, T. Kamada,H. Tsuji, S. Yamada, H. Katoh, N. Yamamoto, H. Tsujii, G.Suzuki, and M. Akashi. 2003. Initial medical management ofpatients severely irradiated in the Tokai-mura criticalityaccident. Br J Radiol 76(904):246–53.

Hopewell, J. W., M. Rezvani, and H. F. Moustafa. 2000. Thepig as a model for the study of radiation effects on thelung. Int J Radiat Biol 76(4):447–52.

Huang, C. A., Y. Fuchimoto, R. Scheier-Dolberg, M. C.Murphy, D. M. Jr Neville, and D. H. Sachs. 2000. Stablemixed chimerism and tolerance using a nonmyeloablativepreparative regimen in a large-animal model. J Clin Invest105(2):173–81.

Hulet, S. W., Sommerville, D. R., Crosier, R. B., Dabisch,P. A., Miller, D. B., Benton, B. J., Forster, J. S.,Scotto, J. A., Jarvis, J. R., Krauthauser, C., Muse, W.T., Reutter, S. A., Mioduszewski, R. J, and Thomson, S. A.2006a. Comparison of low-level sarin and cyclosarin vaporexposure on pupil size of the Göttingen minipig: Effects ofexposure concentration and duration. Inhal Toxicol18(2):143–53.

Hulet, S. W., Sommerville, D. R., Jakubowski, E. M.,Benton, B. J., Forster, J. S., Dabisch, P. A., Scotto, J.A., Crosier, R. B., Muse, W. T., Gaviola, B.I., Burnett,D. C., Reutter, S. A., Mioduszewski, R. J., Miller, D. B.,Jarvis, J. R., Krauthauser, C. L. and S. A. Thomson.2006b. Estimating lethal and severe toxic effects inminipigs following 10, 60 and 180-minutes of whole-body GBvapor. US Government Technical Report ECBC-TR-451.

Hulet, S. W., Sommerville, D. R., Benton, B. J., Forster,J. S., Manthei, J. H., Scotto, J. A., Way, R. A., Muse W.T., Crosier, R. B., Reutter, S. A., Miller, D. B., Jarvis,J. R., Mioduszewski, R. J., and S. A. Thomson. 2006c.Estimating Lethal and Severe Toxic Effects in MinipigsFollowing 10, 60 and 180-Minutes of Whole-body GF VaporExposure in; US Government Technical ReportAFRL-HE-WP-TR-06-0073 Low Level Report FY05.

Hulet, S. W., Sommerville, D. R., Matson, K. L., Crouse C.L., Scotto J. A., Benton, B. J., Mioduszewski, R. J. andS. A. Thomson. 2008a. Estimating Miotic, Severe and LethalToxic Effects in GĂśttingen Minipigs Following Inhalation,Intravenous and Subcutaneous Exposures to VX in: Low LevelChemical Warfare Agent Toxicology Research Program

FY02-FY07 Report and Analysis. AFRL-RH-WP-TR-2008-0093.Air Force Research Laboratory Human EffectivenessDirectorate, Biosciences and Protection Division.Wright-Patterson AFB, OH. Distribution Limited. Hulet, S.W., Sommerville, D. R., Scotto, J. A., Benton, B. J.,Burnett, D. C., Gaviola, B. P., Reutter, S. A.,Mioduszewski, R. J. and S. A. Thomson. 2008b. Thresholdand lethal toxicity of VX in Göttingen minipigs byintravenous and percutaneous routes. Proceedings of theChemical and Biological Defense Physical Science andTechnology Conference, New Orleans, LA. Jacobs, A. 2006.Use of nontraditional animals for evaluation ofpharmaceutical products. Expert Opin Drug Metab Toxicol2(3):345–9. Jakubowski, E. M., McGuire, J. M., Evans, R.A., Edwards, J. L., Hulet, S. W., Benton, B. J., Forster,J. S., Burnett, D. C., Muse, W. T., Matson, K., C. L.Crouse, Mioduszewski, R. J, and S. A. Thomson. 2004.Quantitation of �uoride ionreleased sarin in red blood cellsamples by gas chromatography-chemical ionization massspectrometry using isotope dilution and large-volumeinjection. J Anal Tox 28:357–63. Johns, R. Feb 1952. TheEffects of Low Concentrations of GB on the Human Eye (U);Medical Laboratories Research Report No. 100; ArmyChemical Center: Edgewood, MD. Distribution Limited.Jones, S. R., R. E. George, J. E. West, and D. M. Verrelli.1972. The relative effectiveness of ¢ssion neutrons forgastrointestinal death in miniature pigs. Radiat Res50:504–18. Jones, T. D., M. D. Morris, S. M. Wells, and R.W. Young. 1986. Animal Mortality Resulting from UniformExposures to Photon Radiations: Calculated LD 50 s and aCompilation of Experimental Data. Oak Ridge NationalLaboratory Report: ORNL-6338. Kasper, M., S. D. Fuller, D.Schuh, and M. Müller. 1994a. Immunohistological detectionof the beta subunit of prolyl 4-hydroxylase in rat andmini pig lungs with radiationinduced pulmonary ¢brosis.Virchows Arch 425(5):513–19. Kasper, M. and M. Müller.1994b. Modulation of pan-cadherin expression in alveolarepithelial cells of mini pigs with pulmonary ¢brosis. ActaHistochem 96(4):439–44. Kasper, M., T. Reimann, U. Hempel,K. W. Wenzel, A. Bierhaus, D. Schuh, V. Dimmer, G.Haroske, and M. Müller. 1998. Loss of caveolin expressionin type I pneumocytes as an indicator of subcellularalterations during lung ¢brogenesis. Histochem Cell Biol109(1):41–8. Krackow, E. H. September 1956. Toxicology of Vagents. CWLR 2065, Chemical Corps Research and DevelopmentCommand, Chemical Warfare Laboratories, Army ChemicalCenter, MD. Unclassi¢ed Report (AD 112 236). Laurenz, J.C., M. Hadjisavas, G. W. Chovanic, and F. W. Bazer. 1997.Myelosuppression in the pig (Sus scrofa): Uteroferrinreduces the myelosuppressive effects of 5-�uorouracil in

young pigs. Comp Biochem Physiol A Physiol 116:369–77.Layton, D. S., A. D. Strom, T. E. O’Neil, M. M. Broadway,G. L. Stephenson, K.R. Morris, M. Muralitharan, M.S.Sandrin, F. L. Ierino, and A. G. Bean. 2007. Developmentof an anti-porcine CD34 monoclonal antibody thatidenti¢es hematopoietic stem cells. Exp Hematol 35:171–8.

Li J., Z. Shan, G. Ou, X. Liu, C. Zhang, B. J. Baum, and S.Wang. 2005. Structural and functional characteristics ofirradiation damage to parotid glands in the miniature pig.Int J Radiat Oncol Biol Phys 62(5):1510–16.

Lindsay, C. D. and P. Rice. Apr 1995. Changes in connectivetissue macromolecular components of Yucatan mini-pig skinfollowing application of sulphur mustard vapour. Hum ExpToxicol 14(4):341–8.

Lotz, S., J. Caselitz, H. Tschakert, W. Rehpenning, and G.Seifert. 1990. Radioprotection of minipig salivary glandsby orciprenaline-carbachol. An ultrastructural andsemiquantitative light microscopic study. Virchows Arch APathol Anat Histopathol 417(2):119–28.

MacVittie, T. J., A. M. Farese, and W. Jackson, 3rd. 2005.De¢ning the full therapeutic potential of recombinantgrowth factors in the post radiation-accident environment:The effect of supportive care plus administration of G-CSF.Health Phys 89:546–55.

Mahl, J. A., B. E. Vogel, M. Court, M. Kolopp, D. Roman,and V. Nogues. 2006. The minipig in dermatotoxicology:Methods and challenges. Exp Toxicol Pathol 57:341–5.

Mandel, L., J. Travnicek, M. Talafantova, and M.Zahradnickova. 1980a. The LD50/30 and the survival time inwhole-body gamma-irradiated conventional and germfreeMinnesota miniature piglets. Zeitschrift furVersuchstierkunde 22:96–100.

Mandel, L., I. Trebichavsky, F. Moravek, and J. Travnicek.1980b. Changes in the intestinal epithelial cells inabdominally irradiated germfree piglets. Strahlentherapie156:284–9.

Manthei, J. H., James, J. T., and S. P. Liebenberg. 1988. Acomparison of acute toxicity, clinical chemistry, andpathological changes in two strains of swine afterpercutaneous exposure to GD. US Government TechnicalReport CRDEC-TR-88159. Distribution Limited.

Manthei, J. H., Muller, A. J., Heitkamp, D. H., Cameron K.P., Bona D. M, and R. D. Moore., 1996. Synthesis and acutetoxicity of EA 5988. US Government Technical ReportERDEC-TR-316. Distribution Limited.

Marrazzi, A. S., Horton, R. G, and E. A. King. 1951.Correlation between G agent toxicity and chemicalstructure: An interim report. Medical Division ResearchReport 37, pp. 1–16.

Marzulli, F. N., Conn, L. W., Cope, O. B., and J. S. Wiles.November 1955. Objective signs of poisoning in rabbitsfollowing cutaneous application and intravenous injectionof GB. MLRR 408.

Marzulli, F. N. and Callahan, J. F. 1959. Pathways ofpenetration of VX applied to skin. CWLR 2278, US ArmyChemical Warfare Laboratories, MD, April 1959, Unclassi¢edReport (AD 307 197).

Maxwell, D. M. 1992. The speci¢city of carboxylesteraseprotection against the toxicity of organophosphorouscompounds. Toxicol Appl Pharmacol 114:306–12.

McDonnel, G. M., W. H. Crosby, C. F. Tessmer, W. H.Moncrief, H. J. Baker, J. D. Goldstein, K. Woodward, J. N.Shively, H. W. Daniell, A. Horava, and H. A. Claypool.1961. Operation plumbbob. Project 4.1: Effects of nucleardetonations on a large biological specimen (Swine).Defense Atomic Support Agency Report: WT-1428, pp. 1–200.McGuire, J. M., Byers, C. E., Hulet, S. W., Jakubowski, E.M., and Thomson S. A. 2008. A rapid and sensitivetechnique for assessing exposure to VX via GC-MS-MSanalysis. J Anal Toxicol 32(1):63–7. McKee, W. H. E. andB. Woolcott. 1949. Report on Exposures of Unprotected Menand Rabbits to Low Concentrations of Nerve Gas Vapor.PRP-143, Porton Down. Mioduszewski, R. J., Manthei, J. H.,Way, R. A., Burnett, D. C., Gaviola, B. P., Muse, W. T.,Thomson, S. A., Sommerville, D. R., Crosier, R. B.,Scotto, J. A., McCaskey, D. A., Crouse, C. L. and K. L.Matson. 2002. Low-level sarin vapor exposure in rats:Effect of exposure concentration and duration on pupilsize. US Government Technical Report ECBC-TR-235. US ArmyEdgewood Chemical Biological Center: Aberdeen ProvingGround, MD. Montagna, W. and Yun, J. S. 1964. The skin ofthe domestic pig. J Invest Dermatol 43:11–21. Moroni, M.,Coolbaugh, T. V., Mitchell, J. M., Eric Lombardini, E.,Moccia, K. D., Shelton, L. J. Nagy, V, and M. H. Whitnall.2011. Vascular access port implantation and serial bloodsampling in a Göttingen minipig (Sus scrofa domestica)

model of acute radiation injury. JAALAS 50:65–72. Morris,M. D. and T. D. Jones. 1989. Hematopoietic death ofunprotected man from photon irradiations: Statisticalmodeling from animal experiments. Int J Radiat Biol55:445–61. Mortensen, J. T., Brinck, P, and J. Lichtenberg.1998. The minipig in dermal toxicology. A literaturereview. Scand J Lab Anim Sci Suppl 1(Vol 25):77–83. Munro,N. B., Ambrose, K. R, and A. P. Watson. 1994. Toxicity ofthe organophosphate chemical warfare agents GA, GB and VX:Implications for public protection. Environ Heal Pers102(1):18–38. Nair, X, P. Parab, L. Suhr, and K. M.Tramposch. 1993. Combination of 4-hydroxyanisole andall-trans retinoic acid produces synergistic skindepigmentation in swine. J Invest Dermatol 101(2):145–9.Panepinto, L. M., R. W. Phillips. 1986. The Yucatanminiature pig: Characterization and utilization inbiomedical research. LabAnim Sci 36:344–7. Parra, N. C.,C. A. Ege, and G. D. Ledney. 2007. Retrospective analysesof serum lipids and lipoproteins and severity of disease in60Co-irradiated Sus scrofa domestica and Macaca mulatta.Comp Med 57:298–304. Pennington, L. R., K. Sakamoto, F. A.Popitz-Bergez, M. D. Pescovitz, M. A. McDonough, T. J.MacVittie, R. E. Gress, and D. H. Sachs. 1988. Bone marrowtransplantation in miniature swine. I. Development of themodel. Trans 45(1):21–6. Proietti, A., B. Murer, P.Muretto, M. Andreani, G. Lucarelli, and F. Di Pietrantonj.1991. Biologic effects of total body irradiation withsingle dose administered with various dose-rate MinervaMed 82(11):723–31. Qvist, M. H., Hoeck, U., Kreilgaard, B.,Madsen, F, and Frokjaer, S. 2000. Evaluation of GÖttingenminipig skin for transdermal in vitro permeation studies.Eur J Pharm Sci 11:59–68. Radfar, L. and D. A. Sirois.2003. Structural and functional injury in minipig salivaryglands following fractionated exposure to 70 Gy ofionizing radiation: An animal model for humanradiation-induced salivary gland injury. Oral Surg Oral MedOral Pathol Oral Radiol Endod 96(3):267–74.

Rice, P., Brown, R. F. R., Lam, D. G. K., Chilcott, R. P,and N. J. Bennett. 2000. Dermabrasion—a novel concept inthe surgical management of sulphur mustard injuries. Burns26:34–40.

Rico, P. J., Johnson, T. E., Mitchell, M. A., Saladino, B.H, and Roach W. P. 2000. Median effective dosedetermination and histologic characterization of porcine(Sus scrofa domestica) dermal lesions induced by 1540-nmlaser radiation pulses Comp Med 50(6):633–8.

Robbins, M. E., D. Campling, M. Rezvani, S.J. Golding, and

J. W. Hopewell. 1989. Radiation nephropathy in mature pigsfollowing the irradiation of both kidneys. Int J RadiatBiol 56, 83–98.

Robbins, M. E., J. A. Soranson, G.D. Wilson, T. Bywaters,M. Rezvani, S. J. Golding, G. M. Morris, E. Whitehouse andJ. W. Hopewell. 1994. Radiation-induced changes in thekinetics of glomerular and tubular cells in the pig kidney.Radiat Res 138:107–13.

Romano, J. A., B. J. Lukey, and H. Salem. 2008. ChemicalWarfare Agents: Chemistry, Pharmacology, Toxicology, andTherapeutics. Boca Raton, FL: CRC Press.

Rust, J. H., B. F. Trum, J. L. Wilding, C. S. Simons, andC. L. Comar. 1954. Lethal dose studies with burros andswine exposed to whole body cobalt-60 irradiation. Radiol62:569–74.

Saxena, A., Sun, W., Dabisch, P. A, Hulet, S. W., Hastings,N. B, Jakubowksi, E. M., Mioduszewski, R. J, and B. P.Doctor. 2008. Ef¢cacy of human serum butyrylcholinesteraseagainst sarin vapor. Chem Biol Interact 175(1–3):267–72.

Shan, Z., J. Li, C. Zheng, X. Liu, Z. Fan, C. Zhang, C. M.Goldsmith, R. B. Wellner, B. J Baum, S. Wang. 2005.Increased �uid secretionafter adenoviral-mediated transferof the human aquaporin-1 cDNA to miniature pig parotidglands irradiated. Mol Ther 11:444–51.

Shih, T-M. and J. H. McDonough. 1999. OrganophosphorousNerve Agents-Induced Seizures and Ef¢cacy of AtropineSulfate as Anticonvulsant Treatment. Pharm BiochemBehavior 64(1):147–53.

Sidell, F. R. April 1967. Human responses to intravenousVX. EATR 4082. Medical Research Laboratory, US GovernmentTechnical Report EATR 4082, Edgewood. MD, DistributionLimited. (AD 811 991).

Sim, V. M. 1956. Effect on Pupil Size of Exposure to GBVapour. CDE PTP-1956, 531. Distribution Limited.

Smith, C. V, T. Suzuki, P. C. Guzzetta, K. Nakajima, T. M.Sundt 3rd, A. Mixon, T. R. Spitzer, M. A. Eckhaus, and D.H. Sachs. 1993. Bone marrow transplantation in miniatureswine: IV. Development of myeloablative regimens thatallow engraftment across major histocompatibilitybarriers. Trans 56(3):541–9. Sonntag, K. C., N. Nebhard,G. W. Haller, A. Yasumoto, D. H. Sachs, and C. LeGuern.

2000. Assessment of transduction rates of porcine bonemarrow. J Hematother Stem Cell Res 9:721–6. Thirwall, R.E., Commander, N. J., Brew, S. D, Cutler, S. J., McGiven,J. A., and J. A. Stack. 2008. Improving the speci¢city ofimmunodiagnosis for porcine brucellosis. Vet Res Commun32(3):209–13. Tullis, J. L., C.F. Tessmer, E. P. Cronkite,and F. W. Chambers. 1949. The lethal dose of total-bodyx-irradiation in swine. Radiol 52:396–400. Tullis, J.L.,B.G. Lamson, and S. C. Madden. 1954. Mortality in swineexposed to gamma radiation from an atomic bomb source.Radiol 62:409–15. Uozaki, H., M. Fukayama, K. Nakagawa, T.Ishikawa, S. Misawa, M. Doi, and K. Maekawa. 2005. Thepathology of multiorgan involvement: Two autopsy cases fromthe Tokai-mura criticality accident. BJR Suppl 27:13–16.van den Aardweg, G. J., M. Arnold, and J. W. Hopewell.1990. A comparison of the radiation response of theepidermis in two strains of pig. Radiat Res 124(3):283–7.Wang, S., Y. Liu, D. Fang, and S. Shi. 2007. The miniaturepig: A useful large animal model for dental and orofacialresearch. Oral Dis 13(6):530–7. Whalley, C. E., Benton, B.J., Manthe, J. A., Way, R. A., Jakubowski, E. M., Burnett,D. C., Gaviola, B. P., Crosier, R. B., Sommerville, D. R.,Muse, W. T., Forster, J. S., Mioduszewski, R. J., Thomson,S. A., Scotto, J. A., Miller, D. B., Crouse, C. L.,Matson, K. L., and J. L. Edwards, J. L. 2004. Low-LevelCycolosarin (GF) Vapor Exposure in Rats: Effect of ExposureConcentration and Duration on Pupil Size. ECBC-TR-407; USGovernment Technical Report ECBC-TR-407, US Army EdgewoodChemical Biological Center: Aberdeen Proving Ground, MD.Williams, J. P., S. L. Brown, G. E. Georges, M.Hauer-Jensen, R. P. Hill, A. K. Huser, D. G. Kirsch, T. J.Macvittie, K. A. Mason, M. M. Medhora, J. E. Moulder, P.Okunieff, M. F. Otterson, M. E. Robbins, J. B. Smathers,and W. H. McBride. 2010. Animal models for medicalcountermeasures to radiation exposure. Radiat Res173(4):557–78. Wise, D. and C. L. Turby¢ll. 1970. The acutemortality response of the miniature pig to pulse mixedgamma-neutron radiations. Radiat Res 41(3):507–15. Worek,F., Aurbek, N., Wetherell, J., Pearce, P., Mann, T., and H.Thiermann. 2008. Inhibition, reactivation and agingkinetics of highly toxic organophosphorous compounds: Pigversus minipig acetylcholinesterase. Toxicology 244:35–41.Zacharias, T., W. Dörr, W. Enghardt, T. Haberer, M. Krämer,R. Kumpf, H. Röthig, M. Scholz, U. Weber, G. Kraft, and T.Herrmann. 1997. Acute response of pig skin to irradiationwith 12C-ions or 200 kV X-rays. Acta Oncol 36(6):637–42.

37 Chapter 37: The Minipig and Pig inMedical Device Research

Ast, I., Heydeck, D., Mothes, E., and Christ, B. 2002.Standardised in vitro electrophysiologic measurementsusing isolated perfused porcine hearts—Assessment of QTinterval alterations. ALTEX, 19(1), 3–8.

Badimon, L., Casanic, L., and Vilahar, G. 2008. Models ofbehavior—Cardiovascular. In Conn, P.M (Ed.), Sourcebook ofModels for Biomedical Research., Totowa, NJ: Humana Press,pp. 361–368.

Bloor, C.M., White, F.c., and Roth, D. M. 1992. The pig asa model of myocardial ischemia and gradual coronary arteryocclusion. In M. M. Swindle (Ed.), Swine as Models inBiomedical Research, Ames: Iowa State University Press pp.163–175.

Bramos, D., Tsirikos, N., Kottis, G., Pamboucas, C.,Kostopoulou, V., Trika, C., Ikonomidis, I., andToumanidis, S. 2008. The acute effect of an echo-contrastagent on right ventricular dimensions and contractility inpigs. Journal of Cardiovascular Pharmacology, 51(1),86–91.

Bunger, C., Grabow, N., Sternberg, K., Kroger, C., Ketner,L., Schmitz, K., Kreutzer, H. et al. 2007.Sirolimus-eluting biodegradable poly-L-lactide stent forperipheral vascular application: A preliminary study inporcine carotid arteries. Journal of Surgical Research,139, 77–82.

CDRH. 1992. CFR 21: 201(h) Statinary De¢nition.

Chai, C., Almen, T., Baath, L., Besjakov, J., and Towart,R. 2007. Signs in vector-electrocardiography (VECG)predicting the ¢brillatory propensity of iodixanol andmannitol solutions after injecction into the left coronaryartery on pigs. Academic Radiology, 14, 162–177.

Christiansen, S., Perez-Bouza, A., Hilgers, R., andAutschbach, R. 2008. Selective left ventricularadriamycin-induced cardiomyopathy in the pig. Journal HeartLung Transplant, 27(1), 86–92.

Dudeck, O., Jordan, O., Hoffmann, K., Okuducu, A., Tesmer,K., Kreuzer-Nagy, T., Rufenacht, D., Doelker, E., andFelix, R. 2006. Organic solvents as vehicles forprecipitating liquid embolics: A comparative angiotoxicity

study with superselective injections of swine retemirabile. American Society of Neuroradiology, 27,1900–1906.

Gad, S.C. 2007. The minipigs. In Animal Models inToxicology, 2nd ed. Boca Raton, FL: Taylor & Francis, pp.731–767.

Gavin, D., Tilley, L., Smith, F., and Baird, T. 2008.Spontaneous cardiac arrhythmias recorded in threeexperimentally- and drug-naive laboratory species (canine,primate, swine) during standard pre-study screening.Journal of Pharmcological and Toxicological Methods, 12,1–5.

Gen-Shan, M., Li-Juan, C., Zhong, C., Shu, D., Cheng-Xing,S., and Yi, F. 2007. Biocompatibility oftetramethylpyrazineeluting stents in normal porcinecoronary arteries. Biomedicine and Pharmacotherapy, 62,125–129. Herman, E., Ferrans, V., and Young, R. 1988.Examination of minoxidil-induced acute cardiotoxicity inminiature swine. Toxicology, 48, 41–51. Herman, E.H.,Ferrans, V.J., Young, R.S.K., and Balazs, T. 1989. Acomparative study of minoxidil-induced myocardial lesionsin beagle dogs and miniature swine. ToxicologicalPathology, 17, 182–192. Herman, E., Young, R, Balazs, T.,and Ferrans, V. 1986. The evaluation of acute and chroniccardiotoxicity in miniature swine. Swine BiomedicalResearch, 3, 1659–1670. Jacobsson, L. 1986. Comparison ofexperimental hypercholesterolemia and atherosclerosis inGöttingen minipigs and Swedish domestic swine.Atherosclerosis, 59, 205–213. Jacobsson, L. 1989.Comparison of experimental hypercholesterolemia andatherosclerosis in male and female minipig of theGöttingen strain. Artery, 16, 105–117. Kano, M., Toyoshi,T., Iwasaki, S., Kato, M., Shimizu, M., and Ota, T. 2005.QT PRODACT: Usability of miniature pigs in safetypharmacology studies: Assessment for drug-induced QTinterval prolongation. Journal of Pharmacological Sciences,99, 501–511. Khan, M. 1984. Minipig: Advantages anddisadvantages as a model in toxicity testing. Journal ofthe American. Toxicology, 3, 337–342. Lee, K. 1986. Swineas animal models in cardiovascular research. SwineBiomedical Research, 3, 1481–1496. Okubadejo, G., Talcott,M., Schmidt, R., and Sharma, A. 2008. Perils ofintravascular methylprednisolone injection into thevertebral artery. An animal study. The Journal of Bone andJoint Surgery, American Volume, 90(9), 1932–1938. Peuster,M., Hesse, C., Schloo, T., Fink, C., Beerhabum, P., andSchnakenburg, C. 2006. Long-term biocompatibility of a

corrodible peripheral iron stent in the porcine descendingaorta. Biomaterials, 27, 4955–4962. Phillips, R. andTumbleson, M. 1986. Models. Swine Biomedical Research, 1,437–440. Schneider, N.R., Bradley, S.L., and Andersen, M.E.1977. Toxicology of cyclotrimethylenetrinitramine:Distribution and metabolism in the rat and the miniatureswine. Toxicology and Applied Pharmacology., 39(3),531–541. Swindle, M.M., Horneffer, P.J., Gardner, T.J.,Gott, V.L., Hall, T.S., Sturat, R.S., Baumgartner, W.A.,Borkon, A. M., Galloway, E., and Reitz, B. A. 1986.Anatomic and anesthetic considerations in experimentalcardiopulmonary surgery in swine. Laboratory AnimalScience, 36, 357–361. Van Vleet, J., Herman, E., andFerrans, V. 1984. Cardiac morphologic alterations in acuteminoxidil cardiotoxicity in miniature swine. Experimentaland Molecular Pathology, 4L, 10–25. Vente, M., Nijsen, J.,Wit, T., Seppenwoolde, J., Krijger, G., Seevinck, P.,Huisman, A., Zonnenberg, B., Ingh, T., and Schip, A. 2008.Clinical effects of transcatheter hepatic arterialembolization with holmium-166 poly(l-lactic acid)microspheres in healthy pigs. European Journal of NuclearMedicine and Molecular Imaging, 35, 1259–1271. Strategiesfor Development Armon, B. 2002. Bringing your medicaldevice to the marketplace, Physician’s News Digest.

Meinert, L. 2005. Pointing us in the right direction,Applied Clinical Trials.

Device Guidelines

FDA (GUIDANCES)

FDA, Design Control Guidance for Medical DeviceManufactures (1997),http://www.fda.gov/cdrh/comp/designgd.html

FDA, Device Advice, Clinical Trials and IDE GuidanceDocuments,http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfIDE/da_ide_topic.cfm

FDA, Guidance for the Medical Device Industry on PMA ShellDevelopment and Modular Review (1998), http://www.fda.gov/ohrms/dockets/98fr/980896gd.pdf

FDA, Medical Device Reporting Guidance Documents, http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTopic/topicindex/guidance.cfm?topi c=224

FDA, Device Advice, http://www.fda.gov/cdrh/devadvice/

ISO

AAMI TIR19:1998 & TIR 19/A1:1999, Guidance for ANSI/AAMI/ISO 10993-7:1995, Biological evaluation of medicaldevices—Part 7: Ethylene oxide sterilization residuals.

ANSI/AAMI/ISO 10993-1:1997, Biological evaluation ofmedical devices—Part 1: Evaluation and testing.

ANSI/AAMI/ISO 10993-2:1993/(R)2001, Biological evaluationof medical devices—Part 2: Animal protection requirements.

ANSI/AAMI/ISO 10993-3:1993, Biological evaluation ofmedical devices—Part 3: Tests for genotoxicity,carcinogenicity, and reproductive toxicity.

ANSI/AAMI/ISO 10993-4:2002, Biological evaluation ofmedical devices—Part 4: Selection of tests for interactionwith blood.

ANSI/AAMI/ISO 10993-5:1999, Biological evaluation ofmedical devices—Part 5: Tests for cytotoxicity, in vitromethods.

ANSI/AAMI/ISO 10993-6:1995/(R)2001, Biological evaluationof medical devices—Part 6: Tests for local effects afterimplantation.

ANSI/AAMI/ISO 10993-7:1995/(R)2001, Biological evaluationof medical devices—Part 7: Ethylene oxide sterilizationresiduals.

ANSI/AAMI/ISO 10993-8:2000, Biological evaluation ofmedical devices—Part 8: Selection and quali¢cation ofreference materials for biological tests.

ANSI/AAMI/ISO 10993-9:1999, Biological evaluation ofmedical devices—Part 9: Framework for identi¢cation andquanti¢cation of potential degradation products.

ANSI/AAMI BE78:2002, Biological evaluation of medicaldevices—Part 10: Tests for irritation and delayed typehypersensitivity.

ANSI/AAMI/ISO 10993-11:1993, Biological evaluation ofmedical devices—Part 11: Tests for systemic toxicity.

ANSI/AAMI/ISO 10993-12:2002, Biological evaluation ofmedical devices—Part 12: Sample preparation and reference

materials.

ANSI/AAMI/ISO 10993-13:1999, Biological evaluation ofmedical devices—Part 13: Identi¢cation and quanti¢cation ofdegradation products from polymeric devices. ANSI/AAMI/ISO10993-14:2001, Biological evaluation of medicaldevices—Part 14: Identi¢cation and quanti¢cation ofdegradation products from ceramics. ANSI/AAMI/ISO10993-15:2000, Biological evaluation of medicaldevices—Part 15: Identi¢cation and quanti¢cation ofdegradation products from metals and alloys. ANSI/AAMI/ISO10993-16:1997/(R)2003, Biological evaluation of medicaldevices—Part 16: Toxicokinetic study design fordegradation products and leachables from medical devices.ANSI/AAMI/ISO 10993-16:1997, Biological evaluation ofmedical devices—Part 16: Toxicokinetic study design fordegradation products and leachables from medical devices.ANSI/AAMI/ISO 10993-17:2002, Biological evaluation ofmedical devices—Part 17: Methods for the establishment ofallowable limits for leachable substances. ANSI/AAMI/ISO14155-1:2003, Clinical investigation of medical devicesfor human subjects—Part 1: General requirements.ANSI/AAMI/ISO 14155-2:2003, Clinical investigation ofmedical devices for human subjects—Part 2: Clinicalinvestigation plans. Japan Guidelines for Basic BiologicalTests of Medical Materials and Devices Ohno, Yasuo, ICHGuidelines-Implementation of the 3Rs (Re¢nement,Reduction, and Replacement): Incorporating Best Scienti¢cPractices into the Regulatory Process, ILAR Journal,43(Suppl), 2002,

Ohno, Yasuo, ICH Guidelines-Implementation of the 3Rs(Re¢nement, Reduction, and Replacement): IncorporatingBest Scienti¢c Practices into the Regulatory Process, ILARJournal, 43, (Suppl.), 2002, http://dels.nas.edu/ilar_n/ilarjournal/43_supp/v43supOhno.pdf

PowerPoint Slides: GCP and Post Marketing SurveillanceRequirements, Janet Vessotskie

Forms

FDA, Device Evaluation Information-Forms,http://www.fda.gov/ cdrh/ode/ode-forms.html

FDA, Medical Device Reporting-Forms and Instructions,http:// www.fda.gov/cdrh/mdr/mdr-forms.html

Acronyms

FDA, Abbreviations and Acronyms,http://www.fda.gov/cdrh/ost/reports/fy95/abbreviations_acronyms.html

FDA, FDA/CVM-Related Acronyms and Abbreviations, http://www.fda.gov/cvm/acronym.htm

FDA, Glossary of Acronyms, http://www.fda.gov/oc/oms/ofm/budget/2004/Tables/glossary.htm, 2004. Websites

Code of Federal Regulations,http://www.access.gpo.gov/nara/cfr/ cfr-table-search.html

FDA Consumer, http://www.fda.gov/fdac/fdacindex.html

FDA Databases (see medical device list) http://www.fda.gov/search/databases.html

FDA, Device Advice, Clinical Trials and IDE GuidanceDocuments,http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfIDE/da_ide_topic.cfm FDA, Device Advice,http://www.fda.gov/cdrh/devadvice/ FDA, Device EvaluationInformation-Forms, http://www.fda.gov/cdrh/ode/ode-forms.html FDA Medical Bulletin (1996-1999),http://www.fda.gov/medbull/ mblistin.htmlhttp://www.drugdigest.org/DD/Home Health Insite(Australian, contains many links), http://www.healthinsite.gov.au Medical Device Reporting-Forms andInstructions, http://www.fda. gov/cdrh/mdr/mdr-forms.htmlRegulatory Affairs Professionals Society, www.raps.org TheFood and Drug Law Institute, http://www.fdli.org/Books/Publications Alder, S. and Zbinden, National andInternational Drug Safety Guidelines, M.T.C. VerlagZollikon, 1988. Food and Drug Law Journal, 60(1), 2005.Other Australia and NZ Set Schedule for Joint RegulatoryAgency, Ref: 24213, Script Daily News Alert, 10/04/2006.Ohno, Yasuo, ICH Guidelines-Implementation of the 3Rs(Re¢nement, Reduction, and Replacement): IncorporatingBest Scienti¢c Practices into the Regulatory Process, ILARJournal, 43, (Suppl), 2002. SECTION VII RegulatoryPerspective and Use of the Minipig in Developing MarketedProducts

38 Chapter 38: Regulatory Aspects:Pharmaceuticals, Medical Devices, FoodAdditives : Minipigs and Global SafetyRegulations*

Hamlin, R. L. 2005. Non-drug-related electrocardiographicfeatures in animal models in safety pharmacology. J.Pharmacol. Toxicol. Methods 52: 60–76.

ICH M3 R2. 2009. http://www.ich.org/LOB/media/MEDIA498.pdfInternational Conference on Harmonization: NonclinicalSafety Studies for the Conduct of Human Clinical Trials forPharmaceuticals. http://www.ich.org/cache/compo/276-254-1.html. Accessed July 2009.

ICHS5R2 International Conference on Harmonization:Detection of Toxicity to Reproduction for MedicinalProducts & Toxicity to Male Fertility 2005http://www.ich.org/LOB/ media/MEDIA498.pdf accessed July2009.

ICH S7A. 2001. International Conference on Harmonization:Safety Pharmacology Studies for Human Pharmaceuticals.http://www.ich.org/cache/compo/276-254-1.html. AccessedJuly 2009.

ICH S7B. 2005. International Conference on Harmonization:Nonclinical Evaluation of the Potential for DelayedVentricular Repolarization (QT Interval Prolongation) byHuman Pharmaceuticals. http://www.ich.org/cache/compo/276-254-1.html Accessed July 2009.

Jørgensen, D. 1998a. The Gottingen minipig as a model forstudying effects on male fertility. Scand. J. LaboratoryAnimal Sci. (Suppl 1) 25:63–75.

Jørgensen, D. 1998b. Minipig in reproduction toxicologyScand. J. Laboratory Animal Sci. 25(Suppl. 1): 161–69.

Jørgensen, D. 1998c. Teratogenic activity of tretinoin inthe Gottingen minipig. Scand. J. Laboratory Animal Sci.25(Suppl. 1): 235–43.

Khan, M. A. 1984. Minipig: Advantages and disadvantages asa model in toxicity testing Int. J. Toxicol. 3(6): 337–42.

Lind, N. M, Moustgaard, A., Jelsing, J., Vajta, G.,Cumming, P., and Hansen, A. K. 2007. The use of pigs inneuroscience: Modeling brain disorders. Neurosci.Biobehav. Rev. 31: 728–51.

Marshall Bioresources reference data guide. 2008.http://www. marshallbio.com/ Accessed December 2008.

Monteiro-Riviere, N. A. and Riviere, J. 1996. The pig as amodel for cutaneous pharmacology and toxicology research.In: M. E. Tumbleson and L. B. Schook (ed), Advances inSwine in Biomedical Research, Vol. 2., pp. 425–58. NY:Plenum Press.

Mortensen, J. T., Brinck, P., and Lichtenberg, J. 1998. Theminipig in dermal toxiology. A literature review. Scand.J. Laboratory Animal Sci. 25(Suppl. 1): 63–75.

Pentsuk, N, Van der Laan, J. W. 2009. An interspeciescomparison of placental antibody transfer: New insightsinto developmental toxicity testing of monoclonalantibodies. Birth Defects Research (Part B) 86: 328–44.

PDR 2008. Physicians Desk Reference. Toronto, Canada:Thomson Corporation.

Pilling, A. M., Harman, R. M., Jones, S. A., McCormack,N.A., Lavender, D., and Haworth, R. 2002. The assessmentof local tolerance, acute toxicity, and DNAbiodistribution following particle-mediated delivery of aDNA vaccine to minipigs. Toxicol. Pathol. 30 (3): 298–305.

Scantox website:http://www.scantox.com/under_serv/reproduc. html. AccessedDecember 2008.

SCHER (2009) Scienti¢c opinion on the need for humanprimates in biomedical research.http://ec.europa.eu/environment/chemicals/lab_animals/pdf/scher_o_110.pdf Skaanild, M. T.and Friis, C. 2000. Expression changes of CYP2A and CYP3Ain microsomes from pig liver and cultured hepatocytes.Pharmacol. Toxicol. 87: 174–8. Skaanild, M. T. and Friis,C. 2002. Is cytochrome P450 CYP2D activity present in pigliver? Pharmacol. Toxicol. 91(4): 198–203. Skaanild, M. T.and Friis, C. 2005. Porcine CYP2A polymorphisms andactivity. Basic Clin. Pharmacol. Toxicol. 97(2): 115–21.Soucek, P., Zuber, R., Anzenbacherova, E., Anzenbacher, P.,and Guengerich, F. P. 2001. Minipig cytochrome P450 3A, 2Aand 2C enzymes have similar properties to human analogs.BMC Pharmacol. 1: 11–15. Stanton, H. C. and Mersmann, H. J.(Eds) 1986: Swine in Cardiovascular Research. Vols. 1 and2, Boca Raton, FL: CRC Press. Stubhan, M., Markert, M.,Mayer, K., Trautmann, T., Klumpp, A., Henke, J., and Gutt,

B. 2008. Evaluation of cardiovascular and ECG parametersin the normal, freely moving Göttingen minipig. J.Pharmacol. Toxicol. Methods 57: 202–11. Svendsen, O.,Kaaber, K., Harling, R. J., Makin, A., and Glerup, P.2003. The minipig in toxicology and other non-clinicalstudies. Pharmacol. Toxicol. 93(Suppl. 1): 25. Swindle, M.M. and Smith, A. C. 1998. Comparative physiology andanatomy of the pig. Scand. J. Laboratory Animal Sci.25(Suppl. 1): 11–22. USFDA. CDER Guidance for Industry -Photosafety Testing. May 2003.http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm079252.pdf. Accessed July 2009. USFDA. Guidance forIndustry: Nonclinical Safety Evaluation of Pediatric DrugProducts 2006.

USFDA/CFSAN Redbook 2000 http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/FoodIngredientsandPackaging/Redbook/default. htm.Accessed July 2009.

Wagstrom, E. A, Yoon, K. J., and Zimmerman, J. J. (2000)Immune components in porcine mammary secretions. ViralImmunoly 13: 383–397.

Waris, E., Ashammakhi, N., Lehtimäki, M. et al. 2008.Long-term bone tissue reaction to polyethyleneoxide/polybutylene terephthalate copolymer (Polyactive ® )in metacarpophalangeal joint reconstruction. Biomaterials29 (16): 2509–15.

WHO. Guidelines on nonclinical evaluation of vaccines,adoped by ECBS, 17–21 November 2003, Annex 1. WHO.Guidelines for the Preparation of Toxicological WorkingPapers 2000 http://www.who.int/ipcs/food/jecfa/en/tox_guidelines.pdf. Accessed July 2009. WHO. 2003. Guidelineson nonclinical evaluation of vaccines WHO Technical ReportSeries No. 927, Annex 1 http://www.

39 Chapter 39: Adverse Responses to Drugsin Man : Critical Comparison of ReportedToxicological Findingsin Minipigs and Humans

Adapalene Benzoyl Peroxide, Anonymous, 2008. FDA CDERLabel for NDA 22-320. Revision date DEC2008. [022320/S00008DEC2008)].

Alendronate, Anonymous, 1995a. FDA CDER Administrativedocuments for NDA 20-560 Part 01. [Administrative documents020560 Part 01 (1995-jul-13)].

Alendronate, Anonymous, 1995b. FDA CDER Administrativedocuments for NDA 20-560 Part 02. [Administrative documents020560 Part 02 (1995-jul-13)].

Alendronate, Anonymous, 1995c. FDA CDER Medical Of¢cerReview for NDA 20-560 Part 01. [Medical Of¢cer Review020560 Part 01 (1995-aug-24)].

Alendronate, Anonymous, 1999. FDA CDER Medical Of¢cerReview for NDA 20-560 Part 02. [Medical Of¢cer Review020560 Part 02 (1995-aug-24)].

Alendronate, Anonymous, 1995e. FDA CDER PharmacologyReview for NDA 20-560. [Pharmacology Review 020560(1995-sep-01)].

Alendronate, Anonymous, 1999. FDA CDER Pharmacology Reviewfor NDA 20-835s000 Part 01. [Pharmacology Review020835s-000 Part 01 (1998-jan-09)].

Avobenzone Ecamsule Octocrylene Titanium Dioxide,Anonymous, 2006. Medical-Clinical Review 021471s-000 Part01. Memorandum dated October 4, 2006. [021471s-000 Part01].

Avobenzone Ecamsule Octocrylene, Anonymous, 2006.Pharmacology Review for 021502s-000. Date of reviewsubmission to Division File System (DFS): 2-2-2006.[021502s-000].

Avobenzone Ecamsule Octocrylene, Anonymous, 2009. FDACDERMedical-Clinical Review for NDA 21-501. [021501s000 Part 022009-okt-02].

Babilas, P., Karrer, S., Sidoroff, A. et al., 2005.Photodynamic therapy in dermatology—An update.Photodermatology, Photoimmunology and Photomedicine

21:142–9.

Bode, G., Clausing, P., Gervais, F. et al., 2010. Theutility of the minipig as an animal model in regulatorytoxicology. Journal of Pharmacological and ToxicologicalMethods 62(3): 196–220.

Bourré, L., Giuntin, F., Eggleston, I.M. et al., 2008.5-Aminolaevulinic acid peptide prodrugs enhancephotosensitization for photodynamic therapy. MolecularCancer Therapeutics 7(6):1720–9.

Bramos, D., Tsirikos, N., Kottis, G. et al., 2008. Theacute effect of an echo-contrast agent on rightventricular dimensions and contractility in pigs. Journalof Cardiovascular Pharmacology 51(1):86–91.

Bril, A., Slivjak, M., DiMartino, M.J. et al., 1992.Cardioprotective effects of carvedilol, a novel betaadrenoceptor antagonist with vasodilating properties, inanaesthetised minipigs: Comparison with propranolol.Cardiovascular Research 26(5):518–25.

Busch, U., Schmid, J., Heinzel, G. et al., 1998.Pharmacokinetics of meloxicam in animals and the relevanceto humans. Drug Metabolism and Disposition 26(6):576–84.

Calcipotriene Betamethasone, Anonymous, 2007. FDA CDERPharmacology Review for NDA 21-852. Dated 15AUG2007.[021852/S000_PharmR (15AUG2007)].

Calcipotriene Betamethasone, Anonymous, 2010. FDA CDERLabel for NDA 21-852. Dated 30MAR2010. [Label 021852s006(30MAR2010)]. Calcipotriene, Anonymous, 1994. FDA CDERAdministrative correspondence for NDA 20-554. Dated14JUL1994. [820554_Calcipotriene_corres_14_Jul_94].Calcipotriene, Anonymous, 1995. FDA CDER PharmacologyReview for NDA 20-273 reviewed in IND 20-554. Dated01MAY1995. [020554 Calcipotriene Pharmacology Review (01May 95)]. Calcipotriene, Anonymous, 2007. Combined labelfor NDA’s 20-611, 20-554, and 20-273. Dated 26SEP2007.[Label 020611s007,020554s007,020273s009 (26SEP2007)].Calcitonin, Anonymous, 1994a. FDA CDER Administrativedocuments 017769 Part 01 for NDA 17-769. [Administrativedocuments 017769 Part 01 (1994-nov-18)]. Calcitonin,Anonymous, 1994b. FDA CDER Administrative documents 017769Part 02 NDA 17-769. [Administrative documents 017769 Part02 (1994-nov-18)]. Calcitriol, Anonymous, 2008. FDA CDERPharmacology review for NDA 22-087. Dated 30JUN2008.[PharmR022087/S-000 30JUN2008)]. Calcitriol, Anonymous,

2009. FDA CDER Label for NDA 22-087. Dated 04FEB2009.Label 022087/S-000 (2009-feb-04)]. Carvedilol, Anonymous,1994. Original pharmacology reviewand evaluation of NDA 20-297. [020297_Carvedilol_pharmr_P1_22_Apr_94]. Cheer, S.M. and Plosker, G.L., 2001.Tacrolimus ointment. A review of its therapeutic potentialas a topical therapy in atopic dermatitis. AmericanJournal of Clinical Dermatology 2(6):389-406. ClindamycinBenzoyl Peroxide, Anonymous, 2000. FDA CDER Pharmacologyreview for NDA 50-741. Date stamped 22AUG2000.[50-741/S000 PharmR]. Clindamycin Benzoyl Peroxide,Anonymous, 2009. FDA CDER Label for clindamycin; Benzoylperoxide. [050756s-034_DUAC_lbl]. Clindamycin Tretinoin,Anonymous, 2004. FDA CDER Pharmacology Review for NDA50-802. 050802/S-000 (2004-feb-06). Clindamycin Tretinoin,Anonymous, 2006a. FDA CDER Label for IND 50-802. Dated01NOV2006. [Clindamycin; Tretinoin]. [Label 050802/S-0002006-nov-01]. Clindamycin Tretinoin, Anonymous, 2006b. FDACDER Medical Clinical Review for NDA 50-802. [050802s-000(2006-may-05)]. Clobetasol propionate, Anonymous, 2003a.FDA CDER Label for NDA 21-644. Date of approval06MAY2003b. [21-644_ Label Clobex (06MAY2003)]. Clobetasolpropionate, Anonymous, 2003b. FDA CDER Pharmacology reviewfor NDA 21-644. Date reviewed by Centre 06MAY2003.[21-644_Clobex_pharmr (06MAY2003)]. Clobetasol propionate,Anonymous, 2004. FDA CDER Label for NDA 21-835. Dated05FEB2004. [021835s000_PRNTLBL (05FEB2004)]. Clobetasolpropionate, Anonymous, 2005. FDA CDER Pharmacology Reviewfor NDA 21-835. Dated 08SEP2005. [021835s000_PharmR(08SEP2005)]. Davies, N.M. and Skjodt N.M., 1999. Clinicalpharmacokinetics of meloxicam. A cyclo-oxygenase-2preferential nonsteroidal anti-in�ammatory drug. ClinicalPharmacokinetics. 36(2): 115–26.

Diclofenac Sodium, Anonymous, 2000. FDA CDER Pharmacologyreview part 02 for NDA 21-005. Date stamped JUL162000.[021005s-000 Part 01 [2000-jul-16].

Diclofenac Sodium, Anonymous, 2005. FDA CDER Label for NDA21-005. [Label 021005s-000].

Dijkmans, P.A., Visser, C.A., and Kamp, O., 2005. Adversereactions to ultrasound contrast agents: Is the risk worththe bene¢t? European Journal of Echocardiography 6:363–6.

Donnelly, R.F., Morrow, D.I., McCarron, P.A. et al., 2007.In�uence of solution viscosity and injection protocol ondistribution patterns of jet injectors: Application tophotodynamic tumour targeting. Journal of Photochemistryand Photobiology B 89(2–3):98–109.

Dronedarone, Anonymous, 2009. FDA CDER Pharmacology reviewfor NDA 22-425. Dated 30APR2009. [PharmR 022425/S-000 Part02 (30APR2009)].

Ecallantide, Anonymous, 2009a. FDA CDER Label for NDA125277. Dated 27NOV2009. [Label 125277/S-000 (27NOV2009)].

Ecallantide, Anonymous, 2009b. FDA CDER Pharmacologyreview part 03 for NDA 125-277. Dated 29OCT2009. [PharmR125277/S-000 Part 03 (29OCT2009)].

E�ornithine, Anonymous, 2000. FDA CDER Pharmacology ReviewPart 2 for NDA 21-145. Review completion date13JUN2000.21145_Vaniqa_pharmr_P2.

E�ornithine, Anonymous, 2010. EMA EPAR Vaniqa—ProductInformation [last updated 23MAR2010].

Enfuvirtide, Anonymous, 2002a. FDA CDER PharmacologyReview Part 1 for NDA 21-481. Review completion dateNovember 25 2002. [21481_Fuzeon_Pharmr_P1].

Enfuvirtide, Anonymous, 2002b. FDA CDER PharmacologyReview Part 4 for NDA 21-481. Review completion dateNovember 25 2002. [21481_Fuzeon_Pharmr_P4].

Enfuvirtide, Anonymous, 2010. EMA EPAR—Product Information[last updated 07MAY2010].

Engelhardt, G., Homma, D., Schlegel, K. et al., 1995.Antiin�ammatory, analgesic, antipyretic and relatedproperties of meloxicam, a new non-steroidalanti-in�ammatory agent with favourable gastrointestinaltolerance. In�ammation Research 44(10):423–33.

Everolimus, Anonymous, 2009a. FDA CDER Label for NDA22-334. Dated 12MAR2009. [Label 022334/S-000 (12MAR2009)].

Everolimus, Anonymous, 2009b. FDA CDER Pharmacology reviewfor NDA 22-334. Dated 12MAR2009. [PharmR 022334/S-000(12MAR2009)].

Fluocinolone Acetonide; Hydroquinone; Tretinoin, Anonymous,2000. FDA CDER Medical review for NDA 21-112. Date stamped13JAN2000. [21-112_TRI-Luma_medr_P1].

Fluocinolone Acetonide; Hydroquinone; Tretinoin, Anonymous,2001. FDA CDER Pharmacology review Part 2 for NDA 21-112.Signed by the three reviewers on 17 and 18DEC2001.

[21-112_TRI-Luma_pharmr_P2].

Fluocinolone Acetonide; Hydroquinone; Tretinoin, Anonymous,2002. FDA CDER Label for NDA 21-112. Signed by reviewer18JAN2002. [21112lbl].

Fluocinonide, Anonymous, 2004. Pharmacology review for NDA21-758. Dated 13DEC2004. [021758/S-000 (13DEC2004)].

Fluocinonide, Anonymous, 2010. Label for NDA 21-758. Dated09MAR2010. [Label 021758/S-012 (09MAR2010)] Fluorouracil,Anonymous, 2000. FDA CDER Pharmacology review part 02 forNDA 20-985. [PharmR 020985/S-000 Part 02 (13JUL2000)].Fluorouracil, Anonymous, 2003. FDA CDER Label for NDA20-985. [Label 020985/S-000 (13DEC2003)]. Fonacier, L.,Spergel, J. Charlesworth, E.N. et al., 2005. Report of thetopical calcineurin inhibitor task force of the AmericanCollege of Allergy, Asthma and Immunology and the AmericanAcademy of Allergy. Journal of Allergy and ClinicalImmunology 115(6):1249–53. Fosse, T.K., Haga, H.A.,Hormazabal, V. et al., 2008. Pharmacokinetics andpharmacodynamics of meloxicam in piglets. Journal ofVeterinary Pharmacology and Therapeutics 31(3):246–52.Ganderup, N.C., Earl, L., Bouches, C. et al., 2011. Surveyof minipig clinical biochemistry, coagulation, andurinalysis parameters in the European pharmaceuticalindustry. Eurotox 2011, Paris. Gates, B.J., Nguyen, T.T.,Setter, S.M. et al., 2005. Meloxicam: A reappraisal ofpharmacokinetics, ef¢cacy and safety. Expert Opinion onPharmacotherapy 12:2117–40. Girod, V., Dapzol, J., Bouvier,M. et al., 2002. The COX inhibitors indomethacin andmeloxicam exhibit anti-emetic activity againstcisplatin-induced emesis in piglets. Neuropharmacology42(3):428–36. Herman, E.H., Ferrans, V.J., Young, R.S.et al., 1988. Examination of minoxidil-induced acutecardiotoxicity in miniature swine. Toxicology 48(1):41–51.Herman, E.H., Ferrans, V.J., Young, R.S. et al., 1989. Acomparative study of minoxidil-induced myocardial lesionsin beagle dogs and miniature swine. Toxicologic Pathology17(1 Pt 2):182–92. Insulin Detemir, Anonymous, 2003. FDACDER Pharmacology and toxicology review for NDA 21-536.Dated August 4, 2003. [021-536_Levemir_pharmr]. InsulinDetemir, Anonymous, 2006. EMA EPAR—Scienti¢c Discussion[dated 15AUG2006]. Insulin Detemir, Anonymous, 2007. FDACDER Label for NDA 21-536. Dated 29MAY2007. [Label 21-536(29MAY2007)]. Jacobs, A., 2006. Use of non-traditionalanimals for evaluation of pharmaceutical products. ExpertOpinion on Drug Metabolism & Toxicology 2:345−9. Jacobs,A., 2008a. Use of minipigs for evaluation of FDAregulatedproducts. Lansdowne, Virginia. Presentation at the

Inaugural Meeting of the North American Minipig ResearchForum. Jacobs, A., 2008b. Mini-pigs as an alternativenon-rodent species in toxicology and safety studies.Lecture given as part of the Society of ToxicologyContinuing Education Courses, March 16, 2008. Jimenez, C.,de Gracia, R., Aguilera, A. et al. 2008. In situ kidneyinsonation with microbubble contrast agents does not causerenal tissue damage in a porcine model. Journal ofUltrasound in Medicine 27:1607–15 Kalervo, H., Väänänen,J.S., and Lehenkari, P., 1996. Mechanism ofosteoclast-mediated bone resorption. Journal of Bone andMineral Metabolism 14(4):187–92. Klein, A., Babilas, P.,Karrer, S., Landthaler, M. et al., 2008. Photodynamictherapy in dermatology—An update 2008. Journal derDeutschen Dermatologischen Gesellschaft, 6:839–45.

Kore, A.M., 1990. Toxicology of nonsteroidal antiin�ammatory drugs. Veterinary Clinics of North America:Small Animal Practice 20(2):419–30.

Kunecatechins, Anonymous, 2006a. FDA-CDER ClinicalPharmacology Biopharmaceutics Review for NDA 21-902.[021902s000_clinpharmr].

Kunecatechins, Anonymous, 2006b. FDA-CDER PharmacologyReview for NDA 21-902. Date of review submission toDivision File System (DFS): 13JUN2006.[021902s000_pharmr].

Kunecatechins, Anonymous, 2008. FDA CDER Label for NDA21-902. Dated 19SEP2008. [Label 021902/S-017 (19SEP2008)].

Lanreotide, Anonymous, 2007. FDA CDER Pharmacology reviewpart 01 for NDA 22-074. Dated 21AUG2007. [022074s000_PharmR_P1 (21AUG2007)].

Lidocaine Hydrochloride, Anonymous 2007a. FDA CDER Labelfor NDA 22-114. Revised AUG2007. [Label 02211/S-000(revised AUG2007)].

Lidocaine Hydrochloride, Anonymous 2007b. FDA CDERPharmacology review for NDA 22-114. Dated 30JUL2007.[PharmR 022114/S-000 (30JUL2007)].

Madjar, H., Prompeler, H.J., Del Favero, C. et al., 2000.A new Doppler signal enhancing agent for �ow assessment inbreast lesions. European Journal of Ultrasound12(2):123–30.

Mainigi, K.D., 2007. Minipig—A suitable model for assessing

the safety and ef¢cacy of topical drug products. Posterpresented at IUTOX 2007—The XI International Congress ofToxicology, Montreal, Canada.

Maisch, T., Santarelli, F., Schreml, S. et al., 2010.Fluorescence induction of protoporphyrin IX by a new5-aminolevulinic acid nanoemulsion used for photodynamictherapy in a fullthickness ex vivo skin model. ExperimentalDermatology 19(8):e302–5.

Makin, A. et al., 2009. Minipig in Pharmacology,Pharmacokinetic and Toxicological Safety EvaluationStudies, Vol. 1. Newsletter from LAB Research, Laval,Quebec, Canada.

Meingassner, J.G., Kowalsky, E., Schwendinger, H. et al.,2003. Pimecrolimus does not affect Langerhans cells inmurine epidermis. British Journal of Dermatology149(4):853–7

Meloxicam, Anonymous, 1999a. FDA CDER Pharmacology ReviewPart 1. Dated September 17 1999. [020938_Meloxicam_pharmr_P1 (17SEP1999)].

Meloxicam, Anonymous, 1999b. FDA CDER Pharmacology ReviewPart 2. Dated September 17 1999. [020938_Meloxicam_pharmr_P2 (17SEP1999)].

Meloxicam, Anonymous, 2008. FDA CDER Label. Dated 30September 2008. [Label 021530/S-006; 020938/S-018(2008-jun-30)].

Mequinol Tretinoin, Anonymous, 1998. FDA CDER Medical/Clinical Review for NDA 20-922. [Medical/Clinical Review020922s-000 Part 01 (1998-nov-23)].

Mequinol Tretinoin, Anonymous, 1999. FDA CDER PharmacologyReview for NDA 20-922. Pharmacology Review 020922/S000(1999-mar-30).

Methyl Aminolevulinate, Anonymous, 2002. FDA CDERPharmacology Review for NDA 21-415. Dated 4 August 2002.[021415s-000 (2002-aug-04)].

Methyl Aminolevulinate, Anonymous, 2004. FDA CDER Label forNDA 21-415. [021415s-001 27JUL2004]. Minoxidil, Anonymous,2005. FDA-CDER Pharmacology Review for NDA 21-812. SignedSEP/27/2005. [021812s000_PharmR]. Nakagawa, H., 2006.Comparison of the ef¢cacy and safety of 0.1% tacrolimusointment with topical corticosteroids in adult patients

with atopic dermatitis: Review of randomised, double-blindclinical studies conducted in Japan. Clinical DrugInvestigation 26(5):235–46. Nghiem, P., Pearson, G., andLangley, R.G., 2002. Tacrolimus and pimecrolimus: Fromclever prokaryotes to inhibiting calcineurin and treatingatopic dermatitis. Journal of the American Academy ofDermatology 46:228–41. Oyen, R., 2005. Safety of ultrasoundcontrast agents. In H.S. Thomsen (Ed.), Contrast MediaSafety Issues and ESUR Guidelines. Springer Verlag,Berlin, Heidelberg. Peters, T., (2005). Pigs/Minipigs asthe Second Species in Toxicology Studies—A RegulatoryPerspective. Copenhagen: Presentation at the EuropeanSociety of Toxicological Pathology. Pimecrolimus,Anonymous, 2001a. FDA CDER Pharmacology Review for NDA21-302. [021302/S-000 Part 04 (2001-sep-12)].Pimecrolimus, Anonymous, 2001b. FDA CDER PharmacologyReview for NDA 21-302. [021302/S-000 Part 05(2001-sep-12)]. Pimecrolimus, Anonymous, 2007. FDA CDERLabel for NDA 21-302. [Label 021302s-012 (2007-aug-14)].Pramipexole, Anonymous, 1997. FDA CDER Pharmacology Reviewfor NDA 20-667 part 8. [020667a_pharmr_P8]. Pramipexole,Anonymous, 2005. EMA— EPAR Scienti¢c Discussion.Pramipexole, Anonymous, 2010. EMA—EPAR Product Information[updated version, July 2010]. Quinupristin Dalfopristin,Anonymous, 1998. FDA CDER Pharmacology Review for NDA.Dated 27JAN1998. [PharmR050748s-000 (27JAN1998)].Retapamulin, Anonymous, 2007a. FDA CDER Medical Review forNDA 22-055. Document dated APR2007. [022055s000_MedR].Retapamulin, Anonymous, 2007b. EMA Altargo EPAR—Scienti¢cDiscussion [19JUN2007]. Rickes, R., Uhle, C., Kahl, S. et al., 2006. Echo enhanced ultrasound: A new valid initialimaging approach for severe acute pancreatitis. Gut 2006,55:74–8 Ring, J., Möhrenschlager, M., and Henkel, V., 2008.The US FDA ‘black box’ warning for topical calcineurininhibitors: An ongoing controversy. Drug Safety31(3):185–98. Rivastigmine, Anonymous, 2007a. FDA CDERLabel for NDA 22-083. Dated 09JUL2007. [022083/S-000(09JUL2007)]. Rivastigmine, Anonymous, 2007b. FDA CDERPharmacology review part 01 for NDA 22-083. Dated06JUL2007. [022083/ S-000 Part 01 (06JUL2007)]. Rotigotine,Anonymous, 2006a. FDA CDER Pharmacology Review 1 for NDA21-829. Memorandum dated March 1, 2006.[021829s000_PharmR_P1]. Rotigotine, Anonymous, 2006b. FDACDER Pharmacology Review 2 for NDA 21-829. Memorandumdated February 27 2006. [021829s000_PharmR_P2]. Ruffolo,R.R. and Feuerstein, G.Z., 1997. Pharmacology ofcarvedilol: Rationale for use in hypertension, coronaryartery disease, and congestive heart failure.Cardiovascular Drugs and Therapy 11(suppl 1):247–56.

Ruffolo, R.R., Boyle, D.A., Venuti, R.P. et al. 1993.Preclinical and clinical pharmacology of carvedilol.Journal of Human Hypertension 7(Suppl 1):S2–15.

Selegiline, Anonymous, 2004. FDA CDER Pharmacology Reviewfor NDA 21-336/21-708. Memorandum dated January 1, 2004[021336s000_021708s000_PharmR_Part1].

Selegiline, Anonymous, 2006. FDA CDER Label for NDA21-336/21-708. [021336s000_021708s000_printed label].

Spergel, J.M. and Leung, D.Y., 2006. Safety of topicalcalcineurin inhibitors in atopic dermatitis: Evaluation ofthe evidence. Current Allergy and Asthma Reports6(4):270–4.

Sponer, G., Strein, K., Bartsch, W. et al., 1992.Vasodilatory action of carvedilol. Journal ofCardiovascular Pharmacology 19(Suppl 1):S5–11.

Stoppolino, G., Prisco, F., Santinelli, R. et al., 1983.Potential hazards of topical steroid therapy. AmericanJournal of Diseases of Children 137:1130–1.

Sulphur Hexa�uoride, Anonymous, 2000. FDA-CDERPharmacology Review for NDA 21-135. Date of ReviewSEP/07/2000. [21135_Venofer_pharmr_P1].

Sulphur Hexa�uoride, Anonymous, EMA. 2004. SulphurHexa�uoride—Scienti¢c Discussion. European MedicinesAgency.

Sulphur Hexa�uoride, Anonymous, EMA. 2007. SulphurHexa�uoride—EPAR summary report for the public. EuropeanMedicines Agency.

Tacrolimus, Anonymous, 2000a. FDA CDER Pharmacology ReviewPart 2 for NDA 50-777. [050777/S-000 Part 02(2000-aug-03)].

Tacrolimus, Anonymous, 2000b. FDA CDER Pharmacology ReviewPart 3 for NDA 50-777. [050777/S-000 Part 03(2000-aug-03)].

Tacrolimus, Anonymous, 2005. FDA CDER Label for NDA Label50-777. [050777s-012 (2005-nov-30)].

Tapentadol Hydrochloride, Anonymous, 2008. FDA CDERPharmacology review part 02 for NDA 22-304. Dated18NOV2008. [PharmR 022304/S-000 Part 02 (18NOV2008)].

Tazarotene, Anonymous, 1996. FDA CDER Pharmacology reviewpart 01 for NDA 20-600. Date stamped 28APR1996.[20600_TAZORAC_0.05%25_AND_0.1%25_PHARMR_ P1 (date stamped28APR1996)]. Tazarotene, Anonymous, 2001a. FDA CDERPharmacology review part 01 for NDA 21-184. Dated19SEP2001. [PharmR 021184s-001 Part 01 (19SEP2001)].Tazarotene, Anonymous, 2001b. FDA CDER Pharmacology ReviewPart 2 for NDA 21-184. [Pharmacology Review 021184/S-001Part 01 (2001-jul-29)]. Tazarotene, Anonymous, 2002. FDACDER Label for NDA 21-184. Dated 30SEP2002. [Label021184/S-002 (30SEP2002)]. Tazarotene, Anonymous, 2002a.FDA CDER Label for NDA 21-184. [Label 021184/S-002(2002-aug-31)]. Tazarotene, Anonymous, 2002b. FDA CDERPharmacology Review Part 2 for NDA 21-184. [021184s-002(2002-jan-18)]. Tazarotene, Anonymous, 2003. FDA CDER Labelfor NDA 20-600. [Label 020600s-003/S-005 (2003-nov-30)].Tazarotene, Anonymous, 2003. FDA CDER Label for NDA 20-600.Dated 30NOV2003. [Label 020600s-003/S-005 (30NOV2003)].Teitelbaum, S.L., 2000. Bone resorption by osteoclasts.Science 289(5484):1504–8. Telavancin, Anonymous, 2009. FDACDER Pharmacology Review for NDA 22-110, Dated 03SEP2009.[Pharmacology Review 022110s-000 (03SEP2009)]. Thaçi, D.and Salgo, R., 2010. Malignancy concerns of topicalcalcineurin inhibitors for atopic dermatitis: Facts andcontroversies. Clinics in Dermatology 28(1):52–6. Türck,D., Roth, W., and Busch, U., 1996. A review of the clinicalpharmacokinetics of meloxicam. British Journal ofRheumatology 35(Suppl 1):13–16. van der Laan, J.W.,Brightwell, J., McAnulty, P. et al., 2010. Regulatoryacceptability of the minipig in the development ofpharmaceuticals, chemicals and other products. Journal ofPharmacological and Toxicological Methods. 62(2): 184–95.Van Vleet J.F., Herman E.H., and Ferrans, V.J., 1984.Cardiac morphologic alterations in acute minoxidilcardiotoxicity in miniature swine. Experimental andMolecular Pathology 41(1):10–25. Wu, K.M., Ghantous, H.,and Birnkrant, D.B., 2008. Current regulatory toxicologyperspectives on the development of herbal medicines toprescription drug products in the United States. Food andChemical Toxicology 46(8):2606–10.

40 Chapter 40: Regulatory Acceptance ofthe Minipig in Non-PharmaceuticalIndustry and Research

Abril, R., Garrett, J., Zeller, S.G., Sander, W.J., andMast, R.W. (2003). Safety assessment of DHA-richmicroalgae from Schizochytrium sp. Part V: Target animalsafety/toxicity study in growing swine. Regul. Toxicol.Pharmacol. 37(1): 73–82.

Aherne, F.X., Bowland, J.P., Christian, R.G., and Hardin,R.T. (1976). Performance of myocardial and blood seralchanges in pigs fed diets containing high or low erucicacid rapeseed oils. Can. J. Anim. Sci. 56: 275–284.

Ahrens, F., Hagemeister, H., Pfeuffer, M., and Barth, C.A.(1986). Effects of oral and intracecal pectinadministration on blood lipids in minipigs. J. Nutr.116(1): 70–76.

Antwi, F.B., Shama, L.M., and Peterson. R/K. (2008). Riskassessments for the insect repellents DEET and picaridin.Regul. Toxicol. Pharmacol. Jun; 51(1): 31–36.

Arbuckle, L.D. and Innis, S.M. (1993). Docosahexaenoic acidis transferred through maternal diet to milk and totissues of natural milk-fed piglets. J. Nutr. 123(10):1668–1675.

Arbuckle, L.D., MacKinnon, M.J., and Innis, S.M. (1994).Formula 18:2(n-6) and 18:3(n-3) content and ratio in�uencelongchain polyunsaturated fatty acids in the developingpiglet liver and central nervous system. J. Nutr. 124:289–298.

Asplund, K., Hakkinen, M., Björkroth, J., Nuotio, L., andNurmi, E. (1996). Inhibition of the growth of Yersiniaenterocolitica O:3 by the micro�ora of porcine caecum andileum in an in vitro model. J. Appl. Bacteriol. 81:217–222.

ATSDR (2002). Toxicological pro¢le for creosote: Update.Atlanta, GA, US Department of Health and Human Services,Public Health Service, Agency for Toxic Substances andDisease Registry, Division of Toxicology, ToxicologyInformation Branch.

Baekey, P.A., Cerda, J.J., Burgin, C.W., Robbins, F.L.,Rice, R.W., and Baumgartner, T.G. (1988). Grapefruitpectin inhibits hypercholesterolemia and atherosclerosis

in miniature swine. Clin. Cardiol. 11(9): 597–600.Barrett, D.S. and Oehme, F.W. (1994a). The effect of asingle oral dose of tri-o-cresyl phosphate on neurotoxicesterase and acetylcholinesterase activities in thecentral nervous system, erythrocytes and plasma. Vet. Hum.Toxicol. 36(1): 1–4. Barrett, D.S., Oehme, F.W.,Kruckenberg, S.M., and Smith, J.E. (1994b). Clinicalmanifestations and leukocyte neurotoxic esterase and redblood cell and plasma acetylcholinesterase activities inswine following a single oral dose of tri-o-cresylphosphate. Vet. Hum. Toxicol. 36(2): 103–109. Bauer, E.,Williams, B. A., Smidt, H., Verstegen, M. W. A., andMosenthin, R. (2006). In�uence of the gastrointestinalmicrobiota on development of the immune system in younganimals. Curr. Issues Intestinal. Microbiol. 7: 35–52.Besser, R., Gutmann, L., and Weilemann, L.S. (1993).Polyneuropathy following parathion poisoning. J. Neurol.Neurosurg. Psychiatr. 56: 1135–1136. Bidlack, R., Birt, D.,Borzelleca, J., Clemens, R., Coutrells, N., Coughlin, J.R., Dunaif, G. E., Ebert, A., Hall, R., Heimbach, J. T.,Helferich, W., Magnuson, B., McColl, D. B., McQuate, R.S., Munro, I., Petersen, B., Roberts, A., Scimeca, J., andSlayne, M. (2009). Making decisions about the risks ofchemicals in foods with limited scienti¢c information.Comp. Rev. Fd. Sci. Fd Safety 8: 269–303. Bird, A.R.,Hayakawa, T., Marsono, Y., Gooden, J.M., Record, I.R.,Correll, R.L., and Topping, D.L. (2000). Coarse brown riceincreases fecal and large bowel short-chain fatty acids andstarch but lowers calcium in the large bowel of pigs. J.Nutr. 130(7): 1780–1787. Bjorkman, O., Crump, M., andPhillips, R. W. (1984). Intestinal metabolism of orallyadministered glucose and fructose in Yucatan miniatureswine. J. Nutr. 114(8): 1413–1420. Borzelleca, J.F. (1992).Macronutrient substitutes: Safety evaluation. Regul.Toxicol. Pharmacol. 16(3): 253–264. Brandtzaeg, P. (2003).Mucosal immunity: Integration between mother and thebreast-fed infant. Vaccine 21: 3382–3388. Burgert, S.L.,Andersen, D.W., Stegink, L.D., Takeuchi, H., and Schedl,H.P. (1991). Metabolism of aspartame and itsL-phenylalanine methyl ester decomposition product by theporcine gut. Metabolism 40(6): 612–618. Burrin, D.G.,Stoll, B., Jiang, R., Chang, X., Hartmann, B., Holst, J.,Greeley Jr, G. H., and Reeds, P. J. (2000). Minimal enteralnutrient requirements for intestinal growth in neonatalpiglets: How much is enough? Am. J. Clin. Nutr. 71:1603–1610. Burrin, D.G., Janeczko, M.J., and Stoll, B.(2008). Emerging aspects of dietary glutamate metabolismin the developing gut. Asia Pac. J. Clin. Nutr. 17 Suppl1: 368–371. Butterworth, K.R., Gaunt, I.F., Grasso, P., andGangolli, S.D. (1976). Short-term toxicity of erythrosine

BS in pigs. Food Cosmet. Toxicol. 14(6): 533–536. Cardona,T.D., Ilangantileke, S. G., and Noomhorm, (2000). A�atoxinresearch on grain in Asia—Its problems and possiblesolutions A. FAO (Corporate Document Repository)www.fao.org/docrep/X5036E/x5036E1e.htm Cerda, J.J.,Normann, S.J., Sullivan, M.P., Burgin, C.W., Robbins,F.L., Vathada, S., and Leelachaikul, P. (1994). Inhibitionof atherosclerosis by dietary pectin in microswine withsustained hypercholesterolemia. Circulation. 89(3):1247–1253. Chiavaro, E., Lepiani, A., Colla, F., Bettoni,P., Pari, E., and Spotti, E. (2002) Ochratoxin Adetermination in ham by immunoaf¢nity clean-up and a quick�uorometric method. Food Addit. Contam. 19: 575–581.

Codex Alimentarius Commission Joint FAO/WHO Food StandardsProgramme Food and Agriculture Organization of the UnitedNations, Rome, 2004.

Codex Committee on Contaminants in Foods Joint FAO/WHOFood Standards Programme Second Session. The Hague, theNetherlands, 31 March–4 April 2008 Discussion Paper onOchratoxin A in cocoa.

Conning, D.M. (1995). Toxicology of food and foodadditives. In B. Ballantyne, T. Marrs and P. Turner (ed.),General and Applied Toxicology. pp. 1213–1241. MacmillanPress Limited.

Conway, P.L. (1994). Function and regulation of thegastrointestinal microbiota of the pig. In: Ouffrant, W.B.and Hagemeister, H., (eds). Proceedings of the VIthInternational Symposium on Digestive Physiology in Pigs.Dummerstof, Germany: EAAP Publication no. 80: 231–240.

Cooper, D.A., Berry, D.A., Spendel, V.A., Kiorpes, A.L.,and Peters, J.C. (1997a). The domestic pig as a model forevaluating Olestra’s nutritional effects. J. Nutr. 127(8Suppl): 1555S–1565S.

Cooper, D.A., Berry, D.A., Spendel, V.A., King, D.,Kiorpes, A.L., and Peters J.C. (1997b). Olestra doseresponse on fat-soluble and water-soluble nutrients in thepig. J. Nutr. 127(8 Suppl): 1573S–1588S.

Cooper, D.A., Berry, D.A., Jones, M.B., Kiorpes, A.L., andPeters, J.C. (1997c). Olestra’s effect on the status ofvitamins A, D, and E in the pig can be offset byincreasing dietary levels of these vitamins. J. Nutr.127(8 Suppl): 1589S–1608S.

Cooper, D.A., Berry, D.A., Spendel, V.A., Jones, M.B.,Kiorpes, A.L., and Peters, J.C. (1997d). Nutritionalstatus of pigs fed Olestra with and without increaseddietary levels of vitamins A and E in long-term studies.J. Nutr. 127(8 Suppl): 1609S–1635S.

Craig-Schmidt, M.C., Stieh, K.E., and Lien, E.L. (1996).Retinal fatty acids of piglets fed docosahexaenoic andarachidonic acids from microbial sources. Lipids 31:53–59.

Curtui, V.G., Gareis, M., Usleber, E., and Martlbauer, E.(2001). Survey of Romanian slaughtered pigs for theoccurrence of mycotoxins ochratoxins A and B, andzearalenone. Food Addit. Contam. 18: 730–738.

Daabees, T.T., Andersen, D.W., Zike, W.L., Filer, L.J. Jr.,and Stegink, L.D. (1984). Effect of meal components onperipheral and portal plasma glutamate levels in young pigsadministered large doses of monosodium-L-glutamate.Metabolism 33(1): 58–67.

Daher, G.C., Cooper, D.A., and Peters, J.C. (1997).Physical or temporal separation of Olestra and vitamins A,E, and D intake decreases the effect of Olestra on thestatus of the vitamins in the pig. J. Nutr. 127(8Suppl):1566S–1572S.

Dangour, A. D. and Uauy, R. (2008). n–3 long-chainpolyunsaturated fatty acids for optimal function duringbrain development and ageing. Asia Pac. J. Clin. Nutr.17(S1): 185–188.

Darragh, A.J. and Moughan, P.J. (1995). The three-week-oldpiglet as a model animal for studying protein digestion inhuman infants. J. Pediatr. Gastroenterol. Nutr. 21(4):387–393.

Dawson, R.M. (1994). Review of oximes available fortreatment of nerve agent poisoning. J. Appl. Toxicol.14(5): 317–331. Dearman, R.J. and Kimber, I. (2009). Animalmodels of protein allergenicity: Potential bene¢ts,pitfalls, and challenges. Clin. Exp. Allergy. 39: 458–468.Derelanko, M. J. (2002). Risk assessment. In M. J.Derelanko and M. A. Hollinger (eds), Handbook ofToxicology. Second Edition, pp. 1060–1062. Boca Raton, FL:CRC Press. Dickerson, J.W. and Dobbing, J. (1966). Somepeculiarities of cerebellar growth in pigs. Proc. R. Soc.Med. 59(11/1): 1088. Dobbing, J. and Sands, J. (1973).Quantitative growth and development of human brain. Arch.

Dis. Child. 48(10): 757–767. Dobbing, J. and Sands, J.(1979). Comparative aspects of the brain growth spurt.Early Hum. Dev. 3: 79–84. Dorandeu, F., Mikler, J.R.,Thiermann, H., Tenn, C., Davidson, C., Sawyer, T.W.,Lallement G., and Worek, F. (2007). Swine models in thedesign of more effective medical countermeasures againstorganophosphorus poisoning. Toxicology 20;233(1–3):128–144. Douglas, W.R. (1972). Of pigs and men andresearch: A review of applications and analogies of thepig, Sus scrofa, in human medical research. Space LifeSci. 3(3): 226–234. Dragacci, S., Grosso, F., Bire, R.,Fremy, J.M., and Coulon, S.A. (1999). French monitoringprogramme for determining ochratoxin A occurrence in pigkidneys. Nat. Toxins 7: 167–173. Dupont, J., White, P.J.,Johnston, K.M., Heggtveit, H.A., McDonald, B.E., Grundy,S.M., and Bonanome, A. (1989). Food safety and healtheffects of canola oil. J. Am. Coll. Nutr. 8(5): 360–375.Earl, F.L., Melveger, B.E., Reinwall, J.E., Bierbower,G.W., and Curtis, J.M. (1971). Diazinontoxicity–comparative studies in dogs and miniature swine.Toxicol. Appl. Pharmacol. 18(2): 285–295. Ecobichon, D. J.(2001). Toxic effects of pesticides. In Curtis, K. (ed),Casarett and Doull’s Toxicology The Basic Science ofPoisons. Sixth Edition. pp. 763–810. Klaassen: McGraw-Hill.Ecobichon, D. (2002). Reproductive toxicology. In M. J.Derelanko and M. A. Hollinger (eds), Handbook ofToxicology. Second Edition, p. 465. Boca Raton, FL: CRCPress. Eddleston, M. (2000). Patterns and problems ofdeliberate selfpoisoning in the developing world. Q. J.Med. 93: 715–731. Eddleston, M. and Phillips, M.R. (2004).Self poisoning with pesticides. B.M.J. 328: 42–44.Eddleston, M. and Clutton, E. (2009). A pig model ofdimethoate pesticide poisoning. Selected Abstracts fromthe 7th Congress Meeting of the Asia Paci¢c Association ofMedical Toxicology. J. Med. Tox. 5(3): 170. Elling, F.(1979a). Ochratoxin A-induced mycotoxic porcinenephropathy: Alterations in enzyme activity in tubularcells. Acta Pathol. Microbiol. Scand. 87: 237–243. Elling,F. (1979b). Enzyme histochemical studies of ochratoxinA-induced mycotoxic porcine nephropathy (abstract). In 6thInternational Symposium on Animal, Plant and MicrobialToxins. Uppsula. Toxicology 17: 1–209. Elling, F. (1983).Feeding experiments with ochratoxin A-contaminated barleyto bacon pigs. IV. Renal lesions. Acta Agric. Scand. 33:153–159. Elling, F., Nielsen, J.P., Lillehoj, E.B.,Thomassen, M.S., and Størmer, F.C. (1985). OchratoxinA-induced porcine nephropathy: Enzyme and ultrastructurechanges after shortterm exposure. Toxicology 23: 247–254.

Environment Canada Health Canada (2009). Screening

Assessment for the Challenge Phosphoric Acid TributylEster (Tributyl Phosphate) Chemical Abstracts ServiceRegistry Number 126–73–8.

European Parliament and Council Directive 86/609/EEC (1986)on the approximation of laws, regulations andadministrative provisions of the Member States regardingthe protection of animals used for experimental and otherscienti¢c purposes. Of�cial Journal of the EuropeanCommunities (December): L358.

European Parliament and Council Directive 88/388/EEC (1988)on the approximation of the laws of the Member Statesrelating to �avourings for use in foodstuffs and to sourcematerials for their production. Of�cial Journal of theEuropean Communities (July): L184.

European Parliament and Council Directive 89/107/EEC (1989)on the approximation of the laws of the Member Statesconcerning food additives authorised for use in foodstuffsintended for human consumption. Of�cial Journal of theEuropean Communities. (Feb): L40.

European Parliament and Council Directive 91/414/EEC (1991)concerning the placing of plant protection products on themarket. Of�cial Journal of the European Communities. L230.

European Parliament and Council Directive 94/35/EC (1994)on the approximation of the laws of the Member Statesconcerning sweeteners for use in foodstuffs intended forhuman consumption. Of�cial Journal of the EuropeanCommunities. (Sep.): L237.

European Parliament and Council Directive 94/36/EC (1994)on the approximation of the laws of the Member Statesconcerning colours for use in foodstuffs intended forhuman consumption. Of�cial Journal of the EuropeanCommunities. (Sep.): L237.

European Parliament and Council Directive 95/2/EC (1995) onfood additives other than colours and sweeteners. Of�cialJournal of the European Communities (March): L61.

European Parliament and Council of European Union.Regulation (EC) No 1935/2004 (2004) of the EuropeanParliament and of the Council on materials and articlesintended to come into contact with food and repealingDirectives 80/590/EEC and 89/109/EEC. Of�cial Journal ofthe European Union (Nov): L338/4.

European Parliament and Council of European Union.Commission Regulation (EC) No 2073/2005 (2005) onmicrobiological criteria for foodstuffs (Text with EEArelevance). Of�cial Journal of the European Union (Dec):L338.

European Parliament and Council of European Union.Commission Regulation (EC) No 2074/2005 (2005) laying downimplementing measures for certain products under Regulation(EC) No 853/2004 of the European Parliament and of theCouncil and for the organisation of of¢cial controls underRegulation (EC) No 854/2004 of the European Parliament andof the Council and Regulation (EC) No 882/2004 of theEuropean Parliament and of the Council, derogating fromRegulation (EC) No 852/2004 of the European Parliament andof the Council and amending Regulations (EC) No 853/2004and (EC) No 854/2004 (Text with EEA relevance), Of�cialJournal of the European Union. (Dec): L338.

European Parliament and Council of European Union.Regulation (EC) No 1331/2008 (2008) of the EuropeanParliament and of the Council establishing a commonauthorisation procedure for food additives, food enzymesand food �avourings. Of�cial Journal of the EuropeanUnion. (Dec): L354/1. European Parliament and Council ofEuropean Union. Regulation (EC) No 1332/2008 (2008) of theEuropean Parliament and Council on food enzymes andamending Council Directive 83/417/EEC, Council Regulation(EC) No 1493/1999, Directive 2000/13/EC, Council Directive2001/112/EC and Regulation (EC) No 258/97. Of�cial Journalof the European Union. (Dec): L354/7. European Parliamentand Council of European Union. Regulation (EC) No1333/2008 (2008) of the European Parliament and of thecouncil of 16 December 2008 on food additives. Of�cialJournal of the European Union. (Dec): L354/16. EuropeanParliament and Council of European Union. Regulation (EC)No 1334/2008 (2008) of the European Parliament and of thecouncil on �avourings and certain food ingredients with�avouring properties for use in and on foods and amendingCouncil Regulation (EEC) No 1601/91, Regulations (EC) No2232/96 and (EC) No 110/2008 and Directive 2000/13/ECOf�cial Journal of the European Union. (Dec): L354/34.European Parliament and Council of European Union. EuropeanParliament and Council Regulation (EC) No 1107/2009 (2009)concerning the placing of plant protection products on themarket and repealing Council Directives 79/117/ EEC and91/414/EEC Of�cial Journal of the European Union L309/1.European Food Safety Authority (EFSA) (2008a). Conclusionregarding the peer review of the pesticide risk assessmentof the active substance tri�umuron. Conclusion on the peer

review of tri�umuron. EFSA Scienti�c Report 194: 1–93.European Food Safety Authority (EFSA) (2008b). Conclusionregarding the peer review of the pesticide risk assessmentof the active substance quizalofop-P, EFSA Scienti�cReport 205: 1–216. European Food Safety Authority (EFSA)(2009). Scienti¢c Opinion of the Scienti¢c CommitteeExisting approaches incorporating replacement, reductionand re¢nement of animal testing: Applicability in food andfeed risk assessment. (Question No EFSA-Q-2005–231).Adopted on 8 April 2009. The EFSA Journal 1052: 1–77.Fang, M., Lorke, D.E., Li. J., Gong, X., Yew, J.C., andYew, D.T. (2005). Postnatal changes in functionalactivities of the pig’s brain: A combined functionalmagnetic resonance imaging and immunohistochemical study.Neurosignals 14(5): 222–233. Farber, T.M., Ritter, D.L.,Weinberger, M.A., Bierbower, G., Tanner, J.T., Friedman,M.H., Carter, C.J., Earl, F.L., and van Loon E.J. (1976).The toxicity of brominated sesame oil and brominatedsoybean oil in miniature swine. Toxicology 5(3): 319–336.Feron, V. J. and Wensvoort, P. (1973). Gastric and caecalleisions in pigs following the feeding of sulphite.Tijdschr Diergeneeskd 98(8): 377–387. Flynn, T.J. (1984).Developmental changes of myelin-related lipids in brain ofminiature swine. Neurochem. Res. 9(7): 935–945. Food andAgriculture Organisation Nutrition Meetings Report Series48a. Brominated vegetable oils. http://www.inchem.org/documents/jecfa/jecmono/v48aje02.htm Food andAgriculture Organisation/World Health Organisation ExpertCommittee on Food Additives. 56 th Report. Geneva,Switzerland, 2001.

Food and Agriculture Organization of the United Nations(2002), International Code of Conduct on the Distributionand Use of Pesticides.

Food and Agriculture Organisation/World Health OrganisationExpert Committee on Food Additives. 59 th Report of theWHO Technical Report Series No. 913, pp. 32–35, WorldHealth Organisation, Geneva, Switzerland, 2002.

Food Sanitation Law, Law No. 233 December 24, 1947. Lastamendment Law No. 87, July 26, 2005.

Forsum, E., Göranzon, H., Rundgren, M., Thilén, M., andHambraeus, L. (1981). Protein evaluation of mixed diets.Comparative study in man and in the pig and rat ofvegetable–animal and vegetable protein diets. Ann. Nutr.Metab. 25(3): 137–150.

Frank, H. K. (1991). Food contamination by Ochratoxin A in

Germany. IARC. Sci Publ. (115): 77–81.

Gaunt, I.F., Hall, D.E., Grasso, P., and Goldberg, L.(1968). Studies on brown FK. V. Short-term feeding studiesin the rat and pig. Food Cosmet. Toxicol. 6(3): 301–312.

Gaunt, I.F., Colley, J., Creasey, M., and Grasso, P.(1969a). Shortterm toxicity of black PN in pigs. FoodCosmet. Toxicol. 7(6): 557–563.

Gaunt, I.F., Grasso, P., Kiss, I.S., and Gangolli, S.D.(1969b). Short-term toxicity study on carmoisine in theminiature pig. Food Cosmet. Toxicol. 7(1): 1–7.

Gaunt, I.F., Grasso, P., Creasey, M., and Gangolli, S.D.(1969c). Short-term toxicity study on Ponceau 4R in thepig. Food Cosmet. Toxicol. 7(5): 443–449.

Gaunt, I.F., Kiss, I.S., Grasso, P., and Gangolli, S.D.(1969d). Short-term toxicity study on sunset yellow FCF inthe miniature pig. Food Cosmet. Toxicol. 7(1): 9–16.

Gaunt, I.F., Kiss, I.S., Grasso, P., and Gangolli, S.D.(1969e). Short-term toxicity study on indigo carmine inthe pig. Food Cosmet. Toxicol. 7(1): 17–24.

Gaunt, I.F., Butterworth, K.R., Grasso, P., and Hooson, J.(1975). Short-term toxicity of yellow 2G in pigs. FoodCosmet. Toxicol. 13(1): 1–5.

Gershoff, S.N. (1995). Nutrition evaluation of dietary fatsubstitutes. Nutr. Rev. 53(11): 305–313.

Glaser, D., Wanner, M., Tinti, J.M., and Nofre, C. (2000).Gustatory responses of pigs to various natural andarti¢cial compounds known to be sweet in man. Food Chem.68: 375–385.

Green, T.J. and Innis, S.M. (2000). Low erucic acid canolaoil does not induce heart triglyceride accumulation inneonatal pigs fed formula. Lipids 35(6): 607–612.

Goldenthal, E.I. (1991). Evaluation of DEET in a 90-daysubchronic dermal toxicity study in micropigs.International Research and Development, Corp.; Study No.555–018. Submitted to EPA by DEET Joint Venture/ChemicalSpecialties Manufacturers Association.

Gresham, G.A. (1972). Atherosclerosis in man: Naturalhistory and effects. Proc. Nutr. Soc. 31: 303–305.

Gu, L., House, S.E., Prior, R.L., Fang, N., Ronis, M.J.J.,Clarkson, T.B., Wilson, M.E., and Badger, T.M. (2006).Metabolic phenotype of iso�avones differ among femalerats, pigs, monkeys and women. J. Nutr. 136: 1215–1221.

Hansen, E. and Olsen, P. (1978). Peroral toxicity of OrangeRN in pigs. Early haematological changes. Arch. Toxicol.Suppl. (1): 313–315. Hansen, E.V., Würtzen, G.,Søndergaard, D., and Skydsgaard, P. (1978). A short termperoral study of the food colour, Ponceau 6R in pigs.Toxicology 10(4): 363–368. Hansen, E.V., Meyer, O., andOlsen, P. (1982). Study of toxicity of butylatedhydroxyanisole (BHA) in pregnant gilts and their foetuses.Toxicology 23(1): 79–83. Harvey, R.B., Kubena, L.F.,Elissalde, M.H., Rottinghaus, G.E., and Corrier, D.E.(1994). Administration of ochratoxin A and T-2 toxin togrowing swine. Am. J. Vet. Res. 55(12): 1757–1761.Hartmann, J.F., Hutchison, C.F., and Jewell, M.E. (1984).Pig bronchial mucous membrane: A model system forassessing respiratory mucus release in vitro. Exp. LungRes. 6: 59–70. Hayes, J.R., Wilson, N.H., Pence, D.H., andWilliams, K.D. (1994a). Subchronic toxicity studies ofsalatrim structured triacylglycerols in rats.Triacylglycerols composed of stearate, acetate, propionateand butyrate. J. Agric. Food Chem. 42: 552–562. Hayes,J.R., Wilson, N.H., Roblin, M.C., Mann, P.C., and Kiorpes,A.L. (1994b). 28-Day continuous dosing study in minipigswith a salatrim structured triacylglycerol composed ofstearate, acetate and propionate. J. Agric. Food Chem. 42:563–571. Helm, R.M., Furuta, G.T., Stanley, J.S., Ye, J.,Cockrell, G., Connaughton, C., Simpson, P., Bannon, G.A.,and Burks, A.W. (2002). A neonatal swine model for peanutallergy. J. Allergy Clin. Immunol. 109(1): 136–142.Herkert, N.M., Lallement, G., Clarençon, D., Thiermann, H.,and Worek, F. (2009). Comparison of the oxime-inducedreactivation of rhesus monkey, swine and guinea pigerythrocyte acetylcholinesterase following inhibition bysarin or paraoxon, using a perfusion model for thereal-time determination of membrane-boundacetylcholinesterase activity. Toxicology 258(2–3): 79–83.Hendy, R.J., Butterworth, K.R., Gaunt, I.F., Hooson, J.,and Grasso, P. (1978). Short-term toxicity study ofChocolate Brown HT in pigs. Toxicology 11(2): 189–192.Henkel, J. (November–December 1999). Sugar Substitutes:Americans Opt for Sweetness and Lite. FDA Consumer.http://web.archive.org/web/20071214170430/www.fda.gov/fdac/features/1999/699_sugar.html. Högberg, A., Lindberg,J.E., Leser, T., and Wallgren, P. (2004). In�uence ofcereal non-starch polysaccharides on ileo-caecal and

rectal microbial populations in growing pigs. Acta Vet.Scand. 45: 87–98. Hollinger, M. A. and Derelanko, M. J.(2002). In M. J. Derelanko and M. A. Hollinger (eds),Handbook of Toxicology. Second Edition, p. 1276. BocaRaton, FL: CRC Press. Hooper, N.M., Hesp, R.J., and Tieku,S. (1994). Metabolism of aspartame by human and pigintestinal microvillar peptidases. Biochem. J. 15: 635–639.Hrboticky, N., MacKinnon, M.J., and Innis, S.M. (1990).Effect of a vegetable oil formula rich in linoleic acid ontissue fatty acid accretion in the brain, liver, plasma,and erythrocytes of in fant piglets. Am. J. Clin. Nutr.51: 173–182. Hulan, H.W., Kramer, J.K., Mahadevan, S., andSauer, F.D. (1976). Relationship between erucic acid andmyocardial changes in male rats. Lipids 11(1): 9–15.

International Agency for Research on Cancer (IARC) (1993).Some Naturally Occurring Substances: Food Items andConstituents, Heterocyclic Aromatic Amines, and Mycotoxins.IARC Monographs on the Evaluation of Carcinogenic Risk ofChemicals to Humans, vol. 56. Lyon, France: InternationalAgency for Research on Cancer. p. 571.

Ilsley, S.E., Miller, H.M., and Kamel, C. (2005). Effectsof dietary quillaja saponin and curcumin on theperformance and immune status of weaned piglets. J. Anim.Sci. 83(1): 82–88.

Innis, S. M. (1991). Essential fatty acids in growth anddevelopment. Prog. Lipid Res. 30: 39–103.

Innis, S.M. (1993). The Colostrum-Deprived Piglet as aModel for Study of Infant Lipid Nutrition. Symposium:Animal Models in neonatal and Infant nutrition Research.J. Nutr. 123(2): 386–390.

Innis, S.M., Dyer, R., Wadsworth, L., Quinlan, P., andDiersenSchade, D. (1993a). Dietary saturated,monounsaturated, n-6 and n-3 fatty acids, and cholesterolin�uence platelet fatty acids in the exclusivelyformula-fed piglet. Lipids 28(7): 645–650.

Innis, S.M., Quinlan, P., and Diersen-Schade, D. (1993b).Saturated fatty acid chain length and positionaldistribution in infant formula: Effects on growth andplasma lipids and ketones in piglets. Am. J. Clin. Nutr.57(3): 382–390.

Innis, S.M. and Dyer, R.A. (1999). Dietary canola oilalters hematological indices and blood lipids in neonatalpiglets fed formula. J. Nutr. 129(7): 1261–1268.

International Programme on Chemical Safety (IPCS)(1991).Tri-nbutyl phosphate. Geneva World Health Organization.(Environmental Health Criteria 112). Jointly sponsored bythe United Nations Environment Programme, theInternational Labour Organization and the World HealthOrganisation.

International Programme on Chemical Safety (IPCS) (1998).Selected non-heterocyclic polycyclic aromatic hydrocarbons.Geneva, World Health Organisation, International Programmeon Chemical Safety (Environmental Health Criteria 202).

Jandacek R.J. (1982). The effect of nonabsorbable lipids onthe intestinal absorption of lipophiles. Drug Metab. Rev.13(4): 695–714.

Jelsing, J., Nielsen, R., Olsen, A. K., Grand, N.,Hemmingsen, R., and Pakkenberg, B. (2006). The postnataldevelopment of neocortical neurons and glial cells in theGöttingen minipig and the domestic pig brain. J. Exp.Biol. 209: 1454–1462.

Jensen, B. B. and Jørgensen, H. (1994). Effect of dietary¢ber on microbial activity and microbial gas production invarious regions of the gastrointestinal tract of pigs.Appl. Environ. Microbiol. 60: 1897–1904.

Jensen, R. G (1999). Lipids in human milk. Lipids 34(12):1243–1271.

Jimenez, A.M., Lopez de Cerain, A., Gonzalez-Penas, E., andBello, J. (2001). Determination of ochratoxin A in pigliverderived pates by high-performance liquidchromatography. Food Addit. Contam. 18: 559–563.

Krogh, P., Elling, F., Friis, C., Hald, B., Larsen, A.E.,Lillehøj, E.B., Madsen, A., Mortensen, H.P., Rasmussen,F., and Ravnskov, U. (1979). Porcine nephropathy inducedby longterm ingestion of ochratoxin. A. Vet. Pathol. 16(4):466–475.

Krogh, P., Gyrd-Hansen, N., Hald, B., Larsen, S., Nielsen,J.P., Smith, M., Ivanoff, C., and Meisner, H. (1988).Renal enzyme activities in experimental ochratoxinA-induced porcine nephropathy: diagnostic potential ofphosphoenolpyruvate carboxykinase and gamma-glutamyltranspeptidase activity. J. Toxicol. Environ. Health.23(1): 1–14.

Kurihara-Bergstrom, T., Woodworth, M., Feisullin, S., andBeall, P. (1986). Characterization of the Yucatanminiature pig skin and small intestine for pharmaceuticalapplications. Lab. Anim. Sci. 36(4): 396–409.

Ladics, G.S., Knippels, L.M., Penninks, A.H., Bannon, G.A.,Goodman, R.E., and Herouet-Guicheney, C. (2010). Review ofanimal models designed to predict the potentialallergenicity of novel proteins in genetically modi¢edcrops. Regul. Toxicol. Pharmacol. 50: 212–224.

Laerke, H.N. and Jensen, B.B. (1999). D-tagatose has lowsmall intestinal digestibility but high large intestinalfermentability in pigs. J. Nutr. 129(5): 1002–1009.

Laerke, H.N., Jensen, B.B., and Højsgaard, S. (2000). Invitro fermentation pattern of D-tagatose is affected byadaptation of the microbiota from the gastrointestinaltract of pigs. J. Nutr. 130(7): 1772–1779.

Lallès, J.P., Bosi, P., Smidt, H., and Stokes, C.R. (2007).Nutritional management of gut health in pigs aroundweaning. Proc. Nutr Soc. 66(2): 260–268.

Leary, H.L. and Lecce. J.J.G. (1976). Uptake ofmacromolecules by enterocytes on transposed and isolatedsmall intestine. J. Nutr. 106: 419–427.

Lee, W.J., Farmer, J.L., Hilty, M., and Kim, Y. B. (1998).The protective effects of lactoferrin feeding againstendotoxin lethal shock in germfree piglets. Infect. Immun.66(4): 1421–1426.

Leigh-Browne, G. and Harpur, R.P. (1975). Intestinalintubation in the unanaesthetised miniature pig: Techniquefor sampling and measurement of gut length per ¢stulam.Res. Vet. Sci. 18(1): 6–14.

Liu, L., Fishman, M.L., Hicks, K.B., and Kende, M. (2005).Interaction of various pectin formulations with porcinecolonic tissues. Biomaterials 26(29): 5907–5916.

Loh, G., Eberhard, M., Brunner, R. M., Hennig, U., Kuhla,S., Kleessen, B., and Metges, C.C. (2006). Inulin Altersthe Intestinal Microbiota and Short-Chain Fatty AcidConcentrations in Growing Pigs Regardless of Their BasalDiet. J. Nutr. 136: 1198–1202.

Maleck, W.H., Kern, N., Beha, U., Roth, C., RĂźfer, R., andPetroianu, G.A. (2002). Intravenous L-lactate application

in minipigs partially protects acetylcholinesteratic butnot butyrylcholinesteratic activity in plasma frominhibition by paraoxon. Crit. Care. Med. 30(7): 1547–1552.

Marin, D.E., Taranu, I., Bunaciu, R.P., Pascale, F., Tudor,D.S., Avram, N., Sarca, M., Cureu, I., Criste, R.D., Suta,V., and Oswald, I.P. (2002). Changes in performance, bloodparameters, humoral and cellular immune responses inweanling piglets exposed to low doses of a�atoxin. J.Anim. Sci. 80(5): 1250–1257.

McClellan, R. O. (1968). Applications of swine inbiomedical research. Lab. Anim. Care 18: 120–126. Merritt,R. J., Auestad, N., Kruger, C., and Buchanan, S. (2003).Safety evaluation of sources of docosahexaenoic acid andarachidonic acid for use in infant formulas in newbornpiglets. Food. Chem. Toxicol. 41: 897–904. Meerdink, G.L.(1989). Organophosphorus and carbamate insecticidepoisoning in large animals. Vet. Clin. North Am. FoodAnim. Pract. 5: 375–389. Mellor, D.J. and Cockburn, F.(1986). A comparison of energy metabolism in the new-borninfant, piglet and lamb. Q. J. Exp. Physiol. 71(3):361–379. Midwest Research Institute (MRI) (1992).Intravenous and dermal absorption, distribution, andexcretion of 14 C-tributyl phosphate in Yucatan ®minipigs: part I. Unpublished report. MRI Project No.9526-F(02). On behalf of Synthetic Organic ChemicalManufacturers Association, Inc. [cited in BG Chemie 2000].Miller, E.R. and Kornegay, E.T. (1983). Mineral and vitaminnutrition of swine. J. Anim. Sci. Suppl 2: 315–329. Miller,E.R. and Ullrey, D.E. (1987). The pig as a model for humannutrition. Annu. Rev. Nutr. 7: 361–382. Middleton, S.J.,Dwyer, J., and Peters, J.C. (1997). An indirect means ofassessing potential nutritional effects of dietary Olestrain healthy subgroups of the general population. J. Nutr.127 (8 Suppl): 1710S–1718S. Mocchegiani, E., Corradi, A.,Santarelli, L., Tibaldi, A., DeAngelis, E., Borghetti, P.,Bonomi, A., Fabris, N., and Cabassi, E. (1998). Zinc,thymic endocrine activity and mitogen responsiveness (PHA)in piglets exposed to maternal a�atoxicosis B1 and G1.Vet. Immunol. Immunopathol. 62: 245–260. Moog, F. (1979).Endocrine in�uences on the functional differentiation ofteh small intestine. J. Anim. Sci. 49: 239–249. Moore, W.E. C., Moore, L. V. H., Cato, E. P., Wilkins, T. D., andKornegay, E. T. (1987). Effect of High-Fiber and High-OilDiets on the Fecal Flora of Swine. Appl. Environ.Microbiol. 53(7): 1638–1644. Moughan, P.J., Birtles, M.J.,Cranwell, P.D., Smith, W.C., and Pedraza, M. (1992). Thepiglet as a model animal for studying aspects of digestionand absorption in milk-fed human infants. World Rev. Nutr.

Diet. 67: 40–113. Mousing, J., Kyrval, J., Jensen, T.K.,Aalbaek, B., Buttenschon, J., Svensmark, B., and P.Willeberg, P. (1997). Meat safety consequences ofimplementing visual postmortem meat inspection proceduresin Danish slaughter pigs. Vet. Rec. 140: 472–477. Munro,I.C., Middleton, E.J., and Grice, H.C. (1969). Biochemicaland pathological changes in rats fed brominated cottonseedoil for 80 days. Food Cosmet. Toxicol. 7(1): 25–33. Munro,I.C., Hand, B., Middleton, E.J., Heggtveit, H.A., andGrice, H.C. (1971). Biochemical and pathological changesin rats fed low dietary levels of brominated cottonseedoil. Food Cosmet. Toxicol. 9(5): 631–637. Munro, I.C.,Hand, B., Middleton, E.J., Heggtveit, H.A., and Grice,H.C. (1972). Toxic effects of brominated vegetable oils inrats. Toxicol. Appl. Pharmacol. 22(3): 423–429. Myers, M.J., Farrell, D. E., Howard, K. D., and Kawalek, J. C.(2002). Pig and Minipig Cytochromes P450. Letter to theEditor. Am. Soc. Pharmacol. Exp. Ther. 30: 100–102.National Research Council (NRC) (1988). Nutrientrequirements of swine: 10 th Revised Edition. NRCSubcommittee on Swine Nutrition, Committee on AnimalNutrition. Washington, D.C. National Academy Press.Nofre,C., Glaser, D., Tinti, J.M., and Wanner, M. (2002).Gustatory responses of pigs to sixty compounds tastingsweet to humans. J. Anim. Physiol. Anim. Nutr (Berl).86(3–4): 90–96.

Olsen, P. and Hansen, E. (1973). Bile duct proliferation inpigs fed the food colour orange RN. Acta. Pharmacol.Toxicol (Copenh). 32(3): 314–316.

Olsen, P., Würtzen, G., Hansen, E., Carstensen, J., andPoulsen, E. (1973). Short-term peroral toxicity of thefood colour orange RN in pigs. Toxicology 1(3): 249–260.

Olsen, P. (1983). The carcinogenic effect of butylatedhydroxyanisole on the strati¢ed epithelium of the stomachin rat versus pig. Cancer Lett. 21(1): 115–116.

Olsen, A. K., Bladbjerg, E.M, Marckmann, P., Larsen, L. F.,and Hansen A. K. (2002). The Göttingen minipig as a modelfor postprandial hyperlipidaemia in man: experimentalobservations. Lab. Animals 36: 438–444.

Organisation for Economic Co-operation and Development(OECD) (2002). SIDS Initial Assessment Report for 12thSIAM, Paris, June 2001: Tributyl phosphate. 126–73–8 UNEPPublications. Available from: http://www.inchem.org/documents/sids/sids/126–73–8.pdf.

Ostergaard, G. and Knudsen, I. (1998). The applicability ofthe ADI (Acceptable Daily Intake) for food additives toinfants and children. Food Addit. Contam. 15 (suppl.):63–74.

Pang, V.F., Lorenzana, R.M., Beasley, V.R., Buck, W.B., andHaschek, W.M. (1987a). Experimental T-2 toxicosis inswine. III. Morphologic changes following intravascularadministration of T-2 toxin. Fundam. Appl. Toxicol. 8:298–309.

Pang, V.F., Lambert, R.J., Felsburg, P.J., Beasley, V.R.,Buck, W.B., and Haschek, W.M. (1987b). Experimental T-2toxicosis in swine following inhalation exposure, effectson pulmonary and systemic immunity and morphologicchanges. Toxicol. Pathol. 15: 308–319.

Pang, V.F., Lambert, R.J., Felsburg, P.J., Beasley, V.R.,Buck, W.B., and Haschek, W.M. (1988). Experimental T-2toxicosis in swine following inhalation exposure, clinicalsigns and effects on hematology, serum biochemistry andimmune response. Fundam. Appl. Toxicol. 11: 100–109.

Parkinson, A. (2001). Biotransformation of Xenobiotics(2001). In Curtis K. (ed), Casarett and Doull’s ToxicologyThe Basic Science of Poisons. Sixth Edition. pp. 133–224.Klaassen: Mcgraw-Hill.

Pesticides News No. 55. The Journal of Pesticide ActionNetwork UK. An international perspective on the health andenvironmental effects of pesticides. Fact sheet 20–21Dimethoate Quarterly/March 2002.

Peters, J.C., Lawson, K.D., Middleton, S.J., andTriebwasser, K.C. (1997). Assessment of the nutritionaleffects of Olestra, a nonabsorbed fat replacement:introduction and overview. J. Nutr. 127(8 Suppl):1539S–1546S.

Petroianu, G., Toomes, L.M., Petroianu, A., Bergler, W.,and Rüfer, R. (1998). Control of blood pressure, heartrate and haematocrit during high-dose intravenous Paraoxonexposure in mini pigs. J. Appl. Toxicol. 18: 293–298.

Petroianu, G., Hardt, F., Toomes, M., Bergler, W., andRufer, R. (2001). High-dose intravenous paraoxon exposuredoes not cause organophosphate-induced delayed neuropathy(OPIDN) in mini pigs. J. Appl. Toxicol. 21: 263–268.Petroianu, G.A., Ewald, V., Thyes, C., Missler, A., andMaleck, W.H. (2003). Intravenous pyruvic acid application

in minipigs partially protects acetylcholine-esteratic butnot butyrylcholine-esteratic activity in plasma frominhibition by paraoxon. J. Appl. Toxicol. 23(1): 37–42.Pond, W.G., Boleman, S.L., Fiorotto, M.L., Ho, H., Knabe,D.A., Mersmann, H.J., Savell, J.W., and Su, D.R. (2000).Perinatal ontogeny of brain growth in the domestic pig.Proc. Soc. Exp. Biol. 223(1): 102–108. Potkins, Z.V.,Lawrence, T.L., and Thomlinson, J.R. (1991). Effects ofstructural and non-structural polysaccharides in the dietof the growing pig on gastric emptying rate and rate ofpassage of digesta to the terminal ileum and through thetotal gastrointestinal tract. Br. J. Nutr. 65(3): 391–413.Poulsen, E. (1973). Short-term peroral toxicity ofundegraded carrageenan in pigs. Food Cosmet. Toxicol.11(2): 219–227. Pluske, J. R., Pethick, D. W., Hopwood, D.E., and Hampson, D. J. (2002). Nutritional in�uences onsome major enteric bacterial diseases of pigs. J. Nutr ResRev. 15: 333–371. Rowan, A.M., Moughan, P.J., Wilson, M.N.,Maher, K., and Tasman-Jones, C. (1994). Comparison of theileal and faecal digestibility of dietary amino acids inadult humans and evaluation of the pig as a model animalfor digestion studies in man. Br. J. Nutr. 71(1): 29–42.Rafai, P. and Tuboly, S. (1982). Effect of T-2 toxin onadrenocortical function and immune response in growingpigs. Zbl. Vet. Med. B29: 558–565. Rafai, P., Bata, A.,Vanyi, A., Papp, Z., Brydl, E., Jakab, L., Tuboly, S., andTury, E. (1995a). Effect of various levels of T-2 toxin onthe clinical status, performance and metabolism of growingpigs. Vet. Rec. 136: 485–489. Rafai, P., Tuboly, S., Bata,A., Tilly, P., Vanyi, A., Papp, Z., Jakab, L., and Tury,E. (1995b). Effect of various levels of T-2 toxin in theimmune system of growing pigs. Vet. Rec. 136: 511–514.Reddy, C.S. and Hayes, W.A. (2008). Foodborne Toxicants. InWallace Hayes, A. (ed), Principles and Methods ofToxicology. 5th edition. pp. 633–692. Boca Raton: CRCPress. Rérat, A. (1978). Digestion and absorption ofcarbohydrates and nitrogenous matters in the hindgut ofthe omnivorous nonruminant animal. J. Anim. Sci. 46:1808–1837. Rimmele, T., Assadi, A., Benatir, F., Boselli,E., Kaminiski, C., Arnal, F., Lambert, C., Goudable, J.,Chassard, D., and Allaouchiche, B. (2006). Validation of aPseudomonas aeruginosa porcine model of septic shock. J.Infect. 53: 199–205. Roediger, W.E.W (1980). Role ofanaerobic bacteria in the welfare of the colonic mucosa inman. Gut 21: 793–798. Roos, P. H., Tschirbs, S., Welge, P.,Hack, A., Theegarten, D., Mogilevski, G., and Wilhelm, M.(2002). Induction of cytochrome P450 1A1 in multiple organsof minipigs after oral exposure to soils contaminated withpolycyclic aromatic hydrocarbons PAH. Arch. Tox. 76(5/6):326–334. Roos, P.H., Tschirbs, S., Hack, A., Welge, P., and

Wilhelm, M. (2004). Different mechanisms of handlingingested polycyclic aromatic hydrocarbons in mammalianspecies: Organ-speci¢c response patterns ofCYP1A1-induction after oral intake of PAH-contaminatedsoils. Xenobiotica 34(9): 781–795.

Rosenthal, C., Caronia, C., Quinn, C., Lugo, N., and Sagy,M. (1998). A comparison among animal models of acute lunginjury. Crit. Care Med. 26: 912–916.

Sastry, P. S. (1985). Lipids of nervous tissue: compositionand metabolism. Prog. Lipid Res. 24: 69–176.

Schipper, I. (1961). Toxicity of wood preservatives forswine. Am. J. Vet. Res. 22: 401–405.

Schlagheck, T. G., Riccardi, K. A., Zorich, N. L., Torri,S. A., Dugan, L. D., and Peters, J. C. (1997). Olestradose response on fat-soluble and water-soluble nutrientsin humans. J. Nutr. 127: 1646S–1665S.

Schlatter, J. (2004). Toxicity data relevant for hazardcharacterization. Toxicol. Lett. 153(1): 83–89.

Scott, P. M., Kanhere, S. R., Lau, B. P-Y., Lewis, D. A.,Hayward, S., Ryan, J. J., and Kuiper-Goodman, T. (1998).Survey of Canadian human blood plasma for ochratoxin A.Food Addit. Contam. 15: 555–562.

Shu, Q., Qu, F., and Gill, H.S. (2001). Probiotic treatmentusing Bi�dobacterium lactis HN019 reduces weanlingdiarrhea associated with rotavirus an d Escherichia coliinfection in a piglet model. J. Pediatr. Gastroenterol.Nutr. 33(2): 171–177.

Silvotti, L., Petterino, C., Bonomi, A., and Cabassi, E.(1997). Immunotoxicological effects on piglets of feedingsows diets containing a�atoxins. Vet. Rec. 141: 469–1472.

Sondergaard, D., Hansen, E.V., and Würtzen, G. (1977). Ashortterm study in the pig of the effects on the liver andon the blood of eight azo dyes. Toxicology 8(3): 381–386.

Stegink, L.D., Brummel, M.C., Boaz, D.P., and Filer, L.J.Jr. (1973a). Monosodium glutamate metabolism in theneonatal pig: Conversion of administered glutamate intoother metabolites in vivo. J. Nutr. 103(8): 1146–1154.

Stegink, L.D., Filer, L.J. Jr, and Baker, G.L. (1973b).Monosodium glutamate metabolism in the neonatal pig:

Effect of load on plasma, brain, muscle and spinal �uidfree amino acid levels. J. Nutr. 103(8): 1138–1145.

Stegink LD. (1987). The aspartame story: A model for theclinical testing of a food additive. Am. J. Clin. Nutr.46(1 Suppl): 204–215.

Sterk, A., Schlegel, P., Mul, A.J., Ubbink-Blanksma, M.,and Bruininx, E.M. (2008). Effects of sweeteners onindividual feed intake characteristics and performance ingroup-housed weanling pigs. J. Anim. Sci. 86(11):2990–2997.

Stokes, C. R., Bailey, M., Haverson, K., Harris, C., Jones,P., Inman, C., Pié, S., Oswald, I.P., Williams, B.A.,Akkermans, A.D.L., Sowa, E., Rothkotter, H.-F., andMiller, B.G. (2004). Review article, Postnatal developmentof intestinal immune systemin piglets: Implications forthe process of weaning. Anim. Res. 53: 325–334.l text

Swindle, M. M., Smith, A. C., Laber, K., Goodrich, J. A.,and Bingel, S. A. (2003). Biology and Medicine of Swine.In J. D. Reuter and M. A. Suckow (eds). Laboratory AnimalMedicine and Management. Ithaca, New York, NY, USA:International Veterinary Information Service. http://www.ivis.org/advances/Reuter/Swindle/ivis.pdf

Til, H. P., Feron. V. J., and de Groot. A. P. (1972). Thetoxicity of sul¢te. II. Short and long-term feedingstudies in pigs. Food Cosmet. Toxicol. 10: 463–473.

Tinti, J.M., Glaser, D., Wanner, M., and Nofre, C. (2000).Comparison of gustatory responses to amino acids in pigsand humans. Lebensm.-Wiss.u-Technol. 33: 578–583. USEPA,(1998). Reregistration Eligibility Decision (RED)-DEET.United States Environmental Protection Agency. Availablefrom: http://www.epa.gov/ REDs/0002red.pdf U.S. Food andDrug Administration (2003): Healthful snacks for thechip-and-dip crowd: olstra approved with special labelling.FDA Consumer, Volume 30. U.S. Food and Drug Administration(2003). Toxicological Principles for the Safety Assessmentof Food Ingredients Redbook 2000. FDA Center for FoodSafety and Applied Nutrition Food and DrugAdministration,College Park, MD. van der Hoek, W.,Konradsen, F., Athukorala, K., and Wanigadewa, T. (1998).Pesticide poisoning: A major health problem in Sri Lanka.Soc. Sci. Med. 46: 495–504. Vanderveen, J.E. and Glinsmann,W.H. (1992). Fat substitutes: A regulatory perspective.Annu. Rev. Nutr. 12: 473–487. Van Munster, I. P. andNagengast, F. M. (1993). The role of carbohydrate

fermentation in colon cancer prevention. Scand.J. Gastroenterol. 28(200): 80–86. van Winsen, R. L.,Urlings, B. A. P., Lipman, L, J. A., Snijders, J. M. A.,Keuzenkamp, D., Verheijden, J. H. M., and van Knapen, F.(2001). Effect of Fermented Feed on the MicrobialPopulation of the Gastrointestinal Tracts of Pigs. Appl.Environ. Microbiol. 67: 3071–3076. Wang, H., Khaoustov,V.I., Krishnan, B., Cai, W., Stoll, B., Burrin, D.G., andYoffe, B. (2006). Total parenteral nutrition induces liversteatosis and apoptosis in neonatal piglets J. Nutr.136(10): 2547–2552. Weaver, G.A., Kurtz, H.J., Bates, F.Y.,Chi, M.S., Mirocha, C.J., Behrens, J.C., and Robison, T.S.(1978). Acute and chronic toxicity of T-2 mycotoxin inswine. Vet. Rec. 103: 531–535. Williams, B. A., Verstegen,M. W. A., and Tamminga, S. (2001). Fermentation in thelarge intestine of single-stomached animals and itsrelationship to animal health. Nutr. Res. Rev. 14:207–227. Williams, J. H., Phillips, T. D., Jolly, P. E.,Stiles, J. K., Jolly, C. M., and Aggarwal, D. (2004).Human a�atoxicosis in developing countries: A review oftoxicology, exposure, potential health consequences, andinterventions. Am. J. Clin. Nutr. 80(5): 1106–1122.Wittsiepe, J., Erlenkämper, B., Welge, P., Hack, A., andWilhelm, M. (2007). Bioavailability of PCDD/F fromcontaminated soil in young Goettingen minipigs.Chemosphere 67(9): S355–S364. Worek, F., Aurbek, N.,Wetherell, J., Pearce, P., Mann, T., and Thiermann, H.(2008). Inhibition, reactivation and aging kinetics ofhighly toxic organophosphorus compounds: Pig versusminipig acetylcholinesterase. Toxicology 244(1): 35–41.World Health Organisation (2000). Food Additives—Guidelinesfor the Preparation of Toxicological Working Papers for theJoint FAO/WHO Expert Committee on Food Additives. WHO,Geneva, Switzerland. World Health Organisation (2001).Contaminants—Guidelines for the Preparation ofToxicological Working Papers for the Joint FAO/WHO ExpertCommittee on Food Additives. WHO, Geneva, Switzerland andRome, Italy. World Health Organisation (2001). Safetyevaluation of certain mycotoxins in food. Joint FAO/WHOExpert Committee on Food Additives. WHO, Food AdditivesSeries 47. Geneve, Switzerland.

World Health Organisation (2004). Coal Tar Creosote.Concise International Chemical Assessment Document 62.WHO, Geneva, Switzerland.

World Health Organisation in collaboration with Food andAgriculture Organization of the United Nations (2007). Safepreparation, storage and handling of powdered infantformula: Guidelines. ISBN 978 92 4 159541 4 (NLM

classi¢cation: WS 120)http://www.who.int/foodsafety/publications/micro/pif2007/en/index.html

World Trade Organization (WTO) (2007) Understanding theWTO. Third edition previously published as “Trading intothe Future” September 2003, revised February 2007Available at:http://www.wto.org/english/thewto_e/whatis_e/tif_e/utw_chap1_e.pdf World Health Organisation Food Additives Series18—Sulfur dioxide and sul¢teshttp://www.inchem.org/documents/jecfa/jecmono/v18je14.htmWorld Health Organisation Food Additives Series 16—Pectinsand Amidated Pectinshttp://www.inchem.org/documents/jecfa/ jecmono/v16je17.htmWorld Health Organisation Food Additives series 46 -D-Tagatosehttp://www.inchem.org/documents/jecfa/jecmono/v46je07.htmWürtzen, G. and Olsen, P. (1986). BHA study in pigs. FoodChem. Toxicol. 24(10–11): 1229–1233. Useful internet siteson mycotoxins

41 Chapter 41: Future Prospects :Possibilities and Perspectives

Figure 1.7 Clawn Miniature Swine, non-adult. (Reprintedwith permission from the Japan Farm CLAWN Institute,Kagoshima.)

Figure 1.8 GĂśttingen Minipig, non-adult. (Reprinted withpermission from Marshall BioRe sources, United States.)

Figure 1.9 Young adult Hanford Miniature Swine. (Reprintedwith permission from Dr. Guy F. Bouchard, SinclairBioResources, LLC, Auxvasse, MO, United States.)

Figure 1.10 Munich Miniature Swine. (Reprinted withpermission from Dr. Engelhardt, DĂźsseldorf UniversityHospital, DĂźsseldorf, Germany.)

Figure 1.11 Panepinto Micropig, non-adult. (Reprinted withpermission from L. Panepinto, P&S Farms, Buffalo, UnitedStates.)

Figure 1.12 Young adult Sinclair Miniature Swine.(Reprinted with permission from Dr. Guy F. Bouchard,Sinclair BioResources, LLC, Auxvasse, MO, United States.)

Figure 1.13 Westran Minipigs, non-adult. (Reprinted withpermission from Dr. Wayne J. Hawthorne, Westmead Hospital,Weastmead, New South Wales, Australia.)

Figure 1.14 Yucatan Miniature Swine. (Reprinted withpermission from Dr. Guy F. Bouchard, Sinclair BioResources,LLC, Auxvasse, MO, United States.)

Figure 1.15 Young adult Micro-Yucatan Miniature Swine.(Reprinted with permission from Dr. Guy F. Bouchard,Sinclair BioResources, LLC, Auxvasse, MO, United States.)

Figure 2.4 Litter of weaned Sinclair S-1 miniswine (noteheterogeneous coat color) housed on a plastic-coatedparallel grid ÂĽoor surface (Tenderfoot ÂŽ ). The round KaneÂŽ creep feeder hooks to the ÂĽooring to prevent spillage.The radial design and partitions discourage aggression bymaximizing space per pig and segregating feed allotments.(Photo courtesy of Sinclair BioResources.) StressorBiochemical physiological psychological changes ResponseMaladaptive behavior Adaptive behavior Comfort DiscomfortAcute stress Chronic stress Distress Age, gender, strain,previous experiences, current psychological and physicalstate

Figure 7.1 Continuum of comfort to distress and potentialresponses to stressors.

Figure 7.2 Lowest ranking minipig in group with possiblechronic distress (Cowering Response).(Courtesy of EllegaardGottingen Minipigs, Dalmose, Denmark.)

Figure 7.3 Healthy unstressed young adult Yucatan female.(Courtesy of Dr. Guy F. Bouchard, Sinclair BioResources,LLC, Auxvasse, MO, USA.)

Figure 10.3 Histological sections (top) and distributionof radioactivity (bottom) in minipig brain at 3 and 6 hafter oral administration of 14C-labeled drug.

Figure 11.4 Göttingen minipig equipped with an externaljacketed-telemetry system (JET™-Blood Pressure; DataScience International, St. Paul, MN, USA). Thisnoninvasive jacketed telemetry allows to continuouslymonitor a six-leads ECG (right upper panel) and bloodpressure (right lower panel). The JET™ Blood Pressureadd-on module consists of a remote antenna receiver andelectronics module that are interfaced directly to the JET™device. Together, these components receive a signal from apressure implant placed in the femoral artery to enable adirect blood pressure measurement via a simple, fast, andminimally invasive surgical procedure. 0.25 0.30 0.20 0.150.10 0.05 R e c t i fi e d E M G ( a . u . ) 0 0 1 2 3Diaphragm Ext. intercostal Before nebulization 4 5 6 87 910 0.25 0.30 0.20 0.15 0.10 0.05 0 0 1 2 3 Diaphragm Ext.intercostal Neb. saline 0.9%; 2 min 4 5 6 87 9 10 0.25 0.300.20 0.15 0.10 0.05 R e c t i fi e d E M G ( a . u . ) 0 01 2 3 Diaphragm Ext. intercostal Neb. metacholine (0.3mg/mL; 2 min) 4 5 Time (s) Time (s) 6 87 9 10 0.25 0.300.20 0.15 0.10 0.05 0 0 1 2 3 Neb. metacholine (1 mg/mL; 2min) 4 5 6 87 9 10

Figure 11.7 Electromyographic (EMG) activity of thediaphragm and the external intercostal muscles recorded bytelemetry in the conscious cynomolgus monkey. EMG signalsare �ltered (50 Hz) and recti�ed. Bronchoconstriction wasinduced by nebulization (via a face mask) ofescalating-dose of methacholine. Note the increase inbreathing rate and EMG amplitude induced by thebronchoconstrictive agent (lower panels). Applyingnebulized sodium chloride 0.9% has no effect (right upperpanel). SF = 0.25 SF = 0.5 P o w e r dB P o w e r dB 0 0 24 6 Frequency (C.P.M.) 8 10 12 14 0 2 4 6 Frequency(C.P.M.) 8 10 12 14 4 6 8 10 12 14 0 2 4 8 10 12 14 09:58

09:56 09:54 09:52 09:50 09:48 09:46 09:44 09:42 09:40 09:3809:36 09:34 09:28 09:26 09:24 09:22 09:20 09:18 09:16 09:1409:12 09:10 09:08 09:06 09:04

Figure 11.9 Left panel: Electrogastrography inexperimental pigs. General arrangement of the electrodesplacement for EGG recording. Right top panel: Protocol ofEGG recording with prevailing rhythm of three cycles perminute as baseline activity (60% running spectrum percentactivity). Right bottom panel: Protocol of EGG recordingwith prevailing bradygastria (96% running spectrum percentactivity). Hair shaft Pore Stratum corneum Stratum lucidiumStratum granulosum Stratum corneum Stratum lucidium Stratumgranulosum Germinatiucum (spinosum and basale layers)Stratum spinosum Stratum basale Stratum corneum Stratumlucidium Stratum granulosum Stratum spinosum Stratum basaleFree nerve endings Nerve endings Artery Vein Capillary bedAdipose tissue Hair follice Blood capillaries Erectormuscle (for making hair stand “on end”) Sweat glandSebaceous gland (secrets oil -sebum) Deep sensory receptorEpidermis Dermis (also includes connective tissues)Subcutaneous (hypodermis)

Figure 12.1 Anatomy of the skin.

Figure 13.2 Schematic drawing of the porcine stomach. Nearthe cardiac inlet (1), a diverticulum (2) surmounts thecorpus of the stomach (3). Chyme leaves the stomach viathe antrum pyloricum (4). The inner surface of the stomachis lined by a nonglandular (yellow) and glandular mucosa.The latter can be divided into the cardiac (pink-grey),fundic (brown-red), and pyloric (yellowpink) gland region.

Figure 14.1 Sections of left verticle fromselenium-de�cient pig. (a) Hematoxylin and eosin, (b) samesection under polarized light. Loss of cross striationsand formation of contraction bands, black arrows. (c)Basophilic cytoplasmic mineralization in hematoxylinand eosin, gray arrows, and (d) brown-black cytoplasmicmineralization in von Kossa stained section, grey arrows.Bar = 100 microns.

Figure 14.2 Sections of left ventricle with myocardial�brosis stained with picrosirius red. (a) Red (dark)collagens type I and III hematoxylin and eosin within thesubendoardium and interstitium, and (b) same sectionpolarized to show collagen birefringence (white).

Figure 15.1 Preparation of coronal slices starting fromthe ventral aspect of the minipig brain. The majority of

the slices are prepared from the ventral aspect of thebrain because of the distinct anatomical landmarks. Thecerebellum is sliced starting from the dorsal aspect, dueto its prominent contours.

Figure 15.2 Trimming of the minipig brain. Eleven brainslices are prepared from standardised locations, in orderto obtain representative sections of key neuroanatomicregions. After the method recommended by Garman (2003) formicroscopic evaluation of large-sized brains.

Figure 17.1 Alizarin stained minipig skeleton on day 110of gestation.

Figure 17.3 Restraining position for oral administration.2.5 2.0 1.5 1.0 4.5 4.0 5.0 3.5 3.0 n g / m L 0.5 0 40mg/kgControl Prevalue Day 56 Prevalue Day 56 Prevalue Day56 250 mg/kg FSH LH

Figure 18.2 InÂĽuence of testosterone enanthateadministration on the levels of FSH and LH in maleminipigs. (Unpublished data of the Bayer Pharma AG.) 5 4 32 9 8 7 6 n g / m L 1 0 40 mg/kgControl Prevalue Day 60Prevalue Day 60 Prevalue Day 60 250 mg/kg FSH LH

Figure 18.3 InÂĽuence of cyproterone acetate administrationon the levels of FSH and LH in male minipigs. (Unpublisheddata of the Bayer Pharma AG.) 25 20 15 10 40 35 30 n m o l/ m L 1500 1000 500 0 3000 2500 Testosterone Estradiole2000 p m o l / m L 5 0 10 mg/kg Control Prevalue Day 60Day24 Prevalue Day 60Day 24 32 mg/kg Prevalue Day 60Day 24 100mg/kg Prevalue Day 60Day 24

Figure 18.4 InÂĽuence of cyproterone acetate administrationon the levels of testosterone and estradiol in maleminipigs. (Unpublished data of the Bayer Pharma AG.)

Figure 18.5 Testis, minipig. Reduced number ofproliferating tubular epithelium (T) and atrophic Leydigcells (L). Left: control; right: cyproterone acetate 100mg/kg; Ki-67 staining (black dots)

Figure 20.1 Reddish brown mucoid and crusty discharge.

Figure 20.2 Entropion of the lower eyelid.

Figure 20.3 Lower eyelid of same pig as in Figure 20.1. 1week after a modi�ed Hotz–Celsus procedure was performed.

Figure 20.4 Conjunctiva visible in the lateral half of the

lower eyelid.

Figure 20.5 Dermoid on the temporo-ventral aspect of thecornea.

Figure 20.6 Super�cial keratectomy of a dermoid. Theaberrant skin, held up by the forceps and still attached tothe conjunctiva at the lateral limbus is carefully peeledoff the cornea.

Figure 20.7 Cornea of the same pig as in Figures 20.5 and20.6 approximately 2 weeks post surgery showingneovascularisation over the surgical area.

Figure 20.8 Heterochromia irides.

Figure 20.9 Heterochromia iridum.

Figure 20.10 Iris coloboma at a typical position at 6O’clock.

Figure 20.11 Microphakia.

Figure 20.12 Microphakia.

Figure 20.13 Anterior subcapsular opacity with peripheralextension.

Figure 20.14 Posterior polar subcapsular cataract.

Figure 20.15 Total cataract.

Figure 20.16 Hyaloid remnant.

Figure 20.17 Hyperplastic hyaloid remnant.

Figure 20.18 Persistent hyaloid artery.

Figure 20.19 Normal variations in pigmentations of theretina.

Figure 20.20 Normal variations in pigmentations of theretina.

Figure 20.21 Normal variations in pigmentations of theretina.

Figure 20.22 Normal variations in pigmentations of theretina.

Figure 20.23 Optic disc showing the deep cup oftenobserved in the minipig.

Figure 20.24 Optic disc showing the deep cup oftenobserved in the minipig.

Figure 20.25 Cross-section disc showing the deep cup ofthe optic disc (magni�cation ×40).

Figure 20.26 Optic disc coloboma.

Figure 20.27 Retinal coloboma involving the optic disc ata typical 6 O’Clock position.

Figure 21.1 Macroscopic appearance of skin in HaemorrhagicSyndrome. (From Madsen, W.L., Jensen, A.L., and Larsen, S.1998. Scand J Lab Anim Sci 25(3):159–166. Withpermission.)

Figure 21.2 Macroscopic appearance of urinary bladder inHaemorrhagic Syndrome. (From Madsen, W.L., Jensen, A.L.,and Larsen, S. 1998. Scand J Lab Anim Sci 25(3):159–166.With permission.)

Figure 21.3 Macroscopic appearance of kidneys inHaemorrhagic Syndrome. (From Madsen, W.L., Jensen, A.L.,and Larsen, S. 1998. Scand J Lab Anim Sci 25(3):159–166.With permission.)

Figure 21.4 Vagina, serosal layer—interstitialhaemorrhages—haemorrhagic syndrome (HE-stain ×20).

Figure 21.5 Femur—normal adipocytes in bone marrow(HE-stain ×5).

Figure 21.6 Sternum—moderate serous atrophy of adipocytesin bone marrow (HE-stain ×5).

Figure 21.7 Femur—marked serous atrophy of adipocytes inbone marrow (HE-stain ×5).

Figure 21.8 Gall bladder—chronic necrotizingcholecystitits (HE-stain ×20).

Figure 21.9 Gall bladder—chronic necrotizingcholecystitits including �brosis and macrophages withpigmented cytoplasm (HE-stain ×40).

Figure 21.10 Microscopic appearance of hypoplastic gallbladder (HE-stain ×10).

Figure 21.11 Skeletal muscle—chronic myositis includingnecrotic myo�bers and regeneration (HE-stain ×20).

Figure 21.12 Skeletal muscle—chronic myositis includingmineralization (HE-stain ×20).

Figure 21.13 Artery, urinary bladder—�brinoid necrotizingarteritis (HE-stain ×20).

Figure 21.14 Artery, urinary bladder—Fibrinoid necrotizingarteritis w. periarteritis (HE-stain ×20).

Figure 21.15 Lung—granuloma with foreign particles(HE-stain ×40).

Figure 21.16 Stomach, glandular part, cardiacregion—erosions/ulceration (HE-stain ×5).

Figure 21.17 Stomach, glandular part, cardiacregion—erosions/ulceration (HE-stain ×20).

Figure 21.18 Normal liver—(HE-stain ×21/2).

Figure 21.19 Normal pancreas—(HE-stain ×10).

Figure 21.21 Normal microscopic structure of mesentericlymph node (HE-stain ×5).

Figure 21.20 Kidney, cortex—focal tubular basophilia(HE-stain ×40).

Figure 21.22 Pituitary—vacuolated pituicytes ofadenohypophysis (HE-stain ×40).

Figure 21.23 Thyroid—haemorrhage and in¥ammation as theresult of blood sampling (HE-stain ×10).

Figure 21.24 Thyroid—ultimobranchial cysts lined bysquamous epithelium with lumenal cellular debris (HE-stain×5).

Figure 21.25 Testes—marked tubular hypoplasia (HE-stain×10).

Figure 21.27 Prostate—subacute in¥ammation in alveoli andinterstitium (HE-stain ×20).

Figure 21.26 Testes—marked tubular hypoplasia (HE-stain×40).

Figure 21.30 Minipig skin (abdominal area): super�cialepidermal necrosis with minimal dermal in¥ammation at 4 hafter treatment (arrow indicates small, round, blackparticles representing gold observed in the epidermis anddermis as a result of PMED application) (HE-stain ×20).(From Dincer, Z., Jones, S., and Haworth, R. 2006. Exp ToxPath 57:351–357. With permission.)

Figure 21.29 Normal minipig skin (abdominal area)(HE-stain ×10).

Figure 21.28 Normal human skin (abdominal area) (HE-stain×10).

Figure 21.31 Minipig skin (abdominal area): completeepidermal regeneration (reepithelization) with resolutionof in¥ammation at 48 h after treatment (HE-stain ×20).(From Dincer, Z., Jones, S., and Haworth, R. 2006. Exp ToxPath 57:351–357. With permission.)

Figure 21.32 Mouse skin (abdominal area): full-thicknessepidermal necrosis (affecting all the layers with nuclearloss of keratinocytes) and minimal dermal in¥ammation at 4h after treatment (HE-stain ×20). (From Dincer, Z., Jones,S., and Haworth, R. 2006. Exp Tox Path 57:351–357. Withpermission.)

Figure 21.34 Cerebellum, meninges: Mineralized foci in themeninges. (HE-stain ×20).

Figure 21.33 Mouse skin (abdominal area): partialepidermal regeneration (reepithelization) with minimalin¥ammation in the dermis at 48 h after treatment(HE-stain ×20). (From Dincer, Z., Jones, S., and Haworth,R. 2006. Exp Tox Path 57:351–357. With permission.) HumanHuman Pig Cow Horse Dog Mouse Rat Pig Cow Horse Dog MouseRat MM M K S F P M M V V P P Q L L L L I F L P L G G L P PP D F F F F F N S S F T K K K K M M M M M G L S L A S A V LL A S L L S L H L G TA T R G G I G S DV A F F F S P P N F FY Y Y V VY S M M L A A A A P K F Y K I T V I I I L P P P PP P L L L H H H S S G D Q S S S K K K Y Y Y F F F K K K V VV I M D D D S S S S E S G G G S D I S K T C C F Q Y S HK PL P W W R Q N H I R Y Y L K K K S H W V Y S T T S S S SW WV V Q R K Q Q E T R H I I I I I V R R R F R EE E E A D R QQ Q Q Q Q Q Q V V V V V W W W W W S L L L L LL L L L L S SS S Y Y Y Y Y V V R V W W W W W W W W W TWV R S Y CC C C CCC C CC C C C A K K K K G G A A A V V P P P P P P C C C C CC C C SSS S S S Q Q R A A A A A Q QSS S S S S S C C C C C SS L F F I I M I F F L F F I V FL L L S V V R R Q D Q V V V

V H L L G G G G G G H H S S S S S L L L L L L L L L L L LLL A A A A A V V V V I F TT K K K V V V V V R G G G G G G GV I F F F F Y F F F I I I I I V V V V V V V I I A A L L T AA V T V V T R R R C C E P A A A A A T T T T T TH P Q Q Q QF T T T T T T T T T T T K K KK K K K K K H R Q Q Q H RK K KK T T K K K K K K K K Y Y Y Y Y K R K A Q Q Q Q Q Q Q K K LLL K T P K QLI K Q L L Q N H L HW S H R Q R K A A E T AR R N N V A F N N N S S S K T R R R K K Q R D D I L Q K Q QG G EDI T T P T T T T F F E F F TE E E E N 1 10 20 CCR3Binding CCR1, 2 and 5 Binding CCR1, 2 and 5 Binding 30 4050 51 60 70 80 90 94 –

Figure 22.2 Comparison of mammalian CCL26 functionaldomains.

Figure 24.3 Miniature swine thymokidney transplantation:(a) composite thymokidney on the day of transplantation,showing engrafted thymic tissue under kidney capsule; (b)histology of thymic tissue in biopsy of thymokidney (H&E).

Figure 28.2 Nuclear donor cells (fetal �broblast cells)for pig cloning. Cells with small size are suitable asnuclear donors. Is virus present in source herd Yes Canorganism be eradicated from source animal populationUnknown Unknown Evaluate further Weigh risk/benefit oftreatment if needed and potential disease to patient andcontact Evaluate further No No Okay to use No No Is viruspresent in donors age group Is virus present in islet cellsor accompanying cells Can organism infect human cells YesYes Yes Yes No

Figure 26.2 Using the ‘selection algorithm’ in axenotransplantation programme allows a multi-level herdmonitoring that should include regular screening of thewhole herd on the individual basis, sows’ screening,donors’ screening and product screening. Where PERV �tsinto the algorithm is highlighted in red. (Kindly providedby O. Garkavenko, LCT.) (a) (c) (d) (e) (b) HNF-1 α(Normal gene construct) Active form (Normal homodimer)Inactive form (Heterodimer) Inactive form (mutanthomodimer) HNF-1α P291fsinsC (Mutant gene construct)Dimeriz atio n domai n (1 – 32 ) Dimerization domai n(1 – 32 ) DN – binding domai n (15 0 – 280) Transactivation domai n (381 – 315) DNA – bindin g domain (15 0 – 280) T ransactivation domai n (3 81 – 631)

Figure 28.5 Dominant-negative mechanism through which amutant human hepatocyte nuclear factor 1Îą gene disrupt theactivity of an endogenous wild-type gene. Normal HF-1Îą :P291fsinsC-HNF-1Îą : gg G G ccc P ccc P ccc P ccc P

ccc P cca P ggg G cca P ggc G ccg P gga G cct Pgcg A ctg L ccc P gct A cac H agc S tcc S cctp ggc G ctg L cct P cca P cct P gcc A ctc Ltcc S ccc P agt S aag K gtc V cac H agc S agc Sagg R gcc A agg R ccc P ggg G acc T tgc C gctA gcc A cgc R tca S cag Q ctc L ccc P tgg Wcct P gcc A tcc S acc T tgc C cct P ctc L cccP cag Q taa ggt cca STOP 290 300 310 310 300 290 Theinsertion site of C added in the poly C tract Chickenβ−globin insulator (1.2 kbp) CMV enhancer (0.4 kbp) Piginsulin promoter (0.7 kbp) Human HNF-1α P291 fsinsC (2.3kbp) SV40 poly -A (0.1 kbp) Chicken β−globin insulator(1.2 kbp) c ggc

Figure 28.4 Expression vector of mutant human hepatocytenuclear factor 1Îą gene (HNF-1Îą P291fsinsC). 700 600 500 400300 200 100 0 Control (n = 3) DI09 DI12 DI17 DI21 Daysafter birth B l o o d g l u c o s e ( m g / d L ) 14 28 4256 70 84 98 112 120 140 1540

Figure 28.8 Nonfasting blood glucose concentration of thediabetes-model transgenic-cloned pigs carrying mutant humanhepatocyte nuclear factor Iα gene (DI09, 12, 17, 21) andcontrol wild-type pigs. (From Umeyama, K. et al., 2009.Trans Res 18: 697–706. With permission.) Control Tg pig-1(Max glucose : 285 mg/dL) Tg pig-2 (Max glucose : 646mg/dL) (a) (b) (c) (c′) (b′) (a′)

Figure 28.7 Histochemical analysis of the pancreas of thediabetes-model transgenic-cloned pig carrying mutant humanhepatocyte nuclear factor 1Îą gene. 900 800 700 600 500 400300 200 100 0 Time after administration (min) B l o o d g lu c o s e ( m g / d L ) Control (n=3) DI12 180 240 300Glucose 3 g/kgBW p . o. 0 60 120

Figure 28.9 Oral glucose tolerance test of thediabetes-model transgenic-cloned pig (DI12) and controlpigs. (From Umeyama, K. et al., 2009. Trans Res 18:697–706. With permission.) N o v o l i n R 0 . 1 U / K g BW s . c I n s u l i n ( – ) I n s u l i n ( + ) M i l k0 6 0 1 2 0 T i m e a f t e r a d m i n i s t r a t i o n (m i n . ) B l o o d g l u c o s e ( m g / d L ) 1 8 0 2 4 04 5 0 4 0 0 3 5 0 3 0 0 2 5 0 2 0 0 1 5 0 1 0 0 5 0 0

Figure 28.10 Response of the diabetes-modeltransgenic-cloned pig to insulin administration.

Figure 28.12 Removal of cytoplasmic lipid droplets(delipation) of porcine morula stage embryos. (a)Delipation of an in vitro-derived morula using

micromanipulation. (b) Noninvasive delipation of an invitro-produced morula. The embryo was centrifuged withoutbeing pretreated for swelling of the zona pellucida. (c)Noninvasive delipation of an in vitro-produced morula. Theembryo was centrifuged after trypsin treatment to induceswelling of the zona pellucida. (d) Piglets born fromsomatic cellcloned embryos vitri�ed at the morula stageusing noninvasive delipation and MVC vitri�cation. Day 5Embryonic Stem cells (ESC) I I Bona fide procine ESC andEpiSC have not been established Characterization of stemcells Use of stem cells Embryonic stem cells •Differentiation into cell types from all three embryonicgerm lineages and the germline • Ability to form teratomas• Ability to form somatic and germline chimeras Somaticstem cells • Differentiation into one or more cell typesfrom at least one embryonic germ lineage Studying theprocess of cell differentiation • Investigating biologicalmechanisms that control cell fate Studying diseasemechanisms • Produce invitro cell models from animalmodels of disease Potential cell therapy • Celltransplantation of differentiated cells to replacedamaged, diseased tissue invivo Epiblast stem cells (EpiSC)I Embryonic germ cells (EGC) Fibroblasts Inducedpluripotent stem cells (iPSC) Somatic stem cells •Mesenchymal stem cells • Neural stem cells • Skin stemcells Day 10 Day 21 Post natus

Figure 29.1 Overall presentation of the different types ofporcine stem cells addressed in this presentation. Theupper panel illustrates the development of the porcineembryo with arrows pointing to the inner cell mass (day 5),the epiblast (day 10), and the mesonephros with thedeveloping genital ridge (day 21). The origins of differenttypes of stem cells are indicated in the lower panel.

Figure 31.2 Immunohistochemistry of macrophage foam cellsin coronary artery of minipig with diet-inducedatherosclerosis. (a) Co-localization of CRP and SRA, (b)Co-localization of SRA and oxLDL, (c) Co-localization ofoxLDL and MCP1, (d) Co-localization of oxLDL and CRP.Scale bar = 50 microns.

Figure 31.1 (a) Abdominal aorta and iliac bifurcation of apig fed a high fat and cholesterol diet stained with SudanIV showing fatty streaks (red) and raised plaques. (b)Common carotid artery of a pig fed a high fat andcholesterol diet stained with Sudan IV showing fattystreaks (red), (c) Cross section of the left anteriordescending branch of the coronary artery showing fattystreaks (red).

Figure 31.3 Immunohistochemistry for VCAM-1. (a) Noimmunoreactivity in endothelium from minipig on controldiet. (b) Immunoreactivity in endothelium from minipigwith diet-induced hypercholesterolemia overtain by foamcells. (a) Ch Ch HP HP NP NP SP SP Ep Ep OP OP Es Es HB HBMan Man TB TB (b)

Figure 33.5 Cone-beam computer-aided tomographic imagesshowing sagittal slices through the oral cavity of aYucatan minipig (a) and a human (b) HP–hard palate;SP–soft palate; TB–tongue base; HB–hyoid bone;Ep–epiglottis; Es–esophagus; Ch–choana; Man–mandible;NP–nasopharyngeal airway; OP–oropharyngeal airway(highlighted to show area). The cross hairs in b indicatethe orientation of the image slices.

Figure 33.4 Sagittal sections through thetemporomandibular joint of growing minipigs. The condylarcartilage is the major growth site of the mandible.Anterior is to the left. (a) Fetal Yucatan minipig. Thecondylar cartilage is thick and comprises most of thecondyle. (b) 16 week-old Hanford minipig (composite photo).Active growth continues posteriorly, while anteriorly thecondylar cartilage is undergoing endochondral ossi�cation.a and b differ in magni�cation; both scale bars are 1 mm.Temp – articular eminence of the temporal bone.Hematoxylin and eosin. (a) (c) (b) (d) dp 4 M 1 M 1 M 2 M 2M 1 dp 4 dp 3 dp 2 M 1 dp 4 dp 3 dp 2 p 1 M 1 dp 4 dp 3 dp2 C dp 4 dp 3 dp 2 p 1 i 3 i 3 i 2 i 1 i 2 i 1 C M 1 dp 4dp 4 dp 3 dp 2 c dp 3 dp 2 i 3 c dp 3 dp 3 dp 4 i 3 i 3 i 1i 1 c c

Figure 33.2 Lateral views of the dentition of Hanfordminipigs showing the �rst year of tooth eruption:approximately 1 mo of age (a), 3 mo (b), 6 mo (c), and ayear (d).

Figure 33.6 Tongue of a Yucatan minipig in lateral view.LN–lingual nerve; HN–hypoglossal nerve; MB and LB–medialand lateral branches of hypoglossal nerve;CP–circumvallate papillae; FP–fungiform papillae;LF–lingual frenum.

Figure 33.7 Tongue reduction surgery in Yucatan minipigs.(a) Diagram of surgical procedure in dorsal view (upperdrawing) and coronal section (lower drawing). The �lled-inareas indicate lines of incision and the part removed. Thedorsal view shows the circumvallate papillae and thecoronal section indicates the position of the neurovascular

bundles. b and c. Examples of tongues 4 weekspostreduction (b) and post-sham surgery (c) seen from thefront (upper frames) and in dorsal view (lower frames).

Figure 33.9 Dentition of a 5 year-old Yucatan sow withoutovert periodontal in¼ammation. (a) Entire cheek tooth rowin right lateral view. Both upper and lower �rst molars(M1) are worn down to the roots and are on the point ofbeing shed. The lower third and fourth premolars(asterisks) show extensive calculus accumulation associatedwith alveolar bone loss. There is also marked loss ofmaxillary alveolar bone, and the upper third premolar waslost premortem. (b) Enlarged view of the premolar region.Planimentry in a 20 mm di ameter full thickness wound modelin adult female GÜttingens minipigs 3.5 3 2.5 2 1.5 10.5 0 S u r f a c e ( c m 2 ) 1 3 5 8 11 Days 14 17 20Epithelialization Granulation Unspecified would area

Figure 35.1 Representative full skin thickness woundhealing kinetic

Figure 36.1 Collage of infrared eye images captured duringthe progression of pupil constriction from baseline tocomplete miosis during a 60 min whole-body vapor exposureto 0.47 mg/m 3 GB. (From Hulet, S. W., et al., 2006a.Inhal Toxicol 18(2):143–153. With permission.) –6 0.1 1 ×1 0 3 c e l l s / μ L 10 100 1000 4 1.6 Gy 1.7 Gy 1.8 Gy 2Gy 1.6 Gy 1.8 Gy 1.7 Gy 1.8 Gy 2 Gy 2 Gy 1.6 Gy 1.8 Gy 1.7Gy 1.8 Gy 2 Gy 2 Gy 1.9 GY 2 Gy 1.6 Gy 1.8 Gy 14 Time(days) Platelets 24 –6 0 2 4 6 12 10 8 4 14 Time (days)Time (days) Time (days) RBCs 24 –6 0 1 × 1 0 3 c e l l s /μ L × 1 0 3 c e l l s / μ L × 1 0 3 c e l l s / μ L 2 5 4 37 6 8 4 14 Lymphocytes 24 –6 0 2 4 6 12 14 10 8 4 14Neutrophils 24

Figure 36.3 Hematological changes in Gottingen minipigsirradiated with lethal and high-sublethal single acutedoses of 60 Co (TBI), at a dose rate of 0.6 Gy/min.

Figure 36.4 Gross pathology of lethally irradiatedGĂśttingen at necropsy. (a) Intestine, (b) heart, (c) brain,and (d) lungs.