Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation

13
American Journal of Mathematics and Statistics 2013, 3(6): 362-374 DOI: 10.5923/j.ajms.20130306.10 Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation G. C. Ibeh 1,* , C. R. Nwosu 2 1 Department of Maths/Statistics, School of Industrial and Applied Sciences, Federal Polytechnic Nekede, Owerri, Nigeria 2 Department of Statistics, Faculty of Physical Sciences, NnamdiAzikiwe University, Awka, Nigeria Abstract Thiswork examines the conditions for non-violation of the basic assumptions on the error component of a multiplicative time series model when inverse square transformation is applied to the error term. To achieve this, the curve shapes of the probability density functions (pdfs) of and β€² = 1 2 , βˆ— () ( ) hy were compared for some values of within the interval[0.01,0.25], and it was found that the distribution of the transformed variable loses its symmetry when > 0.08. Rolle’s Theorem was also used to find the region where β„Ž() satisfies the bell-shaped condition; and this is met when≀ 0.094. Use of the simulated error terms shows that the transformed variable is normal for < 0.08. Finally, from the functional expressions for ( β€² ) and ( β€² ), it was observed that the mean of β€² is one and the increased variance is approximately 4 times the variance of for ≀ 0.070. Therefore, the condition for successful inverse square transformation with respect to the error component of the multiplicative time series model is ≀ 0.070 . Keywords Error Component, Multiplicative Time Series Model, Left Truncated Normal Distribution, Inverse Square Transformation, Moments 1. Introduction According to[1], the general time series model is always considered as a mixture of four components, namely the trend, seasonal movements, cyclical movements and irregular or random component. Hence, classifications of the time series model are Multiplicative Model: = (1) Additive Model: = + + + (2) Mixed Model: = + (3) In short term series, the trend and cyclical components are merged to give the trend cycle component[2], hence Equations (1) through (3) can be rewritten as = (4) = + + (5) = + (6) respectively, where is the trend cycle component. Consider a random variable, which is normally distributed with a probability density function, * Corresponding author: [email protected] (G. C. Ibeh) Published online at http://journal.sapub.org/ajms Copyright Β© 2013 Scientific & Academic Publishing. All Rights Reserved ()= οΏ½ 1 √2 οΏ½βˆ’ (βˆ’1) 2 2 2 οΏ½ , βˆ’βˆž < < ∞, 2 >0 0, β„Ž (7) Most often, the random variable , which is normally distributed with mean, 1 and 2 < ∞ do not admit values less than or equal to zero. This usually leads to the truncation of all values of ≀ 0 to take care of the admissible region of > 0. The resulting distribution after truncation was given by[3] as βˆ— ()= οΏ½ √2 οΏ½βˆ’ (βˆ’1) 2 2 2 οΏ½ ,0< < ∞ 0 , βˆ’βˆž < ≀ 0 (8) where is the normalizing quantity. [4]obtained the value of k to be = 1 1βˆ’ οΏ½βˆ’ 1 οΏ½ (9) ( ) ( ) 2 2 * 0, 0 1 1 exp ,0 2 1 2 1 x x x x f Οƒ Οƒ Ο€ Ο• Οƒ βˆ’βˆž< ≀ βˆ’ = βˆ’ < <∞ βˆ’ βˆ’ ∴ (10) βˆ— () was shown to be a proper probability density function[4]with mean and variance βˆ— ()=1+ βˆ’ 1 2 2 √2 οΏ½1βˆ’ οΏ½βˆ’ 1 οΏ½οΏ½ (11)

Transcript of Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation

American Journal of Mathematics and Statistics 2013, 3(6): 362-374 DOI: 10.5923/j.ajms.20130306.10

Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation

G. C. Ibeh1,*, C. R. Nwosu2

1Department of Maths/Statistics, School of Industrial and Applied Sciences, Federal Polytechnic Nekede, Owerri, Nigeria 2Department of Statistics, Faculty of Physical Sciences, NnamdiAzikiwe University, Awka, Nigeria

Abstract Thiswork examines the conditions for non-violation of the basic assumptions on the error component of a multiplicative time series model when inverse square transformation is applied to the error term. To achieve this, the curve shapes of the probability density functions (pdfs) of 𝑒𝑒𝑑𝑑 and 𝑒𝑒𝑑𝑑′ = 1

𝑒𝑒𝑑𝑑2 , π‘“π‘“βˆ—(π‘₯π‘₯) π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž ( )h y were compared for some values of

𝜎𝜎 within the interval[0.01,0.25], and it was found that the distribution of the transformed variable loses its symmetry when 𝜎𝜎 > 0.08. Rolle’s Theorem was also used to find the region where β„Ž(𝑦𝑦) satisfies the bell-shaped condition; and this is met when𝜎𝜎 ≀ 0.094. Use of the simulated error terms shows that the transformed variable is normal for 𝜎𝜎 < 0.08. Finally, from the functional expressions for 𝐸𝐸(𝑒𝑒𝑑𝑑′) and 𝑉𝑉(𝑒𝑒𝑑𝑑′), it was observed that the mean of 𝑒𝑒𝑑𝑑′ is one and the increased variance is approximately 4 times the variance of 𝑒𝑒𝑑𝑑 for 𝜎𝜎 ≀ 0.070. Therefore, the condition for successful inverse square transformation with respect to the error component of the multiplicative time series model is 𝜎𝜎 ≀ 0.070 . Keywords Error Component, Multiplicative Time Series Model, Left Truncated Normal Distribution, Inverse Square Transformation, Moments

1. Introduction According to[1], the general time series model is always

considered as a mixture of four components, namely the trend, seasonal movements, cyclical movements and irregular or random component. Hence, classifications of the time series model are

Multiplicative Model: 𝑋𝑋𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑆𝑆𝑑𝑑𝐢𝐢𝑑𝑑𝑒𝑒𝑑𝑑 (1)

Additive Model: 𝑋𝑋𝑑𝑑 = 𝑇𝑇𝑑𝑑+𝑆𝑆𝑑𝑑+𝐢𝐢𝑑𝑑+𝑒𝑒𝑑𝑑 (2)

Mixed Model: 𝑋𝑋𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑆𝑆𝑑𝑑𝐢𝐢𝑑𝑑+𝑒𝑒𝑑𝑑 (3)

In short term series, the trend and cyclical components are merged to give the trend cycle component[2], hence

Equations (1) through (3) can be rewritten as 𝑋𝑋𝑑𝑑 = 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑒𝑒𝑑𝑑 (4) 𝑋𝑋𝑑𝑑 = 𝑀𝑀𝑑𝑑+𝑆𝑆𝑑𝑑+𝑒𝑒𝑑𝑑 (5) 𝑋𝑋𝑑𝑑 = 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑 + 𝑒𝑒𝑑𝑑 (6)

respectively, where 𝑀𝑀𝑑𝑑 is the trend cycle component. Consider a random variable, 𝑋𝑋 which is normally

distributed with a probability density function,

* Corresponding author: [email protected] (G. C. Ibeh) Published online at http://journal.sapub.org/ajms Copyright Β© 2013 Scientific & Academic Publishing. All Rights Reserved

𝑓𝑓(π‘₯π‘₯) = οΏ½1

𝜎𝜎√2πœ‹πœ‹π‘’π‘’π‘₯π‘₯𝑒𝑒 οΏ½βˆ’ (π‘₯π‘₯βˆ’1)2

2𝜎𝜎2 οΏ½ ,βˆ’βˆž < π‘₯π‘₯ < ∞,𝜎𝜎2 > 00, π‘œπ‘œπ‘‘π‘‘β„Žπ‘’π‘’π‘’π‘’π‘’π‘’π‘’π‘’π‘’π‘’π‘’π‘’

οΏ½ (7)

Most often, the random variable 𝑋𝑋, which is normally distributed with mean, 1 and 𝜎𝜎2 < ∞ do not admit values less than or equal to zero. This usually leads to the truncation of all values of 𝑋𝑋 ≀ 0 to take care of the admissible region of 𝑋𝑋 > 0.

The resulting distribution after truncation was given by[3] as

π‘“π‘“βˆ—(π‘₯π‘₯) = οΏ½π‘˜π‘˜

𝜎𝜎√2πœ‹πœ‹π‘’π‘’π‘₯π‘₯𝑒𝑒 οΏ½βˆ’ (π‘₯π‘₯βˆ’1)2

2𝜎𝜎2 οΏ½ , 0 < π‘₯π‘₯ < ∞0 , βˆ’βˆž < π‘₯π‘₯ ≀ 0

οΏ½ (8)

where π‘˜π‘˜ is the normalizing quantity. [4]obtained the value of k to be

π‘˜π‘˜ = 11βˆ’πœ‘πœ‘οΏ½βˆ’1

𝜎𝜎� (9)

( ) ( )2

2

*

0, 0

11 exp ,0212 1

x

xx xfσσ Ο€ Ο•

Οƒ

βˆ’ ∞ < ≀

βˆ’ = βˆ’ < < ∞ βˆ’ βˆ’

∴

(10) π‘“π‘“βˆ—(π‘₯π‘₯) was shown to be a proper probability density

function[4]with mean and variance

πΈπΈβˆ—(𝑋𝑋) = 1 + πœŽπœŽπ‘’π‘’βˆ’ 1

2𝜎𝜎2

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

(11)

American Journal of Mathematics and Statistics 2013, 3(6): 362-374 363

Table 1. Bartlett’s transformation for some values of 𝛽𝛽

𝛽𝛽 0 12

1 32

2 3 βˆ’1

Transformation No transformation �𝑋𝑋𝑑𝑑 π‘™π‘™π‘œπ‘œπ‘™π‘™π‘’π‘’π‘‹π‘‹π‘‘π‘‘ 1

�𝑋𝑋𝑑𝑑 1

𝑋𝑋𝑑𝑑

1𝑋𝑋𝑑𝑑2

𝑋𝑋𝑑𝑑2

π‘‰π‘‰π‘Žπ‘Žπ‘’π‘’βˆ—(𝑋𝑋) =𝜎𝜎2

2 οΏ½1 βˆ’ πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

οΏ½1 + 𝑃𝑃𝑒𝑒 οΏ½πœ’πœ’(1)2 < 1

𝜎𝜎2��

βˆ’ πœŽπœŽπ‘’π‘’βˆ’ 1

2𝜎𝜎2

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

βˆ’ οΏ½ πœŽπœŽπ‘’π‘’βˆ’ 1

2𝜎𝜎2

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎���

2

(12)

1.1. Data Transformation and Classification Data transformation is the application of a non-linear

function such as π‘™π‘™π‘œπ‘œπ‘™π‘™π‘’π‘’(𝑋𝑋𝑑𝑑),�𝑋𝑋𝑑𝑑 ,1𝑋𝑋𝑑𝑑

,𝑋𝑋𝑑𝑑2, 1𝑋𝑋𝑑𝑑2 to the original

data. According to[5], if the experimenter knows the theoretical

distribution of the observations, he may utilize this information in choosing an appropriate transformation, for example, if the observations follow the Poisson distribution, then the square root transformation π‘Œπ‘Œ = βˆšπ‘‹π‘‹ would be used. If the data follow log-normal distribution, then the logarithmic transformation π‘Œπ‘Œ = π‘™π‘™π‘œπ‘œπ‘™π‘™π‘’π‘’π‘‹π‘‹ is appropriate. For binomial data expressed as fractions the arcsine transformation π‘Œπ‘Œ = π‘Žπ‘Žπ‘’π‘’π‘Žπ‘Žπ‘’π‘’π‘’π‘’π‘Žπ‘Žπ‘‹π‘‹ is useful. When there is no obvious transformation, the experimenter usually empirically seeks a transformation that equalizes the variance regardless of the value of the mean.

[6] showed that the appropriate transformation is determined by the value of the slope (𝛽𝛽) in the linear relationship between the natural log of the periodic standard deviations (π‘™π‘™π‘œπ‘œπ‘™π‘™π‘’π‘’πœŽπœŽπ‘’π‘’) and natural log of the periodic means (π‘™π‘™π‘œπ‘œπ‘™π‘™π‘’π‘’πœ‡πœ‡π‘’π‘’)given as

π‘™π‘™π‘œπ‘œπ‘™π‘™π‘’π‘’πœŽπœŽπ‘’π‘’ =∝ +π›½π›½π‘™π‘™π‘œπ‘œπ‘™π‘™π‘’π‘’πœ‡πœ‡π‘’π‘’ (13) For the inverse square transformation, Ξ² should be

approximately equal to 3 [6] see Table 1.

1.2. Background of the Study [4] investigated the effect of logarithmic transformation

on the error component (𝑒𝑒𝑑𝑑) of a multiplicative time series model where 𝑒𝑒𝑑𝑑~𝑁𝑁(1,𝜎𝜎2) and discovered that the logarithmic transformation π‘Œπ‘Œπ‘‘π‘‘ = π‘™π‘™π‘œπ‘œπ‘™π‘™π‘’π‘’π‘’π‘’π‘‘π‘‘ isnormally distributed with mean zero and the same variance, 𝜎𝜎2 if 𝜎𝜎 < 0.1

[7]studied the effect of inverse transformation on the error component of the same multiplicative model and established that the inverse transformation π‘Œπ‘Œπ‘‘π‘‘ = 1

𝑒𝑒𝑑𝑑 is normally

distributed with mean, one and same variance provided 𝜎𝜎 ≀ 0.07, however, a more extensive study by the same authors using the functional expressions of the mean and variance, extended the region of successful transformation to Οƒ< 0.1.

[8] carried out a study on the effect of square root

transformation on the error component of the same model and concluded that the square root transformation π‘Œπ‘Œπ‘‘π‘‘ = �𝑒𝑒𝑑𝑑 is normally distributed with unit mean and variance, 1

4𝜎𝜎2 for

𝜎𝜎 ≀ 0.30 where 𝜎𝜎2 is the variance of the original error component before transformation.

[9] Investigated the effect of square transformation on the error component of the multiplicative time series model and observed that square transformation π‘Œπ‘Œπ‘‘π‘‘ = 𝑒𝑒𝑑𝑑2 can be assumed to be normally distributed with unit mean and same variance for 𝜎𝜎 ≀ 0.027 they observed that π‘‰π‘‰π‘Žπ‘Žπ‘’π‘’(𝑒𝑒𝑑𝑑2) >π‘‰π‘‰π‘Žπ‘Žπ‘’π‘’(𝑒𝑒𝑑𝑑) π‘“π‘“π‘œπ‘œπ‘’π‘’ π‘Žπ‘Žπ‘™π‘™π‘™π‘™ 𝜎𝜎 and that 𝑒𝑒𝑑𝑑2~𝑁𝑁(1.0,1.0),π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝜎𝜎 ≀0.027.

Obviously, the overall aim of these studies is to establish conditions for successful transformation, hence provide better choice of right transformation. According to [10] choosing a good transformation improves analyses in three ways, namely (i) increase in visual clarity (ii) reduction or elimination of outliers (iii) increase in statistical clarity.

1.3. Need for the study The value of 𝛽𝛽 in (13) classifies all the time seriesdata

into non-overlapping groups in the sense that any time series data requiring transformation belongs exclusively to one and only one group, hence can only be appropriately transformed by applying one of the six common transformations as shown in Table 1. Thus, despite the fact that Iwueze (2007), Chinwe et al (2010),Otuonye et al (2011) and Ohakwe et al (2013) have all carried out similar studies with respect to logarithmic, inverse, square root and square transformations respectively, this study on inverse square transformation is still very necessary since the results obtained for the above listed four transformations cannot be applied in the analysis of time series data requiring inverse square transformation.

1.4. Inverse Square Transformation

For 𝛽𝛽 = 3, we adopt inverse square transformation on the multiplicative time series model given in equation (4) to obtain

π‘Œπ‘Œπ‘‘π‘‘ =1𝑋𝑋𝑑𝑑2

=1𝑀𝑀𝑑𝑑

2 .1𝑆𝑆𝑑𝑑2

.1𝑒𝑒𝑑𝑑2

= 𝑀𝑀𝑑𝑑′𝑆𝑆𝑑𝑑′𝑒𝑒𝑑𝑑′ (14)

where 𝑀𝑀𝑑𝑑′ = 1

𝑀𝑀𝑑𝑑2 , 𝑆𝑆𝑑𝑑′ = 1

𝑆𝑆𝑑𝑑2 and 𝑒𝑒𝑑𝑑′ = 1

𝑒𝑒𝑑𝑑2

Thus, it will be of interest to find the distribution of 𝑒𝑒𝑑𝑑′ and the relationship between its variance and the variance of the original data.

2. Aim and Objectives of the Study

364 G. C. Ibeh et al.: Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation

The aim of this study is to obtain the distribution of the inverse square transformed error component of the multiplicative time series model and the objectives are:

i) To examine the nature of the distribution ii) To verify the satisfaction of the assumption on the

mean of the error terms; πœ‡πœ‡ = 1 iii) To establish the relationship between the variance

of the original series and the transformed series and identify the conditions for such relationship to exist.

2.1. Derivation of the Probability Density Function (pdf) of the Inverse Square Transformation of the Error Component of the Multiplicative Time Series Model

Let et =X and, 𝑒𝑒𝑑𝑑′ = π‘Œπ‘Œ = 1𝑋𝑋2, then

𝑋𝑋 = οΏ½1π‘Œπ‘ŒοΏ½

12 = π‘Œπ‘Œβˆ’

12 (15)

Adapting equations (10 & 15) and using the transformation of variable technique,

h(y)=π‘“π‘“βˆ—(π‘₯π‘₯) οΏ½π‘Žπ‘Žπ‘₯π‘₯π‘Žπ‘Žπ‘¦π‘¦οΏ½ [11] (16)

hence 21

2 112

32

y ,012 2 1

0 , 0

y

eh yy

y

Οƒ

Οƒ Ο€ Ο• Οƒβˆž

βˆ’βˆ’βˆ’

= < < βˆžβˆ’ βˆ’

βˆ’ < ≀

( οΌ‰ (17)

Observe that h(y) is a proper probability density function (pdf).

2.2. Plot of the Probability Density Functions π’‡π’‡βˆ—(𝒙𝒙) 𝒂𝒂𝒂𝒂𝒂𝒂 𝒉𝒉(π’šπ’š)

Using the probability density functions of the two variables as given in Equations, (10) and (17), the functions π‘“π‘“βˆ—(π‘₯π‘₯) π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž β„Ž(𝑦𝑦) were plotted for some values of 𝜎𝜎 (see Figures (1) to (5))

Figure 1. Curves Shapes for 𝜎𝜎 =0.02

Figure 2. Curves Shapes for 𝜎𝜎 =0.04

American Journal of Mathematics and Statistics 2013, 3(6): 362-374 365

Figure 3. Curves Shapes for 𝜎𝜎 =0.06

Figure 4. Curves Shapes for 𝜎𝜎 =0.08

Figure 5. Curves Shapes for 𝜎𝜎 =0.10

2.3. Region of Normality for 𝒉𝒉(π’šπ’š)

Since h(y) has one maximum point π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ (mode) hence one maximum value β„Ž(π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ ) for all values of Οƒ.

Rolle’s Theorem was used to find the values of Οƒ that satisfy the bell-shaped and symmetric condition of modeβ‰ˆ1β‰ˆmean.

Let π‘˜π‘˜ = 1

2𝜎𝜎√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎)οΏ½

in (17)

then, β„Ž(𝑦𝑦) = π‘˜π‘˜π‘¦π‘¦βˆ’32𝑒𝑒

βˆ’ 12𝜎𝜎2�𝑦𝑦

βˆ’12 βˆ’1οΏ½

2

Using the product rule,

366 G. C. Ibeh et al.: Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation

β„Žβ€²(𝑦𝑦 ) =

π‘˜π‘˜ οΏ½π‘¦π‘¦βˆ’32 οΏ½ 1

2𝜎𝜎2 οΏ½π‘¦π‘¦βˆ’1

21οΏ½ π‘¦π‘¦βˆ’32π‘’π‘’βˆ’

οΏ½π‘¦π‘¦βˆ’12βˆ’1οΏ½

2

2𝜎𝜎2 οΏ½ οΏ½+π‘’π‘’βˆ’ 1

2𝜎𝜎2οΏ½π‘¦π‘¦βˆ’1

2βˆ’1οΏ½2

οΏ½βˆ’ 32π‘¦π‘¦βˆ’

52οΏ½οΏ½οΏ½(18)

Equating β„Žβ€²(𝑦𝑦) = 0 gives 1π‘¦π‘¦πœŽπœŽ2 οΏ½1 βˆ’ 𝑦𝑦

12οΏ½ βˆ’ 3 = 0

3𝜎𝜎2𝑦𝑦 + 𝑦𝑦12 βˆ’ 1 = 0 (19)

substituting 𝑦𝑦 = π‘₯π‘₯2π‘“π‘“π‘’π‘’π‘œπ‘œπ‘šπ‘š ( 19), 𝑙𝑙𝑒𝑒𝑔𝑔𝑒𝑒𝑒𝑒 3𝜎𝜎2π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 1 = 0 (20)

π‘₯π‘₯ = βˆ’1Β±οΏ½1+12𝜎𝜎2

6𝜎𝜎2 , Since π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ is positive then

π‘₯π‘₯ =βˆ’1+οΏ½1+12𝜎𝜎2

6𝜎𝜎2

But 𝑦𝑦 = π‘₯π‘₯2, π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ = οΏ½βˆ’1+οΏ½1+12𝜎𝜎2

6𝜎𝜎2 �2

The bell-shaped condition would imply π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ β‰ˆ 1, see Table 2 for the numerical computation of π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ =

οΏ½βˆ’1+οΏ½1+12𝜎𝜎2

6𝜎𝜎2 �2

and Table 3 for the summary values of π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯

Table 2. Numerical Computation of

22

max 21 1 12

6y Οƒ

Οƒ

βˆ’ + + =

𝜎𝜎 π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ = οΏ½βˆ’1 + √1 + 12𝜎𝜎2

6𝜎𝜎2 �2

1 βˆ’ π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ 𝜎𝜎 π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯ = οΏ½βˆ’1 + √1 + 12𝜎𝜎2

6𝜎𝜎2 �2

1 βˆ’ π‘¦π‘¦π‘šπ‘šπ‘Žπ‘Žπ‘₯π‘₯

0.010 0.999400 0.0005996 0.051 0.984692 0.0153081 0.011 0.999275 0.0007253 0.052 0.984098 0.0159023 0.012 0.999137 0.0008631 0.053 0.983493 0.0165071 0.013 0.998987 0.0010127 0.054 0.982878 0.0171225 0.014 0.998826 0.0011743 0.055 0.982252 0.0177484 0.015 0.998652 0.0013477 0.056 0.981615 0.0183848 0.016 0.998467 0.0015331 0.057 0.980968 0.0190316 0.017 0.998270 0.0017303 0.058 0.980311 0.0196887 0.018 0.998061 0.0019393 0.059 0.979644 0.0203562 0.019 0.997840 0.0021602 0.060 0.978966 0.0210339 0.020 0.997607 0.0023928 0.061 0.978278 0.0217218 0.021 0.997363 0.0026373 0.062 0.977580 0.0224198 0.022 0.997106 0.0028935 0.063 0.976872 0.0231279 0.023 0.996839 0.0031615 0.064 0.976154 0.0238461 0.024 0.996559 0.0034411 0.065 0.975426 0.0245742 0.025 0.996267 0.0037325 0.066 0.974688 0.0253122 0.026 0.995964 0.0040356 0.067 0.973940 0.0260601 0.027 0.995650 0.0043502 0.068 0.973182 0.0268177 0.028 0.995323 0.0046765 0.069 0.972415 0.0275851 0.029 0.994986 0.0050144 0.070 0.971638 0.0283621 0.030 0.994636 0.0053638 0.071 0.970851 0.0291488 0.031 0.994275 0.0057248 0.087 0.957011 0.0429894 0.032 0.993903 0.0060972 0.088 0.956070 0.0439295 0.033 0.993519 0.0064811 0.089 0.955122 0.0448780 0.034 0.993124 0.0068764 0.090 0.954165 0.0458348 0.035 0.992717 0.0072832 0.091 0.953200 0.0467999 0.036 0.992299 0.0077012 0.092 0.952227 0.0477733 0.037 0.991869 0.0081306 0.093 0.951245 0.0487547 0.038 0.991429 0.0085713 0.094 0.950256 0.0497443 0.039 0.990977 0.0090232 0.095 0.949258 0.0507418 0.040 0.990514 0.0094863 0.096 0.948253 0.0517472 0.041 0.990039 0.0099606 0.097 0.947239 0.0527605 0.042 0.989554 0.0104460 0.098 0.946218 0.0537816 0.043 0.989057 0.0109425 0.099 0.945190 0.0548105 0.044 0.988550 0.0114500 0.100 0.944153 0.0558469 0.045 0.988031 0.0119686 0.046 0.987502 0.0124980 0.047 0.986962 0.0130384 0.048 0.986410 0.0135897 0.049 0.986410 0.0141517 0.050 0.985848 0.0147245

American Journal of Mathematics and Statistics 2013, 3(6): 362-374 367

Table 3. Conditions for Mode β‰ˆMean β‰ˆ1, Where π’šπ’šπ’Žπ’Žπ’‚π’‚π’™π’™ β‰ˆ 𝟏𝟏

Decimal Places Mode β‰ˆ mean β‰ˆ1,

2 0<πœŽπœŽβ‰€0.028

1 0<πœŽπœŽβ‰€0.094

Thus β„Ž(𝑦𝑦) is symmetrical about one with Mode β‰ˆ

1 β‰ˆ

mean correct to two decimal places when 0 < 𝜎𝜎 ≀ 0.028

correct to one decimal place when 0 < 𝜎𝜎 ≀ 0.094

2.4. Use of Simulated Error Terms To find the region where the bell-shaped conditions are

satisfied, artificial data were generated from 𝑁𝑁(1,𝜎𝜎2) for 𝑒𝑒𝑑𝑑 , subsequently transformed to obtain 𝑒𝑒𝑑𝑑′ = 1

𝑒𝑒𝑑𝑑2 for 0.01 ≀ 𝜎𝜎 ≀

0.10. Values of the required statistics were obtained for each of the variables, 𝑒𝑒𝑑𝑑 π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝑒𝑒𝑑𝑑′ as shown in Tables 4 to 8. For each configuration of (π‘Žπ‘Ž = 100,0.01 ≀ π‘₯π‘₯ ≀ 0.10), 1000 replications were performed for values of 𝜎𝜎 in steps of 0.01. For want of space the result of the first 25 replications are shown for the configurations, ( π‘Žπ‘Ž = 100,𝜎𝜎 = 0.05)

and .

2.5. Derivation of the Mean and Variance of

By definition,

𝐸𝐸(π‘Œπ‘Œ) = (21)

= π‘Žπ‘Žπ‘¦π‘¦

= 1

2𝜎𝜎√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

π‘’π‘’βˆ’1

2οΏ½π‘¦π‘¦βˆ’

12βˆ’1𝜎𝜎 οΏ½

2

π‘Žπ‘Žπ‘¦π‘¦ (22)

Let u = π‘¦π‘¦βˆ’12 βˆ’1𝜎𝜎

, π‘‘π‘‘β„Žπ‘’π‘’π‘Žπ‘Ž 𝑦𝑦 = (𝜎𝜎𝜎𝜎 + 1)βˆ’2 and π‘Žπ‘Žπ‘¦π‘¦ = βˆ’2𝜎𝜎(𝜎𝜎𝜎𝜎 + 1)βˆ’3π‘Žπ‘ŽπœŽπœŽ for ∞< u<

∴ 𝐸𝐸(π‘Œπ‘Œ) =1

2𝜎𝜎√2πœ‹πœ‹ οΏ½1 βˆ’ πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

π‘’π‘’βˆ’πœŽπœŽ22 (βˆ’2𝜎𝜎(𝜎𝜎𝜎𝜎 + 1)βˆ’3π‘Žπ‘ŽπœŽπœŽ)

= 1

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

(23)

Using the binomial expansion[12]

(1 + π‘₯π‘₯)π‘Žπ‘Ž = 1 + π‘Žπ‘Ž1!π‘₯π‘₯ + π‘Žπ‘Ž(π‘Žπ‘Žβˆ’1)

2!π‘₯π‘₯2 + π‘Žπ‘Ž(π‘Žπ‘Žβˆ’1)(π‘Žπ‘Žβˆ’2)

3!π‘₯π‘₯3 + β‹― (24)

∴ (1 + 𝜎𝜎𝜎𝜎)βˆ’2 = 1 βˆ’ 2(𝜎𝜎𝜎𝜎) + 3(𝜎𝜎𝜎𝜎)2 βˆ’ 4(𝜎𝜎𝜎𝜎)3 + β‹― and

𝐸𝐸(π‘Œπ‘Œ) = 1

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

E(Y) = 1

οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

⎣⎒⎒⎒⎑

⎦βŽ₯βŽ₯βŽ₯⎀

(25)

∴ 𝐸𝐸(π‘Œπ‘Œ) =1

οΏ½1 βˆ’ πœ‘πœ‘(βˆ’1𝜎𝜎�� βˆ’

2πœŽπœŽπ‘’π‘’βˆ’1

2𝜎𝜎2

√2πœ‹πœ‹βˆ’

3πœŽπœŽπ‘’π‘’βˆ’1

2𝜎𝜎2

√2πœ‹πœ‹+

3𝜎𝜎2

2οΏ½1 + Pr οΏ½ < 1

𝜎𝜎2οΏ½οΏ½ βˆ’4πœŽπœŽπ‘’π‘’βˆ’

12𝜎𝜎2

√2πœ‹πœ‹βˆ’

8𝜎𝜎3π‘’π‘’βˆ’1

2𝜎𝜎2

√2πœ‹πœ‹+ β‹―οΏ½

= 1 βˆ’ 9πœŽπœŽπ‘’π‘’βˆ’ 1

2𝜎𝜎2

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎�

+3𝜎𝜎2οΏ½1+PrοΏ½πœ’πœ’2

(1)< 1 𝜎𝜎2��

2οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎�

βˆ’ 8𝜎𝜎3π‘’π‘’βˆ’ 1

2𝜎𝜎2

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎�

+… (26)

To find the variance, we first obtain the second moment;

( )100, 0.08n Οƒ= = ( )100, 0.10n Οƒ= =

( )h y

( )0

yh y dy∞

∫21

21 12

30 212 2 1

y

eyy

Οƒ

Οƒ Ο€ ϕσ

βˆ’ βˆ’

βˆ’ ∞

βˆ’ βˆ’

∫

12

0

y∞

βˆ’

∫

1Οƒ

βˆ’

( )( )1

2 2

1

1uσ

Οƒβˆ’βˆ’

βˆ’

∞+∫

( )2

2 2

11

u

u e du

Οƒ

Οƒβˆ’βˆ’

∞

βˆ’

+∫

( ) ( ) ( )2

2 3 2

1(1 2 3 4 ) du

u

u u u e

Οƒ

Οƒ Οƒ Οƒβˆ’

∞

βˆ’

βˆ’ + βˆ’ +β€¦βˆ«2

2 2 22 32

2 32 2 2

1 1 1 1

2 3 4

2 2 2 2

uu u ue

du ue du u e du u e du

Οƒ Οƒ Οƒ Οƒ

Οƒ Οƒ Οƒ

Ο€ Ο€ Ο€ Ο€

βˆ’βˆ’ βˆ’ βˆ’

∞ ∞ ∞ ∞

βˆ’ βˆ’ βˆ’ βˆ’

βˆ’ + βˆ’ + β€¦βˆ« ∫ ∫ ∫

( )11 Ο•

Οƒβˆ’ βˆ’

( )21Ο‡

368 G. C. Ibeh et al.: Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation

𝐸𝐸(π‘Œπ‘Œ2) =

= 12𝜎𝜎√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘(βˆ’1

𝜎𝜎� (27)

Let u = π‘¦π‘¦βˆ’12 βˆ’1𝜎𝜎

, y = (Οƒu + 1)βˆ’2and π‘Žπ‘Žπ‘¦π‘¦ = βˆ’2πœŽπœŽπ‘¦π‘¦32π‘Žπ‘ŽπœŽπœŽfor ∞< u <

then

E( )=1

2𝜎𝜎√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎�

=1

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎�

(28)

π‘π‘πœŽπœŽπ‘‘π‘‘ (𝜎𝜎𝜎𝜎 + 1)βˆ’4 = 1 βˆ’ 4(𝜎𝜎𝜎𝜎) + 10(𝜎𝜎𝜎𝜎)2 βˆ’ 20(𝜎𝜎𝜎𝜎)3 + β‹―

∴E( )=1

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎�

= 1οΏ½1βˆ’πœ‘πœ‘(βˆ’1

𝜎𝜎��∫ π‘’π‘’βˆ’

𝜎𝜎22

√2πœ‹πœ‹βˆžβˆ’1𝜎𝜎

π‘Žπ‘ŽπœŽπœŽ βˆ’ ∫ 4πœŽπœŽπœŽπœŽπ‘’π‘’βˆ’πœŽπœŽ22

√2πœ‹πœ‹π‘Žπ‘ŽπœŽπœŽ + ∫ 10(𝜎𝜎𝜎𝜎 )2π‘’π‘’βˆ’

𝜎𝜎22

√2πœ‹πœ‹βˆžβˆ’1𝜎𝜎

βˆžβˆ’1𝜎𝜎

π‘Žπ‘ŽπœŽπœŽ βˆ’ ∫ 20(𝜎𝜎𝜎𝜎 )3π‘’π‘’βˆ’πœŽπœŽ22

√2πœ‹πœ‹π‘Žπ‘ŽπœŽπœŽβˆž

βˆ’1𝜎𝜎

+ β‹―οΏ½ (29)

𝐸𝐸(π‘Œπ‘Œ2) =1

οΏ½1 βˆ’ πœ‘πœ‘(βˆ’1𝜎𝜎���1 βˆ’ πœ‘πœ‘(βˆ’1

𝜎𝜎� βˆ’4πœŽπœŽπ‘’π‘’βˆ’

12𝜎𝜎2

√2πœ‹πœ‹βˆ’

10πœŽπœŽπ‘’π‘’βˆ’1

2𝜎𝜎2

√2πœ‹πœ‹+ 5𝜎𝜎2 Pr οΏ½πœ’πœ’2

(1) < 1𝜎𝜎2οΏ½ + 5𝜎𝜎2 βˆ’

20πœŽπœŽπ‘’π‘’βˆ’1

2𝜎𝜎2

√2πœ‹πœ‹βˆ’

40𝜎𝜎3π‘’π‘’βˆ’1

2𝜎𝜎2

√2πœ‹πœ‹

+ β‹―οΏ½

= 1 βˆ’ 34πœŽπœŽπ‘’π‘’βˆ’ 1

2𝜎𝜎2

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎�

+5𝜎𝜎2οΏ½1+PrοΏ½πœ’πœ’2

(1)< 1𝜎𝜎2��

οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎�

βˆ’ 40𝜎𝜎3π‘’π‘’βˆ’ 1

2𝜎𝜎2

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘(βˆ’1𝜎𝜎�

+ β‹― (30)

Subsequent terms in series 26 and 30 for E(Y) and E ( 2Y ) respectively are all zeros as they have the factor 21

2e Οƒβˆ’ which

is zero for Οƒ ≀ 0.23 Thus,

(31)

( )2

0

y h y dy∞

∫21

21 11 22

0

y

y e dyσ

βˆ’ βˆ’

βˆ’ ∞ ∫

β‡’ 1Οƒ

βˆ’

2Y2

11 32 2 22

u

y e y duσ

Οƒβˆ’

∞

βˆ’

βˆ’

∫

( )2

4 2

11

u

u e du

Οƒ

Οƒ βˆ’ βˆ’βˆž

βˆ’

+∫

2Y ( ) ( ) ( )2

2 3 2

1(1 4 10 20 )

u

u u u e du

Οƒ

Οƒ Οƒ Οƒβˆ’

∞

βˆ’

βˆ’ + βˆ’ +β€¦βˆ«

( )( ) ( )

2 2 2 21 12 2

21 15 1 Pr 3 1 Pr

1 11 11 ( 2 1 (

V Yσ χ σ χ

Οƒ Οƒ

Ο• ϕσ Οƒ

+ < + < = + βˆ’ +

βˆ’ βˆ’ βˆ’ βˆ’

( )( ) ( )

22 2 2 2

1 12 2

1 12 1 Pr 3 1 Pr

1 11 ( 2 1 (V Y

Οƒ Ο‡ Οƒ χσ Οƒ

Ο• ϕσ Οƒ

+ < + < = βˆ’

βˆ’ βˆ’ βˆ’ βˆ’

Οƒ<0.24

A

mer

ican

Jour

nal o

f Mat

hem

atic

s and

Sta

tistic

s 201

3, 3

(6):

362-

374

1

Tabl

e 4.

Si

mul

atio

n R

esul

ts w

hen 𝜎𝜎

=0.

05

e tN

(1,𝜎𝜎

2 ),𝜎𝜎

=0.

05

𝑒𝑒 𝑑𝑑′=

1 𝑒𝑒 𝑑𝑑2~

N(1

,𝜎𝜎2 ),𝜎𝜎

=0.

05

mea

n m

edia

n St

D

Var

𝛾𝛾 1

𝛾𝛾 2

A

D

P-V

alue

m

ean

med

ian

Std

Var

𝛾𝛾 1

𝛾𝛾 2

A

D

P-V

alue

𝑉𝑉�𝑒𝑒𝑑𝑑′ οΏ½

𝑉𝑉( 𝑒𝑒𝑑𝑑)

1 1.

0008

0.

05

0.00

25

0.01

-0

.05

0.18

3 0.

908

1.00

75

0.99

84

0.10

19

0.01

04

0.42

0.

16

0.45

5 0.

264

4

1 1.

0002

0.

05

0.00

25

0.00

0.

20

0.19

5 0.

889

1.00

75

0.99

97

0.10

22

0.01

04

0.49

0.

63

0.41

9 0.

322

4

1 1.

0024

0.

05

0.00

25

0.00

0.

22

0.23

4 0.

790

1.00

75

0.99

52

0.10

22

0.01

04

0.49

0.

53

0.49

2 0.

213

4

1 1.

0031

0.

05

0.00

25

0.00

-0

.33

0.17

8 0.

918

1.00

75

0.99

39

0.10

20

0.01

04

0.43

0.

16

0.48

9 0.

217

4

1 1.

0037

0.

05

0.00

25

0.10

0.

05

0.43

5 0.

294

1.00

75

0.99

26

0.10

14

0.01

03

0.38

0.

50

0.41

5 0.

328

4

1 1.

0031

0.

05

0.00

25

0.00

-0

.03

0.17

8 0.

918

1.00

75

0.99

38

0.10

20

0.01

04

0.43

0.

16

0.49

0 0.

217

4

1 1.

0011

0.

05

0.00

25

0.07

-0

.04

0.13

7 0.

976

1.00

75

0.99

78

0.10

15

0.01

03

0.36

0.

07

0.35

2 0.

461

4

1 0.

9951

0.

05

0.00

25

0.05

0.

10

0.19

6 0.

888

1.00

75

1.00

99

0.10

16

0.01

03

0.39

0.

12

0.45

8 0.

258

4

1 1.

0003

0.

05

0.00

25

0.01

0.

06

0.20

0 0.

880

1.00

75

0.99

94

0.10

20

0.01

04

0.44

0.

25

0.48

6 0.

221

4

1 1.

0037

0.

05

0.00

25

0.10

0.

05

0.43

5 0.

294

1.00

75

0.99

26

0.10

14

0.01

03

0.38

0.

50

0.41

5 0.

328

4

1 0.

9992

0.

05

0.00

25

-0.0

1 -0

.05

0.18

3 0.

908

1.00

75

1.00

16

0.10

21

0.01

04

0.46

0.

40

0.32

1 0.

525

4

1 0.

9986

0.

05

0.00

25

0.10

0.

10

0.25

0 0.

739

1.00

75

1.00

29

0.10

14

0.01

03

0.39

0.

54

0.26

6 0.

684

4

1 1.

0008

0.

05

0.00

25

0.18

0.

05

0.20

9 0.

859

1.00

74

0.99

84

0.10

06

0.01

01

0.24

-0

.07

0.35

5 0.

454

4

1 1.

0023

0.

05

0.00

25

0.03

-0

.00

0.19

5 0.

889

1.00

75

0.99

53

0.10

18

0.01

04

0.42

0.

28

0.43

9 0.

288

4

1 1.

0026

0.

05

0.00

25

0.05

-0

.12

0.14

1 0.

972

1.00

75

0.99

49

0.10

16

0.01

03

0.37

0.

05

0.34

2 0.

486

4

1 0.

9979

0.

05

0.00

25

0.27

0.

18

0.31

0 0.

552

1.00

74

1.00

42

0.10

01

0.01

00

0.19

0.

16

0.27

5 0.

654

4

1 1.

0005

0.

05

0.00

25

-0.1

4 -0

.47

0.26

2 0.

699

1.00

76

0.99

89

0.10

27

0.01

06

0.49

-0

.11

0.55

1 0.

152

4

1 0.

9986

0.

05

0.00

25

0.03

-0

.04

0.18

2 0.

911

1.00

75

1.00

29

0.10

17

0.01

04

0.39

0.

03

0.49

5 0.

210

4

1 0.

9965

0.

05

0.00

25

0.02

0.

27

0.15

0 0.

962

1.00

75

1.00

70

0.10

21

0.01

04

0.49

0.

68

0.35

9 0.

445

4

1 0.

9949

0.

05

0.00

25

0.25

0.

04

0.29

0 0.

606

1.00

74

1.01

03

0.10

02

0.01

00

0.19

0.

04

0.21

6 0.

843

4

1 0.

9942

0.

05

0.00

25

0.16

0.

04

0.45

0 0.

270

1.00

74

1.01

17

0.10

09

0.01

02

0.30

0.

36

0.35

9 0.

443

4

1 0.

9959

0.

05

0.00

25

0.09

-0

.10

0.30

6 0.

559

1.00

75

1.00

83

0.10

12

0.01

02

0.31

-0

.11

0.54

2 0.

160

4

1 0.

9989

0.

05

0.00

25

0.01

-0

.13

0.19

9 0.

882

1.00

75

1.00

21

0.10

19

0.01

04

0.40

-0

.00

0.49

0 0.

216

4

1 0.

9952

0.

05

0.00

25

0.19

-0

.14

0.21

6 0.

841

1.00

74

1.00

97

0.10

04

0.01

01

0.21

-0

.15

0.22

3 0.

823

4

1 0.

9954

0.

05

0.00

25

0.25

-0

.09

0.31

1 0.

546

1.00

74

1.00

93

0.10

00

0.01

00

0.14

0.

26

0.35

8 0.

446

4

NB

(i) 3

Οƒ2 = 3

(0.0

025)

= 0

.007

5

(ii) E

(𝑒𝑒𝑑𝑑′ )

β‰ˆ 1

+3Οƒ2

American Journal of Mathematics and Statistics 2013, 3(6): 362-376 369

2 G

. C. I

beh

et a

l.:

Stud

y on

the

Erro

r Com

pone

nt o

f Mul

tiplic

ativ

e Ti

me

Serie

s

Mod

el U

nder

Inve

rse

Squa

re T

rans

form

atio

n

Tabl

e 5.

Si

mul

atio

n R

esul

ts fo

r 𝜎𝜎

=0.

08

e tN

(1,𝜎𝜎

2 ),𝜎𝜎

=0.

08

𝑒𝑒 𝑑𝑑′=

1 𝑒𝑒 𝑑𝑑2~

N(1

,𝜎𝜎2 ),𝜎𝜎

=0.

08

Mea

n St

D

Var

M

edia

n 𝛾𝛾 1

𝛾𝛾 2

A

D

P-V

alue

M

ean

StD

V

ar

Med

ian

𝛾𝛾 1

𝛾𝛾 2

AD

P-

valu

e 𝑉𝑉(𝑒𝑒 𝑑𝑑′

)𝑉𝑉(𝑒𝑒 𝑑𝑑

)

1 0.

08

0.00

64

1.00

13

0.01

-0

.05

0.18

3 0.

908

1.01

96

0.16

81

0.02

83

0.99

75

0.69

0.

63

0.81

3 0.

034

4

1 0.

08

0.00

64

1.00

13

0 0.

2 0.

195

0.88

9 1.

0197

0.

1693

0.

0287

0.

9994

0.

82

1.35

0.

794

0.03

8 4

1 0.

08

0.00

64

1.00

39

0 0.

22

0.23

4 0.

79

1.01

97

0.16

93

0.02

87

0.99

23

0.81

1.

13

0.89

3 0.

022

4

1 0.

08

0.00

64

1.00

49

0 -0

.03

0.17

8 0.

918

1.01

96

0.16

83

0.02

83

0.99

02

0.7

0.59

0.

896

0.02

1 4

1 0.

08

0.00

64

1.00

59

0.1

0.05

0.

435

0.29

4 1.

0194

0.

1671

0.

0279

0.

9883

0.

71

1.15

0.

663

0.08

1 4

1 0.

08

0.00

64

1.00

49

0 -0

.03

0.17

8 0.

918

1.01

96

0.16

83

0.02

83

0.99

02

0.7

0.59

0.

896

0.02

1 4

1 0.

08

0.00

64

1.00

18

0.07

-0

.04

0.13

7 0.

976

1.01

95

0.16

7 0.

0279

0.

9964

0.

62

0.41

0.

703

0.06

4 4

1 0.

08

0.00

64

0.99

21

0.05

0.

1 0.

196

0.88

8 1.

0195

0.

1675

0.

028

1.01

59

0.65

0.

45

0.83

3 0.

031

4

1 0.

08

0.00

64

1.00

05

0.01

0.

06

0.2

0.88

1.

0196

0.

1684

0.

0284

0.

999

0.72

0.

66

0.90

5 0.

02

4

1 0.

08

0.00

64

1.00

59

0.1

0.05

0.

435

0.29

4 1.

0194

0.

1671

0.

0279

0.

9883

0.

71

1.15

0.

063

0.08

1 4

1 0.

08

0.00

64

0.99

87

-0.0

1 -0

.05

0.18

3 0.

908

1.01

96

0.16

89

0.02

85

1.00

25

0.77

1.

08

0.63

0.

098

4

1 0.

08

0.00

64

0.99

77

0.1

0.1

0.25

0.

739

1.01

94

0.16

72

0.02

8 1.

0046

0.

72

1.27

0.

509

0.19

4 4

1 0.

08

0.00

64

1.00

13

0.18

0.

05

0.20

9 0.

859

1.01

92

0.16

46

0.02

71

0.99

74

0.49

0.

11

0.66

7 0.

079

4

1 0.

08

0.00

64

1.00

38

0.03

0

0.19

5 0.

889

1.01

96

0.16

8 0.

0282

0.

9925

0.

71

0.83

0.

827

0.03

2 4

1 0.

08

0.00

64

1.00

41

0.05

-0

.12

0.14

1 0.

972

1.01

95

0.16

72

0.02

79

0.99

18

0.63

0.

43

0.68

3 0.

072

4

1 0.

08

0.00

64

0.99

67

0.27

0.

18

0.31

0.

55

1.01

91

0.16

34

0.02

67

1.00

67

0.47

0.

5 0.

481

0.22

7 4

1 0.

08

0.00

64

1.00

09

-0.1

4 -0

.47

0.26

2 0.

699

1.01

98

0.17

0.

0289

0.

9983

0.

72

0.32

0.

934

0.01

7 5

1 0.

08

0.00

64

0.99

77

0.03

-0

.04

0.18

2 0.

911

1.01

95

0.16

76

0.02

81

1.00

46

0.64

0.

35

0.89

5 0.

022

4

1 0.

08

0.00

64

0.99

45

0.02

0.

27

0.15

0.

962

1.01

96

0.16

92

0.02

86

1.01

12

0.83

1.

47

0.73

5 0.

054

4

1 0.

08

0.00

64

0.99

18

0.25

0.

04

0.29

0.

606

1.01

91

0.16

35

0.02

67

1.01

66

0.46

0.

28

0.42

3 0.

314

4

1 0.

08

0.00

64

0.99

07

0.16

0.

04

0.45

0.

27

1.01

93

0.16

56

0.02

74

1.01

88

0.62

0.

94

0.56

4 0.

141

4

1 0.

08

0.00

64

0.99

34

0.09

-0

.1

0.30

6 0.

559

1.01

94

0.16

61

0.02

76

1.01

34

0.55

0.

1 0.

92

0.01

9 4

1 0.

08

0.00

64

0.99

83

0.01

-0

.13

0.19

9 0.

882

1.01

96

0.16

79

0.02

82

1.00

34

0.65

0.

28

0.91

1 0.

02

4

1 0.

08

0.00

64

0.99

23

0.19

-0

.14

0.21

6 0.

841

1.01

92

0.16

4 0.

0269

1.

0155

0.

45

0.04

0.

453

0.26

6 4

1 0.

08

0.00

64

0.99

26

0.25

-0

.09

0.31

1 0.

546

1.01

91

0.16

28

0.02

65

1.01

49

0.37

-0

.17

0.59

4 0.

118

4

NB

(i) 3

Οƒ2 = 3

(0.0

025)

= 0

.007

5

(ii) E

(𝑒𝑒𝑑𝑑′ )

β‰ˆ 1

+3Οƒ2

370 G. C. Ibeh et al.: Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation

A

mer

ican

Jour

nal o

f Mat

hem

atic

s and

Sta

tistic

s 201

3, 3

(6):

362-

374

3

Tabl

e 6.

Si

mul

atio

n R

esul

ts fo

r 𝜎𝜎

=0.

10

e tN

(1,𝜎𝜎

2 ),𝜎𝜎

=0.

10

𝑒𝑒 𝑑𝑑′=

1 𝑒𝑒 𝑑𝑑2~

N(1

,𝜎𝜎2 ),𝜎𝜎

=0.

10

Mea

n St

D

Var

M

edia

n 𝛾𝛾 1

𝛾𝛾 2

A

D

P-V

alue

M

ean

StD

V

ar

Med

ian

𝛾𝛾 1

𝛾𝛾 2

AD

P-

Val

ue

𝑉𝑉(𝑒𝑒 𝑑𝑑′

)𝑉𝑉(𝑒𝑒 𝑑𝑑

)

1 0.

1 0.

01

1.00

16

0.01

-0

.05

0.18

3 0.

908

1.03

11

0.21

64

0.04

68

0.99

69

0.89

1.

12

1.14

2 0.

005

5

1 0.

1 0.

01

1.00

03

0 0.

2 0.

195

0.88

9 1.

0313

0.

2189

0.

0479

0.

9993

1.

07

2.11

1.

165

<0.0

05

5

1 0.

1 0.

01

1.00

49

0 0.

22

0.23

4 0.

79

1.03

14

0.21

88

0.04

79

0.99

04

1.03

1.

74

1.28

3 <0

.005

5

1 0.

1 0.

01

1.00

62

0 -0

.03

0.17

8 0.

918

1.03

12

0.21

67

0.47

0.

9878

0.

89

1.04

1.

266

<0.0

05

5

1 0.

1 0.

01

1.00

74

0.1

0.05

0.

435

0.29

4 1.

0309

0.

2152

0.

463

0.98

54

0.95

1.

8 0.

958

0.01

5 5

1 0.

1 0.

01

1.00

62

0 -0

.03

0.17

8 0.

918

1.03

12

0.21

67

0.47

0.

9878

0.

89

1.04

1.

266

<0.0

05

5

1 0.

1 0.

01

1.00

22

0.07

-0

.04

0.13

7 0.

976

1.03

09

0.21

44

0.04

6 0.

9955

0.

81

0.77

1.

037

0.01

5

1 0.

1 0.

01

0.99

02

0.05

0.

1 0.

196

0.88

8 1.

031

0.21

53

0.04

64

1.02

0.

84

0.81

1.

184

<0.0

05

5

1 0.

1 0.

01

1.00

07

0.01

0.

06

0.2

0.88

1.

0312

0.

2169

0.

0471

0.

9987

0.

91

1.07

1.

299

<0.0

05

5

1 0.

1 0.

01

1.00

74

0.1

0.05

0.

435

0.29

4 1.

0309

0.

2152

0.

0463

0.

9854

0.

95

1.8

0.95

8 0.

015

5

1 0.

1 0.

01

0.99

84

-0.0

1 -0

.05

0.18

3 0.

908

1.03

13

0.21

8 0.

0475

1.

0032

1

1.77

0.

951

0.01

6 5

1 0.

1 0.

01

0.99

71

0.1

0.1

0.25

0.

739

1.03

09

0.21

55

0.04

64

1.00

58

0.97

2.

04

0.78

9 0.

039

5

1 0.

1 0.

01

1.00

16

0.18

0.

05

0.20

9 0.

859

1.03

04

0.21

05

0.04

43

0.99

67

0.66

0.

34

0.97

0.

014

5

1 0.

1 0.

01

1.00

47

0.03

0

0.19

5 0.

889

1.03

11

0.21

64

0.04

68

0.99

07

0.92

1.

43

1.19

4 <0

.005

5

1 0.

1 0.

01

1.00

52

0.05

-0

.12

0.14

1 0.

972

1.03

1 0.

2147

0.

0461

0.

9898

0.

81

0.82

1.

009

0.01

1 5

1 0.

1 0.

01

0.99

59

0.27

0.

18

0.31

0.

55

1.03

01

0.20

88

0.04

36

1.00

83

0.68

0.

92

0.71

4 0.

06

5

1 0.

1 0.

01

1.00

11

-0.1

4 -0

.47

0.26

2 0.

699

1.03

16

0.21

91

0.04

8 0.

9979

0.

89

0.71

1.

288

<0.0

05

5

1 0.

1 0.

01

0.99

71

0.03

-0

.04

0.18

2 0.

911

1.03

11

0.21

54

0.04

64

1.00

58

0.82

0.

69

1.25

5 <0

.005

5

1 0.

1 0.

01

0.99

31

0.02

0.

27

0.15

0.

962

1.03

13

0.21

89

0.04

79

1.01

4 1.

09

2.33

1.

112

0.00

6 5

1 0.

1 0.

01

0.98

97

0.25

0.

04

0.29

0.

606

1.03

02

0.20

88

0.04

36

1.02

08

0.64

0.

56

0.67

3 0.

077

5

1 0.

1 0.

01

0.98

84

0.16

0.

04

0.45

0.

27

1.03

06

0.21

27

0.04

52

1.02

36

0.85

1.

57

0.82

6 0.

032

5

1 0.

1 0.

01

0.99

17

0.09

-0

.1

0.30

6 0.

559

1.03

07

0.21

28

0.04

53

1.01

67

0.71

0.

33

1.27

5 <0

.005

5

1 0.

1 0.

01

0.99

79

0.01

-0

.13

0.19

9 0.

882

1.03

11

0.21

58

0.04

66

1.00

43

0.82

0.

57

1.30

3 <0

.005

5

1 0.

1 0.

01

0.99

04

0.19

-0

.14

0.21

6 0.

841

1.03

03

0.20

94

0.04

39

1.01

95

0.61

0.

26

0.70

8 0.

063

5

1 0.

1 0.

01

0.99

08

0.25

-0

.09

0.31

1 0.

546

1.03

01

0.20

74

0.04

3 1.

0187

0.

52

-0.0

2 0.

837

0.03

5

NB

(i) 3

Οƒ2 = 0

.03

(

ii) E

(𝑒𝑒𝑑𝑑′ )

β‰ˆ 1

+3Οƒ2

American Journal of Mathematics and Statistics 2013, 3(6): 362-376

371

372 G. C. Ibeh et al.: Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation

2.6. Numerical Computation of the Mean and Variance of 𝒆𝒆𝒕𝒕′

Numerical computations of the means and variances of the truncated and the transformed probability density functions for 𝜎𝜎 ∈ [0.01,0.25]

The mean of the truncated probability density function is given as

πΈπΈβˆ—(𝑋𝑋) = 1 + πœŽπœŽπ‘’π‘’βˆ’ 1

2𝜎𝜎2

√2πœ‹πœ‹οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

,

πΈπΈβˆ—(𝑋𝑋)= 1 if Οƒ< 0.1 and the mean of the transformed probability density

function is given as

𝐸𝐸(π‘Œπ‘Œ) = 1 + 3𝜎𝜎2

2οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��� 2

(1) 2

11 Pr χσ

+ <

οΏ½Οƒ< 0.24

= 1 + 23

2BCσ

where 1

1B ϕσ

= βˆ’ βˆ’

= 1,

2

(1) 2

11 PrC Ο‡

Οƒ= + <

= 2

= 1 + 23Οƒ (32) Note that Equation 32 is the relationship observed with

simulated data in Tables 4 to 6 From Equation 12 the variance of the truncated probability

distribution is given as

π‘‰π‘‰βˆ—(𝑋𝑋) =𝜎𝜎2οΏ½1+Pr(πœ’πœ’(1)

2 < 1𝜎𝜎2)�

2οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

Οƒ< 0.1

= 2

22

CB

Οƒ Οƒ=

and the variance of the transformed probability distribution is given as

𝑉𝑉(π‘Œπ‘Œ) = 2𝜎𝜎2 οΏ½1+Pr(πœ’πœ’(1)2 < 1

𝜎𝜎2)�

οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

βˆ’ οΏ½3𝜎𝜎2οΏ½1+Pr (πœ’πœ’(1)

2 < 1𝜎𝜎2)�

2οΏ½1βˆ’πœ‘πœ‘οΏ½βˆ’1𝜎𝜎��

οΏ½2

Οƒ<

0.24

= 2 2 2

2 32

C CB B

Οƒ Οƒ βˆ’

= 4Οƒ2 – (3Οƒ2)2

From Table 7 i. 𝐸𝐸(π‘Œπ‘Œ) = = 1 correct to 1 decimal place (dp)

when Οƒ< 0.13 ii. 𝑉𝑉(π‘Œπ‘Œ)

π‘‰π‘‰βˆ—(𝑋𝑋) 4 correct to 2 dp when 𝜎𝜎 ≀ 0.020 correct

to 1 dp when 𝜎𝜎 ≀ 0.070

3. Summary of Results The following results were obtained from the

investigations carried out on inverse square transformation

of error component of the multiplicative model, 1. The curve shapes are bell-shaped and symmetric about

mean=1 for 𝜎𝜎 ≀ 0.08 2. Using Rolle’s theorem, mode β‰ˆ 1 β‰ˆ mean for

𝜎𝜎 ≀ 0.08 to 2 dp to 1 dp

3. Using simulated random errors, a. Median β‰ˆ Mean β‰ˆ 1 when 𝜎𝜎 ≀ 0.10

b. + 3Οƒ2

c. when 𝜎𝜎 ≀ 0.08

4. The p-Value of the Anderson Darling’s test statistic

strongly supports the non-normality of 𝑒𝑒𝑑𝑑′at 𝜎𝜎 β‰₯ 0.08

5. Using the moments of 𝑒𝑒𝑑𝑑′ a. 𝐸𝐸(π‘Œπ‘Œ ) = 𝐸𝐸(𝑒𝑒𝑑𝑑′)= 1 + 3Οƒ2 correct to 2 dp for 𝜎𝜎 ≀ 0.04

correct to 1 dp for Οƒ ≀ 0.1

b. 𝑉𝑉(π‘Œπ‘Œ)π‘‰π‘‰βˆ—(𝑋𝑋)

= = 4, correct to 2 dp for Οƒ ≀ 0.02 correct to 1 dp for 0.070

Thus the inverse square transformation increases the error variance by four times that of the untransformed error.

The results of this investigation together with findings from similar investigations with respect to the error term 𝑒𝑒𝑑𝑑~𝑁𝑁(1,𝜎𝜎2) under other types of transformations are summarized in table 8

( )'tE e

β‰ˆ

'te

0.094Οƒ ≀

( )' 1tE e β‰ˆ

( ) ( )' 4t tV e V eβ‰ˆ

( )( )*

'

t

tV

V

ee

American Journal of Mathematics and Statistics 2013, 3(6): 362-374 373

Table 7. Computations of πΈπΈβˆ—(𝑋𝑋),𝐸𝐸(π‘Œπ‘Œ),π‘‰π‘‰βˆ—(𝑋𝑋)π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝑉𝑉(π‘Œπ‘Œ) for 𝜎𝜎 ∈ [0.01,0.25]

𝜎𝜎 𝐴𝐴 = Οƒeβˆ’1Οƒ2 1

1

B

ϕσ

βˆ’ βˆ’

=

( )21 2

11 Pr

C

χσ

<+

=

πΈπΈβˆ—(𝑋𝑋) 𝐸𝐸(π‘Œπ‘Œ) π‘‰π‘‰βˆ—(𝑋𝑋) 𝑉𝑉(π‘Œπ‘Œ) 𝑉𝑉(π‘Œπ‘Œ)π‘‰π‘‰βˆ—(𝑋𝑋)

0.010 0.0000000 1.00000 2.00000 1.00000 1.00030 0.000100 0.000400 3.99910 0.015 0.0000000 1.00000 2.00000 1.00000 1.00068 0.000225 0.000900 3.99797 0.020 0.0000000 1.00000 2.00000 1.00000 1.00120 0.000400 0.001599 3.99640 0.025 0.0000000 1.00000 2.00000 1.00000 1.00188 0.000625 0.002496 3.99437 0.030 0.0000000 1.00000 2.00000 1.00000 1.00270 0.000900 0.003593 3.99190 0.035 0.0000000 1.00000 2.00000 1.00000 1.00368 0.001225 0.004886 3.98897 0.040 0.0000000 1.00000 2.00000 1.00000 1.00480 0.001600 0.006377 3.98560 0.045 0.0000000 1.00000 2.00000 1.00000 1.00608 0.002025 0.008063 3.98177 0.050 0.0000000 1.00000 2.00000 1.00000 1.00750 0.002500 0.009944 3.97750 0.055 0.0000000 1.00000 2.00000 1.00000 1.00907 0.003025 0.012018 3.97277 0.060 0.0000000 1.00000 2.00000 1.00000 1.01080 0.003600 0.014283 3.96760 0.065 0.0000000 1.00000 2.00000 1.00000 1.01268 0.004225 0.016739 3.96198 0.070 0.0000000 1.00000 2.00000 1.00000 1.01470 0.004900 0.019384 3.95590 0.075 0.0000000 1.00000 2.00000 1.00000 1.01688 0.005625 0.022215 3.94938 0.080 0.0000000 1.00000 2.00000 1.00000 1.01920 0.006400 0.025231 3.94240 0.085 0.0000000 1.00000 2.00000 1.00000 1.02167 0.007225 0.028430 3.93498 0.090 0.0000000 1.00000 2.00000 1.00000 1.02430 0.008100 0.031810 3.92710 0.095 0.0000000 1.00000 2.00000 1.00000 1.02708 0.009025 0.035367 3.91878 0.100 0.0000000 1.00000 2.00000 1.00000 1.03000 0.010000 0.039100 3.91000 0.105 0.0000000 1.00000 2.00000 1.00000 1.03308 0.011025 0.043006 3.90078 0.110 0.0000000 1.00000 2.00000 1.00000 1.03630 0.012100 0.047082 3.89110 0.115 0.0000000 1.00000 2.00000 1.00000 1.03967 0.013225 0.051326 3.88097 0.120 0.0000000 1.00000 2.00000 1.00000 1.04320 0.014400 0.055734 3.87040 0.125 0.0000000 1.00000 2.00000 1.00000 1.04688 0.015625 0.060303 3.85938 0.130 0.0000000 1.00000 2.00000 1.00000 1.05070 0.016900 0.065030 3.84790 0.135 0.0000000 1.00000 2.00000 1.00000 1.05468 0.018225 0.069911 3.83598 0.140 0.0000000 1.00000 2.00000 1.00000 1.05880 0.019600 0.074943 3.82360 0.145 0.0000000 1.00000 2.00000 1.00000 1.06308 0.021025 0.080122 3.81078 0.150 0.0000000 1.00000 2.00000 1.00000 1.06750 0.022500 0.085444 3.79750

0.155 0.0000000 1.00000 2.00000 1.00000 1.07207 0.024025 0.090905 3.78378

0.160 0.0000000 1.00000 2.00000 1.00000 1.07680 0.025600 0.096502 3.76960

0.165 0.0000000 1.00000 2.00000 1.00000 1.08167 0.027225 0.102229 3.75498

0.170 0.0000000 1.00000 2.00000 1.00000 1.08670 0.028900 0.108083 3.73990

0.175 0.0000000 1.00000 2.00000 1.00000 1.09187 0.030625 0.114059 3.72437

0.180 0.0000000 1.00000 2.00000 1.00000 1.09720 0.032400 0.120152 3.70840

0.185 0.0000001 1.00000 2.00000 1.00000 1.10268 0.034225 0.126358 3.69197

0.190 0.0000002 1.00000 2.00000 1.00000 1.10830 0.036100 0.132671 3.67510

0.195 0.0000004 1.00000 2.00000 1.00000 1.11407 0.038025 0.139087 3.65778

0.200 0.0000007 1.00000 2.00000 1.00000 1.12000 0.040000 0.145600 3.64000

0.205 0.0000014 1.00000 2.00000 1.00000 1.12607 0.042025 0.152205 3.62178

0.210 0.0000025 1.00000 2.00000 1.00000 1.13230 0.044100 0.158897 3.60310

0.215 0.0000043 1.00000 2.00000 1.00000 1.13868 0.046225 0.165669 3.58397

0.220 0.0000072 1.00000 1.99999 1.00000 1.14520 0.048400 0.172517 3.56440

0.225 0.0000116 1.00000 1.99999 1.00000 1.15188 0.050625 0.179434 3.54437

0.230 0.0000181 0.99999 1.99999 1.00001 1.15870 0.052900 0.186414 3.52390

0.235 0.0000275 0.99999 1.99998 1.00001 1.16568 0.055225 0.193452 3.50298

0.240 0.0000408 0.99998 1.99997 1.00002 1.17280 0.057600 0.200540 3.48160

0.245 0.0000591 0.99998 1.99996 1.00002 1.18008 0.060025 0.207673 3.45978

0.250 0.0000839 0.99997 1.99994 1.00003 1.18750 0.062500 0.214844 3.43750

374 G. C. Ibeh et al.: Study on the Error Component of Multiplicative Time Series Model Under Inverse Square Transformation

Table 8. Summary of this and similar research findings with respect to the error term 𝑒𝑒𝑑𝑑~𝑁𝑁(1,𝜎𝜎2)under different transformations

𝑒𝑒𝑑𝑑′ Distribution of 𝑒𝑒𝑑𝑑′ Condition for successful

transformation Relationship between 𝜎𝜎 and 𝜎𝜎1

π‘™π‘™π‘œπ‘œπ‘™π‘™π‘’π‘’π‘’π‘’π‘‘π‘‘ 𝑒𝑒𝑑𝑑′~𝑁𝑁�0, 21Οƒ οΏ½ 𝜎𝜎 < 0.1 𝜎𝜎1 β‰ˆ 𝜎𝜎

1𝑒𝑒𝑑𝑑

𝑒𝑒𝑑𝑑′~𝑁𝑁�1, 21Οƒ οΏ½ 𝜎𝜎 ≀ 0.1 𝜎𝜎1 β‰ˆ 𝜎𝜎

�𝑒𝑒𝑑𝑑 𝑒𝑒𝑑𝑑′~𝑁𝑁�1, 21Οƒ οΏ½ 𝜎𝜎 ≀ 0.30 𝜎𝜎1 β‰ˆ

12𝜎𝜎

𝑒𝑒𝑑𝑑2 𝑒𝑒𝑑𝑑′~𝑁𝑁�1, 21Οƒ οΏ½ 𝜎𝜎 ≀ 0.027 𝜎𝜎1 > 𝜎𝜎

1𝑒𝑒𝑑𝑑2

𝑒𝑒𝑑𝑑′~𝑁𝑁�1, 21Οƒ οΏ½ 𝜎𝜎 ≀ 0.070 𝜎𝜎1 β‰ˆ 2𝜎𝜎

4. Conclusions The results of this research show that the basic

assumptions of the error term of the multiplicative model which is normally distributed with mean 1 and finite variance can only be maintained in inverse square transformation of the error term if the standard deviation of the untransformed error term is less than or equal to 0.070. The study also reveals that the variance of the transformed error term is 4 times the variance of the untransformed for 𝜎𝜎 ≀ 0.070 , hence the inverse square transformation like square transformation leads to an increase in the error variance whereas the square root and the inverse square root transformations lead to a reduction in the error variance by a quarter while the logarithm and the inverse retain the value the error variance.

REFERENECS [1] M.R Spiegel and L.J Stephens, β€œStatistics” 3rd Edition,

McGraw Hill Companies Inc.,USA, 1999, pp435

[2] C. Chatfield, β€œThe Analysis of Time Series: An introduction,” 6th Edition Chapman and Hall,CRC Press, Boca Raton, 2004, pp 333.

[3] P.I. Uche, β€œProbability Theory and Applications”. Logman Nigeria Plc, Lagos, 2003, pp 91.

[4] I.S. Iwueze, β€œSome Implications of Truncating the N(1,Οƒ^2 ) Distribution to the Left at zero,” Journal of Applied Sciences, Vol.7, No.2, 2007, pp. 189-195.DOI:10.3923/jas,2007,189,195.

[5] D.C. Montgomery, β€œDesign and Analysis of Experiments,” 4th Edition. John Wiley and Sons,Inc,New York,1997, pp 91.

[6] M.S. Bartlett, β€œThe use of transformation,” Biometrica Bulletin Vol.3 No.1, 1947, pp39-52.

[7] C.R. Nwosu.I.S. Iwueze and J.Ohakwe,.β€œCondition for Successful Transformation of the Error Component of the Multiplicative Time Series Model”.Asian Journal of Applied Sciences, 2013. ISSN 1996-3343/DOI: 10.3923/ajaps.2013.

[8] E.L. Otuonye,I.S Iwueze and J. Ohakwe, β€œThe Effect of Square Root Transformation on the Error Component of the Multiplicative Time Series Model. International.Journal of Statistics and System. Vol 6, No. 4, 2011,pp 461-476.

[9] J. Ohakwe,O. Iwuoha and E.L. Otuonye,β€œCondition for Successful Transformation in Time Series Modelling.” Applied Mathematics,Vol 4,2013, pp680-687DOI:10.4236/am.2013.44093

[10] R. Seth, β€œTransform your Data,” Elsevier NUTRITION, 24, 2008, pp 492-494

[11] R.V Hogg and E.A Tanis, β€œProbability and Statistical Inference”, 3rd Edition, Macmillan Publishing Company, New York, 1989, pp 279.

[12] R.C. Wrede and M. Spiegel, β€œAdvanced Calculus” 2nd Edition, McGraw Hill Companies, Inc.,USA, 2002, pp 21.