Physical Inorganic Chemistry CH3514 - Eli Zysman-Colman

190
CH3514 1 1 Physical Inorganic Chemistry CH3514 Dr Eli Zysman-Colman

Transcript of Physical Inorganic Chemistry CH3514 - Eli Zysman-Colman

CH3514

1

1

PhysicalInorganicChemistry

CH3514

Dr EliZysman-Colman

CH3514

2PhysicalInorganicChemistry

CH3514

2

DrEliZysman-Colman

Rm244inPurdie

[email protected]

http://www.zysman-colman.com/courses/ch3514_2017aut_en.php

CH3514

3PhysicalInorganicChemistry

CH3514

3

DrEliZysman-Colman

Rm244inPurdie

[email protected]

http://www.zysman-colman.com/courses/ch3514_2017aut_en.php

CH3514

4PhysicalInorganicChemistry

CH3514

4

DrEliZysman-Colman

Rm244inPurdie

[email protected]

http://www.zysman-colman.com/courses/ch3514_2017aut_en.php

CH3514

5CourseOutline

5

PhysicalChemistryandBonding ofTransitionMetals

Aims: Acontinuationofthechemistryofthe3dtransitionmetalswithparticularfocus

onthethermodynamics,bondingandkineticsofreactions.

CH3514

6CourseOutline

6

PhysicalChemistryandBonding ofTransitionMetals

Objectives:

• Asummaryofhowd-orbitalsaffectthepropertiesofthetransitionmetals.

• Tounderstandmetalion-ligandcomplexation equilibria;stepwiseformationandoverall

stabilityconstants.RelationshipofbML toKMLandDGoML

• TounderstandthetrendsinbML acrosstheperiodSc – ZnandtheIrvingWilliams

maximumatCu2+ duetoJahn-Tellereffectatd9

• Tounderstandhowmolecularorbitaltheorycanbeusedtoexplainthepropertiesof

metal-ligandcomplexes

• Tounderstandtheoriginsofthechelateeffect– theincreaseinbML withchelate

ligands.Toappreciateandrationalisetheentropicandenthalpic factorsinvolved–

trendsacrosstheperiod.CorrelationofKn (bn)valueswithLFSE.• Toappreciatethatthermodynamicstabilityandkineticlability areindependent

phenomena– notnecessarily correlated.Equilibriumcanberapidlyobtained

irrespectiveofthesizeofK.

• Toappreciatetherangeoflabilities on3daquametal ionsandthecorrelationwith

LFSE.Definitionofthetermsinertandlabile.CorrelationofinertnesswithhighLFAE–

linkedtoLFSE.

CH3514

7ResourceBooks

7

InorganicChemistry,6th EditionMarkWeller,TinaOverton,

JonathanRourke andFraserArmstrong

OrganotransitionMetalChemistryFromBondingtoCatalysis

JohnHartwig

InorganicChemistry,4th EditionCatherineHousecroft andAlanSharpe

CH3514

8FrontierMO’sofσ-Donor,π-Donorandπ-AcceptorLigands

8

BeforewecanunderstandMOdiagramsandbondingincomplexes,wemust

understandthenatureofthefrontierMOsofligands.

Therearethreetypesoforbitalinteractionsbetweenligandsandmetals,whichdefine

theligandtype:

• s-donors• p-donors• p-acceptors

HOMO LUMO

[Ru(bpy)3]2+

CH3514

9FrontierMO’sofσ-DonorLigands

9

These ligandsdonatetwoe–sfromanorbitalofσ-symmetry:

Examplesinclude:H-,CH3-,NR3,PR3,OH2.

Let’slookatNH3 inmoredetailasanexampleofamolecular ligand(asopposedtoasimpleatomicligand)

Thereare3N-Hs-bondsinthismolecule

andithasC3 symmetry

CH3514

10FrontierMO’sofσ-DonorLigands

10

These ligandsdonatetwoe–sfromanorbitalofσ-symmetry:

Examplesinclude:H-,CH3-,NR3,PR3,OH2.

Let’slookatNH3 inmoredetailasanexampleofamolecular ligand(asopposedtoasimpleatomicligand)

Let’sanalyzetheSymmetryAdaptedLinearCombinations(SALC)moreclosely.

Nonodes 1node

Recall thatonlyorbitalsofthesamesymmetrycancombine

toformnewLinearCombinationsofAtomicOrbitals(LCAO)

3H’s

N

a1 e

CH3514

11FrontierMO’sofσ-DonorLigands

11

These ligandsdonatetwoe–sfromanorbitalofσ-symmetry:

Examplesinclude:H-,CH3-,NR3,PR3,OH2.

Let’slookatNH3 inmoredetailasanexampleofamolecular ligand(asopposedtoasimpleatomicligand)

Let’sdeterminetheLinearCombinationsofAtomicOrbitals(LCAO)s

CH3514

12FrontierMO’sofσ-DonorLigands

12

Let’slookatNH3 inmoredetailasanexampleofamolecular ligand(asopposedtoasimpleatomicligand)

Let’snowlookattheMOdiagram

Remember:• Thegreatertheoverlap,thegreaterthesplitting

• Thecloserinenergybetweenthetwosetsoforbitals,

thegreater thesplitting

Note:• TheHOMOisusedforbondingtothemetalanditis

thelonepaironNinas-orbital• MOdiagrampredictsMOsof3differentenergies,

whichisborneoutbyPES

8valencee-s

CH3514

13FrontierMO’sofσ-DonorLigands

13

HowaboutH2Owithits2lonepairs?

Note:• TheHOMOisusedforbondingtothemetalanditis

thenon-bondinglonepaironOinap-orbital• MOdiagrampredictsMOsof4differentenergies,

whichisborneoutbyPES

H O H

H O H

H O H

H O H

CH3514

14FrontierMO’sofp-DonorLigands

14

Inadditiontodonatingelectrondensitytoametalviaaσ-bond,

e–smaybeprovidedtothemetalviaaπ-symmetryinteraction.

π-donorligands includeX– (halide),amide(NR2–),sulfide(S2–),oxide(O2–),alkoxide (RO–)

h3-C3H5,h5-C5H5,h6-C6H6

CH3514

15FrontierMO’sofp-DonorLigands

15

Let’slookatNH2-,whichwecanthinkofas“planar”NH3withaLPreplacingoneoftheHatoms

theHOMOisfilledandofp-symmetry

Therearenow2extrae-s

comparedtoNH3

CH3514

16FrontierMO’sofp-AcceptorLigands

16

Thisclassofligandsdonatese–sfromaσ orbital

andthese ligandsaccepte–sfromthemetalintoanemptyπ*orbital.

COisthearchetypeofthis ligandclass.

Otherπ-acceptorsareNO+,CN–,CNR, H2,C2H4,N2,O2,PR3,BR2

CH3514

17FrontierMO’sofp-AcceptorLigands

17

Thisclassofligandsdonatese–sfromaσ orbital

andthese ligandsaccepte–sfromthemetalintoanemptyπ*orbital.

COisthearchetypeofthis ligandclass.Otherπ-acceptorsareNO+,CN–,CNR.

theHOMOisfilledandofσ-symmetry,theLUMOisemptyandofπ*symmetry

HOMO

LUMO

CH3514

18ElectronicStructureandPropertiesofComplexes:

CrystalFieldTheory

Twotheoriesarecommonlyusedtorationalizeelectronicstructure

• CrystalFieldTheory(emergedfromananalysisofthespectraofd-metalionsinthesolid)

• LigandFieldTheory(emergedfromanapplicationofMOtheorytod-metalcomplexes)

• Complexesheldtogetherviaelectrostaticforcesbetweenthepositivelychargedmetalandthe

negativelychargedorpolarizedligands

• Modelsinteractionsbasedonelectrostaticswiththevalenceelectronsofthemetalinthed-orbitalsand

theligandsasnegativecharges(ion-ioninteractions)ordipoles(ion-dipole)interactions

(IONICbondingmodel)

• Strongerinteractionsbetweenelectronsofthemetalandtheligandsresultingreaterdestabilization

• Theenergydifferenceofd-orbitalscorrelateswiththeoptical,magneticandthermodynamicproperties

ofthecomplex

CFTAssumptions

CH3514

19ElectronicStructureandPropertiesofComplexes:

CrystalFieldTheory

Thelobesofthedx2-y2anddz2 orbitalsliedirectlyalongthe

x,y and/or z axes

Thelobesofthedxy,dxzanddyzorbitals liebetweentheaxes

CH3514

20ElectronicStructureandPropertiesofComplexes:

CrystalFieldTheory

Thelobesofthedx2-y2anddz2 orbitalsliedirectlyalongthe

x,y and/or z axes

Thelobesofthedxy,dxzanddyzorbitals liebetweentheaxes

CH3514

21ElectronicStructureandPropertiesofComplexes:

CrystalFieldTheory

stabilization

CH3514

22ElectronicStructureandPropertiesofComplexes:

CrystalFieldTheory– OctahedralComplex

crystalfieldsplittingparameter

Ene

rgy

Δo3/5Δo

2/5Δo

eg

t2g

barycentre

• Theenergydifferencebetweenthetwosetsoforbitalsisthecrystalfieldsplittingenergy - denotedDO (or10Dq)

• Theeg orbitalsareraisedinenergy

• Thet2g orbitalsareloweredinenergy

Thelobesofthedx2-y2 anddz2belongtotheeg representation

Thelobesofthedxy,dxz anddyzbelongtothet2g representation

CH3514

23ElectronicStructureandPropertiesofComplexes:

CrystalFieldTheoryLimitations&

MO(LFT)Theory

QuestionsforwhichCrystalFieldTheoryhasnoanswers:

• WhyisKMnO4withMn7+ andnod-electronscoloured?

• WhyisOH- aweakerfield ligandthatH2O?

• WhyareneutralligandslikeCO,whichareotherwiseverypoor

Lewisbasessuchstrongfieldligands?

• WhyinEPRspectraofhighspincomplexes istherehyperfine

splitting, indicatingthatthespinisdelocalizedontothe ligands?

CH3514

24MO(LFT)Theory

Theinteractionofthefrontieratomic(forsingleatomligands)or

molecular(formanyatomligands)orbitalsoftheligandandmetal leadtobondformation

Someimportantpoints:• M—Latomicorbitalmixingisproportionaltotheoverlapofthemetalandligandorbital(SML)

• Owingtomoredirectionalbonding(greateroverlap)alongtheseriesSML(σ)>SML(π)>SML(δ),

whichleadstogreatersplittingalongtheseries

• M–Latomicorbitalmixingisinverselyproportionaltoenergydifferenceofmixingorbitals(i.e.ΔEML)

• OnlyorbitalsofcorrectsymmetrycanmixandthetotalMOs=sumoftheprecursororbitals

• TheorderoftheELandEM energylevelsalmostalwaysis:

CH3514

25MO(LFT)Theory

Theinteractionofthefrontieratomic(forsingleatomligands)or

molecular(formanyatomligands)orbitalsoftheligandandmetal leadtobondformation

Somegeneralobservations:• ThesorbitalsofL’saregenerallytoolowinenergytoparticipateinbonding(ΔEML(σ)isverylarge)

• FilledporbitalsofL’sarethefrontierorbitals,andtheyhaveIEsthatplacethembelowthemetalorbitals

• FormolecularL’s,whosefrontierorbitalscomprisesandporbitals,heretoofilledligandorbitals

haveenergiesthatarestabilizedrelativetothemetalorbitals

• LigandorbitalenergyincreaseswithdecreasingEneg ofLewisbasicbondingatomE(CH3-)>E(NH2

-)>E(OH-)

• Morbitalenergydecreaseswithincreaseoxidationstateofmetal,asyougodowntheperiodictableand

asyougofromlefttorightontheperiodictable

CH3514

26MO(LFT)Theory

Theinteractionofthefrontieratomic(forsingleatomligands)or

molecular(formanyatomligands)orbitalsoftheligandandmetal leadtobondformation

Somegeneralobservations:• ThesorbitalsofL’saregenerallytoolowinenergytoparticipateinbonding(ΔEML(σ)isverylarge)

• FilledporbitalsofL’sarethefrontierorbitals,andtheyhaveIEsthatplacethembelowthemetalorbitals

• FormolecularL’s,whosefrontierorbitalscomprisesandporbitals,heretoofilledligandorbitals

haveenergiesthatarestabilizedrelativetothemetalorbitals

• LigandorbitalenergyincreaseswithdecreasingEneg ofLewisbasicbondingatomE(CH3-)>E(NH2

-)>E(OH-)

• Morbitalenergydecreaseswithincreaseoxidationstateofmetal,asyougodowntheperiodictableand

asyougofromlefttorightontheperiodictable

2nd 1309 1414 1592 1509 1561 1644 1752 1958

3rd 2650 2828 3056 3251 2956 3231 3489 3954

4th 4173 4600 4900 5020 5510 5114 5404 5683

CH3514

27ElectronicStructureandPropertiesofComplexes:

LFTTheory

WhatisLigandFieldTheory?

Itis:

• Asemi-empiricaltheorythatappliestoaclassofsubstances(transitionmetal

complexes)

• Alanguage inwhichavastnumberofexperimental observationscanberationalizedand

discussed

• Amodelthatappliesonlytoarestrictedpartofreality

Itisnot:

• Anabinitiotheorythatletsonepredictthepropertiesofacompound

• Aphysicallyrigoroustreatmentoftheelectronicstructureoftransitionmetalcomplexes

CH3514

28ElectronicStructureandPropertiesofComplexes:

LFTTheory

Sigma(s)bonding

• Neutralligands(e.g.,NH3)oranionic ligands(e.g.,F-)possess lonepairsthatcanbondto

metal-basedorbitals (s,px,py,pz, dxy,dyz,dxz,dx2-y2,dz2)withs-symmetry

• InanOh complex,6symmetry-adaptedlinearcombinations(SALCs)ofthe6ligands-symmetryorbitalscanbeformed

• MOsfortheresultingcomplexareformedbycombiningtheligandSALCsandthemetal-

basedd-orbitalsofthesamesymmetrytype

• With6SALCscombinedwiththemetalMOs,wewillget6bondingand6antibonding

MOs– nowcalled ligandgrouporbitals(LGOs)• TheresultingMOdiagramnowgetspopulatedwiththeelectronsaccordingtothe

Aufbau process,PauliexclusionprincipleandHund’srule

CH3514

29ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Sigma(s)bonding:Simpleexampleshowinginteractionofligands-orbitalswithmetal-

basedorbitals

CH3514

30ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Sigma(s)bonding:Simpleexampleshowinginteractionofligands-orbitalswithmetal-

basedorbitalsnotpropersymmetrysono interaction

CH3514

31ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Sigma(s)bonding:• Formost ligands,theirSALCs

arelowerinenergythanthe

metal-basedd-orbitals

• Thereforethe6bonding MOs

ofthecomplexwillbemostly

ligand-based incharacter

• Thed-electronsofthemetalwill

occupythesame orbitalsasinCFT

• UnlikeCFT,thet2g orbitalsarenon-bonding andtheegorbitalsareanti-bonding

CH3514

32ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

ExampleTake[Co(NH3)6]

3+

NH3 cans-bondthroughits lonepair

Tosummarize:• Of9valenceorbitals(5xd,3xp,1xs)

only6aresuitablefors-bonding• Thecombinationoforbitalsfromligandsand

frommetalarecalled

LigandGroupOrbitals(LGOs)• TheDO hereisthesameasinCFT

• Co3+ isd6 andthereare12e- from

the6NH3 ligands

• Asthisisadiamagnetic

LScomplex,the

6-delectronsoccupy

onlythet2g set

CH3514

33ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

ExampleTake[Co(NH3)6]

3+

NH3 cans-bondthroughits lonepair

CH3514

34ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

ExampleTake[Co(NH3)6]

3+

NH3 cans-bondthroughits lonepair

ligand-basedbondingMOswith

strongligandcontributions

metal-basednon-bondingAOs

metal-basedanti-bondingMOswith

strongmetalAOcontributions

CH3514

35ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Pi(p)bonding:• ThepreviousMOdiagramignoresp bonding.Ifthe ligandspossessorbitalsoflocalp-

symmetrythenthesecaninteractwiththemetald-orbitalswiththesamesymmetry(i.e.

thet2g set)toformnewLGOs

• These ligandSALCscanactaselectrondonors(populated)orelectronacceptors(vacant)

CH3514

36ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Pi(p)bonding:• ThepreviousMOdiagramignoresp bonding.Ifthe ligandspossessorbitalsoflocalp-

symmetrythenthesecaninteractwiththemetald-orbitalswiththesamesymmetry(i.e.

thet2g set)toformnewLGOs

• These ligandSALCscanactaselectrondonors(populated)orelectronacceptors(vacant)

• ThenatureofthissecondaryinteractionwillaffectDo

CH3514

37ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Pi(p)donorligands:(akap-bases)

CH3514

38ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Pi(p)donorligands:(akap-bases)

ExampleTake[FeCl6]

3-

Clcans-bondthroughitslonepairAND

p-bondthroughitsp-orbitals

TheCl- porbitalscannowinteract

withtheFet2g,whicharedestabilized

Thesecomplexesarenowlargely

highspin

Highoxidationstatecomplexes

arepossiblewithp-base ligandse.g.,[MnO4]

-

CH3514

39ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Pi(p)donorligands:(akap-bases)

ExampleTake[FeCl6]

3-

Clcans-bondthroughitslonepairAND

p-bondthroughitsp-orbitals

TheCl- porbitalscannowinteract

withtheFet2g,whicharedestabilized

Thesecomplexesarenowlargely

highspin

CH3514

40ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Pi(p)donorligands:(akap-bases)

ExampleTake[FeCl6]

3-

Clcans-bondthroughitslonepairAND

p-bondthroughitsp-orbitals

TheCl- porbitalscannowinteract

withtheFet2g,whicharedestabilized

Thesecomplexesarenowlargely

highspin

BothFe-centered

t2g andeg

areantibonding!

CH3514

41ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Pi(p)acceptorligands:(akap-acids)

p-backbonding effectivelyremoveselectrondensityfromthemetal,whichdoesnotliketohavetoohighanelectrondensity.

CH3514

42ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Pi(p)acceptorligands:(akap-acids)

ExampleTake[Cr(CO)6]

COcans-bondthroughitslonepaironCAND

p-bondthroughitsp-orbitalsAND

itsp*orbitalscanform

bondinginteractions

withmetaldorbitals

• NowtheCot2gorbitals

arestabilized

• Thesecomplexesarenow

largelylowspin

CH3514

43ElectronicStructureandPropertiesofComplexes:

LFTTheory– OctahedralComplexes

Pi(p)acceptorligands:(akap-acids)

ExampleTake[Cr(CO)6]

COcans-bondthroughitslonepaironCAND

p-bondthroughitsp-orbitalsAND

itsp*orbitalscanform

bondinginteractions

withmetaldorbitals

Co-centeredeg

isantibondingwhile

t2g

isbondingwith

thep*ofCO!

CH3514

44ElectronicStructureandPropertiesofComplexes:

CrystalFieldTheoryLimitations&

MO(LFT)Theory

Summary: p-bondingandp-backbondingmodulatetheenergyofthemetalt2g orbitals

CH3514

45MO(LFT)Theory

Summary: p-bondingandp-backbondingmodulatetheenergyofthemetalt2g orbitals

CH3514

46MO(LFT)Theory:AQuickLookatSquarePlanarComplexes

HowwouldtheoctahedralMOdiagrambeperturbedifweremovedtheaxialligands?

ExampleTake[Pd(NH3)4]

2+

i.e.onlys-donation

Thedx2-y2 MO(b1g)contains

verystrongmetal−ligand

antibondinginteractions

inthexy plane.ItistheLUMO

Thedz2 MO(a1g)contains

slightmetal−ligand

antibondinginteractions

inthexy plane.ItistheHOMO

Thedxy,dxz,dyz,MO(eg,b2g)

arenormallypresentedas

degenerateandnon-bonding

(nosymmetrymatchwith

ligandMOs)

CH3514

47MO(LFT)Theory:AQuickLookatSquarePlanarComplexes

HowwouldtheoctahedralMOdiagrambeperturbedifweremovedtheaxialligands?

Whataboutligandswithp-character?

Includingp-interactionsresultsinare-orderingoftheenergiesoftheMOs,

unlikewhatwesawwithOh complexes.

Forcomplexeswithp-donatingligands,the

HOMOistheeg MOsandnotthea1gMOasa

resultofthedestabilizationfromπ-antibonding

interactionswiththe lonepairsoftheligands.

Inaddition,thea1g MOisenergeticallystabilized,

duetotheweakσ-donatingpropertiesofligands

interactingwiththemetaldz2 orbital

CH3514

48Water– TheMostFundamental Ligand

Sincewatercanbeviewedasthemostfundamentalligandwewilluseaqueoussolutions and

thespecies foundthereinasthebasisforexploringthechemistry

CH3514

49ASummaryofMetalAquaComplexes

II III IV V VI VII

Sc - [Sc(OH2)7]3+

d0

Ti [Ti(OH2)6]2+

d2[Ti(OH2)6]3+

d1

V [V(OH2)6]2+

d3[V(OH2)6]3+

d2[VO(OH2)5]2+

d1[VO2(OH2)4]+

[VO4]3-

d0

Cr [Cr(OH2)6]2+

d4[Cr(OH2)6]3+

d3[CrO(OH2)5]2

+

d2

[Cr2O7]2-

[CrO4]2-

d0

Mn [Mn(OH2)6]2+

d5[Mn(OH2)6]3+

d4- [MnO4]3-

d2[MnO4]2-

d1[MnO4]-

d0

Fe [Fe(OH2)6]2+

d6[Fe(OH2)6]3+

d5[FeO(OH2)5]2+

d4[FeO4]2-

d2

Co [Co(OH2)6]2+

d7[Co(OH2)6]3+

d6-

Ni [Ni(OH2)6]2+

d8- -

Cu [Cu(OH2)n]2+

d9 (n = 5 or 6)- -

Zn [Zn(OH2)6]2+

d10- -

green – stable

red – reducing

blue – oxidising

purple - metastable

CH3514

50CoordinationGeometries

Common

CH3514

51CoordinationGeometries

Unusual

CH3514

52HydrolysisChemistry

WhydoesMnII existasanaquacomplex[Mn(OH2)6]2+

whileMnVII existsasanoxo complex[MnO4]- ?

TheClueliesintheacid-basechemistry

Housecroft andSharpe,Chapter7,page191-193

CH3514

53HydrolysisChemistry

• ThemetalactsasaLA.WhenH2Ocomplexestothemetal,theO-Hbondispolarizedandthe

protonbecomesacidicandsocanbeabstractedbysolventmolecules

• Asthechargedensity increasesonthemetal, theO-Hbondbecomesmorepolarizedand

theprotonacidityincreasesandmoreprotonsareabstractedintosolutionandtheOH2 ligand

becomesanOH- ligand,reducingtheoverallchargeofthecomplex.• Thesolutionthusbecomesmoreacidic

Hydrolysisreaction

CH3514

54HydrolysisChemistry

• IfnowastrongerLBisusedthenmoreandmoreprotonscanbeabstractedfrommetalaqua

complexes

Hydrolysisreaction

CH3514

55HydrolysisChemistry

Wecandetermine therelativeacidities of[M(OH2)6]2+ and[M(OH2)6]

3+ ions

canbeseenbelowintermsoftherespectivepKa values

ForFespecies:

ThepKa for[Fe(OH2)6]3+ issimilartothatofformicacid(2.0)– itwillliberateCO2 fromcarbonate

CH3514

56HydrolysisChemistry– pKa Trends

=Z2/relectrostaticparameter

Empiricalrelationshipthatisalsobasedontheelectronegativityofthemetal

CH3514

57HydrolysisChemistry

Ifweincreasetheoxidationstateonthemetal further(andhencethechargedensity)

wecanevenrendertheprotonofthehydroxideligand,O-H-acidic

Astheoxidationstateonthemetal increasesfurtherwecanobtainmultiple oxo groups

CH3514

58HydrolysisChemistry

AtOS6+andgreatertheionicradiusbecomestoosmalltoaccommodate

6ligandsandthusa4-coordinatetetrahedralcomplexispreferred.

Oxogroupspossessothertraitsthathelptostabilizetheresultingmetalcomplex

• O2- helpstoneutralizehighchargeonthemetalfromhighOS

• Formetalswithlowd-electroncount,strongp-donorabilityhelpstostabilizet2g orbital

CH3514

59HydrolysisChemistry

Afurtherreactioncantakeplacewiththetrivalenthydroxo ions.Theycan‘condense’

togetherinaprocesscalled ‘hydrolyticpolymerisation’

HeretheOH- ligandretainsadegreeofnucleophilicity andsubstitutes awateronan

adjacention

Housecroft andSharpe,Chapter7,page192c

CH3514

60HydrolysisChemistry

Thisprocesscancontinue- buildinguphugeOH- bridged polynuclear structuresuntil

solubility limitsareexceededresultinginprecipitationofthehydroxide;M(OH)3 aq.

Accompanyingdehydrationcanalsooccurleadingtooxy-hydroxideoroxide(M2O3)

formsprecipitating

Fe(III)hydrolysishasbeenwellstudiedandpolymericnanostructurescontainingover100iron

atomshavebeencharacterizedbeforeFe(OH)3 precipitation.

StructureofaFe19 clusterwithtriplyoxideandhydroxidebridgesanddoublybridginghydroxides

CH3514

61HydrolysisChemistry

FeHydrolysisinActioninvivo

Ferritinisaproteinthatstoresironinourbodybyconcentratingitviacontrolledhydrolysisof

Fe3+aq toyieldhugeoxy-hydroxy bridgednanostructurescontainingupto4500ironatoms.

Movementofironinandoutoftheproteinis

achievedviareductiontoFe2+aq whichdoesn’t

hydrolyseatpH7andpassesthroughspecific

M2+-sensingchannels

Housecroft andSharpe,Chapter29,page966

CH3514

62HydrolysisChemistry

FeHydrolysisinActioninvivo

Ferritinisaproteinthatstoresironinourbodybyconcentratingitviacontrolledhydrolysisof

Fe3+aq toyieldhugeoxy-hydroxy bridgednanostructurescontainingupto4500ironatoms.

Movementofironinandoutoftheproteinis

achievedviareductiontoFe2+aq whichdoesn’t

hydrolyseatpH7andpassesthroughspecific

M2+-sensingchannels

Housecroft andSharpe,Chapter29,page966

CH3514

63HydrolysisChemistry

FeHydrolysisinActioninvivo

TheinstabilityofFe3+aq solutionsatpH7withrespecttohydrolysistoinsolubleFe(OH)3

(Ksp =2.6x10-39)makesitachallenge forbiologytoconcentrateironinthebody.

Ksp =[Fe3+aq][OH

-]3

Toachievethis,Naturehasevolvedverypowerfulagentsthatbindandsolubilizeallformsof

Fe(III)evenFe(OH)3 toenableefficient ironuptake.Thesecompoundsarecalledsiderophores(Greek- ironcarrier)

Someofthesehavethehighestmeasuredequilibriumconstantsforametalion- ligand

combination.Therecordvalueisheldbyenterobactin

catecholateFe3+

CH3514

64HydrolysisChemistry

FeHydrolysisinActioninvivo

siderophore donorset logK

aerobactin hydroxamate,carboxylate 22.5

coprogen hydroxamate 30.2

deferrioxamine B hydroxamate 30.5

ferrichrome hydroxamate 32.0

Enterobactin catecholate 49.0

aerobactin

Coprogen

ferrichrome

Deferrioxamine B

CH3514

65Thermodynamicsofmetalcomplexformation

Housecroft andSharpe,Chapter7,page301

CH3514

66Thermodynamicsofmetalcomplexformation

Thismeansprocessesatequilibrium. e.g.,hydrolysis,Fe3+ complexation withsiderophores

Let’slookatligandexchangeinmoredetailbylookingat

[M(OH2)6]n+ +mL�[M(OH2)6-mmL]n+�� [M(L)6]

n+(Lisaneutralligand)

K1-K6 areknowasstepwisestabilityconstants

CH3514

67Thermodynamicsofmetalcomplexformation

Thismeansprocessesatequilibrium. e.g.,hydrolysis,Fe3+ complexation withsiderophores

Let’slookatligandexchangeinmoredetailbylookingat

[M(OH2)6]n+ +mL�[M(OH2)6-mmL]n+�� [M(L)6]

n+(Lisaneutralligand)

b6 =K1*K2*K3*K4*K5*K6log(b6)=log(K1)+log(K2)+log(K3)+log(K4)+log(K5)+log(K6)

Weandefineanoverallstabilityconstant,b,forthecompleteexchangeofH2OligandsforL

Whatthisimplies isthatb6 >b5 >b4 >b3 >b2 >b1 andsotherewillalwaysbecomplete

substitution ofLforH2O

CH3514

68Thermodynamicsofmetalcomplexformation

Anexample:NH3replacingH2Oon[Ni(OH2)6]2+

-LogK1 -LogK2 -LogK3 -LogK4 -LogK5 -LogK6

-2.79 -2.26 -1.69 -1.25 -0.74 -0.03

NotethesteadyfallinKn

Whatthisdatameansisthat[Ni(OH2)6]2+ +excessNH3givesonly[Ni(NH3)6]

2+

Logb6 =2.79+2.26+1.69+1.25+0.74+0.03=8.76b6 =5.75x108

CH3514

69Thermodynamicsofmetalcomplexformation

Anexample:NH3replacingH2Oon[Ni(OH2)6]2+

Withknownequilibriumconstants,Kn,wecandeterminefreeenergyDGn

DGn=-RTln(Kn),whereRisthegasconstant8.314Jmol-1 K-1

Soat303K,DG1=-(8.314x10-3*303)ln(102.79)=-16.2KJmol-1

DGn=DHn –TDSn

IfDH1 =-16.8KJmol-1

DS1 =(DH1-DG1)/T=[-16.8-(-16.2)]/303=-1.98Jmol-1 K-1

Quitesmall– nochangein#molecules

Thereforesubstitution isprimarilyanenthalpic effect(DHisgoverningtheprocess)ThisisduetothestrongerNi2+-NbondsbeingformedcomparedtotheNi2+-Obonds

(moreexothermic)

CH3514

70Thermodynamicsofmetalcomplexformation

HSABTheory

Anexample:NH3replacingH2Oon[Ni(OH2)6]2+

NowwhyisNamorepreferreddonorthanOforNi2+?

Theanswerlies inHard-SoftAcidandBaseTheory(HSAB)

Housecroft andSharpe,Chapter7,page206

CH3514

71Thermodynamicsofmetalcomplexformation

HSABTheory

Housecroft andSharpe,Chapter7,page206

Salem-KlopmanEquation (simplified)

CH3514

72Thermodynamicsofmetalcomplexformation

HSABTheorySalem-KlopmanEquation (simplified)

CH3514

73Thermodynamicsofmetalcomplexformation

HSABTheorySalem-KlopmanEquation (simplified)

Considerthefollowingexamples involvingreplacementofwaterbyhalide ions

MetalIon log10K1

X=F X=Cl X=Br X=I

Fe3+ aq 6.0 1.4 0.5

Hg2+ aq 1.0 6.7 8.9 12.9

NotethevastlydifferenttrendsinlogKvalues!

CH3514

74Thermodynamicsofmetalcomplexformation

HSABTheory

MetalIon log10K1

X=F X=Cl X=Br X=I

Fe3+ aq 6.0 1.4 0.5

Hg2+ aq 1.0 6.7 8.9 12.9

NotethevastlydifferenttrendsinlogKvalues!

Fe3+ aq isHARD

Hg2+ aq isSOFT

Halidesgetharderassizegetssmaller

Thegoldenrule:StrongestM-LinteractionsrequireHHorSSmatch

CH3514

75Thermodynamicsofmetalcomplexformation

HSABTheory

Fe3+ aq isHARD

Hg2+ aq isSOFT

Halidesgetharderassizegetssmaller

Thegoldenrule:StrongestM-LinteractionsrequireHHorSSmatch

Thebehaviour ofFe3+aq isparalleledbysimilarbehaviour shownbytheGroup1and2

metalsandtheearly3dtransitionelements totheleft

Thebehaviour ofHg2+aq isparalleledbysimilarbehaviour shownbytheheavierp–block

elements andtheheaviertransitionelements totheright

CH3514

76Thermodynamicsofmetalcomplexformation

HSABTheory

Fe3+ aq isHARD

Hg2+ aq isSOFT

Halidesgetharderassizegetssmaller

Thegoldenrule:StrongestM-LinteractionsrequireHHorSSmatch

Orderofincreasingstability incomplexesforHardmetalions: O>> S>Se>Te

N>>P>As>Sb

Orderofincreasingstability incomplexesforSoftmetalions: O<< S>Se~Te

N<<P>As>Sb

Orderofdecreasinghardnessbasedonelectronegativity:

F>O>N>Cl >Br>C~I~S>Se>P>As>Sb

Housecroft andSharpe,Chapter7,page207

CH3514

77Thermodynamicsofmetalcomplexformation

HSABTheory

Orderofincreasingstability incomplexesforHardmetalions: O>> S>Se>Te

N>>P>As>Sb

Orderofincreasingstability incomplexesforSoftmetalions: O<< S>Se~Te

N<<P>As>Sb

Orderofdecreasinghardnessbasedonelectronegativity:

F>O>N>Cl >Br>C~I~S>Se>P>As>Sb

Housecroft andSharpe,Chapter7,page207

CH3514

78Thermodynamicsofmetalcomplexformation

HSABTheory

Ligandsdisplacewaterinacompetitiveprocess– notasimple combination

IftheMn+ isahard metal- itisalreadyassociatedwithhardH2O ligands.Thus

reactionwithanotherhardligandmaynotbefavourable– onlyasmallexothermic

enthalpyeffectmightbeseen.

Leadsonlytomoderatelystablecomplexes(-DGo small)

e.g.,withL=RCO2-,F-,Cl- etc.

NowifMn+ isasoftmetalandLasoftbase thereaction isnowhighlyfavouredsince itremovestwounfavourable soft-hardinteractions- fromwatersolvation

HereasignificantDHo effect(largeandnegative)isseenwhenthesoft-soft

interactionresults - leadstostablecomplexeswith DGo thatisalsolargeand

negative(DSo smallasbefore)- highKn

e.g.,Hg2+aq andS2-aq � HgS(s)precipitates

CH3514

79Thermodynamicsofmetalcomplexformation

WehaveexaminedthevaluesoflogKn (bn)forthesuccessivereplacementofH2O

onNi2+aqbyNH3

Whathappensalongthe3dseriesfromSc – Zn?

ThistrendshowingamaximuminlogK1 valuesfor

Cu2+ istermedtheIrving-Williamsseries

WhythemaximumatCu2+?

CH3514

80ElectronicStructureandPropertiesofComplexes:

OctahedralComplexes

TheIrving-WilliamsSeries

TheIrving-WilliamsSeries(IWS)describes anempirical increaseinstabilityofM2+ octahedral

complexesasafunctionofatomicradius,regardlessofthenatureofLforthefollowing

reaction:

[M(H2O)n]2+ +L[M(H2O)n-1L]

2+ +H2O

Kf variesalong:Ba2+ <Sr2+ <Ca2+ < Mg2+ < Mn2+ < Fe2+ < Co2+ < Ni2+ <Cu2+ >Zn2+

CH3514

81ElectronicStructureandPropertiesofComplexes:

OctahedralComplexes

TheIrving-WilliamsSeries

TheIrving-WilliamsSeries(IWS)describes anempirical increaseinstabilityofM2+ octahedral

complexesasafunctionofatomicradius,regardlessofthenatureofLforthefollowing

reaction:

[M(H2O)n]2+ +L[M(H2O)n-1L]

2+ +H2O

Kf variesalong:Ba2+ <Sr2+ <Ca2+ < Mg2+ < Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+

reflectselectrostatic effects

smallermetalwithsamecharge=

greaterchargedensity

Basedpurelyonelectrostatics

wewouldexpectstabilities tovaryas

Mn2+ <Fe2+ <Co2+ <Ni2+ >Cu2+ >Zn2+

Exception:Cu2+ isactuallymorestablethanNi2+

andthisisduetotheJahnTeller Distortion

CH3514

82Jahn-TellerDistortion– AShortOverview

Highspind4 t2g3eg

1

Lowspind7 t2g6eg

1ord9 t2g6eg

3

Let’slookatthecaseforLSd9 t2g6eg

3

Ifthereare2eindz2 and1eindx2-y2

thengreaterrepulsionalongthez-axis

� elongationoftheseM-Lbonds

alongthez-axistocompensate,

leadingtostabilizationofthedz2

orbital– mostcommondistortionE

Occurswhenyoucanasymmetrically fillorbitalsthataredegenerateinanon-linearcomplex.

Thegeometryofthecomplexthendistortstoreachamorestableelectronicconfiguration

netstabilizationof½E

CH3514

83Jahn-TellerDistortion– AShortOverview

Highspind4 t2g3eg

1

Lowspind7 t2g6eg

1ord9 t2g6eg

3

Let’slookatthecaseforLSd9 t2g6eg

3

Ifthereare2eindz2 and1eindx2-y2

thengreaterrepulsionalongthez-axis

� elongationoftheseM-Lbonds

alongthez-axistocompensate,

leadingtostabilizationofthedz2

orbital– mostcommondistortion

Occurswhenyoucanasymmetrically fillorbitalsthataredegenerateinanon-linearcomplex.

Thegeometryofthecomplexthendistortstoreachamorestableelectronicconfiguration

Ifthereare2eindx2-y2 and1eindz2

thengreaterrepulsionalongthexy-

plane

� effectivecompressionoftheM-L

bondsalongthez-axistocompensate,

leadingtostabilizationofthedx2-y2

orbital

CH3514

84Jahn-TellerDistortion– AShortOverview

Occurswhenyoucanasymmetrically fillorbitalsthataredegenerateinanon-linearcomplex.

Thegeometryofthecomplexthendistortstoreachamorestableelectronicconfiguration

CH3514

85Thermodynamicsofmetalcomplexformation

TheImpactofJahn-TellerDistortion

Thepresenceofonlyoneelectroninthedx2-y2 orbitalstrengthensthewaterligandattractionintheequatorialplaneduetolowere-erepulsionwiththedonorOelectrons

TheresultisaraisinginlogK1-4 andaloweringinlogK5 andK6 forwatersubstitution compared

tothetwoionseitherside;Ni2+ (d8)andZn2+ (d10)wherethere isnosuchextrastabilization

Housecroft andSharpe,Chapter21,page680

ReplacementofsuccessivewatersonM2+aq byNH3

CH3514

86Thermodynamicsofmetalcomplexformation

TheChelateEffect

Let’snowconsiderthesituationwhentheligandLreplacingcoordinatedwater

possesses twodonoratomsthatleadtotheformationofachelate ring

EDTAcomplex with Cu2+

CH3514

87Thermodynamicsofmetalcomplexformation

TheChelateEffect

Let’snowconsiderthesituationwhentheligandLreplacingcoordinatedwater

possesses twodonoratomsthatleadtotheformationofachelate ring

Theincrease inlogK1 aschelateringsare

formedisareflectionofamore

negativevalueofDGo1

Itis largelyduetoanincreaseintheentropyofreactioni.e.DSo1 islargeandpositive

DGo1=DHo

1- TDSo1

Thefigureshowsthatthereplacementof

NH3 onM2+aq bythechelatesen andEDTA is

thermodynamicallyfavourable.

Thisisageneralphenomenoncalled

thechelateeffect

CH3514

88Thermodynamicsofmetalcomplexformation

TheChelateEffect

Let’slookataspecificexample:Ca2+aq +EDTA4-

DGo1=-60.5KJmol-1;DSo1=117Jmol-1 K-1

At300K, DHo1=-25.4KJmol-1(DHo

1=DGo1+TDSo1)

Thereforethiscomplexation ismostlyentropydriven(TDSo1=-35.1KJmol-1)

Thoughthereisafavourableenthalpic termaswell(HSABandchelateeffect).

Whyentropycontrolled?Thereisanincrease inentropyduetoreleaseof6watermolecules – increase indisorderofthesystem

CH3514

89Thermodynamicsofmetalcomplexformation

TheChelateEffect

Let’slookataspecificexample:Ca2+aq +EDTA4-

DGo1=-60.5KJmol-1;DSo1=117Jmol-1 K-1

At300K, DHo1=-25.4KJmol-1(DHo

1=DGo1+TDSo1)

WecannowcalculateK1asDGo1=-RTln (K1)

log(K1)=log(e-DG1/RT)=10.53

Wecannowaddthispointtothepreviousfigure!

CH3514

90Thermodynamicsofmetalcomplexformation

TheChelateEffect

Let’slookataspecificexample:Ca2+aq +EDTA4-

Thefigureshowsthatthereplacementof

NH3 onM2+aq bythechelatesen andEDTA is

thermodynamicallyfavourable.

Thisisageneralphenomenoncalled

thechelateeffect

CH3514

91Thermodynamicsofmetalcomplexformation

TheChelateEffect

Let’slookatanotherspecificexample:[Ni(NH3)6]2+ +3en

DGo1=-57.2KJmol-1;DHo

1=-16.6KJmol-1;-TDSo1=-36.1KJmol-1

bothenthalpyandentropyeffectsreinforce

Theenthalpic effect onchelationfromen arisesfromstrongerbonds

totheN donorsofthechelateasaresultoftheformationofthering

CH3514

92Thermodynamicsofmetalcomplexformation

TheChelateEffect

Let’slookatanotherspecificexamplewheretheenthalpyandentropy

termsdonot reinforceeachother:Mg2+ +EDTA4-

DGo1=-51.2KJmol-1;DHo

1=13.8KJmol-1;-TDSo1=-65.0KJmol-1

Heretheendothermicenthalpytermarisesfromtheunfavourablereplacementof

twohard waterligandsontheextremelyhard Mg2+ bythesofter N donorsofEDTA4-

(HSAB).

Formationofthechelate ishoweverstillhighlyfavouredduetothefavourable

entropycontribution

CH3514

93

HARD SOFT

Thermodynamicsofmetalcomplexformation

TheChelateEffect

ThisbegsthequestionwhyisMg2+ harderthanCa2+?

Mg2+ issmaller(chargemoreconcentrated)thanCa2+,whichwillreinforcethe

electrostatic interaction(Hard-Hard)interactionwithH2O

Salem-KlopmanEquation (simplified)

CH3514

94Thermodynamicsofmetalcomplexformation

TheChelateEffect

Wecanalsoprobetheeffectofthenatureofthedonoratomonthebindingstrength

tothemetal.

OrderoflogK1reflectsHSABtheory

ForNi2+ toZn2+ (soft metals):(soft)N^N>N^O>O^O(hard)

ForMn2+(hardmetal):

(hard) O^O>N^O>N^N(soft)

CH3514

95Thermodynamicsofmetalcomplexformation

TheChelateEffect

Wecanalsoprobetheeffectofthenatureofthedonoratomonthebindingstrength

tothemetal.

CH3514

96

Thermodynamicsofmetalcomplexformation

TheChelateEffect

Bindingstrengthisalso influencedbythenumberofdelectronsonthemetal (LFSE)

IgnoringLFSE,increasingK1

reflectsstrongerM-Lbonding

asafunctionofincreasing

chargedensityontheMastheionic

radiusdecreases alongtheperiod

CH3514

97

Thermodynamicsofmetalcomplexformation

TheChelateEffect

Whydoestheionicradiusdecreasealongtheperiod?

Thedecreasingmetalionradiusalongtheperiodisaresultofthepoor

shieldingofthenuclearchargebytheadditionofthesuccessived–electrons

Thed-orbitalsdonotpenetrate intothenucleusbecausethedorbitalwave

functiongoestozerobeforethenucleus isreached

CH3514

98

Thermodynamicsofmetalcomplexformation

TheChelateEffect

Thesamephenomenonisseen inotherpropertiesof3d-metalcomplexes

Latticeenergiesofdivalentoxides

CH3514

99

ChelateRingFormationinApplications

Chelationtherapyhasbeenusedtotreatdiseases andconditionsrelatingtometaloverload

Wilson�sdisease isarecessivegeneticdisorderthatcausesepilepsyamongstother

neurologicalsymptomsandisduetoanoverloadofcopper

ChelatingagentssuchasthosebelowthatbindCu2+ ions

stronglyhavebeensuccessfullyusedclinicallytotreat

thecondition

AKayser-Fleischerring

CH3514

100

ChelateRingFormationinApplications

Chelationtherapyhasbeenusedtotreatdiseases andconditionsrelatingtometaloverload

Apotentially fatalconditioncalledhemosiderosis occurswhenthenaturallyoccurringiron

carrierprotein transferrinbecomessaturatedandironbecomesdepositedwithinthebody.

Incasesofsevereironoverload,deposition intheheart,liverandendocrinesystemsleadsto

functionalimpairmentofthese organs,andreducedlifeexpectancy.

Hemosiderosis oftheliver

CH3514

101

ChelateRingFormationinApplications

Chelationtherapyhasbeenusedtotreatdiseases andconditionsrelatingtometaloverload

Apotentially fatalconditioncalledhemosiderosis occurswhenthenaturallyoccurringiron

carrierprotein transferrinbecomessaturatedandironbecomesdepositedwithinthebody.

Incasesofsevereironoverload,deposition intheheart,liverandendocrinesystemsleadsto

functionalimpairmentofthese organs,andreducedlifeexpectancy.

Hemosiderosis oftheliver

CH3514

102

ChelateRingFormationinApplications

Chelationtherapyhasbeenusedtotreatdiseases andconditionsrelatingtometaloverload

ThereexistsotherclinicallyprovenagentsfortheremovalofFe3+fromthebody

NotetheaffinityofthehardFe3+ forhardO donors

CH3514

103

ChelateRingFormationinApplications

Chelationtherapyhasbeenusedtotreatdiseases andconditionsrelatingtometaloverload

ThereexistsotherclinicallyprovenagentsfortheremovalofFe3+fromthebody

TheseareallagentsbasedonEDTAderivatives

CH3514

104

StabilitiesofOxidationStates

Thehigherstatesbecomemoreoxidisingandthe

lowerstates lessreducingtotheright

Why?

Duetothepoorshielding ofthenucleusbytheadditionofsuccessived-electrons,the

effectivepositivechargefeltbyanouterelectronincreasesfromlefttoright.

Thishastwoconsequences:

• Decreaseinionicradiustotheright.

• Valenceelectronsbecomehardertolose/sharethemoretotherightyougo.

– thehigheroxidationstatesbecomemoreoxidizingandthelowerstates lessreducing

CH3514

105

StabilitiesofOxidationStates

Buthowdowetrulydefinetheterm“oxidationstate”?

Innomenclaturetermsthisisdonebyassumingoctetconfigurationstodefinethecharge

ontheatomsattachedtothemetalintheionorcomplex

Complex Ligand TotalCharge

onLigand

OverallChargeon

Complex

OxidationStateof

Metal

[Mn(OH2)6]2+ H2O 0 +2 II

MnO4- O2- 8- -1 VII

[Fe(CN)6]4- CN- 6- -4 II

[Co(NH3)4(O2CR)Cl]+ NH3

RCO2-

Cl-

0

1-

1-

+1 III

Inreality,oxidationstatesareaformalismandareonlytrueiftheM-Lbondingishighlyionic

(electrostatic).

e.g., [Mn(OH2)6]2+whereMn istrulyisMn2+

(independentevidenceexistsfromopticalspectroscopyandmagnetismthatitishighspind5)

CH3514

106

StabilitiesofOxidationStates

ButwhataboutthecaseofMnO4- wheretheMn-Obondsarehighlycovalent(Mn-Obond

lengthislessthansumofionicradii)

Sowherenowaretheelectrons?

Hereopticalspectroscopyandmagnetism areless informative:

• spectraisdominatedbyOàMnchargetransferbands

• itisdiamagnetic

SowewriteasMnVII(O-II)4

CH3514

107

QuantificationofOxidizingandReducingStrengths

WeknowthatMnO4- isapowerfuloxidantand[Cr(OH2)6]

2+ isapowerfulreductant.

Buthowdowequantifyoxidisingandreducingstrength?

Theanswer:Usingascaleofstandardredoxpotentials,Eo

Thesearebestenvisagedaspartofanelectrochemical cell– thedrivingforceinabattery

CH3514

108

QuantificationofOxidizingandReducingStrengths

Considerthe interactionofCu2+/CuandZn2+/ZnintheDaniell Cell

Reaction isspontaneousas

DGo isnegative

CH3514

109

QuantificationofOxidizingandReducingStrengths

Thisismadeupoftwohalfreactions:

Reaction isspontaneousas

DGo isnegative

Thepotentialdifference,Eocell is

measuredbythevoltmeter

CH3514

110

QuantificationofOxidizingandReducingStrengths

Thisismadeupoftwohalfreactions:

Thepotentialdifference,Eocell is

measuredbythevoltmeter

Thepotentialdifference,Eocell isdefinedasthestandardcellpotentialunderstandard

conditions:

• Unitactivity(whichmeansdilutionsolutionssoactivities approximateconcentrations)

• 1barpressureofanygaseouscomponent

• Allsolidcomponentsareintheirstandardstates

• T=298K

DGocell =-nFE

ocell

whereFistheFaradayconstant=96487Cmol-1

nisthenumberofelectronstransferredinthereaction

Eocell =Eoreduction – E

ooxidation=E

ocathode – E

oanode

ForacellreactiontobethermodynamicallyfavourableEocell mustbepositivesothat

DGocell isnegative

CH3514

111

QuantificationofOxidizingandReducingStrengths

Eocell at298K=1.10V

SoDGocell =-nFE

ocell =-2*96487*1.10=-212267Jpermol reaction=-212KJmol-1

DGocell =-RTln(Kcell)andsoKcell =1.50x10

37 - soreactionishighlyfavoured!

CH3514

112

QuantificationofOxidizingandReducingStrengths

Eocell at298K=1.10V

Thereis+0.34VdrivingthereactionduetoreductionofCu2+

Thereis+0.76VdrivingthereactionduetooxidationofZn(s)

Butwheredothesevalues

comefrom?

CH3514

113

QuantificationofOxidizingandReducingStrengths

Eocell at298K=1.10V

Thereis+0.34VdrivingthereactionduetoreductionofCu2+

Thereis+0.76VdrivingthereactionduetooxidationofZn(s)

Butwheredothesevalues

comefrom?

AllEo valuesarerelatedonascaletothecellpotentialofthe

standardhydrogenelectrode(SHE),whichisarbitrarilysetata

valueof0.0VTheSHEconsistsofplatinumwire thatis

connectedtoaPt surfaceincontactwithan

aqueoussolutioncontaining1MH+ in

equilibriumwithH2 gasatapressureof1atm.

Half-cellpotentials areintensiveproperties,

namelyindependent oftheamountof

thereactingspecies.

CH3514

114

QuantificationofOxidizingandReducingStrengths

CH3514

115

QuantificationofOxidizingandReducingStrengths

1. AllvaluesarerelativetoSHE(=referenceelectrode)

2. Half-reactionsarewrittenasreductions

(onlyreactantsareoxidizingagentsandonlyproductsarethereducingagents)

3. ThemorepositivetheEo themorereadilythereactionoccurs

4. Half-reactionsareshownwithequilibriumarrowab/ceachcan

occurasreductionoroxidation

5. Thehalf-cellthatislistedhigheratthetableactsasthecathode

CH3514

116

QuantificationofOxidizingandReducingStrengths

Eocell at298K=1.10V

Thereis+0.34VdrivingthereactionduetoreductionofCu2+

Thereis+0.76VdrivingthereactionduetooxidationofZn(s)

BycombiningtheSHEwithanotherhalfcell,e.g.,Cu2+aq/Cu(s),theEo canbedetermined

fromthemeasuredcellpotentialEocell

Wecanthenshow:

WecannowseewhyZn(s)readilyreducesCu2+aq andprovidesthehugedrivingforcefor

theDaniell cell

CH3514

117

QuantificationofOxidizingandReducingStrengths

Let’slookatadifferentreaction.Let’sconsiderthewellknowntitrationreactionof

thereductionMnO4- withFe2+aqunderstandardconditions(1MH+,298K)

Thehalfreactionsare:

WecannowseethatfromtherelativeE0 valuesthatthespontaneousreactionis:

Eocell =Eored– E

oox =1.51– (+0.77)=0.74V

DGocell =-357.03KJmol-1 (veryfavourable)

CH3514

118

QuantificationofOxidizingandReducingStrengths

Let’snowlookatadifferentprocess,whichistheoxidationofFe(s)byCl2aq.

Thehalfreactionsare:

Thesedataindicatethattworeactionsarepossible:

BothEocell valuesarepositiveandfromtheirmagnitudeonemightsupposethefirst

reactionisfavouredoverthesecond…

CH3514

119

QuantificationofOxidizingandReducingStrengths

ButwhatreallycountsisDGocell

Canshowthatthesecondreactionis favoured byconsidertheDGocell valuesforthetwo

processes,whichtakeintoaccountthenumberofelectronsinvolved

Thereforesecondreactionfavouredby~500kJmol-1!

CH3514

120

QuantificationofOxidizingandReducingStrengths

Sofarwehavebeenlookingatsystemsunderstandardconditions.

WhathappensifwechangethepH?

1st example:ReductionofMnO4-

HereEo referstothecondition[H+]=1mol dm-3,pH=0

BecauseoftheconsumptionofH+ ions,theaboveEo willvarywithpH.

WhatwouldbethemeasuredEvaluefortheaboveatpH2.5at298K?

CH3514

121

SoEdropsaspHincreases!

QuantificationofOxidizingandReducingStrengths

TheNernstEquation

WecancalculateEunderanyconditionsusingtheNernstEquation

ForthereductionofMnO4-:

AtpH=2.5=-log10([H+]);[H+]=3.2x10-3 M:

Atequilibrium[Mn2+ aq]=[MnO4-]andE=Eeq

=1.27

8

8

(9.09X1019)

CH3514

122

QuantificationofOxidizingandReducingStrengths

Sofarwehavebeenlookingatsystemsunderstandardconditions.

WhathappensifwechangethepH?

2nd example:ReductionofZn2+ aq

No[H+]consumptionhere– sowhythechange?

ThereasonisthatatpH0theZn2+ species is[Zn(OH2)6]2+

butatpH14thespecies is[Zn(OH)4]2-

SotheZn2+ species beingreducedisdifferent!

CH3514

123

QuantificationofOxidizingandReducingStrengths

Sofarwehavebeenlookingatsystemsunderstandardconditions.

WhathappensifwechangethepH?

3rd example:Mn3+/Mn2+ aq – anexamplewherepHaffectsredoxbehaviour

AtpH0:Mn3+ existsas[Mn(OH2)6]3+ andcanoxidiseH2Oà O2

Eocell =1.54- 1.23=0.31V(favourable)

DGocell =-nFE

ocell =-4*96487*0.31Jmol-1=-120KJmol-1

CH3514

124

QuantificationofOxidizingandReducingStrengths

Sofarwehavebeenlookingatsystemsunderstandardconditions.

WhathappensifwechangethepH?

3rd example:Mn3+/Mn2+ aq – anexamplewherepHaffectsredoxbehaviour

AtpH14:MnIII andMnII arenowpresentasthehydroxo complexes;Mn(OH)2/3(s)

NowO2 istheoxidantandEocell =0.4– (-0.27)=0.67V(favourable)

DGocell =-nFE

ocell =-4*96487*0.67Jmol-1=-259KJmol-1

[OH-]=1mol dm-3,pH=14

CH3514

125

QuantificationofOxidizingandReducingStrengths

LatimerDiagrams

Whenseveraloxidationstatesexist foraparticularmetalaconvenientmethodof

representingtherespectiveEo values isintheformofaLatimerdiagram

pH=0

1st example: Iron

pH=14

UsingDGo valuescanshowusingtheabovethatEo(Fe3+aq/Fe(s))=-0.04V

Housecroft andSharpe,page227

RecallHess’sLaw:

CH3514

126

QuantificationofOxidizingandReducingStrengths

LatimerDiagrams

2nd example:Manganese

Whenseveraloxidationstatesexist foraparticularmetalaconvenientmethodof

representingtherespectiveEo values isintheformofaLatimerdiagram

WithmultipleLatimerdiagrams,onecanillustratethechangeinEo withpH

Housecroft andSharpe,page226

pH=0

pH=14

CH3514

127

QuantificationofOxidizingandReducingStrengths

LatimerDiagrams

2nd example:Manganese

Whenseveraloxidationstatesexist foraparticularmetalaconvenientmethodof

representingtherespectiveEo values isintheformofaLatimerdiagram

WithmultipleLatimerdiagrams,onecanillustratethechangeinEo withpH

Housecroft andSharpe,page226

pH=0

Let’shaveacloser look:

Whenagivenoxidationstatehasahigher(morepositive)Eo foritsreduction thanforits

oxidationitisthermodynamicallyunstabletodisproportionationtogivethetwo

oxidationstateseitherside.

OnecanshowDGo forthisprocessisnegative

Doanyofthespecies abovesatisfythiscriterion? YES

CH3514

128

QuantificationofOxidizingandReducingStrengths

LatimerDiagrams

2nd example:Manganese

Whenseveraloxidationstatesexist foraparticularmetalaconvenientmethodof

representingtherespectiveEo values isintheformofaLatimerdiagram

WithmultipleLatimerdiagrams,onecanillustratethechangeinEo withpH

Housecroft andSharpe,page226

pH=14

Let’shaveacloser look:

Whenagivenoxidationstatehasahigher(morepositive)Eo foritsreduction thanforits

oxidationitisthermodynamicallyunstabletodisproportionationtogivethetwo

oxidationstateseitherside.

OnecanshowDGo forthisprocessisnegative

Doanyofthespecies abovesatisfythiscriterion? YES

Inthiscase:MnO42- andMn3+intheformofMn(OH)3(s),

arenowstabletowardsdisproportionation

CH3514

129

QuantificationofOxidizingandReducingStrengths

Pourbaix Diagrams

APourbaix Diagramcondenses theinformationavailable inLatimerDiagramsacross

allpHranges.

NernstEquation

CH3514

130

QuantificationofOxidizingandReducingStrengths

Frost-Ebsworth Diagrams

AconvenientwayofrepresentingredoxbehaviouristographicallyplotDGo versus

theoxidationnumber

Housecroft andSharpe,page227-230

Recall thatDGo =- nFEo

SoDGo/F=-nEo

SoifweplotnEo vs oxidationnumberthentheslopeofthelinedrawnbetween

twooxidationstates,separationn,willgiveEo forthatprocess.

TheFEdiagramscanbeusedtopredictredoxbehaviour

CH3514

131

6

5

4

3

1

0

-1

-2

-3

2

0 1 2 3 4 5 6 7

n Eo

oxidation state

Mn

Mn2+

Mn3+

MnO2

MnO42-

MnO4-

most stable stateis Mn2+

aq. (sits in energy minimum)

-1.19 V+1.54 V

+2.10 V

+0.90 V

+0.95 V

QuantificationofOxidizingandReducingStrengths

Frost-Ebsworth Diagrams

Example1:Mn atpH0

Housecroft andSharpe,page227-230

Thefurtherupthediagram

themoreoxidizingthestate

increasingStability

CH3514

132

QuantificationofOxidizingandReducingStrengths

Frost-Ebsworth Diagrams

Example1:Mn atpH0

Housecroft andSharpe,page227-230

6

5

4

3

1

0

-1

-2

-3

2

0 1 2 3 4 5 6 7

n Eo

oxidation state

Mn

Mn2+

Mn3+

MnO2

MnO42-

MnO4-

-1.19 V+1.54 V

+2.10 V

+0.90 V

+0.95 V

Go/F for disproportionationof MnO4

2- into MnO4

- and MnO2

MnO42- + 4 H+ + 2 e- MnO2 + 2H2O Eo = + 2.10V

MnO4- + e- MnO4

2- Eo = + 0.90V

3 MnO42- + 4 H+ MnO2 + 2 MnO4

- + 2H2O

Eodisp

= 2.10 - 0.90 = + 1.20 V

Godisp = -231.5 kJ mol-1

DGo =-nFEo =-2*96487*1.2=-231.5KJmol-1

CH3514

133

QuantificationofOxidizingandReducingStrengths

Frost-Ebsworth Diagrams

Example1:Mn atpH0andpH14

Wecanalso illustratetheeffectsof

pHontheredoxbehaviour

6

5

4

3

1

0

-1

-2

-3

2

0 1 2 3 4 5 6 7

n Eo

oxidation state

Mn

Mn(OH)2

MnO2

MnO42- MnO4

-

-4Mn(OH)3

MnO43-

6

5

4

3

1

0

-1

-2

-3

2

n Eo

Mn

Mn2+

Mn3+

MnO2

MnO42-

MnO4-

pH=0

pH=14

MnO4- is

lessoxidizing

Mn(OH)3 isnowthemoststablestate

CH3514

134

QuantificationofOxidizingandReducingStrengths

Frost-Ebsworth Diagrams

WhichpHconditionisbestforMnO4- titrations?

MnO4- aq + 8 H+

aq + 5 e- Mn2+aq + 4 H2O (l) + 1.51

Eo / V Go / kJ mol-1

-728.5

MnO4- aq + 4 H+

aq + 3 e- MnO2(s) + 2 H2O (l) + 1.69 -489.2

O2 + 2 Mn2+aq + 2 H2O 2 MnO2(s) + 4 H+

aq 0.0 0

pH=0 UseofacidsolutionavoidsMnO2(s)production

Noteinair(O2)

pH=14MnO4

- aq + 4 H2O + 5 e- Mn(OH)2(s) + 6 OH-aq + 0.34 -164

MnO2(s) + 4 OH-aqMnO4

- aq + 2 H2O + 3 e- + 0.59 -170.8

Noteinair(O2)

O2 + 2 Mn(OH)2(s) 2 MnO2(s) + 2 H2O + 0.44 -169.8

ReductiontoMn2+aq favoured

ReductiontoMnO2 favoured

CH3514

135

QuantificationofOxidizingandReducingStrengths

Frost-Ebsworth Diagramsalongthe3dSeries

6

5

4

3

1

0

-1

-2

-3

2

0 1 2 3 4 5 6 7

n Eo

oxidation state

-4

6

5

4

3

1

0

-1

-2

-3

2

n Eo

M

Mn2+

Mn3+

MnO2

MnO42-

MnO4-

Cr2O72-

Cr3+

Cr2+

V2+V3+

VO2+

VO2+

Fe2+

Fe3+

FeO42-

Co2+

Co3+

Ni2+

Cu2+Cu+

Ti2+

Ti3+ TiO2+

Notehowthelowerstates

becomemorestableandless

reducingalongtheperiod

CH3514

136

QuantificationofOxidizingandReducingStrengths

Frost-Ebsworth Diagramsalongthe3dSeries

6

5

4

3

1

0

-1

-2

-3

2

0 1 2 3 4 5 6 7

n Eo

oxidation state

-4

6

5

4

3

1

0

-1

-2

-3

2

n Eo

M

Mn2+

Mn3+

MnO2

MnO42-

MnO4-

Cr2O72-

Cr3+

Cr2+

V2+V3+

VO2+

VO2+

Fe2+

Fe3+

FeO42-

Co2+

Co3+

Ni2+

Cu2+Cu+

Ti2+

Ti3+ TiO2+

Notethatcopperisthefirst

trulyinert3dmetal (allEo

valuesarepositive– typical

ofcoinagemetals

• Cuistheonly3dmetal

foundnaturally

• Cu+aq isunstableWRT

disproportionation

CH3514

137

QuantificationofOxidizingandReducingStrengths

M(s) M(g) atomization Hoa

M2+(g) M2+aq hydration Ho

hyd

M(g) M2+(g) ionization (IP1 + IP2)

consistsofthethreeprocesses:

M2+aq + 2 e- M(s)

Eo

CH3514

138

QuantificationofOxidizingandReducingStrengths

M2+aq + 2 e- M(s)

Eo

DoanyofthetrendsinEo valuescorrelateanyoftheseprocesses? YES

Eo (M2+/M) / volts

IE / kJ mol-1

0 1 2 3 4 5 6 7 8 9 10

number of d electrons for M2+

-3

-2

-1

0

1

2

3

1750

2000

2250

2500

2750

3000

3250

3500

1500

IP1 + IP2

IP3

WefindthatthevaluesofEo (-DGo/nF)

correlatewithIP1 andIP2

CH3514

139

QuantificationofOxidizingandReducingStrengths

Eo (M2+/M) / volts

IE / kJ mol-1

0 1 2 3 4 5 6 7 8 9 10

number of d electrons for M2+

-3

-2

-1

0

1

2

3

1750

2000

2250

2500

2750

3000

3250

3500

1500

IP1 + IP2

IP3

WefindthatthevaluesofEo (-DGo/nF)

correlatewithIP1 andIP2

TheexpectedvariationofDHohyd withLFSE(formingtheaquacomplexes)

doesnotcontributesignificantly.

ThelowEo forZn2+/Zndoescorrelatehoweverwithanunusuallylowvalue

ofDHoaforZn(s)

CH3514

140

QuantificationofOxidizingandReducingStrengths

Furthermore,Eo(M3+/M2+)correlateswithIP3

OnceagainthevariationinrespectiveDHohyd valuesofM

2+ andM3+ isnot

significant

Eo (M3+/M2+) / volts

IE / kJ mol-1

0 1 2 3 4 5 6 7 8 9 10

number of d electrons for M2+

-3

-2

-1

0

1

2

3

1750

2000

2250

2500

2750

3000

3250

3500

1500

IP3

VCr

Mn

Fe

Co

WefindthatthevaluesofEo (M3+/M2+)

correlatewithIP3 exceptforCr

CH3514

141

QuantificationofOxidizingandReducingStrengths

Furthermore,Eo(M3+/M2+)correlateswithIP3

OnceagainthevariationinrespectiveDHohyd valuesofM

2+ andM3+ isnot

significant

WefindthatthevaluesofEo (M3+/M2+)

correlatewithIP3 exceptforCr

OnthebasisofIP3,oxidationofCr2+(g)shouldbemoredifficultthanwith

V2+ (g)byca.165KJmol-1

YetCr2+aq isamorepowerfulreductant (morenegativeEo)thanV2+aq

WHY?

ThereasonistheconsiderablegaininLFSE(0.6Do)onformingthed3 Cr3+

ion(t2g3 eg

0 configuration)

OxidationofV2+aq toV

3+aq (t2g

3 eg1 configuration)actuallyresultsinalossof

LFSEof0.4DocomparedtoV2+aq

InthiscaseLFSEfactorsaresignificant

CH3514

142

QuantificationofOxidizingandReducingStrengths

Furthermore,Eo(M3+/M2+)correlateswithIP3

OnceagainthevariationinrespectiveDHohyd valuesofM

2+ andM3+ isnot

significant

LFSEunits of o

LFSEunits of o

Change in LFSE M2+->M3+

units of oM3+ M2+M

V -0.8 -1.2 0.4 loss

Cr -1.2 -0.6 -0.6 gain

0.6 o

-0.4 o

Cr2+

LFSE-0.6 o

t2g (dxy,xz,yz)

eg (dz2, x2-y2)

Housecroft andSharpe,page682

CH3514

143

QuantificationofOxidizingandReducingStrengths

Insummary,Eo valuesinsolution largelycorrelatewiththerelevantionization

potential, IPn

OnlyincertainextremecasesdoLFSEfactorsplayasignificantparte.g., Cr2+aq/Cr3+aq

Eo (M2+/M) / volts

IE / kJ mol-1

0 1 2 3 4 5 6 7 8 9 10

number of d electrons for M2+

-3

-2

-1

0

1

2

3

1750

2000

2250

2500

2750

3000

3250

3500

1500

IP1 + IP2

IP3

CH3514

144

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Kineticsversusthermodynamics– dotheycorrelate?

CH3514

145

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Considerthefollowingprocess:

N

N

N

NH H

H H

cyclam(macrocycle)

+ [Ni(OH2)6]2+

N

N

N

NH H

H H

Ni

log 1 = 19.4

+ 4 CN-

N

N

N

NH H

H H

+ [Ni(CN)4]2-

log 4 = 22

[Ni(OH2)6]2+ + 4 CN-log 4

[Ni(CN)4]2- + 6 H2O log 4 = 22

Thisisoneofthelargestlogbn valuesknownforamonodentate ligandreplacingH2O

Whatthismeans isthat[Ni(CN)4]2- isverystablethermodynamically

b

b

CH3514

146

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Considertherateofthereactionforthefollowingprocess:

[Ni(CN)4]2- + *CN- [Ni(*CN)(CN)3]2- + CN-k

k = 2.3 x 106 M-1 s-1

- representing an exchange event every microsecond!!!

exchange of CN- ligand

Whatthismeans isthat[Ni(CN)4]2- isverylabile!

Theseexperimentsshowthatthermodynamicstabilitydoesnotnecessarily

correlatewithkineticinertness

Theattainmentofequilibriuminmetal ioncomplexation processescanbean

extremelyfastprocess;irrespectiveofthesizeofthestabilityconstants:Kn orbn

Infactms andµs timescale ligandexchangeeventsinvolvingmonodentate ligands

arecommonwithin3dtransitionmetalcomplexes

CH3514

147

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Awiderangeofratesisrelevantforligandexchangereactionsatmetalcomplexes

Considerwaterexchangeontheaquaspecies

Formaingroupmetal ionstheserangefromthemostlabile(Cs+aq,halflife=1ns)to

themostinert(Al3+aq,halflife=1s)- 9ordersofmagnitude

Thisismostlyasaresultofvariationsinthemetalionicradiuswhichaffectsthe

strengthofthepredominantlyionic(electrostatic)bondingtothecoordinatedwaters

[Be(OH2)4]2+

[Mg(OH2)6]2+

[Ca(OH2)7]2+

Ionic radius / pm

Water exchange half life / s

27

105

10-2

10-7

10-572

[Ba(OH2)8]2+ 142 10-9

Group2aquaions

CH3514

148

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Awiderangeofratesisrelevantforligandexchangereactionsatmetalcomplexes

Considerwaterexchangeontheaquaspecies

Formaingroupmetal ionstheserangefromthemostlabile(Cs+aq,halflife=1ns)to

themostinert(Al3+aq,halflife=1s)- 9ordersofmagnitude

Thisismostlyasaresultofvariationsinthemetalionicradiuswhichaffectsthe

strengthofthepredominantlyionic(electrostatic)bondingtothecoordinatedwaters

Group13aquaions

[Al(OH2)6]3+

[Ga(OH2)6]3+

[In(OH2)6]3+

Ionic radius / pm

Water exchange half life / s

54

80

1

10-6

10-362

CH3514

149

[V(OH2)6]2+

[Co(OH2)6]2+

[Ni(OH2)6]2+

Ionic radius / pm

Water exchange half life / s

79

69

10-2

10-4

10-675

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Awiderangeofratesisrelevantforligandexchangereactionsatmetalcomplexes

Considerwaterexchangeontheaquaspecies

Howeverforthe3dtransitionmetalionssizeisnottheonlyfactor

HerethereisnocorrelationwithsizeV2+ hasthelargestradiusbutitisthemostinert

Thehalflives(rates)ofexchange,justlikethestabilityconstantswesawearlier,correlatewithLFSEnotsize

3daquaions

CH3514

150

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Valuesoflogkex (waterexchange)forM2+ ionsalongthe3dseries

10

5

0

log kex (s-1)

0 1 2 3 4 5 6 7 8 109

LFSE

d electron number

Jahn-Teller

Ca2+

Mn2+

Zn2+

V2+

Ni2+

Fe2+

Co2+

Cr2+ Cu2+

0

1.2 o

TheanomalouslyhighratesforCr2+aq andCu2+aq reflecttherapiddynamicsattachedtothe

weakly-bondedwaterligandswithinthe

Jahn-Tellerdistortedstructures

CH3514

151

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

TheJahn-TellerassisterfastexchangeprocessonCu2+ aq

Entireprocesstakesplaceonce

everynanosecond!!

CH3514

152

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Amazingly,theratesofwaterligandexchangeonaquametal ionsacrosstheperiodic

tablecover20 ordersofmagnitude

>200 y 1 day 1 h 1 s 1 ms 1 s 1 ns

water ligand residence time (= 1/kex)

Ir3+ Cr3+

Pt2+

Al3+ Fe3+ Ti3+ Gd3+

Be2+ Mg2+ Cu2+

Li+ Cs+

CH3514

153

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Amazingly,theratesofwaterligandexchangeonaquametal ionsacrosstheperiodic

tablecover20 ordersofmagnitude

>200 y 1 day 1 h 1 s 1 ms 1 s 1 ns

water ligand residence time (= 1/kex)

Ir3+ Cr3+

Pt2+

Al3+ Fe3+ Ti3+ Gd3+

Be2+ Mg2+ Cu2+

Li+ Cs+

Generally,

Lowercharge:faster;Highercharge:slower

Largersize:faster;smallersize:slower

CH3514

154

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Amazingly,theratesofwaterligandexchangeonaquametal ionsacrosstheperiodic

tablecover20 ordersofmagnitude

Let’sputthisintoperspective

averagetimeintervalat25oC

beforewaterexchangeevent

OnCu2+ aq 1ns– 10-9s

OnAl3+ aq 0.1s– 10-1 s

OnCr3+ aq 1day– 86400s

OnIr3+ aq 50years– 1.58x109s

CouldenvisagestudyingtheexchangeonCr3+aq withoutproblembutwhataboutthatonIr3+aq?

glucose

crayon

~StAndrewstoEdinburgh~40%fromtheEarthtoMoon

CH3514

155

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

SohowwastheexchangeonIr3+ aq measured?

SincewaterexchangeinvolvesbondbreakingfromMn+ toresidentwater,whichhas

anendothermicactivationbarrierofabout130kJmol-1,raisingthetemperaturewill

speedupthereaction

waterexchangeon[Ir(H2O)6]3+wasstudiedinpressurizedvesselsat120oC – anevent

occursnowinlessthan1hour– wecanfollowbyNMRusingenriched17O-labelled

water(17OhasanNMRsignal like1H)

Classificationforexchange reactions

onmetalions

t < 1min labile

t > 1min inert

CH3514

156

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Ofallthe3dtransitionmetalaquaionsonlyCr3+aq isclassedasinert– why?

>200 y 1 day 1 h 1 s 1 ms 1 s 1 ns

water ligand residence time (= 1/kex)

Ir3+ Cr3+

Pt2+

Al3+ Fe3+ Ti3+ Gd3+

Be2+ Mg2+ Cu2+

Li+ Cs+

INERT LABILE

CH3514

157

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Ofallthe3dtransitionmetalaquaionsonlyCr3+aq isclassedasinert– why?

Octahedral[Cr(H2O)6]3+ hasahighchargecoupledwithaverystablet2g

3 configuration

with-1.2Do ofLFSE

o

-0.4 o

+0.6 o

t2g

eg

HighLFSEcorrelateswithahighligandfieldactivationenergy(LFAE)forexchange

CH3514

158

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Ofallthe3dtransitionmetalaquaionsonlyCr3+aq isclassedasinert– why?

Octahedral[Cr(H2O)6]3+ hasahighchargecoupledwithaverystablet2g

3 configuration

with-1.2Do ofLFSE

-100

-200

0

-300

-400

-500

-600

LFSEkJ mol-1

0 2 4 6 8 10

number of d electrons

M3+

M2+

V2+

Ca2+

Ni2+

Mn2+ Zn2+

Cr3+ GreatestLFSEisforCr3+

CH3514

159

-100

-200

0

-300

-400

-500

-600

LFSEkJ mol-1

0 2 4 6 8 10

number of d electrons

M3+

M2+

V2+

Ca2+

Ni2+

Mn2+ Zn2+

Cr3+

Co3+

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Ofallthe3dtransitionmetalaquaionsonlyCr3+aq isclassedasinert– why?

Octahedral[Cr(H2O)6]3+ hasahighchargecoupledwithaverystablet2g

3 configuration

with-1.2Do ofLFSE

InfactthehighestLFSEisforCo3+aq

andCo3+aqshouldbethemostinert

Whyisthisnotthecase?

CH3514

160

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Lowspinoctahedral[Co(H2O)6]3+ hasahighcharge(highDo)coupledwithat2g

6

configurationandthereforehasthemaximumLFSEpossible of-2.4Do

o

-0.4 o

+0.6 o

t2g

eg

SoCo3+ hasaveryhighLFAEandshouldbekinetically inert

CH3514

161

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Buthowdoweknowthatoctahedral[Co(H2O)6]3+ hasalowspint2g

6 configuration?

Thecomplexcouldbehighspin.

SoCo3+ wouldthenhaveaLFSEofonly-0.4Do

o

-0.4 o

+0.6 o

t2g

eg

CH3514

162

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Sohowdoweknow?

Ofcoursewecouldlookatthemagneticpropertiesbutwecanalsotell fromtheM-OH2

distances intheaquacomplexes

-100

-200

0

-300

-400

-500

-600

LFSEkJ mol-1

0 2 4 6 8 10

number of d electrons

Cr3+

Co3+

210

200

190

180

M-OH2 distance / ppm in aqua salts

Fe3+Sc3+ Ga3+

Thedecrease inM-OH2 distanceonceagain

reflectsdecreasingM3+ ionicradiusacrossseries

CH3514

163

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

Therateofexchangeon[Co(OH2)6]3+ hasnotbeenmeasuredhoweverbecause itisnot

stable

[Co(OH2)6]3+ spontaneouslyoxidizeswatertoO2

DGocell =-nFE

ocell =-4*96487*0.75=-386KJmol-1

Theexchangereactionobservediscatalysedbythemorelabile[Co(OH2)6]2+generated

[Co(OH2)6]3+ providesanothergoodexampleofthe lackofcorrelationbetween

thermodynamicstabilityandkineticlability

Co(OH2)6]3+ isinertyetonlymetastable

CH3514

164

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

LiterallyhundredsofstableCo3+ complexesareknownwithligandsotherthanwater,

mostofthemN-donorligands.

Becauseoftheirredoxstability,coupledwithslowratesofligandexchange,manyof

thesehaveplayedahugeroleindevelopingourunderstandingofthemechanismsof

reactionsattransitionmetalcentres

CH3514

165

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

LiterallyhundredsofstableCo3+ complexesareknownwithligandsotherthanwater,

mostofthemN-donorligands.

Becauseoftheirredoxstability,coupledwithslowratesofligandexchange,manyof

thesehaveplayedahugeroleindevelopingourunderstandingofthemechanismsof

reactionsattransitionmetalcentres

WhythishugedifferenceinEo values?

withCoIII stabilizedhugelywithN-donorslikeNH3

CH3514

166

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

WhythishugedifferenceinEo values?

M NH

Hfilled t2g

lowspin H

empty eg

o

t2g

eg

o

t2g

eg NH3

eg

Co

s-donorligand

CH3514

167

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

WhythishugedifferenceinEo values?

p-donorligandinadditiontos-donation

M OH

H

filled t2g

repulsion

O2p

lowspin

Co3+

o

t2g

eg

o

t2g

egOH2

O2p

Strongerp-donationcoupledwithweakers-donation lowersDo

Thisdecreases thestabilityofthelsd6 configurationwithrespecttothe

reductiontothehs d7 [Co(OH2)6]2+(Do <P)

CH3514

168

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

WhythishugedifferenceinEo values?

M OH

H

filled t2g

repulsion

O2p

lowspin M O

H

H

vacancy in t2g O2p

highspin

reduction to Co2+

Co2+

o

t2g

eg

o

t2g

egOH2

O2p

CH3514

169

RatesofReactionsInvolving3dTransitionMetalIons

inAqueousSolution

ThereareonlytwoknownhighspinCo3+ complexes:

• [Co(OH2)3F3]

• [CoF6]3-

Thisisduetogoodp-donationfromF-,whichdramaticallydecreasesDo

AllotherCocomplexesarelowspin,whichisduetostrongers-donationoutweighingallothereffects

CH3514

170

AnIntroductiontoMechanisms inOrganicChemistry

Youallarefamiliarwithsubstitution reactionsoncarbon:SN1andSN2

Thereexistscomparablemechanismsofligandreplacementonthemetal

• Dissociative– similartoSN1

• Associative– similartoSN2

ML

L L

X

L

L

n+

ML

L L

Y

L

L

n+

Y

X

CH3514

171

AnIntroductiontoMechanisms inOrganicChemistry

TheDissociativepath:

XleavesfirstandthenYcoordinatesatthevacantsiteonthemetal

ML

L L

X

L

L

n+

ML

L LL

L

n+

- X+ X

ML

L L

Y

L

L

n+

+ Y

- Y

TheAssociativepath:

M-Ybondformsfirstfollowedbyde-coordinationofX

ML

L L

X

L

L

n+

+ YM

L

L LL

L

n+

- YY

X

ML

L L

Y

L

L

n+- X

+ X

CH3514

172

AnIntroductiontoMechanisms inOrganicChemistry

Whichpathwouldyoupredicttohavethelargest activationenergy?

Answer:Thedissociative path.Why?

Thismechanism involvesabond-breakingstep(M-Xbond)intheRDS,whichwillbe

endothermicbeforethenewbondisformed– formallytwostepreaction

Similarly,SN1reactionsarefrequentlyslowerthanSN2reactionsforthesamereason

Theassociative pathinvolvesabond-makingstep(M-Y),whichwillbeexothermicprior

tobondbreaking(M-X)andsoshouldpossessaloweractivationenergy.

Additionally,thepresenceofthenewM-Ybondmaylowertoenergyrequiredtobreak

theM-Xbond

CH3514

173

AnIntroductiontoMechanisms inOrganicChemistry

TheactivationenergyEa canbedeterminedfromthetemperaturedependence ofthe

reactionrateaccordingtotheArrheniusorEyring equation.

reactant

product

Go

reaction coordinate

Energy

favourable negative Go

(spontaneous reaction)

activation energy Ea

CH3514

174

AnIntroductiontoMechanisms inOrganicChemistry

TheArrheniusequation:

ln k = ln A -Ea

RTor k = A e

-Ea

RT

TheEyring equation:

ln k = lnRT

or k = ek' T

h

G k' T

hRT

G

-

k’andharetheBoltzmannandPlanck’sconstants

DD

CH3514

175

AnIntroductiontoMechanisms inOrganicChemistry

TheEyring equation,rearranginggives

ln k = lnRT

k' T

h

G- ln k = ln

k'

h+ lnT

RT

G-

ln =k'

h+ ln

RT

G-k

T

Recall thatDG‡ =DH‡ – TDS‡

ln =k'

h+ ln-k

T R

S+

RT

HSo

WecanthereforemakeanEyring plotofln (k/T)vs 1/Tandshouldobtainalinear

relationship

D D

D

D D

‡ ‡

‡ ‡

CH3514

176

AnIntroductiontoMechanisms inOrganicChemistry

TheEyring Plot

ln

k'

h+ ln

-

kT

R

S

RT

H

1T0

• DS‡obtainedfrom

ExtrapolationtoinfiniteT

• Thiscanonlydetermine

mathematically

• DH‡canbeaccurately

determinedfromthe

slope

D ‡

D ‡

CH3514

177

AnIntroductiontoMechanisms inOrganicChemistry

Thisenergydiagramrepresentsaconcertedreactionwithoutintermediates

reactant

product

Go

reaction coordinate

Energy

favourable negative Go

(spontaneous reaction)

activation energy Ea

D

CH3514

178

AnIntroductiontoMechanisms inOrganicChemistry

Thisenergydiagramrepresentsatwo-stepreactionwithanintermediate

reactants

intermediate

products

transition state

transition state

G 1 G 2

MLL L

X

L

L

n+

MLL L

L

L

n+

MLL L

X

L

L

n+

MLL L

Y

L

L

n+

MLL L

Y

L

L

n+

A dissociative process

Energy

Reaction coordinate

D D

CH3514

179

AnIntroductiontoMechanisms inOrganicChemistry

Let’slookatthedifferencebetweenassociativeanddissociativeprocesses

reactants

intermediate

products

transition state

transition state

G 1 G 2

MLL L

X

L

L

n+

MLL L

L

L

n+

MLL L

X

L

L

n+

MLL L

Y

L

L

n+

MLL L

Y

L

L

n+

A dissociative process

Energy

Reaction coordinate

reactants

intermediate

products

transition state

transition state

G 1

G 2

MLL L

X

L

L

n+

MLL L

Y

L

L

n+

An associative process

Energy

Reaction coordinate

MLL L

X

L

L

n+

Y

MLL L

X

L

L

n+

Y

MLL L

X

L

L

n+

Y

D DD

D

CH3514

180

AnIntroductiontoMechanisms inOrganicChemistry

Let’slookatsomeexamples

Waterexchangeonaquametalions

Metal ion Mechanism H S

[V(H2O)6]2+

[Fe(H2O)6]2+

[Ni(H2O)6]2+

dn config

t2g3 eg

0 associative 62 ~0

41 +21

46 +37

57 +32

[Co(H2O)6]2+

[Mn(H2O)6]2+ 33 +6

increasing t2g occupancy

increasing eg occupancy

increasingly dissociative

associativet2g3 eg

2

t2g4 eg

2

t2g5 eg

2

t2g6 eg

2

kJ mol-1 J K-1 mol-1

• Increasingeg occupancyleadstohigherlability (smallerDH‡)butdoesn’t

changethemechanism

• Increasingt2g occupancycorrelateswithanincrease inDH‡ andamore

positiveDS‡andleadstodissociative behaviour

D D‡ ‡

CH3514

181

AnIntroductiontoMechanisms inOrganicChemistry

Let’slookatsomeexamples

Waterexchangeonaquametalions

• DH‡ correlateswithLFSE,whichisameasureofthestrengthoftheM-OH2

bond

• However,DH‡ isoflimiteduseasamechanistic indicator

Metal ion Mechanism H S

[V(H2O)6]2+

[Fe(H2O)6]2+

[Ni(H2O)6]2+

dn config

t2g3 eg

0 associative 62 ~0

41 +21

46 +37

57 +32

[Co(H2O)6]2+

[Mn(H2O)6]2+ 33 +6

increasing t2g occupancy

increasing eg occupancy

increasingly dissociative

associativet2g3 eg

2

t2g4 eg

2

t2g5 eg

2

t2g6 eg

2

LFSE

-1.2

kJ mol-1 J K-1 mol-1 units of o

0

-0.4

-0.8

-1.2

D‡

D‡

CH3514

182

AnIntroductiontoMechanisms inOrganicChemistry

Wesawpreviouslythatkex correlateswithLFSEWecannowdeducethatkex correlateswithDH‡

Thisisentirelyexpectedas,regardlessofmechanism,therewillbeabond-breaking

eventalongthereactioncoordinate(mostendothermicstepofthereaction,most

impactingtherate) 10

5

0

log kex (s-1)

0 1 2 3 4 5 6 7 8 109

LFSE

d electron number

Ca2+

Mn2+

Zn2+

V2+

Ni2+

Fe2+

Co2+

0

1.2 o

CH3514

183

AnIntroductiontoMechanisms inOrganicChemistry

Let’slookatsomeexamples

Waterexchangeonaquametalions

• DS‡ toacertainextentcorrelateswithwiththemechanistic trendBUTthisvalueis

pronetolargeerrorsbasedonthemathematicalextrapolationtoinfiniteT

• Isthereanotherparameteravailablethatwecanuseasanindicatorofthe

mechanistic pathway?

Metal ion Mechanism H S

[V(H2O)6]2+

[Fe(H2O)6]2+

[Ni(H2O)6]2+

dn config

t2g3 eg

0 associative 62 ~0

41 +21

46 +37

57 +32

[Co(H2O)6]2+

[Mn(H2O)6]2+ 33 +6

increasing t2g occupancy

increasing eg occupancy

increasingly dissociative

associativet2g3 eg

2

t2g4 eg

2

t2g5 eg

2

t2g6 eg

2

LFSE

-1.2

kJ mol-1 J K-1 mol-1 units of o

0

-0.4

-0.8

-1.2

YES

D‡ D

CH3514

184

AnIntroductiontoMechanisms inOrganicChemistry

Theactivationvolume:DV‡

Considerthetwopathwaysagain:

ML

L L

X

L

L

n+

ML

L LL

L

n+

- X+ X

X

DISSOCIATIVE

• Thedissociative processwithhavea

positiveDV‡

• Theincrease inDV‡correspondstothe

volumeoffreeX

ML

L L

X

L

L

n+

Y

+ YM

L

L LL

L

n+

- YY

X

• Theassociativeprocesswithhavea

negativeDV‡

• Thedecrease inDV‡correspondstothe

volumeoffreeY

ASSOCIATIVE

CH3514

185

AnIntroductiontoMechanisms inOrganicChemistry

HowdowemeasureDV‡?

Fromthepressuredependenceofthereactionrate:

Aplotofln kvs Pwillprovideaslopeof-DV‡/RT

d (ln k)dP

= - VRT

Housecroft andSharpe,page883P

ln k

positive slope so V negative- associative mechanism

rate increases with pressure

P

ln k

rate decreases with pressure

negative slope so V positive- dissociative mechanism

D ‡

CH3514

186

AnIntroductiontoMechanisms inOrganicChemistry

Housecroft andSharpe,page883P

ln k

positive slope so V negative- associative mechanism

rate increases with pressure

P

ln k

rate decreases with pressure

negative slope so V positive- dissociative mechanism

P

ln k

no change - concerted mechanismtermed interchange I

D‡

D‡

CH3514

187

AnIntroductiontoMechanisms inOrganicChemistry

Wecannowappreciatewhyvariousmechanismswouldhavesuchrate/pressure

dependencies

Adissociative processinvolvestheexpulsionof theleavingligandX(expansive)so

wouldbeexpectedtoberetardedbyapplyingpressure

negative slope- positive activationvolume

Anassociative processinvolvesthetakeupofY(compressive)sowouldbeexpectedto

beacceleratedbyapplyingpressure

positive slope- negativeactivationvolume

CH3514

188

AnIntroductiontoMechanisms inOrganicChemistry

Let’sgobacktothepreviousexample:

• DV‡ isagoodindicatorofmechanism

• Increaseineg occupancylowersDH‡ butdoesn’tchangethemechanism

– stillassociative

• Increaseint2g occupancyincreasesDH‡ANDgivespositivevaluesforDV‡

– moredissociative

Metal ion Mechanism H S

[V(H2O)6]2+

[Fe(H2O)6]2+

[Ni(H2O)6]2+

dn config

t2g3 eg

0 associative 62 ~0

41 +21

46 +37

57 +32

[Co(H2O)6]2+

[Mn(H2O)6]2+ 33 +6

increasing t2g occupancy

increasing eg occupancy

increasingly dissociative

associativet2g3 eg

2

t2g4 eg

2

t2g5 eg

2

t2g6 eg

2

V

-4.1

kJ mol-1 J K-1 mol-1

-5.4

+3.7

+6.1

+7.2

cm3 mol-1D ‡ D ‡ D ‡

CH3514

189

AnIntroductiontoMechanisms inOrganicChemistry

WecanunderstandthesetrendsfromanMOperspective

Increasingeg occupancyweakens(lengthens)theresidentM-OH2 bonds– lowersLFSE

andDH‡ andincreasestherateofexchange

However,increasingt2g occupancywillrepeltheelectronsontheentering ligandY-

facilitatingthedissociative pathway

M

L

L L

L

Y

repulsion

filled t2g

CH3514

190

Summary

ü LFTandinparticulars-donor,p-donorandp-acceptorsandhowtheyinfluenceDo

ü Hydrolysischemistryofmetalcomplexes

ü Thermodynamicsofmetalcomplexformation(K,b,DGo)

ü HSABchemistry

ü Theoriginsofthe Irving-WilliamsSeriesandtheJTeffect

ü Thechelateeffect

ü Thefactorsgoverningthestabilities ofoxidationstates

ü Quantificationofoxidizingandreducingstrengthbyelectrochemistry (Eocell,DGocell)

ü Delineation betweenthermodynamicstabilityandkineticinertness