Page 1 ovE ARUP & PARTNERS TEL: 01-436-7109 . . .... WQrmc ...

13
ovE ARUP & PARTNERS TEL: 01-436-7109 . . . ... WQrmc- Und84uft'lUK.-rtraguna tO Springer-Verlag 1986 Development of a turbulent near-wall temperature model All.t;/ and its application to channel flow /!:._ . H. Akbari, M4!rtol, A. Gadgll, R. Kammerud, and F. Bau1nsm, Berkeley. CA. USA A numeri cal stu dy of fluid t1ow u nd heat transf er in a twdimensional chunnc l unde r fully Jcveh, ped i urbu!ent cond ti ons is report ed. A C l) mp uL tr pr1)11ram which is c:i p able of trc 11 ting bv1h fo r<.:c: d and natu ra l convecti on probl ems 1 mdcr tur· bul cnt cond itions h 11s been dc: vck, pc: d. The cod e u. qes t he hi gh· Reynohfa -numb er form of th e lwo e4 ua1 ion t urhul dnl m od el (.le - c) in wh ic h a 1urbu km kin etic ener gy n i.: ar-w ull mt)d el is i n- in otder to aCl:'urn tel y re pr ese nt the bch:; vim of the now n en r the wall. p1'" icuh1d y in 1 he subhtye r whe re t he turbulent Rcyn1.1lds num her is s ma ll. A near- wa ll tempernture model hl\s been (1evelored a11d incorporat ed I nt o the energy lO all(lw it(,:i;urntc: pr edk linn of chtl disuibu- tion near the wall and, there fo re . a<.:l,; Urttl e i:alcu lation of heat transfer The semitivity of the prediction of flow and heal transrcr to v1.1riations in the coefficients used in the turbulence rnodel is in-vestigated. The predic.tions of the model l ffi: compim:d to able e:<perimcnt:il and theoretical i<>od agrc:ement is obttiincd. The inch1sion of ihe near-wall temperature model has further improved the r>f the: lc:mpc:ra1urc: profile and heal transfer coefficicnl. The indit:iitc lh1d the: turhulent !'.i::r.-1ir. Pmu111 n11mni-r hi" n f11nr1inn nf number. Entwkklung elncs turbulenten, wandnahen Temperaturmodells und ll(:ln..- Anwendung 11uf Kanalstriimun& Zuqmnienfusung. F.s wiro ubc:r eine Studie der S1ro· mung und d.:s in einern 1.Weidirnensionalcn Kauai mil vol! entwickcllcr Turbulcnz bcric;htc:l . r.in Computer• programin wurdc cntwiekell, das in dcr I.age isl, sowohl Zwangs· als :.rnch untc:r turhulcntc:n Bedingungcn zu be· h:rn<icln. Dns Progr:.imm vc:rwendet die Fonn de5 lurb11Jc:nten Zwcigleich (k - t·Modcll) in das ein Ansatz fur die w;mdnahc, turbulc:nte, l<incti>che Energie ci ntt e:irhei t!I ist. um das Ve rhaltcn dcr Stro mun g na hc J c:r Wand g cn:rn wic:i.l i: r'l .u gebc:n , insbesondere In der vi skos cn wo die iu rhulente Re ynolds·Zahl klei n i st . Es wurdc cin wand- nohes Te m(l'rnturmodcll cn1w lckclt 11 nd in di e Energi cg! c: k huni:: ein gearbeitet, um cine genauc dcr Tcmpe r:11 ur vcr1ei- tung nanr aer W an<l zu ermog11 cncn 1 m<1 e1 am 11 1.1 1c wannc:uDer- gangskoeCfiz ie11te11 genn u zu bcrcc hnen. Die F.m pfindli ch kcil fu r die Vorhersagc der Strom ung nnd dcr W fi rmeu bert rngu ng auf Verandc n ingcn in den Kl)cf!i r.i cntcn de $ verwcndct ("n wi rd unt.: n; uc;ht Die Vo1 · her · s:>gcn des wcrdcn mil verfUgharen eitperimentellcn Oaten und lhcorelischen Ercebnissen verglichen. Es wurdc g111e Oher- einstimmung cn:lclt. Die F.inbcr.iehunij des wandnnhen lurm1'KJells brat:hle weiteri: Vc:rheiserung der Vorhcrsagc drs Tcmrieralurprt)lils und dt:!! Die Eri,;ebni>se zeigen, da6 die turhulentc, Prand1l-7.ahl eine Funktion der Reynolds-Zahl > ein sollle:. Nomfnrl:iture ..( b <'1 Ci. k K /,,, N11 p Pr Rf R,, Rt•,. I T u ,. .\' y empirical coefficient, Eq. (27) channel width constnnt of proportionality between length ;cale and distance from wall (applied over near-wl!U -cell) = 2. 55, Eq. ( 17) in ihc: k- t 1wbulcnt modc:I , F.q. (R) spec.:ifii; heat in logarithmic v cklC.ity prnfile "'" S.O, P.q. (I Z) turhulem ki oetii: energy empirical cotfficient. Eq. (27) mixing length !'lus>ell 11umber, Eq. ( J9) pre!.sure P1 tu11,ltl 111.11111>0:1 - Reynolds n1.1mber - 1·,,,bl2v 1urbuh:n1 Rc:yrmlds number, F.q. (10) ...- visc;'1US Reynolds number - Yr 20.0 average Reynolds nwnber time tempcrnlurc velocity In .r·dircctioo velocity in y·direction horizontal ntain tlow direction venical coordin:ite symbols :t lhc:rmal e ralc of turbulence c-ncrgy it von Karm:m constant,.. 0.4187 11• in Jogarithmk velocity prolilc - x C!'1 - 0.23 i, Lhc:rm11I (.:onc.luc;tivi1y μ 111m1m1r uyn1tm1c; !lu11.1 v1S(OSlly 11, turbulent dymtmic: lluid v l11mimtr kinc:m<1tic Ouio vis1..'0sily (} density a 1 lurhulent kinetii: energy Prandtl oumbl!r "r turbulent temperature rrandtl number turbulent dissipntion !'rnndtl number shear sires..-. .I ..

Transcript of Page 1 ovE ARUP & PARTNERS TEL: 01-436-7109 . . .... WQrmc ...

ovE ARUP & PARTNERS TEL: 01-436-7109

. . .... WQrmc­Und84uft'lUK.-rtraguna

tO Springer-Verlag 1986

Development of a turbulent near-wall temperature model All.t;/ and its application to channel flow /!:._ . H. Akbari, .~. M4!rtol, A. Gadgll, R. Kammerud, and F. Bau1nsm, Berkeley. CA. USA

Ab~trac-t . A numerical study of fluid t1ow und heat transfer in a two·dimensional chunncl under fully Jcveh,ped iurbu!ent condl· tions is reported. A Cl)mpuLtr pr1)11ram which is c:i pable of trc11 ting bv1h for<.:c:d and natural convection problems 1mdcr tur· bulcnt cond itions h11s been dc:vck,pc:d. The code u.qes the high· Reynohfa-number form of the lwo e4 ua1ion turhuldnl model (.le - c) in wh ich a 1urbuk m kinetic energy ni.:ar-wull mt)del is in­.:orporat~ in otder to aCl:'urn tely represent the bch:;vim of the now nen r the wall. p1'" icuh1dy in 1he visc1) u~ subhtyer where the turbulent Rcyn1.1lds num her is small. A near-wall tempernture model hl\s been (1evelored a11d incorporated Into the energy ~qu:ilion lO all(lw it(,:i;urntc: predklinn of chtl t~m pc:r:1ture disuibu­tion near the wall and, therefore. a<.:l,; Urttle i:alculation of heat transfer ~oc:fficicnts.

The semitivity of the prediction of flow and heal transrcr to v1.1riations in the coefficients used in the turbulence rnodel is in-vestigated. The predic.tions of the model lffi: compim:d to a~ail­able e:<perimcnt:il and theoretical r~11lts; i<>od agrc:ement is obttiincd. The inch1sion of ihe near-wall temperature model has further improved the prcdicti<in~ r>f the: lc:mpc:ra1urc: profile and heal transfer coefficicnl. The result~ indit:iitc lh1d the: turhulent !'.i::r.-1ir. tnf.'ra~ Pmu111 n11mni-r ~hn11lrl hi" n f11nr1inn nf Rrynnlll~ number.

Entwkklung elncs turbulenten, wandnahen Temperaturmodells und ll(:ln..- Anwendung 11uf Kanalstriimun&

Zuqmnienfusung. F.s wiro ubc:r eine numeri~che Studie der S1ro· mung und d.:s Wlirmctran~por1i:s in einern 1.Weidirnensionalcn Kauai mil vol! entwickcllcr Turbulcnz bcric;htc:l. r.in Computer• programin wurdc cntwiekell, das in dcr I.age isl, sowohl Zwangs· als :.rnch ~atu.rkunveklion untc:r turhulcntc:n Bedingungcn zu be· h:rn<icln. Dns Progr:.imm vc:rwendet die .,lii~h-Reynolds-Numbcr"­Fonn de5 lurb11Jc:nten Zwcigleich uns~modclls (k - t·Modcll) in das ein Ansatz fur die w;mdnahc, turbulc:nte, l<incti>che Energie cintte:irhei t!I ist. um das Verhaltcn dcr Stromung nahc Jc:r Wand gcn:rn wic:i.l i:r'l.ugebc:n, insbesondere In der viskoscn Unter~ch i cht , wo die iurhulente Reynolds·Zahl klein ist. Es wurdc cin wand­nohes Tem(l'rnturmodcll cn1wlckclt 11 nd in die Energicg!c:k huni:: eingearbeitet, um cine genauc Vorhc~tigc dcr Tcmper:11 urvcr1ei­tung nanr aer Wan<l zu ermog11 cncn 1m<1 e1 am 11 1.11c wannc:uDer­gangskoeCfizie11te11 genn u zu bcrcchnen.

Die F.mpfindlichkcil fu r die Vorhersagc der Stromung nnd dcr Wfi rmeubertrngung auf Verandcningcn in den Kl)cf!i r.icntcn de$ verwcndct("n Turbulc:m.1nodell~ wird unt.:n;uc;ht Die Vo1·her· s:>gcn des Mod~·lls wcrdcn mil verfUgharen eitperimentellcn Oaten und lhcorelischen Ercebnissen verglichen. Es wurdc g111e Oher­einstimmung cn:lclt. Die F.inbcr.iehunij des wandnnhen T~1npcra•

lurm1'KJells brat:hle weiteri: Vc:rheiserung der Vorhcrsagc drs Tcmrieralurprt)lils und dt:!! Wilrmeilbergan!l-~krn:m.,;enlcn. Die Eri,;ebni>se zeigen, da6 die turhulentc, kineli~he Prand1l-7.ahl eine Funktion der Reynolds-Zahl >ein sollle:.

Nomfnrl:iture

..(

b <'1

Ci. Ci.Cu~

l· k K /,,, N11 p Pr Rf R,, Rt•,. R.~ I

T u ,. .\' y

empirical coefficient, Eq. (27) channel width constnnt of proportionality between length ;cale and distance from wall (applied over near-wl!U -cell) = 2.55, Eq. ( 17) COMtanL~ in ihc: k- t 1wbulcnt modc:I , F.q. (R) spec.:ifii; heat con.~lant in logarithmic vcklC.ity prnfile "'" S.O, P.q. (I Z) turhulem ki oetii: energy empirical cotfficient. Eq. (27) mixing length !'lus>ell 11umber, Eq. ( J9) pre!.sure P1 tu11,ltl 111.11111>0:1 - vl~ Reynolds n1.1mber - 1·,,,bl2v 1urbuh:n1 Rc:yrmlds number, F.q. (10) ...-visc;'1US ~ublaycr Reynolds number - Yr k~111v= 20.0 average Reynolds nwnber time tempcrnlurc velocity In .r·dircctioo velocity in y·direction horizontal ~oordinate~ ntain tlow direction venical coordin:ite

Grl.'t~· symbols

:t lhc:rmal diffu~ivity e dis~ipn1ion ralc of turbulence c-ncrgy it von Karm:m constant,.. 0.4187 11• con~1nn1 in Jogarithmk velocity prolilc

- x C!'1 - 0.23 i, Lhc:rm11I (.:onc.luc;tivi1y µ 111m1m1r uyn1tm1c; !lu11.1 v1S(OSlly 11, turbulent dymtmic: lluid vi~'l'l!iity v l11mimtr kinc:m<1tic Ouio vis1..'0sily (} density a1 lurhulent kinetii: energy Prandtl oumbl!r "r turbulent temperature rrandtl number ~. turbulent dissipntion !'rnndtl number

shear sires..-.

.I ..

: ... .. . :

OV£ ARUP & PRRTNERS TEL: 01-4~6-7109 16.08,89 17:37 No.004 ·

'~.·

'

.. '

..... :. .:: . ~ ' . I.

·I I , ..

190

Suhft ript.f

b bulk cold

r edge of nl!ar-wall cc:ll E center or 1;cll adjacr.nl iu lb~ ncar-wull cell 11 hot m maximum ot' CllpcriJTll!l\t:'ll value P cen1c:r ot' ncu·wall cell

turhulcnt r ed~e of viscuu.~ .sublayer "' wall

I 1nrroduction

Several diff1:renl models huve been developed 10 predict turbukm now. Among them the \WO•cquation k- c model has aur:icted considcrnbl<: attention. Althot1gh lhe model was originally developed for · \ligh-Reynolds·number bound1\ry !ayer nows [JJ, it hns been extended to include ihe prediction of turbulent flow ac low Reynolds nurnhers as well ('1, JJ. l.hnh the high· and !ow-Reynolds-number forms uf the k- t: model have hccn ~uc~·essful in pre· dieting aspects of turbulent now in m<1ny cases. The high­Reynold~-numhcr form of the model has nllracted more auenlion because it retluccs cbe cornp1ltation time and storage. Howe'icr. this is sometimes accompll~hed by a degracl;11io11 in aceurncy in predictin~ flow near bound· aries where lhe Rc:ynolc.Js number is ->mall. To ac.:ount for the low-Reynolds-number region nenr the wall, the high- . Reynolds-number k ·-J; model equations have been modified to include a near.wall representation for turbu­len1 kinetic energy (4J. The inclusion of this near-wall model also allows emoirical relati<lns to be implcment1..'tl for special purposes. ~.g .. an ¢tnpirical relation for wall roughness. RccenLly. the near-wall kincLic energy model has been modified by dividin~ the near-well region into viscou~ , buff er and fully turbulent regions and improved agreement with expcrimcntnl da1a has been obtained (5J.

The k- r. model ha!I been used extensively lo predict turbulcl\cc in forced now problems. Chieng an(! Launder [41 and fohn~on and Launder (61 have umJ the high-Rey· nolcls-aumber form of the model to predict the now downstream of an abrupt pipe expansion. Sintlir [7-10] ha~ comp~Hed the pr:::dictions of difrcreni tu1·bulcn1 flow model~ ror a sudden exp:rn:.iuu in a chnnnel. Humphrey and r>our<1hmudi ( 11] and Humphrey and Chang ( 121 have used the k - r. model to sn1dy the now in a curved channel. Naot and Rodi [IJ) have u~cd the model for pre­dictions on the secondary currcncs in channel now. The applicalion of the k - c model to dlff erenr problems has shown thaL the pnr:imeter.; in the model are not universal; improved agreement with experimental dat:i is obtained if some or the pan1mctm in the original k - c model equa­tion" are allowed to var,i wirh 1he Reyoolds number (14].

In most previous studie.~ of the k - c model, for pur­po!ies of validation, predictions of !he model have been

. :

Wl\rml!- und Stolrllbcnri.,

compared lo the experimcnwl data of simple Simple flow conligurations lend themselves more eas •.. experimental techniques, and darn thus produced a. more suitabl1: for verification of tht: theoretical m()uels .1nd/or cvnlu:ition of pn~diciion methods. Fully developed chunnel and pipe 11ows are eitamples for which experi­mental data exist.~ covering the important parameter!'l •.)f imcr1:sr.

Most of the aforemcnrioncd studies have contcn1r11ted on compnrison of the hyc.Jrodyntlmics of the now (i .e. velocity, turbulent kinetic energy, etc.) with the expcri­m1:nral data. For the hca1 tr.insfer aspects of the problem. onlv heat LrJnsfer coefficien1s have been used for com­parison purpose~. However, the vc!ocily and turbulem kinetic energy profiles alone are no1 enough lo provide :1

complete valida1ion of !he modi:I in non-isotherm:il now. Fur 1his purpose the 1empera1Lt1'c '1Ild ec.Jdy diffusivity proliles ffi\ISt also be compared to Lht: experimental dat a. While il is rchuivcly easy to adjust the k- r. model constan1s to predict the velocity an~i lht: turbulent IUnetit­cnergy profiles fairly well, it will he shown in the present st\ldy 1hnt. for the:;e ~nme model constants, the tempera­ture and turbulent vis<.'OSity predictions can differ greatl y from the t?:\perimcntal vulues.

ln the pr-::sent work. the high-Reynolds·numbcr fonn of the two-equation k- r. turbulem model has been used along with a slight variation of the previotLc;ly developed turbulent kinetic energy near-wall physical model (<L J. A sensitivity smdy of the k - c model constants h•tS bct1:

performed to select the best set of constants for the flc "\ and heat tran~fer predictions in a channel. ro improve tht­predictions of the temperature and heat ~ransfcr coe fl! · cients. a ncnr;wall model for temperature has be;::: developed. Wilh the inclu.c;iou of both near-wall inoc.Jd · the prcdicrions of all dcpendenc variables have show r. bener agreement with experimental data. The results ha\':· also indicated that the turbulcnr viscosity variacion :~ highly dependent on the: choice of turbulent kine1ic energ:· PrandtJ number.

The predic1ions of the model have hecn compared < ·

the experimental data of fully developed_ turl:luk t• l channel now. The previous experimental and theorcti c:1 Studies Of turbulent channel 0ow, O!hcr lhan the One' menti1)ned above, will be discu.~sed separately below.

I. I Exp~rimenwl :.·111dl£·~·

' ln an l!llrly e.xper1mc11101l study, Washington and Mar'· [ 15} measurec.J heal transfer and pressure drop In n.~1;11~

gulnr air passages. for fully turbulent llow (Re > lJ 00(: they presented iequations for the friction factor .i 11··

N' u.~scl t number. Corcoran et al. [ 16, 171 and Page ~1 · ..

[ 18, 19] performed heat transfer and fluic.J flow measur·: ments for turbulent now between rwo parallel plate:. ar: determined the tempermure and velocity :u a function position in 1hc channel. Laufer (20] made mean-speed ;i:·

··~ •f .. •• ;•11 ~ ' · •i-·•·J-•• .•. ,-........... -;-•--~ : ·-·-··-·.:.,._ .......... _.Jt.''" ,.,. _ ... - • , •r•• · ..-. ·· ~-- - ~~-.. . ~ .,,_,_,..._ . . • ....,., .1 ,.,,,.. . ... • • ., ... • .., . . • t• . .. ~_ .-...- . • - -~ • ·~·-I.;~- -,_ "!Oi ·r. .. &~r, i., ~ • ,.;,, • •' ' • '• .,. ' • • . • • .' '• ,• ' • • • I • • . ~"' • k •,i • - • , ...... • • • •:;.: ,.· · · .• • • •

• • • ~ - .i t 4i .... ·.• ' . . ........ :. • • • .. _. ! ... .;.: ·· ~\ ·., .... · ~-- · · . ? ·~ ·j. . ~ .->f... . >.~\ . • . •• ' ··~ · 11! •• ·•. _.. .,' . . . .· ·~ t-6 ~ ,_., • . ,;' . . .. >('fl- ;. .. ' . .. .

.... ' ~ .. . .., • ~·~·· • · ' • • • • •• • • f _, ~\t·.al"!-,~· tflll~~"·· . ·"<I' ' ' '» • : • ...... .... ,,,:· .•• >".' ·1 .• . . : ·.· · .: ... : · ·: .';,;: - -·~. ·.··.~. : .-.•• "':.:i"f~ .• ~ · ~~-.,. .. · ~:!.••f; ". ,' ' · : f .

' : • . . :l· ' .•· . . .• . . . . .. 1• . • . ··>::: ... : ... ;_:.: ~ ... : .. .. ·. ~ ... ~ .. ~:.-~ . .... . ~ · . ..

;. ...

--- ----- -- ,- ---- -A ·R ,j p --& · p R R--r ~1 E-R-s --------r EL.-: --a i :.-4 3 6 ::..-71 a 9 . 1 6 • o 8 • 8$ . , 1 ~ :3 7· No.004 P.03

H. r\kbari et, al.: Deveiopml!nt of• 1urbultnl neat-wall lt1111per:iturc model and its applii::i1ion lo chiinm:l 11ow 191

axinl-11uctuation mcasurcmcnL~ within- the laminar suh­layer or a two-dimensional turbulent channel flow at dif· ferent Reynold~ number. The distribution of meamwisc velocity t1uctuations showed that the influence of the viscosit~ ~:"<.tended f<mhe1· from the wall thlln lnJicated by the mean velocily profile. !t was also found that the ditncnsionJess mean nuctu;t!ing quantities (C.)&., velocities) decreased with an increasing Reynolds number. Clark [21] performed similnr meHsuremc:nts in the viscous sublayer by using coni;tnnt-tempernturc hot-wire anemometry. Fre­quency cpootrnl Of ino tluotuuLing l.lilocitv compon~1m: were obtained ilnrl th~ ,,,can •1clocity dimibuLion in the sublayer was det..:m1ined to prnducc a reasom1blc c:;lim:tlc of skin friction. Hu~~ain and Reynolds (2l] performed measurement~ in a channel with fully developed turbulent air !low and presented experimental streamwise and mean turbulent velocity distributions, frequency ~pcctra, and calcuhtled eddy viscosity distributions.· El Ti:lb:.rny and Reynolds [13, 24], in rheir experimcnt:o1 with a flat chnnnel h;1ving one wall movable relative to the other, ~ca.~~red th• •.•ulouity dir.trihutiun ;ind lurhulunuu (long1tucJmul, normal and lat em I velocity Ouctualion intcnsilies) in ·plane turbulent flow estnhlishcd by the various combinations of pressure gradient and wall velodlie~. They devclop~d an empirical dc~cription for the viscous, Jo~arithmic and gradient portions of the wall layers :is well as the n1r"u~:. Jenee ne:ir the wall and ln the \urbulcnl cure. It was also shown that the intensity of velocity 11uclualions coak~ccd, to a reasonable approximation, when normali7.ed with the appropriate length and vcl1Xi1y scale\.

Most of the abovc-mcntiom'd experimental work ha~ dealt with the merm1rements of hyc.lroc.lymunic quantilie:i. Only Corcoran er al. (16, 17] and Page et al. (18. 19} report temperature mens11re111en1s. He:ic transfer related results of the other experiments are limited to presenting the general behavior of the temperature gradie11t close to the wall, that ii;, the ~us~elt number . . ·

In addition Lo the aforementioned experiment~. other studies have emphasized heat transfer coetfa·ients. Lancet (2.5] studied the effect of surface roughness on the he~t tmn~fer coefficient for fully developed turbulent llow 1n au .. t., witk 1.11\ifl>fl\\ l\•.U nu~\ ti\.&. u .. rnhJ :.1J;.!.o!.l.!.J u ... t ·rough channel · surface!! appreciably increase heat transfer and rriction l!ocflir.:icnts. Levy, Fuller and Niemi [26] com~ian~d their channel flow e:\pcrimcntal data lo predic· tioni; of scver;il empirical equa1ions for the Nussell num­ber which were developed for pipe llow. It was foum.J \hat rhc heat mrni;fer ra1e~ for 1:hartni:I t1ow arr: 15- .~0% btlow the values pr~dicted by the circular pipe cqualions. It wa.'1

allio concluded Lha.t for the calculation of lhc Nussclt number, the empirical equations with the constant ex­ponent on lhe Reynolds number arc in:idequate. Sparrow. Lloyd and Hixon (27] measured the heal tran~fer coefli­cicnts in an asymmetrical heated rect<1ngular duct 11nd compared their measurements with some analytical pre­dictions for Lhc parallcl·plate channel.

/. 2 T/11'()r1•tiral .~tzuiic-s

Turbulent (fatnncl llow hns been ·the subject of n'Umcrous . lheoretkal studies. l lowevcr, the more pertincnt studies -those which addres~ the velocity, temperature and tur­bulent viscosity profiles for fully developed (both velocity and tempern1ure) channel !low - are scarce. By analogy 1

between momentum and heat transfer, Mnrtinelli [2~] studicd the heal Lransfc:r to molten metals for a constant wall temperature ripe flow and cakulaLcd the Nusselt : numht::r. /\ correlurion for the heat transfer coenidenc for channel !low was developed using the same methodolO)l.'f. Harris()n and Menke (29] extended the work of Martinelli to obtain the Nussdt number for channel tlow :which was heated at one wall and adiabatic at the t>ther. Seban [JOJ extended this., work by studying heal transfer in fully . developed channcl !low with different wi:ll temper•\lurcs. The results were condensed into a correlation to calcul:Hc: the Nusselt number. llatton •\nd Quarmby (31, 32] ob­tained a general correlation for the calcule1tio11 of the Nusselt r1umber in turbulent now between asymmetrically healed parallel plates. In preliminary work, Barrow (331 obtained ~orrclations for the Nu.~sell number for turbulent !low between parallel plates wit~ unequal heat lluxes. For fully develOpt."t.i flow !JildCr conpitiOllS Where the heat a<ldcd lo the chnm,e! at one surface is fully removed at the other surf ace, it was found that the tempcralurc varies !inct1rly in the core. region across the ·ch!!.nncl. In later theoretical and experimental work, Barrow {34] and Barrow and tee [35] extended tht."Sc rcsulls and modified thc equation fnr the prediction of the Nussclt numher. It w~s concluded tha.l the heat tran~fer coefficient is a function of the heat 11ux distribution over the .walls <is well a.s of the Reynolds and the PramJtl number:;.

0

2 Analy!lil'l

The tran~port eq.uations for turbulenl flow in 11 channel are solved LI) determine the velocity and lempcruture. proliles and the heat transfer coefficient. The rorm ~>f ~e momentum equations in Ref. {71 is used. The two-<i1men­s1onat conscr.-atum equ;irio11s. of the tlow an: given as follow~:

(I) Continuity equation:

6Q 3 o - +- ('J 11) + - (12 r) ~ 0 at ax ay :t,

(1)

(IJ) x-mumcntum cquauon:

a a a -((}11) +-(Q11 2} +7(Qlll') ar ax ur

•.. . ~P.. + .. ~-(2(µ + µ,) ~-.! g k] a.,. a.-. a:c 3

+ :,. ((JI+ tl 1) ( ~; + :: ) ] . (2a)

:· ..

• (. ·

'

. ;

- OVE ARUP & PARTNE~S TEL: 01-436-7109

· . ... . . .. , . .... ' ...

, • ,

- ~ . •

r •

• . . ~ . ..

.;

192

(Ill) y·inomcnr.11111 equ;irion:

op a [ (or o")} ---·+--- (~11µ) --+-oy a:c ' ox ay

a [ e,. 2 } 1--- 2(J1+u,)-.;-gk er ' · oy 3 (2b)

(IV) Energy equa1ion:

a . a a "."":'" (QT) + ... _(I.' ii T) -+ - (Q L' '/) at ex Cly

The effcr.:1ivc turbulent viscosi1y, Jt,, is obrnined rrom the k - & model [I -4] which relntcs this viscosity 10 the turbulent kinetic energy and ils dissiriat!on rate. The high· Reyuolds-numhcr rorm of the cqu111i1ms hns been us~i. Modifications to this form uf 1he model nre m:cessury to atrnmll fQr the low.Reynold~·numhcr conditions encoun· lt:red ncrir !he physical bc1unctar1es of 1he; i.l1.ulMI. Th• turbulent kinetic energy and its dissipation ra1e are calculaled by using the following equations:

tl) TLirbulent kinetic: energy, k:

a a a - (Q k) + - (Q u k) ·t- - - (Q l' k) a1 a.i: ay

a ( ( µ,) ak J a (( µ,) ak J • ··- /l ,._ - + - 11+-- -·-0.\' a~ o.r a,v qk a.l'

(( au 01·)2 (a")2 (ar)2] + Jl1 - + ·- + 2 -:- ~ 2 -· - QI:. lly ax ax a.i·

(II) Dissipation rate of turbulent energy, r.:

a a a . ;'"(Qr.)+-;- (Q U'-) + a-(u l'C) vi v.\· )'

a (( J'') ar.} a (( "') ar.] :a·- JI 1- - -- + - µ + - -a.r at a.t ay at C)y

(4)

(S)

·+-C1 .!. µ, ((~ + ~.)\ 2 (-~)1 +2 (~)2 J- C2 g 11z ·

k or a.~ a.\' ay k

The cfTective turbulent viscosity is calculated from

Jlr .. cl' (J k21«

when:

C14 •C11 ~.r,..

(6)

(7)

- ... ---16 ·08,89 ·,. 17:37 No.004 ···- · P.04

The asymprotic, high-Reynold~·nuinbcr values of the coel'lic:icnl.~ as !;liggcsled in [I. z. 71are 1:

. C11 .,;,=-0.09, C1 =-l.44; C2 ,,.l.92. a~-1.0,

11, ~ 0.9. and q, .. l.22. (8)

fn order lo investigate the sen~itivicy of the k - r. model predictions. lhr~c different forms for fw the empirical fun1.iion of Reynolds number in turhulenc model (cf. ~q. (7)), 11n: u~cd as sugg~sted in the: Ii ter:.1ture [I, 2, 36]:

l 3A ] f11 ... exp -(I+ R1,150)z (9a)

/p =a c:<[l l-{i+ ~:,/50) l (9b)

/,,.,,.I. (9c)

The lallcr form is the asymptotic value of/,, as Rt•" the turbulent Rc~nolds number, goes to infinity; where:

Q~ Ri!,"" -- .

µ s·

2. J Nem··•rall mmMs

(!OJ

In orl1er ro accurnlc.11 rel'ro1:nnt thP. hf"haviur of the 11Ldd now nnd temperature near thl" wall. particularly in the viscous ~ublnyer where the turbulent Reynolds number is small. 1emoer..lfurcs. turbulent kinetic eneraies and dissi-. ~

pa.don rates nre obtained by u.-.ing the near-wall mode!' described below.

2.1. 1 Near-wall kinetic energy model

For the k.ineti1.· l!nc:rSY calculations, a slight varfation of thie previously sugge'laed nenr-wull model has heen ui;c\J [4J. This variation is discussed in the Appendix. Herc. oni~ the basic i1ssurnrtion~ wocd in the development c;>f thi s model which will be later U!icd in the near-wall temper-:uure model are given. - --

{i) In the finitc-din'ercm:e solution procedure. the tir't near-wall node (node .P) is chosen to lie ouL~idc of lhr vist.'OUS sublayer (Fig. I a); The viscous suhlaycr 1hick­nesi1 is estimated so lh:it the vi~cOU.'i sublayer Rcy­noldll number, Rt,, is conlltant and equal to 20. Tht: flow is assumcd- to-bc- full}'- lurouLIDt be ond tbl· sublayer.

(ii)' In the viscous sublayer. the mean velocity pur.tllcl w the wall is assumed to vary linearly with distance: t"n.1m the wall, and linearly with the !ogarithrn ic di5tam:c over the fully turbulent region near the watl.

.. l~

" '

..

I

OVE ARUP & PRRTNERS TEL: 01-436-7109 16.08,89 ; 17:37 No.004 P.QS

H. Akbari t:I al.: Dcvele>('lmcent or .. iurhulc:nl nc11r-wall tcemperaturc model and its '1flJ"lil:ation IO ~h11nncl now 193

. . /1.: .~ : 'tt t.·

· ! .' - ~: !•1.

·-r :?. ..

,,1 .. r ·:-... ' :.;~

. ·~: i: ... ~. •

·r"

' \ ;

.Wiii

ko ky

·~

Yo I\ Willi adj11con1 Ctfl

Yv YP Y; b A11umwd di~lriD\illon ot

turbulent kinetic enwrgy

,., ,.,

7'w ,.,.

'Jy 'le a Aluned dl1mltNtlon al

lw'b1111nt 1n111 atr••

folg. I a -c. Ncnr·w:11l physical model

(iii) The variation ' of turbulent ·kinetic: energy, k. is as­sumed to be piirabolic in the visCO\L'i sublayer which corresponds to a linear inmuse of fluctuating velocity with distance from the wall. and linear over the remuinder of the nc:ir·wa.11 cell (Fig. I b).

(iv) The locuJ turbulent sher.at ~tr~ illl ~urned lo be piece-wise continuous: the stress is zero in the viscous sublayer and under&ollS an abrupt increase at the edge of the sublayer and Yllril::$ linearly over lhc remainder of" the cell (Fig. I c:) •

('1) 1be dis&ipation rate. e. in lhc viscou:i sublayer ill

(ak 1n )i

shown to be con.~rant and equal to 2r -a;:- . (J). In the· fully turbulent re&lon. e is ta.ken 10 vary .

. k.Jt: • lim:nrly wilh " . [37].

y

. 21.2 Near-wall temperamre model

' A.'I previously mentioned, the high-Reynolds-number form of lhc k - & model requires that the lirst node, in the tinile~i{f'erencc method of solution, ho placed outside the

viscous sublayer, resulting in a loss ~)f Jclailcu informa­tion c!o:o;e ro the wall. The mean velocity and turbulent em:rKy disLrihution~ nre usually weakl~ d~~cnd~nr on the 111111f1:1,,r1111111111:11! 111111~11111·1 In 1h,. lnini•1:ihr1 11kl"ill' r:i(.

dtc: wall [:38]. Huwcvc:r. 1his Is nm 1rue ror the heal transl er. coellidenc. which is highly sensitive to the choice of; model to predicr rhe near-wall temperature distribution_, The dependence of nuid tcmpcratur~ ()O posiliOn is much stronger in the vbcous sublayer than in the remainder of the near.wall cell. A moue! has been developed and im:orporaleu into Lhe energy cquaLion LO . account for this variation. ll ~houlc.i he nolkcu that the u:;c of lcmpernture mo<lcl like the ne~tr-wall kinetic energy model is a direct consequeu~·e of tinice dilTerence approximation to the governing differential equations. In the near-wall temper­ature modd, the quasi steudy·sll.ltc con~ilit>n along with the averaged values for cross-flow velocity ;ind sireamwise temperature gradient are assumed. "

The steady-state energy equation for incompressible !low near the wall can he expre:o;~ed as:

. ar ar a [( 1,,) ar]· 11(.!')-+r·(x)-2- l+-·- - . . Q.\· a,. ay Q rr, Cly

( 11)

C~u,uk1n (11) ASSlllllc$ tl111! the Jiff u. .. io11 ur l1cul iu t[11;

direetion of !low is small, and lhal the me:in velocity in the main now direction is a function of only the distance away from the wall (sec assumption (ii)). Note that in Eq. (I I) the secondary velodty, l', is a funclion of x only. This dependence is obtained by u:;ing Lhe continuity equacion with the assumption I.hat the main now velocity,

· u. in lhe near-wall cell d1:pends only an y. To find the temperature variation in the near-wall cell (y < .l'p),

Eq. ( l I) is intl.'~ratct.I from \he Willi (y = 0, J°• T.-) to the center of the near-wall cell (y • y,, r ... Tp) u.~ing the reluti~in between rhe Nusse!t number and the tcmpl.'ralurc derivative al the w~\ll, i.e.,

Nu = 2 ,, a T I . Tb- r •. ay , .. (12)

The resulting 1enipera1ure distribu1ioo inside the near· -wall cell is:

.. . .v -)011·\d•·[ ·'· lo(yJ<il· · T~·-Tb ] T- T . .,.. fe • . . r f( r) 1• . d1·- Nu dl·

• 0 ~- • . . 2 b .

for y ~Yr· (1.3)

The local Nusselt number can then be calculated by cvaluacing F.q. ( l 3) at y = y,: i.e ..

N (T,..-Tp)l(T. - T~) +iv u ,.. ________ _

J..,,. ( 14)

where, . I 011, ---r Q~r ar

(I (I') =- . . (~ + Jl,lfl tr,)

(15 a)

·, . ·.

.. DVE

. · 1· .

. . .. , ~-.

:•

. ··.-, ... \ ..

".$r:•

. ' , -I ...

:~ . ~ :

... ,1 .:· • I ' I ..

.. .. '

j .

I I

I !

I' t

I

ARUP & PARTNERS TEL: 01-436-7109

194

( 15 b)

(!Sc)

and I r~

15 ~ _ J e-fad.1· d)-'. cor 2bo

(15d)

Note that with the a .~i;umplions used in the near-wall kinetic energy model, the effective turbulent viscosity, ti 1,

ii; a fullction of the vertical position, y, which will be discussed in detail later. Jn the case or ii rully UC'-ldOped tempeni1ure prolile, 'fl vani~hcs because the temperarure docs not vary in the Onw direction, thal is, /a 0 (cf. lq; ( 15 b) ). In the ca~es where 'I' is nol zcm, the locoil Nusselt number or heat lrani;fer coefficient for Lhc devel· oping flow may be lower or hi"hi:r than in the case of a fully developed Lcmpcralure prolile. depending on the sign of q1. The sign of VI depends on the variation of tempcracure in the t1ow direction as well a., on the heal trnnsfcr process. thal is, healing or cooling. The corrected distance. Oeor• that accounts ror the effect of eddy transport close to the wall In the near-wall cell, is used in calculating the heal tran!ifer cocflicicnl. Several special easel! of interest can be obtained from l!qs. (14) and (15). Some of them arc:

(i) fully dev~ed velocity and ~emperalurc case;

iµaO

and

I YI' dy o ..,_I ·- -QOI' 2 b 0 [ Pr Jl1] l+-­

a, µ

(ii) rully developed vclodty 1.-ase:

I a T )'r J II dy 1(1•- ---I- .. -·-dy

~ ( T,. - Tb) ax 0 (I + .!2. EL] ~, µ

and h001 is given hy Eq. (16b).

(16a)

(16b)

(17)

&iuations (14) and (15) can be evaluated if the functional behavior of u (y) and the effective turhuh:nt viscosiry. µ,, arc known in both the viscous and turbulent regions of the near-wall cell. To obtain the functional behavior ofµ, near the wall. the near-wall kinetic ¢nergy model a.~sumptions are applied to the tempcr.i!Ure model. For the '101.11 acrn~~ the channel, fully developed flow near the wall is as!lumed~ i.e.; t• • O. The variation of the viscosity is calculated Cl5 follows;

(i) Viscou.'> sublayer: . . The cfft.-ctive viscosity is calculated by substttuuni

Eq. (A J) and F.t~. (AS) into F.q. (6), which yields:

• icrJk.Y , µ, - r u - r 1 cc y . ,. v s; ( 18)

16,08,S9 17':37 No.004 P.06

W:Umc· uncl S1o!T'Utlcr1rngung 20 ( 19861

The same proportionalicy given in Eq. ( 18) cnn also be fuund by using the Prdndtl mixing length theory wh~re the cfl'ct:tive viscosity is calculated from [391:

µ ... " r2 \ E 7!. \ •. I . "' 0,Y

(t 9 )

where the mixing length, /,,,, i$ given by V<ln Dric~t' s relation as

/,,.= K y(l - exp(- rq 112 y/µA)] (20 )

K and .4 in Eq. (10) are empirical coefficients. for the 1:ase y ~ I. Eq. (20) rcduc¢s to

/,,. .. K y[r g111 ylµA] ·'l.yz. (21 J

Assuming a linear variation of the main !low velocity near

the wall and suhsliluliug Eq. (21) intu Eq. (19) yields:

µ,ix: y• (22)

which has the same proportional ity as iPven in F.q. ( 18). (ii) Fully turbulent region: Suhslituting Eq11. (A 3) and (AR) into the effc<.:ti'-le tu r­

bulent viscosity equacion. Eq. (6) yields

µ,"'Cugr.o·[k,.+(_k"=~")(y .. y,.)]111

for Yr~Y~Yp· \y .. }p (231

Note that in cq. (23). the value of the turbulent kinet ic encrg¥ at the edge of the viscous sublayer is used in5tcaJ or that c.ikulatcli at node E.

In the fully turbulent region, the turbulent visco~ity !~ calculatcli from F.q. (23). l!quc1tiom; (18) and (22) suggt~.:i thtil the turbulent viscosity in the viscous sublayer ~hotM vary with the fourth power of lhc distance from the wal l. This variation is found by matching the effective viscos 1 •

th.-s al the edge of the viscou.<, sublayer, which then yield~ .

(24!

The integrals ln F.qs. (15c) and (15d) can now be evalu ­ated by splirting them into two p;rLo;, namely, viscous sublayer and fully turbulent region, and usini;- thc ··rel:i­tions given In Eqi1. (24) and (23) respectively.

3 Method oC soludon

The turbulence modcJ described above has been incorpl'· rated into a numerical program prcviOu$ly developed iur laminar convection (40}. The program is capable of han · dling both forced and free convection. The transpon 1:qu;1-

tions are solved using the Parnnkar·Spalding hybrid tli !'­fercncing scheme (41}. The time-dependent partial di ffc r­ential equations are integrated over a finite number 0 1

cells and uvcr each time step. The resulting equations ar -modified for the near· wall cc::Us as r·equired by the r\¢'1 ;

~ _! I~ 1' ~ 1

...

OVE ARUP & PARTNERS TEL: 01-436-7109 16,08.89 '17:37'No.004 P;Q7

H. Akoarl <!t :11.; neveli>pment o( a turllulcm 11c:1r-wall temperature mmld ~nd its applil:ation to channel now 19S

wall models. The proccdun: results iri. a set of simultane­ous algebraic equacions that are solved itcratively·f'l!r.'-t!le velocity. temperature. pressure, turbulent kinetic energy, dissipation rate and turbulent viscosity proliles. The resulting tempenuure profile is then used to calculate the local heat transfer coefficients. ·

The steady·sll1te solution to a given problem c:in be obtained either by solving the time dependent governing CljUalions until the steady-state solution is reach¢d or solving lhc steady-stale equali(JOS iteratively. Using the time dependent equations has the advantage of converg· ing the steady-state solution in complex nows (e.g. recir· culating nows) wirh ~malh:r cime inm:ments at the price of higher compuca1ion time. On the contrary, the iter:itive solution of the ~teady-state equa1ions, in &enei'al, has con­vergence prohlems. I lowcvcr, if the solution converges it re4uires lcs.i.; compurniion lime than the previous method. ln non-recirculating flows (e.g. channel or pipe 11ows) it is found that the steady·slale solution is obtainctf faster by Uliing steady-stale equations rather than the transient ones.

In the prc:;cnt work. the steady-stale form of the governing c4m1til111S hnll been used (the tl me dependent terms of the govcmin2 equations arc dropped) to study lhc heat transfer and hydrodynamics of lhe chunncl flow. The fully developed experimental velocity protiles arc used as the initial conditions for starling iteration.

The predictions of the computer pn1gram arc assumed to lrnvc converged whun the cel:itivl! changcli in qu;inrities of interest between two succ~~ivc iterations are les~ than Io- 5• The convergence is u. .. ually ~-stablished within. WOO iterations. 20 grids are taken in the llow and cro!ili flow directions. The grid >iz.e~ in the now direction are ba.'led on d\e length of the channel. Uniform and non-uniform spn.;ing.o; arc used in the f1ow and cross now diree1ion!I, rcspecli vi;:ly.

4 Results and discussion

Two-dimensional steady-state fully developed turbulent flow in a channel has been 1:onsidered to study the sensitivity of ·predicted velociiy. temperature, turbulent kinetic ener&Y and effective 1urbulent viscosity protil~ to the choice of constants used in the two-equation k ·- 1:

model. Fluid tlow between two parallel walls maintained al di!Tcn:nt constant temperatures has been analyzed. Fur the case of steady-slate, fully ueveloped velocity and tem­perature protiles, the same amount of heal transferred int<> the nuid rrom rhc hot wall i5 removed by the cold w;:ill. Thcrcrorc, the problem may be also considered as a constant heal addition and removal proc1..-:;i; in a channel.

Mott :iv'.lil:iblc experimental dnla prrtain nnly rn tlnw measurements, that is, velocity, shear stress. etc. These data include the earlier measurements of Laufer [201 and those of the recent works of Clark [21), HuSS•tin and Reynolds [22J, and El Telbaay and Reynolus [23. 24]. The

predktion~ of now behavior are compared with the resulti; of [20, 22). Experiment:tl data for temperniure distrihution in a fully developed channel !low are less common. The only detailed temperature data are those of Com>ran · · et al. (16, 17] and Page et al. [18, 19); both have been used for comparisons presented befow. The predictions of heal lrun~rer i;;oefficient$ are also compared to available corre· lations ,rnd experimental data.

Due to the irnportam role of the effective turbulent viscosity in the governing equations. a nurnhcr o[ 11aria. lions in the k - e moue! constant~ have been used in per· rorrning compari.sons with the experimental data. The live cases employed in this sensitivity m1dy arc shown in T;ible I. 111 the lir~t three cases. only the coc!Ttcient of turbulent viscosity, Cµ. has been varied. The first vana~ tion is the asymplotie value of Cµ as the turbulent Reynolds 11umber goes to lntini1y (cf. Eq. (9c)) [I. 2, 36], and for the t\eXI two variations it is taken 10 be a function of the turbulent Reynolds number (cf. Eqs. (9a) and (9h)). In the fourth ca.~e, in addition to the variation of the coef­ficient oi turbulent viscrn;ity (c<ise J). the cocflicients in the logarithmic velocity prolile u.~ed in lhe 1\ear-wall kinetic energy model (cf. Eq. {A 1)) are altered to be con-5islcnt with l:ilperimentally correla1ed V<llucs. In the lai;t variation, case 5, the turbulent kinetic ~nergy ?randtl number, r1k is changed.

Each of th<.-:;e five cases has been used in the antdysis with :md without the nenr.wall temperature model. 5incP the ¢!lergy equation is decoupled rrom the other equa· tkms. the t1ow prccfo:tions are not affected by the inclu­sion ~1f the near· wall temperature model.

The velocity prcdktions of the model ;ire compared to the experimental da!U oi Laufer [20] (Fig. 2a). Hussnin and Reynold~ [22] (Fig. 2 b) and P..i"C et al. [ 18. 19] (Fig. 2c). from Fig!>. 2a-c, it is seen that the velocity predictions are 1nsenstt1vc to vanation o( the constants In the k - r.: model. All of the cases (Table I) predict the velocity profile very well compared to the experimental data. If the ultimate goal was to pn:dict only the velocity profile, then the con~tanL~ sugg~lcd in the literature [l-4} could be ui;ed without introducing signilieanl krror_ in the predictions. However. as will be shown. this conclusion is not true for the predictions of the other dependent va1iablcs.

T11hlc I. Thr: v;1ria1ions used in 1hesensi1ivily study•

C~sc I C;i~¢ 2

Case 3 Case 4

Case S

c,, - 0.09 C,, - 0.09 Clip (·- 15/( I + Rl',150)] C,. - 0.09 c~p [ J.4/(1 + Rt,tSO)l J

Case J Wilh the C:.\J"!tiinell!ai values or the conrn1n1~ in the 1o~r1lhm1c vell0t:1ty protlle, l:q. (11)

Case J with 111 .. l.:SS

• The profiles labeled with primes in the a.ccompunying figures corrc:~p1)ml to lhe (:a~~ without ne:ir-wa.11 tc:mp~raturc model

.. ·

' ··"'i • !

,.; ! . . · ~·.· . .. ~, ·.

, ·: I

. . · ·.·

' . ;

:.: '.

. ! :

'

:~- ·1' .. I f ! I i j

, __ ..

TEL; 01-436-7109 ' 16.0S.89 \ 17:37 Na.004 P.oa

196 Wllrme. und S101Tllhl!rtragung !O ( 19116)

1.0 0.8 0.8

0.8 .

~! O.G >

--~e111.2,and3 -Casi 4

• Elll)elimQllfal. ~lcr (20!

0.6 - - Cascc t .2.3 ;,irnH 0.8 -Case 5

• EJ<llQfimental, HulilQll\ aria Reynolds :221

04

--C"""'42.~3 -cues

• Experimental, Poage, er al. [16, 19j

0.4

Ae - 61600 0.2 .• Re· 13800 0.2

0.2

...._ L L-.J ~ -l _._ ..1-. Q.1 0.2 03 0.4 o.s 00 ~1 __._ Fi-'- -t.J "-o-7-' o., 0a 0

~ __ , __., _j -.I.. -L-J-.....J 0.1 0.2 o.3 o.• o.5

y/b b y/b 0 yjb

Fla. l R-c. 1 Comriari~on l)f the predicted velocity profil1:9 wilh the measurements of 1..:iufer (201 at lft' ~ 61 600; Ir Comparison of lh<! predicted veloci.ty proli!Q:I with the measuremen1i. of Hussain anti Reynolds (221 al Rt>-~ 13 800: I! Cornparisoo of the predicted velocity profiles whh the men~urcm~nts of P:111e ct al. (I!!, t 91 at Rt ..- 427 5

8

' 5 \

2

\ :-.

··- Caao 1 --caa. 2 -ca.w 3 -·-Caait 4

• E1,oeriment;f, Lauler \20;

2

·-- Caao t --Case 2 -Cas•3 --Cue4

• Exporimontal, uiuret (20!

Ae • 61600 R• • 30800

Fig. 3, a c~lmpari~on of the precfa:!.?d IWbuJcnt kinetic energy profile.~ wtth !he measurements or Laufer (201 .11

R~.,,. 61 600: b Cornparis1)n .of the predic.:red turbulent kinc1ic enl!rgy profl!~ with the mcasurtmenc l)f Laurer [!0] 11t R* .. 30 800 -l.. ...._J_ ""--'--J--l..

0.1 0-2 03 O.• ru- ....J... -L -'--'l.,.._.__l__._ -1.~ ii 0 1 0..2 0.3 O.• 0.5 05

YID b Y/b

The calculareti turbulent kinetic energy (or the first four cn~cs i~ comrarec.J to the cJ1periment.al daca o( Laul'er [20J for lwo dt!Tercnt Reynoldi numbe~ in H~. Ja (Re•· 61 600) and J b (Re• 30 !!00). The predictions of the: turbulent kinetic energy nenr the wall arc seen to be highly scn..~tive to the choice of constants. When the 1:tTective turbulent viscosity coefficient is combined with the experimentally Cillculcitcd valu~ of the constants in the lo!i:irilhmic velocity profile nc:ar the W\\ll (ca!ie 4), the predictions of the model arc noticeable improved.

The calculated 1urbulcnt visco~ily for the first four cases identified in Table l is compared in Fig. 4a :i.nd .i b The rc'iults indic-.i<e that the constants u.111cd in !he calcli· lution of the velocity and turbulent kinetic energy prolik~ can be adjusted to provide an accurate representation ,;r the turbulent viscosity close to the wan. The etTecl of thm adjustments on the distribution of the turbulent viscosit' toward the center of the channel is not sufficient cnoug!'. to reproduce tho experimentally observed churactcristk : Experimental evidence indic:uc.:s that the effective 1urb.

.,

.,

.··

i i-.. ·'·

. · -- - --- ~----- - . OVE RRUP ~ PARTNERS . TEL: 01-436-7109 16,QS,89. · i7:~7 No.004 P.09 II

H l\klinri r.t iii.; ncvclopmcnL 11f4 IW'h11J.:nl ncar·Wull Ll:mper.il\lrC mni:i~ ;1n~I ii~ ;1priJi1;;11i1.in IQ .;h;rn,,~1 lfow 197

I , -.,........,..._,.. I ' I I - 100 1 ·· ' I

Rt -151600

1!0 ,,... ---.. ~, ..... .._ __ . ~~ .. -.~~ ....

..--. ~~ ·----~ ...... ::.~--· ,I' ...... ·--·-

Re - 30000

1- \()0 • /' ••••• C<llJ" 1 --Ca~!'! 2

m- I '"} .v

~ f -c~eJ

I -eas.,. 4

/1

~f

0 • I l l 0 0.1 0.2 0.3 0.4 & y/b

--eu.1 --ea-2 - Caee3 -- caao 4 -Cases

3

I ~!'--....... ~~~,---0~2--'--o.a I J

°" a. Y/b

0.5-

, .

L.

0.5

--Case 1 --cu. 2 -Case 3 -CiH4

20

0 . I

0 0.1 0.4 a.a 0.4 o.~

b y/o

Pie - 13800

eo

-·- CA$O I --Clee 2 -- Case 3 -- case 4 -ca..5

• ~II, ~_., i11d Reynolds [221 I I , l

Q.1 u 0.3 O.• 0.6 y{b

Fig. 4. • l'rcdic1cd variation or turhu­h:nl effective visco~ily a1..T05~ the: ch11nnc:I at R1• =- 61 600: b Predicted varfation of turbulent c:ffcctivc vi5-co~ity across the ch11nncl at R1: = JO ROO

Fig.~. I Prcdi;.;lcd variaaiim or \Urhu­lent kint:lic energy 1d Rr '"' IJ 800: b C"omparison of the predicted c:ffec-

· tivc: turbulent viscosity to the ..:xpc:ri­mcntal duta of llu11.~in and Reynolds (221 at Rt • 13 800

lent viscosity increases wilh distance irorn the wall, variulion in viscosity in the region cln~e. to the center reuchcs a maximum· and then dccrenS1.~ 10 a value of about would have a signilicanl ctTe<:t in these.calC1il<1ttons. 0. 7 limi::i the product of the frktion velocity and the In order Lo predict an dfcctive ~urbul'ent vi~cosity near boundary layer thickness near the center or the channel or the 1."Cnll:r of the channel that is consistent with the c~pcri-pipe (221 The cffecti vc visc::osiry variacionio calculalc:d by men1.~. the turbulent kinetic energy Pr • .m<lU nurnber, .,.~. \L'ling the sugacsted coefficients (1-4) for lhc above men- can al~o be adju:Hcd. Allhou1h this does not re'IUlt in a tioncd ~scs do not demonstrate thii; same behavior sipificant change in 1he prediction of turbulent kinetic: (Fi~ 4a and 4b); At high-Rcynoldi1-num6Cr!lowr,1be encrey and turbulenl visc:Mity close to the wall. it does turbulent viscosities near the center of the channel are so atTect the predictions of thest quantities toward the center high th1tr variation.~ in vii;cosity in thaL rcaion would of the channel as is shown in Figs. 5 a and ~. The pred ic-not Sii!litic.intly affect the now and heat transfer calculn· , · liom of lhc curbulent viscosities are compared Lo lhe lions. However. for low-Reynolds-number flow, a small • " ex~rimenral data of Hu-;sain :ind Reynold~ (f2] in Fig. Sb

. :'

•. ; ·~ .

! .!

' 'I

'

·1

I

I

. ~. -1' .. ~~~'· ·;& ... .,,.

.. \

., I

. ... .. ., . . ·1· ..

I f • I

I I I

...

. OVE RRUP &' PARTNERS TEL: . 01-436-l109 16,08,89 1 17:37 No.004 P.lO

198

o.a

02

0 0

·-·· Case 1 l -- Ca1141 2 -- Case 3 j" w/ :err.cerRlule -- Cas. 4 l!!CdlN - Cue 5 ··- Case 5' w/o 11mpl!fature

model

0.1 0.2 ~ 0.4 yfo

o.s

Fig. 6. Comp:Hiscm of the predie1cd tcmpernlurc [lrOfllCli whh and without ncilt-w11ll tcmpl!ra1ure model al R~"' 13 800

1.0

0 .,.. .... ,... ...

Ae - 4275

- w1tempeianra modal -- w/o terr.pwwa modtl

.. Experimenlal, Ptgc ef aJ.~18, 19; •

/'"' d -1 0 J..-L _..i._j ~ .!-l.. ..L

· o 0.2. a ~ o.a o.a 1.0

y{D ' J

FitJ. 7. Compadson of lh19 pred1<:1ed 1i.:mpcra1urc protild with and 1'ithout near-wall temperatur~ model to the experimental dala of P:1gl' ct a!. (Ill, 19] at Re•• 4275

which shows a subi;tanrial improvement of case S over the other four cai;cs,

AS discu~scd in conjunction with th~ description or rhe near- wall tcmpcmrurc model, the eff cctive turbulent vis­~sity plays an important role in the prediction of the tcmpcr:1rurc profile and therefore. loc.11 heat tr.msf cr ~oef­ficienls. The prcdic:ted temperature profiles. !'or the tlow ennuitiom1 studied by Hussain and Reynold.Ii (22}, are shliwn in Fig. 6. In obtaining the5c temperature profile~. 'the near-wall temper:slure model was inc."Orporatetl into '!he analysis. In addition, the calculations were r.epeated for the same conslltnts as U.'icd with cai;e 5, but without lhc near-wiill temperature model: the results are shown as cn:se

W1irrnc- uml S1offl\hertrag11ng 20 ( 1986)

1()l • 0

, 101

j Laulor !:!O\ Mu- Ind Rt,naldt ~Z?J • "9Qe. t1. s. ;1e.19} • a

w{Tetrr;1 mod• et "!J2.!em:o. ~ ]j

1cJJ _ •--J- 1...........U..L .J .... u .ul._ .t.....-L-.L....LW..i. 1o-J 10' \~ lo'

Re Fig. 8. Com{'aris~m of the pr~tlictcd :-lus~clt number with and withl)UI nc:1r-waJI ti:mpcrarnrc m1odcl~

5'. Comparing the re:;ults labeled as case S and cai;e S', one observes lhat Lhe nc<1r-wall tempernture rnodel pniduce.5 smaller temperature ~rndicnt in the near-wall region.

Caiculatcu temperature protiles are compared Lo the da1a of Pa~e et •ti. [18. 19] in Fig. 7. The profiles arc obtained by using the ~:<pcrimenlal values of turbulent vii;;cosily in the~ calcufn1ions. Comparison of lhe results with the experimcn1al d;11a indical~ that the calculated tempernture prol11e, espcdally near the boundary, is noticeably improved by use of the near-wall temperature model. This is especially important since near the bound. ary Lhe tempemture grJJient plays a significant role in the calculation of the heat transfer coefficient.

The prcdktion of the Nwssclt numhcr with the k - r. model haii been greatly improved by including the near· wall temper:iturc: mudel. as shown in Fig. 8, The r~ulls are comrarcd to the correlations of Oittus-Boel~r [42] (for pipe flow) and of Scb1tn [30} (for asymmetrically healed wul15) and the cakularion~ of Harrow [JJ-3.S]. It is observed 'by Levy et al. [461 that the heat tr.insfer coef­fici1.mu; prediclc:d l>y the Diuus-Boelter correlation for a symmetrically heated channel are 15-30 pcrccn1 higher than the cxperimenriil values. Barrow [33-351 and Spar.

_ row et al. [27] also showed Lhat the heat tran=afer coef­licicnrs for asymmetrically heated walls (as in the prc:;ent srudy of 11ne healed and one cold wall) are even smaller rhan tho~e of the symmetrically heated channel.

1ne Nussell number predictions with the near-wall tcmpera1ure model are in good agreemcnf wi th the results of Seban [30] and Barrow (33-J.5]. Al!lo. the: prcdicied Nussell numbc~ are about I S-30 percent lower than the p1·edi,:lioni; of pipe !low ~uation (42) which are in

. ' · ·' . .•

. ' .... ~ '·

OVE ARUP & PARTNERS TEL: 01-436-7109 16,08,39 ~ 17:37 No.004 P.11 I

H. Akha ri ct ;ii.: Development of a lurbulcnl near-wall tcmpcrttlurc model and iL\ application to 1:h11nncl now 199

agreement Wilh the experimental ohscrvation!I or Lcv'f et aL [26] and Spimow ct al. 127]. Predictions of the Nu:;scll number without the near-wall temperuture model arc also presented in l'ig. 8. Nusselt numbers cak\1lated in this wuy are much lower lhan eilhcr the theoreti~il •)r experintt:ntal ~esult~. The deviation from lhc cxpcri· menial and lhcurelical values ' increases as the Reynolds

• number incn:ascs; this can he attribllltd to the choice of thP. high-Rcynolds·numher form of the k - e model. in which the near-wall kinetic en~rgy model rl!quires that !he fir!\t no<lc be outl\ ide the viscou.~ sublayer. Therefore, the prcdictil)nS wiLhout the nesr-wull tempernture model he· come less uccurate al higher Reyn~)lds numbers.

5 Conclusions

The high·Reynolds-numbcr form of the· k - e model H:l

moµifie~i by the.near-wall turbulent kinetic energy model has been applied to a fully developed channd tlow. It ha:; been round that 1he model with -:onsian!S suggested in chc literature does not prcUict the correct vatiacion of lhe eff~tive turbulent viscosity away from the wall. which in tunt affects the prediction of temperature distrihution and lol·:tl heat transfer coefficients. In order to predict the correct behuvior of elk turbulent viscosity toward the center of the channel. the turbulent kinetic energy Prand.tl number, fTkt has to be adjusted for the now conditions which suggests that this quantity should be a function of Reynolds number.

The k - ~ model modil1e<t solely by the near-wall kinetic energy model doc:; not predict !ht: tempcraiure proCill! un<.l local llent tr<1nsfcr coeff1cierus accumtely, and its pn:r.lictions become less accurn1c ··as the Reynolds number increa.~es. A ne~lr-wall temperature model. similar to the llear·wull lurbulent kinetic tnergy model. ht1s been developed lo improve the pr.e<liclion of the k - Ii ltlrbulcnl mlidcl. lhnited comparisons of the prcdklcd results wilh experimental dllta and available correlations show a good agreement.

This work wns suppt)rted by the Assistant Sllt:n!tary for Conservn· tion :md Renewable Energy. Offic:c of Solar Hea1 T~hn1>lo1ies, P.oU>~ive and Hybrid Sol"r encrc Division. of thi:: U.S. Depan· mcnt of !:11.:r~y under Contr.tct No. Df.-At.'70.~- 76SF0009!!.

Apptndlx

Dt!saiptiofl of rile m:ar-wall kinttic l!nttrgy mt>tiel

The n~tr-wa.11 kinetic.: energy model de;i:ribcd in [4) is as follows: B11si::c.I on . lhc assumplions ~t:itc:d in the text, the mean vdodty

puallcl 10 the wall and •he turbultnt kin~jc i:ncrgy arr. eivr.n a~:

a) velocity,

11 = (

r,. . . -~· Q ,, •

r~. y k/11 --- · · ln r:• --xq1~ g k,112 ( • v ) for· y .. :.~y ~y,.

ror y ~ y, ' (At)

where !he continuity of 1hc velocity al 1hc t1dse t>f the vi~cous subl;1ycr rcquir~ th;it the constmu F.• be given hy

(.'\2)

for y S ,L'r (AJJ

where k,. is \)btaincd by <!Valuati11g ~q. (A3) at the ~dge of \he vi~cnus sub!a~·cr.

The loc:il turbulent ~hc11r strc:;s distribution. r,, ovc:r 1hc ncar­w;ill cell. is ncccssarv in \lrdcr to determine the me;in rate of kinetic energy production. Physically In rhe regi1ln cln ·c: to the wnll wht!re turbulent tddiei: are infrcqucndy present, the locnl turbulent , hc:ar stress is 1nken as tcro. This stress increa. es r11pidly in a short distance outside the lamin;ir layor. For compult1tion purriose:s. the laminar suhlaycr and lhc short transition region are comhim:d .in a single region a~ the visrous subh1ycr. Therefore. the !(k.::11 1urbulcn1 sh~r str~~ is assumed lo ~- pieee-wisc cpn­tlnuous; the stress is zero in the viscous subhiycr Jnd undergoes an abrupt incrc:1.;c at the edge l)f the ~ublaycr and vari~ linenrly over the remainder of 1hc cell (l'"ig. I c). · ·

10 (or Y <Yr

r,"" . r •. +(r, - r,..)yly, : for .~·, ~ >' ~ y,

where r. is c:llcul;1tt'd b11 evalua1ins F.q, {A I) at n11de P, The inean rate of produdi1)n of kinetic <?nergy

vol\lme cr.n then bt: 1;vnluated bl! in1~r.t1ing

r, ·-+-ih' Q,\'

(A4)

per unit

(.~5) (·.au ar}

over 0

thc surface of the 1:ell with the afori:mcntion~d ll~~umptions. The finid form of the equal ion is &iven as: ·

Menn production rate

t~ • :--c 11, k 1 ii :- (In l1·,I)·,) + ( r,/f ,. - I) (I - .Vr /,)', ll . ;.( ·µ~ I? r )., ., . '

· ar . . . I Or + r,,.-r (I - .\'/,\',) + r (T, - r,..) ·2. • (1-(J•,/y,)2). (A6)

~x · u~

Equation (A6) is diffe~nt' fnlm !he •>nc used in Ref:. [4). F.q~uici'n (A 6) mily al\00 be wrilltn in terms of"• and Ur (the: ronn given in

· Ref. [4]) by u~inir th-: logarithmi.,: YclixilY 11rofile. Eq. (A 1 ):

Menn producti11n rate · r~. (u,. - ur) t.,(r, - r,)

.. -- .,. __ . ·(l-1•/I') y, q x• k~ 12 y, ·' · '

3r a,. +r -(l-1·/i•)+-!-(?'.-r.) -(1-(J•flo)"J. (A7) .. O.\' . I . ' • , .. a:r r • ,

Equaiiun (A6) resultl!d from the intcaratlon or the production term 0'1er 1he nc:ir·wall cell; therefore, ii assures th11t the produ1."tion term is always positi~e (thi$ could also be pro'1ed by expansion of F.t1. (A6)). Equation (A 7), however, is derived by changing the vuiablcs in the first part of Eq. (A6) to the velocity variahlcs. The velodtia are cal1:ula1ed during the iteration prt:ic;c:ss. and do 1\ot 11ee~ssarily vary log11rithmi-:ally over the ne:ir­w:.11 eell. There(ore, the u.~e of EcJ. (A 7) could re5ult in a negntive Oller.ill pn11luc1ion rnte.

·:· ..

OVE RRUP & PARTNERS TEL: 01-436-7109

~)~ ::.; •. ·

I ,,•.• ,. ~ ,..;.:. ' ... ' . . .

; . j: : ...... ~ ... .... '

.......

' ... .: .· . ' , I

I

~ l • t

, '

J 1 4 . '

I

; I ., : I

. .. ~ '

I

'---- ····

., 200

The negative production 1'3te in one ne11r-w;tll cell wouh.I r~ult in ~ change in lhe kinetii: energy and, consC411cn1ly, in ll hight!r prnduction term in the ;Hlja\:t:nl near·w111l t:ell LI) O)lll('lensate for the error of tht! pr~vi()U.• nc<.ir-wall cell. Thi~ p1•oce~~ would yield a stnblc- ('1!rioc.li<.: 1'lll1:illalion of the Lurbulem ldnetk. cnerg)' along the tfow di1·ection. To overcome this periodic osdllation. the use of Eq. (A6) rather than Eq. (A 7) is recom­mended.

As it w;is men1ionc:d in the a~sumpti1ln (v) given in theo 1ext, the dis~ip\1tion ra11:, '-• in the ·viscous ~ubl:1yc:r is ~hown 1u be

constant and equal to z • -'- (1 J. This constant value is (!'kill )l

. 3y 1wttl11~tt'<I hy 11~in!! thr ~~~11rn;.ri turnnli'nl kinr1i1· i':nl'r!:}' prnfilp, in the viscous sublayer (cf. Eq. l/d)). tn the fully turl'lulc:nt region. £

. k'n 1s taken h) vary linearly with -- [37).

y

r.= \ hk,ly~ for Y<Y, (A8) klfl/C'1 )' for Yr :1 y ~ y,

whc:rc: r1 is-·a clin~lant equal to 2.~S. . In lhc. dc:rivalion of Eq. (A8), the parabolic assumption of

turbulent kinetic energy in the viscous sublayer is used to evulu(l!e the const:lm valu~ of the dissi1)ation rate (cf. Eq. (A 3)),

The rnean dis~ipa1ion rdli: ror the c.:ell. if, can now be evaluated by integrating Eq. (A8) uvc:r the ncll.r-wall cell. The rc:s11J1ing cqu;itirin is given in Ref. [41.

·References

I. fonc:s, W, ?.; Launder. B. E.: The prlldi.:tion ot'laminari1ation with a IWO•equation model or turhulc:n1:e. Tnt. J. HClll M11s~ Transfer IS ( 1971) .101-314

2. Jones. W. r.; Lauhder, B. E.: The c.nkul:uion or low-Reynolds· number phenomena with a two·equntion mode! of turbul.ince.

I Int . J. Heat Mm Trnnsfcr 16 (I !173) 1119-1I30

3. Launder. B. E.; Spalding. D. a.: The numerica.I computation I of turbulent flows. Computt:r Methods in Appli~ Mcchani~ and F.ngint!ering .1 ( 1974) Z69-289

4. Chieng. C. C.; LaumJcr, a. E.: On the calculacion of 1urbulen1 heat tran~port downstream fru111 an abrupt pipe cxpimMion. Nllmcric:il Hcnt Trnnsfer J (19110) ll\9-Z07

s. Amano, R. S.; Development or ll IUrbulencc nenr-wall model 11ml ii~ applil:aciun 10 ~eparatcd and reattached flo~. Numer­ical Heat Tran~fcr 7 (1984) 59- 75

6. Johnson, R. W.: Launder, a. E.: Discussion or: On the calcu­lation of turbulent heat trans('lllrt down.~tream from an :ibrupt ph)e expansion. Nuumil.'al Heat Tcansfer S (1982) 493-496

7. Sindlr. M. M.: Num.:rical study of 1urbu.len1 nows in back· waru-fai:ing step geometrics: Comparison of four models of turhulen;c. Ph.D. Thesis, Mcdiitnital F.nginccrin~ Dep;1rt· mcnt. Univ. of Calif., Davis. l982

8. Si ndir, M. M.; Effect$ <Jf E~pansion ratio on the calculation of parallel-walled backwurd·facing step t1ows: Comrarison of four modi:Js of turhulence. ASMF. ?aper No. 83-171\-10. 198.l

9. Sindir. M. M.: Calculation of deflec1cd-w11Ucd bac:kward­focing >1cp nows; Effects of anale of dl!!lec:tion on th~ perfc'innani:c of four mudeb of turbulence. ASME Paper l"u. ~J- 11 !·Id. i':~6.\

10. Sindir, M. M.; Hu~ha, P. T.: Assessment of turbull!nce moc.h:ls for s<:r:tmj~\ llowt1elds. NASA Contr.iL10r Re~rt .3643, November 19142 ·

11. Humphrdy, J. A. C.; ?ou~11hrn1uli, F.: A acnc:n1li1c:d algebraic relation for prcdictin& developing c.:urv~ channel now with 11

k - ~ mudc:I {lf turbulence. 3rd symposium .Jn 1urbulent ;htnr now. Univ. of l.alif., D11vis. 1983 (also Lawrence Btrkcley Laooratory Ri:f1M. I.BL· 12009)

16,08.89 17:37 No.004 P.12

W:irme· und Stotftilx-rtragung 20 ( 19!!61

12. Humphrey, J, A. C.; Chang, S. M.: Turbulent 11ow in pass:igc around a 180° bend: An experimental and numerical study . Univ. of Calif. Bcrkclc1. Rep. FM-3J-7, 1983 .

13. N•wl, D.; Rudi, W.: Calculation of sccond:1ry currents in ch11nncl llc.1w. ASCF. J. Hydraulics Divi~inn 108 (19!!2) 9411-968 .

14. Rudi, W,; Turbulcm;c models and !heir application in hy· dn111liC$ - a Slate of th1: :1!'{ re•1icw. Univ. K<Jrlsr11hc Rcporl. SF~ 1mrr1127. fl!d. Rep. Germany, 197t!

IS. Washing11)11. L: Marks. W. ~. : I lt<i! tr.in~fer and pr~ssure drop in rectangular air p:iss3gcs. Ind. ~nd Eng. Chem. ~\I (l?.li)337 3-'5

16. (\1rcornn. W. H.; Roudebush. !i.; Sage. B. H.: T~mpcmturc 1ir.1dicm~ In curbulcnt gas sm:ums; Preliminary studies. (hem. Eng. l'rog. 43 (1947) IJS-142

17. Corcoran. W. H.; P~gc, F .. Jr.; Schlinger. W. H.; Sage. 8. H.: Temperature graditrll~ in lurhulent ga.~ streams: Method; and appar .itus f1>r flow between par;illt:l plates. Ind. ;ind En~. Chem . .W (1952) -410-419

Ill. Pa!le. r.., Jr.; Corcontn, W, li.; Schlinger, W, G.; S~gc:. R. H. : Ttmperature gradic:nL~ in lurbulcnt ga£ ~tre:1m~: Temperature :llld VtiOCity di~trihuliilllS in UOifonn n{lW bc:IWC:CTI paralld platt.~. Ind. F.ns. Chem.~ (1952) 419-4:?4

\9. P:\"c:. F., Jr.; Si:hlin~cr, W. G.; Breaux, 0. K.; Sagi:, B. H.: Tcmpcrn1urc gr.idients in curbulem gas >treams: Point values of eddy ccinductivity and visc.:osily in uniform now between parallel plates. Ind. Eng. Chem. 44 (1952) 424-430

20. Laufer, J.; lnvC$tiga1ion of 1urbulent t1ow in a two-dimen­sional channcl.·NACA Technical Note 2123. 1950

21. Clark, J. A.; A study of incompressible: turbulent boundary layers in channel flow. ASME J. Basic Eng. 90 ( 1961\) 455-468

22. Hus~:lin. A. K. ~. F.: Reynolds. W. C.: Measurement .,f fully dl!V<!lopcd turbulent channel !low. ASM.I:: J. t_.luids Eng. 97 (1975) 568- 580

23. El Tclbany, M. M. :v{.; Reynolds. A. I.: Vcloc.:ity di~tribution$ in plane lurbulc:nl ch;innel flows. J. Fluid M~h. 100 (1980) 1-.29

24. El T~lbany, M. M. ~.; Rcynold5, A. J,; T11rb11lcnc:1: in planl! channcel t1ows. J. Fluid Mech. 111(1981)283-318

25. Lancet. R. T.: The e!Tci:t of surface roughness on the convt:<:­tion hi:at•trnnsfcr cocitieient for l\d!y developed turhulcnl flow in duct~ with uniform hc:1t tlux. ASMTI 1. fle-.tt Transft!r 81(1959)168-174

26. Levy, S.; Fuller. R. A.; Niemi, R. 0.: Heat iransfcr to water in thin rec1:rng11lar channel$. ASMl1 1. ll~a1 Transfer 81 (1959) 129-143

11. Sparrow, E. ~.; Lloyd. J. R.: Hhon. C. W,; ~periments on turbull!nt bent transfer io an asymmetrically hc;ued. ra.1an­&ulnr duct. ASME J. Heat Transfer 88 (1966) 170-174

28. Maninelli, R. C.; Heat transfer 10 molten metal~. Trans. ASMr:: 69 (1947) 947-960

29. Harrison, W. R.; Menke. J. R.: !le111 trKnsfer to liquid nierals fl<Jwing in asymmeu ic:illy heated channels. Tn1n.~. ASMI: 71 (1949) 797-803

30. Sehan. R. A.: Heat tran~fer to a Ouid nowing turbulently between parallel walls with asymm.:tric wall tcmpcraturr::;. Trans. ASME 72 tl950) 189-·195

31. Hacton. A. P.; Quannhy. A.; The e!Tl:f:t 11f ui111ly varying and 11n~ymmc1rlc.:;d houndary ~unc.lhluns un hclll muufc:1 whh 1u1 • bull:nc !low bc:twec:n par:1llc:I pl;it~. Int. 1. Heat Mass Tr:insfu 6 ( 1963) 903. 914

32. Hatton. A. P.: Quannby. A.: Grnndy, I.; Funhcr calc11h1ti1lns on the: heat transfer with 1urbulcnt flow between pullllc:I plates. Int. J, Hc:it Mass Tran$lcr 7 (1964) 817-82.l

33. Barrow, H.; Convection he:tt lr11n.~fcr cuc:fficienLq for turbu· lent flow bctWCl,.'ll pHr.1llc:J plate~ with unequlll hellt nu:teS. [nc. J. llcac M:1ss Tr.t~fc:r I (1961) 306-Jll

... --.-------- . OVE RRUP & PARTNERS TEL: 01-436-7109 16,08,891 17:37 No.004 P.13

I

'·.' '• . , t .

H. l\kbari er al.: Development of a turbulent near-wall t11111P1=ri1lurr: mudcl and iu1 applkMion to 1:h11nncl now · 201

34. Biirmw, H.: An an1o1ly1ic:d 1o1nd cxpcrimcnt:'ll study or lurhu· lent !Ill~ now bt!tWetn 1\110 5mOOth f'8ntllcl WllllS With UntqUD! heut 011J11.':i. Int. J. Heat MllSt Tmru.rer 5 (1962) 469--'87

JS. 130.rrow, H.: Le~. Y.: Heat tflln~fcr with unsymmetrlcaJ thermrtl boundnry 1:on<litinns. Int. J. Hc:it Masa Tran~fc!r 7 (196J) 580-582

36. u11ndcr, B. E.: Sh1tmut, R. I.: Application or th.s energy­di$~ipation model l)f turhuleni:i: lo the calculiltion or nuw neur 1t spinning 1fac. Letters in Heal and Mn5' Transfer l (1974) I 31-138

37. Spaldin11. 0 . B.: Heal rrnnsfo;r from turbulent sc:p<tr:th:d 11ow,,_ J. rtuiu Mechanics 27 (1967) 97-109

)8, Pope, S. B.: Whitelaw. I. H.: Tbt circulation of ncllr-w11kc nows, J, rluid Mech. 73 ( 1976) 9- 32

39. Launder, 0. R; Sp1o1ldin~ 0 . 8.; !.C(turcs in mu1hcm:11icnl models of luri'>ulon~"I!. New York: Aca<lc:mic Ptc1<.~ \ 97'.l

40. G:.idsil. A.: On oonvcctivc bc:it tran.~fer in huildin!l rneryy llnalysei. Ph.f). Thc::;il(, Ocp11nmcnt of l'h)'~ie:<.. Univ. of C.lil'.. Serlr.c:lcy, 1!179 (al~o Lawrence Bcrlr.elc:y l.abl)ratory Rc:pur\, LBl.-10900)

41. PHtankar, S. V.; SpHldln&, 0. B.: Heat and Ma.oe.~ Tmn.~fcr in Boun1h1ry Loycrs. London; Morg11n-Grnmpion 1967

42. Maurer, 0. W.; Le Tourn1::m. B. W.: Friction f3\.'IOl'S for fully deo;clopcd turbulent now In ducts with illld without heat trnn.~n::r. ASME J. ansi.: P.ns. 86 {l964) 627-636

H:t~hcm Akburi Atila Mcr1ol Asl\Ok G;iclgil Ron Kacnrnerud Fried !Joun111n Passi vi: Rc:sc:urch a11d .Oe\·l!lopm1:n1 Group Lawn:m:~ Scrkcley 1.aborntory Uni ver.;i ty of C alifornin aerkelc:y. C::tlifomia 947:?0 llSA

RmivN Nonmlm. ~ 1984