Optimizing the ecological connectivity of landscapes with ...

27
HAL Id: hal-03578088 https://hal.archives-ouvertes.fr/hal-03578088 Preprint submitted on 17 Feb 2022 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Optimizing the ecological connectivity of landscapes with generalized flow models and preprocessing François Hamonic, Cécile Albert, Basile Couëtoux, yann Vaxès To cite this version: François Hamonic, Cécile Albert, Basile Couëtoux, yann Vaxès. Optimizing the ecological connectivity of landscapes with generalized flow models and preprocessing. 2022. hal-03578088

Transcript of Optimizing the ecological connectivity of landscapes with ...

HAL Id: hal-03578088https://hal.archives-ouvertes.fr/hal-03578088

Preprint submitted on 17 Feb 2022

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Optimizing the ecological connectivity of landscapeswith generalized flow models and preprocessing

François Hamonic, Cécile Albert, Basile Couëtoux, yann Vaxès

To cite this version:François Hamonic, Cécile Albert, Basile Couëtoux, yann Vaxès. Optimizing the ecological connectivityof landscapes with generalized flow models and preprocessing. 2022. �hal-03578088�

Optimizing the ecological connectivity of landscapes with generalizedflow models and preprocessing I

Francois Hamonica,b, Cecile Albertb, Basile Couetouxa, Yann Vaxesa

aAix-Marseille Univ, CNRS, Universite de Toulon, LIS, Marseille, FrancebAix-Marseille Univ, CNRS, Univ Avignon, IRD, IMBE, Marseille, France

Abstract

In this paper we consider the problem of optimizing the ecological connectivity of a land-

scape under a budget constraint by improving habitat areas and ecological corridors be-

tween them. We consider a formulation of this problem in terms of graphs in which vertices

represent the habitat areas and arcs represent a probability of connection between two ar-

eas that depend on the quality of the respective corridor. We propose a new generalized

flow model that improves existing models for this problem and an efficient preprocessing

algorithm that reduces the size of the graphs on which generalized flows is computed.

Reported numerical experiments highlight the benefice of these two contributions on com-

putation times and show that larger problems can be solved using them. Our experiments

also show that several variants of greedy algorithms perform relatively well on practical

instances while they return arbitrary bad solutions in the worst case.

Keywords: Environment and climate change, landscape connectivity, generalized

network flow, robust shortest path, linear programming, distances in graphs.

1. Introduction

Habitat loss is a major cause of the rapid decline of biodiversity [5]. Further than

reducing the available resources, it also increases the discontinuities among small habitat

areas called patches, this is a phenomenon known under the name habitat fragmentation [9].

While habitat loss tends to reduce the size of populations of animals and plants, which may

be deleterious to their survival in the long term, habitat fragmentation also makes it harder

for organisms to move around in landscapes. This constrains their access to resources and

reduces gene flow among populations, which can also be deleterious for their persistence

IThe research on this paper was supported by Region SUD, Natural Solutions and the ANR projectDISTANCIA (ANR-17-CE40-0015).

Email addresses: [email protected] (Francois Hamonic), [email protected](Cecile Albert), [email protected] (Basile Couetoux), [email protected] (Yann Vaxes)

Preprint submitted to Networks February 17, 2022

in the long term. Landscape connectivity, defined as the degree to which the landscape

facilitates the movement of organisms between habitat patches [19], then becomes of major

importance for biodiversity and its conservation. Accounting for landscape connectivity

in restoration or conservation plans thus appears as a key solution to maximize the return

on investment of the scarce financial support devoted to biodiversity conservation. For

this purpose, graph-theoretical approaches are useful in modelling habitat connectivity

[20]. In this paper, we consider the landscape connectivity that is distinct from the graph

theoretical notion of connectivity defined in terms of minimum cut.

A landscape can be viewed as a directed graph in which vertices represent the habitat

patches and each arc represents a way for individuals to travel from one patch to another.

Each vertex has a weight that represents the quality of the patch – patch area is often

used as a surrogate for quality – and each arc has a weight that represents the difficulty

for an individual to make the corresponding travel – often approximated by the border to

border distance between the patches. Interestingly, this approach can be used for a variety

of ecological systems like terrestrial (patches of forests in an agricultural area, networks

of lakes or wetlands), riverine (patches are segments of river than can be separated by

human constructions like dams that prevent fishes’ movement) or marine (patches can be

reefs that are connected by flows of larvae transported by currents). With this formalism,

ecologists have developed many connectivity indicators [11, 12, 17] that aim to quantify

the quality of a landscape with respect to the connections between its habitat patches.

Among the proposed indicators, the probability of connection – PC – [17] and its derivative

the equivalent connected area – ECA – [16] seem to perform well; they have received

encouraging empirical support [3, 14, 18]. Definitions and relationship between these

two indicators are described in Section 2. In this paper, our purpose is not to discuss

the merit of ECA with respect to other landscape connectivity indicators but to study the

corresponding combinatorial optimization problem from an algorithmic point of view. One

key question for which landscape connectivity indicators have been used in the last years is

to identify which elements of the landscape (habitat patches, corridors) should be preserved

from destruction or restored in order to maintain a well-connected network of habitat

under a given budget constraint [2]. This means, identifying the set of vertices or arcs that

optimally maintain a good level of connectivity. Many mathematical programming models

have been introduced in the literature to help decision-makers to protect biodiversity, for

a deep and wide review of these models, we refer to the survey paper [4] and the references

2

therein.

Here, we will focus on this problem by measuring ecological connectivity with ECA.

The budget-constrained ECA optimization problem consists in finding the best combina-

tion of graph elements (arcs or vertices) among a set Φ of elements that could be restored

in order to maximize the ECA in the landscape within a limited budget. Interestingly, this

problem addresses both restoration and conservation cases. The restoration case starts

from the current landscape and aims to restore a set of elements among the different

feasible options. The conservation case starts with a landscape in which we search for

the elements to protect among the threatened ones, and before the unprotected ones get

degraded. The conservation problem and the restoration problem are equivalent from an

algorithmic point of view. Indeed, an instance of the conservation problem can be viewed

as an instance of the restoration problem in which the initial landscape is the landscape in

which all threatened elements are degraded and the set Φ of elements than can be restored

in the instance of the restoration problem is the set of elements that can be protected in

the instance of the conservation problem. Until now, ecologists have mostly tackled this

problem by ranking each conservation or restoration option by its independent contribu-

tion to ECA, i.e. the amount by which ECA varies if the option is purchased alone. Such

an approach overlooks the cumulative effects of the decisions made like unnecessary redun-

dancies or potential synergistic effects, e.g. consecutive arcs. This could lead to solutions

that are more expensive or less beneficial to ECA than an optimal solution. Some studies

have tried to overcome this limitation by considering tuples of options [13, 15]. In [15],

the authors show that the brute force approach rapidly becomes impractical for landscape

with more than 20 patches of habitat. However, few studies explore the search for an op-

timal solution, most of which being developed for river dendritic networks. For instance,

in [21], a polynomial time approximation scheme is described for the problem where the

landscape is represented by a tree graph. Recently a mixed integer formulation that is

applicable to our problem has been introduced [22]. This formulation is however expen-

sive to solve. It uses O(|V |2|A|) flow variables and O(|V |3) constraints while O(|Φ|+ |V |2)

integer variables are required to approximate the non-linear objective function. The au-

thors of [22] show that solving exactly this formulation does not scale to landscapes of few

hundreds of patches. Their main contribution was to propose a XOR sampling method

for approximating it. Since it is possible to use the XOR sampling method with our exact

and more compact MIP model, it is better to view our contributions as a complement

3

to those of [22]. Therefore, we did not perform numerical experiments to compare our

methodology against those developed in [22].

Our model is based on a generalized flow formulation (see for instance [1]) instead of

a standard network flow formulation, which has two main advantages. On one side, our

formulation has a linear objective function. We do not need to use a piecewise constant

approximation nor to introduce additional binary variables to handle non-linearity. On the

other side, the new formulation is much more compact because it aggregates into a single

generalized flow the contribution to the connectivity of several source/sink pairs having

the same source. This reduces significantly the number of variables and constraints of the

model. It uses O(|V ||A|) flow variables with O(|V |2) constraints, and |Φ| integer variables

instead of O(|V |2|A|) flow variables with O(|V |3) constraints, and O(|Φ| + |V |2) integer

variables in the model of [22]. Recall that Φ is the set of elements that are threatened or

could be restored. Another contribution of this paper is to propose a preprocessing step

that speeds-up the resolution of the problem by reducing the size of the directed graph

on which a generalized flow to a particular sink t have to be computed. The idea is to

identify, for each sink t, the set of arcs (u, v) that are always on a shortest path from u

to t for all the 2|Φ| possible restoration plans. Such arcs, called t-strong arcs, are always

carrying flow and can be contracted in the generalized flow formulation to t. Conversely,

an arc (u, v) that is never on a shortest path from u to t, called t-useless, can be removed

from the generalized flow formulation to t because it never carries any flow. Once t-strong

arcs have been contracted and t-useless arcs have been removed in each generalized flow

formulation to a particular sink t, it remains to solve the problem on a much smaller

instance containing only the arcs that are not t-strong nor t-useless. Obviously it would

be prohibitive in terms of computation times to solve a shortest path problem for each of

the 2|Φ| possible restoration plans in order to determine whether a given arc is t-strong

(resp. t-useless) or not. In Section 4, we design and analyze a very efficient algorithm, that

computes directly the set of all sinks t such that a given arc is t-strong. This algorithm

takes implicitly into consideration all 2|Φ| possible restoration plans but has the same

complexity as the Dijkstra shortest path algorithm. It improves previous result for the

problem of computing t-strong or t-useless arcs [6]. We anticipate that this algorithmic

result is of independent interest and could be useful in many other contexts, in particular

when shortest path computations are embedded in robust optimization models.

In Section 2 we give more details about the landscape modelization and describe for-

4

mally the problem. Section 3 is devoted to the description of our mixed integer formula-

tion of the problem. In Section 4 we first explain why the removal of t-useless arcs and

the contraction of t-strong arcs does not modify the objective function of any restora-

tion/conservation plan. Then, we design and analyze a O(|A| + |V | log |V |) algorithm

that computes the set of all vertices t for which a given arc (u, v) is t-strong or the set

of all vertices t for which (u, v) is t-useless. Section 5 presents experimental cases for

which we compare our optimization approach with simple greedy algorithms in terms of

running times and quality of the solutions found. These experiments also shows that the

preprocessing is very effective on some real instances.

2. Budget Constrained ECA Optimization problem

Our optimization problem takes as input a landscape represented by a directed graph

G = (V,A). Each patch s ∈ V has a weight ws that represents its size. Each ordered

pair of patches (s, t) such that an individual can move from patch s to patch t without

crossing another patch is joined by an arc of G. For each arc (u, v), we suppose that an

estimate of the probability π(u,v) that an individual successfully moves from u to v. This

value will be determined by the landscape and by the species studied. The input of our

optimization problem also includes a list of arcs that can be improved to make them easier

or less dangerous to cross and the costs of these improvements. As objective function and

measure of the quality of the landscape, we use the Equivalent Connected Area defined

by the following formula [16]:

ECA(G,w, l) =

√∑s∈V

∑t∈V

(wswtΠst)

where Πst is the probability of connection from the patch s to the patch t. This probability

is defined as the probability of the most probable (reliable) path from s to t where the

probability of a path is the product of the probabilities of its arcs. The probability of an

arc a is often defined as πa := exp(−αla) where α is a parameter that depends on the

dispersal ability of the species and la is the euclidean distance between the centers of the

two patches joined by a. This dispersal model has been used in many applications. Its

ecological justification, discussed for instance in [7, 8], is out of the scope of this paper. By

monotonicity of the exponential function, a path P is a most reliable path between s and

t if and only if it is a shortest path with respect to arc lengths l and Πst = exp(−αd(s, t))

where d(s, t) is the length of a shortest st-path with respect to l. The equivalent connected

5

area of a landscape is the area of a single patch equivalent to it. This equivalence comes

from the indicator PC on which ECA is based [16]. Indeed, suppose that the landscape is

a rectangle of area W containing all patches. We consider a stochastic process consisting

of choosing two points p and q uniformly at random in the rectangle. The indicator PC

is the expected value of a random variable equal to 0 if either p or q does not belong to

a patch and Πst if p belongs to s and q belongs to t (recall that Πst = 1 if s = t). Since

the probability that p belongs to a patch u is wu/W, and the events p ∈ s and q ∈ t are

independent, by linearity of expectation, PC can be expressed as follows:

PC(G,w, l) =

∑s,t∈V wswtΠst

W2=ECA(G,w, l)2

W2

where W, ws and wt are respectively the area of the rectangle, patch s and patch t. The

equivalent connected area of a landscape is the area of a single patch whose PC value is

equal the PC value of the original landscape. If the area of the patches and the landscape

are normalized to makeW equal to 1 then PC is the square of ECA. Therefore, optimizing

PC and optimizing ECA are equivalent problems. ECA is often considered by researchers

interested in landscape connectivity because it represents an area, a more concrete quantity

than the expected value of a random variable.

An instance I = (V,A,Φ, w, l, l−, c, B) of the Budget Constrained ECA Optimization

Problems – BC-ECA-Opt – is defined by a graph G = (V,A) with a weight wu for each

vertex u ∈ V and a length la for each arc a ∈ A, a subset Φ ⊆ A of arcs that can be

improved, for each arc a ∈ Φ, the cost ca of reducing its length to l−a and the total budget

B for improving the arcs. An optimal solution of the instance I is a subset of arcs S ⊆ Φ

of total cost c(S) :=∑

a∈S ca at most B that maximizes ECA(G, l′, w) where l′a = l−a if

a ∈ S and la otherwise. For the sake of clarity, we first consider only arcs improvements,

but, as explained in Section 3.1, our model can be extended to the case where it is also

possible to improve the landscape by increasing the weight of the vertices. In this case, a

subset of vertices W is given, as well as the cost cu of increasing the weight of u to w+u for

each vertex u ∈ W, and we want to find a subset of arcs S ⊆ Φ and a subset of vertices

T ⊆ W of total cost c(S) + c(T ) ≤ B that maximizes ECA(G, l′, w′) where l′a = l−a if

a ∈ S and la otherwise and w′u = w+u if u ∈ T and wu otherwise.

6

Remark 1. Our optimization problem is stated in terms of arc length reduction but it

would be equivalent to state it in terms of arc probability augmentation.

Remark 2. In our model, it is possible to add a new connection between two existing

patchs u and v. It suffices to place (u, v) in the set of improvable arcs Φ with an initial

length l(u,v) =∞ (i.e. π(u,v) = 0) and a finite improved length l−(u,v) <∞.

3. An improved MIP formulation for BC-ECA-Opt

We first show how to compute f t =∑

s∈V ws ·Πst as the maximum quantity of gener-

alized flow that can be sent to t across the network if, for every patch s ∈ V , ws units of

flow are available at s and appropriate multipliers are chosen for each arc of the network.

Recall that a generalized flow differs from a standard flow by the fact that each arc a has

a multiplier πa such that the quantity of flow leaving arc a is equal to the quantity of flow

φa entering in a multiplied by πa. In our case πa = exp(−αla). For each vertex u ∈ V, let

δoutu be the set of arcs leaving u and δin

u the set of arcs entering u. As explained below,

the linear program (P) has f t as optimum value.

(P)

max z

s.t.∑

a∈δoutu

φa −∑b∈Γ−u

πb · φb ≤ wu u ∈ V \ {t} (A1)

∑a∈δoutt

φa −∑b∈δint

πb · φb = wt − z (A2)

φa ≥ 0 a ∈ A (A3)

Constraints (A1) require that the total quantity of flow leaving u is at most wu plus the

total quantify of flow entering u, i.e. the quantity of flow available in vertex u. Constraint

(A2) requires that z is equal to the total quantity of flow entering t plus wt minus the total

quantity of flow leaving t. Finally, constraints (A3) state that each arc carries a positive

quantity of flow from its source to its sink.

Lemma 1. Any optimal solution of (P) is obtained by sending, for each every vertex

s ∈ V − {t}, ws units of flow from s to t along most reliable st-paths.

Proof. First notice that the quantity of flow arriving at t when ws units flow are sent

from s to t along an st-path P is ws times the probability of path P. Let φ′ be an optimal

solution of (P) maximizing the quantity of flow routed along a path which is not a shortest

7

path. Suppose by contradiction that φ′ send ε > 0 units of flow along an st-path P ′ whose

probability is smaller than the probability of a most reliable st-path P. Let φ be the flow

obtained from φ′ by decreasing the flow sent on path P ′ by ε and increasing the flow sent

on path P by ε. Since the probability of P is larger than the probability of P ′, φ send

more flow to t than φ′, a contradiction.

Corollary 1. The optimal value of (P) is f t =∑

s∈V ws ·Πst.

Proof. Since the objective is to maximize z, no flow leaves t in any optimal solution of

(P), i.e.∑

a∈δoutt

φa = 0. Constraint (A2) ensures that z is the quantity of flow received

by t plus wt = wt · Πtt. By Lemma 1, there exits an optimal solution φ such that every

vertex s distinct from t send ws units of flow on a most reliable st-path. Hence, for every

vertex s distinct from t, the flow received by t from s is ws ·Πst and thus the value of z is∑s∈V ws ·Πst.

With this linear programming definition of f t, we can now present our MIP program

of BC-ECA-Opt. For each arc a = (u, v) ∈ Φ, we add another arc a′ = (u, v) of length

la′ = l−a that can be viewed as an improved copy of arc a. This improved copy can be

used only if the improvement of arc a is purchased. For each arc a ∈ Φ, that could be

improved, the variable xa is equal to one if the improvement of arc a is purchased and

zero otherwise. We denote by Ψ the set of improved copies of arcs in Φ. In the following

MIP program, δoutu and δin

u are defined with respect to the set of arcs A′ = A ∪Ψ.

BC-ECA-Opt

max∑t∈V

wt · f t

s.t.∑

a∈δoutu

φta −∑b∈δinu

πb · φtb ≤ wu t ∈ V , u ∈ V \ {t} (B1)

∑a∈δoutt

φta −∑b∈δint

πb · φtb = wt − ft t ∈ V (B2)

φta′ ≤ xa ·Ma t ∈ V , a ∈ Φ (B3)∑a∈F

ca · xa ≤ B (B4)

xa ∈ {0, 1} a ∈ Φ (B5)

φta ≥ 0 t ∈ V , a ∈ Φ (B6)

Constraints of (B1) and (B2) are simply constraints of (A1) and (A2) for all possible

target vertex t. For each arc a ∈ Φ, the big-M constraints (B3) ensure that if the im-

8

provement of arc a is not purchased, i.e. xa = 0, then the flow on arc a′ is null. Ma is

an upper bound of the flow value on arc a. We could simply take Ma =∑

u∈V wu for all

a ∈ Φ but smaller estimations are important to guaranty a good linear relaxation and thus

a faster resolution of the MIP program. Constraint (B4) ensures that the total cost of the

improvements is at most B. This MIP program has O(|V |(|A| + |Φ|)) flow variables, |Φ|

binary variables and O(|V |2 + |V ||Φ|) constraints.

3.1. Extension to patch improvements

To extend our model to the version with patch improvements where it is possible to

increase the weight of a vertex u from wu to w+u at cost cu, we process all the occurrences

of wu as follows. Let yu be a binary variable equal to 1 if the vertex u is improved and 0

otherwise. We add a term yucu in the budget constraint for every vertex u in the set W

of vertices that can be improved. When wu appears as an additive constant, we simply

replace it by wu+yu(w+u −wu). Note that wu only appears as a coefficient in the objective

function in the form wuft. In this case, to avoid a quadratic term, we use a standard

McCormick linearization [10]. We replace the product wuft by wuft + (w+u −wu)f ′t where

f ′t is a new variable that is equal to ft if yu = 1 and 0 otherwise. To achieve this values of

f ′t we add the constraints f ′t ≤ ft and f ′t ≤ yuM where M is larger than any values of ft.

As it is a maximization program and f ′t appears with a positive coefficient in the objective

function, the first constraint guaranties that f ′t = ft if yu = 1 in any optimal solution and

the second constraint guaranties that f ′t = 0 if yu = 0.

4. Preprocessing

The size of the mixed integer programming formulation of BC-ECA-Opt given in Sec-

tion 3 grows quadratically with the size of the graph that represents the landscape. In

this section, we describe a preprocessing step that reduces the size of this graph. For that,

we introduce a notion of strongness of an arc with respect to a target vertex t ∈ V . We

will call a solution x ∈ {0, 1}Φ of BC-ECA-Opt a scenario and say that the distances are

computed under scenario x when the length of every a ∈ A is l−a if xa = 1 and la otherwise.

We denote dx(s, t) the distance between s and t when the arc lengths are set according

to the scenario x. An arc (u, v) is said to be t-strong if, for every scenario x ∈ {0, 1}Φ,

(u, v) belongs to a shortest path from u to t, i.e. dx(u, t) = dx(u, v) + dx(v, t) for every

x ∈ {0, 1}Φ. An arc (u, v) is said to be t-useless if, for every scenario x ∈ {0, 1}Φ, arc

9

(u, v) does not belong to any shortest ut-path when arc lengths are set according to the

scenario x. We denote by S(t) the set of arcs (u, v) such that (u, v) is t-strong and by

W (t) the set of arcs (u, v) such that (u, v) is t-useless.

Of course, the naive algorithm that tests whether (u, v) belongs to a shortest ut-path

for every scenario x ∈ {0, 1}Φ is very inefficient. In Section 4.2, we describe and analyse

an algorithm that computes the set S(t) and W (t) for every sink t in a much more efficient

way. But first, we explain how the knowledge of these sets can be used to define a smaller

equivalent instance of the problem.

4.1. Operations to reduce the size of the graph

Removal of an arc from W (t). Let (u, v) ∈ W (t), since for all scenarios x ∈ {0, 1}Φ,

(u, v) does not belong to any shortest path from u to t, its removal does not affect the

distance from any vertex to t. It is clear, from the definition of ECA, that the removal of

(u, v) does not affect the contribution of t to ECA. Let fxt (G) :=∑

s∈V wswtΠxst be the

contribution to ECA of all the pairs having sink t in the graph G when the probability of

connection Πxst is computed under the scenario x.

Lemma 2. Let (u, v) ∈W (t) and let G′ be a graph obtained from G by removing arc (u, v)

then, for all scenario x ∈ {0, 1}Φ, fxt (G) = fxt (G′).

Proof. For every scenario x ∈ {0, 1}Φ, (u, v) does not belong to any shortest path from u

to t. Therefore, the removal of (u, v) cannot affect the probability of connection Πut for

any vertex t and fxt (G) = fxt (G′).

Contraction of an arc in S(t). Now, assume that (u, v) /∈ Φ, (u, v) ∈ S(t). The

contraction of (u, v) consists in replacing every arc (w, u) ∈ δinu by an arc (w, v) of length

l′wv = lwu + luv and by removing the vertex u and all its outgoing arcs. The weight of

u in G is moved to the weight of v in G′. Namely, the weight of v in the new graph is

w′v = wv+wu exp(−αluv). Let G′ be the graph obtained from G by contracting (u, v). The

next lemma establishes that the contribution of t to ECA in G is equal to its contribution

in G′.

Lemma 3. Let (u, v) ∈ S(t) and let G′ be the graph obtained from G by contracting

arc (u, v) and modifying accordingly the weight of wv. For every scenario x ∈ {0, 1}Φ,

fxt (G) = fxt (G′).

10

w

u v t...

lwuluv

wu wv

Γ−u

(a)

w

v t...

lwu + luv

w′v

Γ−u

(b)

Figure 1: (a) represents a graph G before the contraction of an arc (u, v). (b) represents the graph G′

obtained from G by contracting arc (u, v). The weight w′v of v in G′ is equal to wv + wu exp(−αluv).

Proof. Let s be a vertex of G and x be a scenario in {0, 1}Φ. We denote fxst(G) the

contribution to ECA of the pair st with scenario x ∈ {0, 1}Φ in G. If s /∈ {u, v}, it is easy

to check that, for any x ∈ {0, 1}Φ the length of the shortest path from s to t in G is equal

to the length of the shortest path from s to t in G′. Moreover, the weight of s is the same

in G and in G′. Therefore, by the definition of ECA, fxst(G) = fxst(G′), for any x ∈ {0, 1}Φ.

On the other hand, the contributions of the pairs ut and vt in G sum to the contribution

of v in G′. Indeed,

fxut(G) + fxvt(G) = wu exp(−αdx(u, t)) + wv exp(−αdx(v, t))

= wu exp(−α(luv + dx(v, t))) + wv exp(−αdx(v, t))

= (wv + wu exp(−αluv)) exp(−αdx(v, t))

= w′(v) exp(−αdx(v, t))

= fxvt(G′)

We conclude that, for any x ∈ {0, 1}Φ, fxt (G) =∑

s∈V fxst(G) = fxut(G) + fxvt(G) +∑

s∈V−{u,v} fxst(G) = fxvt(G

′) +∑

s∈V−{u,v} fxst(G

′) = fxt (G′).

Graph reduction. We obtain Gt by deleting every arcs of W (t) and contracting every

arcs of S(t). By induction the contribution of t is preserved. The experiments of Section

5 show that, when the number of arcs that can be protected is much smaller than the

total number of arcs, replacing G by Gt in the construction of the mixed integer program

reduces significantly the size of the MIP formulation and the running times.

The problem of identifying S(t) and W (t) has been studied as a preprocessing step

for other combinatorial optimization problems having as input a graph whose arc lengths

may change [6]. In [6], given an arc (u, v) and a vertex t, the authors identify a sufficient

(but not necessary) condition for (u, v) ∈ S(t) and use it to design a O(|A| + |V | log |V |)

11

algorithm that can, in most cases, identify if (u, v) ∈ S(t). The authors also propose a

O(|A|+ |V | log |V |) algorithm to test whether a given arc (u, v) belongs to W (s) or not.

Given an arc (u, v) of G, we will show how to adapt the Dijkstra’s algorithm to compute

in O(|A|+|V | log |V |) the set of all vertices t such that (u, v) ∈ S(t) or the set of all vertices

t such that (u, v) ∈ W (t). This improves the results of [6] by providing a necessary and

sufficient condition for (u, v) to be t-strong, i.e. we compute the entire set S(t) while

the algorithm of [6] computes a subset of S(t). It also reduces the time complexity for

computing S(t) and W (t) for all t by a factor |V | as we only need to run the algorithms

on each arc instead of each pair of arc and vertex.

4.2. Computing S(t) for all t

Given a scenario x ∈ {0, 1}Φ, the fiber Fx(u, v) of arc (u, v) is the set of vertex t such

that (u, v) belongs to a shortest path from u to t when arc lengths are set according to x,

i.e.

Fx(u, v) = {t ∈ V : dx(u, t) = lx(u, v) + dx(v, t)}

Let F (u, v) be the intersection of the fibers of (u, v) over all possible scenarios x ∈

{0, 1}Φ, i.e. F (u, v) :=⋂x Fx(u, v). By definition, an arc (u, v) is t-strong if t belongs to

Fx(u, v) for every scenario x i.e.

S(t) = {(u, v) : t ∈ F (u, v)}

In order to compute every S(t), we first compute F (u, v) for every arc (u, v) and then

transpose the representation to get S(t) for every vertex t ∈ V . Let y ∈ {0, 1}Φ be the

following scenario :

ywt =

0 w ∈ F (u, v) or (w, t) = (u, v)

1 w /∈ F (u, v)(1)

Lemma 4. The intersection F (u, v) of the fibers of (u, v) over all possible scenarios is the

fiber of (u, v) under the scenario y, i.e. F (u, v) = Fy(u, v).

Proof. Since the inclusion F (u, v) ⊆ Fy(u, v) is obvious, it suffices to prove that Fy(u, v) ⊆

Fx(u, v) for any scenario x ∈ {0, 1}Φ. By way of contradiction, suppose that x is a scenario

such that Fy(u, v)\Fx(u, v) contains a vertex t at minimum distance from u in the scenario

y. Let P be a shortest ut-path containing (u, v) under the scenario y. For every vertex

12

w of P, dy(u,w) ≤ dy(u, t) and w ∈ Fy(u, v). Hence, by the choice of t, w belongs to

Fx(u, v) for every scenario x. Therefore w belongs to F (u, v) and the length of every

arc of P is set to its upper bound in the scenario y, i.e. ly(P ) = l(P ). Now, let Q

be a shortest ut-path in the scenario x. If the path Q contains a vertex z ∈ F (u, v)

then dx(u, t) = dx(u, z) + dx(z, t) = lx(u, v) + dx(v, z) + dx(z, t) = lx(u, v) + dx(v, t), a

contradiction with t /∈ Fx(u, v). Therefore, the vertices of Q do not belong to F (u, v) and

thus their lengths are set to their lower bound in y, i.e. l(Q) = l−(Q). We deduce that

lx(P ) ≤ ly(P ) ≤ ly(Q) ≤ lx(Q) a contradiction with t /∈ Fx(u, v).

We describe a O(|A| + |V | log |V |) time algorithm that, given an arc (u, v), computes

simultaneously the scenario y defined by (1) and the fiber Fy(u, v) of arc (u, v) with respect

to this scenario. The algorithm is an adaptation of the Dijkstra’s shortest path algorithm

that assigns colors to vertices. We prove that it colors a vertex w in blue if w belongs to

Fy(u, v) and in red otherwise. At each step, we consider a subset of vertices S ⊆ V whose

colors have been already computed. Before the first iteration, S = {u} and the length

of every arc leaving u is set to its lower bound except the length of (u, v) which is set to

its upper bound according to scenario y. At each step, since the color of every vertex of

S is known, the length, under scenario y, of every arc (w, t) with w ∈ S is also known.

Therefore, it is possible to find a vertex t ∈ V − S at minimum distance from u, under

scenario y, in the subgraph G[S ∪ {t}] induced by S ∪ {t}. Following Dijkstra’s algorithm

analysis, we know that the distance under scenario y from u to t in G[S ∪ {t}] is in fact

the distance between u and t in G. This allows us to determine if there exists a shortest

path from u to t in the scenario y passing via (u, v) and to color the vertex t accordingly.

We end-up the iteration with a new vertex t whose color is known and that can be added

to S before starting the next iteration. The algorithm terminates when S = V.

For every vertex w ∈ V − S, the estimated distance d(w) is the length of a uw-path

under the scenario y in the subgraph G[S ∪{w}]. An arc a is blue if a = uv or if its origin

is blue, the other arcs are red, i.e. a is blue if ya = 0 and red if ya = 1. The estimated

color γ(w) of w is blue if there exists a blue uw-path of length d(w) in G[S ∪{w}] and red

otherwise. The correctness of Algorithm 1 follows from the following Lemma.

Lemma 5. For every vertex t ∈ S, γ(t) is blue if and only if t ∈ Fy(u, v).

Proof. We proceed by induction on the number of vertices of S. When S = {u}, the

property is verified. Now, suppose the property true before the insertion in S of the

13

Algorithm 1: Computes the set S of vertices t such that (u, v) is t-strong

Input : G = (V,A, l, l−), (u, v) ∈ A

Output: {t ∈ V : (u, v) is t-strong}

foreach (u,w) ∈ δoutu \ {(u, v)} dod(w)← l−uw

γ(w)← red

d(v)← luv; γ(v)← blue

S ← {u}; γ(u)← red

while S 6= V do

Pick t ∈ V − S with smallest d(t) breaking tie by choosing a vertex t such that

γ(t) = blue if it exists

if γ(t) is blue then

foreach (t, w) ∈ δoutt such that d(w) ≥ d(t) + ltw do

d(w)← d(t) + ltw

γ(w)← blue

else

foreach (t, w) ∈ δoutt such that d(w) > d(t) + l−tw do

d(w)← d(t) + l−tw

γ(w)← red

S ← S ∪ {t}return {t ∈ V : γ(t) = blue}

vertex t such that d(t) is minimum. By induction hypothesis, the lengths of arcs having

their source in S are set according to y. Therefore, following Dijkstra’s algorithm analysis,

we deduce that d(t) is the length of the shortest path from u to t in the graph G under

scenario y. If t has been colored blue then there exists a blue vertex w ∈ S such that

d(t) = d(w) + lwt. By induction hypothesis w ∈ Fy(u, v) and there exists a shortest ut-

path under scenario y containing (u, v), i.e. t ∈ Fy(u, v). Now, suppose that t has been

colored in red. By contradiction, assume there exists a shortest ut-path under scenario

y that contains (u, v). This path cannot contain a vertex outside S except t because

otherwise, since arc lengths are non-negative, its length according to y would be greater

than d(t) by the choice of t. Therefore, the predecessor w of t in this path belongs to S.

Since w belongs to a shortest ut-path passing via (u, v), by induction, it was colored blue.

But in this case, there exists a blue vertex w such that d(w) + l(w, t) = d(t), and t was

colored blue as well, a contradiction.

14

We are now ready to state the main result of this section.

Proposition 1. Given a graph G = (V,A), two arc-length functions l− and l such that 0 ≤

l−a ≤ la for every arc a ∈ A, and an arc (u, v), Algorithm 1 computes in O(|A|+|V | log |V |)

the set of vertex t such that (u, v) is t-strong.

Proof. The correctness of Algorithm 1 is given by Lemma 4 and Lemma 5. Analogously

to the Dijkstra’s algorithm, it can be implemented to run in O(|A| + |V | log |V |) using a

Fibonacci heap as priority queue.

4.3. Computing W (t) for all t

The algorithm that computes, for every arc (u, v), the set of vertices t such that

(u, v) is t-useless is obtained from Algorithm 1 by applying two small changes. Before

describing these changes, we explain how the two problems are related. For that, we first

introduced a strengthening of the notion of strongness. We will say that an arc (u, v)

is strictly t-strong if it belongs to all shortest ut-paths for every scenario x ∈ {0, 1}Φ.

Recall that t-strongness requires only the existence of a shortest ut-path passing via (u, v)

for every scenario x ∈ {0, 1}Φ. Algorithm 1 can be easily adapted to compute for every

arc (u, v) the set of vertex t such that (u, v) is strictly t-strong. It suffices to change

the way, the algorithms breaks tie between a red and a blue path and the choice of t

in case of tie. Namely, in the first internal loop, the condition for coloring w in blue

becomes d(w) > d(t) + ltw while the condition for coloring w in red in the second internal

loop becomes d(w) ≥ d(t) + l−tw. Moreover, when we choose t such that d(t) is minimal,

we break tie by choosing a red vertex if it exists. Clearly, these small changes exclude

the existence of a red path of length d(w) between u and a blue vertex w. Therefore,

(u, v) belongs to every path of length d(w) and (u, v) is strictly w-strong whenever w is

blue. We call the resulting algorithm the strict version of Algorithm 1. The next step

is to extend the notion of strict strongness to a subset of arcs having the same source.

For any vertex u ∈ V, a subset Γ ⊆ Γ+u of arcs is strictly t-strong if, for every scenario

x ∈ {0, 1}Φ, all shortest ut-paths intersect Γ. By definition, an arc (u, v) is t-useless if and

only if Γ+u \ {(u, v)} is strictly t-strong. Indeed, every ut-path avoiding (u, v) intersects

Γ+u \{(u, v)} and, conversely, (u, v) belongs to every ut-path avoiding Γ+

u \{(u, v)}. Hence,

computing the set of vertex t such that (u, v) is t-useless amounts to compute the set

of vertex t such that Γ+u \ {(u, v)} is strictly t-strong. An algorithm that computes this

15

set of vertices can be obtained from the strict version of Algorithm 1 by modifying only

the initialization step: arc (u, v) is colored in red and its length is set to l−uv while arcs

of δoutu \ {(u, v)} are colored in blue and their lengths are set to their upper bound. A

correctness proof very similar to the one of Algorithm 1 (and that we will not repeat)

shows that a vertex is colored blue by Algorithm 2 if and only if (u, v) is t-useless. Since

the two algorithms have clearly the same time complexity, we conclude this section with

the following result.

Algorithm 2: Computes the set of vertex t such that (u, v) is t-useless

Input : G = (V,A, l, l−), (u, v) ∈ A

Output: {t ∈ V : (u, v) is t-useless}

d(v)← l−uv; γ(v)← red

foreach (u,w) ∈ δoutu \ {(u, v)} dod(w)← luw

γ(w)← blue

S ← {u}; γ(u)← blue

while S 6= V do

Pick t ∈ V − S with smallest d(t) breaking tie by choosing a vertex t such that

γ(t) = red if it exists

if γ(t) is blue then

foreach (t, w) ∈ δoutt such that d(w) > d(t) + ltw do

d(w)← d(t) + ltw

γ(w)← blue

else

foreach (t, w) ∈ δoutt such that d(w) ≥ d(t) + l−tw do

d(w)← d(t) + l−tw

γ(w)← red

S ← S ∪ {t}return {t ∈ V : γ(t) = blue}

Proposition 2. Given a graph G = (V,A), two arc-length functions l− and l such that 0 ≤

l−a ≤ la for every arc a ∈ A, and an arc (u, v), Algorithm 2 computes in O(|A|+|V | log |V |)

the set of vertex t such that (u, v) is t-useless.

16

5. Numerical experiments

In this section, we report our computational experiments in order to demonstrate the

added benefit of our MIP formulation and preprocessing step. The numerical experiments

were performed on a desktop computer equipped with an Intel(R) Core(TM) i7-8700k 4.8

gigahertz and a memory of 16 gigabytes. Our model was implemented in Gurobi 9.0.1

with default parameters and the other algorithms were coded in multithreaded C++ using

the LEMON Graph Library.

5.1. Quality of the solutions

In the lack of an efficient method to compute an optimal solution of BC-ECA-Opt,

ecologists often use greedy algorithms to compute sub-optimal solutions. In this subsec-

tion we will compare an optimal solution obtained with our MIP model to the solutions

obtained with different greedy algorithms. The incremental greedy algorithm (IG) starts

from the graph with no improved element, at each step i, the algorithm selects the ele-

ment e with the greatest ratio δie/ce until no more element fits in the budget. Here, δie

denotes the difference between the value of ECA with and without the improvement of

the element e at the step i and ce is the cost of improving the element e (that can be

either an arc or a vertex). The decremental greedy (DG) starts from the graph with all

improvements performed and iteratively removes the improvement of the element e with

the smallest ratio δie/ce. DG finishes with incremental steps to ensure there is no free bud-

get left. These algorithms perform at most |Φ| steps and at each step i need to compute

δie for each element e. It is easy to implement the IG algorithm in O(|V |3 + |Φ|2 · |V |2)

by using an all pair shortest path algorithm to compute in O(|V |3) the initial distance

matrix and then by performing |Φ| steps in which the computation of δie for each arc

e ∈ Φ takes O(|V |2). Indeed, when we decrease the length of an edge we can update the

distance matrix in O(|V |2). For the implementation of DG, when we increase the length

of an edge we cannot update the distance matrix as easily as for the IG algorithm. We

can recompute in |V |3 the whole distance matrix for computing each δie and the algorithm

runs in O(|Φ|2 · |V |3) (we did not try to improve the implementation). These complexities

are already too large for the practical instances handled by ecologists which can have few

thousands of patches. Most of the studies using the PC or ECA indicators use simpler

algorithms that we call static increasing (SI) and static decreasing (SD). These algorithms

are simpler variants of the greedy algorithms which do not recompute the ratio δe/ce of

17

each element e at each step and thus are faster but do not account for cumulative effects

nor redundancies.

In the next section, we provide instances on which IG and DG performs poorly com-

pared to an optimal solution. On these instances, it is easy to check that the solutions

returned by algorithms SI and SD are not better than the solutions returned by algorithms

IG and DG.

5.1.1. Limits of the greedy algorithms

In the instances presented below, all arcs have a probability 1 if improved and 0

otherwise and have unitary costs. Recall that a spider is a tree (sorry for ecologists)

consisting of several paths glued together on a central vertex.

Case A: The graph is a spider with 2k branches: k long branches with two edges, an

intermediate node of weight 0 and a leaf node of weight 1, and k short branches consisting

of a single edge with a leaf of very small weight ε > 0, see Fig.1 (a). All branches are

connected to a central node of weight 1. IG performs poorly on this instance. Indeed,

IG is tricked into purchasing short branches with very small ECA improvement because

purchasing an edge of a long branch alone does not increase ECA at all. An optimal

solution results in larger value of ECA by improving pairs of arcs of long branches.

In this case, IG does not perform well while DG finds an optimal solution computed by

the MIP solver except when the budget is 1. In this case, the reverse occurs: DG performs

badly while IG is optimal. Indeed, DG realizes that the budget is not sufficient to improve

two arcs of a long branch only after removing the improvements of all short branches.

Case B: The graph is obtained from a star with k + 1 branches by replacing one branch

by a path of length k. The central node and all leaves except the leaf of the path have

weight 1. The leaf of the path has weight 1+ε. The internal nodes of the path have weight

0. DG performs poorly on this instance because it removes one by one the branches of

the star for which δe/ce = 1 before removing an edge of the path for which δe/ce = 1 + ε.

When the budget is at least 2, an optimal solution removes all the edges of the path before

removing an edge of another branch.

Case C: The graph is a spider with k+ 1 branches. All branches except one are paths of

length 2 with an internal node of weight 0 and a leaf of weight 1. The last branch is a path

18

8

7

6

5

4

3

2

10

(a)

0 2 4 6 8 10 12budget

0.0

0.2

0.4

0.6

0.8

1.0

opt

rati

o

incremental greedydecremental greedyoptimum (MIP)

(b)

Figure 2: An instance on which Incremental Greedy fails. (a) the graph of case A with k = 4, (b) ratio of

the increase in ECA between the solutions returned by IG and DG and an optimal solution for several

budgets.

����

65

4

3 2

10

(a)

0 2 4 6 8 10budget

0.0

0.2

0.4

0.6

0.8

1.0

opt

rati

o

incremental greedydecremental greedyoptimum (MIP)

(b)

Figure 3: An instance on which Decremental Greedy fails. (a) the graph of case B with k = 5, (b) ratio

of the increase in ECA between the solutions returned by IG and DG and an optimal solution for several

budgets.

of length 2k with internal nodes of weight ε > 0 and a leaf of weight 1 + ε. All branches

intersect in a central node of weight 1. In this case, both Incremental and Decremental

Greedy fail. On one hand, IG selects the edges of the path of length 2k one by one and

does not realize that by taking two edges of a short branch it could improve much more

ECA. On the other hand, DG removes first the edges of the short branch because the

weight of leaf of a long branche is 1 + ε while the weight of the leaf of a short branch is 1.

Hence, DG and IG return the same law quality solution.

19

151413121110987

65

4

3 2

10

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0budget

0.0

0.2

0.4

0.6

0.8

1.0

opt

rati

o

incremental greedydecremental greedyoptimum (MIP)

(b)

Figure 4: An instance on which both Incremental and Decremental Greedy algorithms fail. (a) the graph

of case C with k = 5, (b) ratio of the increase in ECA between the solutions returned by IG and DG and

an optimal solution for several budgets.

Case C illustrates the fact that the greedy algorithms IG and DG do not provide any

constant approximation guarantee (even for trees), i.e. for any constant 0 < α < 1 there

exists an instance of BC-ECA-Opt such that ALG < αOPT where ALG is the value of

ECA for the best solution among those returned by IG and DG and OPT is the value of

ECA for an optimal solution.

5.1.2. In Practice

In this subsection we investigate on the performances of the greedy algorithms we

discuss in the previous subsection on a real instance. We perform these numerical experi-

ments on a model of the landscape around Montreal from [2]. The landscape model of [2]

is a Gabriel graph – a subset of the Delaunay triangulation – of 8733 patches. For each

patch, we have an estimation of its area that could be lost by 2050. In order to obtain

20

several examples with a reasonable computing time, we extract 72 subgraphs of sizes be-

tween 150 and 400 nodes from this large instance. Then, we consider that protecting a

patch corresponds to buying the portion of it that would otherwise be lost and has a cost

proportional to the purchased area. To model the protection of a patch u, we set its de-

fault weight, wu, to the area it would have in 2050 if unprotected and its improved weight,

w+u , to its current area. If a patch is threatened of total loss, i.e. all its area would be lost

by 2050, we prevent it to contribute to shortests paths if it is not purchased as follows.

We add a node uout, replace each outgoing arc (u, v) by an arc (uout, v) and connect u and

uout with an arc (u, uout) of default probability 0 and enhanced probability 1. In this way,

if a patch threatened of total loss is not protected then it does not contribute to ECA by

its quality nor by its use as stepping stone for other pairs of nodes.

82468245 8244824382428241 8240823982388237

8236

8235

82348233

82328231 8230 82298228822782268225 822482238222 8221

8220

82198218

8217821682158214 821382128211 8210820982088207

8206

8205

8204

8203

8202

820182008199

8198 8197

8195

8194

81938192

81918190

8189

8188

8187

8186

8185

8184

81838182

8181 8180817981788177

81768175

8174

8173 8172

8171

8170

8169

81688167

8166

8164

8163

8162

8161

8160

81598158

81578156

8155 8154

81538152

8151

81508149

8148

8147

81468145

8144

8143

8142

81418140

8139

8138

8137

8136 8135

8134

8133

81328131

8130

8129

8128

8127

8126

8125

8124

8123

8122

81218120

81198118

81178116

8115

8114

8113 8112

8111

8110

8109

8108

8107

81068105

8104

8103

8102

8101

8100

80998098

80968095

8094

8093

8092 8091

8090

8089

8088

80878086

8085

8084

8083 8082808180808079

8078

8077

8076

8074

80738072

8071

8070

8069

8067

8066

8065

8064

8063

8062

8061

8060

8059 8058

8057

805680558054

8053

8052

8051

8049

8048

8047

8046

8045

8044

8043

8042

8041

8040

8039

80388037

8036

8035

8034

8033

8032

8031

8030

8029802880278026

8025

80248023

8022

8021

8018

8017

8016

80158014

8013

8012

8011

8010 8009

8008

8007

8006

8005

8004

80038002

8001

8000

7999

7998

7997

7996

7994

7993 7992

7991

7990

7989

7988

7987

7986

7985 79847983

7982

7981

7980797979787976

7975

7974

7973

7972

7971

79707969

7968

7967

79667965

7964

7963

7962

7960

7958 79577956

7955

7954

7953

79527951

7950

7949

7948

7947 7945

7944

7943

7942

7940

7939

79387937

7936

7935 7934

7933

7932

7931

7930

7929

7928

7927

79267925

7924

79237922

7921

7920

7919

7918

7917

7916

79157914 7913

7912

7911

7910

7909790879057904

7903

7902

7901

79007899

7898

7897

7896

7895

7894

7893

7892

7891

7890

7889

7888 7886

7885

7884

7883

7882

7881

7880

7879

7878 7876

7875

7874

7873

7872

78717870

7869

7868

7867

7866

7864

7863

7862

7861

7860

7859

7858

7857

7856

7855

7854

7853

7852

7851

7850

7849

7848

7846

7845

7843

7842

7841

7839

78387837 7836

7834

7833

7832

7831

7830

7829

7828

7827

78267825

78247823

7822

7821

7820

7819

7818

7817

7816

7815

7814

7813

7812

7811

7810

7809

7808 7807

7806

7805

7804

7803

7802

7801

7800

7799

7798

7797

7796

7795

7794

7793

77927791

7790 778977887787

7786

77857784

7783

7782

7780

7779

7778

77777776

7775

7774

7773

77717770

776877677766

7765

7764

77637762 7761

77607759

7758

7757

7756

775577547753

7752

7751 77507749

7748

7747

7746

774577447743

77427741

7740

7739

7738

7737

7736 77357734

7733

7732

7731

7730

77297728

7726

7725

7724

77237722

77217720

7719

7718

7717

7716

7715

7714

77137712

7711

7710

7709

7708

7707

7706

7705

7704

7703

7702

7701

7700 7699

7698

7697

7696

7695

7694

7693

7692

7690

7689

7688

7687

7685

7684

7683

7682

7681

7680

7679

76787677

76767675

7674

7673

7672

7671

7669

7667

7666

7665

7664

7663

7662

7661

7660

76597658

7657

7656

76557654

7653

7652

7651 7650

7649

7648

7647

7646

7645

7644

7643

7642

7641

76407639 76387637

7636

7635

7634

7632

7631

7630

7629

7628

762776267625

76247623

7621

7620

7619

7618

7617

7616

7615

7614

7613

7612

7611

76107609

7608

7607

7606

7605

7604

7603

7602

7601

7600

7599

7598

7597

7596

7595

75947593

75927591

7588

7587 7586

75857583 7582

7581 7580

757975787577 7576

7575

7574

7573

7572

75717570

7569

7568

7567

7566

7565

7564

7563 7562

7561

7560

7559

7558

7557

7556

75557554

7553

755275517550

7549

7548

75477545

7544

7543

7542 7541

7540

7539

7538

7537

75367535

7534

75337532

7531

7530

7529

7528

7527

7526

7525

7524

7523

75227521

7520

7519

7518 7517

7516

7515

7514

7513 7512

7511

7510

7509 7508

7507

75067505

7504

7503 7502 7501

7500

7499

7498

7497

7496 7495

7494

7493

7492

7491

7490

7489

7488

7487

7486

7485 7484

7483

7482

7481

74807479

7478

747774767475 7474

7473

7472

7471

7470

7469

74687467

74667465

7464

7463

7462

7461

7460

7459

7458

7457

7456

7455 7453

7452

7451

74507449

7448

7447

7446 74457444 7443

7442

7441

74407439

74387436

7435

7434

7433

7432

7431

7430

7429

7428

7427

7426

7425

7424 74237422

7421

7420

7419

7418 7417

7416

7415

7414

7413

7412

7411 74107409

7408

7407

74067405

7404

7403

7402

7398

7397

7396739573937392

7391

7390

7389 7388

73877386

7384

7383

7380

7379

7378

7376

7375

7374

7373

7372

7371

7369

7368

7367

7366

7365

7364

7363

7361 7360

7359

7358

7357

7356

7355

7354

7352 73517350

7348

7347

7346

7345

7344

73437342

7341

734073397338

7336

7334

7333

7332

7331

7330

7329

7328

7327

73267325

7323

7322

7321

7320

7319

7318

7317

7316

7315

7314

73137312 7311

7309

7308

7307

7306

7305

7304

7303 7302

7301

7300

72997298

7296

7295

7294

7293

7292

7291

7290

7289

7288

7287

7286

7285 7283

7282

7281

7280 7279

7278

7276 7275727472737272

7271

7270

7269

7267

7266

7265

7264

7263

7262

7261

7260

7259

7257

7256

72557253

7252

7250

7249

7248

7247

7246

7245

7244

7243

7242

7241

7240

7239

7238

7237

7236

7235

72347233 7232

7231

72307229

7228

7227

7226

7225

7224

7223

7222

7221

7220

72197218

7217

7216

7215

7214

7213

72107209

7208

7207

7206

7205 7204

7203 7202

7201

7199

7198

7197

7196

7195 7194

7190

7189

7188

7187

7186 7185

7182 7181

7180

7179

7178 7177

7176

7175

7173

7171

7169

7168

7167

7166

7165

7164

7163 7162

71617160

7159

71587157

7156 71557154

7153

7152

7150

7149

7148

7147

7145 7144

7143

71427141

7140

7139

7138

7136

7135

7134

7132

7131

7130

7129

7128

71277126

7125

7123

7121

7120

7119

7118

7117

7116

7115

7114

7113

7112

7111

7110

7109

7108

7107

71067104 7103

7102

71017100

7098

7097

70967095

7094

7093

7092

7091

7090

7089

7088

7087

7086

7085

7084

7083

7082

7081

7079

7078

70777076 7074

70737072

7071 70707069

7068

7067

7066

7065

7064

7062

706170607059

7058

7057

70567055

70547053

7052

70517050 7049

7048

7047

7046

7045

7044

7043

7042

7041

7040

7039

7038

7037

7036

7035

7034

7032

7031

7030

70297028

70277026

7025

70247023

7022

7021

7020

7019

7018

7017

7016

7015

7014 7013

7012

701070097008 7007

7006

7005

7004

7002

7001

7000

69996997

69966995

6994

6993

6991 6990

69896988

6987

6986

69856984

6983

6982

6981

6980

6979

6978

6976

6975

6974

6973

6971

6970

69696968

6967

6966

6963

6962

6961

6960

6959

69586957 6956

6955

6954

6953

6952

6951

6950

6949

6948

6947 6946 6945

69446943

6942

6941

6940

69396938

6937

6936

6935

6934

6933

6932

6930

6929

6927

69256924

6923

6922

6921 6920

6919

6918

6917 6916

6915 6913

6912 6911

6910 6909

6908 6907

6906

6905

6904

6903

6901

69006899

6898

6897

6896

689368926891

6890

6889

6888

6886 6885

68846883

6882

6881

6880

6879

6878

6877

6876

6875

6874

6872

68716870

6869

6868

6867

6866

6865686368626861 6860

6859

6858

6857

6856

6855

6854

6853

6852

6851

68506849

68486847

68466845

6844

6843

6842

6841

6840

6839 6838

68376836

6835

6834

6833

68326831 6830

6829

6827

6826

6824

6823

6822

6821

68206819

6818

6817

6816

6815

6814 6813

6812

6811 6810

6809

68086807

6806

6805

6804

68036802 6801

6800

6799

6798

6797

6796

67956794

6793

6792

6791

6790

6789

6787

6786

6785

6784

6783

6781

6780 6779

6778

6777

6776

6775

6774

6773

6770

6769

6768

6767

6766

67656764

6762

6761

6760

6759

6757

6756

6755

67546753

6752

6750

6749

6748

6747

6746 6745

6744

6743

6742

6741

6740

6739

6738

6737

67366735 6732

6731

67306729

6728

6727

6725 6724

67236722

672167206719

6718

6717 6716

6715

6714

6713

6712

6711

6710

6709

6708 6707

67066705

67046703

6702

6701

6700

66996698 66976696

6695

6694

6693

6692

6691

6690

6689

6688

66876686

6684

6683

6682

6681

6679

6677

6675 6673 6672

6670 6669

6668

6667

66666665

6664

6663

66626661 66606659

6658

6657

6656

6655

6654

6653

66516650

6649

6648 66476646 6644

6643

6642 6641

6640

6639

6638

6637

6636

6635

6634

6633

6632

6631

6630

6629

6628 66276626

6625

6624

66236622

6621

6620

66196618 6617

6614

6613 6612

6611

6610

6609

6607

66066605

6604

6603

6602

66016600

65986597

6596

6595

6594

65936592 6591

6590

6589

6588

6587

6586

6585

6584

6583

6582

6581

6580

65796578

6577 6576

6575

6574

6573

6572

6571 6570

6569

6568

6566

6565

6564

6563

6562

6561

6559

6557

6556

6555

6554

6553

6552

6551

65506549

6548

6547 6546

6545

6544

6543

6542

6541

6540

6538

6537

6536

65356534 6533

65326531

6530

6529

6528

652665256523

6522

6521

6520

6519

65176516

6515 6514

6513

6512

6511

6510

6509

6508

6507

6506

6505

6504

6502 6501

6500

6499 6498

6497

6496 6495

6493

6492

6491

6490

6489

6488

6487

6485

6484

6483

64826481

6480

6479

6478 647664756474

6473

6472

6471

6469

6468

6467

6466

6465

6464

6463

6461

6460 6459

6458

6457

64566454

6453

6451

6450

6449

6448

6447

6446 6445

6444

64436442

6441

6440

6439

6438

6437

6436 6435

6434

6433

64326431 6430

6429

64286427

6426

6425

6424

6423

6422

6421

6420

6419

6417

6416 6415

6414

6413

6412 6411

64106409

6408

6407

6406

64056404

6403

6402

64016400 6399

6398

6397

6396

6395

6394

6393

63926391

6390

6389

6388

6387

6386

6385

6384

63836382

6380

6379

6378

6377

63766375 6374

6373

6372

6371

63706369

63686367 6365

6362

6361

6360

6359

6358

6357

6356 6355

6354

6353

6352 6351

63506349

6348

6346

6345

6344 63436341

6340

6339

6338

6337

6335

6334 6333

63326331

6330

6329

6328

6327

6326

6325

6324

6323

6321

6320

6319

6318

6317

6316

6315

6314

6313

6312

6311 6310

63096308

6307

6306

6305 6304

6303

6302

6301

6300

6299 6298 6297

6296

6295

6294

6293

6291

6290 628962886287

6286

6285

6284

6283

6282

6281

6280

6278

6277

6276

627562746273

6272

6271 6270

6269

6268

6266

6265

6264

6263

6262

6261

6260

6259

62586257

6256

6255

6254

6253

6252

6251

62506249

6248

62476246

62456244

6243

6242

6241

6240

6239

6238

6236

6235

6234

6233

6231

6230 6229

6228

6227

62266225

6224

6223 6222

62216220

6219

6218

62176216

6215

6214

6213

6212

6210

6209

62086207

6205

6204

6203

62026201

6200

61996198

6197

6196

61956193

61926191

61906189

61886187

6185

6182

6181

6180

6179

61786176 6175

6174

6173

6172

6171

6170 6169

61686167

6166

61656164

616361616159

6158

6157

6156

6155

6154

6153

6152

61516150 6149

6148

6147

6146

6145

6143

6142 6141

61406139

61386137

6136

6135

6134

6133

6132

6131

6130

6128 61276126

6125

6124

61236121

6120

6119

611861176116

6115

6114

6113

6112

6111

6109

6108

6107

6106

61056104

6103 6101

6100

6099

6098

6097

6096

6095

6094

6093

6092

60916090

6089

6088

6087

6086

6084

6083

6081

6080

6079

60786077

6076

6075

6074

6073 6072

6071

6069

6068 6067

6066

6065 6064

6062

6061

6060

6059

6058

6057

6056

6055

6054

6053

6052

6051

6050

6049

6047

604560446043

6041

6039

60386037

60366035

6034

6033 6032 6030

6029

6028

6027

6026

6025

6024

6023 6022

6021

6020

6019

6018

6017

6016

6015

6014

6013

6012

6011

6010

6009

6008

60066005

6004

6002

6001 6000

5999

5998

5997 5996

5995

5993

5992 5991

5990

5988 5987

5986

5985

59845983

5982

5981

5980

5979

5978

5977

5976

5975

5974

5973

5972

5971

5970

5968

59675966

5965 5964

5963

5962

5961

59605959

5958

5957

59565955

5954

5953

5952

59505949 5948

5947

5945

5944

5943

5941

5940

5939

5938 5936

5934

5932

5930

59295928

5927

5925

5924

5922

59215920

5919

59185917

5916

5915

5914

5913

5912

5911

5909

5908

5906

5905

5903

5902 5901

5900

5899

5898

5897

5896

5895

5894

5893 5892

5891

5890

5889

5888

5887

58865884

5883

5882

5881

5880

58795878

58775876

5875

5874 5873

5872

5871

5870

5869

58685867 58665865 58645863

5862

5861

5860

5858

5857 58555854

5853

5852

5851

5850

5849

5848

5846

5843

5842

58405839

5838

5837

5836

5835

5834

5833

5832 5831

5830

5829

5828 5826

5825

5824 5823

5822

58215820 5819

5818

5817

5815

5814

5813

58125811

5809

5808 5807

5806

5804

5802

5800

5798

5797

5796

5795 5794 5793 57925790

5789 5787

5786

5785

5784

5783 5782

5781

5780

5779

5777

5776

5775

5774

57735772

5771

5770

57695768

5766

5765

5764

5763

5761

5759

5758

5757

5756

5755

5754

57535752

5751

5750

5749

5748

5747

5746

5745 5744

5743

5742

5741

5740

5739

5738

5737

5736

5735

5734

5733

5732

5731

5730

5729

5728

5727

5726

5725

5724

5723

5722

5721

5720

5719

5718

57165715

5714

5713

5712

5710

57095708

5707

5706

5704

5703 5702 5701

5700

5699

5698

5697

5696

5695

5694

5693

5692

5691

5690

5689 5688

5687

56865685

5684

5683

5682

56815680

5679

5678

5677

5676

5675

5674

5673

5672

5671

5670 5669

56685667

5666

5664

5663

5662

5661

56605659

56575656 5654

5653

5652

5650

5649

5648

56475646

5645

5644

5643

5642

5641

5640

5639 56385637

5636

5635

5634 56335632

5631

56305629

5628

56275626

5625

5624

5623

56225621

5620

5619

5617 5616

5615

5614

56125611

5610 5609

5608

5607

5606

5605 5604

5603

5602

5601

5600

5599 5598

5597

5596

5595

5594

5593

5592

5591

5590

5589

5588 5587

5586

55855584

5583

5582

5581

5580

5579

55785577 5576

5575

5574

5573

5572

5571

5570

5569

5568

55675566

5565

5564

55635562

5561

5560

5559

5558

5557

5556

55555554

5553

5552

55515550

5549

5548

55475546

55455544

5543

5542

5541

5540

5539

5538

5537

55365535

55345533 5532

5531

5530

5529

5528

5527

5526

5525

5524

5523

5522

55215520

5519

55185517

5516

5515

5514

5513

5512

5511

5510

5509

5508 5507

5506

5505

5504

5503

5502

5501

5500

5499

5498

5497

5496

5495

5494

5493

5492

5491

5490

5487

5486

5485

5484 5483

5482

5481

5480

54795478

5477

5476

5475

5474

5473

5472

5471

5470

5469

5468

5467

5466

5465

54645463

5462

5461

5460

5459

5458

5457

5456

5455

5454

54535452

5451

5450

5449

5448

5447

5446

5445

5444

5443

5442

5441

54405439

5438

5437

5436

5435

5434

54335432

5431

5430

54295428

5427

5426

5425

5424

5423

5422

5421

5420

54195418

5417

5416

5415

5414

5413

54125411

5410

5409

5408

5407

5406

5404

5403

5402

5401 5399

5398

5397 5396

5395

5394

5393

5392

53915390

5389

5388

5387

5386

5385

53845383

5381

5380

5378

537753765375

5374

5372

5371

5370

5369

5368

5367 5366

5365

5364

5363

5362

5361

5360

5359

5358

53575356 5355

53525351

5350

53495348

5347

5346

5345

5344 53435342

5341

5340

5339

53385337 53365334533353325331 5330

5329

5328 53265325

5324

5323

5322

5321

5320

5319

5318

5317

5315

5314

5313

5312

5311

53105309

5308

5307

5306

53055304

5303

53025301

5300

52995298

52975295

5293

5292

5291 5290 5289

52885287

5286

5285

5284

5283

52825281 5280 527952785277

5276

5275

5274

5273

5272

5271

5270

5269

5268

5267

5266

5265

5264

5263

5262

5261 5260

5259

5258

5257

5256

5254 5252

5251

5250

5249

5248

5247 5246

5245

5244

52435242

5240

5239

5238

5237

52365235 52345233

5232

5231

5230522952285227

5226

52255224 5223

52225221

5220

5219

5218

52175216

5215 5214

5213

5212

5211

5210 5209

5208

5207

5206

5205

5204

5203

5202

5201

5200

5199

5198

5197

51965195

51945193 5192

5190

5189

5188

5187

5186

5185

5184

51835182

5181

5180

5179

5178

5177

5176

51755174

5173

5172

5171

5170

5169

5168

5167 51665165

5164

5163 5162

5161 51605159 51585157

51565155

5154

5153

5152

5151

51505149

5148

5147

5146

5145

5144

514351425141

5140

5139

5138

5136

5135

5134

5133

5132

5131

5130

512951285127

5124

5123

5122

5121

5120

5119

5118

5117

5116 5115

5114

5113

5112

5111

51105109

5108

51075106

5105

51045103

5102 51015100

50995098

5097

5096

5095

5094

5093

5092

5091

5090 5089 5088

5087

5086

5085

5084

5083

5082

508150805079

5078

5077

5076

5075

5074

5073

5072

5071

5070

50695068

5067

5066

5065

5064

5063

5062

5061

5060

5059

50585057

5056

5054

50535052

5051

5049

5048

5047

5046

5045

50445043

5042

5041

5040

5039

5038

5037

5036

5034

5033

5032

5031

5030

50295028

5027

5026

5025

5024

5023 50225021

502050195018 5017

5016

5015

5014

5013

5012

5011

5010

5009

5008

5007

5006

5005 5004

5003

5002

5001

5000

4999

4998 499749964995

4994

4993

4992

4991

4990

4989

4988

4987

4986

4985

4984 4983

4982

4981 4980

4979

4978

4977

4976

4975

49744973

4972

4971 4970

4969

49684967

4966

49654964

4963

4962

4961

49604959

4958

4957

4956

4955

49544953

4952 4951

4950

4949

4948

4947

4946

4945

4944 4943

4942

4941

49404939

49384937

4936

4935

4934

4933

4932 4931

4930 4929

4928

4927

4926

4925

492449234922

4921

4920

4919

49184917

4916

4915

4914

4913

4912

4911

4910

4909

49084907

4906

4905

49044903

4902

4901

4900

4899

4897

4896

48954894

4893

4892

4891

4890

48894888

4887

4886

4885

4884

4883

4881 4880

4879

4878

4877

4876

4874

4873

48724871

4870

486948684867

4866

4865

48644863

4862

4861

4860

485948584857

4856

4855

4854

4853

4852

4851

48504849

4848

4847

4846

4845

4844

4843

4842

48414839

4838

4837

48364835

4834 4832

4831

4830

4829

4828

4827

4825

4824

4823

4822

4820

48194818

4817

4816

4815

48144813

4812

48114809

4808

4807

4806

4805

4804

4803 4802

48014799

4798

4797

4796

4795

4794

4793 4792 4791

4790

47894788

4787

4786

4784

478347824781

4780

4779 4778

4777 47764775

4774

477347724771

4770

4769

476747664765

4764

4763

4762

4761

4760

4759

4758

4757

4756 4755

4754

47534752

4751 475047494748

4747

4746 474547444743

4742

4741

4739

4738 4737

4736

473547344733

4732

47304729

4728

4727

4726

4725

4724

4723

4722 4721

4720

4719

4718

47154714

4713

4712

4711

4710 4709

4708

4707

4706

4705

4704

4703 4701

4700

4699

4698

4697

4696

4695

4694

46934692

4691 4690

4689

4688

4687

4686

4685

4684

46834682

4681

4680

4679

4678

46774676

4675 4674

4673

4672

4671

46704669

4668

4667

4666

4665

4664

46624661 4660

4659 4658

4657

4656 46554654

4653

4651

4650

4649

46484647

4646

4645

4644 4642

4641

4640

4639

4638

4637

4636

4635

4634

46334632 46314630

4629

4628

4627

46264625

4624

4623

4622

4621

4620

4619

4618

4617

46164615

4614

4613

46124611

46104609

4608

4606 4605

4604

4603

4602

46014600 4599

4597 4596

4595

4594

4593

4592

4591

45904589

4588

4587

4586

4585

4584

4583

4582

45814580

45794578

45774576 4574

4573

4572

4571

4570

4568 45674566

45654564

45634562

4561 456045594558

4557

4556

4555

45544552

4551 4550

4549

4548 4547

4546

4545

4544

4543

4542

4541

4540

4539

4538

4537

4536

45354534

4533

4532

45314530

4529

4528

4527 4526 4525

4524

45234522

4521

4520

4519

4518 4517

4516

4515

4514

4513

4512

4511

4510

4509

4508

4507

4506

4505

4504

4503

4502

4501 4500

44994498

4497

4496

4495

44944493

4491

4490

4489

4488

4487

44854484

44834482

44814480

4479

4478

4477

4476

4475

4474

4473

447244714470 44694468

4467

4466

4465

4464

4463

4462

4461

4460

4459 4458

4457

4456

4455

4454 44534452 445144504449

4448

4447

4446

4445

4444

4443

4442

443944384437

4436

4435

4434

4433

4432

4431

44304429

4428

4427

4426

4425

4424

44234421

4420

4419 4418

4417

4416

4415

4414

4413

4412

4411

4410

4409

4408

4406

4405

4404

4403 4402

4401

4400 4398

4397 4395

4394 43934392

43914390

4389

4388

43874385 43844383

4382

4381

4380

4379 4378

4377

43764375

4374

4373 4372

4371

4370

4369

4368

4367

4366

4365

4364

4363

43624361

4360

4359

4358

43574356

4355

4354

4353

4350 4348

4347 4346

4345

4344

43434342

4341

4340

4339

4338 4337

4336

4335

4334

433343324331

4330

43294328

4327

43264325 4324

4323

4322

4321

4319

4318

43174316

4315 4314

4313

4312 4311 4310

4308

43074306

4305 4304

4302

4301

43004299

4298

42974296

4295

4294

4293

4292

4291

4290

4289 4288 428742854284

4283

4282

4281

4280

4279

42784277 4276

4275

4274

4272

4271

42704269

4268

4267

42664265

4264 4263

4262

4260

4259 4258

4257

4256

4255 42544253

4252

42514250 4249

4248

4247 4246

4244

42434242

4241 4240

4239

4238

4237

4236

423542344233

4232

4231

4230

4228

42274226

4225

4224

4223

4222

4221

4220

4219

4218

4217

4216

4215

4214

4213

4212

4211

4210

4209

4208

4207

42054204

4203

4202

42014200

4199

41984197

4196 4195 4194

41924191

4190

4189

4188

4187

4186

4185 4184

418341824181

41804179 41784177 4176

4175

4174

4173

4172

41704169

4168

4167

4166

4165

4164

4163 4162

4161

4160

4159

4158

4157

4156 4155

4154

4153

4151 4150

4149

4147

4146

4145

4144

4143

4142

4141

4140

4139

41384137

4136

41354134 4133

4132

4131 4130

41294128 41274126 4125

4124

4123 4122

41214120

41194118

4116

4115

411441134112

4110

4109

4108

4107

4106

41054104 4103

4102

410141004099

4098

4097

4096

4095

4093

40924091

4090 4089

4087

4086

4085 4084

4083

4082

4080

4078

4077

4076

4075

4074

4072

4071

4070

4069

40684067

4066

40654064 406340624061

4060 4059

4058

4057

4056 4055

4054

4053 4052

4051

4050

4049

4048

4047

40464045

4044

4043 4042

4041 404040394038

4037 4036

4035

40344033

40324031

4030

40294028

4027

4026

4025

4024

4023

4022

4021

4020

40194018401740164015

4014

4013

4012

4011 401040094008

4007 40064005

4004

4003

4002 40013999

3997

3996

39953994

3993 39923991

3990

398939883987

3986

3985

3984

3983

3982

39813980

3979

3978

3977

39763975

3974

3972

3971 3970

3968

3967

3966

3965

39643963

3962

3961

39603959

3958

3957

3956

3955

3954

3953

3952395139503949

3948

39473946

3945

3943

3942

3941

3940

3939

3938

3937

3936

39353934 3932

3931

39303929

3928

3927

3926 3925

3923

3922

39213920

39183917

3916

39153914

3913

3912 3911

3910

3909 3908

3906

39053904

39033902

3901

3900

3899

38983897

3896

3895 3894

3893

3892

3891

3890

3889

3888

3887

3886 3885

3884

3883

3881

3880

38793878

38773876 3875

3874

3873

3872

3871

3870

3868

38673866

3865

3864

3863

3862

3861 3860

3859

38583857

3856

3855

3854

3853

3852

3851 3850

3849

3848

3847

3846

3845

3843

38423841

3840

3839

3838

3837

3836

3835

3834

3833

3832

3831

3830

38293828

3827 3826

3825

38243823

3822

3821

3820

3819

3818

3817

38163815

3814381338123811

3809 3808

3807

3806

3805

38043803

3802

3801 3800

379937983797 3796

379537943793

3792

3791

3790

37893788

3787

3786

3785

3784

3783

37823781

3780

37793778 3777

3776

3775

3774

3773

3772

3771

3770

3769

3768

3767

3766

3765

3764

3763

3762

37613760

3759

3758

3757

37563755

37543753

3752

3751

3750

3749

3748

3747

3745

3744

3743 3742

3741

3740

3739

3738

3737

3736

3735

3734

3733

3732

3731

37303729

3728

3727

3726

3725

3724

3723

3722

3721

3720

3719

3718

3717

3716

3715

3714

3713

3712

3711

3710

3709

3708

37073706

3705

3704

3703

37023701 3700

3699369836973696

3695

3694

3693

3692

3691

3690

3687 3686

3685

3684

3683

3682

3681

36803679

367836773676

3675

3674

3673

36723671

3670

3669

3668

3667

3666

3665

3664

3663 3662

3661

3660

3659

3658

3657

3656

3655

3654 3653

3652

3651

3650

3649

3648

3645

3644

36433642

3641

3640

3639

3638

36373636 363536343633

3632

3631

36303629

3628

3626

3625

3624

3623

3622

3621

3620

3619

3618

36173616

3615

3614

3613

3612

36113610

360936073606

3604

3603 3602

3601

3600

3599

3598

3597

3596

3593

3592

3591

3590

3589

3588

35863585 35843583

3581

3580

3579

3578

3577

3576

357535743573

3572

3571

3570

3569 3568

3567

35663565

35643563

3562

3561

35603559

3558

3557

3556

3555 3554

3553

3552

3551

3550

3549

3548

3547

3546

35453544

3543

3542

3541

3540

3539

3538

3537

3536

3535

3534

3533

3532

3531

3530

3529

3528

3527 3526

3525

3524 3520

3519 3518

3517

3514

3513

35123511

3510

3509 3507

35063504 3503

3502

3501

350034993498

3497 3496

3495

3494

3493

3492

3491

3490

3489

34883487

3486

3485

3484

3483

3482

3481

3480

3479

3478

3477

3476 34753473

3472

3471

3470

3469

34683467

3466

3465

3464 3463

3462

3461

3460

3459

3458

3457

34563455

34543453

3452

34513450 3449

3448

344634453444

3443

344234413440 3438

3437

3436

3435

34343433

3432

3431

3430

34293428

3427

3426

3425

3424

342334223421

3420

3419

3418

3417

3416

3414

3413

3412

3411

3410

3409

3408

3407

3406

3405

3404

3403

3401 3400

3399

3398

3397

3396

3395

3394

3393

3392

3391

3390

3389

3388

3387

3386

3385

3384

33833382

3381

338033793378

3377 3376

3375

3374

3373

3372

3371

3370

3369

33683367

3366

3365

33643363

3362

3361

3360

3359 3358

3357

3356

3355

3353

3352

3351

3349

3348

3347

3346

3345 33443343

33423341

3339

3338

3337

3336 3335

3334

3332

3331

33303328 3327

3326

3325

3324

3323

3322

3321

3320

3319

3318

3317

3316 33153314

3313

3312 3311

3309

33083306

3305

3304

3303

3302

3301 3300

3299

3298 3297

3296

3295

3294

3293

32923291

3290

3289

3288

3287

3286

3285

3284

3283

3282

32813280 3279

3278

3277

3276

3275

3274

32733272

3271

3270

3269

3267

3266

3265

3263

3262

3261

3260 3259

3258

3256

3255

3254

32533252325132503249

3248

3247

3246

3244

3243

32423241

3240

3239

3238

3237

3236

32353234 3233

3232

3231

3230

3229 3228 3227

3226

3225

3224

3223

322232213220

3219

3218

3217

3216

32153214

3213

32123211

3210

3209

3208 3207

3206

3205

3204

3203 3202

3201

32003199

3198

3197

3196

3195

31943193

3192 3191

3190

3189

3188

3187

31863185

3184

3182 31813180

3179

3178

31773176

3174

3173

31723171

3170

3169

3168

3167

3166

3165

3164

3163

3162

3161 3160

3159

315831573156

3154

3152 3151

3150

31493148

3147

31463145

3144

3143

3142

3141 3140

3139

3138 31363135

3133 3132

3129

3127

3126

31253124

3123

3122

3121

3120

31193118

3116

3115

3114

3113

3112

3111

3110

3109

3108

3107

3106

31053104

3102

3101

3100

3099

3097

3096

3095

3094 3093

30923091

3090

3088

3087

3086

3085

30843083

3082

3081

3080

3079

307830773076 3074 30733072

3071

3070 3069

306830673066

30653064

3063

3062

3061

30603059

3058

3057

3056

3055

3054

30533052

3051

3050

3049

3048

30473046

30453044

3043

3042

3041

3040

3039

3038

3037

3036

3035

3033

3032

3031

3030

3029

30283027

30263025

302430233022 3021 3020

30193018 3017

3016

3015

3014

30133012

3011

3010

3009

3008

3006

3005

3004

3003

3002

3001

3000 2999 2998

2997

2996

2995

2994

2993 2992

29912990

2989

29882987

29862985

2984

2983

29822981

2980

2979

2978

2977

2976

2975

2973

29722971

2970

2969

2968

2967

2966

2965

2964

2963

2962

2961

2960

2959

2958

2957

29562955 2954

29532952 29512950

2949

2948

2947

2946

2945

29442943

2942

2941

2940

2939 293829372936

2935

2934 29332932 293129302929

2927

2926

2925

2923

2922

2921

2920

2919

2918

2917

2916 2915

2914

2913

2912 2911

2909

2908 2907

2906

2905

29042903

2902

2901 2900

2899

2898

28972896

2895

2894

2893

2892

2891

2890

2889

2888

2887 2886

2885

2884

2883

2882

2881

2880

2878

2877

2876

2875

2874

2873

28722871

2870

2869 2868 2867

2866

2865

2864

2863

2862

2861

2860

2857

28562855

2854

2853

2852 2851

2850

2849

2848

28472846 2845

2844

28432842

2840

28392838

2837

2836 2835

2833

2832 2831

2830

28292828

2826

2825

2824

2823

2822

2821

2820

2819

2818

2817

2816

2815

2814

2812

2811

2810

2809

2807

2806

2805

2804

2803

2802

28012799

2798

2797

2796

2795 27942793

2792

2791

2790

2788

2787

2786

2785

2784

2783

2782

2781

2780

2779

2778

2777

2776

2775

2774

2773

2772

27712770

2769

2768

2767

2765 2764

2763

27622761

2760

2759

2758

2756

27552754

2753

2752

2751

2750

2749

2748 2747

2746

2745

2744

27432742

27412740

2739 2738

2737

27362735

2734

2733

2732

2731

2730

2729

2728

27272726

2725

2724

2723

27222721

2720

2719

2718

2717

2716

27152714

2713

2712

2710

2709

2708

2707

2706

2705

2704

2703

2702

2701

2700

2699

2698 2697

2696

2695

2694

2693

2692

26912690

2689

2687

2686

2684 26832682

2681

2680

2679

2678

26772676

2675

2674

2673

2672

2671

26702669

2668

2667

2666

2665

2664

2663

2662

266126602659

2658

2657

2656

26552654

2653

2652 2651

2650

2649

2648

2647

2646

2645

2644

26432642

2641

2640

2639

2638 26372636

2634

2633

2632

2631

2630

2629

2628

26272626

26252624

2623

26222621

2620 2619 2618

2617

2616

2615

2614

2613

2612

2611

26102609

2608

2607

2606

2605

26042603

2602

26012600

2599

2598

2597

2596

2595 2594

2593

2592

2591

2590

2589

2588

2587

2585

25842583

2582

2581

2579

2578 25772576

2575 2574

2573

2572

2571

2570

2569

2568

2567

2566

2565 25642563

2562

25612560

2559

2558

2557

2556

2555

2554

2553

2552 2551

2550

2549

2548

25472546 2545

2544

2543

2542

254125402539

2538

25372536

2535

2534

2533

2532

2531

2530

2529 25282527

2526

2525

2524

2523

2522 25212520

251925182517

2515 2514

25132512

2511

2509

2508

2507 2506

2505

2504

2503

2502

2501

2500

2499

24982497

2496

2495

2494

2493

2492

2491

2490

2489

2488

2487

2486

2485

2484

2482

2481

2480

2478 247724762475 2474

2473 2472

2471

2470

2468

2467

2466

2465

2464 2462

2461

2460

2459

2458

2457

2456

24552454

24532452 24512450

2449

2448

2447

244624452444

244324422441

2440 2439

2438

24372436

2435

24342432

2431

2429

2428

2427

24252424 2422

2421

2420

2419

24182417 2416 2415

2413

2412

2411 2410

2409

2408

2407

2406

2405240424032402

2401

2400 2399

2398

2397

2396

2395

23942393

2392

2391

2390

2389

2388

2387

2386

2384

2383 23822381

2380

2379

23782377

2376

2374 23732372

2371

2370 23682367

2366

2365 23642363

2362

2361

23602359

2358

2357

2356

23552354

2353 2351

2350

2349

2348

2347

2346

2345

2344

2343

2342

2341

2340

2339

2338

2337

2336

2335

23342333

2332

2331

2330

2329 2328

2327

2326

2325

23242323

2322

23212320 2319

2318

23172316

2315

2314

2313

2312

231123102309 2308

2307

2306

2305

2304

2303

2302

2300

2299

2298

2297

2296

2295

229422932292

2291

2290

2289

2288

2287 2286

2285

2284

2283

2282

2281

2279

2278227722762275

2274

2273 2272

2271

2270

2269

2268

2267

2266

2265

2264

2263

22622261

2260

2259

2258 2257

2256

2255

2254

2253

2252

2251

2250

2249

2248

2246

2244

2243

2242

2241

2240

2239

2238

2237

2236

2235

2234

2233

22322231

2230

2229

2228

2227

2226

22252224

2223

2222

2221

2220

2219

2218

2217

2216

2215

2214 2213

2212

2211

22102209

2208

2207 2206

2205

2204

2203

2202

2201

22002199

2198

2197 2196

2195

2194

2193

21922191

2190

2189

2188

2187

2185

2184

2183 2182

2181

21802179

2178

2177

2176 2174

2173

2172 2171

2170

2168

2167

2166

2165

216421632162

2161

2160

2159

2158

2157

2156

21552153 21522151 2150

2149

2148

2147

2146

2145 2144

2143

21422141

21402139

21382137

2136

2135

2134

2133

2132

2131

2130

2129

2128

2126

2125

212421232122

2121

2119

2118

2117

2116

2115

2114

2113

2112

2111

2110

2109

2107

2106

21052104

2103

2102 2101

2100

2099

2098

2097

2096

2095

2094

2093

2091

209020892088

2087

2086

2085

2084

2083

2082

2081

2080

2079

2078

2077

2076

2075

2074

2073

2072

2071

2070

2069

206820672066

2064

2063

2062

2061

20602059

2058

2057

2056

2055

2054

2053

2052

2051

2050

2049

2048

2047

2046

2045

2044

2043

2041

2040

2039

2038

2037

2036

2035

2034

2033 2032

20312030

2029 2028

2027

2026

20252024

2023

2022

2021

2020201920182017

2016

2015

2014

2013

2012

2011 2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

20001999

1998 1997

19961995

1994

1993

1992

1991

19901989

19881987 19861985

19841983

1982

1981

1980 197919781977

1976

1975

1974

1973

1972

1971

1970

1969 1968

19671966

1965

1964

1963

1962

1961

1960

1959

1958

19571956 1955

1954

1953

1952

1951

1950

1949

1948

1947

1945

19441943

1942

1941

1940

19391938

1937

1936

1935

1934

1933

1932 1931

19301929 1928

1927

1926

19251924

1923

1922

1921

1920

1919

1918

1917

1916

1915

1914

1912

1911

1910

1909

1907

1906

1904

1903

1902

1901 1900 1899

1898

1896

1895

1894 1893

1892

1891

1890

1889

1888

18871886

188518841883

1882

1881

1880

1879

18781877

1876

1875

1874

1873

1872

1871

1870

1869

1868

1867

186618651864

1863

1862

1861 1860

1859

1858

1857

1856

18551854

1853

1852

1851

1850

1849

18481847

1846

1845

1844

1843 1842

1841 1839

1838

1837

1836

1835

1834

1832

1831

1830

1829

1828

1827

1826

1825

1824

1823

1822

1821 1820

1819

1818

1817

18161815

1813

1812

1810

1809 1808 1807

1806

180518041803

1802

18011800

1799

1798

1797

1796

17941793

1791 17901789

17881787

1786

1785 1784

1783

1782

1781

1780

1779

1778

1777

17761775

1774

1773 1772

1771

1770

1769

1768

1766

1765

17641763

1762

1761 1760

1759

1758

1757

1756 1755

1754

1753

1752

1751

1750

1749

1748

1747

1746

17451743

1742

1741

1740

1739

1738

1737

1736

1735

1734

1733

1732

1731 1730

17291728

1727

1726

1725

1724

1723

17221721

1720

1719

1718

1717

1716

1715

1714

1713

1712

17111710

1709

1708

1707

1706

1705

17041703

1702

1701

1700

1699 1698

1697

169616951694

1693

1692

1691

1690

1689

1688

1687 1686

1685

16841683 1682

1681

1680

16791678

1677

1676

1675

1674

16731672

1671

1670

1669

1668

166616651664

1663

1662

1661

16601659

16581657

1656

1655

16541653

1652 1651

1650

1649 16481647

1646

1645

1644

1643

16421641

1640

16391638

1637

1636

1635

1634 16331632

1631

1630

1629

1628

1627

1626

1625

1624

1623

1622

1621

1620

16191618

1617

1616

1615

1612

1611

1610

1609

1608

1607

1606

16051604

1603

1602

1601

1600

1599

1598

1597

1596

15941593 1592

1591

15901589

1588

1587

158615851584

1583

15821581

1580

1578

1577

1576

1575

1574

1573 1572

15711570

1569

1568

1567

1566

1565 1563 15621561

156015591558

1557

15561555

1554

1553

1552

15511550 1549

1547

15461545

1544

1543

1542

1541

15401539

1538

1537

1536

15351534

1533

1532

1531

1530

1529

1528

1527

1526

15251524

15231522

1521

1520

1519

1518 1517

1516

1515

1514

1513

1512

1511

1510 150815071506 1505

1504

1503

15021500

1499

1498 1497

1496

1495 14941493

1492

1491

1490

1489

1488

148714861485

1484

1483

1482

1481

1480

1479

1478

1477

1476

1475

1474

1473

1472

1471

1470

1469

1468 14671466 1465

1464

146314621461

1459

1458

1457

1456

1455

1453

1452

1451

1450 1449

1448

1447

1446

1445

1444

1443

1442

1441

1440

14391438

1437

1436

1435

1434

1433

1432

1430 14291428

1427

1425 1424

1423

1422

1421

1420

1419

14181417

1415

1414

1413

14121411 1410 14091408

1407

14061405 1404

1403

1402

1401

1400

13991398

13971396

1395

1394

1393 1392

1391

1390

13891388

1387

1386

13851384 1383

1382

1381

13801379

137813771376

1375

1374

1373

1372

1371

1370

13691368

1367

1366 1365

1364

1363

1362

1361

1360

1359

1358

1357

1356

1355

1354

1353

1352

1350

1349

1348

1347

1346

1345

1344

1342

1341

1340

1339

13381337

1336

1335

1334

1333

1332

13311330

1329 1328

1327 1326

1325

13241323

1322

1321

1320

1319

1318

1317

1316

1315

1314

1313

1312

1311

1310

1309 1308

1307

1306 130513041303 13021301

1300

1299

1298 1297

1296

12951294

1293

1292

1291

1290 1289

1288

1287

1286

1285 1284

1283

1282

1281

1280

1279

1278 127712761275

1274

1273

1272

1270

1269

1268

1267

1266

1264

1263

1262

12611260

1259

1258

1257

125612551254 1253

1252

1251

1250

1249

1248 1247 1246

1245

1244

1242

12411240

1239

1238

1237

12361235

1234

1233

1232

1231

1230

1229

1228

12271226

1225

1224

1223

1222

1221

1220

12191218

1217

1216 1215

1214

1213

1212

12111210

1209

1207 1206

1205 12041203

12021201

1200

1199

11981197

11961195

1194

1193

11921191

1190

1189

11871186

1185

1184

11831182

1181

1180

1179

1178

1176

1175 1174

11731172 1171

1170

1169

1168

1167

1166

1165

1164

1163

1162

1161

1160

1159

1158

1157

1155

1154

1153

1152

11511150

1149

1148

1147

1146

1145

1144

1143

1142

1141

1140

1139

1138

1137

1136

1135

1134

11331132 1131

1130

1129

1128

1127

1126

1125

11231122 1121

1120

11191118

1116

11151114

1113

1112

11111110

1109

1108

11071106 1105

1104

1103 1102

1101

1100

1099

1098

10971096

1095

1094

1093

10921091

10901089

108810871086

1085

10841083

10821081

1080

1079

1078

1077

1076

1075

1074 1073

1072

1071

1070

1069

1068

1067

1066

1065

1064 1063

1062

1061 1060

1059

10581057 1056

105510541053

1052

10511050

1049

10481047 1046

1045

1044

1043

1042

1041

1040

1039

1038

1037

1036

1035

1034

1033

1032

10311030

102910281027

10261025

1024

1023 1022

10211020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010

1009

1008

1007

1006

1005

1004

100310021001

1000

999998

997

996995

994993

992

991

990

989

988

987

986

985 984

983

982

981980 979

978

977

976

975

974

973

972

971

970

969

968967 966

965964 963962

961

960

959

958

957

956 955

954

953

952951

950

949

948947 946945

944

943942 941

940

939

938

937 936 935934 933

932

931

930

929928927926

925

924

923

922

921

920919 917

916

915

914 913

912911

910 909

907 906

905

904

903902901

900

899898

897

896 895

894

893

892

890

889

888

887

886

885

884

883

882

880879878 877

876

875

874873

872

871

870

868

867

866

865

864

863 862

861 860

859

858857

856

855

854

853

852

851

850

849

848

847846

845

844

843

842

841

840

839

838

837

836

835

834833

832

831

830 829

828

827

826

825

824823

822

821 820

819

818

816

815

814

813

812

811

810

809

808807

806

805803 802

801 800

799

798

797

796

795

794

793

792

791 790

789

788

787

786

784

783

782 781780

779

778

777776

775

774

773

772

771

770

769

768766 765 764

763762

761

760

759

758

757

756

755

754

753

752

751

750749

748

747

746

745

744 743

742 741740739

738

737

736

735

734

733

732

731

730

729

728

727

726

725

724 723722721

720719

718

717

716

715

714 713712

711

710709

708

707706

705

704

703

702701

700

699698

697

696

695

694

693

692

691

690

689688

687686685684683

682

681

680679

678

677

676

675674

673

672

671670669

668

667

666665

664

663

662

661660

659

658

657

656

655

654

653652

651

650

649

648 647

646

645

644

642 641 640

639

637636

635634

633

632

631630629

628

627626

625624

623 621

620

619

618 617

616

615

614

613

612611

610609

608

607 606

605

604

603

602

601

600

599

598

597

596

594

593

592

591

590

589588 587

586

585

584

583

582

581580

579

578577

575

574

573

572

571

570 569

568

567566

565

564

563

562

561

560

559

558

557556555

554

553

552

551

550

549

548547

546

545

544

543542

541

540

539 538

537

536535 534533

532

531

530

529

528 527

526

525

524523

522

521 520

519

518

517

516

515

514

513

512

511510

508

507

506

505504

503

502

501

500

499

498

497

496

495

494

493

492

491

490489

488

487 486

485484

483

482481

480 479

478

477

476

475

474

473

472

471

470469

468 467

466

465

464

463

462

461460459 458

457

456

455

454

453

452451 450449

448

447

446

445

444

443

442

441

440

439

438

437436

435

434

433

432

431

430

429 428

427

426

425

424

423

422

421

420

419 418

417 416415

414413412

411

410

409

408

407

406

405

404

403

402

401

400

399

398

397

396

395

394

393

392391

390

389

388

387

386

385

384

383

382

381380

378

377

376

375374

373

372

371370 369

368

366

365

364

363

362

361

360 359

358 357

356

355 354

353

352

351350

349

348347

346

345

344343 342341 340

339

338337

336

335334

333

332

331330

329328

327

326

325324 323322 321

320

319

318

317

316 315314 313

312

311310 309

308

307

306

305

304

303

302

301

300

299

298

297

296

295

294

293

291

290

289

288

287

286

285

284283

282

281

280

279

278

277

276

275

274

273

272

271270269268

267

266

265

264

263

262

261260258

257

256 255

254

253

252

251

250

249

248

247246

245

244 243

241

240

239

238

237

236

235

234

232

231230

229

228227

226

225

224

223

222

221

220 219

218

217

216215

214

213

212

211

210

209208207

206205204

203

202

201

200

199

198

197

196

195194

193192

191190

189

188

187

186

184

183

182181

180

179178

177

176

175174 173

172

171

170169

168167

166

165

164

163

162

161160

159 157

156155154153

152

151 150149

148

147

146145

144

143

142

141

140139

138

137

136 135

134

133

132

131

130

129128

127

126

125

124123

122

121

119118

117

116

115

114

113

112

111110

108107

106

105

104

102

101

100

999897

9695

9493

92

919089 88

87

86

85 84

83

82

81

80

79 7776

75

74

73

72

717069 6867

66

65

64

63

62

61

6059 5857 56

55

54

53

52

5150

49

48

47

46

45

44

43

42

41

40

393837

36

35

34

33

32

31

30

29

28

27

26

24

23

22

21

20

19

18

17

16

15

14

13

12

11

109

8

7

6

5

4

3

2

1

0

Figure 5: Quebec landscape modelization from [2]

Contrastingly to what we have seen in the previous section, greedy algorithms perform

surprisingly well in the experiments we perform on this real case study. As shown in Fig

6, greedy algorithms lead on average to gains that reach 95% of the one obtained with

optimal resolution with respect to the gain expected with a random solution.

5.2. Scalability and benefits of the preprocessing

In this subsection we address the scalability of our approach and the added benefits of

our preprocessing step. For this purpose we build a plausible instance from which we can

easily vary the number of changing elements and integer variables. We take the case of

the city of Marseille which is surrounded by 3 big forest massifs and contains 54 parks of

21

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0budget in %

0.95

0.96

0.97

0.98

0.99

1.00av

erag

e op

tim

um r

atio

incremental greedydecremental greedyoptimum (MIP)

Figure 6: Average value of returned solutions normalized between the average random solution and an

optimal one

#wastelandMIP preprocessed MIP greedy

#var #const time #var #const time time

20 345775 18410 12246 10716 7197 316 766

50 717901 36410 142306 34613 21485 1964 7217

80 1306597 59810 1914478 76281 42039 13141 29479

110 - - - 132225 66759 62268 87948

140 - - - 207999 96600 200558 208179

170 - - - 308355 132701 1701684 416751

Table 1: Comparison of the MIP, the preprocessed MIP and the greedy (algorithm DG) according to the

number of variables (#var), the number of constraints (#const) and the time (in ms) it takes to execute

variable sizes. The idea is to consider a certain number of wastelands throughout the city

that can be protected to preserve the stepping stones between massifs and parks. The base

graph is composed of 96 nodes of which 42 models the frontier of massifs, 43 represents

small parks and 11 big parks. The graph is complete and each arc is weighted with the

border to border distance between the two patches it connects. We model each wasteland

as a patch which is totally threatened (see Subsection 5.1.2). A non purchased wasteland

has then a null quality and does not contribute to any shortest path. We perform our

experiments by adding various number of wastelands, randomly generated across the city,

and looking for variations of the MIP formulation size and computation time.

We see in Table 1 that the computation time of the MIP without preprocessing in-

22

creases very quickly. It takes more than 30 minutes on average for instances with 80+

wastelands whereas the preprocessed one can be solved in less than 30 minutes with up to

170 wastelands. This is due to the preprocessing step that significantly reduces the time

required to solve the linear relaxation by reducing the number of variables, constraints

and non-zero entries of the mixed integer program. The preprocessed MIP is faster than

the greedy algorithm for instances with at most 140 wastelands (the preprocessing step

was not used for greedy algorithms).

Finally, we run our preprocessing on 400 instances randomly generated from the Que-

bec’s graph (Fig. 5) in order to study the impact of the preprocessing on the MIP for-

mulation size. For building these instances, we take 20 connected subgraphs of 500 nodes

and for each graph we create 20 instances by randomly picking a percentage of arcs whose

length could be improved by half. Figure 7 shows the percentage of reduction of the num-

ber of constraints, variables and non-zero entries of the MIP formulation with respect to

the percentage of arcs that could be restored. The preprocessing removes almost all the

elements of the MIP formulation when the number of restorable arcs arrives close to zero.

When 20% of the arcs could be restored, the preprocessing removes more than 75% of the

model’s variables and non-zero entries and around 60% of the constraints.

0 20 40 60 80 100percentage of restorable arcs

0

20

40

60

80

100

perc

enta

ge o

f ele

men

tsre

mov

ed b

y th

e pr

epro

cess

ing constraintsvariablesnon-zero entries

Figure 7: Average percentage of constraints, variables and non-zero entries that the preprocessing

removes with respect to the percentage of arcs that could be restored

6. Conclusion

In this paper we introduce a new MIP formulation for BC-ECA-Opt and we show that

this formulation allows solving optimally instances with around 150 habitat patches while

23

previous formulations [22] are limited to instances of about 30 patches. In order to make

our formulation scale to even larger instances, we present a preprocessing step that reduces

significantly the size of the graphs on which a generalized flow has to be computed. We

show that this preprocessing step allows to greatly reduce the MIP formulation size and

that its benefits increase when the proportion of arcs whose lengths can change decrease.

Thus allowing us to treat instances of up to 300 patches.

This new method allows us to solve optimally larger instances of BC-ECA-Opt and to

compare optimum solutions with the solutions returned by greedy algorithms. Interest-

ingly, we found that greedy algorithms perform well in practice despite the arbitrary bad

cases we spotted. Our next goals will be to experiment our approach on other practical

instances of the problem arising from different ecological contexts. On the theoretical side,

we would like to investigate the problem from an approximation algorithm point of view.

For instance, is it possible to find reasonable assumptions under which greedy algorithms

are guaranteed to return a solution whose ECA value is at least a constant fraction of the

optimal ECA ? If these assumptions are fulfilled by the real instances that we considered,

this would explain our experimental observations. Moreover, since a polynomial time ap-

proximation scheme has been given in the case of trees [21], it could also be interesting

to know for which larger classes of graphs constant factor approximation algorithms for

this problem exist. Another interesting question is to determine whether good solutions

could be obtained by decomposing geographically the problem, by solving independently a

subproblem for each region and then by reassembling the solutions. In this case, a notion

of fairness could help to allocate the budget among the regions so that each region can

enhance its own internal connectivity keeping a part of the budget to enhance the connec-

tivity between the regions. Since ECA is based on the equivalence between a landscape

and a patch, such a multilevel optimization approach looks promising.

[1] Ahuja, R. K., Magnanti, T. L., Orlin, J. B., 1993. Network Flows: Theory, Algo-

rithms, and Applications. Prentice-Hall, Inc., USA.

[2] Albert, C. H., Rayfield, B., Dumitru, M., Gonzalez, A., 2017. Applying network

theory to prioritize multispecies habitat networks that are robust to climate and

land-use change. Conservation Biology 31, 1383–1396.

[3] Awade, M., Boscolo, D., Metzger, J. P., 2012. Using binary and probabilistic habitat

24

availability indices derived from graph theory to model bird occurrence in fragmented

forests. Landscape Ecology 27, 185–198.

[4] Billionnet, A., 2013. Mathematical optimization ideas for biodiversity conservation.

European Journal of Operational Research 231 (3), 514–534.

URL https://www.sciencedirect.com/science/article/pii/S0377221713002531

[5] Brondizio, E. S., Settele, J., Dıaz, S., Ngo, H. T., 2019. Global assessment report on

biodiversity and ecosystem services of the Intergovernmental Science- Policy Platform

on Biodiversity and Ecosystem Services. IPBES, Bonn, Germany.

[6] Catanzaro, D., Labbe, M., Salazar-Neumann, M., 2011. Reduction approaches for

robust shortest path problems. Computers & OR 38, 1610–1619.

[7] de Toda, S. S. M., Agosto 2015. Quantifying dispersal paths in probabilistic habitat

networks: a reply to hock and mumby (2015) and an overview of recent developments

and applications. Artıculo de trabajo 10.13140/RG.2.1.2978.2883, ETSI Mon fos.

URL http://oa.upm.es/37351/

[8] Hock, K., Mumby, P., 02 2015. Quantifying the reliability of dispersal paths in con-

nectivity networks. Journal of The Royal Society Interface 12, 20150013.

[9] Jaeger, J. A., Soukup, T., Schwick, C., Madrinan, L. F., Kienast, F., 2011. Landscape

fragmentation in Europe. Publications office of the European Environmental Agency,

Luxembourg.

[10] McCormick, G. P., 1976. Computability of global solutions to factorable nonconvex

programs: Part I - convex underestimating problems. Math. Program. 10 (1), 147–

175.

URL https://doi.org/10.1007/BF01580665

[11] McRae, B. H., Dickson, B. G., Keitt, T. H., Shah, V. B., 2008. Using circuit theory

to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724.

[12] Pascual-Hortal, L., Saura, S., 2006. Comparison and development of new graph-

based landscape connectivity indices: towards the priorization of habitat patches and

corridors for conservation. Landscape ecology 21, 959–967.

25

[13] Pereira, J., Saura, S., Jordan, F., 2017. Single-node vs. multi-node centrality in land-

scape graph analysis: key habitat patches and their protection for 20 bird species in

ne spain. Methods in Ecology and Evolution 8, 1458–1467.

[14] Pereira, M., Segurado, P., Neves, N., 2011. Using spatial network structure in land-

scape management and planning: A case study with pond turtles. Landscape and

Urban Planning 100, 67 – 76.

[15] Rubio, L., Bodin, O., Brotons, L., Saura, S., 2015. Connectivity conservation priorities

for individual patches evaluated in the present landscape: how durable and effective

are they in the long term? Ecography 38, 782–791.

[16] Saura, S., Estreguil, C., Mouton, C., Rodrıguez-Freire, M., 2011. Network analysis

to assess landscape connectivity trends: Application to european forests (1990-2000).

Ecological Indicators 11, 407–416.

[17] Saura, S., Pascual-Hortal, L., 2007. A new habitat availability index to integrate

connectivity in landscape conservation planning: Comparison with existing indices

and application to a case study. Landscape and Urban Planning 83, 91 – 103.

[18] Saura, S., Torne, J., 2009. Conefor sensinode 2.2: a software package for quanti-

fying the importance of habitat patches for landscape connectivity. Environmental

modelling & software 24, 135–139.

[19] Taylor, P. D., Fahrig, L., Henein, K., Merriam, G., 1993. Connectivity is a vital

element of landscape structure. Oikos 68, 571–573.

[20] Urban, D., Keitt, T., 2001. Landscape connectivity: A graph-theoretic perspective.

Ecology 82, 1205–1218.

[21] Wu, X., Sheldon, D. R., Zilberstein, S., 2014. Stochastic network design in bidirected

trees. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. Q.

(Eds.), Advances in Neural Information Processing Systems. Vol. 27. Curran Asso-

ciates, Inc., pp. 882–890.

[22] Xue, Y., Wu, X., Morin, D., Dilkina, B., Fuller, A., Royle, J. A., Gomes, C. P.,

2017. Dynamic optimization of landscape connectivity embedding spatial-capture-

recapture information. In: 31st AAAI Conference on Artificial Intelligence. Vol. 31.

pp. 4552–4558.

26