Neutron scattering as a tool to understand quantum magnetism

56
1 Pascale Deen. ESS: Senior Scien,st Adjunct associate professor: Niels Bohr Inst., Copenhagen University Neutron scattering as a tool to understand quantum magnetism: Magnetism and the European Spallation Source

Transcript of Neutron scattering as a tool to understand quantum magnetism

1

Pascale Deen. ESS: Senior Scien,st

Adjunct associate professor: Niels Bohr Inst., Copenhagen University

Neutron scattering as a tool to understand quantum magnetism: Magnetism and the European Spallation Source

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

• Magne,sm : a very basic overview

• Neutron scaBering and magne,sm –Diffrac,on

– Inelas,c neutron scaBering

–Polarisa,on analysis

• Recent examples of magne,c states of maBer (Quantum behaviour)

• Overview of some instruments at ESS relevant to magne,sm

2

Overview

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

• Magne-sm : a very basic overview

• Neutron scaBering and magne,sm –Diffrac,on

– Inelas,c neutron scaBering

–Polarisa,on analysis

• Recent examples of magne,c states of maBer (Quantum behaviour)

• Overview of some instruments at ESS relevant to magne,sm

3

Overview

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

4

6th Century BC Lodestone

Magnet: lodestones found in Magnesia, TurkeyNatural magnets

Used early for navigation (Fe3O4 + Fe2O3 )

Magnetism: Ferromagnetism

Ferromagnet

electromagnets, electric motors, generators, transformers, magnetic

storage, credit cards …..

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpgSignatures

5

Magnetism: Ferromagnetism

Ferromagnet

electromagnets, electric motors, generators, transformers, magnetic

storage, credit cards …..

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

6

Signatures

Magnetism: Antiferromagnetism, a hidden order

MnO

At low temperature no response to a magnetic field

Antiferromagnetism

No variation with a magnetic field at T < Tn

∑μ (T << Tn) = 0

Generators, detectors and transmitters of spin currents, spin valves, hard drives.

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

7

•mean field theory •AF is described as magnetic order on two sublattices. •Macroscopic picture.

Louis Néel Lev Landau

•quantum paramagnet, fluctuating spins in opposition •no time averaged moment. •Associated with quantum order

Antiferromagnetism, theoretical debate.

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

• Magne,sm : a very basic overview

• Neutron sca:ering and magne-sm –Diffrac,on

– Inelas,c neutron scaBering

–Polarisa,on analysis

• Recent examples of magne,c states of maBer (Quantum behaviour)

• Overview of some instruments at ESS relevant to magne,sm

8

Overview

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpgNeutrons for magne,c and electronic phenomena

9

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpgCalculate scaBering probabili,es

10

Calculate the interaction potential (Nuclear, magnetic, incoherent contributions)

No equivalent interaction for x-rays (or any other probe)

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpgNeutron Scattering

11

Intensity α

Intensity = ExperimentTheory Separate from Probe Absolute units

S(Q, ∆ω) =

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

12

Intensity α

Intensity = ExperimentTheory Separate from Probe Absolute units

Differential neutron cross section : Sum of all processes in which

(1) State of the scatterer changes from λ to λ’(2) Wavevector of the neutron changes from k to k’(3) Spin state of the neutron changes from s to s’ (4) within a solid angle Ω

S(Q, ∆ω) =

12

Neutron Scattering

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

13

Dy 3+International Tables of crystallography C. J.P.Brown.

Q = 4πsinθ/λ

V = μ.B = μ(BS+BL) V ∝ 1/2 g F(Q): Only scattering at low QV ∝ δ𝛼β - Q𝛼Qβ: moments normal to Q contribute

Magnetic Neutron Scattering

F(Q

)

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

14

Development of neutron diffraction Where atoms/spin are

Development of neutron spectroscopyWhat atoms/spins do

1994 Nobel prize: for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter

Neutrons Interac,ng with maBer

Where atoms are

Inelastic neutron scattering

How they move

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

15

80 K

300 K

Neutrons Interac,ng with maBer

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

• Magne,sm : a very basic overview

• Neutron sca:ering and magne-sm –Diffrac-on

– Inelas,c neutron scaBering

–Polarisa,on analysis

• Recent examples of magne,c states of maBer (Quantum behaviour)

• Overview of some instruments at ESS relevant to magne,sm

16

Overview

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

17

Development of neutron diffraction Where atoms/spin are

1994 Nobel prize: for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter

Neutrons Interac,ng with maBer

Where atoms are

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

18

80 K

300 K

Neutrons Interac,ng with maBer

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

19

Braggs law: nλ = 2 dhkl sin(θ) Q = 2π/dhkl

Q = 4π √[(h2+k2+l2)/a2] (cubic)

Elastic scattering/Diffraction

Q

Ki

Kf

Static behaviourOnly interested in atomic positions (Qx, Qy, Qz)

Static correlations

(0 0 2)

(1 0 2)(1 1 0)

(powder!)

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

20

Braggs law: nλ = 2 dhkl sin(θ) Q = 2π/dhkl

Q = 4π √[(h2+k2+l2)/a2] (cubic)

Q

Ki

Kf

Sta,c behaviour Only interested in atomic posi,ons (Qx, Qy, Qz)

Sta,c correla,ons

(0 0 2)

(1 0 2)(1 1 0)

(powder!)

20

Elastic scattering/Diffraction

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

21

Form factorsNeutrons interact with

1. Atomic nuclei (strong nuclear force — short-range) 2. Magnetic fields from unpaired electrons (dipole-dipole interaction)

f(ele

ctro

ns)

X-rays

b

Neutrons

Nuclear

Magnetic

sin(θ)/λ sin(θ)/λ

& also paramagnetic scattering

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

• Magne,sm : a very basic overview

• Neutron sca:ering and magne-sm –Diffrac,on

– Inelas-c neutron sca:ering

–Polarisa,on analysis

• Recent examples of magne,c states of maBer (Quantum behaviour)

• Overview of some instruments at ESS relevant to magne,sm

22

Overview

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

23

Development of neutron spectroscopyWhat atoms/spins do

1994 Nobel prize: for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter

Neutrons Interac,ng with maBer

Inelastic neutron scattering

How they move

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

24

Neutrons Interac,ng with maBer

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

25

Inelastic scattering Collective excitations: phonons (sound)

0-π/d -π/d

Ener

gy: d

ynam

ic in

form

atio

n

k = 2π/λ: spatial information

Interaction Strength

k = 0

λ = d

λ = 4d

k = 2π/4d λ = 2d

k = 2π/2d

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

26J.L. Warren et al. Phys.Rev. 158 805 (1967)

Inelastic scattering Collective excitations: phononsPhonons in diamond

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

27

Inelastic scattering Collective excitations: magnons

Ferromagnetism

Antiferromagnetism

FM Spin wave

AFM Spin wave

https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Films_and_animations/Animations/Scientific-animations/Magnons/activity/Magnetic_phases_and_Magnons.html

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

28

0-π/d -π/d

Ener

gy: d

ynam

ic in

form

atio

n

k = 2π/λ: spatial information

k = 0

𝒽ω(q) = 4SJ(1-cos(qa))

8JS

k = 0

λ = d

k = 2π/4d

λ = 4d

λ = 2d

k = π/d

Collective excitations: magnons Ferromagne,c spin waves

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

29

An,ferromagne,c spin waves

π/dπ/2d π/3d

Ener

gy: d

ynam

ic in

form

atio

n

k = 2π/λ: spatial information

𝒽ω(q) = 4SIJIIsin(qa)I 4JS

λ = 4dk = π/d

k = π/d

λ = 2d

k = 3π/4d

λ = 4d/3

Collective excitations: magnons

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

30Y. Endoh, H. Hiraka, Y. Tomioka, Y. Tokura, N. Nagaosa andT. Fujiwara: Phys. Rev. Lett. 94 (2005) 17206.

Sm0.55Sr0.45MnO3

Collective excitations: FM vrs AFM

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpgS(Q,ω) on a single crystal = 4 D space (Qx,Qy,Qz, E)

31

Strength of the exchange interactions / anisotropy

Information on the spin structure

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

• Magne,sm : a very basic overview

• Neutron sca:ering and magne-sm –Diffrac,on

– Inelas,c neutron scaBering

–Polarisa-on analysis

• Recent examples of magne,c states of maBer (Quantum behaviour)

• Overview of some instruments at ESS relevant to magne,sm

32

Overview

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpgHistory of neutron polarisation analysis

33

neutron spin is either spin up or spin down

Phys. Rev. 181, 920 (1969)

1st comprehensive experimental work (Bragg scattering, Incoherent scattering, spin wave scattering)

Illustration of Polarisation Analysis

neutron spin is either spin up or spin down

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

34

History of neutron polarisation analysis

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

35

MnF2 = simple antiferromagnet Measurement of formfactor above Tn

Moon, Riste Koehler, Phys. Rev. 181 (1969) 920.

Flipper on

Flipper off

Unpolarised off

History of neutron polarisation analysis

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

• Magne,sm : a very basic overview

• Neutron sca:ering and magne-sm –Diffrac,on

– Inelas,c neutron scaBering

–Polarisa,on analysis

• Recent examples of magne,c states of maBer (Quantum behaviour)

• Overview of some instruments at ESS relevant to magne,sm

36

Overview

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg2 examples: Elucidate typical neutron scaBering signals today

YMnO3 Multiferroicity Ferrromagnetic & Ferroelectricity

Interplay between magnon & phonons3D quantum spin liquid in PbCuTe2O6

Phys. Rev. B 97, 134304 (2018) NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15594-1

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

38Phys. Rev. B 97, 134304 (2018)

J1, J2 AnisotropyM/P Hybridisation

YMnO3 Multiferroicity ∆E = 0 - 30 meV

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

39Phys. Rev. B 97, 134304 (2018)

Need to study broad region of S(Q, omega)High energy resolution Signal to noise > 104

Interplay between phonons and magnon

J1, J2 AnisotropyM/P Hybridisation

YMnO3 Multiferroicity ∆E = 0 - 30 meV

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

40

Quantum Spin liquids

https://scitechdaily.com

ZnCu3(OH)6Cl2

Signatures: •A lack of broken symmetry •No magne,c order (S = 1/2) •Frac,onalised excita,ons

x

Understand, drive and manipulate quantum effects

• Coherence, entanglement, superposi,on, quantum transport.

• Quantum compu,ng

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

41

Wavevector transfer (Å-1)

Inte

nsity

(ar

b.un

its)

0.5 1 1.5 2 2.5 30

5

10

15

20

25

Total Scattering

0.5 1 1.5 2 2.5 30

5

10

15

20

25

Total ScatteringNuclear Scattering

0.5 1 1.5 2 2.5 30

5

10

15

20

25

Total ScatteringNuclear ScatteringSpin incoherent

0.5 1 1.5 2 2.5 30

5

10

15

20

25

Total ScatteringNuclear ScatteringSpin incoherentMagnetic Scattering

Volborthite (Cu3V2O7(OH)2·2H2O) (powder) S = 1/2 Kagome Heisenberg antiferromagnet

XYZ neutron polarisa,on analysis, D7 @ ILL, T = 50 mK Phys. Rev. B 84, 172401

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

42

0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1In

tens

ity (a

rb.u

nits

)

Wavevector Transfer (Å-1)

Magne,c ScaBering only, T = 50 mK

Determina,on not possible without Polarisa,on Analysis

Spin liquid? A lack of broken symmetry

No magne,c order (S = 1/2)

SRO - RVB or VBS or neither ?

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

43

Herbertsmithite ZnCu3(OD)6Cl2A 2D spin liquid state in

Nature 492, 406 ,Nature Phys.12, 942

Inelastic neutron scattering measured along symmetry directions and at high symmetry locations. T = 1.6 K.

NB: No well defined excitations & correlations.Fractionalised excitations.

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

44

PbCuTe2O6A 3D spin liquid state in

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

• Magne,sm : a very basic overview

• Neutron sca:ering and magne-sm –Diffrac,on

– Inelas,c neutron scaBering

–Polarisa,on analysis

• Recent examples of magne,c states of maBer (Quantum behaviour)

• Overview of some instruments at ESS relevant to magne,sm

45

Overview

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

46

Small single crystals: high quality, few imperfections. High pressure synthesis:global behaviour.

Study many stochiometries Study high absorption isotopes.

Magnetic multilayers.

2.0 mm

Current: Fe-arsenide single crystals

AJ Drew et al., Nature Materials 8 (2009) 310

Strongly correlated physics: High pressure, high magnetic field and low temperature

simultaneously. Out of equilibrium physics

ZTA:%W.G.%Marshall%(ISIS),%unpublished%R.%Iizuka%et%al.,%High%Press.%Res.%(2013)%

α ∼ ± 15°#

7 GPa : W.G. Marshall (ISIS) S. Klotz, unpublished R. Iizuka et al.

High Press. Res. (2013)

Neutron scaBering at ESS

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

474 time (ms)

Brig

htne

ss (n

/cm

2 /s/s

r/Å)

x1013

ISIS TS1!128 kW

ISIS TS2 !32 kW!

SNS!1-2 MW

JPARC!0.3-1 MW

ILL 57 MW

ESS 5 MW!2015 design!

0 1 2 3

15

5

10λ = 5 Å!

Long pulse versus short pulse of ESS

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpgESS Instrument suite (Phase 1) 2023-2025

48

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

49

Protons

ESS Instrument suite (Phase 1)Novel magnetic states

hBp://www.sciencevillage.com/assets/ess-web-1024x735.jpg

50

•High flux: up to 4x109 n/s/cm2

• Polarised over 0.6<𝝀<6 Å (>97%)• Polarisation analysis for 𝝀>2 Å• Flexible longitudinal and transverse resolutions• Focusing capabilities: study of sub-mm3 samples

MAGIC: Diffraction 59%24

%

17%

51

CSPECThe Cold Chopper spectrometer of the ESS

Ei = 2 - 20 ÅInstrument length = 160 m Bandwidth = 1.72 ÅEnergy resolution = 1 - 5 % of EiSample size 1x 1 cm2 & 4 x 2 cm2

Polarisation analysis

Increased flux with reduced noise

52

CSPECThe Cold Chopper spectrometer of the ESS

Sample

ESS pulse

Photon

(1) 160 m = more flux. In-situ/kinetic phenomena. 1 min resolution.

1.72 Å (CSPEC)

3 Å = E min = 5.67, E max = 16.9 meV 6 Å = E min = 1.76, E max = 3.02 meV 8 Å = E min = 1.06, E max = 1.58 meV - Add pulses when possible - gain in flux

8 Å (LET, AMATERAS, CNCS )

2 4 6 8 101.1

1.2

1.3

1.4

1.5

1.6

Ener

gy R

esol

utio

n, (%

)

M-chopper frequency = 336 Hz

52

53

CSPECThe Cold Chopper spectrometer of the ESS

(2) 160 m & cold neutrons & spallation source = less noise. S/N 105.

Reactor Spallation

SampleSample

Cold neutrons: S-Bender

No ambient background

54

CSPECThe Cold Chopper spectrometer of the ESS

Guide production : TUM

Guide shielding

Detector tank: 2.49 Steradian - see all of S(Q, omega)

Guide shielding

Ready December 2022.

55

CSPECThe Cold Chopper spectrometer of the ESS

E01 experimental Hall

https://europeanspallationsource.se/instruments/cspec

56

ESS December 2020

We welcome you all soon.