MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO ...

135
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE GENOTIPAGEM E PROTEÔMICA DE ISOLADOS AMBIENTAIS DE Candida tropicalis OBTIDOS DO AMBIENTE COSTEIRO DIANA LUZIA ZUZA ALVES NATAL/RN 2020

Transcript of MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO ...

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE CIÊNCIAS DA SAÚDE

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE

GENOTIPAGEM E PROTEÔMICA DE ISOLADOS AMBIENTAIS DE Candida

tropicalis OBTIDOS DO AMBIENTE COSTEIRO

DIANA LUZIA ZUZA ALVES

NATAL/RN

2020

i

DIANA LUZIA ZUZA ALVES

GENOTIPAGEM E PROTEÔMICA DE ISOLADOS AMBIENTAIS DE Candida

tropicalis OBTIDOS DO AMBIENTE COSTEIRO

Tese apresentada ao Programa de Pós-

graduação em Ciências da Saúde da

Universidade Federal do Rio Grande do Norte

como requisito para a obtenção do título de

Doutora em Ciências da Saúde.

Orientador: Prof. Dr. Guilherme Maranhão

Chaves

NATAL/RN

2020

ii

Universidade Federal do Rio Grande do Norte - UFRN

Sistema de Bibliotecas - SISBI

Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial do Centro Ciências da Saúde - CCS

Silva, Diana Luzia Zuza Alves.

Genotipagem e proteômica de isolados ambientais de Candida tropicalis obtidos do ambiente costeiro / Diana Luzia Zuza Alves

Silva. - 2020.

134f.: il.

Tese (Doutorado em Ciências da Saúde) - Universidade Federal

do Rio Grande do Norte, Centro de Ciências da Saúde, Programa de

Pós-Graduação em Ciências da Saúde. Natal, RN, 2020.

Orientador: Guilherme Maranhão Chaves.

1. Candida tropicalis - Tese. 2. Estresse osmótico - Tese. 3.

Genotipagem - Tese. 4. Análise proteômica - Tese. I. Chaves,

Guilherme Maranhão. II. Título.

RN/UF/BS-CCS CDU 616.934

Elaborado por ANA CRISTINA DA SILVA LOPES - CRB-15/263BBS

iii

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE CIÊNCIAS DA SAÚDE

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE

Coordenadora do Programa de Pós-Graduação em Ciências da Saúde

Profª. Drª. Ana Katherine Gonçalves Silveira

iv

DIANA LUZIA ZUZA ALVES

GENOTIPAGEM E PROTEÔMICA DE ISOLADOS AMBIENTAIS DE Candida

tropicalis OBTIDOS DO AMBIENTE COSTEIRO

Aprovada em 17/06/2020

Banca examinadora:

Presidente: Prof. Dr. Guilherme Maranhão Chaves (UFRN)

Examinador interno: Profª. Dra Ana Katherine Gonçalves Silveira (UFRN)

Examinador interno: Prof. Dra Aldo da Cunha Medeiros (UFRN)

Examinador externo: Prof. Dr. Reginaldo Gonçalves Lima Neto (UFPE)

Examinador externo: Profª. Drª. Raquel de Melo Barbosa (UNINASSAU)

v

DEDICATÓRIA

Esse trabalho é dedicado à Antonio Fernandes Alves Segundo, à Maria Eliene Zuza

Alves e, com eles, à todos os que sonham com uma vida melhor e batalham por isso,

contando somente com o apoio de Deus e muito esforço. É para aqueles que com

determinação, sacrifício e muito estudo vencem a pobreza, a orfandade, a violência,

o preconceito, o sistema desfavorável. É para aqueles que escolhem todos os dias o

que é certo ao invés do que é fácil; aqueles que entendem o peso da responsabilidade

e não recuam. É para aqueles que pagam o preço para ver o melhor se realizar na

vida de seus filhos. Os frutos doravante colhidos foram semeados por essas pessoas

admiráveis, meus pais, minha referência.

vi

AGRADECIMENTOS

À Deus, Soberano de minha vida, meu tudo.

Aos meus pais, Segundo e Eliene, meu irmão, Arthur e minha irmã amiga

Regina, que é também uma mãe para mim; pelo incentivo, apoio e carinho

inestimáveis.

Ao meu esposo Marcos, amigo de todas as horas, pelo companheirismo e

excepcional compreensão.

Ao meu filho Daniel, alegria de minha vida.

A todos os amigos do Laboratório de Micologia Médica e Molecular,

especialmente Plínio, Mariana, Luanda, Ana Patrícia, Luciana, Sayama, Aurélio,

Laysa, Raíça e Neto, que contribuíram diretamente em etapas importantes do meu

trabalho.

A Profª Christina Araújo, Prof. Aldo Cunha de Medeiros, Profª. Keyla

Rocha, Profª. Analy Salles de Azevedo Melo e aos colegas do Laboratório

Especial de Micologia (UNIFESP) pela valiosa colaboração.

Ao meu orientador, Prof. Guilherme Maranhão Chaves, pela oportunidade de

realizar o que tanto gosto, pelo estímulo, pela confiança e paciência na construção

desse trabalho.

Aos membros da banca examinadora, Profª. Ana Katherine Gonçalves

Silveira, Prof. Aldo Cunha de Medeiros, Prof. Reginaldo Gonçalves de Lima Neto

e Profª. Edeltrudes de Oliveira Lima, por aceitarem o convite para participação na

banca e pelas valiosas sugestões e contribuições científicas.

À Universidade Federal do Rio Grande do Norte e ao Programa de Pós-

Graduação em Ciências da Saúde pela infraestrutura e apoio financeiro.

vii

“Porque tu salvas o povo humilde,

mas os olhos altivos, tu os abates.

Porque fazes resplandecer a minha lâmpada;

o SENHOR, meu Deus, derrama luz nas minhas trevas.

Pois contigo desbarato exércitos,

com o meu Deus salto muralhas.

O caminho de Deus é perfeito;

a palavra do SENHOR é provada;

ele é escudo para todos os que nele se refugiam.

Pois quem é Deus, senão o SENHOR?

E quem é rochedo, senão o nosso Deus?”

Salmos 18: 27-31

viii

LISTA DE FIGURAS

ARTIGO 1

Figura 1 Características fenotípicas de Candida tropicalis. (A): Aspecto

brilhante com borda ligeiramente franjada após 48 h de incubação

a 30 °C em ágar Sabouraud dextrose; (B): Colônias com típica cor

azul escura em meio CHROMagar Candida® após 96 h de

incubação a 35 °C; (C): Aspectos micromorfológicos após

incubação em meio YPD contendo 20% de soro fetal bovino (SFB)

por 7 dias a 30 ° C, 400x: blastoconídios em cadeia simples ou

ramificada, hifas verdadeiras e pseudo-hifas

abundantes....................................................................................

106

Figura 2 Árvore filogenética de Candida spp. O gene do RNA ribossômico

do espaçador transcrito interno 1 (ITS1) -5.8S e as sequências

completas do espaçador transcrito interno 2 (ITS2) e seus

números de acesso, foram obtidos no banco de dados Genbank

em https://www.ncbi.nlm.nih.gov. As sequências foram alinhadas

usando o software BioEdit (v7.2.61). Sequências alinhadas foram

usadas para análise filogenética realizada com o software Mega

7.0.26. O método utilizado para a construção da árvore foi a

parcimônia máxima. A estabilidade do filograma foi acessada

através do método de bootstrapping com 1.000 pseudo-

replicações......................................................................................

107

ARTIGO 2

Figura 1 Dendrograma gerado pelo método de agrupamento de pares não

ponderado com médias aritméticas de 2% de tolerância, de 62

isolados ambientais de Candida tropicalis coletados na praia de

Ponta Negra, Natal, Estado do Rio Grande do Norte, Brasil, de

2012 a 2013. Os destaques em cinza claro representam isolados

obtidos na primeira coleta. Os destaques em cinza médio

representam isolados obtidos na estação chuvosa. Os destaques

em cinza escuro representam isolados obtidos a partir do ponto

geográfico 5....................................................................................

115

ix

Figura 2 Dendrograma MSP com distância relativa entre os isolados

exibidas como unidades arbitrárias. Zero indica similaridade

completa e 1,2 indica alta dissimilaridade. O nível de distância

arbitrária de 0,8 foi escolhido para avaliação de agrupamentos

isolados. O dendrograma representa os principais espectros de

62 cepas ambientais de Candida tropicalis coletadas na praia de

Ponta Negra, Natal, Estado do Rio Grande do Norte, Brasil, de

2012 a 2013. Destaques em cinza claro representam isolados

obtidos na primeira coleta. Os destaques em cinza médio

representam isolados obtidos na estação chuvosa. Os destaques

em cinza escuro representam isolados obtidos a partir do ponto

geográfico 5....................................................................................

117

x

LISTA DE TABELAS

ARTIGO 1

Tabela 1 Métodos convencionais usados para identificação laboratorial de

Candida tropicalis..........................................................................

99

Tabela 2 Proteômica e métodos moleculares para identificação e

genotipagem de Candida tropicalis...............................................

100

Tabela 3 Genes envolvidos nos fatores de virulência de Candida

tropicalis.........................................................................................

102

Tabela 4 Modelos de infecção in vivo e in vitro de Candida

tropicalis.........................................................................................

104

Tabela 5 Genes envolvidos nos mecanismos de resistência antifúngicos

em Candida tropicalis....................................................................

105

ARTIGO 2

Tabela 1 Condições climáticas e coordenadas geográficas dos seis pontos

de coleta de areia da praia de Ponta Negra, Rio Grande do Norte,

Brasil..............................................................................................

112

xi

LISTA DE ABREVIATURAS E SÍMBOLOS

®: Marca registrada

ABC: ATP-binding cassete

SIDA: Síndrome da Imunodeficiência Adquirida

ALS: Agglutinin-like sequence

ATCC: American Type Culture Collection

BCR: Biofilm and Cell Wall Regulator

C.: Candida

CDC: Cell Division Cycle

CDR: Candida Rrug Resistance

CLSI: Clinical and Laboratory Standards Intitute

CNCA: Candida não-Candida albicans

CSA 2: Surface Antigen Protein 2

DNA: Deoxyribonucleic acid

EDTA: Ethylenediamine tetraacetic acid

ELISA: Enzyme Linked Immunosorbent Assay

EPS: Exopolysaccharides

ERG: ERGosterol Biosynthesis

ERIC-PCR: Enterobacterial Repetitive Intergenic Consensus Sequence - Polymerase

Chain Reaction

et al.: Colaboradores

EUA: Estados Unidos da América

FBS: Fetal bovine serum

FKS: FK506 Sensitivity

g/Kg: Grama por kilograma

g/l: Grama por litro

GDP: Guanosine-5'-diphosphate

GPI: Glicofosfatidilinositol

GPS: Global Position System

h: Hora

HBEC: Human buccal epitelial cells

HGC: Hypha‐Specific G1 Cyclin‐Related Protein

HLP: Hemolysin-Like Protein

xii

HOG: High Osmolarity Glycerol

HWP: Hyphal Wall Protein

ITS: Internal transcribed spacer

LMMM: Laboratório de Micologia Médica e Molecular

M: Molar

MALDI–TOF/ MS: Matrix Assisted Laser Desorption/Ionization-Time-of-flight mass

spectrometry

MDR: Multidrug Resistance Gene

MFS: Major Facilitator Superfamily

mg/mL: Miligrama por Mililitro

MgCl2: Cloreto de Magnésio

MIC: Minimal inhibitory concentration

min: Minuto

mL/L: Mililitro por Litro

mL: Mililitro

MLST: Multilocus Sequence Typing

mm: Milímetro

mM: Milimolar

MOPS: 3-(N-Morpholino)propane sulfonic acid

MSP: Main Spectra Profile

NaCl: Cloreto de Sódio

NCAC: Non-Candida albicans Candida

ng/μL: Nanograma por Microlitro

NGY: Neopeptone – Yeast Extract - Glucose

nm: Nanômetro

Nº: Número

NRG: Negative Regulator of Glucose-Repressed Genes

ºC: Grau Celsius

OMS: Organização Mundial da Saúde

PBS: Phosphate Buffered Saline

PCR: Polimerase Chain Reaction

pH: Potencial Hidrogeniônico

PHR: PHotoreactivation Repair deficient

PNA-FISH: Peptide nucleic acid fluorescent in situ hybridization

xiii

QS: Quorum Sensing

RAPD: Randomly Amplified Polymorphic DNA

RBT5: Repressed by TUP1 Protein 5

rDNA: Ribosomal Deoxyribonucleic acid

RHO: Ras HOmolog

RN: Rio Grande do Norte

RNA: Ribonucleic acid

rRNA: Ribosomal Ribonucleic acid

SAP: Secreted Aspartyl Proteinase

SDA: Sabouraud dextrose agar

spp.: Espécies

T.A: Temperatura Ambiente

TM: Trade Mark

U/mL: Unidade por Mililitro

UFRN: Universidade Federal do Rio Grande do Norte

UME: Unscheduled Meiotic Gene Expression

UPGMA: Unweighted Pair Group Method using Arithmetic averages

UV: Ultraviolet

VVC: Vulvovaginal candidiasis

WHO: World Health Organization

WOR: White-opaque regulator

YPD: Yeast peptone dextrose

μg/mL: Micrograma por mililitro

μL: Microlitro

μM: Micromolar

xiv

RESUMO

Candida tropicalis é considerada a segunda espécie mais virulenta do gênero

Candida. Dentre os fatores de virulência relacionados à essa espécie, destaca-se forte

produção de biofilme, adesão a células epiteliais bucais humanas, secreção de

enzimas líticas, morfogênese e phenotipic switching. Além disso, C. tropicalis é

osmotolerante e essa característica é importante para sua persistência no ambiente

costeiro, acarretando risco sanitário para a comunidade. O objetivo desse trabalho foi

realizar uma revisão bibliográfica de C. tropicalis, com foco em todos os assuntos

mencionados. Além disso, utilizou-se as técnicas de microssatélite e MALDI-TOF/ MS

para avaliar a variabilidade genotípica e fenotípica de 62 isolados de C. tropicalis

obtidos de diferentes pontos geográficos de uma praia urbana localizada na região

nordeste do Brasil, durante duas estações climáticas diferentes (estações secas e

chuvosas), avaliando-se também a dinâmica populacional dessa espécie no ambiente

costeiro ao longo do ano. Constatou-se uma tendência de que isolados coletados em

um mesmo período do ano fossem agrupados em um mesmo cluster, pelas duas

técnicas, porém apenas 27 cepas (43,5%) foram colocadas no mesmo cluster nos

dendrogramas do microssatélites e no do MALDI-TOF/MS, o que indica uma

correspondência relativamente baixa entre essas duas técnicas de tipagem. Além

disso, observou-se que isolados obtidos em uma mesma coleta foram agrupados em

um mesmo cluster ou em clusters próximos, e que isolados obtidos do mesmo ponto

geográfico são, na maioria dos casos, considerados idênticos ou altamente

relacionados a pelo menos outro isolado, pelas duas técnicas, indicando relativo grau

de relacionamento. Os métodos empregados também demonstraram a

heterogeneidade de C. tropicalis no ambiente costeiro. Cepas altamente relacionadas

foram encontradas em diferentes pontos geográficos de coleta, demonstrando que C.

tropicalis pode se dispersar por longas distâncias. Tendo em vista o uso incipiente de

MALDI-TOF/MS, são necessários mais estudos para consolidar essa técnica como

ferramenta de tipagem de leveduras, quando comparada à técnica de microssatélite,

que já está bem estabelecida como método de genotipagem de Candida spp.

Palavras-chave: Candida tropicalis, estresse osmótico, genotipagem, análise

proteômica.

xv

ABSTRACT

Candida tropicalis is considered the second most virulent species of the genus

Candida. Among the virulence factors related to this species, there is a strong

production of biofilm, adhesion to human oral epithelial cells, secretion of lytic

enzymes, morphogenesis and phenotipic switching. In addition, C. tropicalis is

osmotolerant and this characteristic is important for its persistence in the coastal

environment, causing health risk to the community. The objective of this study was to

carry out a bibliographic review on C. tropicalis, focusing on all the subjects mentioned

previously. In addition, microsatellite and MALDI-TOF/MS techniques were used to

evaluate the genotypic and phenotypic variability of 62 isolates of C. tropicalis obtained

from different geographical sites of an urban beach located in the northeast of Brazil,

during two different climatic seasons (dry and rainy seasons), besides evaluating the

population dynamics of this species in the coastal environment throughout the year.

There was a trend for isolates collected in the same period of the year to be placed in

the same cluster, by both techniques, however only 27 strains (43.5%) were placed in

the same cluster in both the microsatellite and MALDI-TOF/MS, which suggests a

relatively low correspondence between these two typing techniques. Furthermore, it

was observed that isolates obtained from the same collection timepoint were grouped

within the same cluster or in close clusters, and that isolates obtained from the same

geographic site are, in most cases, considered identical or highly related to at least

one other isolate, by both techniques, suggesting genetic relatdness. The methods

employed also demonstrated the heterogeneity of C. tropicalis in the coastal

environment. Highly related strains were found in different geographic collection sites,

demonstrating that C. tropicalis may be dispersed over long distances. In view of the

incipient use of MALDI-TOF/MS, further studies are necessary to consolidate this

technique as a yeast typing tool, when compared to the microsatellite technique, which

is consolidated as a genotyping method for Candida spp.

Keywords: Candida tropicalis, osmotic stress, genotyping, proteomic analysis.

xvi

SUMÁRIO

DEDICATÓRIA iv

AGRADECIMENTOS v

LISTA DE FIGURAS vii

LISTA DE TABELAS ix

LISTA DE ABREVIATURAS E SÍMBOLOS x

RESUMO xiii

ABSTRACT xiv

1 INTRODUÇÃO........................................................................................... 17

2 JUSTIFICATIVA......................................................................................... 21

3 OBJETIVOS............................................................................................... 22

4 MÉTODOS.................................................................................................. 24

4.1 AMOSTRAGEM.................................................................................... 24

4.2 COLETA DE AREIA.............................................................................. 24

4.3 ISOLAMENTO E PURIFICAÇÃO DE Candida tropicalis...................... 25

4.4 IDENTIFICAÇÃO DAS LEVEDURAS DO SOLO.................................. 25

4.4.1 Análise macroscópica das colônias................................................... 26

4.4.2 Análise micromorfológica das leveduras............................................ 26

4.4.3 Análise fisiológica e bioquímica......................................................... 26

4.4.3.1 Testes de assimilação de fontes de carbono e nitrogênio

(Auxanograma)............................................................................................

26

4.4.3.2 Testes de fermentação de fontes de carbono (Zimograma)........... 27

4.5 Manutenção das leveduras................................................................... 28

4.6 Seleção dos isolados............................................................................ 29

4.7Análise de microssatélite....................................................................... 29

4.8 Análise por MALDI TOF MS.................................................................. 30

5 ARTIGOS PRODUZIDOS........................................................................... 31

AN UPDATE ON Candida tropicalis BASED ON BASIC AND CLINICAL

APPROACHES………………………………………………………………….

32

Candida tropicalis GEOGRAPHIC POPULATION STRUCTURE

MAINTENANCE AND DISPERSION IN THE COASTAL ENVIRONMENT

xvii

MAY BE INFLUENCED BY THE CLIMATIC SEASON AND

ANTHROPOGENIC ACTION………………………………………………….

108

6 CONCLUSÕES…………………………………………………………………. 126

7 COMENTÁRIOS, CRÍTICAS E SUGESTÕES……………………………… 127

8 REFERÊNCIAS…………………………………………………………………. 128

17

1 INTRODUÇÃO

A alta incidência de infecções causadas por leveduras do gênero Candida tem se

destacado entre as infecções de caráter oportunista, principalmente as que envolvem

espécies de Candida não-Candida albicans (CNCA). Dentre essas, C. tropicalis destaca-

se com elevada prevalência, sendo considerada a espécie de CNCA mais isolada na

Ásia [1-3] e a segunda ou terceira espécie de Candida mais isolada no Brasil e nos

demais países da América Latina [4].

O expressivo aumento de infecções por essa levedura em todo o mundo evidencia

seu caráter emergente. Vários atributos de patogenicidade estão envolvidos na virulência

de C. tropicalis, que se inicia com a adesão às células hospedeiras, o primeiro passo

para colonização e infecção [5]. Segue-se a transição morfológica de blastoconídio à hifa

(morfogênese), importante na invasão dos tecidos do hospedeiro e posterior

disseminação da infecção [6]. Para auxiliar na invasão dos tecidos hospedeiros, C.

tropicalis ainda secreta várias enzimas líticas, dentre as quais destacam-se as

proteinases aspárticas secretadas (Saps), as hemolisinas e as fosfolipases [7 - 10]. Além

disso, essa levedura é capaz de formar biofilme, estrutura complexa na qual as células

aderem a superfícies bióticas ou abióticas e secretam sobre si mesmas uma densa

substância polimérica extracelular que proporciona maior resistência do microorganismo

ao ataque fagocítico e resistência a fármacos antifúngicos [11 - 12].

Nesse sentido, nos últimos anos a literatura também tem demonstrado o aumento

da ocorrência de cepas de C. tropicalis com sensibilidade aos antifúngicos reduzida e

outras resistentes in vivo e in vitro. Resistência aos azólicos em espécies de Candida já

foi extensivamente reportada, porém também tem crescido o número de casos de

resistência à anfotericina B e às equinocandinas, a primeira nova classe de anfúngicos

que têm como alvo de ação a parede da célula fúngica, bloqueando a β-1,3-D-glucano

18

sintetase [13]. Estudo realizado por Eschenauer et al. (2014) [14] com 185 isolados de

C. tropicalis relata que 1,4% dessas cepas apresentaram resistência à caspofungina,

anidulafungina e micafungina. O uso indiscriminado de fármacos antifúngicos pode

influenciar o surgimento de cepas de C. tropicalis resistentes, com mutações no gene

ERG3 e consequentes efeitos na síntese de ergosterol [15]. Mutações nos genes ERG11

e ERG6 também já foram encontradas em isolados de C. tropicalis com resistência à

anfotericina B. Além disso, tem sido proposto que mutações concomitantes nos genes

ERG11 e ERG3 levam à resistência cruzada entre anfotericina B e azólicos em C.

tropicalis [16 - 17].

Estudo realizado por Yang et al. (2012) [18] realizou teste de susceptibilidade com

cepas oriundas do solo e isolados clínicos de C. tropicalis. Todos os isolados testados

foram sensíveis à anfotericina B; entretanto, evidenciou-se uma redução da

susceptibilidade em algumas cepas tanto para a anfotericina B como para o voriconazol.

Dentre os isolados do solo, grande parte apresentou reduzida susceptibilidade ao

fluconazol, e todos os isolados clínicos avaliados exibiram essa mesma característica.

Os dados desse estudo sugerem a possibilidade de uma associação entre a limitada

susceptibilidade ao fluconazol e voriconazol de isolados clínicos de C. tropicalis e uma

possível exposição anterior a antifúngicos que possam contaminar o ambiente, como é

o caso de componentes de pesticidas utilizados em práticas agrícolas. É de senso

comum que o uso indiscriminado de antifúngicos pode levar a uma pressão seletiva de

micro-organismos com baixa susceptibilidade a estes fármacos [19].

Os autores sugerem a existência de relacionamento genético entre tais cepas com

sensibilidade reduzida aos azólicos e cepas clínicas de C. tropicalis [18], o que aponta

para o risco de contaminação de pacientes hospitalizados ou indivíduos da comunidade

com isolados dessa levedura de baixa sensibilidade aos azólicos, uma vez que sistemas

19

de tratamento de água e descarte de dejetos de maneira inadequada podem constituir

fonte de contaminação do meio ambiente.

A análise da similaridade genética entre diferentes cepas de uma mesma espécie

de micro-organismo patogênico é procedimento fundamental para permitir a investigação

da história natural de infecções, caracterizar suas fontes e mecanismos de transmissão,

monitorar a emergência de cepas resistentes a drogas e auxiliar na definição de surtos

[20]. Nesse sentido, alguns estudos de epidemiologia molecular têm sido desenvolvidos

com espécies de Candida, principalmente por comparação entre diferentes técnicas de

tipagem molecular, visando discriminar subpopulações de uma mesma espécie e

investigar as relações entre elas. Estudo conduzido por Wu et al. (2017) [21] analisou os

padrões de variabilidade genética de C. tropicalis na ilha de Hainan, China, e investigou

a possibilidade de associação entre diferentes genótipos e o padrão de resistência a

antifúngicos, utilizando isolados obtidos da cavidade oral de indivíduos de cidades

diferentes. Os resultados sugeriram que a população de C. tropicalis de Hainan continha

novas e abundantes variações genéticas nos loci analisados por MLST, além de revelar

evidências de compartilhamento de genótipos entre cepas da Ilha e de outras regiões e

múltiplas origens independentes das cepas resistentes ao fluconazol. Os autores,

portanto, destacam o potencial de dispersão a longa distância de C. tropicalis entre

diferentes regiões geográficas, provavelmente através de atividades humanas, incluindo

a importação e exportação de alimentos colonizados. Ressaltam também a necessidade

de mais estudos que aumentem a compreensão dos mecanismos genéticos

relacionados com a origem e distribuição de genótipos resistentes ao fluconazol.

De fato, comparado a C. albicans, há relativamente poucos trabalhos sobre a

epidemiologia molecular de C. tropicalis, e em se tratando de isolados ambientais os

estudos são claramente escassos. Além disso, muitos atributos de virulência são

expressos ou tem sua expressão modulada em resposta a condições de estresse

20

promovidas pelo ambiente [22]. C. tropicalis é capaz de crescer em meio com

concentração acima de 10-15% de cloreto de sódio, o que explica a razão pela qual esta

espécie é muitas vezes isolada a partir de ambientes salinos [23]. A halotolerância

permite a sobrevivência prolongada de C. tropicalis no ecossistema marítimo. Tal fato

pode constituir importante fonte de adoecimento para a população que frequenta as

praias, como também pode levar à adaptação das leveduras a altas concentrações de

outros íons e à luz UV. Todo esse processo pode se refletir em alterações genéticas que

resultem em pressão de seleção [24].

Sendo assim, dada a alta prevalência de C. tropicalis em todas as partes do globo

e sua crescente importância clínica, é fundamental o entendimento dos padrões de

variabilidade genética dessa levedura.

21

2 JUSTIFICATIVA

Com relação aos determinantes de virulência de C. tropicalis, apesar do grande

número de trabalhos publicados com amostras clínicas em diferentes partes do mundo

e do crescente interesse social pelas questões ambientais, não há até o momento

nenhum estudo referente à caracterização fenotípica de isolados ambientais de C.

tropicalis que investigue o potencial de patogenicidade dessa levedura para

frequentadores de ambientes costeiros, onde essa levedura é amplamente encontrada.

O mesmo pode ser dito a respeito dos estudos de resistência antifúngica. A

resistência aos azólicos em isolados clínicos de C. tropicalis tem sido muito relatada [25-

27], contudo, ainda há relativamente poucos estudos referentes à resistência dessa

espécie a outros antifúngicos, como a anfotericina B, apesar de que resistência a esse

fármaco tem aumentado progressivamente [28], e em se tratando de isolados ambientais

estudos com esse foco são praticamente inexistentes.

Em estudo prévio realizado por nosso grupo de pesquisa, observamos que

isolados ambientais desta espécie, oriundos de ambientes costeiros apresentaram altos

níveis de resistência aos azólicos e à anfotericina B, havendo algumas cepas multi-

resistentes a estas duas diferentes classes de fármacos antifúngicos [28]. Esses isolados

também apresentaram alta capacidade de sobreviver em meios de cultura

hiperosmóticos e acentuada expressão de fatores de virulência in vitro.

Além disso, as praias são nichos com abundância de matéria orgânica e

condições climáticas que podem permitir a prolongada permanência de C. tropicalis no

ambiente bem como a geração de variabilidade genética ainda pouco explorada. Sendo

assim, há urgente necessidade de compreender melhor as origens e distribuições

genotípicas dessa levedura nas diferentes regiões geográficas.

22

3 OBJETIVOS

3.1 OBJETIVO GERAL

Realizar uma atualização de C. tropicalis e avaliar a variabilidade genotípica e

fenotípica de 62 isolados de C. tropicalis obtidos de ambiente costeiro do Nordeste do

Brasil.

3.2 OBJETIVOS ESPECÍFICOS

• Fazer uma revisão da literatura corrente sobre C. tropicalis

contemplando os seguintes aspectos:

• Biologia;

• Taxonomia;

• Características genéticas;

• Métodos de identificação e tipagem;

• Fatores de virulência;

• Modelos de infecção in vivo;

• Tipos de infecção envolvidos;

• Susceptibilidade aos antifúngicos e produtos naturais;

• Resposta ao estresse osmótico e aplicações biotecnológicas;

• Realizar coletas ambientais de amostras de areia da praia e água do mar

em seis diferentes pontos da praia de Ponta Negra, Natal-RN, em dois diferentes

períodos do ano (verão e inverno);

• Realizar o isolamento e purificação de leveduras isoladas da água do

mar e areia da Praia de Ponta Negra, Natal-RN;

23

• Realizar a identificação laboratorial das amostras de leveduras

purificadas, utilizando metodologia clássica;

• Caracterizar genotipicamente os isolados por meio da técnica de

microssatélite;

• Realizar análise proteômica por meio da técnica de MALDI-TOF/MS;

• Comparar os dendrogramas gerados pela análise de microssatélite e

pela técnica de MALDI-TOF/MS, avaliando a variabilidade e a distribuição genotípica;

• Obter dados sobre as condições climáticas dos seis pontos de coleta de

areia, em dois períodos sazonais distintos.

24

4 MÉTODOS

4.1 AMOSTRAGEM

O material para análise consistiu em amostras de 50 g areia seca coletada a 15

centímetros de profundidade em relação à superfície. Foram analisadas amostras

coletadas de seis pontos distribuídos ao longo da orla da praia de Ponta Negra, Natal,

RN, sendo que duas coletas foram realizadas no verão (estação seca) e outras duas no

inverno (estação chuvosa).

4.2 COLETA DE AREIA

As amostras foram obtidas de forma asséptica, seguindo rigorosa observação

das Boas Práticas de Laboratório e de Biossegurança. Foram coletadas em março

(estação seca; C1), abril (estação seca; C2) e julho (estação chuvosa; C3) de 2012 e

em julho (estação chuvosa; C4) de 2013, em seis pontos geograficamente diferentes

da praia, selecionados pela maior concentração de pessoas. Os pontos foram

demarcados com auxílio do programa “Google Earth”, por meio do qual foram obtidas

as coordenadas geográficas dos locais desejados. As coordenadas foram

posteriormente utilizadas para a localização desses pontos, com o auxílio de

equipamento de GPS (Global Positioning System; GARMIN e Trex Vista HCx).

As amostras de areia foram coletadas a 15 cm de profundidade em relação à

superfície, com espátula estéril e transferida para coletores universais estéreis com

volume de 80 mL, devidamente etiquetados e mantidos à temperatura ambiente (T.

A.=28 + 2 ºC), sendo transportados ao Laboratório de Micologia Médica e Molecular

25

(LMMM) do Departamento de Análises Clínicas e Toxicológicas da UFRN para o

processamento laboratorial [29].

4.3 ISOLAMENTO E PURIFICAÇÃO DE C. tropicalis

O processamento laboratorial das amostras foi realizado imediatamente após

a coleta. Em condições rigorosas de assepsia, as amostras de areia foram pesadas e

transferidas dos frascos plásticos, com espátula estéril, para Erlenmeyers de 250 mL

de capacidade, previamente esterilizados. As amostras de 50 gramas de areia foram

diluídas em 90 mL de solução salina 0,9% (w/v) esterilizada e homogeneizadas por 1

minuto, em agitador de tubos (vórtex). A partir da suspensão resultante, retirou-se uma

alíquota de 1 mL, posteriormente semeada na superfície de placas de Petri de 155

mm de diâmetro contendo Ágar Sabouraud Dextrose (ASD) com cloranfenicol (100

mg/L), com auxílio de alça de Drigalski. Após o plaqueamento, as placas de Petri

foram incubadas à T.A., por um período de até 15 dias [29].

Para a purificação dos isolados obtidos a partir da semeadura primária das

amostras de areia e água, cada colônia com aspecto macroscópico de levedura

isolada no ASD, foi repicada para placas de Petri de 90 mm de diâmetro contendo o

meio CHROMagar Candida®, sendo semeadas por esgotamento e incubadas a 30ºC

por 72 horas. As colônias de C. tropicalis apresentam coloração azul petróleo [30]. As

colônias que cresceram isoladamente no CHROMagar Candida®, foram repicadas

para placas de Petri de 90 mm de diâmetro contendo ASD + cloranfenicol e incubadas

a 30ºC por 48 horas, para dar sequência às provas de identificação.

4.4 IDENTIFICAÇÃO DAS LEVEDURAS DO SOLO

26

Para a identificação das leveduras foram observadas as características

macroscópicas e micromorfológicas das colônias que foram isoladas.

4.4.1 Análise macroscópica das colônias

A partir do crescimento fúngico no meio para isolamento primário foi realizada

a caracterização macroscópica das colônias obtidas, observando as características

referentes ao aspecto, coloração do verso e do reverso, textura e tamanho [31].

4.4.2 Análise micromorfológica de leveduras

Após observação do crescimento das colônias nas placas de Petri contendo

ASD com cloranfenicol, foi realizado o microcultivo de cada colônia. Cada amostra foi

semeada com o auxílio de alça em anel de níquel-cromo em três estrias paralelas

sobre a placa de Petri de 90 mm de diâmetro contendo ágar fubá com Tween-80. As

estrias realizadas sobre o ágar foram cobertas com lamínulas estéreis e a placa

incubada à T.A., durante 48-96h. As leituras foram realizadas diariamente, em

microscopia de luz com 400x de magnificação (Olympus, CX21) [31].

4.4.3 Análise fisiológica e bioquímica

4.4.3.1 Testes de assimilação de fontes de carbono e nitrogênio

(Auxanograma)

Para identificação das leveduras em nível de espécie foi utilizado o meio básico

C, para o teste de assimilação de fontes de carbono, e o meio básico N, para o teste

27

de assimilação de fontes de nitrogênio. Para realização dos mesmos, inicialmente foi

preparada uma suspensão com a levedura obtida de dois repiques com 48 horas de

incubação a 30 ºC em placa de Petri contendo ASD com cloranfenicol. Para a

suspensão, utilizou-se tubos de ensaio com 2 mL de água destilada estéril para o meio

C, e tubos com 1 mL de água estéril para o meio N, sendo o inóculo adicionado a

esses tubos de ensaio com alça de níquel-cromo flambada, de modo a obter uma

suspensão de micro-organismos compatível com o padrão da escala 5 de

MacFarland. Subsequentemente, a suspensão de levedura foi adicionada ao meio de

cultura ainda líquido, à temperatura de 50 ºC (meios básico C e N) e a suspensão

distribuída em placas de Petri de 155 mm de diâmetro.

Seguido à solidificação do meio de cultivo, sobre a superfície do meio básico

C, foram adicionados 14 diferentes fontes de carbono em pequenas concentrações,

em posições previamente marcadas na placa de Petri. As fontes de carbono utilizadas

foram: celobiose (Vetec®), dulcitol (Vetec), galactose (Vetec), glicose (Cinética),

inositol (Vetec), lactose (Queel), maltose (Reagen), manitol (Vetec), melibiose (Vetec),

rafinose (Vetec), ramnose (Vetec), sacarose (Reagen), trealose (Vetec) e xilose

(Reagen).

De modo semelhante, sobre a superfície do meio básico N, foi adicionado

nitrato de potássio (KNO3) (Reagen), como fonte de nitrogênio. Peptona (Himedia) foi

utilizada como controle positivo.

As placas foram incubadas à T.A., por 72 horas. Após esse período observou-

se em quais fontes de nutriente havia presença de halo de crescimento fúngico,

indicando a utilização de fontes de carboidrato e ou/nitrogênio pela via oxidativa [31].

4.4.3.2 Testes de fermentação de fontes de carbono (Zimograma)

28

Para avaliar a capacidade fermentativa de diferentes carboidratos pelas

leveduras, foram utilizados tubos de ensaio contendo tubos de Duhram invertidos. Os

tubos de ensaio continham 6 mL do meio básico para fermentação, com peptona,

extrato de levedura e diferentes açúcares. À semelhança do auxanograma,

primeiramente foi preparada uma suspensão com a levedura obtida de dois repiques

com 48 horas de incubação à T.A. em placa de Petri contendo ASD com cloranfenicol.

Para a suspensão, utilizou-se tubos de ensaio com 2 mL de água destilada estéril. O

inóculo foi adicionado a esses tubos de ensaio com alça de níquel-cromo flambada,

para se obter uma suspensão de leveduras compatível com o padrão da escala 5 de

MacFarland.

Foram utilizados para cada cepa de levedura isolada 7 tubos de ensaio com

tubos de Durham invertidos, sendo que cada um continha uma fonte de carboidrato

distinta. Os carboidratos utilizados foram galactose (Vetec), glicose (Cinética), lactose

(Queel), maltose (Reagen), rafinose (Vetec) e trealose (Vetec).

Adicionou-se 200 µl da suspensão de levedura em cada tubo de ensaio,

seguido de homogeneização e incubação à temperatura ambiente. As leituras foram

realizadas diariamente entre 7 e 21 dias, sendo que considerou-se resultado positivo

quando 1/3 a 3/3 do tubo de Durham estava preenchido com gás, produzido pela

fermentação dos carboidratos. O teste foi considerado negativo quando não foi

observada produção de gás dentro do tubo de Durham [31].

4.5 MANUTENÇÃO DAS LEVEDURAS

Todas as cepas de levedura obtidas foram semeadas em tubos cônicos

(Falcon) contendo 6mL de caldo YPD, com auxílio de alça em anel de níquel-cromo.

Os tubos foram, então, incubados “overnight”, à T.A., 200 rpm (Tecnal, TE-420). Um

29

volume de 800 µL do crescimento fúngico foi adicionado a 200 µL de glicerol em

criotubos de 2mL de volume. Os criotubos foram incubados em freezer a -80°C (Termo

Scientific). As cepas de leveduras congeladas foram reativadas por dois repiques

sucessivos em placas de Petri de 90 mm de diâmetro contendo ágar Sabouraud

Dextrose com Cloranfenicol (100 mg/mL) à T.A., previamente à realização dos

experimentos [31].

4.6 SELEÇÃO DOS ISOLADOS

Foram avaliados 62 isolados de C. tropicalis obtidos da areia da praia de Ponta

Negra, Rio Grande do Norte, Brasil, pertencentes à Coleção de Culturas do

Laboratório de Micologia Médica e Molecular (LMMM), Departamento de Análises

Clínicas e Toxicológicas da Universidade Federal do Rio Grande do Norte. Duas

cepas de referência foram utilizadas como organismos controle em todos os testes, a

saber: Uma cepa ATCC (“American Type Culture Collection”) de C. albicans (90028)

e a cepa de C. tropicalis ATCC 13803.

4.7 ANÁLISE DE MICROSSATÉLITE

Para genotipagem por microssatélite, a extração de DNA total a partir de

culturas de C. tropicalis foi feita utilizando-se okit PrepMan® Ultra de acordo com as

instruções do fabricante (Applied Biosystems) empregando-se posteriormente o

primer M13 em reação de PCR [32]. Os produtos de amplificação foram submetidos a

corrida eletroforética em gel de agarose, subsequentemente corado com solução de

brometo de etídio (USB Corporation) e descorado em água destilada. A

fotodocumentação foi realizada em transiluminador de raios UV (UVP – BioDoc – it

30

TM System) e a análise dos resultados por dendrograma utilizando o programa GEL

COMPAR II versão 4.0 Bionumerics (Applied Maths, Kortrijk, Bélgica), através de

análise de agrupamento, de acordo com a similaridade dos padrões de bandas

obtidos. Para gerar o dendrograma, foi utilizado o método UPGMA (“unweighted pair-

group method using arithmetic averages”), que, baseado na matriz de similaridade,

faz o grupamento par a par das amostras, gerando desta maneira o grupamento em

uma árvore enraizada [32].

4.8 ANÁLISE POR MALDI TOF MS

Para a análise por MALDI TOF MS, as proteínas foram extraídas com ácido

fórmico a partir de culturas de C. tropicalis, de acordo com um protocolo adaptado [33

– 34], e a suspensão correspondente de cada isolado foi imediatamente transferida

para uma placa de leitura (Bruker Daltonics - EUA), seguida da adição de solução

matricial (10 mg / mL de ácido alfa-cian-4-hidroxicinamicina etanol: água: acetonitrila

[1: 1: 1]; Sigma - EUA) com 0,03% de ácido. O passo de cristalização ocorreu à

temperatura ambiente e os isolados foram analisados em triplicata. As leituras de

proteínas foram realizadas com um espectrômetro de massa Microflex LT usando a

ferramenta FlexControl 3.0 (Bruker Daltonics, EUA). Para a aquisição de perfis de

proteínas, consideramos uma faixa de massa de 2.000 a 20.000 Da obtida no modo

linear com 40 tiros de laser de nitrogênio com taxas de velocidade variável que

atingem até 60 Hz por poço. Foram utilizadas seis proteínas ribossômicas de

Escherichia coli para calibração externa de massas proteicas analisadas. A geração

de perfis foi realizada usando os softwares Biotyper 3.0 e Biotyper Real Time

Classification (Bruker Daltonik GmbH).

31

5 ARTIGOS PRODUZIDOS

O Artigo “An Update on Candida tropicalis Based on Basic and Clinical

Approaches” foi publicado no periódico Frontiers in Microbiology (ISSN 1664-302X )

com fator de impacto de 4,259 (2017/2018) e Qualis A1; e o artigo “Candida tropicalis

geographic population structure maintenance and dispersion in the coastal

environment may be influenced by the climatic season and anthropogenic action” foi

publicado no periódico Microbial Pathogenesis (ISSN : 0882-4010) com fator de

impacto de 2,581 (2017/2018) e classificação A3, segundo o novo Qualis referência

da CAPES.

32

AN UPDATE ON Candida tropicalis BASED ON BASIC AND

CLINICAL APPROACHES

Diana Luzia Zuza-Alves1, Walicyranison Plinio Silva-Rocha1, Guilherme Maranhão

Chaves1*.

1 Laboratory of Medical and Molecular Mycology, Department of Clinical and

Toxicological Analyses, Federal University of Rio Grande do Norte, Natal city, RN,

Brazil.

* Author responsible for correspondence:

Name: Guilherme Maranhão Chaves

Address: Universidade Federal do Rio Grande do Norte, Centro de Ciências da Saúde.

Departamento de Análises Clínicas e Toxicológicas. Laboratório de Micologia Médica e

Molecular. Rua. Gal. Gustavo Cordeiro de Faria S/N. Petrópolis. Natal, RN – Brasil. CEP:

59012-570.

Phone number: 00 55 (84) 3342-9801

E-mail address: [email protected]

33

Abstract 1

Candida tropicalis has emerged as one of the most important Candida species. It has been 2

widely considered the second most virulent Candida species, only preceded by C. 3

albicans. Besides, this species has been recognized as a very strong biofilm producer, 4

surpassing C. albicans in most of the studies. In addition, it produces a wide range of 5

other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the 6

secretion of lytic enzymes, such as proteinases, phospholipases and hemolysins, bud-to-7

hyphae transition (also called morphogenesis) and the phenomenon called phenotypic 8

switching. This is a species very closely related to C. albicans and has been easily 9

identified with both phenotypic and molecular methods. In addition, no cryptic sibling 10

species were yet described in the literature, what is contradictory to some other medically 11

important Candida species. C. tropicalis is a clinically relevant species and may be the 12

second or third etiological agent of candidemia, specifically in Latin American countries 13

and Asia. Antifungal resistance to the azoles, polyenes and echinocandins has already 14

been described. Apart from all these characteristics, C. tropicalis has been considered an 15

osmotolerant microorganism and this ability to survive to high salt concentration may be 16

important for fungal persistence in saline environments. This physiological characteristic 17

makes this species suitable for use in biotechnology processes. Here we describe an 18

update of C. tropicalis, focusing on all these previously mentioned subjects. 19

Key words: Candida tropicalis, virulence factors, antifungal resistance, phenotypic and 20

molecular identification, update 21

34

1. Introduction 1

In the last decades, medicine advances related to the discovery of several medical devices 2

which seek for a longer survival of patients with several infirmities, such as AIDS, 3

hematological malignancies, cancer and other immunosuppressive diseases promoted a 4

longer lifespan. On the other hand, the number of opportunistic fungal infections 5

increased, mainly the ones caused by the Candida genus (Pincus et al., 2007, Araújo et 6

al., 2017). In this context, Candida tropicalis emerges as one of the most important 7

Candida species in terms of epidemiology and virulence. It is able to produce true hyphae, 8

an exclusive property of Candida albicans and its sibling species Candida dubliniensis. 9

C. tropicalis has also been considered a strong biofilm producer species and is highly 10

adherent to epithelial and endothelial cells (Marcos-Zambrano et al., 2014). In addition, 11

several recent investigations have reported the recovery of C. tropicalis resistant to the 12

antifungal drugs currently available, such as the azoles derivatives, amphotericin B and 13

echinocandins (Choi et al., 2016; Seneviratne et al., 2016). In addition, C. tropicalis has 14

been considered an osmotolerant microorganism and this ability to survive to high salt 15

concentration may be important for fungal persistence in saline environments, 16

contributing to the expression of virulence factors in vitro and resistance to antifungal 17

drugs (Zuza-Alves et al., 2016). This property explains C. tropicalis potential use in 18

biotechnological processes such as the production of xylitol from corn fiber and the 19

ethanol from marine algae (Rao et al., 2006; Ra et al., 2015). 20

2. Biology and taxonomy 21

Candida tropicalis was originally isolated from a patient with fungal bronchitis in 1910 22

and named Oidium tropicale (Castellani, 1912). It is a yeast belonging to the filo 23

Ascomycota, from the Hemiascomycetes class (Blandin et al., 2000), which has a single 24

Order created in 1960 by Kudrjavzev, called Saccharomycetales (Kirk et al., 2001). This 25

monophyletic lineage comprises about 1000 known species, including several yeasts of 26

medical importance such as C. tropicalis (Diezmann et al., 2004). 27

According to Kurtzman and Fell (2011) C. tropicais colonies on Sabouraud Dextrose 28

Agar (SDA) are white to cream, with a creamy texture and smooth appearance and may 29

have slightly wrinkled edges. Therefore, it is indistinguishable from other Candida 30

species. After 7 days of microculture on cornmeal agar containing Tween 80, incubated 31

35

at 25 °C, spherical or ovoid blastoconidia, which may be grouped in pairs or alone, 1

measuring approximately 4-8 × 5-11 μm, pseudohyphae in branched chains, and even 2

true hyphae may be observed (Silva et al., 2012; Figure 1). With respect to the 3

biochemical characteristics, it is known that C. tropicalis is capable of fermenting 4

galactose, sucrose, maltose and trehalose, besides assimilating these and others 5

carbohydrates through the oxidative pathway (Kurtzman and Fell, 2011). 6

3. Genetic characteristic 7

C. tropicalis is a diploid yeast, whose genome was sequenced in 2009 (strain MYA-3404) 8

in a study conducted by Butler et al. (2009). It has a genomic size of 14.5 Mb, containing 9

6,258 genes encoding proteins and a guanine-cytosine content of 33.1%. The number of 10

chromosomes is not known with precision, but Doi et al. reported 12 chromosomes per 11

cell for C. tropicalis (Doi et al., 1992). 12

It has been widely believed that C. tropicalis is an asexual yeast. However, some studies 13

performed recently have reported that mating between diploid cells a and α, generating 14

a/α tetraploid cells may occur (Seerva et al., 2013; Porman et al., 2011; Xie et al., 2012). 15

Such mating is regulated by colony phenotypic switching, where cells change from a 16

white to an opaque state. Seervai et al. (2013) demonstrated that tetraploid strains of C. 17

tropicalis can be induced to undergo parasexual cycle without meiotic reduction. This 18

process results in a or α diploid cells competent for mating, being able to form tetraploid 19

cells, which show chromosomal instability after incubation and return to the diploid state 20

after approximately 240 generations (Seervai et al., 2013). Genetic recombination has 21

also been demonstrated, besides ploidy changes (aneuploidies and polyploidy), affecting 22

cells gene expression and protein production (Morrow and Fraser, 2013). This reduction 23

in ploidy is considered a mechanism of adaptation and may be associated with cell stress 24

(Berman and Hadany, 2012). This adaptive mechanism may also generate karyotype 25

variation within the host, and may be induced by various stressors, such as thermal shock, 26

exposure to UV light and growth in l-sorbose or d-arabinose as the only carbon source 27

(Morrow and Fraser, 2013, Bouchonville et al., 2009, Legrand et al., 2008, Arbor et al., 28

2009). It is important to emphasize again that meiosis occurrence has never been 29

described in C. tropicalis. 30

36

C. tropicalis has greater genetic similarity with C. albicans than the other Candida species 1

of medical interest (Butler et al., 2009), as may be observed in Figure 2. This intimate 2

evolutionary relationship is also evident in phenotypic and biochemical characteristics of 3

both species. Phylogenetically, this pattern of evolution can be explained due to 4

predominant clonal reproduction. However, with recombination events frequent enough 5

to generate a population with similar characteristics (Wu et al., 2014). 6

4. Identification 7

4.1 Conventional methods for Candida tropicalis identification 8

C. tropicalis has been quite reasonably well identified with phenotypic methods until the 9

present moment (Table 1). This is contradictory to some other Candida spp., where 10

molecular identification is mandatory due to the existence of cryptic species. 11

Although the classical methodology is of easy execution, it is very laborious and time-12

consuming making it difficult to be used in microbiology routine laboratories (Table 1; 13

Pincus et al., 2007; Sariguzel et al., 2015). 14

The use of chromogenic media, with different substrates that react with specific enzymes 15

of the main Candida species induce the formation of colonies with different colors and 16

has been used for the presumptive identification of C. tropicalis. They have all been used 17

for the screening of distinct species, besides being used to check the purity of Candida 18

colonies and may be helpful to detect mixed infections. Quite a few number of different 19

chromogenic culture media are currently commercially available for yeasts identification, 20

and they have been successfully used for the initial screening of C. tropicalis colonies 21

(Table 1). 22

Several commercially available kits used for yeasts identification based on carbohydrates 23

used by oxidative pathways have been in the market in order to facilitate the process used 24

for yeasts identification (Table 1). C. tropicalis identification with commercial methods 25

have been performed since 1975; since then, several papers have been published in the 26

literature evaluating the efficiency of this method. In a recent study by Stefaniuk and 27

colaborators), the API ID32C system (bioMérieux) was used for the identification of 124 28

Candida clinical isolates, where 21 C. tropicalis isolates (100% of cases) were accurately 29

identified (Stefaniuk et al., 2016). In a study performed by Alfonso et al., with 240 30

37

isolates of different Candida species, the authors found the accurate identification of 34 1

isolates of C. tropicalis with the API ID 32C system (Alfonso et al., 2010). Gundes et 2

al., compared the efficiency of different commercial methods used in the identification 3

116 yeasts of medical interest, demonstrating the accuracy of 87% (101 out of 116) for 4

API 20C® against 82.7% (96 out of 116) with Candifast® system. However, C. tropicalis 5

was accurately identified in 100% of cases with both methods (Gundes et al., 2001). The 6

AuxaColor™ Kit (Bio-Rad) identification has been shown to be accurate in 63,8-95,2% 7

of cases (Pincus et al., 2007). Recently, in a meta-analysis performed by Posteraro et al. 8

(2015), including a total of 26 studies that evaluated yeasts identification methods, they 9

observed that C. tropicalis was accurately identified in 168 out of 184 cases tested with 10

AuxaColor™ and 55 out of 66 cases by using API ID32C® (Posteraro et al., 2015). 11

Besides semi-automated methods currently available, there are other methods completely 12

automated for yeasts identification (Table 1). Won and collaborators performed a study 13

that compared the efficiency of several medically important yeast species identification 14

with the automated systems Vitek2® and BD Phoenix™. This study included a total of 15

341 isolates, from 49 species and C. tropicalis (36 isolates) was accurately identified in 16

34 cases with BD Phoenix™ System and in 32 occasions with Vitek2® (Won et al., 17

2014). 18

The conventional methods of identification including the classical methods, semi-19

automated and automated systems may not be completely accurate on some cases and 20

may lead to an incomplete identification, needing supplementary tests or even give a 21

wrong identification for some species (Chao et al., 2014; Marcos and Pincus, 2013). 22

Therefore, molecular biology advances are of extreme importance for microorganism’s 23

identification because of the fact they are more accurate, and may reduce costs involving 24

identification during the whole process, resulting in a decreased time for the release of 25

results (Chao et al., 2014; Posteraro et al., 2015). 26

4.2 Molecular methods and proteomics for the identification of Candida tropicalis 27

Recently, the evaluation of the protein profile of each species has been used as the basis 28

for yeasts identification and has been proven as more efficient than the conventional 29

methods (Stefaniuk et al., 2016; Chao et al., 2014; Santos et al., 2011). The protein profile 30

38

by mass spectrophotometry is a simple methodology of easy sample preparation and short 1

time for analysis (Table 2; Keceli et al., 2016). 2

The accurate identification of C. tropicalis by proteomics analysis has been demonstrated 3

in several studies which compared identification methods (Sariguzel et al., 2015; 4

Stefaniuk et al., 2016; Chao et al., 2014; Keceli et al., 2016; Angeletti et al., 2015; Panda 5

et al., 2015). C. tropicalis was accurately identified in 22/22 (100%) (Sow et al., 2015), 6

in 21/21 (100%) (Stefaniuk et al., 2016), in 18/18 (100%) (Angeletti et al., 2015), in 17/17 7

(100%) (Chao et al., 2014), in 13/13 (100%) (Keceli et al., 2016) and in 2/2 (100%) by 8

VITEK-MS (Sariguzel et al., 2015). The system performance of the MALDI Biotyper 9

system also showed satisfactory results for the identification of C. tropicalis, where the 10

accurate identification was found for 21/21 (100%) (Stefaniuk et al., 2016), 17/17 (100%) 11

and in 18/18 (100%) (Angeletti et al., 2015) of cases. 12

Several studies have also been performed to evaluate PNA-FISH performance for 13

different Candida species isolated from different anatomic sites, where conclusive results 14

for C. tropicalis ranged from 96-100% of cases (Table 2; Stone et al., 2013; Calderaro et 15

al., 2014; Gorton et al., 2014; Hall et al., 2012). 16

Although the methods used for microorganism’s identification by using PNA-FISH and 17

protein profile analysis using mass spectrophotometry techniques are accurate and have 18

high sensitivity and specificity, molecular sequencing has been considered the gold 19

standard technique for microorganisms identification recently (Keceli et al., 2016). rDNA 20

ITS region sequencing has been quite satisfactorily used for C. tropicalis identification 21

elsewhere. The main target for yeasts DNA molecular sequencing is the ribosomal 22

(rDNA) region (Pincus et al., 2007). This region contains conserved domains separated 23

by variable regions (the small sub unities 18S and 5.8S, besides the large subunit 26S, 24

while these sub unities are separated by the interespacer regions ITS1 and ITS2) which 25

contain species-specific sequences used as the preferential target for universal primers 26

used of identification (Merseguel et al., 2015; Benedetti et al., 2016; Shi et al., 2015, 27

Table 2). 28

4.3 Candida tropicalis genotyping 29

Genotyping methods have largely been used recently to investigate a genetic correlation 30

of different strains of the same species or even among different species (Table 2). These 31

39

methods may be applied to the investigation of infections caused by similar or identical 1

strains, besides the observation of possible micro-evolution or strains substitution during 2

colonization and infection (Almeida et al., 2015; da Costa et al., 2012). 3

Recently, Almeida and collaborators employed RAPD technique with three different 4

random primers (OPA-18, OPE-18 and P4) to evaluate the genetic variability of 15 5

clinical isolates of C. tropicalis obtained from patients with candiduria (Almeida et al., 6

2015). The analyses of the dendrogram constructed with DNA bands with the best 7

discriminatory power primer (OPA-18) showed 4 well defined clusters (I, II, III and IV), 8

where cluster I and II showed above 90% similarity among them, while clusters III and 9

IV had 70% similarity. 10

Costa et al. (2012) genotyped by RAPD 15 strains of C. tropicalis oral isolates with 11

primers OPA-01, OPA-09, OPB-11, OPE-18 and SEQ-06 (da Costa et al., 2012). OPA-12

01 showed the best discriminatory power, presenting ten distinct patterns for C. tropicalis 13

isolates, with 80% similarity (da Costa et al., 2012). Another study using primers OPE-14

03, RP4-2, OPE-18 and AP50-with 12 catheter tip and urine isolates, obtained 9 different 15

clusters with similarities coefficients (SABs) ranging from 0.8-1.0, where different strains 16

were considered unrelated (if SAB was bellow 0.8), moderately related (SAB 0.8-0.89), 17

highly related (SAB 0.90-0.99) and identical (SAB 1.0) (Marol, 2008). 18

Almeida et al. (2015) typed 15 isolates of C. tropicalis with microsatellites and obtained 19

the presence of 5 different alleles with the marker URA3 and 8 different allelic 20

combinations with the CT14 locus, being this marker considered to have a better 21

discriminatory power than the URA3 locus (Almeida et al., 2015). 22

By evaluating 65 clinical isolates of C. tropicalis obtained from different anatomic sites, 23

Wu et al., used different markers of sequence tandem repeats, as follows: Ctrm1, Ctrm7, 24

Ctrm10, Ctrm12, Ctrm15N, Ctrm21, Ctrm24 and Ctrm28 and selected six loci for 25

population genetic analyses (Ctrm1, Ctrm10, Ctrm12, Ctrm21, Ctrm24 e Ctrm28), 26

obtaining a total of 7 (Ctrm24 e Ctrm28) to 27 (Ctrm1) distinct genotypes (Wu et al., 27

2014). 28

The methodology known as MLST (Multilocus Sequence Typing) was originally 29

described by Maiden and colaborators (Maiden et al., 1998). Therefore, by using MLST, 30

strains from different geographic regions and various anatomic sources may be analyzed 31

40

and compared. Strains maintenance, substitution and multiple colonization may be 1

investigated (Wu et al., 2014; Maiden et al., 1998; Wu et al., 2012; Chen et al., 2009). 2

The first MLST studies on C. tropicalis were performed in 2005, by Tavanti et al. with 3

DNA sequencing of 6 housekeeping genes (ICL1, MDR1, SAPT2, SAPT4, XYR1 and 4

ZWF1α). In this study, 106 isolates of C. tropicalis (104 human clinical isolates and 2 5

from animal origin) were evaluated, where 87 DSTs where obtained, grouped within 3 6

different highly related clades (Tavanti et al., 2005). In the study performed by Wu et al., 7

with 58 strains of C. tropicalis from different anatomic sites by MLST, 52 different DSTs 8

grouped within 6 different clades where obtained (Wu et al., 2012). Therefore, MLST is 9

considered a very robust molecular technique used for typing with high discriminatory 10

power, being widely used to evaluate intra-specific variability for different 11

microorganisms including C. tropicalis (Wu et al., 2012; Chen et al., 2009; Odds and 12

Jacobsen, 2008; Tavanti et al., 2005). 13

5. Virulence factors 14

The ability of yeasts to adhere, infect and cause diseases altogether is defined as a 15

potential of virulence or pathogenicity. According to Cauchie et al. (2017), it was 16

previously believed that species of the Candida genus were passively involved in the 17

process of establishment of infection. However, it is now established that these yeasts 18

play an active role in the infectious process through the action of several virulence factors 19

(Cauchie et al., 2017). 20

5.1 Adhesion to epithelial and endothelial cells 21

Adhesion of blastoconidia to host cells is considered the first step for both colonization 22

and the establishment of Candida infections and involves interactions between fungal 23

cells and host surfaces (Cannon and Chaffin, 2001). It is a complex and multiphase 24

process, including different factors, such as the microorganism involved, the composition 25

of adhesion surfaces and several environmental factors (Silva-Dias et al., 2012). 26

Galán-Ladero et al. (2013) performed a study with 29 C. tropicalis isolates with 27

hydrophobicity potential (Galán-Ladero et al., 2013). The cell wall structure is composed 28

by hydrophobic proteins embedded in a cellular matrix which may favor the initial 29

interaction, because hydrophobic particles tend to attach to a high variety of plastic 30

41

materials and host proteins such as laminin, fibrinogen and fibronectin (Tronchin et al., 1

2008). 2

Genes which codify proteins related to adhesion processes are differentially expressed, 3

accordingly to a variety of hosts and environmental conditions (Verstrepen and Klis, 4

2006; Sohn et al., 2006). Despite the fact that ALS genes (Table 3) are highly involved 5

with adhesion in C. albicans, it has been reported that several Candida species also have 6

the ability to adhere to human buccal and vaginal epithelial cells, besides to the 7

gastrointestinal epithelia of mice and several different plastic materials, motivating 8

studies on adhesion in Non-Candida albicans Candida (NCAC) species (Klotz et al., 9

1983). 10

Punithavathy and Menon (2012) evaluated the presence of ALS genes in 48 isolates of C. 11

tropicalis obtained from HIV-negative and positive patients. The authors found that 12 12

isolates (25%) expressed the ALS1 gene, 24 isolates (50%) expressed ALS2 and 23 of 13

them (48%) showed ALS3 expression (Punithavathy and Menon, 2012). 14

HWP1 (“Hyphal wall protein”) gene codify another important adhesin present on the 15

hyphal cell wall (Table 3). In vitro studies demonstrated the presence of high amounts of 16

Hwp1p at hyphal cell walls, while low amounts are present in blastoconidia (Naglik et 17

al., 2006) and pseudo-hyphae (Snide and Sundstrom, 2006). The HWP1 gene is involved 18

in adhesion to human buccal epithelial cells (HBEC), codifying the first protein needed 19

for biofilm formation (Sundstrom et al., 2002; Nobile et al., 2008). 20

The expression of this adhesin was recently reported for C. tropicalis in a study 21

performed in Malaysia (Wan Harun et al., 2013) which investigated the presence of 22

HWP1 in NCAC species by using mRNA expression. HWP1 mRNA transcription was 23

positively regulated in C. tropicalis, indicating the ability of this species to express this 24

adhesin. This study suggests that HWP1 in C. tropicalis shares an identical sequence with 25

C. albicans. Therefore, this is contradictory with the description of the presence of HWP1 26

only in C. albicans (Ten Cate et al., 2009). 27

In fact, most of the studies report C. albicans as more adherent than other NCAC species, 28

but C. tropicalis is considered the second most adherent species of the Candida genus 29

(Calderone and Gow, 2002; Lyon and de Resende, 2006; Biasoli et al., 2010). For 30

instance, Costa et al., evaluated the ability of adherence of Candida isolates obtained 31

42

from the oral cavity of HIV individuals, patients with candidemia and catheter tips and 1

found C. albicans as the most adherent species (average of 227.5 cells/100 HBEC) while 2

C. tropicalis showed in average 123.5 cells/100 HBEC (Costa et al., 2010). Conversely, 3

another study investigating adhesion by oral isolates of C. albicans and C. tropicalis to 4

laminin and fibronectin detected by ELISA, reported C. tropicalis adhesion significantly 5

higher than what was found for C. albicans (da Costa et al., 2012). 6

More recently, Menezes et al. (2013) evaluated the ability Candida spp. clinical isolates 7

to adhere to glass cover slips (Menezes et al., 2013). They found higher adherence of C. 8

tropicalis than C. albicans and yeasts belonging to the C. parapsilosis complex. A recent 9

study performed in Brazil, with isolates from the oral cavity of kidney transplant 10

recipients also demonstrated high ability of adherence to HBEC by C. tropicalis (Chaves 11

et al., 2013). In this study, while C. albicans isolates showed about 237 cells/150 HBECs 12

in average, an isolate of C. tropicalis had 335 cells/150 HBECs, reinforcing the 13

remarkable role of adhesion as an important virulence factor in C. tropicalis. 14

5.2 Morphogenesis and phenotypic switching 15

Subsequently to the adhesion step to host cells, bud-to-hyphae transition (also called 16

morphogenesis) is highly relevant to some pathogenic yeasts, including Candida spp. 17

(Calderone and Gow, 2002). It is one of the most important steps for the establishment 18

of candidiasis and is considered a necessary step for several virulence processes, 19

including invasion of host epithelial layers, endothelial rupture, survival to phagocytic 20

cells attack, biofilm formation and thigmotropism (Lackey et al., 2013). 21

Studies concerning morphogenesis are very well established for C. albicans, with very 22

well established environmental signals, transcription regulators and target genes involved 23

in filamention (Lackey et al., 2013; Gustin et al., 1998; Kumamoto and Vinces, 2005; 24

Wapinski et al., 2007). However, there are considerably less studies concerning 25

morphogenesis in other NCAC species. Several Candida species may develop pseudo-26

hyphae, but quite a few are able to form true hypahe, including C. albicans, C. 27

dubliniensis and C. tropicalis. The latter do not show the same degree of filamentation 28

than C. albicans; however, because of the fact they are frequently associated with 29

infectious processes, they certainly have mechanisms of adaptation that may favor 30

filamentation in specific environmental conditions (Lackey et al., 2013). 31

43

Galán-Ladero et al. (2013) evaluated the filamentation among C. tropicalis isolates 1

obtained from different anatomic sites of patients admitted in a Spanish tertiary hospital 2

(Galán-Ladero et al., 2013). The authors described high levels of filamentation for 76.6% 3

of the isolates at the specific environmental conditions. Wapinski et al. (2007) reported 4

that at least 55 out of the 105 genes involved in C. albicans filamentation are conserved 5

in C. tropicalis (Wapinski et al., 2007). 6

Lakey et al. (2013) induced C. tropicalis cells filamentation and analyzed gene 7

expression at the conditions provided (Lackey et al., 2013). They found significant 8

filamentation in serum and glucose medium at 37 °C. Optical microscopy showed the 9

presence of elongated yeast-like cells, pseudohyphae and true hyphae that were shorter 10

than the ones found in C. albicans. They also verified that the negatively regulated gene 11

NRG1 has an important role in inhibiting filamentation in other NCAC species, 12

suggesting that this gene may be related with poorer filamentation found among these 13

species (Table 3). The UME6 gene is transcriptionally induced during filamentation in 14

C. tropicalis, similarly to what happens in C. albicans (Table 3; Banerjee et al., 2013) 15

Porman et al .(2013) reported the elevated expression of the transcriptional regulator 16

WOR1 (Table 3) in C. tropicalis cells cultivated on Spider medium (Porman et al., 2013). 17

The micromorphological analysis of isolates with wrinkled phenotype showed that the 18

most filamentous strains had WOR1 overexpression. Wor1p homologues were also 19

found in Saccharomyces cerevisiae (Cain et al., 2012) and Histoplasma capsulatum 20

(Nguyen and Sil, 2008), controlling morphological transition within these species. This 21

finding may suggest the existence of a common ancestor gene found in the C. tropicalis 22

genome (Porman et al., 2013). 23

In addition, Wor1 which is the master regulator of the white-opaque switching, a 24

phenomenon which is related to the reversible transition of cells from a white phase to 25

an opaque phase, where cells are larger and elongated, while colonies have wrinkled 26

appearance (Slutsky et al.,1987). Besides morphology, these two different cell types 27

exhibit dramatic differences regarding to the preferred anatomic sites they colonize and 28

infect, in addition to specific responses to environmental and nutritional signals and 29

mating behavior (Mancera et al., 2015). In C. tropicalis, WOR1 overexpression direct 30

cells to the opaque phase which is involved in biofilm formation and morphogenesis 31

(Porman et al., 2013). 32

44

It was described in the C. tropicalis genome an ortholog of the transcription factor Efg1 1

(enhanced filamentous growth), commonly found in C. albicans (Table 3; Mancera et 2

al., 2015). The deletion of both alleles of the EFG1 gene revealed that Efg1p is essential 3

for filamentation, biofilm formation and white-opaque switching in C. tropicalis, 4

similarly to C. albicans, indicating conservation in the function of this ortholog gene. 5

Zhang et al. (2016) reported a grey phenotype in C. tropicalis recently, whose cells are 6

small and elongated, show intermediate mating competence and virulence in rats’ animal 7

models (Zhang et al., 2016). 8

5.3 Biofilm formation 9

The ability of yeast cells to form biofilms is an important determinant of virulence in 10

Candida spp. and has been considered the main form of microbial growth recently 11

(Donlan and Costerton, 2002; Fanning and Mitchell, 2012). Biofilms are complex 12

structures formed by a community of microorganisms adhered to solid surfaces of either 13

biotic or abiotic nature. Therefore, in vitro biofilm formation may be organized by three 14

important steps, as follows: adhesion and colonization of yeast cells on a surface; cellular 15

growth and proliferation, forming a basal layer; and pseudohyphal and/or true hyphal 16

formation (for the species that are able to form filaments), with the subsequent secretion 17

of an exopolymeric extracellular matrix which embeds microorganisms with low growth 18

rates and altered phenotypes (Hawser and Douglas, 1995; Baillie and Douglas, 1999; 19

Chandra et al., 2001; Ramage et al;. 2001; Douglas, 2003). The exopolymeric matrix 20

(EPS) may be secreted by different populations of either unique or multiple microbial 21

species (Adam et al., 2002). Some advantages of biofilm formation include: the 22

protection of microorganisms against environmental damage, nutrients availability, 23

metabolic cooperation and the acquisition of genetic modification (Douglas, 2002). 24

The formation of the microbial community involves a cascade of molecular mechanisms 25

and fine alterations in gene expression (Nobile and Mitchell, 2006; Araújo et al., 2017). 26

Signaling molecules which naturally occur in fungal cells as a response to environmental 27

stimuli are part of this process present in the Candida genus (Ramage et al., 2006). This 28

regulation is called “quorum sensing” (QS) mechanism and is the main communication 29

form among several microorganisms correlated to population density (Albuquerque and 30

Casadevall, 2012). 31

45

Farnesol is kind of self-regulator, a sesquiterpene with the ability to inhibit biofilm 1

formation and altering the expression of 274 genes in C. albicans, specifically involved 2

in filamentation. Weber et al. (2010) investigated the role of farnesol in biofilm formation 3

of C. tropicalis. They found that besides inhibiting cellular aggregates, cells of the C. 4

tropicalis mature biofilm were also influenced by farnesol, which may be related to their 5

dispersion to other body sites (Ramage et al., 2006; Nickerson et al., 2006). 6

The initial step for biofilm formation is dependent of cellular adhesion cells to substrates 7

and further formation of a basal layer (Nobile and Mitchell, 2006). C. tropicalis adhesins 8

are also involved in biofilm formation (Punithavathy and Menon, 2012; Wan Harum et 9

al., 2013, Table 3), and are regulated by the BCR1 gene (also considered a cell wall 10

regulator). In addition, the RBT5 gene was also found in the C. tropicalis genome 11

(Fitzpatrick et al., 2010). 12

Other genes involved in C. tropicalis biofilm formation are WOR1, UME6, NRG1, 13

ERG11 and MDR1 (Table 3). Besides being involved with morphogenesis and phenotypic 14

switching, WOR1 is one of the main transcriptional factors involved in biofilm formation 15

(Porman et al., 2013; Xie et al., 2012). 16

UME6 and NRG1 are key transcription regulators directly involved in morphogenesis in 17

C. tropicalis (Finkel and Mitchell, 2011). The overexpession of UME6 reduces the 18

liberation of mature sessile cells, while the decreased expression of NRG1 promotes cells 19

dispersion (Uppuluri et al., 2010). 20

With respect to the expression of resistance genes to antifungal drugs, ERG11 (ergosterol 21

biosynthesis) and MDR1 (multidrug resistance) genes (Table 3) are related with 22

resistance to fluconazole. Bizerra et al. (2008) reported the increased expression of these 23

genes in sessile cells of C. tropicalis isolated from vulvovaginal candidiasis (VVC) and 24

uroculture resistant to both fluconazole and amphotericin B. Punithavaty et al.(2012) also 25

demonstrated higher resistance to fluconazole of sessile cells liberated from mature 26

biofilms of C. tropicalis. 27

There are evidences that biofilm cells formed on medical devices constantly released in 28

the bloodstream guarantee the successful establishment of disseminated candidiasis 29

(Fanning and Mitchell, 2012). Marcos-Zambrano et al. (2014) investigated biofilm 30

formation in different Candida species obtained from episodes of fungemia and found C. 31

46

tropicalis isolates were the strongest biofilm producers. In fact, another study reported 1

that the high thickness of the EPS matrix of C. tropicalis biofilm cells may impair oxygen 2

and nutrients diffusion to cells, and may be responsible for the lower metabolic activity 3

(Alnuaimi et al., 2013). 4

Pannanusorn et al. (2013) also described C. tropicalis as the most efficient biofilm 5

producers among bloodstream isolates as compared to other NCAC species. Paiva et al. 6

(2012) evaluated the in vitro biofilm formation by C. tropicalis isolates obtained from 7

VVC. This species was also considered the strongest biofilm producer compared to C. 8

albicans, yeasts belonging to the C. parapsilosis complex, C. glabrata and C. 9

guilliermondii. A similar trend was also described by Udayalaxmi et al. (2014) with 10

strains isolated from the urogenital tract (samples from vaginal fluid and urine) of 11

patients from a tertiary hospital in the South of India. Therefore, C. tropicalis has been 12

considered an important biofilm producer species of the Candida genus. 13

5.4 Lytic enzymes 14

In order to facilitate host tissues invasions, several pathogenic microbes secrete lytic 15

enzymes such as proteinases, phospholipases and hemolysins to destroy, alter or damage 16

the integrity of host membranes, leading to the dysfunction or rupture of host cells (Sanita 17

et al., 2014). 18

Pathogenic Candida species produce a great variety of hydrolases, including secreted 19

aspartic proteinases (Saps). These proteins have been intensely investigated, and possess 20

a wide range of substrates, including collagen, queratin and mucin. They have the ability 21

to degrade epithelial barriers, antibodies, complement and cytokines (Hube and Naglik, 22

2001), and are encoded by a great gene family. The SAP gene family is composed by 10 23

genes and was initially described in C. albicans (Ruchel et al., 1983). These genes are 24

differentially regulated and expressed under several laboratory conditions and are 25

activated during different stages of infections in vivo. In addition, some of the SAP genes 26

are more important to superficial rather than systemic infections, and are also involved in 27

other pathogenic process in C. albicans, such as adhesion, host tissue invasion and 28

immunological system cells evasion (Hube and Naglik, 2001). 29

47

It is well known since 1983 that C. tropicalis is able to secrete proteinases as one of the 1

most important determinants of virulence of this species (Ruchel et al., 1983; Macdonald 2

and Odds, 1983). In 1991, Togni et al., reported the nucleotide sequence of a gene 3

involved with the extracellular secretion of proteinases by this yeast, while in 1996 the 4

same authors reported the secretion of Sapt1p by C. tropicalis (Togni et al., 1996). 5

Subsequently, the crystallographic structure of this protein was published, and was 6

considered very similar to the Sap2p of C. albicans (Symersky et al., 1997). 7

A study performed by Zaugg et al. (2001) suggested the existence of a SAPT gene family 8

in the C. tropicalis genome, leading to 4 genes cloning: SAPT (1-4; Table 3). However, 9

only Sapt1p was purified from culture supernatant and biochemically characterized. 10

Silva et al. (2011) investigated epithelial invasion by C. tropicalis using a reconstituted 11

human buccal epithelia model. All the isolates tested were able to colonize this tissue and 12

cause a great damage after 24 h. Real time PCR showed that SAPT2-4 transcripts were 13

detected, while SAPT1 expression was rarely observed. In addition, the authors showed 14

that there was no increase in SAPT1 expression, suggesting that the high invasive capacity 15

of C. tropicalis may not be related with the specific expression of this gene. Following 16

the same trend, Togni et al. (1996) reported that SAPT1 gene disruption in C. tropicalis 17

seemed to have low effect in attenuation of virulence in mice, in a model of systemic 18

infection. 19

Costa et al.(2010) evaluated proteinase activity of 15 isolates of C. albicans and 15 of C. 20

tropicalis obtained from the saliva of dental patients in Brazil. All C. tropicalis isolates 21

showed higher enzymatic production than C. albicans. These results are contradictory to 22

most of the studies which suggest higher proteinase activity in C. albicans than in C. 23

tropicalis (Zaugg et al., 2001; Sachin et al., 2012). 24

In addition to the secretion of proteinases, the secretion of phospholipases constitutes 25

important determinants of virulence in Candida spp. This heterogeneous group of 26

enzymes catalyzes the hydrolysis of ester bonds in glycerol phospholipids, with each 27

enzyme participating in a specific reaction (Ghannoum, 2000). Secretion of 28

phospholipases is therefore considered a key attribute for invasion of host epithelia, since 29

phospholipids are major components of all cell membranes. In addition, the breakdown 30

48

of these molecules promotes great instability in host cells, resulting in cellular lysis 1

(Schaller et al., 2005). 2

One of the first studies that analyzed the production of phospholipases in Candida spp. 3

was published in 1984 by Samaranayake et al. which demonstrated the secretion of these 4

enzymes only in C. albicans isolates, without any detection in C. tropicalis. However, 5

other authors later reported phospholipase activity in isolates of this species. A recent 6

study conducted by Jiang et al. (2016) with 52 strains of C. tropicalis found 7

phospholipase activity in 31 isolates from different clinical sources. However, strains 8

showed low enzyme production. Another study with 29 strains of several anatomic sites 9

obtained from hospitalized patients, described low or no phospholipase activity in C. 10

tropicalis (Galan-Ladero et al., 2010). 11

Conversely, a study conducted by Deorukhkar et al. (2014) investigating the expression 12

of several virulence factors in 125 clinical isolates of this species concluded that the 13

secretion of phospholipases was the main determinant of virulence expressed by these 14

strains. The authors suggest that the variability of results between different authors may 15

be a result of biological differences among the isolates tested. 16

Related to the expression of these enzymes in the presence of antifungal drugs, Anil and 17

Samaranayake (2003) analyzed the effect of previous exposure of C. albicans and C. 18

tropicalis to antifungal drugs on extracellular phospholipase activity. They concluded that 19

the enzymatic activity of both species reduced significantly after previous exposure to 20

nystatin and amphotericin B. In fact, they showed that C. albicans had greater 21

phospholipase expression than C. tropicalis. 22

Phospholipases are classified into four major groups, named from A to D, all already well 23

described for C. albicans (Schaller et al., 2005). However, a few studies address this gene 24

regulation in C. tropicalis. Phospholipase B (PLB; Table 3) is known to catalyze the 25

hydrolytic cleavage of sn-1 and acyclic glycerophospholipid sn-2 esters (Ghannoum, 26

2000) and is primarily responsible for phospholipase activity in C. albicans (Schaller et 27

al., 2005). 28

In 1998, Hoover et al. published an investigation with degenerate oligonucleotides 29

(derived from conserved regions of the PLB1 gene of Saccharomyces cerevisiae and other 30

fungi) to amplify homologous fragments of PLB1 in C. albicans and C. tropicalis by 31

49

PCR. The main PCR product obtained was a 540 bp fragment with a high probability of 1

PLB1-correspondence of other fungi, and significant homology was found between the 2

deduced amino acid sequence of the PCR product of C. albicans and C. tropicalis and the 3

corresponding regions of PLB1 sequence of S. cerevisiae, Torulaspora delbrueckii and 4

Penicillium notatum (~ 70-75% resemblance, ~ 55-65% identity). In that same year, 5

Bennet et al. (1998) evaluated the presence of homologous sequences to C. albicans PLC 6

in NCAC species, including five isolates of C. tropicalis. A DNA sequence homologous 7

to CAPLC1 was detected in only 3 of these isolates. Thus, the need for further studies 8

addressing the molecular mechanisms related to phospholipase activity in C. tropicalis is 9

evident. 10

The hemolysins are another group of proteins that significantly contribute for the 11

dissemination of Candida infections, specifically in facilitating hyphal penetration in host 12

tissues (Luo et al., 2004; Tsang et al., 2007). Hemolytic factors secreted by fungi cause 13

hemoglobin liberation from red blood cells for further utilization by yeasts as an iron 14

source (Giolo and Svidzinski, 2010). This chemical element is an essential cofactor to a 15

great number of metabolic processes, such as oxygen transport, gene expression 16

regulation and DNA synthesis. Therefore, the ability of iron acquisition is of fundamental 17

importance for microorganisms survival and establishment of infectious processes (Giolo 18

and Svidzinski, 2010). 19

Manns et al. (1994) reported iron acquisition from erythrocytes by C. albicans as a 20

consequence of a protein factor that promoted host cells lysis. In 1997, Tanaka et al., 21

reported that this factor is liberated from the culture medium supernatant, and concluded 22

that it was a cell wall manoprotein. The same phenomenon was observed in C. tropicalis 23

(Favero et al., 2014), and although this factor is known as directly involved with yeasts 24

pathogenicity, it is still poorly understood (Favero et al., 2011). 25

The study conducted by Luo et al. (2001) was the first one to show differences in 26

hemolysin production by different Candida species on SDA plates containing sheep 27

blood. The authors also observed that the hemolysis induced by this method could be 28

divided into categories according to the standard microbiological nomenclature, 29

including: total hemolysis (beta), partial hemolysis (alpha) or hemolysis absence (gama). 30

In this study with 80 isolates of 14 different Candida species, all the 5 isolates of C. 31

tropicalis showed a large clear halo around colonies, proving the ability of C. tropicalis 32

50

in producing beta hemolysis. Similarly, Favero et al. (2011) detected hemolysin 1

production in C. tropicalis strains after incubation in both solid and liquid SDA 2

containing either human or sheep blood. 3

A study produced by Rossoni et al. (2013) evaluated the hemolytic activity in different 4

Candida species obtained from the oral cavity of HIV positive patients. Strong hemolytic 5

activity was observed in 75% of C. tropicalis isolates evaluated, only after C. albicans. 6

Similar results were found for Candida isolates obtained from different anatomical sites 7

(blood, synovial and peritoneal liquid) where, again, C. albicans proceeded C. tropicalis 8

in hemolysins production (de Melo Riceto et al., 2015). 9

Contradictory to these results, Favero et al. (2014) analyzing clinical Candida spp. 10

isolates from bloodstream infection, reported low hemolytic activity in C. albicans, while 11

C. tropicalis was the species tested with greater hemolysins production. 12

The genetic regulation of hemolysins production in the Candida genus was not still 13

largely investigated (Anil et al., 2014). It is known that in C. glabrata, the HLP gene 14

(hemolysin-like protein) encodes a protein associated with hemolytic activity (Luo et al., 15

2004). In C. albicans the Csap is involved with iron acquisition from host erythrocytes 16

during hyphal development (Okamoto-Shibayama et al., 2014). This enzyme is a member 17

of the Rbt5 protein (Table 3), also described in C. tropicalis, as previously mentioned. 18

However, there are currently no studies in the literature concerning the genetic elucidation 19

of hemolytic activity in C. tropicalis. 20

6. In vivo models of infection by Candida tropicalis 21

The characterization of the expression of most variable virulence factors by Candida spp. 22

and other fungi are necessary for the understanding each particular pathway involved in 23

microorganisms pathogenicity (de Campos Rasteiro et al., 2014; Solis and Filler, 2012; 24

Takakura et al., 2003). However, experiments performed in vivo involve different 25

variables which cannot be controlled like what happens in experimental conditions in 26

vitro, including the presence of body fluids, pH variation, commensal microorganisms 27

and their metabolites and host response during infection. Therefore, in vivo experimental 28

models are needed for the global understanding of infectious disease pathogenicity, 29

interactions with host cells and immune response as well as it is a more appropriate 30

51

approach to evaluate new therapeutic strategies (de Campos Rasteiro et al., 2014; Solis 1

and Filler, 2012; Takakura et al., 2003). 2

Several studies have been described in the literature with animal models of infections by 3

C. tropicalis using mice (Bayegan et al., 2010; Chen et al., 2014; Koga-Ito et al., 2011; 4

Mariné et al., 2010; Nash et al., 2016; Wang et al., 2016; Zhang et al., 2016). Nash et al., 5

(2016) evaluated the co-infection of 6 different Candida species (C. albicans, C. 6

tropicalis, C. parapsilosis, C. krusei, C. dubliniensis and C. glabrata) with 7

Staphylococcus aureus, intraperitoneally inoculated. They evaluated mortality rates and 8

attributed a score of 1-4 to evaluate characteristics of morbidity (creepy hair, absence of 9

mobility, arched posture and ocular secretion). C. tropicalis associated with S. aureus 10

showed the second highest mortality rate (behind C. albicans) and a mortality index of 3 11

(Nash et al., 2016). 12

Animal models of systemic infections may be induced by the inoculation of C. tropicalis 13

via the lateral tail vein (Table 4; Zhang et al., 2016). This via of infection was established 14

by Zhang et al., (2016) to evaluate virulence of a new phenotype described by C. 15

tropicalis, the “Grey phenotype”, besides the other phenotypes already described (White–16

Opaque). After systemic infection through the tail vein with strains of each phenotype 17

(Gray, White and Opaque), animal organs have been removed and macerated and fungal 18

load was evaluated. The authors found that cells of the Grey phenotype showed 19

intermediate distribution, but greater than cells with the White phenotype for all the 20

organs evaluated (kidney, lungs, spleen, liver and brain), 24h and 7 days after infection. 21

Other mice models of Candida infections have been described in the literature such as the 22

VVC model described by Fidel et al. (1997), where doses of estradiol valerate are 23

subcutaneously administered (0.1 mg/100µl of sesame oil) in the vagina of animals 24

infected with 5x104 cells/20µl PBS in order to successfully establish the vaginal infection 25

(Fidel et al., 1997; Fidel et al., 1996; Garvey et al., 2015; Nash et al., 2016). Nevertheless, 26

to the best of our knowledge, they were still not employed for the experimental 27

investigation of VVC caused by C. tropicalis. 28

Alternative models of experimental infections have been broadly used for virulence and 29

interactions with the host studies (Table 4; de Souza et al., 2015; Forastiero et al., 2013; 30

Hamamoto et al., 2004; Ishii et al., 2015; Mesa-Arango et al., 2013; Shu et al., 2016; 31

52

Zanette and Kontoyiannis, 2013). Several factors are considered as an advantage for the 1

utilization of a model of infection using larvae, including an easier manipulation and 2

lower maintenance cost (de Souza et al., 2015; Ishii et al., 2015). The Silkworm - Bombyx 3

mori, (Lepidoptera: Bombycidae) produces a large enough larvae for antifungal drugs 4

distribution studies (Nwibo et al., 2015; Uchida et al., 2016). B. mori larvae were used as 5

a C. tropicalis model of infection in order to evaluate the effective dose of both 6

fluconazole and amphotericin B (Hamamoto et al., 2004). When C. tropicalis was 7

inoculated into the larval hemolymph followed by antifungal drugs administration, it was 8

obtained an effective dose for 50% of them (ED 50%) of 1.8 µg/g of larvae for 9

amphotericin B and fluconazole, being in agreement with previous animal models using 10

mice previously performed (Hamamoto et al., 2004). Therefore, it confirms its possible 11

use for C. tropicalis virulence studies. 12

Drosophila melanogaster larvae (Diptera: Drosophilidae), known as fruit flies also have 13

been used as an animal model to study microbial interactions with innate immune 14

response (Alarco et al., 2004). Zanette and Kontoyiannis satisfactorily used this model to 15

investigate C. tropicalis strains with or without paradoxical growth (Zanette and 16

Kontoyiannis, 2013). 17

Galleria mellonella larvae (Lepidoptera: Pyralidae) have been used as another 18

invertebrate model to investigate fungal and host interactions (Champion et al., 2016), in 19

systemic studies of antimicrobial efficiency (Wei et al., 2016), evaluation of virulence in 20

immunosuppressive models (Torres et al., 2016), immunomodulatory response (Fuchs et 21

al., 2016) and antifungal resistance (Souza et al., 2015). 22

G. mellonella infection by C. tropicalis was used to investigate cross resistance to azoles 23

or multidrug resistance among them and amphotericin B (Forastiero et al., 2013). Two 24

hours after infection with C. tropicalis, different antifungal drugs were applied 25

(fluconazole, voriconazole, amphotericin B and anidulafungin. In this study, 80% of the 26

untreated infected larvae died between day 3 and 4 of infection, while better survival rates 27

were observed for animals inoculated with susceptible strains (10 mg/kg/day of 28

voriconazole and 9 mg/kg/day of fluconazol). When the larvae were infected with strains 29

resistant to the azoles with the same therapeutic doses, survival rates were equivalent to 30

the group that was untreated. This study demonstrates the reliable application of the use 31

53

of the G. mellonella model for the study of infection by Candida as well as for the 1

evaluation of antifungal action (Forastiero et al., 2013). 2

7. Superficial and systemic infections 3

C. tropicalis belongs to the normal human microbiota and is present on the skin, 4

gastrointestinal, genitourinary and respiratory tracts of humans (Basu et al., 2003; Oksuz 5

et al., 2007; Negri et al., 2010). This yeast has been associated with superficial and 6

systemic infections all over the world, specifically in neutropenic patients, or in 7

individuals with a reduction of the microbiota by antimicrobial use or presenting damage 8

in gastrintestinal mucosa (Colombo et al., 2006). 9

C. tropicalis is classified as the third or fourth NCAC species more commonly isolated 10

in the clinical practice (Pfaller et al., 2010; Peman et al., 2012), but it is considered the 11

most prevalent yeast in Asia (Chakrabarti et al., 2009; Kothavade et al., 2010; Adhikary 12

and Joshi, 2011) and the second or the third more isolated species in Brazil and other 13

Latin America countries (20.9% and 13.2%, respectively) (Pfaller et al., 2010). The 14

expressive increase in isolation of this yeast in cases of both superficial and systemic 15

infections in different casuistic all over the world emphasizes its emergent character. 16

The clinical aspects of Candida infections may vary according with the body site affected. 17

Oral candidiasis, VVC and onychomycosis are superficial mycoses caused by this genus, 18

while systemic candidiasis involves blood and deep-seated organs such as the lungs and 19

gastrintestinal tract (Jacobs and Nall, 1990). 20

Oral candidiasis is an opportunistic infection caused by Candida commonly found in the 21

eldery (due to low immunity caused by age), HIV patients, malnourished individuals and 22

those submitted to systemic steroid therapy, denture wearers and people with xerostomia 23

(Muadcheigka and Tantivitayakul, 2015). Clinical manifestations are divided into white 24

and erythematous forms. The white form is characterized by whitish lesions and includes 25

pseudomembranous candidiasis and hyperplastic candidiasis. The erythematous form 26

presents with red lesions, including acute atrophic candidiasis, chronic atrophic 27

candidiasis, median rhomboid glossitis, angular cheilitis and linear gingival erythema. 28

There are also three forms which are not classified into these two clinical categories, 29

which are chronic mucocutaneous candidiasis, cheilocandidiasis and chronic multifocal 30

candidiasis (Millsop and Fazel, 2016). 31

54

In Brazil, a study performed by Silva-Rocha et al. (2014) investigated Candida species 1

distribution of isolates obtained from the oral cavity of kidney transplant recipients from 2

two geographic regions of Brazil (Northeast and South). The authors found that C. 3

tropicalis was the second most prevalent species, corresponding to 4.5% of the isolates. 4

A prevalence study of Candida species obtained from oral candidiasis was carried out in 5

Thailand with 250 strains isolated from 207 patients and C. tropicalis was the third most 6

isolated species (10.4%) (Muadcheigka and Tantivitayakul, 2015). Similarly, in a study 7

conducted in the northwest of Ethiopia with 215 oral cavity isolates from HIV positive 8

patients, this yeast was also the third most prevalent species, with a percentage of isolation 9

equal to 14.1%. More interestingly, 8% of them were resistant to fluconazole and 4% to 10

ketoconazole, itraconazole and fluocytosine (Mulu et al., 2013). Another Indian study 11

concluded that there was a significant increase in Candida infections in oral cancer 12

patients who underwent chemotherapy or radiotherapy, where NCAC species 13

predominated, mainly C. tropicalis, occurring in 42.8% of cases (Jain et al., 2016). 14

VVC is an infection of the vulva and vagina caused by different Candida spp. (Sobel, 15

2016; De Medeiros et al., 2014). C. tropicalis is generally described as the third most 16

prevalent Candida species in VVC, preceded by C. albicans and C. glabrata in most of 17

the studies (Dias et al., 2011; Kanagal et al., 2014; Ragunathan et al., 2014). 18

A study developed in India by Vijaya et al. (2014) with 300 women of reproductive age 19

with clinical signs of VVC reported C. tropicalis as the second most prevalent Candida 20

species, corresponding to 26.4% of the isolates. Of these, 42.9% were resistant to 21

fluconazole and 14.3% to voriconazole. 22

An investigation in Iran with 67 Candida isolates obtained from vaginal secretion samples 23

from patients with VVC found that C. tropicalis was present in 5.9% of cases, with 100% 24

resistance to fluconazole, 50% resistance to clotrimazole, 25% to ketoconazole and 75% 25

against terbinafine. In addition, all isolates showed dose-dependent susceptibility (DDS) 26

to itraconazole (Salahei et al., 2012). 27

Nevertheless, C. tropicalis is reported to a lesser degree in cases of onychomycosis in 28

relation to other species such as C. albicans and C. parapsilosis species complex, 29

promoting paronychial infection mainly in immunosuppressed patients and individuals in 30

extreme age (elderly and children) (Aghamirian et al., 2010; Cambuim et al., 2010). 31

55

A study developed in South Korea reports the prevalence of the Candida genus in 59% 1

of cases of onychomycosis in pediatric patients. The authors obtained 39 isolates, where 2

only 2.6% of them belonged to C. tropicalis (Kim et al., 2013). Another study developed 3

in Mexico analyzing 166 samples of dystrophic nails reports C. tropicalis as one of the 4

less prevalent Candida species in onychomycosis, corresponding to 4.2% of the isolates. 5

However, 14.2% were resistant to fluconazole, itraconazole and ketoconazole (Manzano-6

Gayosso et al., 2011), reinforcing its clinical importance. 7

However, contradictory results were found in a Brazilian study with 200 Candida isolates 8

obtained from nail infections that reported a prevalence of 26% for C. tropicalis. These 9

authors also observed high antifungal drugs resistance in these isolates, including 30.6% 10

resistance to fluconazole, 25% to itraconazole, 9.6% to ketoconazole and 96.2% 11

resistance to terbinafine (Figueiredo et al., 2007). 12

According to McCarty and Pappas (2016), invasive infection by Candida species is 13

commonly associated with medical care, where they may be the third or fourth cause of 14

bloodstream infection (BSI). Risk factors for systemic candidiasis are well known and 15

include the presence of central venous catheter (CVC), the exposure to broad spectrum 16

antibacterial agents, prolonged staying in the ICU with or without mechanic ventilation 17

(more than 3 days), complex surgery, the presence of necrotizing pancreatitis, 18

hemodialysis and immunosuppressive conditions (McCarty and Pappas, 2016). 19

Candidemia caused by C. tropicalis infection has a greater association with skin petechia 20

than other Candida species (Manzano-Gayosso et al., 2011), and this species was 21

described as the most common etiological agent of invasive infection associated with the 22

hospital environment in India (Giri and Kindo, 2012). 23

According to Kontoyiannis et al. (2001), C. tropicalis produces more persistent systemic 24

infections than C. albicans, leading to a longer stay in the hospital environment. Other 25

studies have associated C. tropicalis infections with a higher mortality rate when 26

compared to other NCAC species, even when compared to C. albicans (Kontoyiannis et 27

al., 2001; Kcremery et al., 1999; Eggimann et al., 2003). This factor may be related to 28

the known higher virulence of both species as well as to a higher antifungal resistance by 29

C. tropicalis. 30

56

Recently, an important multicenter study was carried out in 29 Spanish hospitals, where 1

C. tropicalis was isolated in 7.6% of a total of 781 cases of candidemia and 20% of them 2

were resistant to azoles (Guinea et al., 2014). Another multicenter study in China with 3

389 isolates from patients with candidemia admitted to intensive care units found C. 4

tropicalis as the third most isolated species (17.2%), while resistance to fluconazole was 5

observed in 37.3% of isolates of this species, as well as 10% of them were resistant to 6

voriconazole (Liu et al., 2014). 7

A research carried out in Malaysia with 82 bloodstream isolates and peritoneal fluid 8

reports C. tropicalis as responsible for 18.3% of the isolates obtained. Resistance to 9

ketoconazole was observed in 20.9% of the clinical strains, in addition to 13.4% 10

resistance to itraconazole (Santhanam et al., 2013). A study performed by Chang et al., 11

(2013) with isolates from 152 cases of candidemia in Taiwan reported a prevalence of 12

19.7% for C. tropicalis. 13

In Brazil, a study conducted by Oliveira et al. (2010) investigated candidemia in a 14

pediatric hospital in Sao Paulo from 2007 to 2010. C. tropicalis was the second most 15

isolated Candida species (24%), only preceded by C. albicans. More recently, a 16

multicenter surveillance study involving 16 public and private hospitals in the five 17

Brazilian regions (North, Northeast, Center-West, Southeast and South) was conducted, 18

which investigated 137 episodes of systemic infections. NCAC species were responsible 19

for 65.7% of the total infections and C. tropicalis was the third most isolated Candida 20

species (15.3%) (Doi et al., 2016). 21

It is known that candidemia is the most common form of invasive candidiasis, but there 22

are other less frequent clinical manifestations with C. tropicalis as an etiological agent 23

(McCarty and Pappas, 2016). For example, a case of acute disseminated candidiasis in a 24

pediatric patient with aplastic anemia (Fong et al., 1988); the formation of fungal 25

vegetation in a mitral valve prosthesis, causing endocarditis (Nagaraja et al., 2005); and 26

the development of septic arthritis in a cancer patient on chemotherapy with diabetes 27

secondary to corticosteroid therapy that had a negative outcome (Vicari et al., 2003). 28

Another unusual clinical form of candidiasis is endophthalmitis, which is considered an 29

important indicator of systemic infection in hospitalized patients (Donahue et al., 1994). 30

C. tropicalis seems to be an important etiological agent of this infirmity, being classified 31

57

as the fourth species of the genus to promote ocular infection in adult and pediatric 1

patients attended at two medical centers in the USA (Dozier et al., 2011). 2

Disseminated chronic candidiasis is another condition of low occurrence characterized by 3

the presence of histopathological evidence of candidiasis in the spleen, liver and kidneys, 4

or radiological evidence of hepatosplenic or renal candidiasis (Al-Anazi and Al-Jasser, 5

2006). Xu et al. (2010) described the isolation of C. tropicalis in a patient with acute 6

leukemia whose computerized tomography showed multiple hypodense lesions in the 7

liver and spleen. This yeast was also isolated from the kidneys of a patient diagnosed with 8

acute lymphocytic leukemia (Sun et al., 2006) and was associated with a higher mortality 9

rate than other Candida species involved in this disease (Al-Anazi and Al-Jasser, 2006). 10

Finally, C. tropicalis is more rarely found as an etiological agent of respiratory tract 11

infections (Garczewska et al., 2016). This was the second most common yeast species in 12

patients with cystic fibrosis, preceded only by C. albicans. Similarly, another study 13

reports C. tropicalis as the second most common Candida species in cases of pulmonary 14

co-infection with Mycobacterium tuberculosis (Kali et al., 2013). 15

8. Antifungal susceptibility 16

The high incidence of severe infections caused by C. tropicalis has attracted attention, 17

especially considering the evident increase in the reports of resistance of this yeast to 18

antifungal drugs, which is a serious therapeutic problem. 19

Resistance to azoles in this species has been extensively reported, especially to 20

fluconazole. In this respect, Anil and Samaranayake (2003) argue that the increasing 21

global use of this drug is one of the main causes for the dominant tendency of infections 22

caused by NCAC species to the detriment of C. albicans. It is known that there are several 23

factors involved in the development of Candida spp. antifungal resistance in clinical 24

settings, including indiscriminate antifungal therapy use in nosocomial infections 25

(Joseph-Horne and Hollomon, 1997). However, studies on the molecular mechanisms 26

underlying this phenomenon are still necessary. 27

With regard to azoles, the action target of these compounds is the enzyme 14 α-lanosterol 28

demetilase (Erg11p), a product of the ERG11 gene (Table 5), which is part of the 29

ergosterol biosynthesis pathway (Lupetti et al., 2002). Ergosterol is the predominant 30

58

component of the cell membrane of fungi, and influences various cellular functions such 1

as membrane fluidity and integrity, as well as the adequate activity of various enzymes 2

anchored to it, such as proteins related to nutrient transport and chitin synthesis. 3

Therefore, the azoles cause depletion of ergosterol and accumulation of 14 α-methyl 4

steroids harmful to cells, inhibiting growth of fungal cells (Lupetti et al., 2002). 5

Sanglard and Odds (2002) report different mechanisms that may lead to resistance to 6

azoles. The first is the action of multidrug transporters or efflux pumps, which leads to a 7

decrease in drug concentration within the fungal cell (Pfaller, 2012). The positive 8

regulation of MDR1 ("multidrug resistance gene") and CDR1 ("Candida drug resistance") 9

genes (Table 5), are related to the active efflux of azoles in several Candida species, 10

including C. tropicalis (Marie and White, 2009; Morschhauser, 2010).). The induction of 11

efflux caused by CDR genes tends to affect all azoles. In contrast, efflux pumps encoded 12

by MDR genes in Candida are normally selective for fluconazole (Pfaller, 2012). 13

Another pathway leading to azole resistance is the occurrence of amino acid substitutions 14

in Erg11p, which is the target of these drugs, generating changes in protein conformation 15

Forastiero et al., 2013). Increased ERG11 gene expression results in the production of a 16

large amount of 14 α-lanosterol demethylase, favoring the continuous synthesis of 17

ergosterol and the maintenance of cell integrity, which allows the fungus to resist the 18

action of the drugs (Manastir et al., 2011). This factor may occur as a function of a point 19

mutation in ERG11 (Kelly et al., 1993). Pam et al., (2012) detected this point mutation in 20

a C. tropicalis isolate with DDS to fluconazole and demonstrated increased ERG11 21

expression. 22

Eddouzi et al., (2013) studied the molecular mechanisms of drug resistance in a clinical 23

isolate of C. tropicalis with multidrug resistance to fluconazole, voriconazole and 24

amphotericin B, obtained from a hospital in Tunisia. Analysis of sterol production by 25

mass spectrometry and gas chromatography revealed accumulation of 14α-26

methylfecosterol, 4,14α-dimethylzimosterol and 14α-methyl-3β, 6α-diol, indicating 27

change in Erg3p (Table 5). Another study reported the occurrence of ERG3 mutation in 28

a C. tropicalis isolate, with substitution of a phenylalanine for serine in portion 258, a 29

residue that is absolutely conserved in this protein (Vincent et al., 2013). 30

59

A study conducted in five Chinese hospitals investigated resistance to these drugs in 52 1

clinical isolates of C. tropicalis (Jiang et al., 2013). Resistance to fluconazole was 2

observed in 34.6% of the isolates, while 40.4% were resistant to itraconazole and only 3

7.7% to voriconazole. The authors suggest that voriconazole has a more potent activity 4

against the clinical isolates of C. tropicalis than the other drugs tested. 5

Despite the number of studies involving strains of C. tropicalis resistant to azoles, there 6

are still relatively less studies regarding the resistance of this species to other drugs, such 7

as amphotericin B. This compound is the third most commonly used antifungal in clinical 8

practice (Seneviratne et al., 2016) and is part of the class of polyenes. Its fungicidal 9

activity comes from the ability to selectively bind to the ergosterol of the fungal cell, 10

inducing the formation of pores in the plasma membrane, resulting in intense osmotic 11

imbalance and rapid collapse of the cell (Brajtburg et al., 1990). A recent study reported 12

that the production of reactive oxygen species is also part of the fungicidal mechanism of 13

action of amphotericin B (Forastiero et al., 2013). 14

Amphotericin B resistance seems to be a rare phenomenon in yeasts, but Woods and Bard 15

in 1974 demonstrated the development of resistance to this drug in two isolates of C. 16

tropicalis obtained from the urine of a patient with pyelonephritis (Woods and Bard, 17

1974). A subsequent study of these strains revealed the existence of a mutation in the 18

ergosterol of the cell membrane, exactly at the binding site of amphotericin B (Drutz and 19

Lehrer, 1978). Also in the 1970s, Merz and Sandford reported the isolation of eight strains 20

of C. tropicalis resistant to amphotericin B, obtained from urine of transplanted patients, 21

with the same mutation in ergosterol (Merz and Sandford, 1979). 22

Reports of isolation of C. tropicalis resistant to this drug have been progressively 23

increasing over the years. In 1988, Powderly et al., reported that the development of 24

resistance to amphotericin B is most observed in patients with some kind of 25

immunosuppression and who frequently use this drug. Resistance to this polyene is 26

believed to result from changes in ergosterol, or changes in the plasma membrane itself 27

(Seneviratne et al., 2016). 28

Lupetti et al., (2002) postulated that resistance to amphotericin B in Candida species 29

generally occurs due to defects in ergosterol biosynthesis and most likely results from 30

mutations in the ERG3 gene. In addition to the ERG3 gene, mutations in ERG6 can 31

60

generate resistance to polyenes, a phenomenom already described in C. tropicalis 1

(Vandeputte et al., 2007). A study conducted by Forastiero et al., (2013) showed that 2

concomitant mutations in the ERG11 and ERG3 genes lead to multidrug resistance 3

between amphotericin B and azoles (fluconazole and itraconazole) in C. tropicalis. 4

In addition to amphotericin B, echinocandins have been increasingly used in the treatment 5

of invasive infections, being the first new class of echinocandins that target the fungal 6

cell wall, blocking β-1,3-D-glucan synthase (Perlin, 2007). It has been described that 7

these drugs have an excellent range of action against the main Candida species, including 8

C. tropicalis (Pfaller et al, 2008). 9

A surveillance study carried out in 2008 by Pfaller et al., with 5,346 Candida spp. isolates 10

obtained from candidemia infection showed a 12% prevalence for C. tropicalis, and all 11

of them were 100% susceptible for the three echinocandins tested (caspofungin, 12

anidulafungin and micafungin). 13

Despite the extensive use of these drugs for more than a decade, the incidence of 14

resistance in the Candida genus remains very low (Beyda et al., 2012). More recent 15

surveillance studies have indicated an incidence of 2.9 to 3.1% Candida spp. resistance 16

to echinocandins (Castanheora et al., 2010; Arendrup et al., 2010). However, recently 17

Garcia-Effron et al., (2010) reported the isolation of three strains of C. tropicalis resistant 18

to caspofungin obtained from patients with haematological malignancies. A study by 19

Eschenauer et al., (2014) with 185 isolates of C. tropicalis reports 1.4% resistance to 20

caspofungin, anidulafungin and micafungin. 21

Another study described the presence of the paradoxical effect (or paradoxical growth) in 22

15 isolates of C. tropicalis in the presence of high concentrations of echinocandins (Soczo 23

et al., 2007). This phenomenon was first documented by Stevens et al., (2004) for 24

caspofungin in C. albicans, and is defined as fungal growth in the presence of 25

echinocandin concentrations above MIC in broth microdilution susceptibility tests 26

performed according to the guidelines of the Clinical Laboratory Standards Institute 27

(CLSI, previously NCCLS) (Melo et al., 2007). 28

The target enzyme of echinocandins, called glucan synthetase, possesses at least two 29

subunits: Fks1p (encoded by the FKS1, FKS2 and FKS3 genes) and Rho1p (Table 5). 30

Beyda et al., 2012). Fks1p has a catalytic action and Rho1p is a regulatory protein of 31

61

several cellular processes, including the biosynthesis of β-1,3-D-glucan (Chen et al., 1

2011). In general, the reduction of C. tropicalis susceptibility to echinocandins occurs by 2

response to adaptive stress or mutations in the FKS genes. 3

With regard to adaptive responses, it is known that the fungal cell wall is a dynamic 4

structure that presents a compensatory mechanism to increase the production of one or 5

more components that are eventually inhibited, such as that produced by the action of 6

echinocandins. A study by Chen et al., (2014) investigated the role of calcineurin in C. 7

tropicalis, which is one of the main signaling pathways for the compensatory increase of 8

chitin synthesis in C. albicans. Calcineurin is a phosphatase that regulates numerous 9

stress response processes in fungi, including stress promoted on the cell wall (Cowen, 10

2009). The study demonstrated that, in fact, calcineurin is responsible for this effect on 11

C. tropicalis against micafungin, since it promotes the thickening of the chitin layer of 12

the cell wall as a function of β-1,3-D-glucan depletion. 13

In the case of mutations in the FKS1 gene, it is already well established that substitutions 14

in specific gene regions cause reduced susceptibility to echinocandins, being quite 15

associated with therapeutic failure (Perlin, 2007). Mutations in the FKS1 gene in C. 16

tropicalis were already described (Park et al., 2005). Garcia-Effron et al., (2008) 17

demonstrated that 7.5% (3/40) of clinical isolates of C. tropicalis showed resistance to 18

caspofungin because of amino acid substitutions in Fks1p. Jensen et al., (2013) also 19

performed an investigation alterations in FKS1, with isolates of C. tropicalis from patients 20

with acute lymphoblastic leukemia and found that after 8 to 8.5 weeks of treatment with 21

caspofungin, two isolates showed resistance to the three echinocandins. Multilocus 22

sequencing of FKS1 revealed progressive development of heterozygosis, and finally the 23

presence of homozygous mutation, leading to substitutions of amino acids S80P and 24

S80S. 25

The low level of resistance of C. tropicalis to echinocandins and lower side effects, since 26

they target the wall of the fungal cell, make them vital in cases of resistance to fluconazole 27

and amphotericin B, with a broad spectrum of action against C. tropicalis (Pfaller et al., 28

2008). 29

9. Natural products with antifungal properties against Candida tropicalis 30

62

Several groups have been dedicated to the study of products of natural origin with 1

antifungal action, in order to identify and isolate compounds with effective activity, safety 2

in use and low toxicity against pathogenic fungi (Correia et al., 2016). 3

There are several parts of the plants used to search for biological activity, with emphasis 4

on antifungal action, such as leaves (Morais-Braga et al., 2016), stem bark (Mendes de 5

Toledo et al., 2015), roots, seeds and essential oils (Asdadi et al., 2015), that may be 6

isolated used or in synergism with synthetic antifungal drugs, such as fluconazole 7

(Mendes de Toledo et al., 2015). 8

The use of essential oils of Vitex agnus was used in a study by Asdadi et al., (2015) in 9

clinical strains of Candida isolated from hospital infection. The extraction product was 10

tested against Candida isolates using the principle of disc diffusion and broth 11

macrodilution, according to the standardization of CLSI (Salari et al., 2016). It was 12

observed that for the isolates of C. tropicalis, 10 μl of essential oils produced halos of 13

inhibition of growth of 58 mm, superior to the halos of control drugs such as amphotericin 14

B (8 mm), and fluconazole (21 mm) (Salari et al., 2016). 15

Salvia rhytidoa Benth., A plant belonging to the family Lamiaceae, typical in Iran was 16

used to evaluate the antifungal activity in several Candida isolates by Salari et al., (2016). 17

A total of 96 clinical isolates of Candida, including 11 C. tropicalis strains were tested 18

using broth microdilution with the methanolic extract, according to CLSI protocols 19

(Salari et al., 2016). It was observed that for C. tropicalis the MIC range had a variation 20

of 100 - 6.26 μg / mL. Similarly, Siqueira et al., found biological activity using a red 21

propolis alcoholic extract, with an MIC range of 64-32 μg/mL) (Siqueira et al., 2015) for 22

this species. 23

In relation to plants found mainly in Brazilian territory, Correia et al., (2016) carried out 24

an important study with different plants found in the Brazilian Cerrado, a region with an 25

important number of species used in popular medicine, mainly in studies of essential oils 26

with anti-Candida activity (Correia et al., 2016; Nordi et al., 2013). 27

In a study conducted by Morais-Braga et al., (2016) the interaction of aqueous and 28

hydroethanolic extracts of Psidium brownianum was observed in association with 29

fluconazole. The IC 50 values for fluconazole were 68.10 μg/mL for C. tropicalis 30

CTINCQS 40042 and 41.11 μg/mL for C. tropicalis CTLM 23, obtained by broth 31

63

microdilution. When in combination with fluconazole, the aqueous and hydroethanolic 1

extracts of P. brownianum showed a significant reduction in IC 50 values, ranging from 2

37.2-3.10 μg/mL for CTINCM 40042 and 13.66-6.94 μg/mL for CTLM 23. 3

4

All these studies involving the evaluation of vegetal products with biological activity, 5

especially against C tropicalis, has reinforced the great importance and necessity of the 6

emergence of alternative and less toxic sources of treatment, alone or in combinations 7

with different antifungal drugs in commercially available. 8

10. C. tropicalis osmotic stress response and biotechnological applications 9

Several virulence attributes are expressed by fungi in response to stress conditions 10

induced by the environment (Brown et al., 2014), and some yeasts can tolerate high salt 11

concentrations, developing physical and genetic mechanisms to neutralize the two mains 12

deleterious effects of osmotic stress, which are toxicity and loss of water and cellular 13

turgidity (Garcia et al., 1997; Beales, 2004). 14

A study conducted by Rodriguez et al., (1996) reported the gene isolation involved with 15

osmotic adaptation in C. tropicalis, a true homologue of HAL3, called CtHAL3. In fact, 16

C. tropicalis is able to grow in culture medium with more than 10-15% sodium chloride 17

and has been isolated from the hypersaline environment for the first time from Dead Sea 18

samples (Butinar et al., 2005). Bastos et al., (2000) reported the isolation of this yeast 19

from a sample of Amazonian forest enriched with high salt concentration. 20

García et al., (1997) carried out one of the few studies investigating the mechanisms of 21

osmotic adaptation of C. tropicalis, analyzing ion extrusion. The results showed that Na+ 22

/ K+ -ATPase transporters are activated immediately after exposure to hypersaline 23

environment, promoting rapid efflux of ions and restoring intracellular osmotic 24

equilibrium. 25

Exposure to sodium chloride (NaCl) leads to high osmotic stress in fungal cells, 26

promoting rapid loss of water that leads to reduced size and loss of cellular turgidity 27

(Kuhn and Klipp, 2012). 28

With regard to C. tropicalis, García et al., (1997) reported that the accumulation of 29

glycerol necessary for the restoration of a normal cellular physiology occurred only after 30

64

the stationary phase. In addition, they found that there is a preponderant role of efflux 1

pumps in the osmotic adaptation of C. tropicalis to the detriment of the nonionic 2

compensatory mechanisms of water loss and turgor. Besides, the accumulation of 3

intracellular glycerol seems to be less efficient than the activation of the Ion efflux pumps 4

(García et al., 1997). 5

Therefore, C. tropicalis is considered an osmotolerant yeast, since it can grow well in 6

environments with high osmotic pressure, but this condition is not essential to its survival 7

(Tokuoka, 1993). Such property is often associated with its use in industrial and 8

biotechnological practices. 9

In the food industry, osmolytic strains of C. tropicalis improve xylitol production. (Kwon 10

et al., 2006; Misra et al., 2012). Rao et al. (2006) used C. tropicalis strains in hypersaline 11

solution to produce xylitol from corn fiber and sugarcane bagasse. Another example of 12

industrial application of this species is the production of ethanol from algae. (Ra et al., 13

2015) 14

C. tropicalis is still widely used in bioremediation processes. Al-Araji et al. (2007) 15

reported the use of this yeast in the commercial recovery of petroleum spillage. In 2011, 16

Farag and Soliman reported the high degradability of crude oil and hydrocarbons by C. 17

tropicalis. Benard and Tuah (2016) also evaluated this property under conditions 18

simulating sea water. In addition, Yan et al (2005) demonstrated the high potential for 19

degradation of phenol by C. tropicalis in saline medium. Microorganisms with this 20

capacity are called biosorbents, found to correct pollution processes without causing 21

damage to ecosystems (Leitão, 2007). 22

Halotolerance also provides a longer permanence of C. tropicalis in the coastal 23

environment, allowing greater opportunity for contamination of bathers. Prolonged 24

persistence in the marine environment may also lead to adaptation to high concentrations 25

of other ions and UV light. This whole process can be reflected in genetic alterations that 26

results in selection pressure (Krauke and Sychrova, 2008). 27

Recently, our group was involved in the investigation of osmotolerance and its relation 28

to virulence expression in vitro with C. tropicalis isolated from the coastal environment. 29

We found that these strains can fully express virulence attributes and may show a high 30

persistence capacity on the coastal environment, because they all tolerated high salt 31

65

concentration. In addition, they showed high MICs to several antifungal drugs used in 1

current clinical practice, demonstrating that environmental isolates may have pathogenic 2

potential and suggesting that the persistence of yeasts in the sand environment may have 3

leaded to the overexpression of efflux pumps, that may partially explain the reason why 4

C. tropicalis isolates not previously exposed to antifungal drugs had high levels of 5

resistance to azoles and amphotericin B (Zuza-Alves et al., 2016). 6

11. Concluding remarks 7

In conclusion, this review highlights important aspects of C. tropicalis biology and 8

clinical relevance. This species may be easily identified by classical taxonomy, 9

commercial, proteomics and molecular methods and no cryptic sibling species has been 10

discovered. This asexual yeast closely related to C. albicans may be considered of high 11

virulence, which can be verified in animal models of superficial and systemics infections, 12

plus its ability to form true hyphae and complex biofilm in vitro, besides the ability to 13

secret proteinases, phospholipases and hemolisins. C. tropicalis is classified as the third 14

or fourth NCAC species more commonly isolated in the clinical practice, while may be 15

the second more frequently isolated Candida species in Latin America and Asia. Several 16

mechanisms of antifungal resistance have been elucidated, including ERG and FKS gene 17

families’ mutations and efflux pumps. Some natural products have also been investigated 18

as new potential use for future development of antifungal compounds active against C. 19

tropicalis. This species is considered osmotolerant and this characteristic has been 20

recently demonstrated to influence the expression of virulence factors and primary 21

antifungal resistance. This ability to survive to high salt concentrations is a property that 22

explains C. tropicalis potential use for biotechnological processes, including ethanol 23

production through the fermentation of sea algae. Therefore, for all the factors previously 24

described, C. tropicalis may be indubitably considered one of the most important Candida 25

species. 26

Competing interests 27

The authors declare that they have no competing interests 28

Ethics approval and consent to participate 29

Not applicable. 30

66

Consent for publication 1

Not applicable. 2

Availability of supporting data 3

Not applicable. 4

Abbreviations 5

C. albicans: Candida albicans; C. tropicalis: Candida tropicalis; CLSI: Clinical and 6

Laboratory Standards Institute; MALDI-TOF/ MS: Matrix-assisted laser desorption time-7

of-flight mass; ELISA: Enzyme-linked immunosorbent assay. 8

Authors’ contributions 9

DZ and WS prepared the manuscript. GC designed all topics and revised the manuscript. 10

All authors approved the final manuscript. 11

References

Adam, B., Baillie, G.S., Douglas, L.J.(2002). Mixed species biofilms of Candida

albicans and Staphylococcus epidermidis. J Med Microbiol. 51(4):344-349.

doi: 10.1099/0022-1317-51-4-344

Adhikary, R., Joshi, S.(2011). Species distribution and anti-fungal susceptibility of

Candidaemia at a multi super-specialty center in Southern India. Indian J Med Microbiol.

29(3):309-311.doi: 10.4103/0255-0857.83920

Aghamirian, M.R., Ghiasian, S.A. (2010). Onychomycosis in Iran: epidemiology,

causative agents and clinical features. Nihon Ishinkin Gakkai Zasshi. 51(1):23-

29.doi:10.3314/jjmm.51.23

Al-Anazi, K., Al-Jasser, A. (2006). Candidaemia in patients with haematological

disorders and stem cell transplant. Libyan J Med. 1(2):140-155.

doi:10.3402/ljm.v1i2.4673

Al-Araji, L., Rahman, R.N.Z.R.A., Basri, M., & Salleh, A.B. (2007). Microbial

surfactant. Asia Pac J Mol Biol Biotechnol. 15(3): 99-105.

67

Alarco, A-M., Marcil A., Chen, J., Suter, B., Thomas, D., Whiteway, M. (2004). Immune-

deficient Drosophila melanogaster: a model for the innate immune response to human

fungal pathogens. J Immunol. 172(9):5622-5628. doi: 10.4049/jimmunol.172.9.5622

Albuquerque , P., Casadevall, A. (2012). Quorum sensing in fungi--a review. Med Mycol.

50(4):337-345. doi: 10.3109/13693786.2011.652201

Alfonso, C., Lopez, M., Arechavala, A., Perrone, M.del C., Guelfand, L., Bianchi, M.

(2010). Presumptive identification of Candida spp. and other clinically important yeasts:

usefulness of Brilliance Candida Agar. Rev Iberoam Micol. 27(2):90-93. doi:

10.1016/j.riam.2010.01.008

Almeida, A.A., Nakamura, S. S., Fiorini, A., Grisolia, A.B., Svidzinski, T.I., Oliveira,

K.M. (2015). Genotypic variability and antifungal susceptibility of Candida tropicalis

isolated from patients with candiduria. Rev Iberoam Micol. 32(3):153-158. doi:

10.1016/j.riam.2014.06.003

Alnuaimi, A.D., O'Brien-Simpson, N.M., Reynolds, E.C., McCullough, M.J.(2013).

Clinical isolates and laboratory reference Candida species and strains have varying

abilities to form biofilms. FEMS Yeast Res.13(7):689-699. doi:10.1111/1567-1364.12068

Angeletti, S., Lo Presti, A., Cella, E., Dicuonzo, G., Crea, F., Palazzotti, B., et al. (2015).

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-

TOF MS) and Bayesian phylogenetic analysis to characterize Candida clinical isolates. J

Microbiol Methods. 119:214-22. doi: 10.1016/j.mimet.2015.11.003

Anil, S., Hashem, M., Vellappally, S., Patil, S., Bandara, H.M., Samaranayake, L.P.

(2014). Sub-inhibitory concentrations of antifungals suppress hemolysin activity of oral

Candida albicans and Candida tropicalis isolates from HIV-infected individuals.

Mycopathologia. 178(3-4):207-215. doi: 10.1007/s11046-014-9802-0

Anil, S., Samaranayake L. (2003). Brief exposure to antimycotics reduces the

extracellular phospholipase activity of Candida albicans and Candida tropicalis.

Chemotherapy. 49(5):243-247. doi: 10.1159/000072448

68

Araújo, D., Henriques, M., & Silva, S. (2017). Portrait of Candida species biofilm

regulatory network genes. Trends microbiol. 25(1): 62-75. doi:

10.1016/j.tim.2016.09.004

Arbour, M., Epp, E., Hogues, H., Sellam, A., Lacroix, C., Rauceo, et al. (2009).

Widespread occurrence of chromosomal aneuploidy following the routine production of

Candida albicans mutants. FEMS Yeast Res. 9(7): 1070-1077. doi: 10.1111/j.1567-

1364.2009.00563.x

Arendrup, M.C., Garcia-Effron, G., Lass-Florl, C., Lopez A.G., Rodriguez-Tudela, J.L.,

Cuenca-Estrella, M., et al. (2010). Echinocandin susceptibility testing of Candida

species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar

dilution methods with RPMI and isosensitest media. Antimicrob Agents Chemother.

54(1):426-439. doi:10.1128/AAC.01256-09

Asdadi, A., Hamdouch, A., Oukacha, A., Moutaj, R., Gharby, S., Harhar, H., et al. (2015).

Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil

from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against

clinical strains of Candida responsible for nosocomial infections. J Mycol Med.

25(4):e118-e27. doi: 10.1016/j.mycmed.2015.10.005

Aydemir, G., Koc, A.N., Atalay, M.A. (2016). Evaluation of peptide nucleic acid

fluorescent in situ hybridization (PNA FISH) method in the identifi cation of Candida

species isolated from blood cultures. Mikrobiyol Bul. 50(2):293-299. doi:

10.5578/mb.22092

Baillie, G.S., Douglas, L.J. (1999). Role of dimorphism in the development of Candida

albicans biofilms. J Med Microbiol. 48(7):671-679. doi: 10.1099/00222615-48-7-671

Banerjee, M., Uppuluri, P., Zhao, X.R., Carlisle, P.L., Vipulanandan, G., Villar, C.C., et

al. (2013).Expression of UME6, a key regulator of Candida albicans hyphal

development, enhances biofilm formation via Hgc1- and Sun41-dependent mechanisms.

Eukaryot Cell. 12(2):224-232. doi:10.1128/EC.00163-12

Bastos, A.E.R., Moon, D.H., Rossi, A., Trevors, J.T., & Tsai, S.M. (2000). Salt-tolerant

phenol-degrading microorganisms isolated from Amazonian soil samples. Arch

Microbiol. 174(5): 346-352. doi: 10.1007/s002030000216

69

Basu, S., Gugnani, H.C., Joshi, S., and Gupta, N. (2003). Distribution of Candida species

in different clinical sources in Delhi, India, and proteinase and phospholipase activity of

Candida albicans isolates. Rev Iberoam Micol. 20(4), 137-140.

Bayegan, S., Majoros, L., Kardos, G., Kemény-Beke, A., Miszti, C., Kovacs, R., et al.

(2010). In vivo studies with a Candida tropicalis isolate exhibiting paradoxical growth in

vitro in the presence of high concentration of caspofungin. J Microbiol. 48(2):170-173.

doi: 10.1007/s12275-010-9221-y

Beales, N. (2004). Adaptation of microorganisms to cold temperatures, weak acid

preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf. 3(1):

1-20. doi: 10.1111/j.1541-4337.2004.tb00057.x

Benard, L.D., & Tuah, P.M. (2016). Biodegradation of Sabah Light Crude Oil by Locally

Isolated Candida tropicalis RETL-Cr1 and Pseudomonas aeruginosa BAS-Cr1. Trans

Sci Technol. 3(1-2): 101 – 106.

Benedetti, V.P., Savi, D.C., Aluizio, R., Adamoski, D., Kava-Cordeiro, V., Galli-

Terasawa, L.V., et al. (2016). Analysis of the genetic diversity of Candida isolates

obtained from diabetic patients and kidney transplant recipients. Mem Inst Oswaldo Cruz.

111(7): 417-422.doi: 10.1590/0074-02760160042

Bennett, D.E., McCreary, C.E., Coleman, D.C. (1998). Genetic characterization of a

phospholipase C gene from Candida albicans: presence of homologous sequences in

Candida species other than Candida albicans. Microbiology. 144(1):55-72.

doi: 10.1099/00221287-144-1-55

Berman, J., & Hadany, L. (2012). Does stress induce (para) sex? Implications for Candida

albicans evolution. Trends Genet. 28(5): 197-203. doi: 10.1016/j.tig.2012.01.004

Beyda, N.D., Lewis, R.E., Garey, K.W. (2012). Echinocandin resistance in Candida

species: mechanisms of reduced susceptibility and therapeutic approaches. Ann

Pharmacother. 46(7-8):1086-1096. doi: 10.1345/aph.1R020

Biasoli, M.S., Tosello, M.E., Luque, A.G., and Magaro, H.M. (2010). Adherence,

colonization and dissemination of Candida dubliniensis and other Candida species. Med

Mycol. 48(2), 291-297. doi: 10.1080/13693780903114942

70

Bizerra, F.C., Nakamura, C.V., de Poersch, C., Estivalet Svidzinski, T.I., Borsato

Quesada, R.M., Goldenberg, S., et al. (2008). Characteristics of biofilm formation by

Candida tropicalis and antifungal resistance. FEMS Yeast Res. 8(3), 442-450. doi:

10.1111/j.1567-1364.2007.00347.x

Blandin, G., Ozier-Kalogeropoulos, O., Wincker, P., Artiguenave, F., Dujon, B. (2000).

Genomic exploration of the hemiascomycetous yeasts: 16. Candida tropicalis. FEBS Lett.

2000; 487(1):91-94. doi: 10.1016/S0014-5793(00)02287-0

Bodey, G.P., Luna, M. (1974). Skin lesions associated with disseminated candidiasis.

JAMA. 229(11):1466-1468. doi: 10.1001/jama.1974.03230490054025

Bouchonville, K., Forche, A., Tang, K. E., Selmecki, A., & Berman, J. (2009). Aneuploid

chromosomes are highly unstable during DNA transformation of Candida

albicans. Eukaryot Cell. 8(10): 1554-1566. doi: 10.1128/EC.00209-09

Bowman, P.I, Ahearn, D.G. (1976). Evaluation of commercial systems for the

identification of clinical yeast isolates. J Clin Microbiol. 4(1):49-53

Brajtburg, J., Powderly, W.G., Kobayashi, G.S., Medoff, G. (1990). Amphotericin B:

current understanding of mechanisms of action. Antimicrob Agents Chemother.

34(2):183-188

Brown, A. J., Budge, S., Kaloriti, D., Tillmann, A., Jacobsen, M.D., Yin, Z., et al. (2014).

Stress adaptation in a pathogenic fungus. J Exp Biol. 217(1): 144-155.

doi: 10.1242/jeb.088930

Butinar, L., Santos, S., Spencer-Martins, I., Oren, A., & Gunde-Cimerman, N. (2005).

Yeast diversity in hypersaline habitats. FEMS Microbiol Lett. 244(2). 229-234. doi:

10.1016/j.femsle.2005.01.043

Butler, G., Rasmussen, M.D., Lin, M.F., Santos, M.A., Sakthikumar, S., Munro, C.A., et

al. (2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes.

Nature. 459(7247):657-662. doi:10.1038/nature08064

Cain, C.W., Lohse, M.B., Homann, O.R., Sil, A., Johnson, A.D. (2012). A conserved

transcriptional regulator governs fungal morphology in widely diverged species.

Genetics. 190(2):511-521.doi: 10.1534/genetics.111.134080

71

Calderaro, A., Martinelli, M., Motta, F., Larini, S., Arcangeletti, M.C., Medici, M.C., et

al. (2014). Comparison of peptide nucleic acid fluorescence in situ hybridization assays

with culture-based matrix-assisted laser desorption/ionization-time of flight mass

spectrometry for the identification of bacteria and yeasts from blood cultures and

cerebrospinal fluid cultures. Clin Microbiol Infect. 20(8):468-475.doi: 10.1111/1469-

0691.12490

Calderone, R., and Gow, N. A. (2002). “Host recognition by Candida species”, in

Candida and candidiasis, ed. ASM Press, Washington, DC, 67-86.

Cambuim, I. I., Macedo, D. P., Delgado M., Lima, K. de M., Mendes, G. P., Souza-Motta

C. M., et al. (2011). Clinical and mycological evaluation of onychomycosis among

Brazilian HIV/AIDS patients. Rev Soc Bras Med Trop. 44(1):40-42.doi: 10.1590/S0037-

86822011000100010

Cannon, R.D., and Chaffin, W.L. (2001). Colonization is a crucial factor in oral

candidiasis. J Dent Educ. 65(8), 785-78.

Carlisle, P. L., Kadosh, D. (2010). Candida albicans Ume6, a filament-specific

transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-

related protein. Eukaryot Cell. 9(9):1320-1328. doi:10.1128/EC.00046-10

Castanheira, M., Woosley, L.N., Diekema, D.J., Messer, S.A., Jones, R.N., Pfaller, M.A.

(2010). Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida

strains. Antimicrob Agents Chemother. 54(6):2655-2659. doi:10.1128/AAC.01711-09

Castellani, A. (1912). Observations on the fungi found in tropical bronchomycosis.

Lancet. 179(4610):13-15.doi: 10.1016/S0140-6736(00)51698-5

Cauchie, M., Desmet, S., & Lagrou, K. (2017). Candida and its dual lifestyle as a

commensal and a pathogen. Res Microbiol.1-9. doi:10.1016/j.resmic.2017.02.005

Chakrabarti, A., Chatterjee, S.S., Rao, K.L., Zameer, M.M., Shivaprakash, M.R., Singhi,

S., et al. (2009). Recent experience with fungaemia: change in species distribution and

azole resistance. Scand J Infect Dis. 41(4):275-284. doi: 10.1080/00365540902777105

72

Champion, O.L, Wagley, S., Titball, R.W. (2016). Galleria mellonella as a model host for

microbiological and toxin research. Virulence. 7(7):840-

845.doi:10.1080/21505594.2016.1203486

Chandra, J., Kuhn, D.M., Mukherjee, P.K., Hoyer, L.L., McCormick, T., Ghannoum,

M.A. (2001). Biofilm formation by the fungal pathogen Candida albicans: development,

architecture, and drug resistance. J Bacteriol. 183(18):5385-5394.

doi: 10.1128/JB.183.18.5385-5394.2001

Chang, T.P., Ho, M.W., Yang, Y.L., Lo, P.C., Lin, P.S., Wang, A.H., et al. (2013).

Distribution and drug susceptibilities of Candida species causing candidemia from a

medical center in central Taiwan. J Infect Chemother. 19(6), 1065-1071. doi:

10.1007/s10156-013-0623-8

Chao, Q.T., Lee, T.F., Teng, S.H., Peng, L.Y., Chen, P.H., Teng, L.J., et al. (2014).

Comparison of the accuracy of two conventional phenotypic methods and two MALDI-

TOF MS systems with that of DNA sequencing analysis for correctly identifying

clinically encountered yeasts. PLoS One. 9(10):e109376. doi:

10.1371/journal.pone.0109376

Chaves, G.M., Diniz, M.G., da Silva-Rocha, W.P., de Souza, L.B., Gondim, L.A.,

Ferreira, M.A., et al. (2013). Species distribution and virulence factors of Candida spp.

isolated from the oral cavity of kidney transplant recipients in Brazil. Mycopathologia.

175(3-4), 255-263. doi: 10.1007/s11046-013-9640-5

Chen, K-W., Chen, Y-C., Lin, Y-H., Chou, H-H., Li, S-Y. (2009). The molecular

epidemiology of serial Candida tropicalis isolates from ICU patients as revealed by

multilocus sequence typing and pulsed-field gel electrophoresis. Infect Genet Evol.9

(5):912-920.doi: 10.1016/j.meegid.2009.06.011

Chen, S.C., Slavin, M.A., Sorrell, T.C. (2011). Echinocandin antifungal drugs in fungal

infections: a comparison. Drugs. 71(1):11-41. doi: 10.2165/11585270-000000000-

00000

Chen, Y.L., Yu, S.J., Huang, H.Y., Chang, Y.L., Lehman, V.N., Silao, F.G., et al. (2014).

Calcineurin controls hyphal growth, virulence, and drug tolerance of Candida tropicalis.

Eukaryot Cell. 13(7), 844-854. doi: 10.1128/EC.00302-13

73

Choi, M.J., Won, E.J., Shin, J.H., Kim, S.H., Lee, W.G., Kim, M.N., et al. (2016).

Resistance Mechanisms and Clinical Features of Fluconazole-Nonsusceptible Candida

tropicalis Isolates Compared with Fluconazole-Less-Susceptible Isolates. Antimicrob

Agents Chemother. 60(6):3653-3661. doi:10.1128/AAC.02652-15

Colombo, A.L., Nucci, M., Park, B.J., Nouer, S.A., Arthington-Skaggs, B., da Matta,

D.A., et al. (2006). Epidemiology of candidemia in Brazil: a nationwide sentinel

surveillance of candidemia in eleven medical centers. J Clin Microbiol. 44(8):2816-

28123. doi: 10.1128/JCM.00773-06

Correia, A.F., Silveira, D., Fonseca-Bazzo, Y.M., Magalhães, P.O., Fagg, C.W., da Silva,

E.C., et al. (2016). Activity of crude extracts from Brazilian cerrado plants against

clinically relevant Candida species. BMC Complement Altern Med. 16(1):203.doi:

10.1186/s12906-016-1164-3

Costa, C.R., Passos, X.S., e Souza, L.K., Lucena, P.de A., Fernandes, O.de F., Silva, M.do

R. (2010). Differences in exoenzyme production and adherence ability of Candida spp.

isolates from catheter, blood and oral cavity. Rev Inst Med Trop Sao Paulo. 52(3):139-

143. doi: 10.1590/S0036-46652010000300005

Cowen, L.E. (2009). Hsp90 orchestrates stress response signaling governing fungal drug

resistance. PLoS Pathog. 5(8):e1000471. doi: 10.1371/journal.ppat.1000471

da Costa, K.R., Ferreira, J.C., Lavrador, M.A., Baruffi, M.D., Candido, R.C. (2012).

Virulence attributes and genetic variability of oral Candid.a albicans and Candida

tropicalis isolates. Mycoses. 55(3):e97-e105. doi: 10.1111/j.1439-0507.2011.02125.x

da Silva-Rocha, W.P., Lemos, V.L., Svidizisnki, T.I, Milan, E.P., Chaves, G.M. (2014).

Candida species distribution, genotyping and virulence factors of Candida albicans

isolated from the oral cavity of kidney transplant recipients of two geographic regions of

Brazil. BMC Oral Health. 14:20. doi: 10.1186/1472-6831-14-20

de Campos Rasteiro, V.M., da Costa, A.C.B.P., Araújo, C.F., De Barros, P.P., Rossoni,

R.D., Anbinder, A.L., et al. (2014). Essential oil of Melaleuca alternifolia for the

treatment of oral candidiasis induced in an immunosuppressed mouse model. BMC

Complement Altern Med.14 (1):1. doi: 10.1186/1472-6882-14-489

74

de Groot, P.W., Bader, O., de Boer, A.D., Weig, M., Chauhan, N. (2013). Adhesins in

human fungal pathogens: glue with plenty of stick. Eukaryot Cell.12(4):470-481.

doi:10.1128/EC.00364-12

de Medeiros, M.A.P., de Melo, A.P.V., Gonçalves, S.S., Milan, E.P., Chaves, G.M.

(2014). Genetic relatedness among vaginal and anal isolates of Candida albicans from

women with vulvovaginal candidiasis in north-east Brazil. J Med Microbiol.

63(11):1436-1445. doi: 10.1099/jmm.0.076604-0

de Melo Riceto, É.B., de Paula Menezes, R., Penatti, M.P.A., dos Santos Pedroso, R.

(2015). Enzymatic and hemolytic activity in different Candida species. Rev Iberoam

Micol. 32(2):79-82. doi: 10.1016/j.riam.2013.11.003

de Souza, P.C., Morey, A.T., Castanheira, G.M., Bocate, K.P., Panagio, L.A., Ito, F.A.,

et al. (2015). Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study

fungal infections. J Microbiol Methods. 118:182-186. doi: 10.1016/j.mimet.2015.10.004

Deorukhkar, S.C., Saini, S., and Mathew, S. (2014). Virulence Factors Contributing to

Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile. Int J

Microbiol. 2014, 456878. doi: 10.1155/2014/456878

Dias, L.B., de Souza Carvalho Melhem, M., Szeszs, M.W., Filho, J.M., Hahn, R.C.

(2011). Vulvovaginal candidiasis in Mato Grosso, Brazil: pregnancy status, causative

species and drugs tests. Braz J Microbiol. 42(4):1300-7.doi: 10.1590/S1517-

83822011000400009

Diezmann, S., Cox, C.J., Schonian, G., Vilgalys, R.J., Mitchell, T.G. (2004). Phylogeny

and evolution of medical species of Candida and related taxa: a multigenic analysis. J

Clin Microbiol. 42(12):5624-5635. doi: 10.1128/JCM.42.12.5624-5635.2004

Doi, A.M., Pignatari, A.C., Edmond, M.B., Marra, A.R., Camargo, L.F., Siqueira, R.A.,

et al. (2016). Epidemiology and Microbiologic Characterization of Nosocomial

Candidemia from a Brazilian National Surveillance Program. PLoS One. 11(1):e0146909.

doi: 10.1371/journal.pone.0146909

Doi, M., Homma, M., Chindamporn, A., Tanaka, K. (1992). Estimation of chromosome

number and size by pulsed-field gel electrophoresis (PFGE) in medically important

75

Candida species. J Gen Microbiol. 138(10):2243-2251. doi: 10.1099/00221287-138-10-

2243

Donahue, S.P., Greven, C.M., Zuravleff, J.J., Eller, A.W., Nguyen, M.H., Peacock, J.E.,

et al. (1994). Intraocular candidiasis in patients with candidemia: clinical implications

derived from a prospective multicenter study. Ophthalmology. 101(7):1302-1309. doi:

10.1016/S0161-6420(94)31175-4

Donlan, R.M., and Costerton, J.W. (2002). Biofilms: survival mechanisms of clinically

relevant microorganisms. Clin Microbiol Rev. 15(2):167-193.

doi: 10.1128/CMR.15.2.167-193.2002

Douglas, L.J. (2002). Medical importance of biofilms in Candida infections. Rev Iberoam

Micol. 19(3):139-143.

Douglas, L.J. (2003). Candida biofilms and their role in infection. Trends Microbiol.

11(1):30-36. doi: 10.1016/S0966-842X(02)00002-1

Dozier, C.C., Tarantola, R.M., Jiramongkolchai, K., Donahue, S.P.(2011). Fungal eye

disease at a tertiary care center: the utility of routine inpatient consultation.

Ophthalmology. 118(8):1671-1676. doi: 10.1016/j.ophtha.2011.01.038

Drutz ,D.J., Lehrer, R.I.(1978). Development of amphotericin B-resistant Candida

tropicalis in a patient with defective leukocyte function. Am J Med Sci. 276(1):77-92.

Eddouzi, J., Parker, J.E., Vale-Silva, L.A., Coste, A., Ischer, F., Kelly, S., et al. (2013).

Molecular mechanisms of drug resistance in clinical Candida species isolated from

Tunisian hospitals. Antimicrob Agents Chemother. 57(7):3182-3193.

doi:10.1128/AAC.00555-13

Eggimann, P., Garbino, J., Pittet, D. (2003). Epidemiology of Candida species infections

in critically ill non-immunosuppressed patients. Lancet Infect Dis. 3(11):685-702. doi:

10.1016/S1473-3099(03)00801-6

Eschenauer, G.A., Nguyen, M.H., Shoham, S., Vazquez, J.A., Morris, A.J., Pasculle,

W.A., et al. (2014). Real-world experience with echinocandin MICs against Candida

species in a multicenter study of hospitals that routinely perform susceptibility testing of

76

bloodstream isolates. Antimicrob Agents ChemotherI. 58(4), 1897-1906. doi:

10.1128/AAC.02163-13

Fanning, S., Mitchell, A.P. (2012). Fungal biofilms. PLoS Pathog. 8(4):e1002585. doi:

10.1371/journal.ppat.1002585

Farag, S., & Soliman, N.A. (2011). Biodegradation of crude petroleum oil and

environmental pollutants by Candida tropicalis strain. Braz Arch Biol Technol. 54(4):

821-830. doi: 10.1590/S1516-89132011000400023

Favero, D., Franca, E.J., Furlaneto-Maia, L., Quesada, R.M., Furlaneto, M.C. (2011).

Production of haemolytic factor by clinical isolates of Candida tropicalis. Mycoses.

54(6):e816-820. doi: 10.1111/j.1439-0507.2011.02035.x

Favero, D., Furlaneto-Maia, L., Franca, E.J., Goes, H.P., and Furlaneto, M.C. (2014).

Hemolytic factor production by clinical isolates of Candida species. Curr Microbiol.

68(2), 161-166. doi: 10.1007/s00284-013-0459-6

Fidel, P., Cutright, J.L., Sobel, J.D. (1997). Efficacy of D0870 treatment of experimental

Candida vaginitis. Antimicrob Agents Chemother. 41(7):1455-1459.

Fidel, P.L., Cutright, J.L., Tait, L., Sobel, J.D. (1996). A murine model of Candida

glabrata vaginitis. J Infect Dis. 173(2):425-431. doi: 10.1093/infdis/173.2.425

Figueiredo, V.T., de Assis Santos, D., Resende, M.A., and Hamdan, J.S. (2007).

Identification and in vitro antifungal susceptibility testing of 200 clinical isolates of

Candida spp. responsible for fingernail infections. Mycopathologia. 164(1): 27-33. doi:

10.1007/s11046-007-9027-6

Finkel, J.S., Mitchell, A.P. (2011). Genetic control of Candida albicans biofilm

development. Nature Rev Microbiol. 9(2):109-118. doi:10.1038/nrmicro2475

Fitzpatrick, D.A., O'Gaora, P., Byrne, K.P., Butler, G. (2010). Analysis of gene evolution

and metabolic pathways using the Candida Gene Order Browser. BMC Genom.11:290.

doi: 10.1186/1471-2164-11-290

Fong, P.H., Chan, H.L., Lee, Y.S., Wong, H.B. (1988). Acute disseminated cutaneous

candidiasis. Ann Acad Med Singapore. 17(4):551-553.

77

Forastiero, A., Mesa-Arango, A.C., Alastruey-Izquierdo, A., Alcazar-Fuoli, L., Bernal-

Martinez, L., Pelaez, T., et al. (2013). Candida tropicalis antifungal cross-resistance is

related to different azole target (Erg11p) modifications. Antimicrob Agents Chemother.

57(10):4769-4781. doi:10.1128/AAC.00477-13

Fuchs, B.B., Li, Y., Li, D., Johnston, T., Hendricks, G., Li, G., et al.(2016). Micafungin

Elicits an Immunomodulatory Effect in Galleria mellonella and Mice. Mycopathologia.

181(1-2):17-25. doi: 10.1007/s11046-015-9940-z

Galan-Ladero, M., Blanco, M., Sacristán, B., Fernández-Calderón, M., Pérez-Giraldo, C.,

Gomez-Garcia, A. (2010). Enzymatic activities of Candida tropicalis isolated from

hospitalized patients. Med Mycol. 48(1):207-210. doi: 10.3109/13693780902801242

Galan-Ladero, M.A., Blanco-Blanco, M.T., Hurtado, C., Perez-Giraldo, C., Blanco, M.T.,

Gomez-Garcia, A.C. (2013). Determination of biofilm production by Candida tropicalis

isolated from hospitalized patients and its relation to cellular surface hydrophobicity,

plastic adherence and filamentation ability. Yeast. 30(9):331-339. doi: 10.1002/yea.2965

Garcia, M.J., Rios, G., Ali, R., Bellés, J.M., & Serrano, R. (1997). Comparative

physiology of salt tolerance in Candida tropicalis and Saccharomyces

cerevisiae. Microbiology. 143(4): 1125-1131. doi: 10.1099/00221287-143-4-1125

Garcia-Effron, G., Chua, D.J., Tomada, J.R., DiPersio, J., Perlin, D.S., Ghannoum, M, et

al.(2010). Novel FKS mutations associated with echinocandin resistance in Candida

species. Antimicrob Agents Chemother. 54(5):2225-2227. doi:10.1128/AAC.00998-09

Garcia-Effron, G., Kontoyiannis, D.P., Lewis, R.E., and Perlin, D.S. (2008).

Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in

patients at high risk for hematologic malignancies. Antimicrob Agents Chemother.

52(11): 4181-4183. doi: 10.1128/AAC.00802-08

Garczewska, B., Jarzynka, S., Kus, J., Skorupa, W., Augustynowicz-Kopec, E.(2016).

Fungal infection of cystic fibrosis patients - single center experience. Pneumonol Alergol

Pol. 84(3):151-159. doi: 10.5603/PiAP.2016.0017

Garvey, E., Hoekstra, W., Schotzinger, R., Sobel, J., Lilly, E., Fidel, P. (2015). Efficacy

of the clinical agent VT-1161 against fluconazole-sensitive and-resistant Candida

78

albicans in a murine model of vaginal candidiasis. Antimicrob Agents Chemother.

59(9):5567-5573. doi:10.1128/AAC.00185-15

Ghannoum, M.A. (2000). Potential role of phospholipases in virulence and fungal

pathogenesis. Clin Microbiol Rev. 13(1):122-143. doi: 10.1128/CMR.13.1.122-143.2000

Giolo, M.P., and Svidzinski, T.I.E. (2010). Fisiopatogenia, epidemiologia e diagnóstico

laboratorial da candidemia. J Bras Patol Med Lab. 46(3): 225-234

Giri, S., Kindo, A.J. (2012). A review of Candida species causing blood stream infection.

Indian J Med Microbiol. 30(3):270-278. doi: 10.4103/0255-0857.99484

Gonzalez-Novo, A., Correa-Bordes, J., Labrador, L., Sanchez, M., Vazquez de Aldana,

C.R., Jimenez, J. (2008). Sep7 is essential to modify septin ring dynamics and inhibit cell

separation during Candida albicans hyphal growth. Mol Biol Cell. 19(4):1509-1518.

doi:10.1091/mbc.E07-09-0876

Gorton, R.L., Ramnarain, P., Barker, K., Stone, N., Rattenbury, S., McHugh, T.D., et al.

(2014). Comparative analysis of Gram's stain, PNA-FISH and Sepsityper with MALDI-

TOF MS for the identification of yeast direct from positive blood cultures. Mycoses.

57(10):592-601. doi: 10.1111/myc.12205

Grant, M.L., Parajuli, S., Deleon-Gonsalves, R., Potula, R., Truant, A.L. (2016).

Comparative Evaluation of the BD Phoenix Yeast ID Panel and Remel RapID Yeast Plus

System for Yeast Identification. Can J Infect Dis Med Microbiol. 2016:4094932. doi:

10.1155/2016/4094932

Guinea, J., Zaragoza, O., Escribano, P., Martin-Mazuelos, E., Peman, J., Sanchez-Reus,

F., et al. (2014). Molecular identification and antifungal susceptibility of yeast isolates

causing fungemia collected in a population-based study in Spain in 2010 and 2011.

Antimicrob Agents Chemother. 58(3), 1529-1537. doi: 10.1128/AAC.02155-13

Gündeş, S., Gulenc, S., Bingol, R. (2001). Comparative performance of Fungichrom I,

Candifast and API 20C Aux systems in the identification of clinically significant yeasts.

J Med Microbiol. 50(12):1105-1110. doi: 10.1099/0022-1317-50-12-1105

79

Gustin, M.C., Albertyn, J., Alexander, M., Davenport, K. (1998). MAP kinase pathways

in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 62(4):1264-1300.

Hall, L., Le Febre, K.M., Deml, S.M., Wohlfiel, S.L., Wengenack, N.L. (2012).

Evaluation of the Yeast Traffic Light PNA FISH probes for identification of Candida

species from positive blood cultures. J Clin Microbiol. 50(4):1446-1448.

doi:10.1128/JCM.06148-11

Hamamoto, H., Kurokawa, K., Kaito, C., Kamura, K., Razanajatovo, I.M., Kusuhara, H.,

et al. (2004). Quantitative evaluation of the therapeutic effects of antibiotics using

silkworms infected with human pathogenic microorganisms. Antimicrob Agents

Chemother. 48(3):774-779. doi: 10.1128/AAC.48.3.774-779.2004

Hawser, S.P., Douglas, L.J. (1995). Resistance of Candida albicans biofilms to antifungal

agents in vitro. Antimicrob Agents Chemother. 39(9):2128-2131.

doi: 10.1128/AAC.39.9.2128

Hoover, C.I., Jantapour, M.J., Newport ,G., Agabian, N., Fisher, S.J. (1998).Cloning and

regulated expression of the Candida albicans phospholipase B (PLB1) gene. FEMS

Microbiol Lett .167(2):163-169. doi: 10.1111/j.1574-6968.1998.tb13223.x

Hoyer, L.L., Fundyga, R., Hecht, J.E., Kapteyn, J.C., Klis, F.M., Arnold, J. (2001).

Characterization of agglutinin-like sequence genes from non-albicans Candida and

phylogenetic analysis of the ALS family. Genetics.157(4):1555-1567.

Hube, B., Naglik, J. (2001). Candida albicans proteinases: resolving the mystery of a

gene family. Microbiology. 147(Pt 8):1997-2005. doi: 10.1099/00221287-147-8-1997

Ishii, M., Matsumoto, Y., Sekimizu, K. (2015).Usefulness of silkworm as a model animal

for understanding the molecular mechanisms of fungal pathogenicity. Drug Discov The.

9(4):234-237. doi: 10.5582/ddt.2015.01052

Jacobs, P. H., Nall, L. (1990). Antifungal drug therapy: A complete guide for the

practitioner. New York: CRC Press.

Jain, M., Shah, R., Chandolia, B., Mathur, A., Chauhan, Y., Chawda, J., et al. (2016). The

Oral Carriage of Candida in Oral Cancer Patients of Indian Origin Undergoing

80

Radiotherapy and/or Chemotherapy. J Clin Diagn Res. 10(2):ZC17-20.

doi: 10.7860/JCDR/2016/15702.7180

Jensen, R.H., Johansen, H.K., Arendrup, M.C. (2013). Stepwise development of a

homozygous S80P substitution in Fks1p, conferring echinocandin resistance in Candida

tropicalis. Antimicrob Agents Chemother. 57(1):614-617. doi:10.1128/AAC.01193-12

Jiang, C., Dong, D., Yu, B., Cai, G., Wang, X., Ji, Y., et al. (2013). Mechanisms of azole

resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother.

68(4): 778-785. doi: 10.1093/jac/dks481

Jiang, C., Li Z., Zhang, L., Tian, Y., Dong, D., Peng, Y. (2016). Significance of hyphae

formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells.

Microbiol Res. 192:65-72. doi: 10.1016/j.micres.2016.06.003

Joseph-Horne, T., Hollomon, D.W. (1997). Molecular mechanisms of azole resistance in

fungi. FEMS Microbiol Lett. 149(2):141-149. doi: 10.1111/j.1574-6968.1997.tb10321.x

Kali, A., Charles, M.P., Noyal, M.J., Sivaraman, U, Kumar, S., Easow, J.M. (2013).

Prevalence of Candida co-infection in patients with pulmonary tuberculosis. Australas

Med J. 6(8):387-391. doi: 10.4066/AMJ.2013.1709

Kanagal, D., Vineeth, V., Kundapur, R., Shetty, H., Rajesh, A. (2014). Prevalence of

Vaginal Candidiasis in Pregnancy among Coastal South Indian Women. J Womens

Health. Issues Care 3:6. doi:10.4172/2325-9795.1000168

Keceli, S. A., Dundar, D., Tamer, G. S. (2016). Comparison of Vitek Matrix-assisted

Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Versus Conventional

Methods in Candida Identification. Mycopathologia. 181(1-2):67-73. doi:

10.1007/s11046-015-9944-8

Kelly, S.L., Arnoldi, A., Kelly, D.E. (1993). Molecular genetic analysis of azole

antifungal mode of action. Biochem Soc Trans. 21(4):1034-1038.

doi: 10.1042/bst0211034

Kim, D.M., Suh, M.K., Ha, G.Y. (2013). Onychomycosis in children: an experience of

59 cases. Ann Dermatol. 25(3):327-334. doi: 10.5021/ad.2013.25.3.327

81

Kirk, P., Cannon P., David J., and Stalpers J. (2001). Ainsworth & Bisby’s Dicitionary of

the Fungi. Wallingford: Ed CAB Internacional.

Klotz, S.A., Drutz, D.J., Harrison, J.L., Huppert, M. (1983). Adherence and penetration

of vascular endothelium by Candida yeasts. Infect Immun. 42(1):374-384.

Koga‐Ito, C.Y., Komiyama, E.Y., de Paiva Martins, C.A., Vasconcellos, T.C., Cardoso,

Jorge A.O., Carvalho, Y.R., et al. (2011). Experimental systemic virulence of oral

Candida dubliniensis isolates in comparison with Candida albicans, Candida tropicalis

and Candida krusei. Mycoses. 54(5):e278-e85. doi: 10.1111/j.1439-0507.2010.01899.x

Kontoyiannis, D.P., Vaziri, I., Hanna, H.A., Boktour, M., Thornby, J., Hachem, R., et al.

(2001). Risk Factors for Candida tropicalis fungemia in patients with cancer. Clin Infect

Dis. 33(10):1676-1681. doi: 10.1086/323812

Kothavade, R.J., Kura, M.M., Valand, A.G., Panthaki, M.H. (2010). Candida tropicalis:

its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol.

59(Pt 8):873-880. doi: 10.1099/jmm.0.013227-0

Krcmery Jr, V., Mrazova, M., Kunova, A., Grey, E., Mardiak, J., Jurga, L., et al. (1999).

Nosocomial Candidaemias due to species other than Candida albicans in cancer patients.

Support Care Cancer. 7(6):428-431. doi: 10.1007/s005200050304

Kühn, C., & Klipp, E. (2012). Zooming in on yeast osmoadaptation. Adv Sys Biol. 739:

293-310). doi: 10.1007/978-1-4419-7210-1_17

Kumamoto, C.A., Vinces, M.D. (2005). Contributions of hyphae and hypha-co-regulated

genes to Candida albicans virulence. Cell Microbiol. 7(11):1546-1554. doi:

10.1111/j.1462-5822.2005.00616.x

Kurtzman, C., Fell, J. W., and Boekhout T. (2011). The yeasts: a taxonomic study.

Amsterdam: Elsevier.

Kwon, S.G., Park, S.W., & Oh, D.K. (2006). Increase of xylitol productivity by cell-

recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J

Biosci Bioeng. 101(1): 13-18. doi: 10.1263/jbb.101.13

82

Lackey, E., Vipulanandan, G., Childers, D.S., Kadosh, D. (2013). Comparative evolution

of morphological regulatory functions in Candida species. Eukaryot Cell. 12(10):1356-

1368. doi:10.1128/EC.00164-13

Legrand, M., Forche, A., Selmecki, A., Chan, C., Kirkpatrick, D.T., & Berman, J. (2008).

Haplotype mapping of a diploid non-meiotic organism using existing and induced

aneuploidies. PLoS Genet. 4(1): e1. doi: 10.1371/journal.pgen.0040001

Leitão, A. L., Duarte, M.P., & Oliveira, J. S. (2007). Degradation of phenol by a

halotolerant strain of Penicillium chrysogenum. Int Biodeterior Biodegradation. 59(3):

220-225. doi: 10.1016/j.ibiod.2006.09.009

Liu, W., Tan, J., Sun, J., Xu, Z., Li, M., Yang, Q., et al. (2014). Invasive candidiasis in

intensive care units in China: in vitro antifungal susceptibility in the China-SCAN study.

J Antimicrob Chemother. 69(1): 162-167. doi: 10.1093/jac/dkt330

Luo, G., Samaranayake, L.P., and Yau, J.Y. (2001). Candida species exhibit differential

in vitro hemolytic activities. J Clin Microbiol. 39(8): 2971-2974. doi:

10.1128/JCM.39.8.2971-2974.2001

Luo, G., Samaranayake, L.P., Cheung, B.P., and Tang, G. (2004). Reverse transcriptase

polymerase chain reaction (RT-PCR) detection of HLP gene expression in Candida

glabrata and its possible role in in vitro haemolysin production. APMIS. 112(4-5): 283-

290. doi: 10.1111/j.1600-0463.2004.apm11204-0509.x

Lupetti, A., Danesi, R., Campa, M., Del Tacca, M., Kelly, S. (2002). Molecular basis of

resistance to azole antifungals. Trends Mol Med. 8(2):76-81. doi: 10.1016/S1471-

4914(02)02280-3

Lyon, J.P., and de Resende, M.A. (2006). Correlation between adhesion, enzyme

production, and susceptibility to fluconazole in Candida albicans obtained from denture

wearers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 102(5): 632-638. doi:

10.1016/j.tripleo.2005.12.015

Macdonald, F., Odds, F.C. (1983). Virulence for mice of a proteinase-secreting strain of

Candida albicans and a proteinase-deficient mutant. J Gen Microbiol. 129(2):431-438.

doi: 10.1099/00221287-129-2-431

83

Maiden, M.C., Bygraves, J.A., Feil, E., Morelli, G., Russell, J.E., Urwin, R., et al. (1998).

Multilocus sequence typing: a portable approach to the identification of clones within

populations of pathogenic microorganisms. Proc Natl Acad Sci. 95(6):3140-3145. doi:

10.1073/pnas.95.6.3140

Manastir, L., Ergon, M.C., Yucesoy, M. (2011). Investigation of mutations in Erg11 gene

of fluconazole resistant Candida albicans isolates from Turkish hospitals. Mycoses.

54(2):99-104. doi: 10.1111/j.1439-0507.2009.01766.x

Mancera, E., Porman, A.M., Cuomo, C.A., Bennett, R.J., Johnson, A.D. (2015). Finding

a Missing Gene: EFG1 Regulates Morphogenesis in Candida tropicalis. G3 (Bethesda).

5(5):849-856. doi: 10.1534/g3.115.017566

Manns, J.M., Mosser, D.M., Buckley, H.R. (1994). Production of a hemolytic factor by

Candida albicans. Infect Immun. 62(11):5154-5156.

Manzano-Gayosso, P., Mendez-Tovar, L.J., Arenas, R., Hernandez-Hernandez, F.,

Millan-Chiu, B., Torres-Rodriguez ,J.M., et al. (2011). Onychomycosis-causing yeasts in

four Mexican dermatology centers and their antifungal susceptibility to azolic

compounds. Rev Iberoam Micol. 28(1):32-35. doi: 10.1016/j.riam.2010.11.002

Marcos, J.Y., Pincus, D.H. (2013). Fungal diagnostics: review of commercially available

methods. Methods Mol Biol. 968:25-54. doi: 10.1007/978-1-62703-257-5_2

Marcos-Zambrano, L.J., Escribano, P., Bouza, E., Guinea, J. (2014). Production of

biofilm by Candida and non-Candida spp. isolates causing fungemia: comparison of

biomass production and metabolic activity and development of cut-off points. Int J Med

Microbiol. 304(8):1192-1198. doi: 10.1016/j.ijmm.2014.08.012

Marie, C., White, T.C. (2009). Genetic Basis of Antifungal Drug Resistance. Curr Fungal

Infect Rep. 3(3):163-169. doi: 10.1007/s12281-009-0021-y

Mariné, M., Pastor, F.J., Guarro, J. (2010). Efficacy of posaconazole in a murine

disseminated infection by Candida tropicalis. Antimicrob Agents Chemother. 54(1):530-

532. doi:10.1128/AAC.01136-09

84

Marol, S., Yücesoy, M. (2008). Molecular epidemiology of Candida species isolated

from clinical specimens of intensive care unit patients. Mycoses. 51(1):40-49. doi:

10.1111/j.1439-0507.2007.01435.x

McCarty, T. P., & Pappas, P. G. (2016). Invasive candidiasis. Infect Dis Clin North

Am. 30(1) 103-124. doi: 10.1016/j.idc.2015.10.013

Melo, A.S., Colombo, A.L., and Arthington-Skaggs, B.A. (2007). Paradoxical growth

effect of caspofungin observed on biofilms and planktonic cells of five different Candida

species. Antimicrob Agents Chemother. 51(9), 3081-3088. doi: 10.1128/AAC.00676-07

Mendes de Toledo, C.E., Santos, P.R., Palazzo, de Mello, J.C., Dias Filho, B.P.,

Nakamura, C.V., Ueda-Nakamura, T. (2015). Antifungal Properties of Crude Extracts,

Fractions, and Purified Compounds from Bark of Curatella americana L.(Dilleniaceae)

against Candida Species. Evid Based Complement Alternat Med. 2015. doi:

10.1155/2015/673962

Menezes, T.O., Gillet, L.C., Menezes, S.A., Feitosa, R.N., Ishak, M.O., Ishak, R., et al.

(2013). Virulence factors of Candida albicans isolates from the oral cavities of HIV-1-

positive patients. Curr HIV Res. 11(4):304-308. doi: 10.2174/1570162X113119990042

Merseguel, K.B., Nishikaku, A.S., Rodrigues ,A.M., Padovan, A.C., Ferreira, R.C., de

Azevedo Melo, A.S., et al. (2015). Genetic diversity of medically important and emerging

Candida species causing invasive infection. BMC Infect Dis. 15(1):57.

doi:10.1186/s12879-015-0793-3

Merz, W.G., Sandford, G.R.(1979). Isolation and characterization of a polyene-resistant

variant of Candida tropicalis. J Clin Microbiol. 9(6):677-680.

Mesa-Arango, A.C., Forastiero, A., Bernal-Martínez, L., Cuenca-Estrella, M., Mellado,

E., Zaragoza, O. (2013). The non-mammalian host Galleria mellonella can be used to

study the virulence of the fungal pathogen Candida tropicalis and the efficacy of

antifungal drugs during infection by this pathogenic yeast. Med Mycol. 51(5):461-472.

doi: 10.3109/13693786.2012.737031

Millsop, J.W., Fazel, N. (2016). Oral candidiasis. Clin Dermatol. 34(4):487-494. doi:

10.1016/j.clindermatol.2016.02.022

85

Misra, S., Raghuwanshi, S., Gupta, P., Dutt, K., & Saxena, R.K. (2012). Fermentation

behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa

sinensis flowers for xylitol production. Antonie Van Leeuwenhoek. 101(2): 393-402.

doi:10.1007/s10482-011-9646-2

Morais-Braga, M.F.B., Sales, D.L., Carneiro, J.N.P, Machado, A.J.T, dos Santos, A.T.L,

de Freitas, M.A, et al.(2016). Psidium guajava L. and Psidium brownianum Mart ex DC.:

Chemical composition and anti–Candida effect in association with fluconazole. Microb

Pathog. 95:200-207. doi: 10.1016/j.micpath.2016.04.013

Morrow, C.A., & Fraser, J.A. (2013). Ploidy variation as an adaptive mechanism in

human pathogenic fungi. Semin Cell Dev Biol. 4(24): 339-346. doi:

10.1016/j.semcdb.2013.01.008

Muadcheingka, T., Tantivitayakul, P. (2015). Distribution of Candida albicans and non-

albicans Candida species in oral candidiasis patients: Correlation between cell surface

hydrophobicity and biofilm forming activities. Arch Oral Biol. 60(6):894-901. doi:

10.1016/j.archoralbio.2015.03.002

Mulu, A., Kassu, A., Anagaw, B., Moges, B., Gelaw, A., Alemayehu, M., et al. (2013).

Frequent detection of 'azole' resistant Candida species among late presenting AIDS

patients in northwest Ethiopia. BMC Infect Dis. 13:82. doi: 10.1186/1471-2334-13-82

Nagaraja, P., Mathew, T., Shetty, D. (2005). Candida tropicalis causing prosthetic valve

endocarditis. Indian J Med Microbiol . 23(2):139. doi: 10.4103/0255-0857.16059

Naglik, J.R., Fostira, F., Ruprai, J., Staab, J.F., Challacombe, S.J., Sundstrom, P. (2006).

Candida albicans HWP1 gene expression and host antibody responses in colonization

and disease. J Med Microbiol. 55(Pt 10):1323-1327. doi: 10.1099/jmm.0.46737-0

Nash, E.E., Peters, B.M., Fidel, P.L., Noverr, M.C. (2016). Morphology-independent

virulence of Candida species during polymicrobial intra-abdominal infections with

Staphylococcus aureus. Infect Immun. 84(1):90-98. doi:10.1128/IAI.01059-15

Nash, E.E., Peters, B.M., Lilly, E.A., Noverr, M.C., Fidel, Jr P.L. (2016). A Murine

Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory

86

Immunopathogenic Response. PLoS One. 11(1):e0147969. doi:

10.1371/journal.pone.0147969

Negri, M., Martins, M., Henriques, M., Svidzinski, T.I., Azeredo, J., Oliveira, R. (2010).

Examination of potential virulence factors of Candida tropicalis clinical isolates from

hospitalized patients. Mycopathologia. 169(3):175-182. doi: 10.1007/s11046-009-9246-

0.

Nguyen, V.Q., Sil, A. (2008). Temperature-induced switch to the pathogenic yeast form

of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc

Natl Acad Sci U S A. 105(12):4880-4885. doi: 10.1073/pnas.0710448105

Nickerson, K.W., Atkin, A.L., Hornby, J.M. (2006). Quorum sensing in dimorphic fungi:

farnesol and beyond. Appl Environ Microbiol. 72(6):3805-3813.

doi: 10.1128/AEM.02765-05

Nobile, C.J., Mitchell, A.P. (2006). Genetics and genomics of Candida albicans biofilm

formation. Cell Microbiol. 8(9):1382-1391. doi: 10.1111/j.1462-5822.2006.00761.x

Nobile, C.J., Schneider, H.A., Nett, J.E., Sheppard, D.C., Filler, S.G., Andes, D.R., et al.

(2008). Complementary adhesin function in C. albicans biofilm formation. Curr Biol.

18(14):1017-1024. doi: 10.1016/j.cub.2008.06.034

Nordin, M.A., Wan Harun ,W.H., Abdul Razak, F. (2013). Antifungal susceptibility and

growth inhibitory response of oral Candida species to Brucea javanica Linn. extract. BMC

Complement Altern Med. 13:342. doi: 10.1186/1472-6882-13-342

Nwibo, D.D., Hamamoto, H., Matsumoto, Y., Kaito, C., Sekimizu, K. (2015). Current

use of silkworm larvae (Bombyx mori) as an animal model in pharmaco-medical research.

Drug Discov Ther. 9(2):133-135. doi: 10.5582/ddt.2015.01026

Odds, F.C., Jacobsen, M.D. (2008). Multilocus sequence typing of pathogenic Candida

species. Eukaryot Cell. 7(7):1075-1084. doi:10.1128/EC.00062-08

Okamoto-Shibayama, K., Kikuchi, Y., Kokubu, E., Sato, Y., Ishihara, K. (2014). Csa2, a

member of the Rbt5 protein family, is involved in the utilization of iron from human

87

hemoglobin during Candida albicans hyphal growth. FEMS Yeast Res. 14(4):674-677.

doi: 10.1111/1567-1364.12160

Oksuz, S., Sahin, I., Yildirim, M., Gulcan, A., Yavuz, T., Kaya, D., et al. (2007).

Phospholipase and proteinase activities in different Candida species isolated from

anatomically distinct sites of healthy adults. Jpn J Infect Dis. 60(5):280-283.

Oliveira, V. K. P .D. (2011). Ocorrência das espécies de leveduras isoladas de sangue e

cateter de pacientes internados em Hospital Público Infantil de São Paulo (período 2007

a 2010). [master’s thesis]. [São Paulo (SP)]: Universidade de São Paulo.

Orsi, C.F., Borghi, E., Colombari, B., Neglia, R.G., Quaglino, D., Ardizzoni, A., et al.

(2014). Impact of Candida albicans hyphal wall protein 1 (HWP1) genotype on biofilm

production and fungal susceptibility to microglial cells. Microb Pathog. 69-70:20-27. doi:

10.1016/j.micpath.2014.03.003

Paiva, L.C., Vidigal, P.G., Donatti, L., Svidzinski, T.I., and Consolaro, M.E. (2012).

Assessment of in vitro biofilm formation by Candida species isolates from vulvovaginal

candidiasis and ultrastructural characteristics. Micron. 43(2-3): 497-502. doi:

10.1016/j.micron.2011.09.013

Pam, V.K., Akpan, J.U., Oduyebo, O.O., Nwaokorie, F.O., Fowora, M.A., Oladele, R.O.,

et al. (2012). Fluconazole susceptibility and ERG11 gene expression in vaginal Candida

species isolated from Lagos Nigeria. Int J Mol Epidemiol Genet. 3(1):84-90.

Panda, A., Ghosh, A.K., Mirdha, B.R., Xess, I., Paul, S., Samantaray, J.C., et al. (2015).

MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based

on ribosomal protein biomarkers. J Microbiol Methods. 109:93-105. doi:

10.1016/j.mimet.2014.12.014

Pannanusorn, S., Fernandez, V., and Romling, U. (2013). Prevalence of biofilm formation

in clinical isolates of Candida species causing bloodstream infection. Mycoses. 56(3):

264-272. doi: 10.1111/myc.12014

Park, S., Kelly, R., Kahn, J.N., Robles, J., Hsu, M.J., Register, E., et al. (2005). Specific

substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare

88

laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 49(8):3264-

3273. doi: 10.1128/AAC.49.8.3264-3273.2005

Peman, J., Canton, E., Quindos, G., Eraso, E., Alcoba, J., Guinea, J., et al. (2012).

Epidemiology, species distribution and in vitro antifungal susceptibility of fungaemia in

a Spanish multicentre prospective survey. J Antimicrob Chemother. 67(5):1181-1187.

doi: 10.1093/jac/dks019

Perlin, D.S. (2007). Resistance to echinocandin-class antifungal drugs. Drug Resist

Updat. 10(3):121-130. doi: 10.1016/j.drup.2007.04.002

Pfaller M. A., Boyken, L., Hollis, R. J., Kroeger, J., Messer, S. A., Tendolkar, S., et al.

(2008). In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin,

caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol.

46(1):150-156. doi: 10.1128/JCM.01901-07

Pfaller, M. A. (2012). Antifungal drug resistance: mechanisms, epidemiology, and

consequences for treatment. Am J Med. 125(1 Suppl):S3-13. doi:

10.1016/j.amjmed.2011.11.001

Pfaller, M. A., Castanheira, M., Diekema, D. J., Messer, S. A., Moet, G. J., Jones, R. N.

(2010). Comparison of European Committee on Antimicrobial Susceptibility Testing

(EUCAST) and Etest methods with the CLSI broth microdilution method for

echinocandin susceptibility testing of Candida species. J Clin Microbiol. 48(5):1592-

1599. doi:10.1128/JCM.02445-09

Pincus, D.H., Orenga, S., Chatellier, S. (2007). Yeast identification--past, present, and

future methods. Med Mycol. 45(2):97-121. doi: 10.1080/13693780601059936

Porman, A.M., Alby, K., Hirakawa, M.P., & Bennett, R.J. (2011). Discovery of a

phenotypic switch regulating sexual mating in the opportunistic fungal pathogen Candida

tropicalis. Proc Natl Acad Sci USA, 108(52): 21158-21163. doi:

10.1073/pnas.1112076109

Porman, A.M., Hirakawa, M.P., Jones, S.K., Wang, N., Bennett, R.J. (2013). MTL-

independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in

89

regulating switching and filamentation. PLoS Genet. 9(3):e1003369. doi:

10.1371/journal.pgen.1003369

Posteraro, B., Efremov, L., Leoncini, E., Amore R., Posteraro, P., Ricciardi, W., et al.

(2015). Are the Conventional Commercial Yeast Identification Methods Still Helpful in

the Era of New Clinical Microbiology Diagnostics? A Meta-Analysis of Their Accuracy.

J Clin Microbiol. 53(8):2439-2450. doi: doi:10.1128/JCM.00802-15

Powderly, W.G., Kobayashi, G.S., Herzig, G.P., Medoff, G. (1988). Amphotericin B-

resistant yeast infection in severely immunocompromised patients. Am J Med. 84(5):826-

832. doi: 10.1016/0002-9343(88)90059-9

Punithavathy, P., Menon, T. (2012). Characterization of gene family that mediates the

adhesion of biofilms formed by Candida tropicalis isolated from HIV and non-HIV

patients. BMC Infect Dis. 12(1):1. doi: 10.1186/1471-2334-12-S1-O8

Ra, C.H., Jung, J.H., Sunwoo, I.Y., Kang, C.H., Jeong, G.T., & Kim, S.K. (2015).

Detoxification of Eucheuma spinosum hydrolysates with activated carbon for ethanol

production by the salt-tolerant yeast Candida tropicalis. J Microbiol Biotechnol. 25(6):

856-862. doi: 10.4014/jmb.1409.09038

Ragunathan, L., Poongothai, G.K., Sinazer, A.R., Kannaiyan, K., Gurumurthy, H., Jaget,

N., et al. (2014). Phenotypic Characterization and Antifungal Susceptibility Pattern to

Fluconazole in Candida species Isolated from Vulvovaginal Candidiasis in a Tertiary

Care Hospital. J Clin Diagn Res. 8(5):DC01-4. doi: 10.7860/JCDR/2014/7434.4311

Ramage, G., Martinez, J.P., Lopez-Ribot, J.L. (2006). Candida biofilms on implanted

biomaterials: a clinically significant problem. FEMS Yeast Res. 6(7):979-986. doi:

10.1111/j.1567-1364.2006.00117.x

Ramage, G., Vande Walle, K., Wickes, B.L., Lopez-Ribot, J.L. (2001). Standardized

method for in vitro antifungal susceptibility testing of Candida albicans biofilms.

Antimicrob Agents Chemother. 45(9):2475-2479. doi: 10.1128/AAC.45.9.2475-

2479.2001

90

Rao, R.S., Jyothi, C.P., Prakasham, R.S., Sarma, P.N., & Rao, L. V. (2006). Xylitol

production from corn fiber and sugarcane bagasse hydrolysates by Candida

tropicalis. Bioresour Technol. 97(15): 1974-1978. doi: 10.1016/j.biortech.2005.08.015

Rodriguez, P.L., Ali, R., & Serrano, R. (1996). CtCdc55p and CtHal3p: Two putative

regulatory proteins from Candida tropicalis with long acidic domains. Yeast. 12(13):

1321-1329. doi:10.1002/(SICI)1097-0061(199610)12:13<1321::AID-

YEA27>3.0.CO;2-6

Rossoni, R.D., Barbosa, J.O., Vilela, S.F., Jorge, A.O., and Junqueira, J.C. (2013).

Comparison of the hemolytic activity between C. albicans and non-albicans Candida

species. Braz Oral Res. 27(6): 484-489. doi: 10.1590/S1806-83242013000600007

Ruchel, R., Uhlemann, K., Boning, B. (1983). Secretion of acid proteinases by different

species of the genus Candida. Zentralbl Bakteriol Mikrobiol Hyg A. 255(4):537-548. doi:

10.1016/S0174-3031(83)80013-4

Sachin, C., Ruchi, K., Santosh, S. (2012). In vitro evaluation of proteinase, phospholipase

and haemolysin activities of Candida species isolated from clinical specimens. IJMBR.

1(2):153-157. doi: 10.14194/ijmbr.1211

Salari, S., Bakhshi, T., Sharififar, F., Naseri, A., Ghasemi, N. A. P. (2016). Evaluation of

antifungal activity of standardized extract of Salvia rhytidea Benth. (Lamiaceae) against

various Candida isolates. J Mycol Med. 26(4):323-330. doi:

10.1016/j.mycmed.2016.06.003

Salehei, Z., Seifi, Z., Mahmoudabadi, A. (2012). Sensitivity of vaginal isolates of

Candida to eight antifungal drugs isolated from Ahvaz, Iran. Jundishapur J Microbiol.

5(4):574-577. doi: 10.5812/jjm.4556

Samaranayake, L.P., Raeside, J.M., and MacFarlane, T.W. (1984). Factors affecting the

phospholipase activity of Candida species in vitro. Sabouraudia. 22(3): 201-207.

Sanglard, D., Odds, F.C. (2002). Resistance of Candida species to antifungal agents:

molecular mechanisms and clinical consequences. Lancet Infect Dis. 2(2):73-85. doi:

10.1016/S1473-3099(02)00181-0

91

Sanita, P.V., Zago, C.E., Mima, E.G., Pavarina, A.C., Jorge, J.H., Machado, A.L., et al.

(2014). In vitro evaluation of the enzymatic activity profile of non-albicans Candida

species isolated from patients with oral candidiasis with or without diabetes. Oral Surg

Oral Med Oral Pathol Oral Radiol. 118(1):84-91. doi: 10.1016/j.oooo.2014.03.020.

Santhanam, J., Nazmiah, N., and Aziz, M.N. (2013). Species distribution and antifungal

susceptibility patterns of Candida species: Is low susceptibility to itraconazole a trend in

Malaysia? Med J Malaysia. 68(4): 343-347.

Santos, C., Lima, N., Sampaio, P., and Pais, C. (2011). Matrix-assisted laser

desorption/ionization time-of-flight intact cell mass spectrometry to detect emerging

pathogenic Candida species. Diagn Microbiol Infect Dis. 71(3): 304-308. doi:

10.1016/j.diagmicrobio.2011.07.002

Sariguzel, F., Berk, E., Koc, A., Sav, H., Aydemir, G.(2015). Evaluation of CHROMagar

Candida, VITEK2 YST and VITEK® MS for identification of Candida strains isolated

from blood cultures. Infez Med. 23(4):318-322.

Schaller, M., Borelli, C., Korting, H.C., Hube, B. (2005).Hydrolytic enzymes as virulence

factors of Candida albicans. Mycoses. 48(6):365-377. doi: 10.1111/j.1439-

0507.2005.01165.x

Seervai, R.N., Jones, S.K., Hirakawa, M.P., Porman, A.M., & Bennett, R.J. (2013).

Parasexuality and ploidy change in Candida tropicalis. Eukaryot Cell. 12(12): 1629-

1640. doi: 10.1128/EC.00128-13

Seneviratne, C.J., Rajan, S., Wong, S.S., Tsang, D.N., Lai, C.K., Samaranayake, L.P., et

al. (2016). Antifungal Susceptibility in Serum and Virulence Determinants of Candida

Bloodstream Isolates from Hong Kong. Front Microbiol. 7:216.

doi: 10.3389/fmicb.2016.00216

Shi, X.Y., Yang, Y.P., Zhang, Y., Li, W., Wang, J.D., Huang, W.M., et al. (2015).

Molecular identification and antifungal susceptibility of 186 Candida isolates from

vulvovaginal candidiasis in southern China. J Med Microbiol. 64 (4): 390-393.

doi: 10.1099/jmm.0.000024

92

Shu, C., Sun, L., Zhang, W. (2016). Thymol has antifungal activity against Candida

albicans during infection and maintains the innate immune response required for function

of the p38 MAPK signaling pathway in Caenorhabditis elegans. Immunol Res.1-12. doi:

10.1007/s12026-016-8785-y

Silva, S., Hooper, S.J., Henriques, M., Oliveira, R., Azeredo, J., Williams, D.W.

(2011).The role of secreted aspartyl proteinases in Candida tropicalis invasion and

damage of oral mucosa. Clin Microbiol Infect.17(2):264-722. doi: 10.1111/j.1469-

0691.2010.03248.x

Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D.W., and Azeredo, J. (2012).

Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology,

pathogenicity and antifungal resistance. FEMS Microbiol Rev. 36(2): 288-305. doi:

10.1111/j.1574-6976.2011.00278.x

Silva-Dias, A., Miranda, I.M., Rocha, R., Monteiro-Soares, M., Salvador, A., Rodrigues,

A.G., et al. (2012). A novel flow cytometric protocol for assessment of yeast cell

adhesion. Cytometry A. 81(3):265-270. doi: 10.1002/cyto.a.21170.

Siqueira, A.B.S., Rodriguez, L.R.N.D.A., Santos, R.K.B., Marinho, R.R.B., Abreu, S.,

Peixoto, R.F., et al. (2015). Antifungal activity of propolis against Candida species

isolated from cases of chronic periodontitis. Braz Oral Res. 29(1):1-6. doi: 10.1590/1807-

3107BOR-2015.vol29.0083

Slutsky, B., Staebell, M., Anderson, J., Risen, L., Pfaller, M., Soll, D. (1987)." White-

opaque transition": a second high-frequency switching system in Candida albicans. J

Bacteriol. 169(1):189-197. doi: 10.1128/jb.169.1.189-197.1987

Snide, J., Sundstrom, P. (2006). “A characterization of HWP1 promoter activation in

pseudohyphal cells in Candida albicans”, in: Proceedings of the 8th ASM Conference on

Candida and Candidiasis, ASM Press.

Sobel, J.D.(2016). Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 214(1):15-

21. doi: 10.1016/j.ajog.2015.06.067

Soczo, G., Kardos, G., Varga, I., Kelentey, B., Gesztelyi, R., Majoros, L. (2007). In vitro

study of Candida tropicalis isolates exhibiting paradoxical growth in the presence of high

93

concentrations of caspofungin. Antimicrob Agents Chemother. 51(12):4474-4476.

doi:10.1128/AAC.00880-07

Sohn, K., Senyurek, I., Fertey, J., Konigsdorfer, A., Joffroy, C., Hauser, N., et al. (2006).

An in vitro assay to study the transcriptional response during adherence of Candida

albicans to different human epithelia. FEMS Yeast Res. 6(7):1085-1093. doi:

10.1111/j.1567-1364.2006.00130.x

Solis, N.V., Filler, S.G. (2012). Mouse model of oropharyngeal candidiasis. Nat Protoc.

7(4):637-642. doi:10.1038/nprot.2012.011

Souza, A.C.R., Fuchs, B.B., Pinhati, H.M., Siqueira, R.A., Hagen, F., Meis, J.F., et al.

(2015). Candida parapsilosis resistance to fluconazole: molecular mechanisms and in

vivo impact in infected Galleria mellonella larvae. Antimicrob Agents Chemother.

59(10):6581-6587. doi:10.1128/AAC.01177-15

Sow, D., Fall, B., Ndiaye, M., Ba B.S., Sylla, K., Tine, R., et al. (2015). Usefulness of

MALDI-TOF Mass Spectrometry for Routine Identification of Candida Species in a

Resource-Poor Setting. Mycopathologia. 180(3-4):173-179. doi: 10.1007/s11046-015-

9905-2

Staab, J.F., Datta, K., Rhee, P. (2013). Niche-specific requirement for hyphal wall protein

1 in virulence of Candida albicans. PLoS One. 8(11):e80842. doi:

10.1371/journal.pone.0080842

Stefaniuk, E., Baraniak, A., Fortuna, M., Hryniewicz, W. (2016). Usefulness of

CHROMagar Candida Medium, Biochemical Methods--API ID32C and VITEK 2

Compact and Two MALDI-TOF MS Systems for Candida spp. Identification. Pol J

Microbiol. 65(1):111-114. doi: 10.5604/17331331.1197283

Stender, H. (2003). PNA FISH: an intelligent stain for rapid diagnosis of infectious

diseases. Expert Rev Mol Diagn. 3(5):649-655. doi: 10.1586/14737159.3.5.649

Stevens, D.A,. Espiritu, M., Parmar, R. (2004). Paradoxical effect of caspofungin:

reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents

Chemother. 48(9):3407-3411. doi: 10.1128/AAC.48.9.3407-3411.2004

94

Stone, N.R., Gorton, R.L., Barker, K., Ramnarain, P., Kibbler, C.C. (2013). Evaluation

of PNA-FISH yeast traffic light for rapid identification of yeast directly from positive

blood cultures and assessment of clinical impact. J Clin Microbiol. 51(4):1301-1302.

doi:10.1128/JCM.00028-13

Sun, H.Y., Chiu, Y.S., Tang, J.L., Wang, J.L., Chang, S.C., Chen, Y.C. (2006). The

usefulness of the Platelia Candida antigen in a patient with acute lymphocytic leukemia

and chronic disseminated candidiasis. Med Mycol. 44(7):647-650.doi:

10.1080/13693780600735445

Sundstrom, P., Balish, E., Allen, C.M. (2002). Essential role of the Candida albicans

transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in

immunodeficient mice. J Infect Dis.185(4):521-530.doi: 10.1086/338836

Symersky, J., Monod, M., Foundling, S.I. (1997). High-resolution structure of the

extracellular aspartic proteinase from Candida tropicalis yeast. Biochemistry.

36(42):12700-12710. doi: 10.1021/bi970613x

Takakura, N., Sato, Y., Ishibashi, H., Oshima, H., Uchida, K., Yamaguchi, H., et al.

(2003). A novel murine model of oral candidiasis with local symptoms characteristic of

oral thrush. Microbiol Immun. 47(5):321-326. doi: 10.1111/j.1348-0421.2003.tb03403.x

Tavanti, A., Davidson, A.D., Johnson, E.M., Maiden, M.C., Shaw, D.J., Gow, N.A., et

al. (2005). Multilocus sequence typing for differentiation of strains of Candida tropicalis.

J Clin Microbiol. 43(11):5593-5600. doi: 10.1128/JCM.43.11.5593-5600.2005

Ten Cate, J., Klis, F., Pereira-Cenci, T., Crielaard, W., De Groot, P. (2009). Molecular

and cellular mechanisms that lead to Candida biofilm formation. J Dent Res. 88(2):105-

115. doi: 10.1177/0022034508329273

Togni, G., Sanglard, D., Falchetto, R., Monod, M. (1991). Isolation and nucleotide

sequence of the extracellular acid protease gene (ACP) from the yeast Candida tropicalis.

FEBS Lett. 286(1-2):181-185. doi: 10.1016/0014-5793(91)80969-A

Togni, G., Sanglard, D., Quadroni, M., Foundling, S.I., Monod, M. (1996). Acid

proteinase secreted by Candida tropicalis: functional analysis of preproregion cleavages

95

in C. tropicalis and Saccharomyces cerevisiae. Microbiology. 142 ( Pt 3):493-503.

doi: 10.1099/13500872-142-3-493

Tokuoka, K. (1993). Sugar‐and salt‐tolerant yeasts. J Appl Microbiol. 74(2): 101-110.

doi: 10.1111/j.1365-2672.1993.tb03002.x

Torres, M.P., Entwistle, F., Coote, P.J. (2016). Effective immunosuppression with

dexamethasone phosphate in the Galleria mellonella larva infection model resulting in

enhanced virulence of Escherichia coli and Klebsiella pneumoniae. Med Microbiol

Immunol. 1-11. doi: 10.1007/s00430-016-0450-5

Tronchin, G., Pihet, M., Lopes-Bezerra, L.M., Bouchara, J.P. (2008). Adherence

mechanisms in human pathogenic fungi. Med Mycol.46(8):749-772.

doi:10.1080/13693780802206435

Tsang, C.S., Chu, F.C., Leung, W.K., Jin, L.J., Samaranayake, L.P., and Siu, S.C. (2007).

Phospholipase, proteinase and haemolytic activities of Candida albicans isolated from

oral cavities of patients with type 2 diabetes mellitus. J Med Microbiol 56(Pt 10), 1393-

1398. doi: 10.1099/jmm.0.47303-0

Uchida, R., Namiguchi, S., Ishijima, H., Tomoda, H. (2016). Therapeutic effects of three

trichothecenes in the silkworm infection assay with Candida albicans. Drug Discov

Ther.10 (1):44-48. doi: 10.5582/ddt.2016.01013

Udayalaxmi, Jacob, S., and D'Souza, D. (2014). Comparison Between Virulence Factors

of Candida albicans and Non-Albicans Species of Candida Isolated from Genitourinary

Tract. J Clin Diagn Res. 8(11), DC15-17. doi: 10.7860/JCDR/2014/10121.5137

Uppuluri, P., Pierce, C.G., Thomas, D.P., Bubeck, S.S., Saville, S.P., Lopez-Ribot, J.L.

(2010). The transcriptional regulator Nrg1p controls Candida albicans biofilm formation

and dispersion. Eukaryot Cell. 9(10):1531-1537. doi:10.1128/EC.00111-10

Vandeputte, P., Tronchin, G., Berges, T., Hennequin, C., Chabasse, D., Bouchara, J.P.

(2007). Reduced susceptibility to polyenes associated with a missense mutation in the

ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth.

Antimicrob Agents Chemother. 51(3):982-9890. doi: 10.1128/AAC.01510-06

96

Verstrepen, K.J., Klis, F.M. (2006). Flocculation, adhesion and biofilm formation in

yeasts. Mol Microbiol.60(1):5-15. doi: 10.1111/j.1365-2958.2006.05072.x

Vicari, P., Feitosa, Pinheiro, R., Chauffaille, M.de L., Yamamoto, M., Figueiredo, M.S.

(2003). Septic arthritis as the first sign of Candida tropicalis fungaemia in an acute

lymphoid leukemia patient. Braz J Infect Dis. 7(6):426-428. doi: 10.1590/S1413-

86702003000600012

Vijaya, D., Dhanalakshmi, T.A., and Kulkarni, S. (2014). Changing trends of

vulvovaginal candidiasis. J Lab Physicians. 6(1), 28-30. doi: 10.4103/0974-2727.129087

Vincent, B.M., Lancaster, A.K., Scherz-Shouval, R., Whitesell, L., Lindquist, S. (2013).

Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS

Biol.11(10):e1001692.doi:10.1371/journal.pbio.1001692

Wan Harun, W.H., Jamil, N.A., Jamaludin, N.H., Nordin, M.A. (2013). Effect of Piper

betle and Brucea javanica on the Differential Expression of Hyphal Wall Protein (HWP1)

in Non-Candida albicans Candida (NCAC) Species. Evid Based Complement Alternat

Med. 2013:397268. doi: 10.1155/2013/397268

Wang, T., Pan, D., Zhou, Z., You, Y., Jiang, C., Zhao, X., et al. (2016). Dectin-3

Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune

Responses in the Gut. PLoS Pathog. 12(6):e1005662. doi: 10.1371/journal.ppat.1005662

Wapinski, I., Pfeffer, A., Friedman, N., Regev, A. (2007). Natural history and

evolutionary principles of gene duplication in fungi. Nature. 449(7158):54-61. doi:

10.1038/nature06107

Watanabe, T., Takano, M., Murakami, M., Tanaka, H., Matsuhisa, A., Nakao, N., et al.

(1999). Characterization of a haemolytic factor from Candida albicans. Microbiology.

145(3):689-694. doi: 10.1099/13500872-145-3-689

Weber, K., Schulz, B., Ruhnke, M.. (2010). The quorum‐sensing molecule E, E‐

farnesol—its variable secretion and its impact on the growth and metabolism of Candida

species. Yeast. 27(9):727-739. doi: 10.1002/yea.1769

97

Wei, W-j, Yang, H-f, Ye, Y, Li, J-b. (2016). Galleria mellonella as a model system to

assess the efficacy of antimicrobial agents against Klebsiella pneumoniae infection. J

Chemother. 1-5. doi: 10.1080/1120009X.2016.1156892

White, T.J., Bruns, T., Lee, S., and Taylor, J. (1990). “Amplification and direct

sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR protocols: a

guide to methods and applications, ed. M. A. Innis (San Diego(CA): Academic Press),

315-322.

Won, E.J., Shin, J.H., Kim, M.N., Choi, M.J., Joo, M.Y., Kee, S.J., et al. (2014).

Evaluation of the BD Phoenix system for identification of a wide spectrum of clinically

important yeast species: a comparison with Vitek 2-YST. Diagn Microbiol Infect Dis.

79(4):477-480. doi: 10.1016/j.diagmicrobio.2014.05.011

Woods, R.A., Bard, M., Jackson, I.E., Drutz, D.J. (1974). Resistance to polyene

antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a

patient with an amphotericin B-resistant funguria. J Infect Dis. 129(1):53-58. doi:

10.1093/infdis/129.1.53

Wu, Y., Zhou, H., Wang, J., Li, L., Li, W., Cui, Z., et al. (2012). Analysis of the clonality

of Candida tropicalis strains from a general hospital in Beijing using multilocus sequence

typing. PLoS One. 7(11):e47767. doi:10.1371/journal.pone.0047767

Wu, Y., Zhou, H.J., Che, J., Li, W.G., Bian, F.N., Yu, S.B., et al. (2014). Multilocus

microsatellite markers for molecular typing of Candida tropicalis isolates. BMC

Microbiol. 14:245.doi: 10.1186/s12866-014-0245-z

Xie, J., Du, H., Guan, G., Tong, Y., Kourkoumpetis, T.K., Zhang, L., et al. (2012). N-

acetylglucosamine induces white-to-opaque switching and mating in Candida tropicalis,

providing new insights into adaptation and fungal sexual evolution. Eukaryot Cell.

11(6):773-82. doi:10.1128/EC.00047-12

Xu, B., Shi, P., Wu, H., Guo, X., Wang, Q., Zhou, S. (2010). Utility of FDG PET/CT in

guiding antifungal therapy in acute leukemia patients with chronic disseminated

candidiasis. Clin Nucl Med. 35(8):567-750. doi: 10.1097/RLU.0b013e3181e4db84

98

Yan, J., Jianping, W., Hongmei, L., Suliang, Y., & Zongding, H. (2005). The

biodegradation of phenol at high initial concentration by the yeast Candida

tropicalis. Biochem Eng J. 24(3): 243-247. doi: 10.1016/j.bej.2005.02.016

Zanette, R.A., Kontoyiannis, D.P. (2013). Paradoxical effect to caspofungin in Candida

species does not confer survival advantage in a Drosophila model of candidiasis.

Virulence. 4(6):497-498. doi: 10.4161/viru.25523

Zaugg, C., Borg-Von Zepelin, M., Reichard, U., Sanglard, D., and Monod, M. (2001).

Secreted aspartic proteinase family of Candida tropicalis. Infect Immun. 69(1): 405-412.

doi: 10.1128/IAI.69.1.405-412.2001

Zhang, Q., Tao, L., Guan, G., Yue, H., Liang, W., Cao, C., et al. (2016). Regulation of

filamentation in the human fungal pathogen Candida tropicalis. Mol Microbiol.

99(3):528-545. doi: 10.1111/mmi.13247

Zhang, Y., Tao, L., Zhang, Q., Guan, G., Nobile, C.J., Zheng, Q., et al. (2016). The gray

phenotype and tristable phenotypic transitions in the human fungal pathogen Candida

tropicalis. Fungal Genet Biol. 93:10-16.doi: 10.1016/j.fgb.2016.05.006

Zhao, L., de Hoog, G.S., Cornelissen, A., Lyu, Q., Mou, L., Liu, T., et al. (2016).

Prospective evaluation of the chromogenic medium CandiSelect 4 for differentiation and

presumptive identification of non-Candida albicans Candida species. Fungal Biol.

120(2):173-178. doi: 10.1016/j.funbio.2015.09.006

Zheng, X.D., Lee, R.T., Wang, Y.M., Lin, Q.S., Wang, Y. (2007). Phosphorylation of

Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth.

EMBO J. 26(16):3760-3769. doi:10.1038/sj.emboj.7601814

Zuza-Alves, D.L., de Medeiros, S.S., de Souza ,L.B., Silva-Rocha, W.P., Francisco, E.C.,

de Araújo, M.C., et al. (2016). Evaluation of virulence factors in vitro, resistance to

osmotic stress and antifungal susceptibility of Candida tropicalis isolated from the

coastal environment of Northeast Brazil. Front Microbiol.7: 1783.

doi: 10.3389/fmicb.2016.01783

99

Table 1: Conventional methods used for Candida tropicalis laboratorial identification

Method Principle Advantages Disadvantages References

Cla

ssic

al

met

ho

do

log

y

Auxanogram and

zymogram

Assimilation and fermentation of several different

carbon and nitrogen souces

Easy execution and low cost

Laborious and time-

consuming,

subjectivity of

interpretation

Pincus et al.,

2007;

Sariguzel et al.,

2015

Microculture on cornmeal

agar containing Tween 80

Yeasts incubation on culture medium with Tween

80 and low oxygen tension esporulation and

filamentation

Urease test Urea hydrolysis alkalinizes the medium, causing

the pH indicator to change. The medium goes from

yellow to pink, indicating positivity

Ch

rom

og

enic

med

ia

Chromagar Candida®,

Candida ID2®,

CandiSelect4®, Candida

Brilliance®

Different substrates react with specific enzymes of

the main Candida species and induce the formation

of colonies with different colors for tpresumptive

identification

Rapid screening of different

species and checking the

purity of Candida colonies,

detects mixed infections; high

sensitivity and specificity

Presumptive

identification for only

five species of the

Candida genus

Sariguzel et al.,

2015;

Alfonso et al.,

2010;

Zhao et al., 2016

Sem

i-au

tom

ated

met

ho

ds

API 20C AUX

API ID 32C system

Galleries with different carbon sources, where

growth and assimilation is observed by turbidity in

the respective well

Good reproducibility and easy

execution

May not be completely

accurate on some cases

and may lead to an

incomplete

identification, needing

supplementary tests or

even give a wrong

identification for some

species; higher cost.

Not all the rare

Candida species are

Bowman and

Ahern, 1976;

Stefaniuk et al.,

2016

CandiFast® system The identification well contains cycloheximide,

besides seven carbohydrates, where fermentation is

analyzed after acidification and alteration of media

colors due to the presence of a pH indicator

Used for identification and

antifungal susceptibility

testing

Gundes et al.,

2001

AuxaColor™ Kit Assimilation of 13 sugars, besides the enzymatic

detection of N-acetyl-galactosaminidase,

phenoloxidase and L-proline arilamidase

Good reproducibility and easy

execution

Pincus et al., 2007

Au

tom

a

ted

met

ho

ds Vitek2® System Fluorometric and colorimetric methods for

microorganism’s identification and analysis in a

software which contains a database with 52 yeast

species

Posteraro et al.,

2015

100

BD Phoenix™ Polystyrene strips contain three fluorescent control

wells (a negative and two positives) with 47 wells

containing lyophilized substrates

Rapid results, requires

minimal preparation of

reagentes

included in the

galleries.

Grant et al., 2016

Table 2: Molecular methods and proteomics for the identification and genotyping of Candida tropicalis

Method Principle Advantages Disadvantages References

Pro

teo

mic

s

Protein profile by

mass

spectrophotometry

Uses an ionizing matrix and has been

assembled to automated methods of

microorganisms identification such as

MALDI Biotyper and VITEK-MS and

several other mass spectrometer

Simple methodology of easy

sample preparation and short

time for analysis, more efficient

than the conventional methods,

accurate identification

Higher cost of equipment,

necessity for specialized

training; possible lack of a

robust database.

Sariguzel et al., 2015;

Stefaniuk et al., 2016; Chao

et al., 2014; Keceli et al.,

2016; Angeletti et al., 2015;

Panda et al., 2015

Mo

lecu

lar

iden

tifi

cati

on

Molecular rDNA

sequencing

Based on the ability of DNA polymerase

to copy a DNA strand from the template

in the presence of a primer. The inclusion

of fluorescent markers with different

colors allows the differentiation of the

chains truncated by the respective

fluorescence

Robust technique, automated,

Higher accuracy, gold standard

identification

Requirement for specialized

equipment, expensive

reagents, and highly trained

personnel

Pincus et al., 2007

PNA-FISH Based on the use peptide nucleic acid

probes directed to specific rRNA species

of the main Candida species tagged with

fluorescent dyes

High sensitivity and specificity There may be some problem

in discriminating closely

related microorganisms

Aydemir et al ., 2016;

Stender et al., 2003; Stone

et al., 2013; Calderaro et

al., 2014 Gorton et al.,

2014; Hall et al., 2012

Gen

oty

pin

g

Randomly

Amplified

Polymorphic DNA

(RAPD)

Based on the amplification of DNA

fragments by polymerase chain reaction

(PCR) by using shortprimers containing

random sequences

Fast, simple and low-cost

method for detecting

polymorphisms; Does not

require radioactively labeled

probes; use of arbitrary primers,

no need of initial genetic or

genomic information, and the

Dominant technique; low

reproducibility and low

discriminatory power;

difficult standardization,

possible problems of

interpretation

Almeida et al., 2015

101

requirement of only tiny

quantities of target DNA

Wu et al., 2014

Microsatellites

analysis

Based on the amplification by PCR of

small tandem sequence repeats from 2 to

6 highly polymorphic nucleotides, present

on chromosomal telomeric regions

Easy execution, reproducible,

appropriate for large-scale

epidemiological studies, good

discriminatory power;

Technical challenges during

the construction of enriched

libraries and species-specific

primers

Multilocus

Sequence Typing

(MLST)

Based on the amplification of 6-10

housekeeping genes by PCR, with further

PCR products purification and gene

sequencing. Gene sequencing generates

the sequence type (ST) for haploid

organisms and diploid sequence types

(DST) for the diploids microorganisms,

which also may be compared to a

database

Robust technique with high

discriminatory power, excellent

reproducibility, easy

standardization; data that can be

shared and compared between

different laboratories easily

through the Internet

Requirement for specialized

equipment, expensive

reagents, and highly trained

personnel; phylogenetic

relationships and resolution of

clones can be masked by the

use of slowly evolving

housekeeping genes

Wu et al., 2012; Chen et al.,

2009; Odds and Jacobsen,

2008; Tavanti et al., 2005;

Maiden et al., 1998; Obert

et al., 2007

102

Table 3: Genes recognized as virulence factors in Candida tropicalis. Gene Gene product in

C. tropicalis

Biological function References

Ad

hes

ion

to

epit

hel

ial

cell

s

ALS Als1

Als2

Als3

Adhesin Hoyer et al., 2001;

Punithavathy e

Menon, 2012

HWP1

Hwp1p

Hyphal cell wall adhesin

Wan Harun et al.,

2013

M

orp

hog

enes

is

UME6 Ume6p Positive transcription regulator

responsible for hyphae morphology and

extension; induces HGC1 transcription

Lackey et al., 2013

NRG1 Nrg1p Negative transcription regulator;

inhibiting filamentation

HGC1 Hcg1p Forms a complex between cycline/Cdk

and CDC28 kinase, to inhibit cell

separation and activation of Cdc42

regulator (involved in vesicular

transport in hyphae and actin

polymerization)

Zheng et al., 2007;

Gonzalez-Novo et

al., 2008; Lackey

et al., 2013

PHR1 Phr1p Remodeling of the cell wall, necessary

for maintenance of hyphae shape and

growth, adhesion to abiotic surfaces and

invasion of the epithelium

Calderone et al.,

2010

CDC12 cdc12p septin Formation of the cytoskeleton during

cell growth in filamentation; Binding to

cdc3p actin ligand

Li et al., 2012;

Chang et al., 1997

WOR1 Wor1p Transcription factor that induces

filamentation

Porman et al.,

2013; Slutsky et

al.,1987

Ph

eno

tip

c

swit

chin

g

EFG1 Efg1 Activator or a repressor of hypha

formation

Mancera et al.,

2015

WOR1 Wor1p Master regulator of the white-opaque

switching

Porman et al.,

2013; Slutsky et

al.,1987

Bio

fim

fo

rmat

ion

ALS Als1

Als2

Als3

Adhesin Hoyer et al., 2001;

Punithavathy and

Menon, 2012;

Wan Harum et al.,

2013

HWP1 Hwp1p Hyphal cell wall adhesin

BCR1 Bcr1p Transcription factor for regulation of

adhesin production

RBT5 Rbt5p Filamentation of cells in the biofilm Nobile and

Mitchell, 2006;

Fitzpatrick et al.,

2010

UME6 Ume6p Negative dispersion regulator of biofilm

cells

Uppuluri et al.,

2010

WOR1 Wor1p Negative regulator of mature biofilm

cell release

NRG1 Nrg1p Positive regulator of cells dispersion in

biofilm

ERG11 Erg11p Mechanisms of resistance Lupetti et al., 2012

MDR1 Mdr1p Active drug efflux pump Marie and White,

2009;

103

Morschhauser,

2010 P

rote

inas

e

acti

vit

y SAPT1

SAPT2

SAPT3

SAPT4

Sapt1p

Protein hydrolysis Zaugg et al., 2004;

Silva et al., 2010;

Togni et al., 1996

Ph

osp

ho

lip

ases

acti

vit

y

PLB1

PLC1

Plb1

Plc1

Hydrolysis of ester bonds in glycerol

phospholipids

Hoover et al.,

1998; Bennet et

al., 1998

Hem

oly

tic

acti

vit

y RBT5 Rbt5 GPI-anchored cell-wall protein

involved in hemoglobin utilization

Nobile and

Mitchell, 2006;

Fitzpatrick et al.,

2010

104

Table 4: In vivo models of Candida tropicalis infection

Organism Site of infection References

Mice Lateral tail vein Zhang et al., 2016

Bombyx mori larvae Larval hemolymph Hamamoto et al., 2004; Nwibo et al.,

2015; Uchida et al., 2016

Drosophila melanogaster larvae Injected in the thorax Zanette and Kontoyiannis, 2013

Galleria mellonella larvae Last left proleg Forastiero et al., 2013;

105

Table 5: Genes involved with antifungal resistance mechanisms in Candida

tropicalis Gene Gene product

in C. tropicalis

Biological Function References

Azo

les

ERG11 Erg3p Ergosterol biosynthesis pathway Eddouzi et al., 2013;

Vincent et al., 2013

ERG3 Erg11p Ergosterol biosynthesis pathway Pam et al., 2012;

Manastir et al., 2011;

Kelly et al., 1993

MDR1 Mdr1p Energy-dependent transportation Marie and White, 2009;

Morschhauser, 2010

CDR1 Cdr1p Energy-dependent transportation

Am

ph

ote

rici

n B

ERG3 Erg3p Ergosterol biosynthesis pathway Lupetti et al., 2002;

Forastiero et al., 2013

ERG6 Erg6p Ergosterol biosynthesis pathway Vandeputte et al., 2007

ERG11 Erg11p Ergosterol biosynthesis pathway Forastiero et al., 2013

Ech

ino

cand

ins

FKS1

FKS2

FKS3

Fks1p

Catalytic action

Beyda et al., 2012;

Chen et al., 2011; Park

et al., 2005; Garcia-

Effron et al., 2008;

Jensen et al.,2013

RHO1 Rho1p Regulation of β-1,3-D-glucan

biosynthesis and other cellular processes

106

Fig. 1: Phenotypic characteristics of Candida tropicalis. (A): Brilliant appearance with

slightly fringed border after 48 h of incubation at 30 ° C in Sabouraud dextrose agar; (B):

Colonies with typical dark blue color on CHROMagar Candida® medium after 96 h of

incubation at 35 ° C; (C): Micromorphological aspects after incubation in YPD medium

containing 20% fetal bovine serum (FBS) for 7 days at 30 ° C, 400x: blastoconidia in

single or branched chain, true hyphae and abundant pseudohyphas.

107

Fig. 2: Phylogenetic tree of Candida spp. internal transcribed spacer 1 (ITS1)-5.8S

ribosomal RNA gene and internal transcribed spacer 2 (ITS2) complete sequences and

their accession numbers, obtained from Genbank database at

https://www.ncbi.nlm.nih.gov. Sequences were aligned using BioEdit software (v7.2.61).

Aligned sequences were used for phylogenetic analysis conducted with Mega 7.0.26

Software. The method used for tree constructions was maximum parsimony. Phylogram

stability was accessed by bootstrapping with 1,000 pseudoreplications.

KY673197.1 Candida albicans voucher CA142-W internal transcribed spacer 1 partial sequence 5.8S ribosomal RNA gene and internal transcribed spacer 2 complete sequence and large subunit ribosomal RNA e

KY673196.1 Candida dubliniensis voucher CD129-W internal transcribed spacer 1 partial sequence 5.8S ribosomal RNA gene and internal transcribed spacer 2 complete sequence and large subunit ribosomal e

EF216862.1 Candida tropicalis isolate 16 internal transcribed spacer 1 partial sequence 5.8S ribosomal RNA gene complete sequence and internal transcribed spacer 2 partial sequence

AB109292.1 Candida parapsilosis genes for 18S rRNA ITS1 5.8S rRNA ITS2 28S rRNA partial and complete sequences strain:IFM 52626

KX450873.1 Candida glabrata strain DM 94 internal transcribed spacer 1 partial sequence 5.8S ribosomal RNA gene and internal transcribed spacer 2 complete sequence and large subunit ribosomal RNA g...

KY794727.1 Pichia kudriavzevii isolate S16 small subunit ribosomal RNA gene partial sequence internal transcribed spacer 1 5.8S ribosomal RNA gene and internal transcribed spacer 2 complete sequence e

AF172262.1 Candida lusitaniae internal transcribed spacer 1 partial sequence 5.8S ribosomal RNA gene and internal transcribed spacer 2 complete sequence and 28S ribosomal RNA gene partial sequence

82

98

64

97

Candida glabrata

Candida dubliniensis

Candida tropicalis

Candida parapsilosis

Candida albicans

Candida krusei

Candida lusitaniae

108

Title: Candida tropicalis geographic population structure maintenance and

dispersion in the coastal environment may be influenced by the climatic season and

anthropogenic action

Diana Luzia Zuza-Alvesa ([email protected]), Walicyranison Plinio Silva-

Rochaa ([email protected]), Elaine C. Franciscob ([email protected]),

Maria Christina Barbosa de Araújoc ([email protected]), Analy Sales de

Azevedo Melob ([email protected]), Guilherme Maranhão Chavesa

([email protected])*.

aLaboratory of Medical and Molecular Mycology, Department of Clinical and

Toxicological Analyses, Federal University of Rio Grande do Norte, Gal. Gustavo

Cordeiro de Farias street, SN, Petrópolis, Zip code 59012-570, Natal city, RN, Brazil.

bSpecial Micology Laboratory, Department of Medicine, Federal University of São Paulo,

Pedro de Toledo street, 669, 5 floor, Zip code 04039-032, São Paulo city, Brazil.

cDepartment of Oceanography and Limnology, Federal University of Rio Grande do

Norte, Mãe Luiza beach, SN, Via Costeira, Zip code 59014-100, Natal city, Brazil.

* Author responsible for correspondence:

Name: Guilherme Maranhão Chaves

Address: Universidade Federal do Rio Grande do Norte, Centro de Ciências da Saúde.

Departamento de Análises Clínicas e Toxicológicas. Laboratório de Micologia Médica e

Molecular. Rua. Gal. Gustavo Cordeiro de Faria S/N. Petrópolis. Natal, RN – Brasil. CEP:

59012-570.

Phone number: 00 55 (84) 3342-9801

E-mail address: [email protected]

109

Highlights:

MALDI-TOF/MS used as a yeast typing tool shows a relative correspondence with DNA

genotypic typing with microsatellite.

C. tropicalis strains obtained from the coastal environment show high genetic variability,

but population structure may be maintained within the same season.

C. tropicalis dispersion in the coastal environment may occur even at distant geographic

points, probably influenced by anthropogenic action.

Abstract

Candida tropicalis is a pathogenic yeast with worldwide recognition as the second or

third more frequently isolated species in Latin America, for both superficial and systemic

infections. Because of its high prevalence, and growing clinical interest, it is essential to

understand genetic variability patterns of this important Candida species in the tropics.

Besides belonging to the human normal microbiota, C. tropicalis may be found in other

warm blood animals and in the environment, including water and sand of beaches. The

aims of the present study were to evaluate genotypic and phenotypic variability of 62

isolates of C. tropicalis obtained from the coastal environment in Northeast Brazil using

microsatellite and MALDI-TOF/MS comparisons. There was a relatively low

correspondence between these typing techniques employed. Therefore, further studies are

needed to consolidate the use of MALDI-TOF/MS as a yeast typing tool. Nevertheless,

the two methods employed demonstrated the heterogeneity of C. tropicalis in a coastal

environment. We also found relative maintenance of the population structure within the

same season, which may reinforce the idea that this species presents the potential to

remain in the environment for a long period of time. In addition, highly related strains

were found within different geographic points of collection, demonstrating that this strain

may be dispersed at long distances, probably influenced by anthropogenic actions and

driven by the sea tides and wind.

Key-words: Candida tropicalis, genotypic and proteomic typing, coastal environment,

climatic season.

110

1. Short communication

Candida tropicalis is a diploid yeast that has been widely recognized as an emerging

pathogen of great epidemiological importance in Latin America [1] and Asia [2 - 4].

Because of its high prevalence, and growing clinical interest, it is essential to understand

genetic variability patterns of this important Candida species in the tropics [5]. C.

tropicalis belongs to the normal human microbiota and may present on the skin,

gastrointestinal, genitourinary, and respiratory tracts of humans. This yeast has been

associated with both superficial and systemic infections all over the world. C. tropicalis

infection may be acquired from either endogenous or exogenous sources. Candida

tropicalis may also be a commensal yeast of the gastrointestinal tract of birds such as

seagulls and terns, as well as fishes [6]. This yeast has also been isolated from sandy

beaches and coastal waters of The United States and Brazil [7 – 9].

Molecular typing techniques have been employed within strains of the same species for

the investigation of several issues, such as population genetics, reproduction patterns,

sexual recombination, phenotype-genotype relation, infection routes, definition outbreaks

and monitoring of drug resistance [10 – 12] In this sense, microsatellite have been widely

used for the analysis of polymorphisms in fungal species, including C. tropicalis [13, 14].

Microsatellite typing using primer M13, which amplifies short tandem repeats, was first

employed to type Cryptococcus strains in Brazil [15]. In addition, this technique has been

successfully used to type C. albicans strains from several different clinical sources [16].

More recently, Matrix Assisted Laser Desorption/Ionization-Time of flight mass

spectrometry (MALDI-TOF/MS) has been recognized as a rapid, accurate and

economical used for microorganism’s identification. A few studies have also used this

technique as a phenotypic typing method, in a predictive approach for the detection of

resistant phenotypes in bacteria [17] and yeasts belonging to the Candida genus [18, 19].1

ABBREVIATIONS: ERIC-PCR: Enterobacterial Repetitive Intergenic Consensus Sequence -

Polymerase Chain Reaction; MALDI–TOF/ MS: Matrix Assisted Laser Desorption/Ionization-

Time of flight mass spectrometry; MLST: Multilocus Sequence Typing; MSP: Main Spectra

Library; PCR: Polimerase Chain Reaction; RAPD: Randomly Amplified Polymorphic DNA;

UPGMA: Unweighted Pair Group Method using Arithmetic averages

111

Recently, our group demonstrated that C. tropicalis strains isolated from the coastal

environment may express important virulence factors in vitro, including adhesion to

epithelial cells, biofilm formation, morphogenesis and lytic enzymes production [9]. In

addition, several strains were markedly tolerant to osmotic stress and resistant to

antifungal drugs used in clinical practice. Here we investigated genotypic and phenotypic

variability of 62 C. tropicalis environmental isolates obtained from different geographical

points of an urban beach located in the northeastern region of Brazil, during two different

climatic seasons (dry season and rainy season). The aim of the present study was to

evaluate the population dynamics of Candida species of medical interest throughout the

year in the coastal environment. It is worth mentioning that we previously described that

most of the strains were able to express virulence factors in vitro and exhibited antifungal

drug resistance [9]. Sand samples were collected in March (dry season; C1; 8 isolates),

April (dry season; C2; 16 isolates) and July (rainy season; C3; 8 isolates), 2012 and in

July (rainy season; C4; 30 isolates), 2013, at six geographically different points of the

beach, selected by the highest concentration of people engaged in recreational activities

(Table 1).

112

Table 1: Climate conditions and geographic coordinates of the six sand geographic collection points in Ponta Negra beach, Natal, Rio Grande

do Norte State, Brazil.

CLIMATE CONDITIONS

Dry season Rainy season

Collection 1 Collection 2 Collection 3 Collection 4

Rainfall (mm)1 60.7 146.1 302.1 430.6

Geographic coordinates2 Sand temperature (ºC)3

Point 1 5°53'2.10"S 35° 9'54.05"W - - - 25 ºC

Point 2 5°53'2.00"S 35° 9'60.00"W 36.5 ºC 30 ºC 26 ºC 26 ºC

Point 3 5°52'59.00"S 35°10'8.00"W 37 ºC 30 ºC 29 ºC 26 ºC

Point 4 5°52'34.15"S 35°10'30.88"W 41 ºC 31.5 ºC 29 ºC 27.5 ºC

Point 5 5°52'27.91"S 35°10'34.57"W - - - 28.5 ºC

Point 6 5°52'19.00"S 35°10'38.00"W - - - 29 ºC

1 Data obtained from the National Institute of Meteorology Network

2 Geographic coordinates obtained by GPS (GARMIN eTrex Vista HCx)

3 Temperature calibrated by infrared digital thermometer (MT-360)

113

For C. tropicalis identification, yeast colonies were plated on CHROMagar Candida

(CHROMagar Microbiology, Paris, France) to check for purity and screening for different color

colonies. Species identification was based on the characteristics of the cells observed

microscopically after cultivation on corn meal agar containing Tween 80, as well as classical

methodology [20]. Subsequently, the strains were identified with MALDI-TOF/MS technique.

For C. tropicalis genotyping, genomic DNA was extracted using PrepMan® Ultra Protocol

according to the manufacturer’s instructions (Applied Biosystems) [21], Microsatellite typing

was performed using the primer M13 (5’-GAGGGTGGCGGTTCT--3’) (IDT) as previously

described [15]. PCR products were size-separated by agarose gel electrophoresis (1.2 %

agarose) for an initial step of 30 min at 100 V followed by a period of 4.5 h at 55 V. The gel

was stained in a 0.5 µg mL−1 ethidium bromide buffer solution (1 × Tris-Acetate-EDTA). Gel

images were analyzed with the GelCompar II software (Applied Maths). The similarities

between the profiles were calculated using the Dice coefficient. For profile clustering, the

unweighted pair-group method with arithmetic averages (UPGMA) with a tolerance of 2 % was

used [20]. Genetic relatedness analysis classified isolates with indistinguishable fingerprints as

identical; isolates with a genetic similarity coefficient greater than or equal to 90% were

considered highly related and isolates with a similarity coefficient between 80 and 90% were

classified as moderately related. In addition, isolates with a coefficient of similarity between 75

and 80% were grouped within the same cluster, according to criteria established by Soll (2000)

[10].

For MALDI-TOF/MS identification, proteins were extracted with formic acid according to an

adapted protocol [22, 23]. Six hundred microliter of yeast cells in a concentration of 106 were

combined with 7 μL of formic acid 70% in a 1.5 mL micro centrifuge tube. The suspension was

vortexed for 20s and immediately transferred to a reading plate (Bruker Daltonics – USA).

After evaporation, 0.5 μL of a matrix solution (10 mg/mL acid alpha-cyan-4-

Hydroxycinnamicin ethanol: water: acetonitrile [1:1:1]; Sigma – USA) with 0.03%

trifluoroacetic acid were added and gently mixed. The crystallization step occurred at room

temperature and the isolates were analyzed in triplicate. Protein readings were performed with

a Microflex LT mass spectrometer using the FlexControl 3.0 tool (Bruker Daltonics, USA).

Profiling generation was performed using Biotyper 3.0 and Biotyper Real Time Classification

softwares (Bruker Daltonik GmbH). The hierarchical cluster analysis was performed of the

BioTyper 3.0 software package using default correlation function. Basing on the values

obtained from the pairwise comparison of different spectra, a dendrogram was generated

allowing the visualization of similarities among spectra profiles. In the MSP dendrogram,

114

relative distance between isolates is displayed as arbitrary units. Zero indicates complete

similarity and 1.2 indicates high dissimilarity. The arbitrary distance level of 0.8 was chosen

for isolates clustering evaluation.

Dendrogram generated with microsatellite technique yielded 9 different clusters, while

MALDI-TOF/MS showed 6 different clusters (Fig. 1 and Fig. 2). Genetic analysis based on

microsatellite technique revealed a trend of grouping several isolates within the same cluster if

they were collected in the same period (Fig. 1). For instance, Cluster II is composed by all the

strains obtained in the first collection (C1), with the exception of a single isolate (LMMM807).

Cluster V and VIII, almost exclusively grouped isolates obtained from C4 (70% and 83.33%,

respectively). A similar trend was observed in the dendrogram generated with MALDI-

TOF/MS technique, where 81.25% of Cluster II and 83.33% of Cluster VI are composed of

isolates also obtained from C4 (Fig. 2).

115

Fig. 1. Unweighted pair-group method with arithmetic averages dendrogram with 2% of tolerance of 62

strains of Candida tropicalis environmental isolates collected at Ponta Negra beach, Natal, Rio Grande

do Norte State, Brazil from 2012 to 2013. Light grey highlights represent isolates obtained in the first

116

collection. Medium grey highlights represent isolates obtained in the rainy season. Dark grey highlights

represent isolates obtained from geographic point 5.

117

Fig. 2. MSP dendrogram with relative distance between isolates displayed as arbitrary units. Zero

indicates complete similarity and 1.2 indicates high dissimilarity. The arbitrary distance level of 0.8 was

118

chosen for isolates clustering evaluation. Dendrogram represents the main spectra of 62 strains of

Candida tropicalis environmental isolates collected at Ponta Negra beach, Natal, Rio Grande do Norte

State, Brazil from 2012 to 2013. Light grey highlights represent isolates obtained in the first collection.

Medium grey highlights represent isolates obtained in the rainy season. Dark grey highlights represent

isolates obtained from geographic point 5.

If we take the whole picture, the agreement between both techniques is low, because only 27

strains (43.5%) were placed in the same cluster in both microsatellite dendrogram as in

MALDI-TOF/MS dendrograms. On the other hand, interesting findings were observed.

Microsatellite Cluster I is composed by 90% of the strains included in either Cluster 2 or 4

(MALDI-TOF/MS). Microsatellite Cluster II is enriched by MALDI-TOF/MS Cluster III

strains (9 out 13; 38%). Microsatellite Cluster III is composed by 75% of the strains grouped

as Cluster I by MALDI-TOF/MS analysis. Microsatellite Cluster IV and V are enriched with

MALDI-TOF/MS Cluster VI strains (8 out of 13; 62% strains). Microsatellite Clusters VI and

VII are exclusively composed by MALDI-TOF/MS Clusters II and IV (predominantly Cluster

II; 66.6%). Microsatellite Clusters VIII and XIX had either very mixed MALDI-TOF/MS

clusters or not enough strains for comparisons (Figs. 1 and 2).

This finding reflects the nature of the different approaches used, since proteomic typing detects

phenotypic differences within the same species, whereas genotypic approaches detect intrinsic

genetic variability [24]. It is also noteworthy that some isolates (for instance: LMMM806,

LMMM808 and LMMM809) are considered identical by microsatellite technique, but are

placed in other MALDI-TOF/MS clusters (Figs. 1 and 2). This phenomenon is similar to what

Purighalla et al. (2017) describe for Klebsiella pneumoniae isolates, where two isolates were

considered identical by two different DNA-based typing techniques (Enterobacterial Repetitive

Intergenic Consensus Sequence-Polymerase Chain Reaction (ERIC-PCR) and RandomLy

Amplified Polymorphic DNA (RAPD), but showed distinct grouping with the MALDI-

TOF/MS technique, stressing that it is challenging to compare proteomic methods with

genomic-based methods, since a genotype does not necessarily correlate with a phenotype

expressed by a bacterial strain [25]. Similar results were also described to yeasts [19].

When we evaluated separately the influence of the collection period on the grouping of the

isolates within different clusters by the both techniques employed, we can observe that the

strains obtained in C1 (dry season) were almost exclusively placed within Cluster II of the

dendrogram generated by the microsatellite technique (with exception of isolate LMMM807).

When these isolates were evaluated by the MALDI-TOF/MS technique, they are also positioned

within two clusters closely related (III and IV). Although the other isolates are not placed in

119

clusters exclusively formed by strains obtained in each collection period (C2 to C4), they also

stand closely together in each different dendrogram cluster (regardless of the technique

employed), showing a relative degree of relatedness (Figs. 1 and 2).

It is also possible to observe that isolates obtained from the same geographical point are in most

cases considered either identical or highly related to at least another isolate by both techniques.

This fact reflects the clonal mode of reproduction of this species. This phenomenon is very

remarkable in isolates obtained from geographic point 5, where most strains present more than

90% similarity (Cluster V of microsatellite) and were also placed in the same cluster by

MALDI-TOF/MS. On the other hand, the different clusters obtained by both techniques are

composed by isolates obtained from different collection points, demonstrating that dispersion

of highly related strains across several parts of the beach may occur (for instance: strains

LMMM806 and LMMM808, collected from points 2 and 3, respectively). Of note, geographic

collections points are separated from 180 meters to 1 km of distance (Figs. 1 and 2) .

Another interesting finding is that the different isolates are grouped clearly according to the

seasons of the year in which they were isolated, with rare exceptions. Although high degree of

genetic relatedness or protein spectra profiles can occur between strains obtained from the

different seasons of the year, these results are anecdotal, because it only happens to a very few

strains (Figs. 1 and 2).

To our knowledge, this is the first study to show evidence of geographic clustering as a function

of climatic seasonality among environmental isolates of a pathogenic Candida species of

clinical importance, both by genotyping and protein profiling. In fact, the temperature and

rainfall conditions of the two different collection periods were very different (table 1), which

may have promoted the emergence of strains better adapted to each of these climatic conditions.

It is known that C. tropicalis is well adapted to the environmental conditions offered by the

coastal ecosystem [9] and can remain viable in nature for longer than C. albicans [7]. In

addition, the sand of the beach presents filtration properties, because their particles have in their

format cracks and crevices that can function as protected micro-habitats, rich in nutrients,

therefore serving as survival and growth of yeasts [7]. Such a typical characteristic of this

ecosystem can allow the maintenance of a strain in the environment and its subsequent

adaptation to the different temperature conditions, incidence of UV light, rainfall indexes, ionic

concentration, etc. This may lead to the generation of genetic variability within a species, since

the adaptive mechanisms may be reflected in genetic alterations [26]. Therefore, high genetic

120

variability can be attributed not only to microevolutions promoted by prolonged colonization

of microorganisms well adapted to the environment [12].

C. tropicalis has the potential to spread to long distance between geographical regions, probably

through human activity [5]. In the present study, we could realize that strains obtained from

different geographic points (separated by at least 180 m apart) may be highly related. It is

necessary to consider the contribution of the intense anthropogenic action for C. tropicalis

dispersal since this species belongs to the human microbiota and the beach in question is of

great tourist visitation, being frequented by people from various parts of the world, besides

being notoriously polluted (domestic sewage pipes being thrown directly onto the beach), which

can contribute to the population heterogeneity observed in this work.

According to Wu et al. (2014), microsatellite markers are appropriate method for large-scale

studies of the epidemiology of C. tropicalis, with a discriminatory potential similar to

Multilocus Sequence Typing (MLST). In fact, it has been described that different microsatellite

genotypes are related to the continent or country of origin of the isolate [27], as well as isolates

obtained from the same sample or anatomical site, generally present similar genotypes [28]. A

previous study performed by Chaves et al. (2012) with microsatellite genotyping using M13

locus of 51 strains of C. albicans revealed that patients who developed candidemia had highly

related colonizing (obtained from different anatomic sites) and bloodstream isolates, but they

were considered unrelated when different sets of strains were obtained from each patient were

compared, reinforcing the discriminatory power of the technique [16].

The use of MALDI-TOF/MS for epidemiological purposes and typing is still incipient, but

although DNA-based methods are the gold standard for this type of study, this technique offers

a reliable, but faster and more economical way for the identification of important pathogens of

medical interest [29].

Recently, a study conducted by Mlaga et al. (2017) reported the use of proteomic typing to

analyze an outbreak of urinary tract infection by Staphylococcus saprophyticus in southeastern

France, showing a restricted geographic distribution among isolates from two different cities,

which presented distinct clusters [30]. Similarly, Dhieb et al. (2015) reported that Candida

glabrata strains obtained from France and Tunisia were grouped separately with MALDI-

TOF/MS typing. In addition, these authors report that the clusters evidenced with proteomics

technique agreed with the clusters found with microsatellite markers used for the same isolates

[19].

121

Girard et al. (2016) reported the discrimination of Candida auris strains of different geographic

origins within the dendrogram generated by MALDI-TOF/MS, but also reported some

discrepancies. For instance, there are some dendrogram overlaps between Indian and South

African strains, while isolates obtained from Brazil, Korea and Japan form distinct subgroups

[31]. In another study, Prakash et al. (2016) also demonstrated a geographic clustering in

MALDI-TOF/MS typing in nature, although it has not been completely correlated with the

genotyping methods also applied in the work for C. auris [24].

This was also observed in our results for environmental isolates of C. tropicalis, since we found

a relatively low congruence among the typing techniques employed, because only 27 strains

(43.5%) were grouped in the same cluster in both the microsatellite and MALDI-TOF/MS

dendrograms

Finally, we conclude that although there were evident geographic clusters of environmental

isolates of C. tropicalis in both the microsatellite dendrogram and MALDI-TOF/MS, there was

a relatively low correspondence between these typing techniques employed. Therefore, further

studies are needed to consolidate the use of MALDI-TOF/MS as a yeast typing tool.

Nevertheless, the two methods employed demonstrated the heterogeneity of C. tropicalis in a

coastal environment, as well as high genetic variability, probably due to microevolution of the

strains trying to adapt to the environmental conditions. We also found relative maintenance of

the population structure within the same season, which may reinforce the idea that this species

presents the potential to remain in the environment for a long period of time. This fact, together

with our previous publication showing the ability of the strains to express virulence factors

reinforce the pathogenic potential of C. tropicalis in the coastal environment.

DECLARATIONS OF INTEREST: The authors declare no conflicts of interests.

FUNDING: This research did not receive any specific grant from funding agencies in the

public, commercial, or not-for-profit sectors.

ACKNOWLEDGEMENTS

122

We are very grateful to Professor Arnaldo Colombo for the donation of Candida spp. reference

strains. We also thank Daniel Kacher, from the Department of Biophysics, Federal University

of São Paulo, for the help with MALDI -TOF analysis.

REFERENCES

[1] Pfaller, M. A., Castanheira, M., Diekema, D. J., Messer, S. A., Moet, G. J., Jones, R. N.

(2010). Comparison of European Committee on Antimicrobial Susceptibility Testing

(EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin

susceptibility testing of Candida species. J Clin Microbiol. 48(5):1592-1599.

doi:10.1128/JCM.02445-09

[2] Chakrabarti, A., Chatterjee, S.S., Rao, K.L., Zameer, M.M., Shivaprakash, M.R., Singhi,

S., et al. (2009). Recent experience with fungaemia: change in species distribution and azole

resistance. Scand J Infect Dis. 41(4):275-284. doi: 10.1080/00365540902777105

[3] Kothavade, R.J., Kura, M.M., Valand, A.G., Panthaki, M.H. (2010). Candida tropicalis: its

prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol. 59(Pt

8):873-880. doi: 10.1099/jmm.0.013227-0

[4] Adhikary, R., Joshi, S.(2011). Species distribution and anti-fungal susceptibility of

Candidaemia at a multi super-specialty center in Southern India. Indian J Med Microbiol.

29(3):309-311.doi: 10.4103/0255-0857.83920

[5] Wu, J. Y., Guo, H., Wang, H. M., Yi, G. H., Zhou, L. M., He, X. W., et al. (2017).

Multilocus sequence analyses reveal extensive diversity and multiple origins of fluconazole

resistance in Candida tropicalis from tropical China. Sci Rep. 7, 42537. doi:

10.1038/srep42537

[6] Buck, J.D., Bubucis, P.M., and Combs, T.J. (1977). Occurrence of human-associated yeasts

in bivalve shellfish from Long Island Sound. Appl Environ Microbiol. 33(2): 370-378.

[7] Vogel, C., Rogerson, A., Schatz, S., Laubach, H., Tallman, A., & Fell, J. (2007). Prevalence

of yeasts in beach sand at three bathing beaches in South Florida. Water Res. 41(9): 1915-

1920. doi: 10.1016/j.watres.2007.02.010

123

[8] Shah, A. H., Abdelzaher, A. M., Phillips, M., Hernandez, R., Solo‐Gabriele, H. M., Kish,

J., et al. (2011). Indicator microbes correlate with pathogenic bacteria, yeasts and

helminthes in sand at a subtropical recreational beach site. J Appl Microbiol. 110(6): 1571-

1583. doi: 10.1111/j.1365-2672.2011.05013.x

[9] Zuza-Alves, D.L., de Medeiros, S.S., de Souza ,L.B., Silva-Rocha, W.P., Francisco, E.C.,

de Araújo, M.C., et al. (2016). Evaluation of virulence factors in vitro, resistance to osmotic

stress and antifungal susceptibility of Candida tropicalis isolated from the coastal

environment of Northeast Brazil. Front Microbiol.7: 1783. doi: 10.3389/fmicb.2016.01783

[10] Soll, D. R. (2000). The ins and outs of DNA fingerprinting the infectious fungi. Clin

microbiol rev. 13(2): 332-370. doi: 10.1128/CMR.13.2.332-370.2000

[11] Garcia-Hermoso, D., Desnos-Ollivier, M., & Bretagne, S. (2016). Typing Candida

species using microsatellite length polymorphism and multilocus sequence typing.

In Candida Species (pp. 199-214). Humana Press, New York, NY.

[12] Małek, M., Paluchowska, P., Bogusz, B., & Budak, A. (2017). Molecular

characterization of Candida isolates from intensive care unit patients, Krakow, Poland. Rev

Iberoam Micol. 34(1): 10-16. doi: 10.1016/j.riam.2016.03.005

[13] Wu, Y., Zhou, H. J., Che, J., Li, W. G., Bian, F. N., Yu, S. B., et al. (2014). Multilocus

microsatellite markers for molecular typing of Candida tropicalis isolates. BMC

microbiol. 14(1): 245. doi: 10.1186/s12866-014-0245-z.

[14] Fan, X., Xiao, M., Liu, P., Chen, S., Kong, F., Wang, H., et al. (2016). Novel

polymorphic multilocus microsatellite markers to distinguish Candida tropicalis

isolates. PloS one. 11(11): e0166156.doi: 10.1371/journal.pone.0166156

[15] Casali, A. K., Goulart, L., Rosa e Silva, L. K., Ribeiro, Â. M., Amaral, A. A., Alves, S.

H., et al. (2003). Molecular typing of clinical and environmental Cryptococcus neoformans

isolates in the Brazilian state Rio Grande do Sul. FEMS Yeast Res. 3(4): 405-415. doi:

10.1016/S1567-1356(03)00038-2

[16] Chaves, G. M., Santos, F. P., & Colombo, A. L. (2012). The persistence of multifocal

colonisation by a single ABC genotype of Candida albicans may predict the transition from

commensalism to infection. Mem Inst Oswaldo Cruz. 107(2): 198-204. doi:

10.1590/S0074-02762012000200008

124

[17] Bader, O. (2013). MALDI‐TOF‐MS‐based species identification and typing approaches

in medical mycology. Proteomics. 13(5): 788-799. doi: 10.1002/pmic.201200468

[18] De Carolis, E., Vella, A., Florio, A. R., Posteraro, P. et al. (2012) Use of matrix-assisted

laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility

testing of Candida and Aspergillus species. J Clin Microbiol. 50: 2479–2483.

doi:10.1128/JCM.00224-12

[19] Dhieb, C., Normand, A. C., Al-Yasiri, M., Chaker, E., El Euch, D., Vranckx, K., et al.

(2015). MALDI-TOF typing highlights geographical and fluconazole resistance clusters in

Candida glabrata. Med Mycol. 53(5): 462-469. doi: 10.1093/mmy/myv013

[20] Yarrow, D. (1998). "Methods for the isolation, maintenance and identification of

yeasts," in The Yeasts, a Taxonomic Study ed. C.F.J. Kurtzman. 4th ed (Amsterdam:

Elsevier Science), 77–100.

[21] de Medeiros, M. A. P., de Melo, A. P. V., Gonçalves, S. S., Milan, E. P., & Chaves, G.

M. (2014). Genetic relatedness among vaginal and anal isolates of Candida albicans from

women with vulvovaginal candidiasis in north-east Brazil. J Med Microbiol. 63(11): 1436-

1445. doi: 10.1099/jmm.0.076604-0

[22] Santos, C., Lima, N., Sampaio, P., and Pais, C. (2011). Matrix-assisted laser

desorption/ionization time-of-flight intact cell mass spectrometry to detect emerging

pathogenic Candida species. Diagn Microbiol Infect Dis. 71(3): 304-308. doi:

10.1016/j.diagmicrobio.2011.07.002.

[23] Oliveira, M.M., Santos, C., Sampaio, P., Romeo, O., Almeida-Paes, R., Pais, C., et al.

(2015). Development and optimization of a new MALDI-TOF protocol for identification of

the Sporothrix species complex. Res Microbiol. 166(2): 102-110. doi:

10.1016/j.resmic.2014.12.008.

[24] Prakash, A., Sharma, C., Singh, A., Singh, P. K., Kumar, A., Hagen, F. et al. (2016).

Evidence of genotypic diversity among Candida auris isolates by multilocus sequence

typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and

amplified fragment length polymorphism. Clin Microbiol Infect. 22(3): 277-e1. doi:

10.1016/j.cmi.2015.10.022

125

[25] Purighalla, S., Esakimuthu, S., Reddy, M., Varghese, G. K., Richard, V. S., &

Sambandamurthy, V. K. (2017). Discriminatory power of three typing techniques in

determining relatedness of nosocomial Klebsiella pneumoniae isolates from a tertiary

hospital in India. Indian J Med Microbiol. 35(3): 361. doi: 10.4103/ijmm.IJMM_16_308

[26] Krauke, Y., and Sychrova, H. (2008). Functional comparison of plasma-membrane

Na+/H+ antiporters from two pathogenic Candida species. BMC Microbiol. 8, 80. doi:

10.1186/1471-2180-8-80.

[27] Klotz, U., Schmidt, D., Willinger, B., Steinmann, E., Buer, J., Rath, P. M., & Steinmann,

J. (2016). Echinocandin resistance and population structure of invasive Candida glabrata

isolates from two university hospitals in Germany and Austria. Mycoses. 59(5): 312-318.

doi:10.1111/myc.12472

[28] Abbes, S., Sellami, H., Sellami, A., Makni, F., Mahfoudh, N., Makni, H., ... & Ayadi,

A. (2011). Microsatellite analysis and susceptibility to FCZ of Candida glabrata invasive

isolates in Sfax Hospital, Tunisia. Med Mycol. 49(1): 10-15. doi:

10.3109/13693786.2010.493561

[29] Christner, M., Dressler, D., Andrian, M., Reule, C., & Petrini, O. (2017). Identification

of Shiga-Toxigenic Escherichia coli outbreak isolates by a novel data analysis tool after

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PloS

one. 12(9): e0182962. doi: 10.1371/journal.pone.0182962

[30] Mlaga, K. D., Dubourg, G., Abat, C., Chaudet, H., Lotte, L., Diene, S. M., et al. (2017).

Using MALDI-TOF MS typing method to decipher outbreak: the case of Staphylococcus

saprophyticus causing urinary tract infections (UTIs) in Marseille, France. Eur J Clin

Microbiol Infect Dis. 36(12): 2371-2377. doi: 10.1007/s10096-017-3069-6

[31] Girard, V., Mailler, S., Chetry, M., Vidal, C., Durand, G., Belkum, A., et al. (2016).

Identification and typing of the emerging pathogen Candida auris by matrix-assisted laser

desorption ionisation time of flight mass spectrometry. Mycoses. 59(8): 535-538.

doi:10.1111/myc.12519

126

6 CONCLUSÕES

O artigo de revisão “An update on Candida tropicalis based on basic and clinical

approaches” destacou aspectos importantes da biologia e relevância clínica de C.

tropicalis:

• C. tropicalis pode ser facilmente identificada por taxonomia clássica,

métodos comerciais, proteômicos e moleculares;

• É uma levedura assexuada intimamente relacionada a C. albicans e

demonstra elevado potencial de virulência;

• É classificada como a terceira ou quarta espécie de CNCA mais comumente

isolada na prática clínica;

• Vários mecanismos de resistência antifúngica em C. tropicalis foram

elucidados, incluindo mutações gênicas e bombas de efluxo;

• Produtos naturais também tem sido estudados para desenvolvimento de

novos medicamentos frente a C. tropicalis.

• C. tropicalis é considerada osmotolerante, propriedade que modula a

expressão de fatores de virulência e resistência antifúngica, além de

proporcionar potencial uso em processos industriais e biotecnológicos;

• C. tropicalis é indubitavelmente uma das espécies mais importantes do

gênero Candida.

Com relação ao artigo “Candida tropicalis geographic population structure

maintenance and dispersion in the coastal environment may be influenced by the

climatic season and anthropogenic action”, concluímos que:

• Embora existam clusters geográficos evidentes de isolados ambientais de C.

tropicalis no dendrograma gerado por microssatélites e no MALDI-TOF/MS,

127

houve uma correspondência relativamente baixa (43,5%) entre essas técnicas

de tipagem empregadas;

• Os dois métodos empregados demonstraram a heterogeneidade de C.

tropicalis em ambiente costeiro, bem como alta variabilidade genética,

provavelmente devido à microevolução de cepas que tentam se adaptar às

condições ambientais;

• Há relativa mantenção da estrutura populacional de C. tropicalis em uma

mesma estação (e mesmo em estações diferentes), o que pode reforçar a ideia

de que essa espécie apresenta potencial de permanecer no ambiente por um

longo período de tempo. Esse fato, aliado à já documentada capacidade das

cepas de expressar fatores de virulência, reforçam o potencial patogênico de

C. tropicalis no ambiente costeiro;

• São necessários mais estudos para consolidar o uso de MALDI-TOF/MS como

ferramenta de tipagem de leveduras, uma vez que essa metodologia

demonstrou baixa concordância quando comparada à genotipagem por

microssatélite, técnica esta já consolidadada para atipagem molecular de

Candida spp.

128

7 COMENTÁRIOS, CRÍTICAS E SUGESTÕES

O trabalho foi desenvolvido como esperado, sem grandes mudanças no projeto

inicial. Graças à valiosa colaboração de alguns professores membros do Programa de

Pós-graduação em Ciências da Saúde da UFRN e outros colaboradores externos,

conseguimos realizar os objetivos propostos para esse estudo, restando ainda outro

artigo que está em fase de preparação para ser submetido à publicação.

Convém destacar a importância do auxílio financeiro recebido para realização

de visita técnica à outras instituições. Além de contribuir diretamente na obtenção de

dados para este estudo, as visitas proporcionaram contato com outras técnicas e

outros pesquisadores, consolidando colaborações e agregando conhecimento

fundamental.

Torna-se importante mencionar que este é o primeiro estudo a mostrar

evidências de agrupamento geográfico em função da sazonalidade climática entre

isolados ambientais de uma espécie de Candida de importância clínica.

129

8 REFERÊNCIAS

1. Chakrabarti, A., Chatterjee, S.S., Rao, K.L., Zameer, M.M., Shivaprakash, M.R.,

Singhi, S., et al. (2009). Recent experience with fungaemia: change in species

distribution and azole resistance. Scand J Infect Dis. 41(4):275-284. doi:

10.1080/00365540902777105

2. Kothavade, R.J., Kura, M.M., Valand, A.G., Panthaki, M.H. (2010). Candida

tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med

Microbiol. 59(Pt 8):873-880. doi: 10.1099/jmm.0.013227-0

3. Adhikary, R., Joshi, S.(2011). Species distribution and anti-fungal susceptibility of

Candidaemia at a multi super-specialty center in Southern India. Indian J Med

Microbiol. 29(3):309-311.doi: 10.4103/0255-0857.83920

4. Godoy, P., Tiraboschi, I.N., Severo, L.C., Bustamante, B., Calvo, B., Almeida, L.P.,

et al. (2003). Species distribution and antifungal susceptibility profile of Candida spp.

bloodstream isolates from Latin American hospitals. Mem Inst Oswaldo Cruz. 98(3):

401-405.

5. Cannon, R.D., and Chaffin, W.L. (2001). Colonization is a crucial factor in oral

candidiasis. J Dent Educ. 65(8), 785-78.

6. Lackey, E., Vipulanandan, G., Childers, D.S., Kadosh, D. (2013). Comparative

evolution of morphological regulatory functions in Candida species. Eukaryot Cell.

12(10):1356-1368. doi:10.1128/EC.00164-13

7. Sanita, P.V., Zago, C.E., Mima, E.G., Pavarina, A.C., Jorge, J.H., Machado, A.L., et

al. (2014). In vitro evaluation of the enzymatic activity profile of non-albicans Candida

species isolated from patients with oral candidiasis with or without diabetes. Oral Surg

Oral Med Oral Pathol Oral Radiol. 118(1):84-91. doi: 10.1016/j.oooo.2014.03.020.

130

8. Hube, B., Naglik, J. (2001). Candida albicans proteinases: resolving the mystery of

a gene family. Microbiology. 147(Pt 8):1997-2005. doi: 10.1099/00221287-147-8-1997

9. Ghannoum, M.A. (2000). Potential role of phospholipases in virulence and fungal

pathogenesis. Clin Microbiol Rev. 13(1):122-143. doi: 10.1128/CMR.13.1.122-

143.2000

10. Luo, G., Samaranayake, L.P., Cheung, B.P., and Tang, G. (2004). Reverse

transcriptase polymerase chain reaction (RT-PCR) detection of HLP gene expression

in Candida glabrata and its possible role in in vitro haemolysin production. APMIS.

112(4-5): 283-290. doi: 10.1111/j.1600-0463.2004.apm11204-0509.x

11. Donlan, R.M., and Costerton, J.W. (2002). Biofilms: survival mechanisms of

clinically relevant microorganisms. Clin Microbiol Rev. 15(2):167-193.

doi: 10.1128/CMR.15.2.167-193.2002

12. Fanning, S., Mitchell, A.P. (2012). Fungal biofilms. PLoS Pathog. 8(4):e1002585.

doi: 10.1371/journal.ppat.1002585

13. Perlin, D.S. (2007). Resistance to echinocandin-class antifungal drugs. Drug Resist

Updat. 10(3):121-130. doi: 10.1016/j.drup.2007.04.002

14. Eschenauer, G.A., Nguyen, M.H., Shoham, S., Vazquez, J.A., Morris, A.J.,

Pasculle, W.A., et al. (2014). Real-world experience with echinocandin MICs against

Candida species in a multicenter study of hospitals that routinely perform susceptibility

testing of bloodstream isolates. Antimicrob Agents ChemotherI. 58(4), 1897-1906. doi:

10.1128/AAC.02163-13

15. Lupetti, A., Danesi, R., Campa, M., Del Tacca, M., Kelly, S. (2002). Molecular basis

of resistance to azole antifungals. Trends Mol Med. 8(2):76-81. doi: 10.1016/S1471-

4914(02)02280-3

131

16. Forastiero, A., Mesa-Arango, A.C., Alastruey-Izquierdo, A., Alcazar-Fuoli, L.,

Bernal-Martinez, L., Pelaez, T., et al. (2013). Candida tropicalis antifungal cross-

resistance is related to different azole target (Erg11p) modifications. Antimicrob Agents

Chemother. 57(10):4769-4781. doi:10.1128/AAC.00477-13

17. Vincent, B.M., Lancaster, A.K., Scherz-Shouval, R., Whitesell, L., Lindquist, S.

(2013). Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS

Biol.11(10):e1001692.doi:10.1371/journal.pbio.1001692

18. Yang, Y.L., Lin, C.C., Chang, T.P., Lauderdale, T.L., Chen, H. T., Lee, C.F., et al.

(2012). Comparison of human and soil Candida tropicalis isolates with reduced

susceptibility to fluconazole. PloS one. 7(4): e34609-e34609.

doi: 10.1371/journal.pone.0034609

19. Joseph-Horne, T., Hollomon, D.W. (1997). Molecular mechanisms of azole

resistance in fungi. FEMS Microbiol Lett. 149(2):141-149. doi: 10.1111/j.1574-

6968.1997.tb10321.x

20. Soll D.R. (2000). The ins and outs of DNA fingerprinting the infectious fungi.

ClinMicrobiol .13: 332-370. doi: 10.1128/CMR.13.2.332

21. Wu, J. Y., Guo, H., Wang, H. M., Yi, G. H., Zhou, L. M., He, X. W., et al. (2017).

Multilocus sequence analyses reveal extensive diversity and multiple origins of

fluconazole resistance in Candida tropicalis from tropical China. Sci. Rep., 7, 42537.

doi:10.1038/srep42537

22. Brown, A. J., Budge, S., Kaloriti, D., Tillmann, A., Jacobsen, M.D., Yin, Z., et al.

(2014). Stress adaptation in a pathogenic fungus. J Exp Biol. 217(1): 144-155.

doi: 10.1242/jeb.088930

132

23. Butinar, L., Santos, S., Spencer-Martins, I., Oren, A., & Gunde-Cimerman, N.

(2005). Yeast diversity in hypersaline habitats. FEMS Microbiol Lett. 244(2). 229-234.

doi: 10.1016/j.femsle.2005.01.043

24. Krauke, Y., & Sychrova, H. (2008). Functional comparison of plasma-membrane

Na+/H+ antiporters from two pathogenic Candida species. BMC microbiol. 8(1), 80.

doi:10.1186/1471-2180-8-80

25. Santhanam, J., Nazmiah, N., and Aziz, M.N. (2013). Species distribution and

antifungal susceptibility patterns of Candida species: Is low susceptibility to

itraconazole a trend in Malaysia? Med J Malaysia. 68(4): 343-347.

26. Guinea, J., Zaragoza, O., Escribano, P., Martin-Mazuelos, E., Peman, J., Sanchez-

Reus, F., et al. (2014). Molecular identification and antifungal susceptibility of yeast

isolates causing fungemia collected in a population-based study in Spain in 2010 and

2011. Antimicrob Agents Chemother. 58(3), 1529-1537. doi: 10.1128/AAC.02155-13

27. Liu, W., Tan, J., Sun, J., Xu, Z., Li, M., Yang, Q., et al. (2014). Invasive candidiasis

in intensive care units in China: in vitro antifungal susceptibility in the China-SCAN

study. J Antimicrob Chemother. 69(1): 162-167. doi: 10.1093/jac/dkt330

28. Zuza-Alves, D.L., de Medeiros, S.S., de Souza ,L.B., Silva-Rocha, W.P., Francisco,

E.C., de Araújo, M.C., et al. (2016). Evaluation of virulence factors in vitro, resistance

to osmotic stress and antifungal susceptibility of Candida tropicalis isolated from the

coastal environment of Northeast Brazil. Front Microbiol.7: 1783.

doi: 10.3389/fmicb.2016.01783

29. Loureiro, S. T. A., Cavalcanti, M. A. D. Q., Neves, R. P., & Passavante, J. Z. D. O.

(2005). Yeasts isolated from sand and sea water in beaches of Olinda, Pernambuco

state, Brazil. Braz J Microbiol. 36(4): 333-337. doi : 10.1590/S1517-83822005000400005

133

30. Miotto, N. M. L., Yurgel, L. S., Cherubini, K., & Cazanova, R. F. (2011). Métodos

laboratoriais de identificação do fungo Candida sp. Revista da Faculdade de

Odontologia-UPF, 9(1).

31. Yarrow D. (1998) Methods for the isolation, maintenance and identification of

yeasts. In: Kurtzman CP, Fell JW. 4th ed. Amsterdam: Elsevier Science B.V.

32. Casali, A. K., Goulart, L., Rosa e Silva, L. K., Ribeiro, Â. M., Amaral, A. A., Alves,

S. H., et al. (2003). Molecular typing of clinical and environmental Cryptococcus

neoformans isolates in the Brazilian state Rio Grande do Sul. FEMS Yeast Res, 3(4):

405-415. doi: 10.1016/S1567-1356(03)00038-2

33. Santos, C., Lima, N., Sampaio, P., and Pais, C. (2011). Matrix-assisted laser

desorption/ionization time-of-flight intact cell mass spectrometry to detect emerging

pathogenic Candida species. Diagn Microbiol Infect Dis. 71(3): 304-308. doi:

10.1016/j.diagmicrobio.2011.07.002.

34. Oliveira, M.M., Santos, C., Sampaio, P., Romeo, O., Almeida-Paes, R., Pais, C.,

et al. (2015). Development and optimization of a new MALDI-TOF protocol for

identification of the Sporothrix species complex. Res Microbiol. 166(2): 102-110. doi:

10.1016/j.resmic.2014.12.008