MHD pumps: Annular Linear Induction Pump (ALIP)

50
MHD pumps: Annular Linear Induction Pump (ALIP) Linards Goldลกteins - Institute of Physics of University of Latvia ([email protected]) Emmanuel Lo Pinto - CEA Cadarache ([email protected]) 14/04/2021 2021 - March 31

Transcript of MHD pumps: Annular Linear Induction Pump (ALIP)

MHD pumps: Annular Linear Induction Pump (ALIP)

Linards Goldลกteins - Institute of Physics of University of Latvia([email protected])

Emmanuel Lo Pinto - CEA Cadarache ([email protected])

14/04/2021 2021 - March 31

2

Summary1. Basics of MHD pumping

2. Some applications of MHD pumping

3. Types of MHD pumps

4. Elements of design of an ALIP

5. Equivalent circuit model

6. Ideal ALIP model

7. Role of the slip magnetic Reynolds number in ALIP

8. Stalling instability in ALIP

9. MHD instability in ALIP

10. Experimental and numerical studies on TESLA-EMP loop (IPUL)

11. Experimental and numerical studies on PEMDYN loop (CEA)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pump (ALIP)

3

1. Basics of MHD pumpingExample of a conducting fluid in a channel

โ€ข EM force on an elementary volume of fluid:

๐‘“๐ธ๐‘€ = ๐‘—๐‘ฆ๐ต๐‘ง๐‘ข๐‘ฅ

โ€ข Total EM force in the channel:

๐น๐ธ๐‘€ =เถธ

๐‘‰

๐‘—๐‘ฆ ๐‘ฅ, ๐‘ฆ, ๐‘ง ๐ต๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ง)๐œ•๐‘ฅ๐œ•๐‘ฆ๐œ•๐‘ง

โ€ข Developed pressure:๐‘๐ธ๐‘€ = ๐น๐ธ๐‘€/๐‘†

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pump (ALIP)

Lorentz force

๐‘“๐ธ๐‘€ = ิฆ๐‘— ร— ๐ต

Navier-Stokes momentum equation

๐œŒ๐œ• ิฆ๐‘ฃ

๐œ•๐‘ก+ ิฆ๐‘ฃ. ๐›ป ิฆ๐‘ฃ = โˆ’๐›ป๐‘ + ๐œ‡โˆ† ิฆ๐‘ฃ + ๐‘“๐ธ๐‘€

4

2. Some applications of MHD pumping

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Nuclear industry

Alkali & non-alkali metal production

Space industry

Computer hardware

Concentrated Solar Power

JHR reactor CALIPSO device prototype pump

LM-10 pump for CPU cooling

SNAP 10 pump for space reactor

โ€ข Conducting fluids

โ€ข Reliability / service time is keyโ€ข no sealing required

โ€ข no moving parts in direct contact with fluid

5

3. Types of MHD pumps

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

MHD pumps

Conduction pumps

DC conduction

AC conduction

Induction pumps

Moving inductor

Static inductor

โ€ข Current directly supplied to the fluidโ€ข Magnetic field from permanent magnets

(DC type pump) or electromagnet

โ€ข Travelling magnetic waveo Moving permanent magnetso Arrangement of coils (static)

โ€ข Current induced in the fluid channel thanks to the time-varying magnetic flux (Lenzโ€™s law)

6

3. Types of MHD pumps

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

DC conduction pumpโ€ข Common operating range:

o Low flowrate (0 โ€“ 10 m3/h)

o Low pressure rise (0 โ€“ 1 bar)

โ€ข Assets:o Simple design & optimisation o Cheap productiono No moving part

โ€ข Drawbacks:o Very high current requiredo DC power supply needed

3 l/min, 0.05 bar (UNIST)

7

2. Types of MHD pumps

Permanent magnet pump (radial air gap type)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

โ€ข Assets:o Higher efficiency (compared to other EM pumps)o Relatively cheap production (use of commercial motor)o Relatively small size (for high developed pressure)o Simple construction (no coilsโ€ฆ)

โ€ข Drawbacks:o Rotating magnetic diskso Flow channel has a complex geometry

โ€ข Common operating range:o Low to medium flow rate (up to 102 l/s)o Low to high developed pressure

(0 โ€“ 10 bars & more)

(IPUL design)

8

3. Types of MHD pumps

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Annular Linear Induction Pump (ALIP)

โ€ข Common operating range:o Medium to high flowrate (up to 103 m3/h)o Low to high developed pressure (0 โ€“ 10 bars)

โ€ข Assets:o No finite width effect o Very high mechanical resistanceo No moving parts

โ€ข Drawbacks:o More expensive than other EM pumpso High developed pressure means higher

currents or longer pump

Drawing of ALIP design with external inductor

9

4. Elements of design of an ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Origin: asynchronous motor

Magnetic circuit

rotor

Liquid metal

PolyphaseinductorConducting

side bar

ferromagnetic

Conducting side bar

Intermediate step: flat linear induction pump

Symmetry axis

Ferromagnetic corePolyphase inductor

Annular liquid metal channel

Final step: the ALIP

12

3

45

10

4. Elements of design of an ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

FERROMAGNETIC YOKE

FERROMAGNETIC CORE

Longitudinal cross section

11

4. Elements of design of an ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Detail of transverse cross section

Transverse cross section

12

4. Elements of design of an ALIPโ€ข Generation of a โ€œsinusoidalโ€ travelling wave

3 phases & 2 slot/pole/phase case

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Wavelength ๐œ† = 2๐œ‹/๐‘˜

Pole pitch ๐œ = ๐œ†/2

ิฆ๐‘— = ๐‘—0๐‘’๐‘—(๐œ”๐‘กโˆ’๐‘˜๐‘งโˆ’๐œ“)๐‘ข๐œ™

๐‘–1 ๐‘ก = ๐ผ0 cos ๐œ”๐‘ก

๐‘–2 ๐‘ก = ๐ผ0 cos ๐œ”๐‘ก โˆ’2๐œ‹

3

๐‘–3 ๐‘ก = ๐ผ0 cos ๐œ”๐‘ก โˆ’4๐œ‹

3

13

5. Equivalent circuit model

โ€ข ALIP (external inductor) seen as an Single-sided Linear Induction Machine (SLIM)

โ€ข Short primary: inductor

โ€ข Long secondary: liquid metal

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pump (ALIP)

Back iron

Liquid metal(secondary sheet)

Primary core with windings

14

5. Equivalent circuit model

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

โ€ข SLIM equivalent circuit for one phase referred to primary phaseo V1 : input voltage / I1 : input current

o R1 : resistance of primary winding

o X1 : stator leakage reactance

o Xm : magnetization reactance

o Xโ€™2 : secondary leakage reactance referred to primary side (Xโ€™2 โ‰ˆ 0 for liquid secondary sheet)

o Rโ€™2 : liquid metal annulus resistance referred to primary side

o ๐‘  =๐‘ฃ๐‘ โˆ’๐‘ฃ๐‘“

๐‘ฃ๐‘ : slip

o ๐‘ฃ๐‘  = ๐œ†๐‘“ = 2๐œ๐‘“ : magnetic field velocity

o vf : liquid metal velocity

o Iron losses neglected

15

5. Equivalent circuit model

โ€ข Expression of circuit parameters (3-phase ALIP): R1

๐‘…1 = ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ ร—๐‘™๐‘’๐‘›๐‘”๐‘กโ„Ž ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿ

๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘‘๐‘ข๐‘๐‘ก๐‘œ๐‘Ÿโ‰ˆ ๐‘Ÿ๐ถ๐‘ข

๐‘Š1๐œ‹๐ท00,6๐‘คโ„Ž

๐‘Š1/(2๐‘๐‘ž)

= ๐‘Ÿ๐ถ๐‘ข2๐‘๐‘ž๐œ‹๐ท0๐‘Š1

2

0,6๐‘คโ„Ž

o rCu : electrical resistivity of conductor (ex. copper)o W1 : number of coil turns per phaseo D0 : average diameter of a coil turno p : number of pole pairso q : number of slot/pole/phaseo w : slot widtho h : slot deptho Hypothesis : 60% of the coil cross section is made of conductor

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

16

5. Equivalent circuit model

โ€ข Expression of circuit parameters (3-phase ALIP): X1

o W1 : number of coil turns per phase

o D0 : average diameter of one turn of coil

o p : number of pole pairs

o q : number of slot/pole/phase

o w : slot width

o h : slot depth

o d : slot depression depth

o Hypothesis: rectangular slots of constant width

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

w

h

d

๐‘‹1 = 2๐œ‹๐‘“๐ฟ1 โ‰ˆ2๐œ‹๐‘“ 2๐œ‡0๐‘Š1

2๐œ‹๐ท0โ„Ž โˆ’ ๐‘‘3๐‘ค

+๐‘‘๐‘ค

๐‘๐‘ž

coil

17

5. Equivalent circuit model

โ€ข Expression of circuit parameters (3-phase ALIP): Rโ€™2 & Xm

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

โ€ข rlm : electrical resistivity of liquid metal

โ€ข W1 : number of coil turns per phase

โ€ข Dc : average diameter of liquid metal annulus

โ€ข p : number of pole pairs

โ€ข ฯ„ : pole pitch

โ€ข ge : effective air gap (๐‘”๐‘’ = ๐พ๐‘ ร— ๐‘”)

โ€ข g : air gap

โ€ข Kc : Carterโ€™s coefficient

โ€ข dc : annulus thickness

โ€ข Hypothesis: single layer winding, 1 phase/slot (winding factor kw โ‰ˆ 1)

๐‘…โ€ฒ2 โ‰ˆ ๐‘Ÿ๐‘™๐‘š6๐œ‹๐ท๐‘๐‘Š1

2

๐‘๐œ๐‘‘๐‘

๐‘‹๐‘š = 2๐œ‹๐‘“๐ฟ๐‘š โ‰ˆ 2๐œ‹๐‘“6๐œ‡0๐œ‹๐ท๐‘ ๐œ๐‘Š1

2

๐œ‹2๐‘๐‘”๐‘’

18

5. Equivalent circuit model

โ€ข Computation of pressure rise (3-phase ALIP):

Useful output power: ๐‘ƒ๐‘ˆ = 3๐‘…2โ€ฒ 1โˆ’๐‘ 

๐‘ ๐ผ2๐‘Ÿ๐‘š๐‘ โ€ฒ 2 = (ฮ”๐‘ƒ๐ธ๐‘€๐‘„)

Pressure from EM force: ฮ”๐‘ƒ๐ธ๐‘€ = 3 ๐ถ๐ผ1๐‘Ÿ๐‘š๐‘ 2

Q

๐‘…โ€ฒ2 1โˆ’๐‘ 

๐‘ ๐‘…2โ€ฒ 2

๐‘‹๐‘š2 ๐‘ 2

+1

Finite length effect coefficient: ๐ถ =2๐‘โˆ’1

2๐‘+1

Pressure loss (fluid viscosity): ฮ”๐‘ƒ๐‘™๐‘œ๐‘ ๐‘  =1

2๐œŒ๐œ† 2๐‘‘๐‘

2๐‘๐œ๐‘ฃ๐‘“2

Available pressure: ฮ”๐‘ƒ = ฮ”๐‘ƒ๐ธ๐‘€ โˆ’ ฮ”๐‘ƒ๐‘™๐‘œ๐‘ ๐‘ 

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

60 l/min, 1.3 bar ALIP (KAERI)

19

6. Ideal ALIP model

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

1. Consider two, infinitely long perfect ferromagnetic cylinders

2. Sheet layer of external linear current density is spread on surface of external cylinder

3. Cylindrical layer of liquid metal with conductivity ๐œŽ, height ๐‘‘โ„Ž and mean radius ๐‘… is moving axially with velocity ๐‘ฃ in the annular nonmagnetic gap with height ๐‘‘๐‘š

20

6. Ideal ALIP model

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

แ‰š๐ต๐‘ง๐‘Ÿ=๐‘Ÿ๐‘œ

= ๐œ‡0๐ผ๐‘™๐‘–๐‘›From Amperes law follows boundary condition:

๐œ•2 ๐‘Ÿ๐ต๐‘Ÿ๐œ•๐‘Ÿ2

+๐œ•2๐ต๐‘Ÿ๐œ•๐‘ง2

โˆ’ ๐œ‡0๐œŽ๐‘‘โ„Ž๐‘‘๐‘š

๐œ•๐ต๐‘Ÿ๐œ•๐‘ก

+ ๐‘ฃ๐œ•๐ต๐‘Ÿ๐œ•๐‘ง

= 0

Induction equation (r component) to solve in the gap:

21

6. Ideal ALIP model

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

๐œ•2 ๐‘Ÿ๐ต๐‘Ÿ๐œ•๐‘Ÿ2

+๐œ•2๐ต๐‘Ÿ๐œ•๐‘ง2

โˆ’ ๐œ‡0๐œŽ๐‘‘โ„Ž๐‘‘๐‘š

๐œ•๐ต๐‘Ÿ๐œ•๐‘ก

+ ๐‘ฃ๐œ•๐ต๐‘Ÿ๐œ•๐‘ง

= 0

Let us height-average induction equation (otherwise solve for vector potential ๐ด ):

1

๐‘‘๐‘šโˆ™ แ‰ค๐œ• ๐‘Ÿ๐ต๐‘Ÿ๐œ•๐‘Ÿ

๐‘Ÿ=๐‘Ÿ๐‘–

๐‘Ÿ=๐‘Ÿ๐‘œ

+๐œ•2๐ต๐‘Ÿ๐œ•๐‘ง2

โˆ’ ๐œ‡0๐œŽ๐‘‘โ„Ž๐‘‘๐‘š

๐œ•๐ต๐‘Ÿ๐œ•๐‘ก

+ ๐‘ฃ๐‘ง๐œ•๐ต๐‘Ÿ๐œ•๐‘ง

= 0

๐œ• ๐‘Ÿ๐ต๐‘Ÿ๐œ•๐‘Ÿ

= โˆ’๐œ•๐ต๐‘ง๐œ•๐‘ง

Using divergence of ๐ต and boundary conditions, height-averaged form is obtained:

๐œ•2๐ต๐‘Ÿ๐œ•๐‘ง2

โˆ’ ๐œ‡0๐œŽ๐‘‘โ„Ž๐‘‘๐‘š

๐œ•๐ต๐‘Ÿ๐œ•๐‘ก

+ ๐‘ฃ๐œ•๐ต๐‘Ÿ๐œ•๐‘ง

= ๐‘–๐›ผ๐œ‡02๐ด

๐‘‘๐‘š

22

6. Ideal ALIP model

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Looking for solution in form:

๐œ•2๐ต๐‘Ÿ๐œ•๐‘ง2

โˆ’ ๐œ‡0๐œŽ๐‘‘โ„Ž๐‘‘๐‘š

๐œ•๐ต๐‘Ÿ๐œ•๐‘ก

+ ๐‘ฃ๐œ•๐ต๐‘Ÿ๐œ•๐‘ง

= ๐‘–๐›ผ๐œ‡02๐ด

๐‘‘๐‘š

๐ต๐‘Ÿ = ๐ต โˆ™ ๐‘’๐‘– ๐›ผ๐‘งโˆ’๐œ”๐‘ก

๐ต =๐ต0

๐‘– + ๐‘…๐‘š๐‘ 

Complex amplitude of magnetic field is obtained:

Where external field has been introduced:

๐ต0 =๐œ‡0 2๐ด

๐‘‘๐‘š๐›ผ

23

6. Ideal ALIP model

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

๐ต =๐ต0

๐‘– + ๐‘…๐‘š๐‘ 

Slip magnetic Reynolds number:

๐‘…๐‘š๐‘  = ๐‘…๐‘š โˆ™ ๐‘ 

๐‘…๐‘š =๐œ‡0๐œŽ๐‘ฃ๐ต๐›ผ

๐‘‘โ„Ž๐‘‘๐‘š

Magnetic Reynolds number:

Slip:๐‘  = 1 โˆ’

๐‘ฃ

๐‘ฃ๐ต

Velocity of magnetic field:

๐‘ฃ๐ต =๐œ”

๐›ผ= 2๐œ๐‘“

24

6. Ideal ALIP model

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Height averaged induced current density follow from Amperes law:

าง๐’‹ = ๐‘— โˆ™ ๐‘’๐‘– ๐›ผ๐‘งโˆ’๐œ”๐‘ก ๐’†๐‹ =1

๐œ‡0โˆ™๐œ•๐ต๐‘Ÿ๐œ•๐‘ง

โˆ’๐ผ๐‘™๐‘–๐‘›๐‘‘๐‘š

๐’†๐‹ = โˆ’๐‘…๐‘š๐‘ 

๐‘– + ๐‘…๐‘š๐‘ โˆ™2๐ด

๐‘‘๐‘šโˆ™ ๐‘’๐‘– ๐›ผ๐‘งโˆ’๐œ”๐‘ก ๐’†๐‹

Quasi-stationary developed pressure can be found using complex amplitudes:

โˆ†๐‘ = ๐‘…๐‘’๐‘—๐ตโˆ—

2โˆ™๐‘‰

๐‘†โˆ™๐’†๐‹ ร— ๐’†๐’“

๐’†๐’›

โˆ†๐‘ =๐œŽ๐ต0

2๐‘ฃ๐ต๐ฟ

2โˆ™

๐‘ 

1 + ๐‘…๐‘š๐‘ 2

It leads to a relatively simple formula widely used in EMP design:

25

7. Role of the slip magnetic Reynolds number in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

What is slip magnetic Reynolds number?

Slip magnetic Reynolds number:

๐‘…๐‘š๐‘  = ๐‘…๐‘š โˆ™ ๐‘ 

Magnetic Reynolds number:

Slip:

๐‘…๐‘š =๐œ‡0๐œŽ๐‘ฃ๐ต๐›ผ

๐‘‘โ„Ž๐‘‘๐‘š

๐‘  = 1 โˆ’๐‘ฃ

๐‘ฃ๐ต

Velocity of magnetic field:

๐‘ฃ๐ต =๐œ”

๐›ผ= 2๐œ๐‘“

What does it characterize???

26

7. Role of the slip magnetic Reynolds number in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

One definition can be : ratio of magnetic field convection and diffusion.

What does it characterize?

In context of ALIP: ratio of induced and full magnetic fields.

๐‘…๐‘š๐‘  =๐œ‡0๐œŽ(๐‘ฃ๐ต โˆ’ ๐‘ฃ)๐œ

๐œ‹

๐‘‘โ„Ž๐‘‘๐‘š

Electrical conductivity Relative motion of magnetic field

Characteristic size (pole length)

27

7. Role of the slip magnetic Reynolds number in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

๐’—๐‘ฉ = ๐Ÿ๐‰๐’‡

๐’—๐’Ž

Distribution of height averaged external magnetic field in ALIP

28

7. Role of the slip magnetic Reynolds number in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

โˆ†๐‘ =๐œŽ๐ต0

2๐‘ฃ๐ต๐ฟ

2โˆ™

๐‘ 

1 + ๐‘…๐‘š๐‘ 2 ~

๐‘…๐‘š๐‘ 

1 + ๐‘…๐‘š๐‘ 2

Developed EM pressure in Ideal ALIP is function of ๐‘…๐‘š๐‘  :

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,5 1 1,5 2 2,5

p'

Rms

Rms -> 0

Rms - > inf

Rms/(1+Rms^2)

Maximum EM pressure/force

High Flowrate Low Flowrate

29

7. Role of the slip magnetic Reynolds number in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Induced and full field as function of ๐‘…๐‘š๐‘ . Phase of induced field as function of ๐‘…๐‘š๐‘ .

Demagnetization - Lenz Law โ€“ Skin effect โ€“ Magnetic field expulsion

30

7. Role of the slip magnetic Reynolds number in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

โˆ†๐‘ =๐œŽ๐ต0

2๐‘ฃ๐ต๐ฟ

2โˆ™

๐‘ 

1 + ๐‘…๐‘š๐‘ 2 ~

๐‘…๐‘š๐‘ 

1 + ๐‘…๐‘š๐‘ 2

Developed EM pressure in Ideal ALIP is function of ๐‘…๐‘š๐‘  :

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,5 1 1,5 2 2,5

p'

Rms

Rms -> 0

Rms - > inf

Rms/(1+Rms^2)

Stable Unstable

31

8. Stalling instability in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Operating point of ALIP is defined by pressure โ€“ flowrate characteristics of pump and hydraulic load (loop).

โˆ†๐‘

๐‘„

โˆ†๐‘๐ธ๐‘€โˆ†๐‘๐ฟ

โˆ†๐‘

๐‘…๐‘š๐‘ 

1

โˆ†๐‘๐ฟ

โˆ†๐‘๐ธ๐‘€

32

8. Stalling instability in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

In experimentally reported

behaviour of a large ALIP for SFR by

Ota et al. three principal operating

areas were identified and

summarized:

1. Stable, homogeneous flow.

Nominal operation regime.

2. Transient, instability. Operation

is impossible in this area.

3. MHD instability. Inhomogeneous

flow, large fluctuation of flowrate

and pressure. Undesirable

operation regime.

Stable

Unstable

33

8. Stalling instability in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Stalling condition:

๐œ• โˆ†๐‘๐ธ๐‘€๐œ•๐‘„

>๐œ• โˆ†๐‘๐ฟ๐œ•๐‘„

โˆ†๐‘

๐‘„

โˆ†๐‘๐ธ๐‘€

โˆ†๐‘๐ฟโˆ†๐‘๐ฟ

No stalling!

34

8. Stalling instability in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Valve opening

Valve closing

35

8. Stalling instability in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

36

9. MHD instability in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Stalling in context of ALIP isuncontrolled transient from stableregion (1) to unstable (3).

Why stalling and transition tounstable region (3) is undesirable?

Region (3) is characterizedby MHD instability.Behaviour of ALIP is verydifferent. E.g. steady flowassumption falls apart.

37

9. MHD instability in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto

A: vz fz or vz fz

Stable velocity profile

B: vz fz or vz fz

Instable velocity profile

Stable

1. Cut!

2. Unfold!

Periodic boundariesฯ†

zฯ†

zr

INLET

OUTLET

B A

๐‘…๐‘š๐‘  =๐œ‡0๐œŽ ๐‘ฃ๐ต โˆ’ ๐‘ฃ๐‘ง ๐‘‘โ„Ž

๐›ผ๐‘‘๐‘šโ‰ˆ 1

โˆ†๐‘Ÿ โ‰ช ๐‘…

OUTIN

OUTIN

MHD pumps: Annular Linear Induction Pumps (ALIP)

Unstable

38

9. MHD instability in ALIP

Linards Goldลกteins / Emmanuel Lo Pinto

Gailฤซtis et al. (1975)MHD instability threshold

๐‘…๐‘š๐‘  > 1 +๐‘š๐œ

๐œ‹๐‘…

2

Kirillov et al. (1980)

Ota et al. (2004)

Araseki et al. (2004)

Experimental evidence

Araseki et al. (2004)2D ฯ†-z model of ALIP

Sta

ble

1. Amplifications of

azimuthal

unhomogenities

4. Strongly vortical

flow

2. Low frequency

pressure pulsations

3. Vibrations

5. Decrease of

efficiency

OUT

IN

IN

MHD pumps: Annular Linear Induction Pumps (ALIP)

39

10. Experimental and numerical studies on TESLA-EMP loop (IPUL)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Experimental pump

FLIP-2

FLIP-1

Integral measurements:

โ€ข Flowrate

โ€ข Temperature

โ€ข Current

โ€ข Voltage

โ€ข Pressure

+ Pressure pulsations

Technological pump

40

10. Experimental and numerical studies on TESLA-EMP loop (IPUL)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

144 point magnetic field measurements fixed on inductor (grid y-z: 50 x 60 mm)

Bx

Bx

Bx

41

10. Experimental and numerical studies on TESLA-EMP loop (IPUL)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Controlled parameters:

โ€ข Applied current I to FLIP (N)

โ€ข Flowrate Q in the loop (Rms)

Operating regimes:

๐‘ = 0.67๐‘…๐‘š๐‘  = 4.8โ€ฆ3.43

๐ผ = 220 [๐ด]๐‘„ = 0โ€ฆ42 [๐ฟ/๐‘ ] = 0โ€ฆ151 [๐‘š^3/โ„Ž]

Power supply of f = 50 Hz was used.

42

EXP:

|Bx|, [T]

10. Experimental and numerical studies on TESLA-EMP loop (IPUL)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

NUM:

vz, [m/s]

NUM:

|Bx|, [T]

โ€ข Development of M โ€“

shaped flow profile

โ€ข Steady distribution of

|Bx|

๐‘…๐‘š๐‘  = 3.43๐‘„ = 40 ๐ฟ/๐‘ 

โ€ข Qualitative agreementspatial resolution: 50 x 60 [mm]

temporal: 0,05 [s]

43

EXP:

|Bx|, [T]

โ€ข Agreement maintained

10. Experimental and numerical studies on TESLA-EMP loop (IPUL)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

NUM:

vz, [m/s]

NUM:

|Bx|, [T]

โ€ข Pronounced M-

shaped flow profile.

โ€ข Negative velocity in

centre of outlet

โ€ข Small oscillation of

|Bx| in the outlet

๐‘…๐‘š๐‘  = 3.82๐‘„ = 30 ๐ฟ/๐‘ 

44

EXP:

|Bx|, [T]

10. Experimental and numerical studies on TESLA-EMP loop (IPUL)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

NUM:

vz, [m/s]

NUM:

|Bx|, [T]

๐‘…๐‘š๐‘  = 4.15๐‘„ = 20 ๐ฟ/๐‘ 

โ€ข Oscillations confirmed

experimentally

โ€ข Transition to vortical flow

โ€ข Periodic oscillations of

vz and |Bx|

โ€ข Strong recirculation in

centre

โ€ข Loss of symmetry

45

EXP:

|Bx|, [T]โ€ข Qualitative agreement

maintained

10. Experimental and numerical studies on TESLA-EMP loop (IPUL)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

NUM:

vz, [m/s]

NUM:

|Bx|, [T]

โ€ข Flow strongly vortical

all-over the channel

โ€ข Irregular oscillations of

vz and |Bx|

๐‘…๐‘š๐‘  = 4.47๐‘„ = 10 ๐ฟ/๐‘ 

46

11. Experimental and numerical studies on PEMDYN loop (CEA)

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

PEM specification

Fluid Liquid sodium

Flowrate 0 - 1500 m3/h

Temperature 115 - 200ยฐC

Input current 0 โ€“ 550 A

Supply frequency 5 โ€“ 20 Hz

Max power input 325 kW

Phases 3

Pole pairs 3

Slots/pole/phase 2

Stator length 2 m

47

11. Experimental and numerical studies on PEMDYN loop (CEA)โ€ข Accuracy of numerical models in support of pump design: performance curves

Discrete inductor model

Current sheet model

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

48

11. Experimental and numerical studies on PEMDYN loop (CEA)โ€ข Accuracy of numerical models in support of pump design: DSF amplitude estimate

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Time (s) Frequency (Hz)

Time (s) Frequency (Hz)

Rms > 4

Rms < 1

49

Useful resources

โ€ข General EM pumps design guidelines and feedbackโ€ข Baker & Tessier โ€“ Handbook of electromagnetic pump technology

โ€ข Induction machines designโ€ข Nasar & Boldea โ€“ The induction machines design handbook (2nd Edition)

โ€ข MHD instabilitiesโ€ข E. Martin Lopez - Study of MHD instabilities in high flowrate induction

electromagnetic pumps of annular linear design (PhD thesis)

โ€ข L. Goldลกteins โ€“ Experimental and numerical analysis of behavior of electromagnetic annular linear induction pump

Linards Goldลกteins / Emmanuel Lo Pinto MHD pumps: Annular Linear Induction Pumps (ALIP)

Thank you for your attention!

Any questions?

14/04/2021 2021 - March 31