Lange's Handbook of Chemistry - Access Engineering

437

Transcript of Lange's Handbook of Chemistry - Access Engineering

LANGE’SHANDBOOK OF

CHEMISTRY

This page intentionally left blank

LANGE’SHANDBOOK OF

CHEMISTRY

James G. Speight, Ph.D.

CD&W Inc., Laramie, Wyoming

Sixteenth Edition

MCGRAW-HILL

New York Chicago San Francisco Lisbon London Madrid

Mexico City Milan New Delhi San Juan Seoul

Singapore Sydney Toronto

Copyright © 2005, 1999, 1992, 1985, 1979, 1973, 1967, 1961, 1956 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-177683-7

MHID: 0-07-177683-4

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-143220-7, MHID: 0-07-143220-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected].

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (“McGraw-Hill”) from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRAN-TIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

v

CONTENTS

Preface to the Sixteenth Edition vii

Preface to the Fifteenth Edition ix

Preface to the First Edition xi

Section 1. Inorganic Chemistry 1.1

Section 2. Organic Chemistry 2.1

Section 3. Spectroscopy 3.1

Section 4. General Information and Conversion Tables 4.1

Index I.1

This page intentionally left blank

vii

PREFACE TO THESIXTEENTH EDITION

This Sixteenth Edition of Lange’s Handbook of Chemistry takes on a new format under a new editor.Nevertheless, the Handbook remains the one-volume source of factual information for chemists andchemical engineers, both professionals and students. The aim of the Handbook remains to providesufficient data to satisfy the general needs of the user without recourse to other reference sources.The many tables of numerical data that have been compiled, as well as additional tables, will pro-vide the user with a valuable time-saver.

The new format involves division of the Handbook into four major sections, instead of the11 sections that were part of previous editions. Section 1, Inorganic Chemistry, contains a group oftables relating to the physical properties of the elements (including recently discovered elements) andseveral thousand compounds. Likewise, Section 2, Organic Chemistry, contains a group of tablesrelating to the physical properties of the elements and several thousand compounds. Following thesetwo sections, Section 3, Spectroscopy, presents the user with the fundamentals of the various spec-troscopic techniques. This section also contains tables that are relevant to the spectroscopic proper-ties of elements, inorganic compounds, and organic compounds. Section 4, General Information andConversion Tables, contains all of the general information and conversion tables that were previouslyfound in different sections of the Handbook.

In Sections 1 and 2, the data for each compound include (where available) name, structuralformula, formula weight, density, refractive index, melting point, boiling point, flash point,dielectric constant, dipole moment, solubility (if known) in water and relevant organic solvents,thermal conductivity, and electrical conductivity. The presentation of alternative names, as wellas trivial names of long-standing use, has been retained. Section 2 also contains expanded infor-mation relating to the names and properties of condensed polynuclear aromatic compounds.

Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of Organic andInorganic Compounds, and Heats of Melting, Vaporization, and Sublimation and Specific Heat atVarious Temperatures, are also presented in Sections 1 and 2 for organic and inorganic compounds,as well as information on the critical properties (critical temperature, critical pressure, and criticalvolume).

As in the previous edition, Section 3, Spectroscopy, retains subsections on infrared spectroscopy,Raman spectroscopy, fluorescence spectroscopy, mass spectrometry, and X-ray spectrometry. Thesection on Practical Laboratory Information (now Section 4), has been retained as it offers valuableinformation and procedures for laboratory methods.

As stated in the prefaces of earlier editions, every effort has been made to select the most usefuland reliable information and to record it with accuracy. It is hoped that users of this Handbook willcontinue to offer suggestions of material that might be included in, or even excluded from, future edi-tions and call attention to errors. These communications should be directed to the editor through thepublisher, McGraw-Hill.

JAMES G. SPEIGHT, PH.D.Laramie, Wyoming

This page intentionally left blank

ix

PREFACE TO THEFIFTEENTH EDITION

This new edition, the fifth under the aegis of the present editor, remains the one-volume source offactual information for chemists, both professionals and students––the first place in which to “lookit up” on the spot. The aim is to provide sufficient data to satisfy all one’s general needs withoutrecourse to other reference sources. A user will find this volume of value as a time-saver because ofthe many tables of numerical data that have been especially compiled.

Descriptive properties for a basic group of approximately 4300 organic compounds are compiledin Section 1, an increase of 300 entries. All entries are listed alphabetically according to the seniorprefix of the name. The data for each organic compound include (where available) name, structuralformula, formula weight, Beilstein reference (or if un- available, the entry to the Merck Index, 12th ed.),density, refractive index, melting point, boiling point, flash point, and solubility (citing numericalvalues if known) in water and various common organic solvents. Structural formulas either too com-plex or too ambiguous to be rendered as line formulas are grouped at the bottom of each facing dou-ble page on which the entries appear. Alternative names, as well as trivial names of long-standingusage, are listed in their respective alphabetical order at the bottom of each double page in theregular alphabetical sequence. Another feature that assists the user in locating a desired entry isthe empirical formula index.

Section 2 on General Information, Conversion Tables, and Mathematics has had the table on gen-eral conversion factors thoroughly reworked. Similarly the material on Statistics in ChemicalAnalysis has had its contents more than doubled.

Descriptive properties for a basic group of inorganic compounds are compiled in Section 3, whichhas undergone a small increase in the number of entries. Many entries under the column “Solubility”supply the reader with precise quantities dissolved in a stated solvent and at a given temperature.Several portions of Section 4, Properties of Atoms, Radicals, and Bonds, have been significantlyenlarged. For example, the entries under “Ionization Energy of Molecular and Radical Species” nownumber 740 and have an additional column with the enthalpy of formation of the ions. Likewise, thetable on “Electron Affinities of the Elements, Molecules, and Radicals” now contains about 225entries. The Table of Nuclides has material on additional radionuclides, their radiations, and the neu-tron capture cross sections.

Revised material for Section 5 includes the material on surface tension, viscosity, dielectric con-stant, and dipole moment for organic compounds. In order to include more data at several tempera-tures, the material has been divided into two separate tables. Material on surface tension andviscosity constitute the first table with 715 entries; included is the temperature range of the liquidphase. Material on dielectric constant and dipole moment constitute another table of 1220 entries.The additional data at two or more temperatures permit interpolation for intermediate temperaturesand also permit limited extrapolation of the data. The Properties of Combustible Mixtures in Air hasbeen revised and expanded to include over 450 compounds. Flash points are to be found in Section 1.Completely revised are the tables on Thermal Conductivity for gases, liquids, and solids. Van derWaals’ constants for gases have been brought up to date and expanded to over 500 substances.

Section 6, which includes Enthalpies and Gibbs Energies of Formation, Entropies, and HeatCapacities of Organic and Inorganic Compounds, and Heats of Melting, Vaporization, and Sublimationand Specific Heat at Various Temperatures for organic and inorganic compounds, has expanded by

11 pages, but the major additions have involved data in columns where it previously was absent.More material has also been included for critical temperature, critical pressure, and critical volume.

The section on Spectroscopy has been retained but with some revisions and expansion. Thesection includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy,and X-ray spectrometry. Detection limits are listed for the elements when using flame emission,flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, andflame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear propertiesof the elements, proton chemical shifts and coupling constants, and similar material for carbon-13,boron-11, nitrogen-15, fluorine-19, silicon-29, and phosphorus-31.

In Section 8, the material on solubility constants has been doubled to 550 entries. Sections onproton transfer reactions, including some at various temperatures, formation constants of metal com-plexes with organic and inorganic ligands, buffer solutions of all types, reference electrodes, indica-tors, and electrode potentials are retained with some revisions. The material on conductance has beenrevised and expanded, particularly in the table on limiting equivalent ionic conductance.

Everything in Sections 9 and 10 on physiochemical relationships, and on polymers, rubbers, fats,oils, and waxes, respectively, has been retained.

Section 11, Practical Laboratory Information, has undergone significant changes and expansion.Entries in the table on “Molecular Elevation of the Boiling Point” have been increased. McReynolds’constants for stationary phases in gas chromatography have been reorganized and expanded. Theguide to ion-exchange resins and discussion is new and embraces all types of column packing andmembrane materials. Gravimetric factors have been altered to reflect the changes in atomic weightsfor several elements. Newly added are tables listing elements precipitated by general analyticalreagents, and giving equations for the redox determination of the elements with their equivalentweights. Discussion on the topics of precipitation and complexometric titration include primary stan-dards and indicators for each analytical technique. A new topic of masking and demasking agentsincludes discussion and tables of masking agents for various elements, for anions and neutral mole-cules, and common demasking agents. A table has been added listing the common amino acids withtheir pI and pKa values and their 3-letter and I-letter abbreviations. Lastly a 9-page table lists thethreshold limit value (TL V) for gases and vapors.

As stated in earlier prefaces, every effort has been made to select the most useful and reliableinformation and to record it with accuracy. However, the editor’s 50 years of involvement with text-books and handbooks bring a realization of the opportunities for gremlins to exert their inevitablemischief. It is hoped that users of this handbook will continue to offer suggestions of material thatmight be included in, or even excluded from, future editions and call attention to errors. These com-munications should be directed to the editor. The street address will change early in 1999, as will thetelephone number.

JOHN A. DEAN

Knoxville, Tennessee

x PREFACE TO THE FIFTEENTH EDITION

xi

PREFACE TO THEFIRST EDITION

This book is the result of a number of years’ experience in the compiling and editing of data usefulto chemists. In it an effort has been made to select material to meet the needs of chemists who can-not command the unlimited time available to the research specialist, or who lack the facilities of alarge technical library which so often is not conveniently located at many manufacturing centers. Ifthe information contained herein serves this purpose, the compiler will feel that he has accomplisheda worthy task. Even the worker with the facilities of a comprehensive library may find this volumeof value as a time-saver because of the many tables of numerical data which have been especiallycomputed for this purpose.

Every effort has been made to select the most reliable information and to record it with accuracy.Many years of occupation with this type of work bring a realization of the opportunities for theoccurrence of errors, and while every endeavor has been made to prevent them, yet it would beremarkable if the attempts towards this end had always been successful. In this connection it isdesired to express appreciation to those who in the past have called attention to errors, and it will beappreciated if this be done again with the present compilation for the publishers have given theirassurance that no expense will be spared in making the necessary changes in subsequent printings.

It has been aimed to produce a compilation complete within the limits set by the economy ofavailable space. One difficulty always at hand to the compiler of such a book is that he must decidewhat data are to be excluded in order to keep the volume from becoming unwieldy because of itssize. He can hardly be expected to have an expert’s knowledge of all branches of the science northe intuition necessary to decide in all cases which particular value to record, especially whenmany differing values are given in the literature for the same constant. If the expert in a particularfield will judge the usefulness of this book by the data which it supplies to him from fields otherthan his specialty and not by the lack of highly specialized information in which only he and hisco-workers are interested (and with which he is familiar and for which he would never have occa-sion to consult this compilation), then an estimate of its value to him will be apparent. However,if such specialists will call attention to missing data with which they are familiar and which theybelieve others less specialized will also need, then works of this type can be improved in suc-ceeding editions.

Many of the gaps in this volume are caused by the lack of such information in the literature. It ishoped that to one of the most important classes of workers in chemistry, namely the teachers, thebook will be of value not only as an aid in answering the most varied questions with which they areconfronted by interested students, but also as an inspiration through what it suggests by the gaps andinconsistencies, challenging as they do the incentive to engage in the creative and experimental worknecessary to supply the missing information.

While the principal value of the book is for the professional chemist or student of chemistry, itshould also be of value to many people not especially educated as chemists. Workers in the naturalsciences—physicists, mineralogists, biologists, pharmacists, engineers, patent attorneys, and librar-ians—are often called upon to solve problems dealing with the properties of chemical products ormaterials of construction. For such needs this compilation supplies helpful information and willserve not only as an economical substitute for the costly accumulation of a large library of mono-graphs on specialized subjects, but also as a means of conserving the time required to search for

information so widely scattered throughout the literature. For this reason especial care has beentaken in compiling a comprehensive index and in furnishing cross references with many of the tables.

It is hoped that this book will be of the same usefulness to the worker in science as is the dic-tionary to the worker in literature, and that its resting place will be on the desk rather than on thebookshelf.

N. A. LANGE

Cleveland, OhioMay 2, 1934

xii PREFACE TO THE FIRST EDITION

LANGE’SHANDBOOK OF

CHEMISTRY

This page intentionally left blank

SECTION 1INORGANIC CHEMISTRY

This page intentionally left blank

SECTION 1INORGANIC CHEMISTRY

1.1 NOMENCLATURE OF INORGANIC COMPOUNDS 1.3

1.1.1 Writing Formulas 1.4

1.1.2 Naming Compounds 1.5

1.1.3 Cations 1.8

1.1.4 Anions 1.8

1.1.5 Acids 1.9

Table 1.1 Trivial Names for Acids 1.10

1.1.6 Salts and Functional Derivatives of Acids 1.11

1.1.7 Coordination Compounds 1.11

1.1.8 Addition Compounds 1.13

1.1.9 Synonyms and Trade Names 1.13

Table 1.2 Synonyms and Mineral Names 1.13

1.2 PHYSICAL PROPERTIES OF INORGANIC COMPOUNDS 1.16

1.2.1 Density 1.16

1.2.2 Melting Point (Freezing Temperature) 1.16

1.2.3 Boiling Point 1.16

1.2.4 Refractive Index 1.17

Table 1.3 Physical Constants of Inorganic Compounds 1.18

Table 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds 1.64

Table 1.5 Refractive Index of Minerals 1.86

Table 1.6 Properties of Molten Salts 1.88

Table 1.7 Triple Points of Various Materials 1.90

Table 1.8 Density of Mercury and Water 1.91

Table 1.9 Specific Gravity of Air at Various Temperatures 1.92

Table 1.10 Boiling Points of Water 1.93

Table 1.11 Boiling Points of Water 1.94

Table 1.12 Refractive Index,Viscosity, Dielectric Constant, and Surface Tension

of Water at Various Temperatures 1.95

Table 1.13 Compressibility of Water 1.95

Table 1.14 Flammability Limits of Inorganic Compounds in Air 1.96

1.3 THE ELEMENTS 1.96

Table 1.15 Subdivision of Main Energy Levels 1.96

Table 1.16 Chemical Symbols, Atomic Numbers, and Electron Arrangements

of the Elements 1.97

Table 1.17 Atomic Numbers, Periods, and Groups of the

Elements (The Periodic Table) 1.121

Table 1.18 Atomic Weights of the Elements 1.122

Table 1.19 Physical Properties of the Elements 1.124

Table 1.20 Conductivity and Resistivity of the Elements 1.128

Table 1.21 Work Functions of the Elements 1.132

Table 1.22 Relative Abundances of Naturally Occurring Isotopes 1.132

Table 1.23 Radioactivity of the Elements (Neptunium Series) 1.135

Table 1.24 Radioactivity of the Elements (Thorium Series) 1.136

Table 1.25 Radioactivity of the Elements (Actinium Series) 1.137

Table 1.26 Radioactivity of the Elements (Uranium Series) 1.137

1.4 IONIZATION ENERGY 1.138

Table 1.27 lonization Energy of the Elements 1.138

Table 1.28 lonization Energy of Molecular and Radical Species 1.141

1.1

1.5 ELECTRONEGATIVITY 1.145

Table 1.29 Electronegativity Values of the Elements 1.145

1.6 ELECTRON AFFINITY 1.146

Table 1.30 Electron Affinities of Elements, Molecules, and Radicals 1.146

1.7 BOND LENGTHS AND STRENGTHS 1.150

1.7.1 Atom Radius 1.151

1.7.2 Ionic Radii 1.151

1.7.3 Covalent Radii 1.151

Table 1.31 Atom Radii and Effective Ionic Radii of Elements 1.151

Table 1.32 Approximate Effective Ionic Radii in Aqueous Solutions at 25°C 1.157

Table 1.33 Covalent Radii for Atoms 1.158

Table 1.34 Octahedral Covalent Radii for CN = 6 1.158

Table 1.35 Bond Lengths between Elements 1.159

Table 1.36 Bond Dissociation Energies 1.160

1.8 DIPOLE MOMENTS 1.171

Table 1.37 Bond Dipole Moments 1.171

Table 1.38 Group Dipole Moments 1.172

1.8.1 Dielectric Constant 1.172

Table 1.39 Dipole Moments and Dielectric Constants 1.173

1.9 MOLECULAR GEOMETRY 1.174

Table 1.40 Spatial Orientation of Common Hybrid Bonds 1.175

Table 1.41 Crystal Lattice Types 1.176

Table 1.42 Crystal Structure 1.177

1.10 NUCLIDES 1.177

Table 1.43 Table of Nuclides 1.177

1.11 VAPOR PRESSURE 1.199

1.11.1 Vapor Pressure Equations 1.199

Table 1.44 Vapor Pressures of Selected Elements at Different Temperatures 1.201

Table 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere 1.203

Table 1.46 Vapor Pressures of Various Inorganic Compounds 1.212

Table 1.47 Vapor Pressure of Mercury 1.220

Table 1.48 Vapor Pressure of Ice in Millimeters of Mercury 1.222

Table 1.49 Vapor Pressure of Liquid Ammonia, NH3 1.223

Table 1.50 Vapor Pressure of Water 1.224

Table 1.51 Vapor Pressure of Deuterium Oxide 1.225

1.12 VISCOSITY AND SURFACE TENSION 1.226

Table 1.52 Viscosity and Surface Tension of Inorganic Substances 1.226

1.13 THERMAL CONDUCTIVITY 1.230

Table 1.53 Thermal Conductivity of the Elements 1.231

Table 1.54 Thermal Conductivity of Various Solids 1.232

1.14 CRITICAL PROPERTIES 1.233

1.14.1 Critical Temperature 1.233

1.14.2 Critical Pressure 1.233

1.14.3 Critical Volume 1.234

1.14.4 Critical Compressibility Factor 1.234

Table 1.55 Critical Properties 1.234

1.15 THERMODYNAMIC FUNCTIONS (CHANGE OF STATE) 1.237

Table 1.56 Enthalpies and Gibbs Energies of Formation, Entropies,

and Heat Capacities of the Elements and Inorganic Compounds 1.237

Table 1.57 Heats of Fusion,Vaporization, and Sublimation and Specific Heat

at Various Temperatures of the Elements

and Inorganic Compounds 1.280

1.16 ACTIVITY COEFFICIENTS 1.299

Table 1.58 Individual Activity Coefficients of Ions in Water at 25°C 1.300

Table 1.59 Constants of the Debye-Hückel Equation from 0 to 100°C 1.300

Table 1.60 Individual Ionic Activity Coefficients at Higher Ionic Strengths at 25°C 1.301

1.2 SECTION ONE

1.17 BUFFER SOLUTIONS 1.301

1.17.1 Standards of pH Measurement of Blood and Biological Media 1.301

Table 1.61 National Bureau of Standards (U.S.) Reference pH Buffer Solutions 1.303

Table 1.62 Compositions of Standard pH Buffer Solutions

[National Bureau of Standards (U.S.)] 1.304

Table 1.63 Composition and pH Values of Buffer Solutions 8.107 1.304

Table 1.64 Standard Reference Values pH* for the Measurement of Acidity

in 50 Weight Percent Methanol-Water 1.306

Table 1.65 pH Values for Buffer Solutions in Alcohol-Water Solvents at 25°C 1.307

1.17.2 Buffer Solutions Other than Standards 1.307

Table 1.66 pH Values of Biological and Other Buffers for Control Purposes 1.308

1.18 SOLUBILITY AND EQUILIBRIUM CONSTANTS 1.310

Table 1.67 Solubility of Gases in Water 1.311

Table 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids

in Water at Various Temperatures 1.316

Table 1.69 Dissociation Constants of Inorganic Acids 1.330

Table 1.70 Ionic Product Constant of Water 1.331

Table 1.71 Solubility Product Constants 1.331

Table 1.72 Stability Constants of Complex Ions 1.343

Table 1.73 Saturated Solutions 1.343

1.19 PROTON-TRANSFER REACTIONS 1.350

1.19.1 Calculation of the Approximate Value of Solutions 1.350

1.19.2 Calculation of the Concentrations of Species Present at a Given pH 1.351

Table 1.74 Proton Transfer Reactions of Inorganic Materials in Water at 25°C 1.352

1.20 FORMATION CONSTANTS OF METAL COMPLEXES 1.357

Table 1.75 Cumulative Formation Constants for Metal Complexes with

Inorganic Ligands 1.358

Table 1.76 Cumulative Formation Constants for Metal Complexes

with Organic Ligands 1.363

1.21 ELECTRODE POTENTIALS 1.380

Table 1.77 Potentials of the Elements and Their Compounds at 25°C 1.380

Table 1.78 Potentials of Selected Half-Reactions at 25°C 1.393

Table 1.79 Overpotentials for Common Electrode Reactions at 25°C 1.396

Table 1.80 Half-Wave Potentials of Inorganic Materials 1.397

Table 1.81 Standard Electrode Potentials for Aqueous Solutions 1.401

Table 1.82 Potentials of Reference Electrodes in Volts as a Function

of Temperature 1.404

Table 1.83 Potentials of Reference Electrodes (in Volts) at 25°C for Water-Organic

Solvent Mixtures 1.405

1.22 CONDUCTANCE 1.405

Table 1.84 Properties of Liquid Semi-Conductors 1.407

Table 1.85 Limiting Equivalent Ionic Conductances in Aqueous Solutions 1.408

Table 1.86 Standard Solutions for Calibrating Conductivity Vessels 1.411

Table 1.87 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18°C 1.412

Table 1.88 Conductivity of Very Pure Water at Various Temperatures and the

Equivalent Conductance’s of Hydrogen and Hydroxyl Ions 1.417

1.23 THERMAL PROPERTIES 1.418

Table 1.89 Eutectic Mixtures 1.418

Table 1.90 Transition Temperatures 1.418

1.1 NOMENCLATURE OF INORGANIC COMPOUNDS

The following synopsis of rules for naming inorganic compounds and the examples given in expla-nation are not intended to cover all the possible cases.

INORGANIC CHEMISTRY 1.3

1.1.1 Writing Formulas

1.1.1.1 Mass Number, Atomic Number, Number of Atoms, and Ionic Charge. The massnumber, atomic number, number of atoms, and ionic charge of an element are indicated by means offour indices placed around the symbol:

mass number ionic chargeatomic number SYMBOL number of atoms

157N2

3−

Ionic charge should be indicated by an Arabic superscript numeral preceding the plus or minussign: Mg2+, PO4

3−

1.1.1.2 Placement of Atoms in a Formula. The electropositive constituent (cation) is placed firstin a formula. If the compound contains more than one electropositive or more than one electronega-tive constituent, the sequence within each class should be in alphabetical order of their symbols. Thealphabetical order may be different in formulas and names; for example, NaNH4HPO4, ammoniumsodium hydrogen phosphate.

Acids are treated as hydrogen salts. Hydrogen is cited last among the cations.When there are several types of ligands, anionic ligands are cited before the neutral ligands.

1.1.1.3 Binary Compounds between Nonmetals. For binary compounds between nonmetals, thatconstituent should be placed first which appears earlier in the sequence:

Rn, Xe, Kr, Ar, Ne, He, B, Si, C, Sb, As, P, N, H, Te, Se, S, At, I, Br, Cl, O, F

Examples: AsCl3, SbH3, H3Te, BrF3, OF2, and N4S4.

1.1.1.4 Chain Compounds. For chain compounds containing three or more elements, thesequence should be in accordance with the order in which the atoms are actually bound in the mole-cule or ion.

Examples: SCN– (thiocyanate), HSCN (hydrogen thiocyanate or thiocyanic acid), HNCO (hydrogenisocyanate), HONC (hydrogen fulminate), and HPH2O2 (hydrogen phosphinate).

1.1.1.5 Use of Centered Period. A centered period is used to denote water of hydration, othersolvates, and addition compounds; for example, CuSO4 · 5H2O, copper(II) sulfate 5-water (orpentahydrate).

1.1.1.6 Free Radicals. In the formula of a polyatomic radical an unpaired electron(s) is (are)indicated by a dot placed as a right superscript to the parentheses (or square bracket for coordinationcompounds). In radical ions the dot precedes the charge. In structural formulas, the dot may beplaced to indicate the location of the unpaired electron(s).

Examples: (HO)· (O2)2· ( ·NH+

3)

1.1.1.7 Enclosing Marks. Where it is necessary in an inorganic formula, enclosing marks (paren-theses, braces, and brackets) are nested within square brackets as follows:

[ ( ) ], [ { ( ) } ], [ { [ ( ) ] } ], [ { { [ ( ) ] } } ]

1.1.1.8 Molecular Formula. For compounds consisting of discrete molecules, a formula inaccordance with the correct molecular weight of the compound should be used.

Examples: S2Cl2, S8, N2O4, and H4P2O6; not SCl, S, NO2, and H2PO3.

1.1.1.9 Structural Formula and Prefixes. In the structural formula the sequence and spatialarrangement of the atoms in a molecule are indicated.

Examples: NaO(O˙C)H (sodium formate), Cl´S´S´Cl (disulfur dichloride).

1.4 SECTION ONE

Structural prefixes should be italicized and connected with the chemical formula by a hyphen: cis-,trans-, anti-, syn-, cyclo-, catena-, o- or ortho-, m- or meta-, p- or para-, sec- (secondary), tert-(tertiary), v- (vicinal), meso-, as- for asymmetrical, and s- for symmetrical.

The sign of optical rotation is placed in parentheses, (+) for dextrorotary, (–) for levorotary, and(±) for racemic, and placed before the formula. The wavelength (in nanometers is indicated by a rightsubscript; unless indicated otherwise, it refers to the sodium D-line.

The italicized symbols d- (for deuterium) and t- (for tritium) are placed after the formula and con-nected to it by a hyphen. The number of deuterium or tritium atoms is indicated by a subscript to thesymbol.

Examples: cis-[PtCl2(NH3)2] methan-d3-ol

di-tert-butyl sulfate (+)589 [Co(en)3]Cl2

methan-ol-d

1.1.2 Naming Compounds

1.1.2.1 Names and Symbols for Elements. Names and symbols for the elements are given inTable 1.3. Wolfram is preferred to tungsten but the latter is used in the United States. In forming acomplete name of a compound, the name of the electropositive constituent is left unmodified exceptwhen it is necessary to indicate the valency (see oxidation number and charge number, (formerly theStock and Ewens-Bassett systems). The order of citation follows the alphabetic listing of the namesof the cations followed by the alphabetical listing of the anions and ligands. The alphabetical citationis maintained regardless of the number of each ligand.

Example: K[AuS(S2)] is potassium (disulfido)thioaurate (1–).

1.1.2.2 Electronegative Constituents. The name of a monatomic electronegative constituent isobtained from the element name with its ending (-en, -ese, -ic, -ine, -ium, -ogen, -on, -orus, -um, -ur,-y, or -ygen) replaced by -ide. The elements bismuth, cobalt, nickel, zinc, and the noble gases areused unchanged with the ending -ide. Homopolyatomic ligands will carry the appropriate prefix. Afew Latin names are used with affixes: cupr- (copper), aur- (gold), ferr- (iron), plumb- (lead), argent-(silver), and stann- (tin).

For binary compounds the name of the element standing later in the sequence in Sec. 1.1.1.3 ismodified to end in -ide. Elements other than those in the sequence of Sec. 1.1.1.3 are taken in thereverse order of the following sequence, and the name of the element occurring last is modified toend in -ide; e.g., calcium stannide.

ELEMENT SEQUENCE

1.1.2.3 Stoichiometric Proportions. The stoichiometric proportions of the constituents in a formulamay be denoted by Greek numerical prefixes: mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-(Latin), deca-, undeca- (Latin), dodeca-, …, icosa- (20), henicosa- (21), …, triconta- (30), tetraconta-(40), …, hecta- (100), and so on, preceding without a hyphen the names of the elements to which theyrefer. The prefix mono can usually be omitted; occasionally hemi- (1/2) and sesqui- (3/2) are used. Noelisions are made when using numerical prefixes except in the case of icosa- when the letter “i” iselided in docosa- and tricosa-. Beyond 10, prefixes may be replaced by Arabic numerals.

He

Ne

Ar

Kr

Xr

Rr

Li

Na

K

Rb

Cr

Fr

Be

Mg

Ca

Sr

Ba

Ra

B

Al

Ca

In

Tl

C

Si

Ge

Sn

Ph

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

B

I

Ai

Se

Y

La

Ti

Zr

Hr

V

Nb

Ta

Cr

Mo

W

Mn

Te

Re

Fe

Ru

Os

Co

Rh

Ir

Ni

Pd

Pr

Cu

Ag

Au

Zn

Cd

Hg

Ac

Lu

Lr

INORGANIC CHEMISTRY 1.5

When it is required to indicate the number of entire groups of atoms, the multiplicative numeralsbis-, tris-, tetrakis-, pentakis-, and so on, are used (i.e., -kis is added starting from tetra-). The entityto which they refer is placed in parentheses.

Examples: Ca[PF6]2, calcium bis(hexafluorophosphate); and (C10H21)3PO4, tris(decyl) phosphateinstead of tridecyl which is (C13H27–).

Composite numeral prefixes are built up by citing units first, then tens, then hundreds, and so on.For example, 43 is written tritetraconta- (or tritetracontakis-).

In indexing it may be convenient to italicize a numerical prefix at the beginning of the name andconnect it to the rest of the name with a hyphen; e.g., di-nitrogen pentaoxide (indexed under the letter“n”).

1.1.2.4 Oxidation and Charge Numbers. The oxidation number (Stock system) of an element isindicated by a Roman numeral placed in parentheses immediately following the name of the ele-ment. For zero, the cipher 0 is used. When used in conjunction with symbols, the Roman numeralmay be placed above and to the right. The charge number of an ion (Ewens-Bassett system) ratherthan the oxidation state is indicated by an Arabic numeral followed by the sign of the charge citedand is placed in parentheses immediately following the name of the ion.

Examples: P2O5, diphosphorus pentaoxide or phosphorus(V) oxide; Hg2+2 . mercury(I) ion or dimer-

cury (2+) ion; K2[Fe(CN)6], potassium hexacyanoferrate(II) or potassium hexacyanoferrate(4–);PbII

2PbIVO4, dilead(II) lead(IV) oxide or trilead tetraoxide.

Where it is not feasible to define an oxidation state for each individual member of a group, theoverall oxidation level of the group is defined by a formal ionic charge to avoid the use of fractionaloxidation states; for example, O2

−.

1.1.2.5 Collective Names. Collective names include:

Halogens (F, Cl, Br, I, At)

Chalcogens (O, S, Se, Te, Po)

Alkali metals (Li, Na, K, Rb, Cs, Fr)

Alkaline-earth metals (Ca, Sr, Ba, Ra)

Lanthanoids or lanthanides (La to Lu)

Rare-earth metals (Sc, Y, and La to Lu inclusive)

Actinoids or actinides (Ac to Lr, those whose 5f shell is being filled)

Noble gases (He to Rn)

A transition element is an element whose atom has an incomplete d subshell, or which gives riseto a cation or cations with an incomplete d subshell.

1.1.2.6 Isotopically Labeled Compounds. The hydrogen isotopes are given special names: 1H(protium), 2H or D (deuterium), and 3H or T (tritium). The superscript designation is preferredbecause D and T disturb the alphabetical ordering in formulas.

Other isotopes are designated by mass numbers: 10B (boron-10).Isotopically labeled compounds may be described by inserting the italic symbol of the isotope in

brackets into the name of the compound; for example, H36Cl is hydrogen chloride[36Cl] or hydrogenchloride-36, and 2H38Cl is hydrogen [2H] chloride[38Cl] or hydrogen-2 chloride-38.

1.1.2.7 Allotropes. Systematic names for gaseous and liquid modifications of elements are some-times needed. Allotropic modifications of an element bear the name of the atom together with thedescriptor to specify the modification. The following are a few common examples:

1.6 SECTION ONE

Symbol Trivial name Systematic name

H Atomic hydrogen MonohydrogenO2 (Common oxygen) DioxygenO3 Ozone TrioxygenP4 White phosphorus TetraphosphorusS8 a-Sulfur, b-Sulfur OctasulfurSn m-Sulfur (plastic sulfur) Polysulfur

Trivial (customary) names are used for the amorphous modification of an element.

1.1.2.8 Heteroatomic and Other Anions. A few heteroatomic anions have names ending in -ide.These are

´OH, hydroxide ion (not hydroxyl) ´NH´ , imide ion

´CN, cyanide ion ´NH´NH2, hydrazide ion

´NH−2 hydrogen difluoride ion ´NHOH, hydroxylamide ion

´NH2, amide ion ´HS−, hydrogen sulfide ion

Added to these anions are

´ triiodide ion ´O´O´, peroxide ion

´N3, axide ion ´S´S´, disulfide ion

´O3, ozonide ion

1.1.2.9 Binary Compounds of Hydrogen. Binary compounds of hydrogen with the more elec-tropositive elements are designated hydrides (NaH, sodium hydride).

Volatile hydrides, except those of Periodic Group VII and of oxygen and nitrogen, are named byciting the root name of the element (penultimate consonant and Latin affixes, Sec. 1.1.2.2) followedby the suffix -ane. Exceptions are water, ammonia, hydrazine, phosphine, arsine, stibine, and bis-muthine.

Examples: B2H6, diborane; B10H14, decaborane (14); B10H16, decaborane (16); P2H4, diphosphane;Sn2H6, distannane; H2Se2, diselane; H2Te2, ditellane; H2S5, pentasulfane; and pbH4, plumbane.

1.1.2.10 Neutral Radicals. Certain neutral radicals have special names ending in -yl:

HO hydroxyl PO phosphoryl

CO carbonyl SO sulfinyl (thionyl)

ClO chlorosyl* SO2 sulfonyl (sulfuryl)

ClO2 chloryl* S2O5 disulfuryl

ClO3 perchloryl* SeO seleninyl

CrO2 chromyl SeO2 selenoyl

NO nitrosyl UO2 uranyl

NO2 nitryl (nitroyl) NpO2 neptunyl†

Radicals analogous to the above containing other chalcogens in place of oxygen are named byadding the prefixes thio-, seleno-, and so on; for example, PS, thiophosphoryl; CS, thiocarbonyl.

INORGANIC CHEMISTRY 1.7

*Similarly for the other halogens.†Similarly for the other actinide elements.

1.1.3 Cations

1.1.3.1 Monatomic Cations. Monatomic cations are named as the corresponding element; forexample, Fe2+, iron(II) ion; Fe3+, iron(III) ion.

This principle also applies to polyatomic cations corresponding to radicals with special namesending in -yl (Sec. 1.1.2.10); for example, PO+, phosphoryl cation; NO+, nitrosyl cation; NO2

2+, nitrylcation; O2

2+ oxygenyl cation.Use of the oxidation number and charge number extends the range for radicals; for example,

UO22+ uranyl(VI) or uranyl(2+) cation; UO2

+, uranyl(V) or uranyl(1+) cation.

1.1.3.2 Polyatomic Cations. Polyatomic cations derived by addition of more protons thanrequired to give a neutral unit to polyatomic anions are named by adding the ending -onium to theroot of the name of the anion element; for example, PH4

+phosphonium ion; H2I+, iodonium ion; H3O

+,oxonium ion; CH3OH2

+methyl oxonium ion.

Exception: The name ammonium is retained for the NH+4 ion; similarly for substituted ammonium

ions; for example, NF4+, tetrafluoroammonium ion.

Substituted ammonium ions derived from nitrogen bases with names ending in -amine receivenames formed by changing -amine into -ammonium. When known by a name not ending in -amine,the cation name is formed by adding the ending -ium to the name of the base (eliding the finalvowel); e.g., anilinium, hydrazinium, imidazolium, acetonium, dioxanium.

Exceptions are the names uronium and thiouronium derived from urea and thiourea, respectively.

1.1.3.3 Multiple Ions from One Base. Where more than one ion is derived from one base, theionic charges are indicated in their names: N2H5

+, hydrazinium(1+) ion; N2H62+, hydrazinium(2+) ion.

1.1.4 Anions

See Secs. 1.1.2.2 and 1.1.2.8 for naming monatomic and certain polyatomic anions. When an organicgroup occurs in an inorganic compound, organic nomenclature (q.v.) is followed to name the organicpart.

1.1.4.1 Protonated Anions. Ions such as HSO4− are recommended to be named hydrogensulfate

with the two words written as one following the usual practice for polyatomic anions.

1.1.4.2 Other Polyatomic Anions. Names for other polyatomic anions consist of the root name ofthe central atom with the ending -ate and followed by the valence of the central atom expressed by itsoxidation number. Atoms and groups attached to the central atom are treated as ligands in a complex.

Examples: [Sb(OH)6−], hexahydroxoantimonate(V); [Fe(CN6]3–, hexacyanoferrate(III);

[Co(NO2)6]3–, hexanitritocobaltate(III); [TiO(C2O4)2(H2O)2]

2–, oxobisoxalatodiaquatitanate(IV);[PCl6]

–, hexachlorophosphate(V).

Exceptions to the use of the root name of the central atom are antimonate, bismuthate, carbonate,cobaltate, nickelate (or niccolate), nitrate, phosphate, tungstate (or wolframate), and zincate.

1.1.4.3 Anions of Oxygen. Oxygen is treated in the same manner as other ligands with thenumber of -oxo groups indicated by a suffix; for example, SO2−

3 , trioxosulfate.The ending -ite, formerly used to denote a lower state of oxidation, may be retained in trivial

names in these cases (note Sec. 1.1.5.3 also):

1.8 SECTION ONE

†Similarly for the other actinoid elements.

AsO33− arsenite NOO2

− peroxonitrite

BrO− hypobromite PO33− phosphite*

ClO− hypochlorite SO32− sulfite

ClO2− chlorite S2O5

2− disulfite

IO− hypoiodite S2O42− dithionite

NO2− nitrite S2O2

2− thiosulfite

N2O22− hyponitrite SeO3

2− selenite

However, compounds known to be double oxides in the solid state are named as such; for exam-ple, Cr2CuO4 (actually Cr2O3 ⋅ CuO) is chromium(III) copper(II) oxide (and not copper chromite).

1.1.4.4 Isopolyanions. Isopolyanions are named by indicating with numerical prefixes thenumber of atoms of the characteristic element. It is not necessary to give the number of oxygenatoms when the charge of the anion or the number of cations is indicated.

Examples: Ca3Mo7O24, tricalcium 24-oxoheptamolybdate, may be shortened to tricalcium hepta-molybdate; the anion, Mo7O24

6−, is heptamolybdate(6–); S2O72−, disulfate(2–); P2O7

4−, diphosphate(V)(4-).

When the characteristic element is partially or wholly present in a lower oxidation state than cor-responds to its Periodic Group number, oxidation numbers are used; for example, [O2HP´O´PO3H]2–, dihydrogendiphosphate(III, V)(2–).

A bridging group should be indicated by adding the Greek letter m immediately before its nameand separating this from the rest of the complex by a hyphen. The atom or atoms of the characteristicelement to which the bridging atom is bonded, is indicated by numbers.

Examples: [O3P´S´PO2´O´PO3]5–, 1, 2-m-thiotriphosphate(5–)

[S3P´O´PS2´O´PS3]5–, di-m-oxo-octathiotriphosphate(5–)

1.1.5 Acids

1.1.5.1 Acids and -ide Anions. Acids giving rise to the -ide anions (Sec. 1.1.2.2) should benamed as hydrogen … -ide; for example, HCl, hydrogen chloride; HN3, hydrogen azide.

Names such as hydrobromic acid refer to an aqueous solution, and percentages such as 48% HBrdenote the weight/volume of hydrogen bromide in the solution.

1.1.5.2 Acids and -ate Anions. Acids giving rise to anions bearing names ending in -ate aretreated as in Sec. 1.1.5.1; for example, H2GeO4, hydrogen germanate; H4[Fe(CN)6], hydrogen hexa-cyanoferrate(II).

1.1.5.3 Trivial Names. Acids given in Table 1.1 retain their trivial names due to long-establishedusage. Anions may be formed from these trivial names by changing -ous acid to -ite, and -ic acid to-ate. The prefix hypo- is used to denote a lower oxidation state and the prefix per- designates a higheroxidation state. The prefixes ortho- and meta- distinguish acids of differing water content; for exam-ple, H4SiO4 is orthosilicic acid and H2SiO3 is metasilicic acid. The anions would be named silicate(4–) and silicate(2–), respectively.

1.1.5.4 Peroxo- Group. When used in conjunction with the trivial names of acids, the prefixperoxo- indicates substitution of ´O´by´O´O´.

INORGANIC CHEMISTRY 1.9

*Named for esters formed from the hypothetical acid P(OH)3.

1.1.5.5 Replacement of Oxygen by Other Chalcogens. Acids derived from oxoacids by replace-ment of oxygen by sulfur are called thioacids, and the number of replacements are given by prefixesdi-, tri-, and so on. The affixes seleno- and telluro- are used analogously.

Examples: HOO´C˙S, thiocarbonic acid; HSS´C˙S, trithiocarbonic acid.

1.1.5.6 Ligands Other than Oxygen and Sulfur. See Sec. 1.1.7, Coordination Compounds, foracids containing ligands other than oxygen and sulfur (selenium and tellurium).

1.1.5.7 Differences between Organic and Inorganic Nomenclature. Organic nomenclature islargely built upon the scheme of substitution, that is, the replacement of hydrogen atoms by other atomsor groups. Although rare in inorganic nomenclature: NH2Cl is called chloramine and NHCl2

dichloroamine. Other substitutive names are fluorosulfonic acid and chlorosulfonic acid derived fromHSO3H. These and the names aminosulfonic acid (sulfamic acid), iminodisulfonic acid, and nitrilotrisul-fonic acid should be replaced by the following based on the concept that these names are formed byadding hydroxyl, amide, imide, and so on, groups together with oxygen atoms to a sulfur atom:

HSO3F fluorosulfuric acid NH(SO3H)2 imidobis(sulfuric) acid

HSO3Cl chlorosulfuric acid N(SO3H)3 nitridotris(sulfuric) acid

NH2SO3H amidosulfuric acid

1.10 SECTION ONE

TABLE 1.1 Trivial Names for Acids

H3AsO4

H5AsO3

H3BO,HBOjHBrO3

HBrO2

HBrOH2COjHOCNHNCOHONCHC1O4

HC1O3

HCiO2

HCIOH,CiO4

HjCijOjH5I06HI04

HIOjHIDHMnO4

HsMnO4

HNOjHNOjHNCT,HjNOjH2NAHOONOHfQ*

HP03

H3PO:

arsenic acidarsenious acidonhoboric acid (or boric acid)metaboric acidbromic acidbrornous acidhypobromous acidcarbonic acidcyanic acidisocyanic acidfulminic acidperchloric acidchloric acidchlorous acidhypochiorous acidchromic aciddichromic acidonhoperiodic acidperiodic acidiodic acidhypoiodous acidpermanganic acidmanganic acidperoxonitric acidnitric acidnitrous acidnitroxylic acidhyponitrous acidperoxonitrous acidorthophosphoric acid (or

phosphoric acid)metaphosphoric acidperoxomonophosphoric acid

H,P30,

H4PA

(HO),OP1

(HO)2OP(HO),P— 0

1(HO)jP— OH2PHO3

H^P^H^O;

HPH,O;

HReOjHjReO4

H2S04

H2S207H,S05

H2S,03H2S2S6

H^OjH2S205

HjS^O;

BdSAH2S,06

(x = 3. 4, . ,ayro,HSb(OH)6

HjSeO,HjSe03

H,Si04

H2SiOjHTc04

HjTcO,,H6Te06

diphosphoric acid (or pyre-phosphoric acid)

peroxodi phosphoric aciddiphosphoric (IV) acid or

hypo phosphoric acid

diphosphoric(IH,V) acid

phosphonic aciddiphosphonic acidphosphinic acid (formerly

hypophosphorous acid)perrhenic acidrhenic acidsu If uric aciddisuifuric acidperoxomonosulfuric acidIhiosulfuric aciddilh ionic acidsulfurous aciddisulfurous acidLhiosulfurous aciddithionous acidpolythionic acid

. ) (tri-, tetra-, . . . )sul foxy lie acidhexahydrooxoanlimonic acidselentc acidselenious acidorthosilicic acidmctasilicic acidpertechnetic acidtechnetic acidonhotelluric acid

1.1.6 Salts and Functional Derivatives of Acids

1.1.6.1 Acid Halogenides. For acid halogenides the name is formed from the corresponding acidradical if this has a special name (Sec. 1.1.2.10); for example, NOCl, nitrosyl chloride. In other casesthese compounds are named as halogenide oxides with the ligands listed alphabetically; for example,BiClO, bismuth chloride oxide; VCl2O, vanadium(IV) dichloride oxide.

1.1.6.2 Anhydrides. Anhydrides of inorganic acids are named as oxides; for example, N2O5, dini-trogen pentaoxide.

1.1.6.3 Esters. Esters of inorganic acids are named as the salts; for example, (CH3)2SO4,dimethyl sulfate. However, if it is desired to specify the constitution of the compound, the nomencla-ture for coordination compounds should be used.

1.1.6.4 Amides. Names for amides are derived from the names of the acid radicals (or from thenames of acids by replacing acid by amide); for example, SO2(NH2)2, sulfonyl diamide (or sulfuricdiamide); NH2SO3H, sulfamidic acid (or amidosulfuric acid).

1.1.6.5 Salts. Salts containing acid hydrogen are named by adding the word hydrogen before thename of the anion (however, see Sec. 1.1.4.1), for example, KH2PO4, potassium dihydrogen phos-phate; NaHCO3, sodium hydrogen carbonate (not bicarbonate); NaHPHO3, sodium hydrogen phos-phonate (only one acid hydrogen remaining).

Salts containing O2− and HO− anions are named oxide and hydroxide, respectively. Anions arecited in alphabetical order which may be different in formulas and names.

Examples: FeO(OH), iron(III) hydroxide oxide; VO(SO4), vanadium(IV) oxide sulfate.

1.1.6.6 Multiplicative Prefixes. The multiplicative prefixes bis, tris, etc., are used with certainanions for indicating stoichiometric proportions when di, tri, etc., have been preempted to designatecondensed anions; for example, AlK(SO4)2 · 12H2O, aluminum potassium bis(sulfate) 12-water(recall that disulfate refers to the anion S2O7

2−).

1.1.6.7 Crystal Structure. The structure type of crystals may be added in parentheses and in ital-ics after the name; the latter should be in accordance with the structure. When the typename is alsothe mineral name of the substance itself, italics are not used.

Examples: MgTiO3, magnesium titanium trioxide (ilmenite type); FeTiO3, iron(II) titanium trioxide(ilmenite).

1.1.7 Coordination Compounds

1.1.7.1 Naming a Coordination Compound. To name a coordination compound, the names ofthe ligands are attached directly in front of the name of the central atom. The ligands are listed inalphabetical order regardless of the number of each and with the name of a ligand treated as a unit.Thus “diammine” is listed under “a” and “dimethylamine” under “d.” The oxidation number of thecentral atom is stated last by either the oxidation number or charge number.

1.1.7.2 Anionic Ligands. Whether inorganic or organic, the names for anionic ligands end in -o(eliding the final -e, if present, in the anion name). Enclosing marks are required for inorganicanionic ligands containing numerical prefixes, and for thio, seleno, and telluro analogs of oxo anionscontaining more than one atom.

If the coordination entity is negatively charged, the cations paired with the complex anion (with-ate ending) are listed first. If the entity is positively charged, the anions paired with the complexcation are listed immediately afterward.

INORGANIC CHEMISTRY 1.11

The following anions do not follow the nomenclature rules:

F− fluoro HO2− hydrogen peroxo

Cl− chloro S2− thio (only for single sulfur)

Br− bromo S22− disulfido

I− iodo HS− mercapto

O2− oxo CN− cyano

H− hydrido (or hydro) CH3O− methoxo or methanolato

OH− hydroxo CH3S− methylthio or methanethiolato

O22− peroxo

I.1.7.3 Neutral and Cationic Ligands. Neutral and cationic ligands are used without change inname and are set off with enclosing marks. Water and ammonia, as neutral ligands, are called “aqua”and “ammine,” respectively. The groups NO and CO, when linked directly to a metal atom, are callednitrosyl and carbonyl, respectively.

I.1.7.4 Attachment Points of Ligands. The different points of attachment of a ligand are denoted byadding italicized symbol(s) for the atom or atoms through which the attachment occurs at the end of thename of the ligand; e.g., glycine-N or glycinato-O, N. If the same element is involved in different pos-sible coordination sites, the position in the chain or ring to which the element is attached is indicated bynumerical superscripts: e.g., tartrato(3–)-O1, O2, or tartrato(4–)-O2, O3 or tartrato(2–) O1, O4

1.1.7.5 Abbreviations for Ligand Names. Except for certain hydrocarbon radicals, for ligand (L)and metal (M), and a few with H, all abbreviations are in lowercase letters and do not involve hyphens.In formulas, the ligand abbreviation is set off with parentheses. Some common abbreviations are

Ac acetyl en ethylenediamine

acac acetylacetonato Him imidazole

Hacac acetylacetone H2ida iminodiacetic acid

Hba benzoylacetone Me methyl

Bzl benzyl H3nta nitrilotriacetic acid

Hbg biguanide nbd norbornadiene

bpy 2, 2′-bipyridine ox oxalato(2–) from parent H2ox

Bu Butyl phen 1, 10-phenanthroline

Cy cyclohexyl Ph phenyl

D2dea diethanolamine pip piperidine

dien diethylenetriamine Pr propyl

dmf dimethylformamide pn propylenediamine

H2dmg dimethylglyoxime Hpz pyrazole

dmg dimethylglyoximato(2–) py pyridine

Hdmg dimethylglyoximato(1–) thf tetrahydrofuran

dmso dimethylsulfoxide tu thiourea

Et ethyl H3tea triethanolamine

H4edta ethylenediaminetetraacetic acid tren 2, 2′, 2″-triaminotriethylamine

Hedta, edta coordinated ions derived trien triethylenetetraaminefrom H4edta tn trimethylenediamine

Hea ethanolamine ur urea

1.12 SECTION ONE

Examples: Li[B(NH2)4], lithium tetraamidoborate(1–) or lithium tetraamidoborate(III);[Co(NH3)5Cl]Cl3, pentaamminechlorocobalt(III) chloride or pentaamminechlorocobalt(2+) chloride;K3[Fe(CN)5CO], potassium carbonylpentacyanoferrate(II) or potassium carbonylpentacyanoferrate(3–);[Mn{C6H4(O)(COO)}2(H2O)4]

–, tetraaquabis[salicylato(2–)]manganate(III) ion; [Ni(C4H7N2O2)2] or[Ni(dmg)] which can be named bis-(2, 3-butanedione dioximate)nickel(II) or bis[dimethylglyoxi-mato(2–)]nickel(II).

1.1.8 Addition Compounds

The names of addition compounds are formed by connecting the names of individual compounds bya dash (—) and indicating the numbers of molecules in the name by Arabic numerals separated bythe solidus (diagonal slash). All molecules are cited in order of increasing number; those having thesame number are cited in alphabetic order. However, boron compounds and water are always citedlast and in that order.

Examples: 3CdSO4 ⋅ 8H2O, cadmium sulfate—water (3/8); Al2(SO4)3 ⋅ K2SO4 ⋅ 24H2O, aluminumsulfate—potassium sulfate—water (1/1/24); AlCl3 · 4C2H5OH, aluminum chloride—ethanol (1/4).

INORGANIC CHEMISTRY 1.13

TABLE 1.2 Synonyms and Mineral Names

1.1.9 Synonyms and Mineral Names

(Continued)

TABLE 1.2 Synonyms and Mineral Names

Acanthite, see Silver sulfideAlabandite, see Manganese sulfideAlamosite, see Lead(n) silicate(2-)Altaite, see Lead tellurideAlumina, see Aluminum oxideAlundum, see Aluminum oxideAlunogenite, see Aluminum sulfate 18-waterAmphibole, see Magnesium silicate(2— )Andalusite, see Aluminum silicon oxide (1/1)Anglesite, see Lead sulfateAnhydrite, see Calcium sulfateAnhydrone, see Magnesium perchlorateAragonite, see Calcium carbonateArcanite, see Potassium sulfateArgentite, see Silver sulfideArgol, see Potassium hydrogen tartrateArkansite, see Titanium(IV) oxideArsenolite, see Arsenic(III) oxide dimerArsine, see Arsenic hydrideAuric and aurous, see under GoldAzoimide, see Hydrogen azideAzurite, see Copper(II) carbonate — dihydroxide

(2/1)

Baddeleyite, see Zrrconium(IV) oxideBaking soda, see Sodium hydrogen carbonateBarite (barytes), see Barium sulfateBieberite, see Cobalt sulfate 7-waterBismuthine, see Bismuth hydrideBismuthinite, see Bismuth sulfideBleaching powder, see Calcium hydrochloriteBleaching solution, see Sodium hydrochloriteBlue copperas, see Copper(II) sulfate 7-waterBoracic acid, see Hydrogen borate

Borax, see Sodium tetraborate 10-waterBraunite, see Manganese(III) oxideBrimstone, see SulfurBromellite, see Beryllium oxideBromosulfonic acid, see Hydrogen bromosulfateBromyrite, see Silver bromideBrookite, see Titanium(IV) oxideBrucite, see Magnesium hydroxideBunsenite, see Nickel oxide

Cacodylate, see Sodium dimethylarsonate 3-waterCaesium, see under CesiumCalamine, see Zinc carbonateCalcia, see Calcium oxideCalcite, see Calcium carbonateCalomel, see Mercury(I) chlorideCaro's acid, see Hydrogen peroxosulfateCassiopeium, see LutetiumCassiterite, see Tin(IV) oxideCaustic potash, see Potassium hydroxideCaustic soda, see Sodium hydroxideCelestite, see Strontium sulfateCementite, see tri-Iron carbideCerargyrite, see Silver chlorideCerussite, see Lead carbonateChalcanthite, see Copper(II) sulfate 5-waterChalcocite, see Copper(I) sulfideChalk, see Calcium carbonateChile nitre, see Sodium nitrateChile saltpeter, see Sodium nitrateChloromagnesite, see Magnesium chlorideChlorosulfonic acid, see Hydrogen chlorosulfateCinnabar, see Mercury(II) sulfideClaudetite, see Arsenic(III) oxide dimer

1.14 SECTION ONE

TABLE 1.2 Synonyms and Mineral Names (Continued)

Clausthalite, see Lead selenideClinoenstatite, see Magnesium silicate(2— )Columbium, see under NiobiumCorrosive sublimate, see Mercury(II) chlorideCorundum, see Aluminum oxideCotunite, see Lead chlorideCovellite, see Copper(II) sulfideCream of tartar, see Potassium hydrogen tartrateCrocoite, see Lead chromate(VI)(2— )Cryolite, see Sodium hexafluoroaluminateCryptohalite, see Ammonium hexafluorosilicateCupric and cuprous, see under CopperCuprite, see Copper(I) oxide

Dakin's solution, see Sodium hypochloriteDehydrite, see Magnesium perchlorateDental gas, see Nitrogen(I) oxideDiamond, see CarbonDichlorodisulfane, see di-Sulfur dichlorideDiuretic salt, see Potassium acetateDolomite, see Calcium magnesium carbonate (1/1)Dry ice, see Carbon dioxide (solid)

Enstatite, see Magnesium silicate(2-)Epsom salts, see Magnesium sulfate 7-waterEpsomite, see Magnesium sulfate 7-waterEriochalcite, see Copper(II) chloride

Fayalite, see Iron(II) silicate(4-)Ferric and ferrous, see under IronFluorine oxide, see Oxygen difluorideFluoristan, see Tin(II) fluorideFluorite, see Calcium fluorideFluorosulfonic acid, see Hydrogen fluorosulfateFluorspar, see Calcium fluorideForsterite, see Magnesium silicate(4— )Freezing salt, see Sodium chlorideFulminating mercury, see Mercury fulminate

Galena, see Lead sulfiteGlauber's salt, see Sodium sulfate 10- waterGoethite, see Iron(II) hydroxide oxideGoslarite, see Zinc sulfate 7-waterGraham's salt, see Sodium phosphate(l-)Graphite, see CarbonGreenockite, see Cadmium sulfideGruenerite, see Iron(II) silicate(2— )Guanajuatite, see Bismuth selenideGypsum, see Calcium sulfate 2-water

Halite, see Sodium chlorideHausmannite, see Manganese(II,IV) oxideHeavy hydrogen, see Hydrogenpíí] or name fol-

lowed by -dHeavy water, see Hydrogenp//] oxideHeazlewoodite, see iri-Nickel disulfideHematite, see Iron(III) oxideHermannite, see Manganese silicateHessite, see Silver telluride

Hieratite, see Potassium hexafluorosilicateHydroazoic acid, see Hydrogen azideHydrophilite, see Calcium chlorideHydrosulfite, see Sodium dithionate(III)Hypo (photographic), see Sodium thiosulfate

5-waterHypophosphite, see under Phosphinate

Ice, see Hydrogen oxide (solid)Iceland spar, see Calcium carbonatelodyrite, see Silver iodide

Jeweler's borax, see Sodium tetraborate 10- waterJeweler's rouge, see Iron(III) oxide

Kalinite, see Aluminum potassium bis(sulfate)Kernite, see Sodium tetraborateKyanite, see Aluminum silicon oxide (1/1)

Laughing gas, see Nitrogen(I) oxideLautarite, see Calcium iodateLawrencite, see Iron(II) chlorideLechatelierite, see Silicon dioxideLime, see Calcium oxideLitharge, see Lead(II) oxideLithium aluminum hydride, see Lithium tetrahydri-

do alumínateLodestone, see Iron(II,III) oxideLunar caustic, see Silver nitrateLye, see Sodium hydroxide

Magnesia, see Magnesium oxideMagnesite, see Magnesium carbonateMagnetite, see Iron(n,III) oxideMalachite, see Copper carbonate dihydroxideManganosite, see Manganese(II) oxideMarcasite, see Iron disulfideMarshite, see Copper(I) iodideMascagnite, see Ammonium sulfateMassicotite, see Lead oxideMercuric and mercurous, see under MercuryMetacinnabar, see Mercury(II) sulfideMillerite, see Nickel sulfideMirabilite, see Sodium sulfateMohr' s salt, see Ammonium iron(II) sulfate 6- waterMoissanite, see Silicon carbideMolybdenite, see Molybdenum disulfideMolybdite, see Molybdenum(VI) oxideMolysite, see Iron(HI) chlorideMontroydite, see Mercury(II) oxideMorenosite, see Nickel sulfate 7-waterMosaic gold, see Tin disulfideMuriatic acid, see Hydrogen chloride, aqueous solu-

tions

Nantokite, see Copper(I) chlorideNatron, see Sodium carbonateNaumannite, see Silver selenideNeutral verdigris, see Copper(II) acetateNitre (niter), see Potassium nitrate

INORGANIC CHEMISTRY 1.15

TABLE 1.2 Synonyms and Mineral Names (Continued)

Nitric oxide, see Nitrogen(II) oxideNitrobarite, see Barium nitrateNitromagnesite, see Magnesium nitrate 6-waterNitroprusside, see Sodium pentacyanonitrosylfer-

rate(II) 2-water

Oldhamite, see Calcium sulfideOpal, see Silicon dioxideOrpiment, see Arsenic trisulfideOxygen powder, see Sodium peroxide

Paris green, see Copper acetate arsenate(III) (1/3)Pawellite, see Calcium molybdate(VI)(2-)Pearl ash, see Potassium carbonatePerborax, see Sodium peroxoboratePericlase, see Magnesium oxidePersulfate, see PeroxodisulfatePhosgene, see Carbonyl chloridePhosphine, see Hydrogen phosphidePickling acid, see Hydrogen sulfatePitchblende, see Uranium(IV) oxidePlaster of Paris, see Calcium sulfate hemihydratePlatínente, see Lead(IV) oxidePolianite, see Manganese(IV) oxidePolishing powder, see Silicon dioxidePotash, see Potassium carbonatePotassium acid phthalate, see Potassium hydrogen

phthalatePrussic acid, see Hydrogen cyanidePyrite, see Iron disulfidePyrochroite, see Manganese(n) hydroxidePyrohytpophosphite, see diphosphate(IV)Pyrolusite, see Manganese(IV) oxidePyrophanite, see Manganese titanate(IV)(2— )Pyrophosphate, see Diphosphate(V)Pyrosulfuric acid, see Hydrogen disulfate

Quartz, see Silicon dioxideQuicksilver, see Mercury

Realgar, see di-Arsenic disulfideRed lead, see Lead(II,IV) oxideRhodochrosite, see Manganese carbonateRhodonite, see Manganese silicate(l-)Rochelle salt, see Potassium sodium tartrate 4-waterRock crystal, see Silicon dioxideRutile, see Titanium(IV) oxide

Sal soda, see Sodium carbonate 10-waterSaltpeter, see Potassium nitrateScacchite, see Manganese chlorideScheelite, see Calcium tungstate(VI)(2-)Sellaite, see Magnesium fluorideSenarmontite, see Antimony(III) oxideSiderite, see Iron(II) carbonateSiderotil, see Iron(II) sulfate 5-waterSilica, see Silicon dioxideSilicotungstic acid, see Silicon oxide — tungsten

oxide— water (1/12/26)Sillimanite, see Aluminum silicon oxide (1/1)

Smithsonite, see Zinc carbonateSoda ash, see Sodium carbonateSpelter, see Zinc metalSphalerite, see Zinc sulfideSpherocobaltite, see Cobalt(II) carbonateSpinel, see Magnesium aluminate(2— )Stannic and stannous, see under TinStibine, see Antimony hydrideStibnite, see Antimony(III) sulfideStolzite, see Lead tungstate(VI)(2-)Strengite, see Iron(HI) phosphateStrontianite, see Strontium carbonateSugar of lead, see Lead acetateSulfamate, see AmidosulfateSulphate, see SulfateSulfurated lime, see Calcium sulfideSulfuretted hydrogen, see Hydrogen sulfideSulphur, see SulfurSulfuryl, see SulfonylSycoporite, see Cobalt sulfideSylvite, see Potassium chlorideSzmikite, see Manganese(II) sulfate hydrate

Tarapacaite, see Potassium chromate(VI)Tellurite, see Tellurium dioxideTenorite, see Copper(II) oxideTephroite, see Manganese silicate(l-)Thenardite, see Sodium sulfateThionyl, see SulfinylThorianite, see Thorium dioxideTopaz, see Aluminum hexafluorosilicateTridymite, see Silicon dioxideTroilite, see Iron(II) sulfideTrona, see Sodium carbonate — hydrogen carbonate

dihydrateTschermigite, see Aluminum ammonium bis(sulfate)Tungstenite, see Tungsten disulfideTungstite, see Hydrogen tungstate

Uraninite, see Uranium(IV) oxide

Valentinite, see Antimony(III) oxideVerdigris, see Copper acetate hydrateVermillion, see Mercury(II) sulfideVilliaumite, see Sodium fluorideVitamin B3, see Calcium (+)pantothenate

Washing soda, see Sodium carbonate 10-waterWhitlockite, see Calcium phosphateWillemite, see Zinc silicate(4— )Wolfram, see TungstenWuestite, see Iron(II) oxideWulfenite, see Lead molybdate(VI)(2-)Wurtzite, see Zinc sulfide

Zincite, see Zinc oxideZincosite, see Zinc sulfateZincspar, see Zinc carbonateZirconia, see Zirconium oxide

1.2 PHYSICAL PROPERTIES OF INORGANIC COMPOUNDS

Names follow the IUPAC Nomenclature. Solvates are listed under the entry for the anhydrous salt.Acids are entered under hydrogen and acid salts are entered as a subentry under hydrogen.

Formula weights are based upon the International Atomic Weights and are computed to the nearesthundredth when justified. The actual significant figures are given in the atomic weights of the indi-vidual elements. Each element that has neither a stable isotope nor a characteristic natural isotopiccomposition is represented in this table by one of that element’s commonly known radioisotopesidentified by mass number and relative atomic mass.

1.2.1 Density

Density is the mass of a substance contained in a unit volume. In the SI system of units, the ratio ofthe density of a substance to the density of water at 15°C is known as the specific gravity (relativedensity). Various units of density, such as kg/m3, lb-mass/ft3, and g/cm3, are commonly used. In addi-tion, molar densities or the density divided by the molecular weight is often specified.

Density values are given at room temperature unless otherwise indicated by the superscript figure;for example, 2.48715 indicates a density of 2.487 g/cm3 for the substance at 15°C. A superscript 20over a subscript 4 indicates a density at 20°C relative to that of water at 4°C. For gases the values aregiven as grams per liter (g/L).

1.2.2 Melting Point (Freezing Temperature)

The melting point of a solid is the temperature at which the vapor pressure of the solid and the liquidare the same and the pressure totals one atmosphere and the solid and liquid phases are in equilib-rium. For a pure substance, the melting point is equal to the freezing point. Thus, the freezing point isthe temperature at which a liquid becomes a solid at normal atmospheric pressure.

The triple point of a material occurs when the vapor, liquid, and solid phases are all in equilib-rium. This is the point on a phase diagram where the solid-vapor, solid-liquid, and liquid-vapor equi-librium lines all meet. A phase diagram is a diagram that shows the state of a substance at differenttemperatures and pressures.

Melting point is recorded in a certain case as 250 d and in some other cases as d 250, the distinc-tion being made in this manner to indicate that the former is a melting point with decomposition at250°C while in the latter decomposition only occurs at 250°C and higher temperatures. Where avalue such as –6H2O, 150 is given it indicates a loss of 6 moles of water per formula weight of thecompound at a temperature of 150°C. For hydrates the temperature stated represents the compoundmelting in its water of hydration.

1.2.3 Boiling Point

The normal boiling point (boiling temperature) of a substance is the temperature at which the vaporpressure of the substance is equal to atmospheric pressure.

At the boiling point, a substance changes its state from liquid to gas. A stricter definition of boil-ing point is the temperature at which the liquid and vapor (gas) phases of a substance can exist inequilibrium. When heat is applied to a liquid, the temperature of the liquid rises until the vapor pres-sure of the liquid equals the pressure of the surrounding atmosphere (gases). At this point there is nofurther rise in temperature, and the additional heat energy supplied is absorbed as latent heat ofvaporization to transform the liquid into gas. This transformation occurs not only at the surface of theliquid (as in the case of evaporation) but also throughout the volume of the liquid, where bubbles ofgas are formed. The boiling point of a liquid is lowered if the pressure of the surrounding atmosphere(gases) is decreased. On the other hand, if the pressure of the surrounding atmosphere (gases) isincreased, the boiling point is raised. For this reason, it is customary when the boiling point of a sub-stance is given to include the pressure at which it is observed, if that pressure is other than standard,i.e., 760 mm of mercury or 1 atmosphere (STP, Standard Temperature and Pressure). The boiling

1.16 SECTION ONE

point of a solution is usually higher than that of the pure solvent; this boiling-point elevation is oneof the colligative properties common to all solutions.

Boiling point is given at atmospheric pressure (760 mm of mercury or 101 325 Pa) unless other-wise indicated; thus 8215mm indicates that the boiling point is 82°C when the pressure is 15 mm ofmercury. Also, subl 550 indicates that the compound sublimes at 550°C. Occasionally decomposi-tion products are mentioned.

1.2.4 Refractive Index

The refractive index n is the ratio of the velocity of light in a particular substance to the velocity oflight in vacuum. Values reported refer to the ratio of the velocity in air to that in the substance satu-rated with air. Usually the yellow sodium doublet lines are used; they have a weighted mean of589.26 nm and are symbolized by D. When only a single refractive index is available, approximatevalues over a small temperature range may be calculated using a mean value of 0.000 45 per degreefor dn/dt, and remembering that nD decreases with an increase in temperature. If a transition pointlies within the temperature range, extrapolation is not reliable.

The specific refraction rD is given by the Lorentz and Lorenz equation,

where r is the density at the same temperature as the refractive index, and is independent of temper-ature and pressure. The molar refraction is equal to the specific refraction multiplied by the molecularweight. It is a more or less additive property of the groups or elements comprising the compound. Anextensive discussion will be found in Bauer, Fajans, and Lewin, in Physical Methods of OrganicChemistry, 3d ed., A. Weissberger (ed.), vol. 1, part II, chap. 28, Wiley-Interscience, New York,1960.

The empirical Eykman equation

offers a more accurate means for checking the accuracy of experimental densities and refractiveindices, and for calculating one from the other, than does the Lorentz and Lorenz equation.

The refractive index of moist air can be calculated from the expression

where p1 is the partial pressure of dry air (in mmHg), p2 is the partial pressure of carbon dioxide (inmmHg), p3 is the partial pressure of water vapor (in mmHg), and T is the temperature (in kelvins).

Example: 1-Propynyl acetate has nD = 1.4187 and density = 0.9982 at 20°C; the molecularweight is 98.102. From the Lorentz and Lorenz equation,

The molar refraction isMrD = (98.102)(0.2528) = 24.80

From the atomic and group refractions, the molar refraction is computed as follows:

6 H 6.6005 C 12.0901 CæC 2.3981 O(ether) 1.6431 O(carbonyl) 2.211

MrD = 24.942

rD = ++

⋅ =( . )

( . ) ..

1 4187 1

1 4187 2

1

0 99820 2528

2

2

( ). . .

nT

pT

pT T

p− × = + + +⎛⎝

⎞⎠1 10

103 49 177 4 86 261

574861 2 3

n

nD

D

constant2 1

0 4

1−+

⋅ =. ρ

rn

nD

D

D

= −+

⋅2

2

1

2

1

r

INORGANIC CHEMISTRY 1.17

TABLE 1.3 Physical Constants of Inorganic Compounds

Melting point, Boiling point, Solubility Name Formula Formula weight Density °C °C in 100 parts solvent

1.1

8

a, acidabs, absoluteabs ale, anhydrous ethanolacet, acetonealk, alkali (aq NaOH or KOH)anhyd, anhydrousaq, aqueousaq reg, aqua regiaatm, atmosphereBuOH, butanolbz, benzenec, solid state

ca., approximatelychl, chloroformcone, concentratedcub, cubicd, decomposesdil, dilutedisprop, disproportionatesEtOAc, ethyl acetateeth, diethyl etherEtOH, 95% ethanolexpl, explodesfcc, face-centered cubic

fctetr, face-centeredtetragonalFP, flash pointfum, fumingfus, fusion, fusesg, gas, gramglyc, glycerolh, hothex, hexagonalHOAc, acetic acidi, insolubleign, ignites

Abbreviations Used in the Table

L, literlq, liquidMeOH, methanolmin, mineralmL, milliliterorg, organicoxid, oxidizingPE, petroleum etherpyr, pyridines, solublesatd, saturatedsl, slightly

soln, solutionsolv, solvent (s)subl, sublimessulf, sulfidestart, tartrateTHF, tetrahydrofuranv, veryvac, vacuumviol, violentlyvolat, volatilizes<, less than>, greater than

Actínium-227bromide

Aluminumacetylacetonateammonium bis(sulfate)

12- waterantimonidearsenidebis(acetylsalicylate)borate (2/1)bromidebutoxide, sec-butoxide, tert-carbide (4/3)chloratechloride

ethoxidefluoridehydroxideiodideisopropoxidemethoxide

AcAcBr3AlA1(C5H702)3A1NH4(SO4)2 • 12H2O

AlSbAlAsA1(OOCC6H4OCOCH3)2OH2A12O3 • B2O3AlBr3

A1(C4H90)3A1(C4H9O)3

A14C3

A1(C103)3A1C13

A1(C2H50)3

A1F3A1(OH)3

A1I3

A1(C3H70)3A1(CH3O)3

227.0278466.7426.981539

324.31453.33

148.74101.90402.30273.54266.69246.33246.33143.96277.35133.34

162.1683.9878.01

407.69204.2572.07

10.075.852.701.271.65

4.263.76

3.205J8

0.9671.025JS"2.360

2.44025

1.1422,0

2.88245

2.423.98"1.0346g°

1050(50)subi 800660.323190-193anhyd >280

10601740

ca. 105097.5

2100

192.6

1401090to A12O3, 300191.0118.50

ca. 3200

2518315

subi 253200-20630™1

subi 180d >2200400mm

subi 181.1

20514mm

subi 1272

3821 3510mm

130

d aq; s acidss aqs HC1, H2SO4, alki aq; v s ale; s bz, eth14.3 g/100 mL aq; s glyc;

v si s aq, ale, ethi aqd (viol) aq; s ale, acet, bz,FP 27; v s org solvv s org solvd aq; fire hazardv s aq; s ale

i ale

CS2

g/100 mL: 70 aq (viol), 10012 absale; s CC14, eth; si s bz

s hot aq d; v si s ale, eth0.56 aq; i a, alk, ale, aceti aq; s acids, alkalisd aq; s ale, eth, CS2

d aq; s ale, bz, chl, PE

1.1

9

(Continued )

nitrate 9-waternitrideoxide (alpha-)perchlorate 6-waterphenoxidephosphatephosphidephosphinate (hypophos-

phite)potassium bis(sulfate)

12-waterpropoxideselenidesilicon oxide (1/1)sodium bis(sulfate)

12-waterstéaratesulfatesulfate 18-watersulfidetetrahydridoborate

AmericiumAmmonia

Ammonium acetate

amidosulfatebenzoatebromide

calcium arsenate 6-watercarbamatecarbonate 1 -waterchloride

chromate(VI)chromium(in) bissulfate

12-watercopperCH) tetrachloride

2-water

A1(NO3)3 • 9H2OA1NA103

A1(C1O4)3 • 6H2OA1(C6H50)3

A1PO4

A1PA1(H2P02)3

A1K(SO4)2 • 12H2O

A1(C3H70)3

Al2Se3

A12O3 • SiO2

AlNa(SO4)2 • 12H2O

A1(C18H3502)3

A12(S04)3

A12(SO4)3 • 18H2OA12S3

A1(BH4)3

AmNH3

NH4C2H3O2

NH4SO3NH2

NHiCjHANH4Br

NH4CaAsO4 • 6H2ONH4COONH2

(NH4)2C03 • H20NH4C1

(NH4)2Cr04

NH4Cr(S04)2 • 12H20

(NH4)2CuCl4 • 2H2O

375.1340.99

101.96433.43306.27121.9557.96

221.94

474.39

204.25290.84162.05458.28

877.41342.15666.46150.1671.53

24317.03

77.08

114.13139.1597.94

305.1378.07

114.1053.49

152.07478.34

277.46

1.723.053.972.0201.232.562.854

5

1.75720

1.05782,0

3.437?»3.2471.67520

1.0701.611.69"2.2013

12Iq: 0.6818 at bpg: 0.617515>7-2am

1.1720

1.2602.429

1.90515

1.527425

1.9112

1.72

1.993

73d25172054(6)120.8d265>14602550d to PH3, 220

-9H20, 92

106947

61

117-120770 dd86.51097-64.51176-77.75

114

131198452 (subi under

pressure)d!40subi 60volatilizes 60237.8

d 18594 d

anhyd, 110

d 135

2980anhyd 178

anhyd, 200

24gl4mm

subi 150044.52011-33.35

d

d 160subi 160d 397 vacuo

520

d>120

g/100 mL: 64 aq, 100 ale; s acetd aq, acid, alkalii aq; v si s a, alk133 g/100 mL20 aqd aq; s ale, chl, ethi aq; si s ad aqi aq; s HCI, warm alkali

11.4 g/100 mL aq; v s glyc; i ale

d aq; s aled aq, acidi aq; d HF; s fused alkali110g/100mLI5aq;ialc

i aq, ale; s bz, alk36.4 g/100 mL20 aq; si s ale87 g/100 mL° aq; i alehyd aq; s acidd aq; ign air; expl in O2, 20s ag/100 mL: 34 aq; 13.2 ale; s èth,

organic solventsg/100 mL: 1484 aq, 7.915 MeOH; s

alev s aq; si s aleg/100 mL: 2015 aq, 2.8 ale; s glyc76 g/100 mL20 aq; v s acet, ale, eth

0.02 aq; s NH4C1v s aq; si s ale; i ethv s aq; i aleg/100 mL: 2615 aq, 0.619 abs ale; i

acet, eth34 g/100 mL20 aq; si s MeOH7.2 g/100 mL° aq

40.3 g/100 mL20 aq; s ale

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

1.2

0

cyanidedichromate(VI)

dihydrogen arsenatedihydrogen phosphatedisulfatocobatate(II)

6-waterdisulfatoferrate(II) 6-waterdisulfatoferrate(ni)

12- waterdisulfatonickelate(n)

6-waterdithiocarbamatediuranate(VI)fluorideformateheptamolybdate(VI)(6 - )

4- waterhexachloropalladate(IV)hexachloroplatinate(IV)hexadecanoatehexafluoroaluminate(3 — )hexafluorogallatehexafluorogermanatehexafluorophosphatehexafluorosilicatehexanitratocerate(IV)hydrogen carbonate

hydrogen citratehydrogen difluoridehydrogen oxalate hydratehydrogen phosphatehydrogen sulfate

NH4CN(NH4)2Cr207

NH4H2AsO4

NH4H2PO4

(NH4)2[Co(SO4)2] • 6H2O

(NH4)2[Fe(S04)2] • 6H20NH4[Fe(SO4)2] • 12H2O

(NH4)2[Ni(SO4)2] • 6H2O

NH4S(C=S)NH2

(NH4)2U207

NH4FNH4OOCH(NH4)2Mo7O24 • 4H2O

(NH4)2[PdCl6](NH4)2[PtCl6]NH4OOC(CH2)14CH3

(NH4)3[A1F6](NH4)3GaF6

(NH4)2GeF6

NH4[PF6](NH4)2[SiF6](NH4)2[Ce(N03)6]NH4HC03

(NH4)2HC6H507

NH4HF2

NH4HC2O4 • H2O(NH4)2HP04

NH4HSO4

44.06252.07

158.97115.03395.23

392.14482.19

395.00

110.20624.2237.0463.06

1235.86

355.20443.87273.45195.09237.83222.68163.00178.15548.2279.06

226.1957.04

125.08132.06115.11

1.102.155

2.3111.80319

1.902

1.8641.71

1.923

1.45 If

1.00925

1.272.498

2.4183.065

1.782.102.5642.1804

8

2.011

1.586

1.481.511.5561.6191.78

d36d 180 toCr2O3

d300d 190

d 10039-41 d 230

99 d

d to NH3 + HF116 d 180anhyd 90 d 190

dd38021-22d>100d200380 subíd68d

107 (rapidheating)

124.6 240 danhyd, 170d 155146.9 d 350

v s aq, ale35.6 g/100 mL20 aq; s ale;

flammablev s aq37 g/100 mL20 aq; si s ale; i acet18 g/100 mL20 aq; v si s ale

36.4 g/100 mL20 aq; i ale124 g/100 mL aq

8.95 g/100 mL20 aq

v s aq; s ale; si s ethv si s aq, alk; s acids100 g/100 mL° aq; s ale143 g/100 mL20 aq; s ale, eth43 g/100 mL aq; s acids; i ale

si s aq0.5 aqs aq; si s bz; i ale, acetv s aq

s aq; i eth74.8 g/100 mL20 aq; s ale, acet18.6 g/100 mL20 aq; i ale, acet135 g/100 mL20 aq; s ale, HNOg/100 mL: 17.420 aq, 10 glyc

100 g/100 mL aq; si s alev s aq; si s ales aq, ale; i bz, eth69 g/100 mL20 aq; i ale, acet100 g/100 mL aq; i ale, acet

1.2

1

(Continued )

hydrogen Sulfide

hydrogen sulfitehydrogen (±)tartratehydroxidehypophosphiteiodateiodidelactatemagnesium arsenate

6-watermolybdate(VI)(2-)nitrate

octadecanoateoctanoateoxalate hydrateoxodioxalatotitanate(IV)perchlorate

permanganateperoxodisulfatephosphinatephosphomolybdate

hydratepicrateselenate(VI)stéaratesuif amatesulfatesulfidesulfite hydrate(±)tartratetetraborate 4-water

NH4HS

NH4HSO3

NH4HC4H4O6

NH4OHNH4H2P02

NH4IO3

NH4INH4C3H5O3

NH4MgAs04 • 6H20

(NH4)2MoO4

NH4NO3

NH4OOC(CH2)i6CH3

NH4OOC(CH2)6CH3

(NH4)2C204 - H20(NH4)2TiO(C204)2

NH4C1O4

NH4MnO4

(NH4)2S208

NH4PH2O2

(NH4)3PO4 • 12MoO3 • H2O

NH4C6H2N30,(NH4)2Se04

NH4C18H3502

NH4NH2SO3

(NH4)2S04

(NH4)2S(NH4)2SO3 • H2O(NH4)2C4H406

(NH4)2B4O7 • 4H2O

51.11

99.11167.1235.0583.03

192.94144.94107.11289.36

196.0480.04

301.50161.24142.11276.02117.49

136.97228.2083.04

1894.36

246.14179.04301.51114.13132.1468.14

134.16184.15263.44

1.17

2.031.68

3.3092.5 1425

1.215

1.923

2.216l5

1.72525

1.50

1.95

2.20810

1.9821.634

1.7192.193f0.89

1.76920

1.411.601

d 25 to NH3 +H2S

subi 150 in N2

d200-77ddl50subi 551 220 vacuo92d

d169.6 d 210

21-22d on standingd70

d240

explodes, 110d 120 expl 180200 d 240d

d expl 423d22131 d 160d>280d=0d60d

128 g/100 mL° aq; s glyc; i ale, acet

267 g/100 mL'° aq2.215 aq; i ale49% dissolved NH3

v s aq; si s ale; i acet2.615 aq167 g/100 mL20 aq; v s aie, acetv s aq, ale, glyc; i acet, eth0.03820 aq

s acidsg/100 mL: 19220 aq; 3.820 ale; 1720

MeOH; s acetsi s aq; s ale; i acetv s aq, aie, acet; si s eth5.-120 aq; s aiev s aqg/100 mL25: 21.9 aq, 1.49 EtOH,

0.014 BuOH, 0.029 EtOAc0.815 aq58 g/100 mL° aqg/100 mL: 100 aq, 5 ale; i acetsi s aq

l.l20 aq; si s aie117 g/100 mL7 aq; s HOAC; i alesi s aq, bz; s ale; i acetv s aq; si s aie43.5 g/100 mL20 aq; i ale, acetv s aq; s aie, alk75 g/100 mL20 aq; i ale, acet58 g/100 mL15 aq; si s aies aq; i ale

1.2

2

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

tetrachloroaluminatetetrachloropalladate(H)tetrachloroplatinate(II)tetrachlorozincatetetrafluoroboratethiocyanatethiosulfatevanadate(V)(l-)

Antimonyarsenide(HI) bromide(HI) chloride(V) chloride(HI) fluoride(V) fluoride

hydride (stibine)(HI) iodide(ffl) oxide (valentinite)(V) oxide(HI) selenide(HI) sulfate(HI) sulfide(V) sulfide(HI) telluridetriethyltrimethyl

ArgonArsenic

(UT) bromide(IE) chloride(di-) disulfide(HI) fluoride(V) fluoride

NH4[A1C14](NH4)2[PdCl4](NH4)2[PtCl4](NH4)2[ZnCl4]NH4[BF4]NH4SCN(NH4)2S203NH4VO3

SbSbAsSbBr3

SbCl3SC15SbF3

SbF3

SbH3

SbI3

Sb203

Sb2O3

Sb2Se3

SB2(S04)3

Sb2S3

Sb2S5

Sb2Te3

80(0^5)3

Sb(CH3)3

ArAsAsBr3

AsCl3As2S2

AsF3

AsF5

186.83284.29372.97243.28104.8476.12

148.21116.98121.760(1)196.68361.47228.12299.02178.75216.75

124.78502.47291.52323.52480.40531.71339.72403.85626.32209.0166.939.948(1)74.92159(2)

314.63181.28213.97131.92169.91

2.1702.9361.8791.8711.3051.6792.3266.Ó9725

6.04.353.14|°2.3363°4.3791829923

5.475 g/L4.925.73.785.813.624.564.1206.521.32414

1.52315

1.7824 g/L°5.727J5

3.39723s

2.14973s

3.254"2.73Ü7.46 g/L

304d140 d150 dsubi149.6d 150d200630.7«68096.673.43.52928.3

-91.5168655-02, >300612d54675 d620-29

- 189.3881731.1-16.2320-5.95-79.8

subi 341

d 170

1587

280220.37922™376141

-18.44011425

159.580.6- 185.87subi 615220.0130.256557.8-52.8

s aq, ethv s aq; i abs ales aq; i alev s aq25 g/100 mL16 aq128 g/100 mL° aq; v s ale; s acet2.15lsaq;ialc, eth0.4820 aqs hot cone H2SO4, aqua regia

s acet, bz, chl10 g/100 mL20 aq; s aie, bz, chld aq; s HC1, chl, CC14

444 g/100 mL20 aqd viol aq; s HOAc; forms solids

with ale, bz, CS2, eth20 mL/100 mL20 aq; s CS2, aleg/100 g25: 1.16 bz, 1.24 toi, 0.16 chlv si s aq; s HC1, KOHv si s aq; si s warm KOH, ethv si s aq; s cone HClsi s aq0.00220 aq (d); s H2SO4

i aq; s HCl (d), NaOHi aq; s HNO3

i aqsi s aq3.36 mL/100 mL20 aqi aq; s HNO3

hyd aq; s HCl, CS2, PEmise chl, CC14, eth; s HCls alkali; v si s bzs ale, bz, eth, HFhyd aq; s aie, bz, eth

1.2

3

(Continued )

(IQ) hydride (arsine)(ffl) iodide(ffl) oxide (arsenolite)(ffl) oxide (claudetite)(V) oxide(ffl) selenide(ffl) sulfide(V) sulfide(ffl) telluride

AstatineBarium

acetate hydratebenzenesulfonatebrómate hydratebromidecarbonate

chlorate hydratechloride

chloride dihydratechromate(VI)cyanidefluoridehexafluorosilicatehydrogen phosphatehydroxide 8-wateriodateiodidemanganate(VI)(2 - )molybdateniobatenitratenitrite hydrate

AsH3

AsI3

As2O3

Asf>3

As2O5

As2Se3

As2S3

As2S5

As2Te3AtBaBa(C2H3O2)2 • H2OBa(03SC6H5)2Ba(BrO3)2 • H2OBaBr2

BaCO3

Ba(ClO3)2 • H2OBaCl2

BaCl2 • 2H2OBaCrO4

Ba(CN)2BaF2

Ba[SiF6]BaHP04Ba(OH)2 • 8H20Baa03)2BaI2BaMnO4

BaMoO4

Ba(NbO3)2

Ba(N03)2Ba(NO2)2 • H2O

77.95455.63

197.84197.84229.84386.72246.04310.17532.64210137.33273.43451.70411.14297.14197.34

322.24208.24

244.26253.33189.36175.32279.40233.31315.48487.13391.14256.26297.27419.14261.34247.35

3.420 g/L4.733.863.744.324.753.460

6.50

3.5 120

2.19

3.9918

4.7814.2865

3.1793.8S624

3.0974.49820

4.894.29I1

4.16515

2.1816

5.2320

5.154.854.9755.443.2423

3.17330

-116.9140.9274313315260310subí 500621302726.9anhyd 110

d260856d 1300 to BaO

+ CO2anhyd 120962

anhyd 113d

1368d300d41078d476711

14501455592d 115

-62.5424460460d800

707

1845d 150

1835

-02, 2501560

2260

2027

d

28 mL/100 mL20 aq; s bz, chls bz, toi; si s aq, ale, eth1.820 aq; s alesi s aq; s dil acid, alk66 g/100 mL20 aq; s ales alkali, HNO3

i aq; s alk, slowly s hot HC10.0003 aq; s alkali, HNO3

d aq to Ba(OH)58.8 g/100 mL° aq; 0.014 ales aq; si s ale0.9630 aq; s acet; i ale92 g/100 mL° aq; s MeOH, acet0.0024 aq; s acids

34 g/100 mL20 aq; si s ale, acet36 g/100 mL20 aq; s MeOH; i acet,

EtAc31.7g/100mL°aq0.00120 aq; s mineral acids80 g/100 mL14 aq; s ale0.16l20 aq; s acids0.023525 aq; s NH4C1 soin; i ale0.01 aq; s MCI, HNO33.920 aq0.03320 aq; s HC1169 g/100 mL20 aq; s ale, acetdisprop to Ba(MnO4)2 + MnO2

0.005825 aqiaq5.0 aq; v si s ale, acet54.8 g/100 mL° aq; i ale

1.2

4

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

oxalateoxideperchlorate

perchlorate 3-water

permanganateperoxideselenidestéaratesulfatesulfidesulfitetetracyanoplatinate(II)-

4-waterthiocyanate 2-waterthiosulfate hydratetitanate(IV)(2-)vanadatezirconate

Berkelium (a form)(ß form)

Berylliumbromidecarbidechloridefluoridehydridehydroxideiodidenitrate 3-waternitrideoxideselenate 4-water

BaC2O4

BaOBa(C104)2

Ba(ClO4)2 • 3H2O

Ba(MnO4)2

BaO2

BaSeBa(C18H3502)2

BaSO4

BaSBaSO3

Ba[Pt(CN)4] • 4H2O

Ba(SCN)2 • 2H2OBaS2O3 • H2OBaTiO3

Ba3(V04)2

BaZrO3

BkBkBeBeBr2

BefBeCl2BeF2

BeH2

Be(OH)2

BeI2

Be(NO3)2 • 3H2OBe3N2

BeOBeSeO4 • 4H2O

225.35153.33336.23

390.27

375.20169.33216.29704.28233.39169.39217.39508.54

289.53267.47233.19641.86276.55247247

9.012168.8230.0479.9247.0111.0343.03

262.82187.0755.0525.01

224.03

2.6585.723.20

2.74

3.774.965.021.1454.5015

4.25 15

4.442.076

2.28618

3.518

6.025.145.52

14.7813.251.847720

3.46S25

1.9015

1.89925

1.9860.651.9094.321.5572.713.0252.03

400 d1973505

d400

d200450 d178016015802230d

d 160d2201625707250010509861287508d >2127415 (alpha)555-H2, 2209348060.522002578 (alpha)anhyd 300

3088

-02, 800

d>1600

2467521

482.3subi 1036"°™

487d!25

3787d560

i aq3.520 aq; s acids, EtOHg/100 mL25: 129 aq, 78 EtOH, 42

BuOH, 81 EtOAc; i eth198 g/100 mL25 aq; s MeOH; si s

acetv s aq1.5°aqd aqi aq0.00285 aq7.920 aq; dec in acids0.02° aq; i ale2.86 aq; i ale

170 g/100 mL20 aq; s ale, acet0.2120 aq; i ale, acet, eth, CSi aq

i aq, alk; si s acids

i aq; s acid, alkv s aq; s ale; 18.6 pyrd aq; s acids, alkali giving CH4

42 g/100 mL aq; s ale, eth, pyr, CS2

v s aq (slowly)d aq (slowly), acids (rapidly)s hot cone acids and alkali (viol)hyd aq violently; s ale, eth, CS2

166 g/100 mL20 aqd hot aq, alkalis cone H2SO4

49 g/100 mL25 aq

1.2

5

(Continued )

silicatesulfate 4-watersulfide

Bismuth(HI) bromidebromide oxide(ÜI) chloridechloride oxide(ffl) fluoride(V) fluoridehydride(HI) hydroxide(HI) iodideiodide oxide(HI) nitrate 5-water(HI) oxide(V) oxide(HI) phosphate(ffl) selenide(ffl) sulfate(ffl) sulfide(ffl) teUuride

Boranesdiborane(6)tetraborane(lO)pentaborane(9)pentaborane(ll)hexaborane(lO)decaborane(14)

BorazineBoric acids, see under

HydrogenBoron

carbidetribromidetrichloride

Be2SiO4

BeSO4 • 4H2OBeSBiBiBr3

BiBrOBiCl3BÍC10BiF3

BiF5

BiH3

Bi(OH)3

BiI3

BilOBi(NO3)3 • 5H2OBi203

Bi205

BiPO4

Bi2Se3

Bi2(S04)3

Bi2S3

Bi2Te3

B2H6

BAoB5H9

B5HU

BeHioBioHwBAN,

BB4CBBr3BC13

110.11177.1441.08

208.9804448.69304.88315.34260.43265.98303.97212.00260.00589.69351.88485.07465.96497.96303.95654.84706.14514.16800.76

27.6753.3263.1365.1474.95

122.2280.50

10.81155.25

250.52117.17

3.01.7132.369.785.728.08215

4.757.7215

8.325.5525

9.303 g/L4.96215

5.778?7.9222.838.765.106.32315

7.705°5.086.787.74

1.214 g/L2.340 g/L0.600.7450.670.948

Iq: 0.8 1"?

2.342.510f2.65.141 g/L

1560anhyd 270d271.5218d233.5d727154.4-67-water, 100408.6d red heatanhyd 80817d!50d710 dd405850588.5

- 165.5-120-46.81-123-62.399.5-58

20762350-46.0-107

d580

1564453

447

900subi 55016.8

subi 439

1890

d

-92.51860.063108 d21355

3864>350091.312.7

i aq39 g/100 mL20 aq; i alei aq; s HNO3i aq; s hot H2SO4

d aq; s dil acids, aceti aq; s acidsd aq; s HC1, ale, eth, aceti aq; s HC1i aq; s HFd (viol) aq giving O3 + BiF3

very unstable liquidd aq; s HC1i aq; s HC1, alei aq; s HC1d aq; s HNO3, acet, glyci aq; s HC1, HNO3

i aq; s KOHs cone HC1, HNO3

i aq; d aq regd aq, ale; s HC1i aq, EtAc; s HNO3, HC1i aq; s ale

FP -68; s MLPH, cone H2SO4

si s aq; s bzhyd aqd aqd hot aqsi s aq; s bz, CS2, ethsi s aq (d)

iaqs fused alkalisd aq, aled aq, ale

1.2

6

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

trifluoride BF3 67.81 3.077 g/LSTP -127.1 -100.4 332 g/100 mL° aq; s bz, chl, CC14

trifluoride 1-diethyl ethertrifluoride 1-methanolnitrideoxide

Brominepentafluoridetrifluoride

Cadmiumacetatebromidecarbonatechloridecyanidefluoridehydroxideiodidenitrate 4-wateroxidephosphideselenidesulfate-water (3/8)sulfldetelluridetungstate(VI)

Calciumacetatearsenatebromidecarbidecarbonate (aragonite)carbonate (calcite)chlorate 2-water

BF3 • 0(C2H5)2

BF3 • HOCH3

BNB203

Br2

BF5

BF3

CdCd(C2H302)2

CdBr2

CdC03

CdCl2Cd(CN)2

CdF2

Cd(OH)2

CdI2

Cd(NO3)2 • 4H2OCdOCd3P2

CdSe3CdSO4 • 8H2OCdSCdTeCdWO4

CaCa(C2H302)2

Ca3(As04)2

CaBr2

CaC2

CaC03

CaCO3

Ca(ClO3)2 - 2H2O

141.94131.8924.8269.62

159.808174.90136.90112.411230.50272.22172.42183.32164.44150.41146.43366.22308.48128.41399.18191.37769.56144.48240.01360.2540.078(4)

158.17398.07199.8964.10

100.09100.09243.01

1.1251.2032.182.553.102325

2.4602.80325

8.6525

2.3415.1924.25S4

4.0525

2.2266.334.795.6702.4558.15 cubic5.965.8115

3.084.836.204

5

8.01.551.503.6203.382.2222.832.7112.711

-60.4

2967450.0-7.25-60.58.77321255566d500568d2001110-H2O, 13038859.415407001350monohydrate, 8017501041

842d>160

7422300d 825 to CaOd 825 to CaOanhyd 100

125.7594mm

206558.840.76125.74765d963

960

1748CaO, 200742

1484

1815

d aq

si s hot acids3.3 aq (slowly); s ale, glyc3.4 g/100 mL20 aq; v s ale, chl, ethexplodes with water; s HFd viol aq; d alk; smokes in airi aq, alk; s HNO3, hot HC1v s aq; s ale99 g/100 mL20 aq; s acet; si s eths acids, NH4OH120 g/100 mL25 aq1.71 g/100 mL15 aq; si s ale4.3 g/100 mL25 aq0.0002620 aq; s acids84.7 g/100 mL20 aq; s ale, acet, eth167 g/100 mL25 aq; s ale, aceti aq; s acidss dil acidi aq; d acids94.4 g/100 mL25 aq; i ale, EtAc0.1318 aq; s acidsi aq; d HNO3

i aq, dil acids; s alkali CN'sd aq; s acids37.4 g/100 mL° aq; i ale, bz, acet0.01325 aq143 g/100 mL20 aq; v s ale, acetreacts with aq giving C2H2

s dil acids0.0013 g/100 mL20; s acids167 g/100 mL20 aq; s ale

1.2

7

(Continued )

chloridechloride 6-waterchloritechromate(VI) 2-watercitrate 4-watercyanamidecyanidedichromate(VI)dihydrogen phosphate

hydratediphosphate (pyrophos-

phate)fluorideformate(+)gluconateglycerophosphatehexafluorosilicatehydridehydroxidehypochloriteiodateiodideláclate 5-watermagnesium carbonatemolybdate(VI)(2-)nitratenitridenitrite 4-wateroléateoxalate hydrateoxidepalmitate(+)panthothenate

(vitamin B3)perchlorate

CaCl2CaCl2 • 6H2OCa(C102)2CaCrO4 • 2H2OCaC6H607 • 4H20CaCN2

Ca(CN)2

CaCr2O7

Ca(H2PO4)2 • H2O

CajPjQ,

CaF2

Ca(CH02)2

Ca[OOC(CHOH)2CH4OH]2

Ca[C3H5(OH)3]P04

Ca[SiF6]CaH2

Ca(OH)2

Ca(OCl)2

Ca(I03)2

CaI2

Ca(C3H5O3)2 • 5H2OCa[Mg(C03)2]CaMoO4

Ca(N03)2

Ca3N2

Ca(NO2)2 • 4H2OCa(C18H3302)2

CaC2O4 • H2OCaOCa(C16H3102)2

Ca[O2CH2CH2NHO-CH(OH)C(CH3)2CH2OH]2

Ca(C104)2

110.98219.07174.99192.10570.51

80.1092.11

256.10252.07

254.10

78.08130.11430.38210.16182.1742.0974.09

142.99389.88293.89308.30184.41200.02164.09148.25204.15603.01146.1156.08

550.93476.55

238.98

2.1625

1.712.7125

2.50

2.29

2.3704°2.220J8

3.09

3.1802.015

2.6621.702.3432.354.519J5

3.956

2.8724.352.5042.671.674

2.23.34

2.65

775 ca. 1940anhyd 200100anhyd 200anhyd 120ca. 1340 subís>350d>100anhyd 100 d 200

1353

1418 2533300 d

d>170

1000-H20,580100 dd>540783 1755-3H2O, 100 anhyd 120d730

5611195d83-84 d >400anhyd 2002900 3500d>155d 195- 196

d270

42 g/100 mL20 aq; s ale, acet74.5 g/100 mL20 aq; v s ale167 g/100 mL aq; s alesi s aq; s dil acids0. 10 aq; i aleno known solv without decs aqv s aq; i eth; d ale1.830aq

i aq; s HC1, HNO3

0.001520 aq; s cone mineral acids16.6 g/100 mL20 aq; i ale3.7220 aq1.6620aq;ialci aq, acetd aq, ale0.1710 aq; s acidsd aq evolving C12; i ale0.10° aq; i ale68 g/100 mL20 aq; v s ale, acet;5.415 aq; v si s ale0.03218 aq; s HCls cone mineral acids152 g/100 mL30 aqd aq; s dilute acids (d)84.5 g/100 mL18 aq; si s ale0.04 aq; s chl, bz; v si s ale, eth0.0006 aq; s acids0.1325 aq; s acids0.003 aq; si s bz, chl, HOAc36 g/100 mL aq; si s ale, acet

g/100 mL25: 112 aq, 89.5 EtOH,BuOH, 57 EtOAc, 43 acet

i eth

68

1.2

8

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

permanganate 5-waterperoxidephenoxidephosphatephosphidephosphinatepropanoatesalicylate 2-waterselenate 2-waterselenidesilicatestéaratesuccinate 3-watersulfatesulfate hemihydratesulfate 2-watersulfidesulfite 2-water(±)tartrate 4- watertelluridetetraboratetetrahydridoaluminatethiocyanate 3-waterthioglycollate 3-waterthiosulfate 6-watertitanatetungstate(VI)(2-)

Californium-252chloride

Carbon (diamond)(graphite)dioxide

diselenidedisulfide

Ca(MnO4)2 • 5H2OCaO2

Ca(OC6H5)2

Ca3(P04)2

Ca3P2

Ca(PH202)2

Ca(OOCC3H5)2

Ca(C7H503)2 - 2H20CaSeO4 • 2H2OCaSeCa2SiO4

Ca(C18H3502)2

CaC4H6O4 • 3H2OCaS04

CaSO4 • 0.5H2OCaSO4 • 2H2OCaSCaSO3 • 2H2OCaC4H406 • 4H20CaTeCaB4O,Ca[AlH4]2

Ca(SCN)2 • 3H20Ca(-OOCCH2S-) • 3H2OCaS2O3 • 6H20CaTiO3

CaWO4

CfCfCl3

CCC02

CSe2

CS2

368.0372.08

226.28310.18182.18170.06186.22350.34219.07119.04172.24607.04212.22136.14145.15172.1772.14

156.17260.21167.68195.36102.10210.29184.24260.30135.84287.93252.1358.5

12.011

44.01

169.9376.14

2.42.92d in air3.142.51

2.753.823.27

2.960

2.322.59

4.873

1.8723.986.06220

5.883.5132.267

c: 1.56-79

g: 1.975 g/L°2.662Ó25

1.2555

dexplodes 275

1670ca. 1600d>300

anhyd 200 d 240anhyd 200 d 698

2130179-180

1460anhyd 163- 1.5 H2O, 128 anhyd 1632525anhyd 100anhyd 200

ign moist aird>160-H20, >95 d>220d>451980

900

350063.53« 3930subi 3915-4020-78.44 subi

-45.5 125.1-111.6 46.56

338 g/100 mL aqsi s aq; s acidssi s aq, ale0.0325 aq; s HC1, HNO3; i aled aq; s acids; i ale, eth15.4 g/100 mL aq; si s glycs aq; si s ale; i acet, bz2.815 aq; 0.01516 EtOH9.2 g/100 mL25 aq

i aq0.00415 aq; s hot pyr; i acet, chl1.2820aq; s acids; i ale0.20 aq; s acids0.320 aq; s acids, glyc0.2620 aq; s acid, glyc0.02 (d) aq; d acids0.004 aq; s acids d; si s ale0.004525 aq; s acids; si s ale

s dil acidsd viol aq, ale; i bz, eth150 g/100 mL aq; v s ales aq; v si s ale, chl; i bz, eth92 g/100 mL25 aq; i ale

0.0032 aq; d hot acids

i aq, ale

88 mL/100 mL20 aq

i aq; s acet, eth; mise CC14; d aleFP -30;0.2920aq;salc, eth

1.2

9

(Continued )

hydride (methane)monoxide

suboxide

tetrabromidetetrachloridetetrafluoridetetraiodide

Carbonyl bromidechloridefluoride

sulfideCerium

(HI) bromide(ffl) chloride(IH) fluoride(IV) fluoride(ffl) iodide(ffl) nitrate 3-water(IV) oxide(ffl) sulfate(IV) sulfate

Cesiumbromidecarbonatechloride

fluoridehydroxide

iodateiodidenitrate

CH4

CO

C302

CBr4

CC14

CF4

CI4

COBr2

COC12

COF2

COSCeCeBr3

CeCl3CeF3

CeF4

CeI3

Ce(NO3)3 3H2OCeO2

Ce2(S04)3

Ce(S04)2

CsCsBrCs2C03

CsCl

CsFCsOH

CsI03

CslCsNO,

16.0428.01

68.03

331.65153.8288.00

519.63187.8298.9266.01

60.07140.11379.83246.47197.11216.11520.83380.17172.11568.42332.24132.9054212.81325.82168.36

151.90149.91

307.81259.81194.91

0.415-164

Iq: 0.814-195

g: 1.250 g/L°1.11422.985 g/L3.421-589Ü1.96-184

4.3420

2.54.340 g/L

Iq: 1.139g: 2.896 g/L

2.636 g/L6.7735.183.9725

6.1574.77

7.653.9123.911.878515

4.444.243.99

4.1153.68

4.93420

4.5103.66

- 182.48-205.05

-111.3

90.1-22.9- 183.6171

- 127.9-114.0

-138.817957338171430d>550766anhyd 1502400dlOOOd!9528.44636792646

703272565621414

- 161.49- 191.49

6.8

19076.7- 127.8subi 13064.58.2-83.1

-50.233440146017302327

1400d200

668.2= 1300

1300

1231990

= 1280d849

s bz2.3 mL/100 mL20 aq; 16 mL/100 ml

ale; s HOAc, EtAcd aq to malonic acid; si s CS2

i aq; s ale, chl, eth0.05 mL/100 mL aq; s ale, chl, ethsi s aqslowly hyd aq; s bz, chl, ethhydaqhyd aq; s bz, HOAchydaq

54 mL/100 mL20 aq; s ale, CS2

i aq; s acidss aq, ales aq, alei but slowly hyd aq; s H2SO4

i aqs aq234 g/100 mL20 aqi aq; s acids9.72 g/100 mL21 aqhyd aq; s dil H2SO4

d aq; s acids107 g/100 mL18 aq; s ale; i acetv s aq; 11 g/100 mL20 ale; s ethg/100 mL: 18720 aq; 3425 MeOH; v s

ale322 g/100 mL18 aq386 g/100 mL15 aq; s aie2.0" aq76.5 g/100 mL20 aq; s EtOH; i acet23 g/100 mL20 aq; s acet; v si s aie

1.3

0

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

oxideperchlorate

selenatesulfate

Chlorine

dioxidefluorideheptoxide

monoxidepentafluoridetrifluoride

trioxide (dimer)Chromium

(u) acétate(III) acétate(II) bromide(III) bromide(u) chloride(HI) chloride(II) fluoride(HI) fluoride(III) formate 6-waterhexacarbonyl(HI) hydroxide(III) nitrate 9-water(III) oxide(IV) oxide(VI) oxide(HI) phosphate

Cs2OCsC104

Cs2SeO4

Cs2SO4

C12

C102C1FC1207

C120C1F5C1F3

(C103)2

CrCr(C2H302)2

Cr(C2H302)3

CrBr2

CrBr3

CrCl2CrCl3CrF2

CrF3

Cr(CHO2)3 • 6H2OCr(CO)6

Cr(OH)3

Cr(N03)3 • 9H20Cr,0,Cr02

CrO,CrP04

281.81232.36

408.77361.8770.905

67.4554.45

182.90

86.90130.4492.45

166.9051.996

170.09229.13211.80291.71122.90158.3589.99

108.99295.15220.06101.02400.15151.9984.0099.99

146.97

4.653.327

4.4534.243

g: 2.9820 g/LIq: 1.5649-35

2.960 g/L4.057 g/L1.80525

3.813 g/L5.724 g/L

g: 4.057 g/LIq: 1.825&

1.9220

7.151.79

4.2364.682.8825

2.873.793.8

1.77

1.805.214.892.7025

4.6

490250

1005-101.5

-59.6- 155.6-91.5

- 120.6-103-76.3

3.51907

842

81411528941400d>300d!30d662330197198>1800

-34.04

10.9-100.182

2.2-13.111.75

=2002679

subí 1300d>1300

explodes 210

d>100=3000-02, 250d250

v s aqg/100 mL25: 1.96, 0.0086 EtOH,

O.llSacet, 0.0048 BuOH; iEtOAc, eth

244 g/100 mL12 aq179 g/100 mL20 aq; i ale, acet, pyr199 mL/100 mL25 aq

11.2g/100mL10aqd viol aq; organics burst into flamehyd aq slowly; explodes on concus-

sion or on contact with flame or I2

v s aq (forms HC1O); s CC14

hyd viol aq; organic matter andglass wool burst into flame

reacts with aqs dil HC1si s aq, ale; s a; i eths aqs aq, ales hot aq; v s alev s aqs aq, ale (slow); i acetsi s aq; s hot HC1aq, ale; s HF, HCls aqi aq, ale; s eth, chli aq; s acids208 g/100 mL15 aq; s alei aq, ale; si s acids, alkalisi aq; s HNO3

61.7 g/100 mL aq; may ign organicsi aq, acids, aq reg

1.3

1

(Continued )

potassium bissulfate12-water

(ff) sulfate 7-water(HI) sulfate 18-water

Chromyl chloridefluoride

Cobalt(n) acetate 4-water(Iff) acetate(H) bromide(II) carbonate(II) chloride

(ff) chloride 6-water(ff) chromate(ff) cyanide(II) fluoride(ffl) fluoride(H) formate 2-water(H) hydroxide(HI) hydroxide(H) iodide (alpha, black)(ff) nitrate 6-water(H) oxalate(ff) oxide(n,m) oxide(ff) phosphate 8-water(ff) sulfate 7-water(ff) sulfide(ff) thiocyanate 3-water

Copper(ff) acetate 1 -wateracetate mefa-arsenate (1/3)(Il)borate(l-)(I) bromide(ff) bromide

CrK(SO4)2 • 12H2O

CrSO4 • 7H2OCr2(S04)3 • 18H20CrO2Cl2Cr02F2

CoCo(C2H302)2 • 4H20Co(C2H302)3

CoBr2

CoCO3

CoCl2

CoCl2-6H2OCoCr04

Co(CN)2

CoF3

CoF3

Co(CHO2)2 • 2H2OCo(OH)2

Co(OH)3

CoI2

Co(NO3)3 • 6H2OCoC2O4

CoOCo304

Co3(PO4)2 • 8H2OCoSO4 • 7H2OCoSCo(SCN)2 • 3H20CuCu(C2H302) • H20Cu(C2H3O2)2 • 3Cu(AsO2)2

Cu(BO2)2

CuBrCuBr2

499.41

274.17716.45154.90121.9958.9332

249.08236.07218.74118.94129.84

237.93174.93110.9796.93

115.93185.0092.95

109.96312.74291.03146.9574.93

240.80510.87281.1091.00

229.1463.546

199.651013.80149.17143.45223.35

1.82625

1.71.9145?

8.901.70519

4.909?4.133.367?

1.924«4.0

1.872?4.463.882.129?3.374.465.584?1.883.0216.446.072.7692.035.45'8

8.9620

1.882

3.8594.984.71

89

dlOO-96.531.6885"™1494anhyd 140d>100678 (in N2)d735

anhyd 110dd3001127926anhyd 140168 (vacuo)-H2O, 100515 (vacuo)55d250-sl935d>900anhyd 200anhyd 4201180anhyd 1051084.62115

497498

anhyd 400

117subí 29.62927

1049

«1400

d!75

d570 (vacuo)d>74

dll40

2561.5d240

1345900

22 g/100 mL25 aq; i ale

22.9 g/100 mL° aq; si s ale220 g/100 mL20 aqd aq; s bz, chl, eth, CC14

i aq; s dil HNO3

saq;2.1g/100mL15MeOHs aq, HOAc, ale112 g/100 mL20 aq; s ale, acet0.1815 aq; s hot acids53 g/100 mL20 aq; s ale, acet, eth,

glyc, pyr97 g/100 mL20 aqi aq; s acids0.004218 aq; s KCN1.3620 aq; s warm mineral acidsd aq5.03 g/100 mL30 aq; i ale0.00018 aq; v s acids0.00032 aq; s acids203 aq155 g/100 mL30 aq; v s ale0.00218 aqi aq; s acids, alkalisi aq; s acids, alkalisv si s aq; s mineral acids65 g/100 mL20 aq; si s alei aq; s acids7.818 aq; s ale, ethi; s HNO3, hot H2SO4

8 g/100 mL aq; 0.48 MeOH; si s ethunstable in acids, bases; s NH4OHs a; i aqv si s aq; s HC1, HBr, NH4OH126 g/100 mL aq; s ale, acet, pyr; i

potassium bissulfate12-water

(ff) sulfate 7-water(HI) sulfate 18-water

Chromyl chloridefluoride

Cobalt(n) acetate 4-water(Iff) acetate(H) bromide(II) carbonate(II) chloride

(ff) chloride 6-water(ff) chromate(ff) cyanide(II) fluoride(ffl) fluoride(H) formate 2-water(H) hydroxide(HI) hydroxide(H) iodide (alpha, black)(ff) nitrate 6-water(H) oxalate(ff) oxide(n,m) oxide(ff) phosphate 8-water(ff) sulfate 7-water(ff) sulfide(ff) thiocyanate 3-water

Copper(ff) acetate 1 -wateracetate mefa-arsenate (1/3)(Il)borate(l-)(I) bromide(ff) bromide

CrK(SO4)2 • 12H2O

CrSO4 • 7H2OCr2(S04)3 • 18H20CrO2Cl2Cr02F2

CoCo(C2H302)2 • 4H20Co(C2H302)3

CoBr2

CoCO3

CoCl2

CoCl2-6H2OCoCr04

Co(CN)2

CoF3

CoF3

Co(CHO2)2 • 2H2OCo(OH)2

Co(OH)3

CoI2

Co(NO3)3 • 6H2OCoC2O4

CoOCo304

Co3(PO4)2 • 8H2OCoSO4 • 7H2OCoSCo(SCN)2 • 3H20CuCu(C2H302) • H20Cu(C2H3O2)2 • 3Cu(AsO2)2

Cu(BO2)2

CuBrCuBr2

499.41

274.17716.45154.90121.9958.9332

249.08236.07218.74118.94129.84

237.93174.93110.9796.93

115.93185.0092.95

109.96312.74291.03146.9574.93

240.80510.87281.1091.00

229.1463.546

199.651013.80149.17143.45223.35

1.82625

1.71.9145?

8.901.70519

4.909?4.133.367?

1.924«4.0

1.872?4.463.882.129?3.374.465.584?1.883.0216.446.072.7692.035.45'8

8.9620

1.882

3.8594.984.71

89

dlOO-96.531.6885"™1494anhyd 140d>100678 (in N2)d735

anhyd 110dd3001127926anhyd 140168 (vacuo)-H2O, 100515 (vacuo)55d250-sl935d>900anhyd 200anhyd 4201180anhyd 1051084.62115

497498

anhyd 400

117subí 29.62927

1049

«1400

d!75

d570 (vacuo)d>74

dll40

2561.5d240

1345900

22 g/100 mL25 aq; i ale

22.9 g/100 mL° aq; si s ale220 g/100 mL20 aqd aq; s bz, chl, eth, CC14

i aq; s dil HNO3

saq;2.1g/100mL15MeOHs aq, HOAc, ale112 g/100 mL20 aq; s ale, acet0.1815 aq; s hot acids53 g/100 mL20 aq; s ale, acet, eth,

glyc, pyr97 g/100 mL20 aqi aq; s acids0.004218 aq; s KCN1.3620 aq; s warm mineral acidsd aq5.03 g/100 mL30 aq; i ale0.00018 aq; v s acids0.00032 aq; s acids203 aq155 g/100 mL30 aq; v s ale0.00218 aqi aq; s acids, alkalisi aq; s acids, alkalisv si s aq; s mineral acids65 g/100 mL20 aq; si s alei aq; s acids7.818 aq; s ale, ethi; s HNO3, hot H2SO4

8 g/100 mL aq; 0.48 MeOH; si s ethunstable in acids, bases; s NH4OHs a; i aqv si s aq; s HC1, HBr, NH4OH126 g/100 mL aq; s ale, acet, pyr; i

1.3

2

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

(II) carbonate hydroxide(1/1) (malachite)

(II) chlorate 6-water(I) chloride(II) chloride(II) chloride 2-water(I) chromium(III)

oxide (1/1)(II) citrate 2.5-water(I) cyanide(H) fluoride(H) formate(II) hexafluorosilicate

4-water(II) hydroxide(I) iodide(II) nitrate 3 -water(II) oléate(II) oxalate hemihydrate(I) oxide(II) oxide(II) perchlorate(II) phosphate 3-water(II) salicylate 4-water(II) selenate 5-water(I) selenide(H) selenide(ïï) stéarate(H) sulfate(II) sulfate 5-water(I) sulfide(II) sulfide

CuCO3 • Cu(OH)2

Cu(ClO3)2 • 6H2OCuClCuCl2

CuCl2 • 2H2OCr2O3 • Cu2O

Cu2C6H4O7 • 2.5H2OCuCNCuF2

Cu(CHO2)2

Cu[SiF6] • 4H2O

Cu(OH)2

CulCu(NO3)2 • 3H2OCu(OOCC17H33)2

CuC2O4 • 0.5H2OCu2OCuOCu(C104)2

Cu3(PO4)2 • 3H2OCu(C7H5O3)2 • 4H2OCuSeO4 • 5H2OCu2SeCuSeCu(OOCC17H35)2

CuS04

CuS04 • 5H20Cu2SCuS

221.12

338.5499.00

134.45170.48295.07

360.2289.56

101.54153.58277.60

97.56190.45241.60626.46160.57143.0979.54

262.45434.63409.83296.58206.05142.51630.50159.61249.69159.1695.61

4.0

4.143.3862.515.2420

2.924.231.8312.56

3.3685.672.32

6.0?6.3 154

4

2.22523

2.5596.84?6.0

3.6032.284J6

5.6?4.76

d200

65 d 100430 =1400300 danhyd200 d >300d>900

anhyd 100473 (in N2) d836 1676

d

d 160606 =1290114.5 170 d

anhydr>200 d3101235 -O2, 18001450d>130ddehyd in airanhyd 265 d ça. 4801113d550«250d>560anhyd 2001130

i aq; s acids

242 g/100 mL18 aq; v s aie; s acet0.024 aq; s cône HC1, cône NH4OH73 g/100 mL20 aq; s aie, acet76.4 g/100 mL25 aq; v s aie; s aceti aq; s HNO3

0.17 aq; s acidsi aq; s NH4OH, KCN; d hot dil HC14.75 g/100 mL20 aq; s acids12.5 aq124 g/100 mL20 aq

i aq; s acidsi aq; s KCN, NH4OH, Kl138 g/100 mL° aq; v s aiei aq; si s aie; s eth0.002 aq; s NH4OHi aq; s HC1i aq, ale; s acids, KCN146 g/100 mL30 aq; s eth, EtAc; i bzi aq; s acidsv s aq; s aie25 g/100 mL20 aq; v si s acetdHCls acidsi aq, ale, eth; s hot bz, pyr14.3 g/100 mL° aq; i ale32 g/100 mL20 aq; s MeOH, glyci aq; d HNO3, s KCNi aq; s hot HNO3, KCN

1.3

3

(Continued )

(I) sulfile hydrate(H) tartrate 3-water(I) thiocyanate

(II) tungstate(VI)(2-)Curium-244Cyanogen

azide

bromidechloridefluoride

Deuteriumoxide

Dysprosiumbromidechloridefluorideoxide

EinsteiniumErbium

chlorideoxidesulfate 8-water

Europium(IS) chloride(HI) oxide(HI) sulfate 8-water

Fermium-257Fluorine

nitrate

perchlorateFrancium-223

Cu2SO3 • H2OCuC4H406 • 3H20CuSCN

CuW04 • 2H20CmNC— CNNC— N3

NCBrNCC1NCFD2 or 2H2

D2ODyDyBr3

DyCl3DyF3

Dy203

EsErErCl3Er203

Er2(SO4)3 • 8H2OEuEuCl3Eu2O3

Eu2(SO4)3 • 8H2OFmF2

FON02

FOC1O3

Fr

225.16265.66121.62

347.41244.06352.0368.04

105.9261.4745.024.03

20.03162.50402.21268.86219.50373.00252.083167.26273.62382.52766.83151.965258.32351.93736.24257.095138.00

81.00

118.45223.02

3.8315

2.85

13.512.335 g/L

2.0052.697 g/L1.975 g/L0.169°">lq1.105620

8.54025

4.783.677.4657.8127

8.849.0664.18.6403.2055.2444.897.42

-8H2O,375

1.513»P Iq1.667 g/L1.507bP Iq

5.20 g/L

d

1084

1340-27.84

52-6.5-82-252.893.8214128806801154240886015297762418anhyd 110822623d2350

1527-219.61

-175

- 167.3

«3110-21.15

61.513.8-46-249.49101.432567148015302230

28681500

d6301527

-188.13

-45.9

-15.9

si s aq; s HC10.4220 aq; s acids, alkalis0.00044 aq; s NH4OH, eth, alkali

SCN0.115aq;dacids;sNH4OHs acidsmL/100 mL: 45020 aq, 230 ale;

s acetonitrile; pure azide detonatesupon shock. Handle only in sol-vents.

v s aq, ale, eths aq, ale, eth

si s aqmise aqs acidss aqs aqi aqs aq

s acids aq; si s ale0.000525 aq; s acids16.0 g/100 mL20 aqs acidss aqi aq; s acids2.5620 aq

d aq viol; ignites organics and sili-cates

hyd aq; s acet; ignites ale, eth; liquidexplodes on slight concussion

explodes on slightest provocation

1.3

4

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

Gadoliniumchloridefluoridenitrate 6-wateroxidesulfate 8-water

Gallium

antimonidearsenidechloridefluoridenitratephosphideselenidetriethyltrimethyl

Germanium(IV) bromideIV) chloride(IV) fluoridehydride (germane)(IV) oxidesulfide

Gold(I) chloride(ffl) chloride(I) cyanide(El) cyanide 3-waterdiantimonide(ffl) fluoride(m) oxide

GdGdCl3GdF3

Gd(N03)3 • 6H20Gd203

Gd2(SO4)2 • 8H2OGa

GaSbGaAsGaCl3GaF3

Ga(N03)3

GaPGaSeGaCCA),Ga(CH3)3

GeGeBr4

GeCl4GeF4

GeH4

GeO2

GeS2

AuAuClAuCl3AuCNAu(CN)3 • 3H2OAuSb2

AuF3

Au2O3

157.25263.61214.25451.36362.50746.8169.723

191.48144.65176.08126.72255.74100.70148.68146.90114.8472.61

392.23214.42148.6076.64

104.61136.74196.967232.42303.33222.99329.07440.47253.96441.93

7.904.52°7.0472.3327.40715

3.01018

5 90429.6 (C)

6.09529-8 (Iq)5.6145.318?2.474.47

5.0325

1.05830

1.15115

5.3233.1321.8796.521 g/L3.363 g/L4.253.0119.37.574.77.141°

6.75

1312-6091231912340anhyd 40029.7646

712123877.9>1000d l l O1465960-82.3-15.7937.326.1-49.5-15- 164.811155301064.18289d>160dd50460subi 300d 150

327315802277

d5002203

201.2subi 950-> GaÄ, 200

d142.855.82830186.486.5d>1000-88.11200

2856

subi 180

d500

s acidss aqi aqs aq, ales acids4.08 aqs cone HC1, halogens, alkalis

sHClsHCld aq; s bz, CC14, CS2

0.00425 aq; s HFv s aq

i aq; s hot H2SO4

hyd aq; s bz, ethhyd aq; s bz, eth; si s dil HC1hyd aq; s dil HC1si s hot HC10.4320 aq; s acids, alkalis

s aq reg, KCN, hot H2SO4

s HC1, HBr, KCN68 g/100 mL20 aq; s EtOHs aq reg, KCN, NH4OHv s aq; si s aie

s HC1, KCN

1.3

5

(Continued )

(I) sodium thiosulfate2-water

stannide(HI) sulfide

Hafniumchlorideoxide

Helium

Holmiumbromidechloride

Hydrazinehydrate

Hydrazinium(l+) chloride(2+) chloride(1+) iodide(+1) perchlorate(2+) sulfate(1+) tartrate

Hydrogen

amidosulfate (sulfamate)azideborate(l-) (cubic)borate(3-) (ortho)bromidebromide (constant boiling)bromide-rfbromosulfatechlorate (40% solution)chloridechloride (constant boiling)chloride-úíchlorosulfatecyanate

AuNa3(S2O3)2 • 2H2O

AuSnAu2S3

HfHfCl4

Hf02

He

HoHoBr3

HoCl3H2N— NH2

H2N— NH2 • H2OH2N— NH3C1C1H3N— NH3C1H2N— NH3IH2N— NH3C1O4

(H3NNH3)SO4

(H2N— NH3)2C4H406

H2

H2NSO3HHN3

HBO2

H3B03

HBr48% HBr + H2O2HBrHOSO2BrHC1O3

HC120.24% HC1 + H2O2HC1HSO3C1HOCN

526.24

315.66490.13178.49320.30210.49

4.00260

164.9304404.64271.2932.0550.0668.51

104.97159.96132.51130.13182.13

2.01590.07099"p

(iq)97.0943.0343.8361.8380.91

81.91240.90

84.4636.46

37.47116.5243.03

3.09

8.75413.31

9.6820

0.176g/L0.1249 (Iq)8.794.86

3.71.0036f1.0301.51.423

1.93915

1.378

0.088 g/L

2.1261.126°2.4861.43515

3.388 g/L20

1.493.39 g/L20

1.282f1.526 g/L20

1.0971.49 g/L25

1.7531.140420

anhyd 160

418d!9722274322774-272.1525M">

14749147182.0-51.7& -6589198125137254183-259.35

205-80236171.0-86.87-11-87.46-6 to -8

-114.18

-114.64-80-86

4450subí 317

-268.935

272014701510113.5118-119d240d200

d 145d

-252.88

d37

d357-66.71126-66.5d

-85.05110-84.7215223.5

50 g/100 mL aq; i ale

i aq; s Na2SsHFhyd aq; s acet, MeOHi aq0.861 mL/100 mL20 aq

s acids; oxidizes in moist airs aqs aqFP 52; mise aq, alemise aq, ale; i chl, ethv s aq; i org solvv s aq; si s ales aqd aq; s ale3.420 aq; i ale6.0 g/100 mL° aq1.9 mL aq

14.7 g/100 mL aq; si s ale, acetv s aq; (very explosive)v si s aq5.56 g/100 mL30 aq193 g/100 mL25 aq; mise ale

v s aqv s aqhyd aq

72 g/100 mL20 aqv s aqv s aqhyd viol -* HC1 + H2SO4

s aq d; s bz, eth

1.3

6

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

cyanidedeutendediphosphatè(rV)diphosphate(V)fluoridefluoride (constant boiling)fluoride-áfluoroboratefluorophosphatefluorosulfatehexafluorosilicate 2-wateriodateiodideiodide (constant boiling)iodide-dmolybdate hydratenitratenitrate (constant boiling)oxide (water)oxide-d2perchlorate 2-waterperiodate(l— ) (meta)periodate(5— )peroxideperoxodisulfatephosphate(V)(l-) (meta)phosphate(V)(3-) (ortho)

commercial 85% acidphosphate(V)(3-)-d3

phosphide, see Phosphinephosphinatephosphonate (phosphorous

acid)

HCN'H2H or HD(HO)2OP— PO(OH)2

H4P207

HF35.35% HF + H202HFH[BF4]H2PO3FHOSO2FH2[SiF6] • 2H20fflO3

ffl57% HI + H2OfflH2MoO4 • H2OHNO3

69% HNO3 + H2OH20D2O or 2H2OHC1O4 • 2H2OfflO4

H5I06

H202

HO3S— O— OSO3HHPO3

H3P04

2H3P04

HPH2O2

H2PHO3

27.033.02

162.01177.9820.01

21.0287.8199.99

100.07180.11175.91127.91

128.91179.9763.02

18.0220.03

136.49191.91227.9434.01

194.1479.9898.00

101.03

66.082.00

0.687

70

0.922 g/L°

1.8181.726a5

1.4634.62935.37 g/L20

1.70

3.12415

1.5492° Iq1.4120

1.0001.104425

1.6720

1.463°

2.2-2.51.86825

1.6851.90825

1.49319

1.65 If

-13.4-256.56dlOO61-83.57

-83.6d 130-80-87.319110^H5IO6-50.8

-51.87-HO, 70-41.59

0.003.81-17.8subí 110122-0.43d60subí42.35anhyd 15046.0

26.5=73

25.6-251.03d

19.5212018.65

165.5

220 -*I2O5-35.1127-35.7

83120.5100.00101.42203d 138d 130-140152

red heatd213H4P207, 200

d50d>180

mise aq

aq709 g/100 mL23 aqv s aq, ale; 2.54 g/100 g5

v s aqs aqv s aq

s aq60-70% aq solution269 g/100 mL20 aq; s ale

bz

;ieth234 g/100 mL10 aq; mise alev s aqv s aq0.13318aq;salkv smise aq

mise aqv s aq (commercial 72%440 g/100 mL25 aqmise aq; s alemise aq; s ale, ethv s aq

acid)

slowly s aq — » H3PO4; s alev s aq-H>HPO3, >300v s aq

s aqv s aq, ale

1.3

7

(Continued )

selenateselenidesulfatesulfate-^sulfidetellurate(IV)tellurate(VI) (monoclinic)telluridetrithiocarbonatetungstate(VI)(2-)

HydroxylamineHydroxylammonium chloride

SulfateIndium

antimonidearsenidechloridefluorideoxidephosphidetelluridetrimethyl

Iodine

heptafluoridemonobromidemonochloridepentafluoridepentoxidetrichloride

Iridium

hexafluoride(HI) oxide

(IV) oxidetrichloride

H2SeO4

H2SeH2S042H2S04 or D2SO4

H2SH2TeO3

H6Te06

H2Te(HS)2CSH2WO4

HONH2

HONH3C1

(HONH3)2SO4

InInSbInAsInCl3

InF3

In203

InPIn2Te3

In(CH3)3

I2

IF,ffirICIIF5I205

IC13Ir

IrF6Ir203

IrO2

IrCl3

144.9880.9898.08

100.0934.08

177.63229.66129.62110.21249.8633.0369.49

164.14114.82236.58189.74221.18171.82277.63145.79612.44159.93253.809

259.89206.81162.36221.90333.81233.26192.217

306.21432.43

224.22298.58

2.950845

2.124bP

1.831820

1.86201.5392 g/L°3.03.0685.687 g/L1.48320

5.51.204J0

1.68020

7.315.775.674.04.397.1794.815.751.5684.6325

Iq: 2.86

4.4163.1029

3.1925

4.983.202-4

22.65f

4.82

11.75.30

58-65.7310.3814.35-85.49d to TeO2

-2H2O, 120-49-26.9anhyd 10033150.5

170156.605259425831170

106266788.4113.60

6.454027.2 a-form9.43d275-332447

44.4d ~ 1000 to Ir

+ 02

d l 100d-763

260-41.4335.5

-60.33

320 -» TeO-257.8

5822n,m

d

2072

subí 500

850

135.8185.24

4.77 subí116 d97 d100.5

64 subí-2550

53.6

vs aq (viol)9.5 mL/100 mL20 aq; s CS2

mise aqmise aq0.334 mL25 aq0.0007 aq; s acid, alkali30 g/100 mL18 aqs aq dd aq, alci aq; s HF, alkalisv s aq, MeOH; si s bz, ethg/100 mL: 8317 aq, 12.520 MeOH,

5.120EtOH;sglyc69 g/100 mL20 aqs acidsi aq

212 g/100 mL25 aq0.04025 aq; s dilute acidss hot mineral acidsv si s acids

d aq; s acet, bzg/100 mL25: 0.029 aq, 14.1 bz, 16.5

CS2, 21.4 EtOH, 25.2 eth, 2.6CC14; s chl, HOAc

s aq (d), s NaOHs aq, alc, eth, CS2

d aq; s alc, eth, HOAcd aq viol187 g/100 mL13 aqd aq; s alc, bz, HC1s K2SO4 fusion, KOH + KNO3

fusiond aqs boiling HC1

0.000220 aq; s HC1i acids, alkalis

1.3

8

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solventName

Iron(HO arsenate 2-water(H) bromide(HI) bromide(in-) carbide(H) carbonate(H) cWoride(HI) chloridedisulfide (pyrite)(H) fluoride(HI) fluoride(TTT) hexacyanoferrate(n)(H) hydroxide(HI) hydroxide oxide(u) iodide(HI) nitrate 9-water(di-) nitride(u) oxalate 2-water(H) oxide(n,m) oxide(ffl) oxidepentacarbonyl(H) phosphate 8-waterphosphide(II) selenide(H) silicate(2-)(H) silicate(4-)(H) sulfate 7-water(El) sulfate(H) sulfide(lu) thiocyanate

Kryptondifluoride

Lanthanumchloridechloride 7-water

Formula

FeFeAsO4 • 2H2OFeBr2

FeBr3

FejCFeCO3

FeCl2FeCl3FeS2

FeF2

FeF3

Fe4[Fe(CN)6]3

Fe(OH)2

FeO(OH)FeI2

Fe(N03)3 • 9H20Fe^NFeCjOi • 2H2OFeOFeAFeAFe(CO)5

Fe3(PO4)2 • 8H2OFC2P

FeSeFeSiO3

Fe2SiO4

FeS04 • 7H20Fe2(S04)3

FeSFe(SCN)3

KrKrF2

LaLaCl3LaCl3 • 7H2O

Formula weight

55.845230.79126.75295.67179.55115.85126.75162.20119.9893.84

112.84859.2389.8688.85

309.65404.00125.70179.8971.84

231.53159.69195.90501.60142.66134.81131.93203.77278.01399.8887.92

230.0983.80

121.80138.9055245.26371.37

Density

7.863.183.164.57.6943.93.162.8985.024.093.871.803.44.265.3151.6846.352.286.05.175.251.492.586.856.783.54.301.893.09718

4.7

3.7493 g/L3.246.1623.84

Melting point,°C

15351020677d1227d677304d6021100subi 1000250 d

anhyd 13658747d200d 150137715971565-20.0

1370d11401220anhyd 300d 11781190

- 157.36subi- 60920852anhyd 852 (in

HC1 atm)

Boiling point,°C

2861

1023

1024=316

1837

1093d 100

d3414

103.9

d671

d

- 153.22

34641812

Solubility in100 parts solvent

i aq; s acidsv si s aq; s acids117g/100mL20aq; vsalcs aq, ale, eth, HOAcs acids0.07218 aq; s acids62.5 g/100 mL20 aq; v s ale, acet74 g/100 mL° aq; s ale, acet, eths acids dsi s aq; s dil HF; i ale, bz, eth0.09125 aq; s HFi aq; s MCI0.006 aq; s acidsi aq, ale; s HC1s aq138 g/100 mL20 aqsHCl0.04418 aq; s mineral acidsi aq; s acidsi aq; s acidsi aq; s HC1FP -20;iaq;salc, bz, ethi aq; s acidss hot mineral acidssHCl

dHCl48 g/100 mL20 aqslowly s aq (hyd); si s ale0.000618 aq; s acidv s aq5.94 mL/100 mL20 aqs anhyd HFi aq; s HC1v s aqv s aq; s ale

1.3

9

(Continued )

fluoridenitrate 6-wateroxidesulfatesulfate 9-water

LawrenciumLead

(II) acetate 3-water(IV) acetate(H) azide

(H) borate(l-) hydrate(ÏÏ) bromide(II) carbonate(II) chlorate(II) chloride(II) chloride fluoride(H) chromate(VI)(2-)(u) fluoride(IV) fluoride(II) formate(H) hydrogen arsenate

(II) hydroxide(II) iodide(H) molybdate(VI)(2-)(II) nitrate(u) oléate(H) oxalate(E) oxide (litharge)(IV) oxide(H,rV) oxide (red lead)(u) phosphate(u) selenide(H) silicate(2-)(u) siUcate(4-)(H) stéarate(H) sulfate(H) sulfide

LaF3

La(NO3)3 • 6H2OLaf>3

La2(S04)3

La2(SO4)3 • 9H2OLrPbPb(C2H3O2)2 • 3H2OPb(C2H302)4

Pb(N3)2

Pb(BO2)2 • H2OPbBr2

PbCO3

Pb(C103)2

PbCl2PbCIFPbCrO4

PbF2

PbF4

Pb(CH02)2

PbHAsO4

Pb(OH)2

PbI2

PbMoOPb(N03)2

Pb(C18H3302)2

PbC2O4

PbOPbO2

Pb304

Pb3(P04)2

PbSePbSiO3

Pb2SiO4

Pb(C18H3502)2

PbSO4

PbS

195.90433.01325.81566.00728.14262207.2427.3443.4291.2

310.8367.0267.2374.1278.1261.7323.2245.2283.2297.2347.1

241.2461.0367.1331.2770.1295.2223.2239.2685.6811.5286.2283.3506.5774.2303.3239.3

5.9

6.513.602.821

11.344° (fcc)2.552.2284.7

5.598 anhyd6.696.613.895.987.056.128.4456.74.635.94

7.596.166.74.53

5.289.35 (red)9.648.927.08.156.57.601.46.297.60

1493402305d white heatanhyd 4001627327.4375=75-180expl 350 or

when shockedanhyd 160371d 340 -» PbOd230501

844830= 600d!90d 280 to

Pb2As2O7

d 1454101065470

d300886d 290, Pb304

d 595 -» PbO10141078764743«12511701118

2327d!264200

1749d>200

mpSOO912

950

d1297

872

1472 dd 595, PbO

1300 subi

181 g/100 mL20 aq; v s aies acids2.33 g/100 mL20 aq; i ale2.92 g/100 mL20 aq; i ale

s hot cone HNO3, HC1, H2SO4

g/100 mL: 6315 aq, 3.3 aies hot HOAc, bz, chl, cone HX acids0.02318 aq; v s HOAc

s acids0.450° aq; s acids; i alei aq; s acids, alkalis140 g/100 mL18 aq; v s ale0.9920 aq

i aq; s dil HNO3, alkalis0.06420 aqhyd aq1.6 g/100 mL20 aqs HNO3, alkalis

0.01620 aq; s acids, alkalis0.06320 aq; s KI, Na2S2O3, alkaliss acids, alkalisg/100 mL: 5620 aq, 1.3 MeOHs ale, bz, eths acids, alkalis0.001720 aq; s HNO3

s HC1, dil HNO3 + H2O23, H2C2O4

s HN03, hot HC1s HNO3, alkalissHNO3

s acids

0.0535 aq; s hot ale0.00425 aq; s NaOH0.000618 aq; s HNO3, hot dil HC1

1.4

0

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

(u) telluridetetraethyltetramethyl(u) thiocyanate

Lithiumacetate 2-wateraluminate(l— )amidebenzoateborate(l-)borohydridebrómatebromidecarbonatechloridechromate(VI)(2-) 2-watercitrate 4-waterfluoridehexafluoroaluminate(3 — )hydridehydride-dhydroxideiodateiodidenitratenitrideoxideperchlorate

peroxidesilicate(2-)sulfatetetraborate(2-)tetrahydridoaluminate

tetrahydridoborateLutetium

chloridesulfate 8-water

PbTePb(C2H5)4

Pb(CH3)4

Pb(SCN)2

LiLiC2H3O2 • 2H2OLiAlO2

LiNH2

LiC,H5O2

LiBO2

Li[BH4]LiBrO3

LiBrLi2CO3LiClLi2CrO4 • 2H2OLÍ3C6H507 • 4H20LiFLÍ3[A1F6]LiHLi2H or LiDLiOHLiIO3

LilLiNO3

Li3NLi2OLiC104

LÍ202

Li2SiO3

Li2SO4

Li2B4O7

Li[AlH4]

LiBH4

LuLuCl3Lu2(SO4)3 • 8H2O

334.8323.45267.35323.4

6.941102.0265.9222.96

128.0649.7521.78

134.8586.8473.8942.39

165.91281.9825.94

161.797.958.96

23.95181.84133.8468.9534.8329.88

106.39

45.8889.97

109.95169.1237.95

21.79174.967281.33782.25

8.161.6531.9953.820.53420

1.32.5541.178

2.180.663.623.4642.112.072.15

2.640

0.76-0.770.8811.454.5024.0612.381.272.0132.43

2.312.52?2.22

0.917

0.6669.8413.98

924-137-30.2d 190180.54581700380>300849268

552720613anhyd 75anhyd 1058481012680686471.2450469-2558131570236

d > 195 to Li2O1201859917d 137

2681663892

=200110

1341d

d 450 vacuo

1719d380

1289dl3001360

1681

d950

1626

1174

2563d~400

LiCl + O2

d3803402subí >750

i acids and alkalisi aq; s bz, hydrocarbonss hydrocarbons0.4418 aq, s HNO3, NaOHd aq to LiOH63 g/100 mL20 aq; v s ale

d aq (-» LiOH + NH3); i bz, ethg/100 mL: 33 aq; 7.7 ale2.7 g/100 mL2» aq; i ales aq, eth, THF, aliphatic amines179 g/100 mL20 aq164 g/100 mL aq; s aie, eth1.3 g/100 mL20 aq; i ale; s acids77 g/100 mL20 aq; s aie, acet142 g/100 mL18 aq; s EtOH61 g/100 mL15 aq; si s aie0.1325 aq; s acids

no solvent known; flammable

12.4 g/100 mL20 aq; si s aie66 g/100 mL aq; in aie165 g/100 mL20 aq & aie; v s acet50 g/100 mL20 aq; s aied aqforms LiOH in aq47.4 g/100 mL25 aq; v s organic solv

d dû HC134.5 g/100 mL20 aq; i alesi s aqd aq, aie; g/100 mL: 30 eth, 13

THF; flammables aqpH >7; s eth, THFs acidss aq42.3 g/100 mL20 aq

1.4

1

(Continued )

Magnesiumacetatealuminate(2— )amideborate(l— ) 8-waterbromidecarbonateChloridefluoride(di-) germanidehexafluorosilicate 6-waterhydridehydrogen phosphate

3-waterhydroxideiodideláclate 3-watermandelatenitratenitrideoléateoxideperchlorate

permanganateperoxideperoxoborate 7-waterphosphate 5-watersilicate(2-)silicate(4— )(di-) suicide(di-) stannidesulfate 7-watersulfite 6-watertungstate(VI)(2-)

Manganeseacetate 4-water

MgMg(C2H302)2

MgAl204

Mg(NH2)2

Mg(B02)2 • 8H20MgBr2

MgC03

. MgCl2MgF2

Mg2GeMg[SiF6] • 6H20MgH2

MgHPO4 • 3H2O

Mg(OH)2

MgI2

MgC6H1006 • 3H20MgC16H1406

Mg(N03)2 • 6H20Mg3N2

Mg(C18H3302)2

MgOMg(C104)2

Mg(Mn04)2

Mg02

Mg(B03)2 • 7H20Mg3(P04)2 - 5H20MgSiO3

Mg2SiO4

Mg2SiMg2SnMgSO4 • 7H2OMgSO3 • 6H2OMgWO4

MnMn(C2H3O2)2 • 4H2O

24.305142.00142.2556.35

254.04184.1184.3195.2162.30

121.22274.4726.32

174.33

58.32278.12256.51326.59256.41100.93587.2240.30

223.21

262.1956.30

268.09352.96100.39140.6976.70

167.32246.47212.46272.1454.9380

245.09

1.73820

1.423.61.392s

2.303.7223.052.333.1483.091.7881.452.1315

2.364.43

1.4642.712

3.65-3.752.21

=3.0

1.6415

3.19225

3.212.03.601.671.7256.897.2120

1.589

651 1100323d2135ign in air

711 d 1158990714 14121263 22701115-SiF4, 120d 200 vacuo ign in airanhyd 205 d 550

350 d634 0

95 d 129d270

2800 3600d>251

d 100

anhyd -400d 155718981100778anhyd 250anhyd 200 mp: 2227

1244 fctetr 209580

i aq; s dilute acids53.4 g/100 mL20 aq; v s alev si s HC1d viol water giving NH3

si s aq; s acids101 g/100 mL20 aq0.01 aq; s acids54.6 g/100 mL20 aq0.01325 aq; s HNO3

51 g/100 mL20 aq; i aled aq and ale violentlysi s aq; s acids

0.00125 aq; s acids140 g/100 mL20 aq; s aie4 g/100 mL aq; si s aie0.004100 aq; i ale120 g/100 mL20 aq; v s aied aq; s acidssi s aie, eth, PEi aq, aie; s acidsg/100 mL25: 73 aq, 18 EtOH, 44.6

BuOH, 54 EtOAc, 32 acetv s aqs acidssi s aq d; s dilute acids0.02 aq; s acidsi aq; v si s HFi aq; d hot HC1d aq, HC1s aq, HC127.2 g/100 mL aq; si s aie0.6625 aqi aq; d acidsd aq; s acids38 g/100 mL50 aq; v s aie

1.4

2

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

bromide(in'-) carbidecarbonatechloridechloride 4-waterdecacarbonyldiphosphate(II) fluoride(III) fluoridehydroxideiodidenitrate 6-water(H) oxide(HI) oxide(IV) oxide(H,IV) oxide(VU) oxidephosphinate hydratesilicate, meta-sulfatesulfate hydratesulfate 7-watersulfidetitanate(IV)(2-)

Mercury(II) acetate(II) benzoate(I) bromide(II) bromide

(I) chloride

(H) chloride

(H) cyanide

(I) fluoride

MnBr2

Mn3CMnCO3

MnCl2MnCl2 • 4H2OMn2(CO)10

Mn2P2O7

MnF2

MnF3

Mn(OH)2

MnI2

Mn(NO3)2 • 6H2OMnOMn2O3

MnO2

Mn3O4

Mn2O,Mn(PH2O2)2 • H2OMnSiO3

MnSO4

MnSO4 • H2OMnSO4 • 7H2OMnSMn2TiO4

HgHg(C2H302)2

Hg(C7H502)2

Hg2Br2

HgBr2

Hg2Cl2

HgCl2

Hg(CN)2

Hg2F2

214.75176.83114.95125.84187.91389.98283.82

92.93111.9388.95

308.75287.0470.94

157.8786.94

228.81221.87202.93131.02151.00169.02277.11

87.00150.84200.59318.68424.83560.99360.40

472.09

271.50

252.63

439.18

4.396.893.1252.9772.011.753.7073.983.543.2585.041.85.374.895.084.842.396

3.483.252.952.093.994.54

13.5343.28

7.3076.05

7.16

5.4

4.00

8.73

6981520d>20065097.5d l lO1196930d>600d63825.81840877 d-O2, 5301567ca. -20d to PH3

1290700anhyd 400-450anhyd 28016101360-38.83178- 180 d165subi 393 d237

subi 382

277

d320

>570d

1027

1210anhyd 198

1820

1017

ca. 25

d850

356.7

322 subi

d without melt-ing

304

147 g/100 mL20 aq; s aled aq; s acid0.006525 aq; s acids74 g/100 mL20 aq; s ale, pyr; i eth143 g/100 mL aq; s ale; i ethi aq; s organic solventsi aq; s acid0.6640 aq; s HF, cone HC1hyd aq; s acid0.00218 aq; s acidss aqv s aq, alei aq; s acidsi aq; s HC1 giving off C12

s HC1; i HNO3, cold H2SO4

i aq; s HC1explodes 85; v s aq15 g/100 mL aq; i alei aq, HC152 g/100 mL aq; i ale70 g/100 mL20 aq115 g/100 mL20aq0.000618 aq; s acids

i aq; s HNO3, hot cone H2SO4

g/100 mL: 40'° aq, 7.515 MeOHv s NaCl soin; si s alei aq, ale, eth; d hot HC1g/100 mL: 0.5620 aq; 2025 ale; v s

HC1, HBrs aqua regia; i aq, ale, eth

g/100 mL20: 7.15 aq, 26 ale, 4 eth8.3 glyc, 0.5 bz; s HOAc, EtAc

g/100 mL20: 9.3 aq, 25 MeOH, 8EtOH

hydrolyses in water

1.4

3

(Continued )

(H) fluoride(u) fulmínate(I) iodide(H) iodide

(I) nitrate 2-water(H) nitrate(I) oxide(u) oxide

(I) sulfate(II) sulfate(u) Sulfide (cinnabar)

(H) thiocyanateMolybdenum

(HI) bromide(IV) chloride(V) chloride(VI) fluoridehexacarbonyl(IV) oxide(VI) oxide(HI) sulfide(IV) sulfide

Neodymiumchlorideoxidesulfate 8-water

NeonNeptunium

(IV) oxideNickel

acetate 4-water

HgF2

Hg(ONC)2

Hg2I2

HgI2

Hg2(N03)2 • 2H20Hg(N03)2

Hg20HgO

Hg2S04

HgS04

HgS

Hg(SCN)2

MoMoBr3

MoCl4MoCl5MoF6

Mo(CO)6

MoO2

MoO3

Mo2S3

MoS2

NdNdCl3Nd2O3

Nd2(SO4)3 • 8H2ONeNpNp02

NiNi(C2H3O2)2 • 4H2O

238.59284.62654.99454.40

561.22324.60417.18216.59

497.24296.65232.66

316.7695.94

335.65237.75273.19209.93264.00127.94143.94288.07160.07144.24250.60336.48720.7920.180

237.048226958.69

248.86

8.954.427.706.28

4.794.39.8

11.14

7.566.478.17

3.7110.284.89

2.9282.541.966.474.69616

5.9115

5.06'J7.014.1347.282.850.8999 g/L°

20.211.18.90820

1.744

d645explodes290 d259

70 d79dlOOd500

ddsubi 583

d 1652622subi 97731719417.6150 dd^llOO8011807237510247601900d 700-800-248.6764425471453d

d>650

subi 140350 subi

d

-» blk HgO,386

4825

40726835.0subi

1155d!867subi 45030741600

-246.05>3900

2884

hyd aq; s HFsi s aq; s ale; dangerously flammablei aq, ale, eth; s Klg/100 mL: 0.00625 aq, 0.8 aie, 0.8

eth, 1.7 acethyd aq; s HNO3

v s aq; s aceti aq; s HNO3

0.00525 aq; s dil HC1, HNO , r,CN-

0.0625 aq; s HNO3

d aq; s acidi aq; s aqua regia

0.06325 aq; s HC1s hot H2SO„, HNO3, fused KNO3

d alkaliss cone acidss cone acids, dry eth, dry aiehyd aq; s alkalis; 31 g/100 g HFsbzi aq0.0528 aq; s cône minéral acids, alkd hot HNO3

s aqua regias hot aq, acids98 g/100 mL20 aq; s aies dilute acids8.87 g/100 mL20 aq1.05 mL20 aqsHCl

i aq; s HNO3

16 g/100 mL aq; s aie

1.4

4

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

acetylacetonatebromidecarbonate hydroxide (1/2)carbonylchloridechloride 6-watercyanide 4-waterdimethylglyoxime(tri-) disulfidefluorideformate 2-waternitrate 6-water(II) oxide(III) oxidesulfatesulfate 6-watersulfidetetracarbonyl

Niobium(V) chloride(V) fluoride(V) oxide

Nitrogen

(I) oxide(II) oxide(III) oxide(IV) oxide dimer(V) oxideselenidesulfidetrichloridetrifluoride

Nitrosyl chloridefluoridehydrogen sulfatetetrafluoroborate

Ni(C5H,02)2

NiBr2

NiCO3 • 2Ni(OH)2Ni(CO)4

NiClNiCl2 • 6H2ONi(CN)2 • 4H2ONi(HC2H6N202)2

Ni3S2

NiF2

Ni(CHO2)2 • 2H2ONi(NO3)2 • 6H2ONiONi203

NiSO4

NiSO4 • 6H2ONiSNi(CO)4

NbNbCl5NbF5

Nb2O5

N215N2

N2ONON203

N204

N205

N4Se4

N4S4

NC13

NF,NOCÍNOFNOHSO4

NO[BF4]

256.91218.50304.12170.73129.60237.69182.79288.92240.2196.69

184.78290.8174.71

165.42154.78262.8690.77

170.74

92.9064270.20187.91265.8228.034130.0144.0230.0176.0292.02

108.01371.87184.28120.3770.0165.4749.01

127.08116.83

1.45517

5.0982.61.313.51

5.874.722.15420

2.057.454.833.682.075.3-5.61.318517

8.5720

2.752.696f4.551.165 g/L20

1.25 g/L20

1.843 g/L20

1.249 g/L20

1.447 g/L2

1.448?1

2.054.22.2418

1.65320

2.96 g/L20

1.592-5

2.788 g/L20

2.18525

230963

-19.31009

anhyd 400subí 2507901450anhyd 13056.72000-02>600-SO3, 840anhyd 280976-19.3

246820680.01512-210.01-209.952-90.81- 163.64- 100.7-9.330explosive180-27-208.5-61.5- 132.5d73.5subí 250°-°lm™

23511Mm

subí

43 (expl 60)subí 973

d29671740d 180-200136.7

d204742.3

4860247.0234.9

- 195.79-195.73-88.46-151.76221.15 d47.0

18571- 129.06-5.5-59.9

s aq, ale, bz, chl; i eth100 g/100 mL20 aqs dilute acidss EtOH, bz, acet61 g/100 mL20 aq100 g/100 mL20 aq; s ale0.00618 aq; s KCN, NH4OHi aq; s abs ale, dilute acidssHNO3

4 g/100 mL20 aq; i ale, eths aq; i ale150 g/100 mL20 aqs acidss hot HC1, HN03, H2S04

29 g/100 mL° aq40 g/100 mL20 aqs HNO3, KHSexplodes 63; FP — 4; s organic

solventss fused alkali hydroxidess HC1, CC14

hyd aq, ale; si s CS2, CC14

s HF, hot H2SO4

mL/100 mL: 1.620 aq, 0.112 ale

130° mL aq; s ale, eth4.6 mL/100 mL20 aqs èths cone HNO3, cone H2SO4, chlv s chl; s CC14

si s bz, CS2

s organic solventsi aq; s bz, CS2, CC14

hyd aq; s fuming H2SO4

hyd aqd aq; s H2SO4

d aq

1.4

5

(Continued )

Nitryl chloridefluoride

Osmiumhexafluoridetetrachloridetetraoxide

Oxygendifluoride(di-) difluoride

OzonePalladium

acetatechloridenitrateoxide

Perchloryl fluoridePhosphorus (white)

(red)hydride, see Phosphinepentabromidepentachloridepentafluoridepentoxide (dimer)pentasulfidetribromidetrichloridetrifluoridetrioxide (dimer)(tetra-) triselenide(tetra-) trisulfide

NO2C1NO2FOsOsF6

OsCl4OsO4

02OF2

02F2

03PdPd(C2H302)2

PdCl2Pd(N03)2PdOC103FP4 molecules

P4

PBr5

PC15

PF5

PAoP2S5

PBr3

PC13

PF3

P406

P4Se3P4S3

81.4665.00

190.2304.2332.0254.20

31.998854.0070.0048.00

106.42224.49177.30230.42122.40102.46123.8950

123.8950

430.56208.27125.98283.88222.29270.73137.3587.98

219.90360.80220.09

2.81 g/L100

2.7 g/L20

22.6120

4.38?4.91

1.331 g/L20

2.26 g/L20

1.45bP(lq)1.998 g/L20

12.02320

4.018

8.7020

0.637 g/L1.82325

2.34

3.4620

2.1 1920

5.805 g/L2.302.092.8515

1.575?3.907 g/L2.136?1.312.0317

-145- 166.0304532.1subí 45040.6

-218.4-223.8-154- 192.51555205 d680d879 d- 147.7444.15

597

106 dsubí 100-93.8340288-41.5-93.6-151.3023.8245-246167

-14.3-72.4522545.9

130.0

- 182.96- 145.3d- 100-111.93167

d>680

-46.67280.3

subí 416

166 d-84.6subí 360514173.276.1-101.38173 (N2 atm)360-400407

d aqd aqs molten alkali or oxidizing fluxeshyd aqslow hyd aqg/100 mL: 7.2425 aq; 37525 CC14; s

bz, eth, alemL/100 mL20: 3.13 aq, 14.3 ale6.8 mL/100 mL° aq

49.4 mL/100 mL° aqs hot HNO3, H2SO4

i aq, ale; s acet, chl, eths ale, acet, HC1s dil HNO3

s 48% HBr; si s aqua regia

g/100 mL: 2.86 bz, 2.50 chl, 1.25CS2; 0.025 abs ale, 1.0 eth

i aq; ignites in air, 260

d aq; s CC14, CS2

hyd aq; s CC14, CS2

hydaqd aq; s H2SO4

hyd aq; s alkali; 0.22217 CS2

d aq, ale; s acet, CS2d aq, ale; s'bz, chlhydaqhyd aq; s bz, CS2flammable in air; s bz, acet, chl, CS2

100 g/100 mL17 CS2; s tolune

1.4

6

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

Phosphine

Phosphonium iodidePhosphoryl chloride difluor-

idedichloride fluoridetribromidetrichloride

Platinum(II) chloride(IV) chloride(VI) fluoride(II) oxide(IV) oxide(IV) sulfide

Plutonium(III) bromide(IH) chloride(III) fluoride(IV) fluoride(VI) fluoride(II) hydride(III) hydride(II) oxide(III) oxide(IV) oxide(IH) sulfide

Polonium

(IV) chloride(IV) oxide

PH3

PH4IPOC1F2

POC12FPOBr3

POCI3

PtPtCl2PtCl4PtF6

PtOPtO2

PtS2

PuPuBr3

PuCl3PuF3

PuF4

PuF6

PuH2

PuH3

PuOPu203

PuO2

Pu2S3

Po

PoCl4PoO

34.00

161.91120.43

136.89286.72153.35195.08266.00336.90309.08211.09227.09259.22239.052478.79345.42296.06315.05353.05241.08242.08255.05526.12271.05574.30208.9824

350.79240.98

1.529 g/L

2.861.656°

1.549720

2.8221.64525

21. 0920

5.874.30325

3.826 (Iq)14.915

10.27.66

19.81620

6.695.709.327.004.86

10.409.61

13.910.211.469.959.196 alpha9.398 beta

d550

-133.81

18.5-96.4

-80.1561.251769d581d37061.3d550450d225639.568176014251037 d51.59ca. 727ca. 32719002085 (in He)2390 (in He)1727254

300 (in ay

-87.78

subi 62.53.1

52.90191.7 d1053824

69.14

3230d>13001767d2000

62.16

d2800

962

390 (in C12)

mL/100 mL17: 1025 CS2> 726 bz,319 HOAc, 26 aq; s ale, eth

d aq

s bz, CS2, ethd aq, ales aqua regia, fused alkalii aq, ale; s HC1, NH4OH143 g/100 mL25 aq

i aq; s HC1i aqua regias HC1, HNO3

i aq; s acidss aqi aq; v s acidshyd aqi aq

si s aq; s acids

si hyd aq; v s HC1; s ale, acetv s dilute HCl

1.4

7

(Continued )

Potassiumacetatearsenateborate(l-)brómatebromidecarbonatechloratechloridechromate(VI)citrate hydratecyanatecyanidedichromate(VI)dicyanoargentate(I)dihydrogen arsenatedihydrogen phosphatedioxidediphosphate(V) 3-waterdisulfate(IV)disulfate(VI) (pyrosulfate)ethyldithiocarbonatefluorideformategluconateheptaiodobis-

muthate(in)(4-)hexachloroplatinate(TV)hexacyanoferrate(n)

3-waterhexacyanoferrate(HI)hexafluorosilicatehexafluorozirconatehexanirritocobaltate(ni)

1.5-waterhydride

KKC2H3O2

K3AsO4

KB02

KBrO3

KBrK2C03

KC103

KC1K2CrO4

K3C6H507 • H20KOCNKCNK2Cr207

K[Ag(CN)2]KH2AsO4

KH2P04

KO2

KfjOj • 3H2OK2S205

K2S207

KOCSSC2H5

KFKCHOKC6HU07

K.tBil,]

K2[PtCl6]K4[Fe(CN)6] - 3H20

K3[Fe(CN)6]K2[SiF6]K2[ZrF6]K3[Co(N02)6] • 1.5H20

KH

39.098398.14

256.2181.91

167.00119.00138.21122.5574.55

194.19324.4281.1165.12

294.19199.01180.03136.0971.10

384.38222.32254.32160.3058.1084.12

234.251253.82

485.99422.39

329.25220.27283.41479.30

40.11

0.891.572.8

3.272.752.292.321.9882.7321.982.051.552.67Ó25

2.362.8672.3382.142.33

2.281.5582.481.91

3.501.85

1.892.273.58

1.43

63.382921310947=350734901368771975anhyd 180d=700634398

288d 400 (KPO3)509anhyd 300

«325d200859.9167.5d 180

d250anhyd 100

dd

d200

417 d

759

1401d3701435d to K2Od>4001437

d230

1625d500

dmp: 1090

1505d >mp

d

d aq to KOH; s acidsg/100 mL: 200 aq, 34 ale19 g/100 mL aq; slowly s glyc; s ale71 g/100 mL30 aq6.9 g/100 mL20 aqg/100 mL: 6520 aq, 22 glyc, 0.4 ale90 g/100 mL20 aq; i aleg/100 mL: 7.320 aq, 2 glycg/100 mL: 3420 aq, 7 glyc, 0.4 ale64 g/100 mL20 aq; i aleg/100 mL: 154 aq; 40 glycs aq; si s aleg/100 mL: 50 aq, 50 glyc, 4 MeOH11.7g/100mL20aq25 g/100 mL30 aqg/100 mL: 196 aq, 63 glyc; i ale22.6 g/100 mL20 aq; i alev s aq with decompositions aq; i ales aq; flammable if grounds aqv s aq95 g/100 mL20 aq250 g/100 mL aqv s aq; i ale, bz, chld aq; s alkali iodide solutions

0.4820 aq28 g/100 mL20 aq

40 g/100 mL20 aq (slow); si s alesi s aq; i ale2.7 g/100 mL20 aq0.08918 aq; s HOAc; v si s ale

d aq

1.4

8

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued)

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solventName

hydrogen carbonatehydrogen difluoridehydrogen phosphatehydrogen phthalatehydrogen sulfatehydrogen sulfidehydrogen tartratehydroxideiodateiodidemanganate(VI)molybdate(VI)nitratenitriteoxalate hydrateoxideoxobisoxalatodiaquati-

tanate(IV)perchlorate

periodatepermanganateperoxideperoxodicarbonate hydrateperoxodisulfateperrhenatephenolsulfonate hydratephosphateselenocyanatesilicate(2-)sodium hexanitritocobal-

tate(in) hydratesodium tartrate 4-watersórbatestannate(rV) 3-water

Formula

KHCO3

KHFK2HPO4

KHC8H4O4

KHSO4

KHSKHC4H406

KOHKIO3

KIK2MnO4

K2MoO4

KNO3

KNO2

K2C2O4 • H2OK2OK2[TiO(C204)2(H20)2]

KC1O4

KI04

KMnO4

K202

K2C206 • H20K2S2O8

KReO4

KC6H4(OH)SO3 • H2OK3P04

KSeCNK2SiO3

K2Na[Co(NO2)6] • H2O

KNaC4H4O6 • 4H2OKC6H702

K2SnO3 • 3H2O

Formula weight

100.1178.10

174.18204.22136.1772.17

188.1856.11

214.00166.00197.13238.14101.1085.10

184.2394.20

354.18

138.55

230.010158.03110.20216.24270.32289.30240.28212.27144.08154.29454.18

282.23150.22298.94

Density

2.172.37

1.6362.241.701.9562.0443.893.12

2.32.111.9152.132.35

2.52

3.6182.7

2.484.381.872.564J7

1.633

1.7901.36383.197

Melting point,°C

d>100238.80d to K2P2O7

d197=455

406560 d681190 d919333441anhyd 160350 d

d400

582d 240 -* O2

490

d 100555

1340d 100976d 135

70-80d >270anhyd 140

Boiling point, Solubility in°C 100 parts solvent

34 g/100 mL20 aq; i aled 477 39 g/100 mL20 aq; s ale

150 g/100 mL aq8.3 g/100 mL aq; si s ale

d to K2S2O7 48 g/100 mL20 aqs aq, ale0.520 aq; s acids; v si s ale

1323 g/100 mL: 1 1220 aq, 33 ale,8.1 g/100 mL20 aq; i ale

1345 g/100 mL: 14420 aq, 4.5 ales aq; stable in KOH

d 1400 160 g/100 mL aqd 400 g/100 mL: 3220 aq, 0.16 aled 350 306 g/100 mL20 aq; si s aled to K2CO3 36 g/100 mL20 aq

d aq to KOH, s alev s aq

40 glyc

, 50 glyc

, s glyc

2.0425 aq; 0.003625 BuOH; 0.0013EtOAc

0.4220 aq, si s KOH6.34 g/100 mL20 aq; d HC1d aq6.5 g/100 mL aq; d hot aq2.5 g/100 mL20 aq; i ale

1370 0.9920 aqs aq, ale50.8 g/100 mL20 aq; i ales aqs aq0.07 aq

anhyd 130-140 54 g/100 mL15 aqg/100 mL: 58.220 aq, 6.5 ale100 g/100 mL20 aq; i ale

1.4

9

(Continued )

stéaratesulfatesulfidesulfite 2-watertartrate hemihydratetellurate(IV)tetrachloroaurate(in)tetrafluoroboratetetrahydridoboratetetraiodocadmate 2-water

tetraiodomercurate(n)thiocyanatethiosulfatetrihydrogen bisoxalate

2-watertrisoxalatoantimonate(in)trithiocarbonateuranyl(VI) acétate hydrate

Praseodymiumchloride(HI) oxide

(IV)Promethium-147

bromidechloride

Protoactinium(IV) chloride(V) chloride

Radiumbromidechloride

RadonRhenium

KOOCC17H35

K2SO4

K2SK2SO3 • 2H2OK2C4H4O6 • 0.5H2OK2TeO3

K[AuCl4]K[BF4]K[BH4]KJCdLJ • 2H2O

K2[HgI4]KSCNK2S203

KH3(C204) - 2H20

K3[Sb(C204)3]K2CS3

K(U02)(C2H302)2 • H20PrPrCl3Pr203

PrO2

PmPmBr3

PmCLjPaPaCl4PaCl5RaRaBr2

RaCl2RnRe

322.57174.26110.26194.29235.28253.79"377.88125.9053.94

698.21

786.4897.18

190.33254.20

503.12186.41504.28140.9077247.27329.81

172.91146.915386.7153.4231.0359372.85408.31226.03385.88296.93222.0186.207

2.661.74

1.98

3.752.505a0

1.113.359J1

1.89

1.836

3.29615

6.475 ct-form4.07.07

6.827.225.38

15.374.723.745.55.794.919.73 g/L

21.02

1069948danhyd 155

d357530d497

173d400d

danhyd 275935769 to 782oxidizes to

Pr60„tr 350 to Pr6On

10801217371568(8)subí 400301700.17281000-713180

1670

d200

d500

35201710

3000 est166716704227

4201737subi 900

-625678

readily soluble hot aq or aleg/100 mL: II20 aq, 1.3 glyc, i ale

28.6 g/100 mL20 aq138 g/100 mL20 aqs aq61.8g/100mL20aq0.4520 aqg/100 mL: 2125 aq, 3.520 MeOHg/100 mL: 13715 aq, 7115 ale, 4ethv s aq; s ale, acet, ethg/100 mL: 21720 aq, 200 acet, 8 ale155 g/100 mL20 aq; i ale1.8 aq

aaqv s aqs aqs hot water and acids104 g/100 mL13 aq; s alei aq; s acids

s aqs aq

i aq; s HC1hyd aq; s THF, CH3CNd aq; s acidss aqs aq23 mL/100 mL20 aq; s org solvsHNO3

1.5

0

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

Chloride trioxide(IV) fluoride(VI) fluoride(VII) fluoride(VI) oxide(VII) oxide(VII) sulfide(VI) tetrachloride oxide

Rhodium(III) chloride(HI) fluoride(HI) oxidetetracarbonyldi-/¿-chloro-

dichlorideRubidium

acetatebromidecarbonatechloratechloridedihydrogen phosphatefluoridehexachloroplatinate(IV)hydroxideiodidenitrateoxidesulfate

Ruthenium(ffl) chloride (hexagonal)(V) fluoride(IV) oxide

Samarium(II) chloride(ffl) chloride(m) fluoride(HI) oxide(HI) sulfate 8-water

ReClO3

ReF4

ReF6

ReF,ReO3

Re20,Re2S7

ReCl4ORhRhCl3RhF3

Rh203

Rh2(CO)4Cl2

RbRbC2H3O2

RbBrRb2CO3

RbC103

RbClRbH2PO4

RbFRb2[PtCl6]RbOHRblRbNO3

Rb2ORb2SO4

RuRuCl3

RuF5

RuO2

SmSmCl2SmCl3SmF3

Sm2O3

Sm2(SO4)3 • 8H2O

269.66262.20300.20319.20234.20484.41596.88344.02102.9055209.26159.90253.81388.76

85.4678144.52165.37230.95168.94120.92182.47104.47578.75102.47212.37147.47186.93267.00101.07207.43196.06133.07150.36221.27256.72207.36348.72733.03

5.383.583.656.9-7.46.14.8663.309

12.4120

5.385.48.20

1.532

3.35

3.1842.76

3.23.943.203.553.114.03.5

12.453°3.113.906.977.523.6874.466.6438.3472.93

4.5124.518.548.3disprop 400300.3d46029.31963d450subí 600d 1100124-125

39.31246682837342715840833d301642305400 d10502334d>50086.5d107485568213062335anhyd 450

12879533.873.7750360.3

2253727

691

1346d900

1390

1410

1304

4150

111

17942030d2427

hyd in water to HReO4; s CC14

hyd aq52.5 g/100 mL anhyd HF; s HNO3

hyd aqsHN03

v s aq, org solvi aq; s HNO3

hyd aq; s CC14

s fused KHSO4

i aq; s KOH, KCNi acids, alkalisi aq reg, KOHs org solv except hydrocarbons

d aq to RbOH86 g/100 mL45 aq108 g/100 mL20 aqg/100 mL: 45020 aq, 0.7419 ale5.4 g/100 mL20 aqg/100 mL: 9120 aq, 1.1 MeOHs aq131 g/100 mL18aq0.02820 aq180 g/100 mL18 aq; s ale163 g/100 mL25 aq; s ale19.5 g/100 mL20 aqs aq — » RbOH48 g/100 mL20 aqs fused alkali, oxidizing fluxesi aq; s HC1, aled aqi aq; s fused alkalis acidss aq dec; i ale93.4 g/100 mL20 aqi aq; s H2SO4

s acids2.7 g/100 mL20 aq

1.5

1

(Continued )

Scandiumchlorideoxidesulfate 5-water

Selenium (hexagonal)(IV) bromide(IV) chloride(di-) dibromidedibromide oxide(di-) dichloridedichloride oxidedifluoride oxide(IV) fluoride(VI) fluoride(di-) hexasulfide(IV) oxide

(tetra-) tetrasulfideSilane

chloro-dichloro-iodo-trichloro-

Siliconcarbide (beta)dioxide (a quartz)

dioxide - tungsten trioxide -water (silicotiingstic acid)

disulfide

ScScCl3Sc203

Sc2(SO4)3 • 5H2OSeSeBr4

SeCl4Se2Br2

SeBr2OSe2Cl2SeCl2OSeF2OSeF4

SeF6

86,8,5SeO2

Se4S4

SiH4

SiH3ClSiH2Cl2SiH3ISiHCl3SiSiCSiO2

SiO2 • 12WO3 • 26H2O

SiS2

44.956151.31137.91468.1778.96

398.58220.77317.73254.77228.83165.867132.96154.95192.95350.32110.96

444.1032.1266.56

101.01158.01135.4528.085540.1060.08

3310.66

92.22

2.985 hex2.393.8642.5194.8 120

4.0292.63.604J5

3.3850

2.77425

2.442.82.758.467 g/L2.443.95

3.201.409 g/L2.921 g/L4.432 g/L2.0351.3312.333.162.648

2.04

15419672485anhyd 250217123305

41.6-858.515-10-34.6121.5340

113d-185-118-122-57-12814122830573 tr

ß quartz

1090

2836967

d550685

subi 196225 d217 d127 dec177.2125106

subi 315

-111.9-30.48.345.5333265

2950

d aqv s aq; i ales hot or cone acids54.6 g/100 mL25 aqs eth, KOH, KCN; i aq, aled aq; s HBr, chl, CS2

d aqd aq; s chl, CS2

d aqd aq; s bz, chl, CS2

d aq; mise bz, chl, CC14, CS2

d aqreacts aq viol; mise ale, eth; s chl

sCS2; 1.2 g/100 mL20bzw/w %: 3814 aq, 1012 MeOH, 4.35

acet, 6.714 EtOH, l.l12 HOAc; sH2S04

i aq; 0.04 g/100 mL20 bz; s CS2

d aq slowly; i ale, bz, chl, eth

d aqd aqd aq; s bz, chls HF + HNO3, fused alkali oxidess fused alkali oxidesi aq; s HF

v s aq, ale

s d aq, ale; i bz

1.5

2

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solventName

tetrabromidetetrachloridetetrafluoridetetraiodide(tri-) tetranitride

Silveracetateantimonideazidebromidecarbonatechloratechloride

chromate(VI)cyanidefluoride(H) fluorideiodate

iodide (alpha)nitratenitriteoxalateoxide(H) oxideperchloratepermanganatephosphate

selenate(IV)sulfate

Sulfide (agentite)»odium

acetateacetate 3-wateraluminate(l— )

Formula

SiBr4

SiCl4SiF4

SiI4

Si3N4

AgAgC2H302

Ag3SbAgN3

AgBrAg2C03

AgClOjAgCl

Ag2Cr04

AgCNAgFAgF2

AgI03

AgiAgN03

AgN02

Ag2C204

Ag20AgOAgC104

AgMnO4

Ag3P04

Ag2Se03

Ag2S04

Ag2SNaNaC2H302

NaC2H3O2 • 3H2ONaAlO2

Formula weight

347.70169.90104.08535.70140.28107.8682166.91445.35149.89187.77275.75191.32143.32

331.73133.89126.87145.87282.77

234.77169.87153.87303.76231.73123.87207.32226.80418.62

342.69311.80

247.8022.9897782.03

136.0881.97

Density

2.811.54.567 g/L4.13.17

10.493.259

4.96.4736.0774.43020

5.56

5.62S25

3.955.8524.575.52520

5.68330

4.35219

4.4535.034

7.22?7.4S325

2.80625

4.496.37

5.935.45

7.234f0.96820

1.5281.454.63

Melting point, Boiling point,°C °C

5.2-68.8-90.3120.51878961.78d559exp -252432218231455

320 d435690>200

558212d>140explodes 140d 200 (d light)d>100d486d by light849

530660

84597.82324anhyd 1201650

15457.6-86287.3

2164

1500

d2701547

= 1150d700d

1505d440

d>530d 1085

d881.4

d>120

Solubility in100 parts solvent

hyd aq violhyd aq; s bz, CC14, ethhyd aq; s HFd aq; 2.2 g/100 mL27 CS2

i aq; s HFsHNO3

1.0420 aq; s dil HNO3

i aq; s KCN, HNO3 (explosive)i aq; s KCN0.00320 aq; s KCN, HNO3, NH4OH10 g/100 mL15 aqi aq; 7.7 g/100 mL NH4OH, KCN,

Na2S2O3

0.00220 aq; s HNO3, NH4OHi aq; s KCN182 g/100 mL20 aq; s HF, CH3CNhyd viol aq0.05325 aq; 40 g/100 mL 10%

NH4OHi aq; s KCN, KI, (NH4)2CO3

g/100 mL: 21620 aq, 3.3 ale, 0.4 acet0.3325 aq; d dilute acids0.00420 aq; s HNO3, NH4OH0.00225 aq; s dil HNO3, NH4OHi aq; d alk and acids557 g/100 mL20 aq; s bz, glyc, pyr0.9 aq; d ale0.006 aq; v s dil HNO3, KCN,

(NH4)2C03

si s aq; s HNO3

0.8020 aq (slow); s HNO3, NH4OH,H2SO4

i aq; s HNO3, alk CN'sd aq to NaOH75 g/100 mL20 aqg/100 mL: 12520 aq, 5.1 alev s aq; i ale

1.5

3

(Continued )

aluminum sulfate 12- wateramideammonium phosphate

4-waterarsenate(mXl-)ascorbateazidebenzoatebismuthate(V)(l-)bismuthidebrómatebromidecarbonatecarbonate hydratecarbonate 10-watercarbonate - hydrogencarbonate 2-water (trona)chlorate(V)chloridechloritechromate(VI)citrate 2-watercyanatecyanidecyanohydridoboratedichromate 2-water

diethyldithiocarbamatedihydrogen arsenate(V)

hydratedihydrogen diphos-

phate(V)dihydrogen phosphate(V)

dihydrate

NaAl(SO4)2 • 12H2ONaNH2

NaNH4HP04 • 4H2O

NaAsO2

NaC6H706

NaN3

Na02C6H5

NaBiO3

Na3BiNaBrO3

NaBrNa2CO3

NajCOs • H2ONa2CO3 • 10H2ONajCOj • NaHC03

•2H20NaClO3

NaClNaClO2

Na2Cr04

Na3QH507 • 2H2ONaOCNNaCNNa[BH3CN]Na2Cr2O7 • 2H2O

NaS2CN(C2H5)2 • 3H2ONaH2AsO4 • H2O

Na2H2P2O7

NaH2PO4 • 2H2O

458.2839.01

209.07

129.91198.1165.01

144.11279.96277.95150.89102.89105.99124.00286.14226.02

106.4458.4490.44

161.97294.1065.0149.0162.84

298.00

225.31181.94

221.94

156.01

1.611.391.54

1.87

1.84620

3.343.2003°2.53320

2.251.462.112

2.52.17

2.72

1.891.61.122.3483s

2.53

1.9

1.91

-60210 subí 400~80 anhyd >280

d218d to Na + N2

d766381 d755 1390858.1 danhyd 10034 d

248 d>300->O2800.8 1465d 180-200792anhyd 150550563>240danhyd 100; mp d 400

356anhyd 94-96anhyd 130 d 200

d220

anhyd 100 d NaPO3, 200

110g/100mL15aq;ialcd >500, reacts aq viol14.3 g/100 mL aq

v s aq; si s ale62 g/100 mL20 aq41 g/100 mL20 aq; 0.3 aleg/100 mL: 6325 aq; 1.3 alei cold aq; dec by hot aq & acidsd aq40 g/100 mL20 aq; i aleg/100 mL: 9020 aq, 6 ale; 16 MeOH29 g/100 mL20 aq; s glyc; i aleg/100 mL: 33 aq, 14 glyc; i ale50 g/100 mL aq; s glyc13 g/100 mL° aq

g/100 mL: 9620 aq, 0.77 ale, 25 glycg/100 mL: 3620 aq, 10 glyc34 g/100 mL17 aq84 g/100 mL20 aq77 g/100 mL25 aq; i ales aq d; 0.22° ale58.7 g/100 mL20 aqg/100 mL: 212 aq, 37.2 THF; v s73.1 g/100 mL20 aq

s aq, aies aq

4.5 g/100 mL° aq

71 g/100 mL° aq; i ale

1.5

4

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

dimethylarsonate 3-water(cacodylate)

dioxidediphosphate(V)dithionate(V) 2-water

dithionate(ni)diuranate(VI)dodecylbenzenesulfonatedodecylsulfateethoxideethylenebis(imino-

diacetate) (EDTA)ethylsulfatefluorideformategluconateglycerophosphatehexachloroplatinate(IV)

6-waterhexacyanoferrate(II)

10- waterhexacyanoferrate(III) hy-

dratehexafluoroaluminatehexanitritocobaltate(III)hydride

hydrogen arsenate(V)7-water

hydrogen carbonatehydrogen difluoridehydrogen phosphate

7-waterhydrogen sulfatehydrogen sulfidehydrogen sulfite

Na02As(CH3)2

NaO2

Na4P2O7

Na2S2O6 • 2H2O

Na2S2O4

Na2U2O7

NaO3SC6H4C12H25

NaO3SOC12H25

NaOC2H5

(NaOOCCH2)2NC2H4-N(CH2COONa)2

NaO3SOC2H5

NaFNaHCO2

NaC6Hn07

Na2C3H5(OH)2PO4

Na2[PtCl6] • 6H2O

Na4[Fe(CN)6] • 10H2O

Na3[Fe(CN)6] • H2O

Na3[AlF6]Na3[Co(N02)6]NaH

Na2HAsO4 • 7H2O

NaHCO3

NaHF2

NaaHPO., • 7H2O

NaHSO4

NaHSNaHSO3

214.03

54.99265.90242.14

174.11634.03348.49288.3868.06

380.20

148.1241.9968.01

218.14216.04561.88

484.06

298.93

209.94403.9824.00

312.01

84.0162.00

268.07

120.0656.06

104.06

2.532.19

2.781.92

2.50

1.46

2.97

1.39

1.87

2.202.081.7

2.4351.791.48

anhyd 120

552988anhyd 110 d 267 to

Na2SO4 +SO2

d

>300

996 1704253 d >253

d>130-6H2O, 110

anhyd 82 d 435

1009

425 d

anhyd 130 d 150

to Na^Os 270d>160d

315 d350d

g/100 mL: 200 aq, 40 ale

2.26° aq13.4 g/100 mL20 aq; i ale

22 g/100 mL20 aq; si s alei aq; s acids

10 g/100 mL aqd aq; s abs ale103 g/100 mL aq

140 g/100 mL aq; s ale4 g/100 mL15 aq; i ale81 g/100 mL20 aq; s glyc; si59 g/100 mL25 aq; si s ale; i67 g/100 mL aq; i alev s aq; s ale

28 g/100 mL20 aq

18.9 g/100 mL° aq

s aqv s aq; si s aleign spontaneously moisture;

viol61 g/100 mL15 aq; s glyc; si

8 g/100 mL20 aq; i ale3.7 g/100 mL20 aq25 g/100 mL40 aq; v si s ale

50 g/100 mL20 aq; d ales aq, ale, ethg/100 mL: 29 aq, 1.4 ale

s aleeth

d ale

s ale

1.5

5

(Continued )

hydroxide

hydroxymethanesulfinatedihydrate

hypochlorite 5-water

iodateiodide

láclatemethoxidemolybdate(VI) 2-waternitratenitriteoxalateoxidepentacyanonitrosylfer-

rate(in) 2-water (nitro-prusside)

perchlorate

periodateperoxideperoxoborate 4-waterperoxodisulfate(VI)perrhenatephosphatephosphate 1 2-waterphosphinate hydratepropanoatesalicylateselenate(VI)silicate(2— ) meta-silicate(2-) 5-watersilicate(4— )

NaOH

Na[HOCH2SO2] • 2H2O

NaCIO • 5H2O

NaIO3

Nal

NaOOCCHOHCH3

NaOCH3

Na^oOi • 2H2ONaNO3

NaNO2

Na2C2O4

NajONa2[Fe(CN)5NO] • 2H2O

NaClO4

KIO4Na2O2NaBO3 • 4H2ONa2S208

NaReO4

Na3PO4Na3PO4 • 12H2ONaPH2O2 • H2ONaOOCC2H5

NaOOCC6H4OHNa2SeO4Na^iOjNa2SiO3 • 5H2ONa4SiO4

40.00

154.12

164.52

197.89149.89

112.0654.02

241.9585.0069.00

134.0061.98

297.65

122.44

213.8977.98

153.88238.11273.19163.94380.12105.9996.06

160.10188.94122.06212.14184.04

2.130

1.6

4.283.67

=3.52.262.172.342.271.72

2.52

3.8652.805

5.242.5371.62

3.0982.6141.749

323

63-64

18

d660

d>300anhyd 100307271d=250dull red heat

480 d

d~300675d>60d300134073.4anhyd 200

108972.21018

1388

d >64

d by CO2 fromair

1304

mp687d=500d>320

d>400

d

-11H2O, 100d to PH3

anhyd 100

g/100 mL: 10820 aq, 14 abs alc, 24MeOH; s glyc

v s aq; i abs alc, bz, eth

29 g/100 mL° aq

8.1 g/100 mL20aqg/100 mL: 20020 aq, 100 glyc, 50

aie; s acetmise aq, alcd aq; s alc65 g/100 mL20 aqg/100 mL: 8820 aq, 0.8 alc67 g/100 mL20 aq3.4 g/100 mL20 aq; i alcd aq to NaOH violently40 g/100 mL16 aq

g/100 mL25; 114 aq, 1.5 BuOH, 8.4EtOAc

10.3 g/100 mL20 aqv s aq (dec)2.5 g/100 mL aq55 g/100 mL aq; d by alc33 g/100 mL20 aq12.1 g/100 mL20 aq28.3 g/100 mL20 aq; i alc100 g/100 mL20 aq; s glyc, alcg/100 mL25: 100 aq, 4.1 alcg/100 mL: HO20 aq, 11 alc, 25 glyc27 g/100 mL20 aqs aq; hyd by hot aq; i alcv s aqs aq

1.5

6

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

stannate(IV) 3-waterstéaratesulfatesulfate 10- waterSulfidesulfide 9-watersulfitetartrate dihydratetetraboratetetraborate 10- water (bo-

rax)tetrachloroaluminatetetrachloroauratetetrafluoroboratetetrahydridoboratethiocyanatethiosulfatethiosulfate 5-watertrimetaphosphate 6-watertungstate(VI) dihydratevanadate(V)

Strontiumbromidecarbonate

chloratechloridechromate(VI)fluoridehydrogen phosphatehydroxideiodateiodideláclate 3-waternitrateoxideperchlorate

Na2SnO3 • 3H2ONaOOCC17H35

NajSOiNa2SO4 • 10H2ONajSNa2S • 9H2ONa^OjNa2C4H406 • 2H20Na2B4O7

Na2B4O7 • 10H2O

NafAlClJNa[AuCl4] • 2H2ONa[BF4]Na[BH4]NaSCNNajSANa2S2O3 • 5H2O(NaPO3)3 • 6H2ONa2WO4 • 2H2ONaVO3

SrSrBr2

SrCO3

Sr(C103)2

SrCl2SrCr04

SrF2

SrHPO4

Sr(OH)2

Sra02)2

SrI2

Sr(OOCCHOHCH3)2 • 3H2OSr(N03)2

SrOSr(C104)2

266.71306.47142.04322.2078.05

240.18126.04230.08201.22381.37

191.78397.80109.8237.8381.07

158.11248.19414.04329.85121.9387.62

247.43147.63

254.52158.53203.61125.62183.60121.64437.43341.43319.81211.63103.62286.52

2.71.461.8561.432.631.822.41.73

2.01

2.471.074

2.3451.691.7863.25

2.644.2163.5

3.1523.0523.894.243.5443.6255.04515

4.42

2.994.73.0025

d 140 (slow)d880032.41172 vacuod=50danhyd ~ 120742.575 d

151d>100384497287

anhyd 10053anhyd 100

757657d 1100 to SrO

+ C02

120 d -» 02

874d1477

535

402anhyd 1505702430

d2227anhyd 100

anhyd 320

dd315

d>100anhyd 100mp: 695.6

13662045

1250

2460

-H20, 744

1773d

645

59 g/100 mL20 aq; i alesi s aq28 g/100 mL20 aq67 g/100 mL25 aq; s glyc; i ale18.6 g/100 mL20 aq; si s ale200 g/100 mL aq; si s ale31 g/100 mL20 aq; s glyc; i ale29 g/100 mL6 aq; i ale2.620 aqg/100 mL: 6.3 aq, 100 glyc

s aq166 g/100 mL27 aq; s ale, chl108 g/100 mL27 aq1825 DMF; 16.420 MeOH (reacts)134 g/100 mL20 aqs aq; i ale70 g/100 mL20 aq (dec slowly)22 g/100 mL aq; i ale88 g/100 mL° aq; i ales hot aqd to Sr(OH)2 in water100 g/100 mL20 aqi aq; s acids

167 g/100 mL20 aq52.9 g/100 mL20 aq0.1220 aq; s HC10.01120aq;shotHCli aq; s acids0.820 aq0.0315 aq178 g/100 mL20 aq; s ale33 g/100 mL aq69.5 g/100 mL20 aq; si s ale, acet0.6920 aqg/100 mL25: 157 aq, 71 BuOH, 77

1.5

7

(Continued )

peroxidesulfatesulfîde

Sulfinyl bromide (Thionyl)Chloridefluoride

Sulfonyl Chloride (Sulfuryl)diamidefluoride

Sulfur (gamma)(alpha) orthorhombic

(beta) monoclinic tr slowlyto rhombic

(di-) decafluoride(di-) dichloridedichloridedioxide

hexafluoridetetrafluoridetrioxide (alpha)

(beta)(gamma)

Sulfuryl, see SulfonylTantalum

(V) bromidecarbide(di-) carbide(V) chloridediboride(V) fluoride(V) iodide

- nitride(V) oxide

Technetium-98(VI) fluoride(IV) oxide(YD) oxide

Sr02

SrSO4

SrSSOBr2

SOC12

SOF2SO2C12

S02(NH2)2

S02F2

SS8

ss

S2f*ioC1SSC1SC12SO2

SF6SF4

S03

SO3SO3

TaTaBr5

TaCTa2CTaClsTaB2TaF5

TalTaNTaATcTcF6

TcO2

Tc207

119.62183.68119.69207.87118.9786.06

134.9796.11

102.06

32.066256.53

256.53

254.11135.04102.9764.07

146.06108.0680.0680.0680.06

180.9479580.47192.96373.91358.21202.57275.94815.47194.95441.89

97.9072212.91130.91309.81

4.783.963.702.6885°1.6383.776 g/L1. 6674f1.8074.478 g/L

1.922.0820

1.96

2.081.6881.6222.811 g/L

6.409 g/L4.742 g/L

1.92

16.694.99

14.315.1'3.68

11.24.7420

5.8013.78.2

113.06.9

215 d16072227-52-104.5- 129.5-54.193-135.8

106.8tr 94.5 to beta

form115.21

-52.7-77-122-75.47

-50.8-121.062.332.516.8

299626538803327216314096.849630901785215737.4subí 1000119.5

14076-43.869.3d250-55.38

444.72444.6

444.6

3013759.5-10

subí -63.8-38vp 73mm at 25vp 344mm at 2544.8

54293494780

239.3

229.5543

426555.3

310.6

EtOAc, 90 acet0.01820 aq; d hot aq0.01320 aq; si s acidsi s aq; s acid (dec)hyd aq (slow); mise bz, chl, CC14

hyd aq; mise bz, chl, CC14

hyd aq; s bz, chl, ethhyd aq; mise bz, eth, HOAcs aq, hot EtOH, acetmL gas/100 mL: 4 aq, 24 ale, 136

CC14, 210 toluene23 g/100 mL° CS2; s ale, bzi aq; s organic solvents

23 g/100 mL° CS ; s ale, bz

d fusion with KOHhyd aq; s ale, bz, eth, CS2, CC14

hyd aqmL/100 mL: 393720 aq, 25 ale, 32

MeOH; s chl, ethsi s aq; s ale, KOHd aq viol; v s bzstable modification

v s aq (slow)

s HF, fused alkali (slowly)hyd aq; s abs ale, ethslsHF

hyd aq; s abs ale

s aq, eth, cone HNO3

hyd aq; s ethsi s aq reg; reacts alkaliss HF; d fused KHSO4 or KOHs HNO3, aq reg, cone H2SO4

sHCls acid, alkalis aq

1.5

8 TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

Tellurium(IV) bromide(H) chloride(IV) chloride(TV) fluoride(VI) fluoride(IV) iodide(IV) oxide

Terbiumchloridenitrate 6-water

Thallium(I) bromide(I) carbonate(I) chloride(I) cyanide(I) ethoxide(I) fluoride(HI) fluoride(I) iodide (rhombic)(I) nitrate(I) oxide(HI) oxide (hexagonal)(I) selenate(VI)(I) selenide(I) sulfate(I) sulfide

Thiocarbonyl chlorideThiocyanogenThionyl, see SulfinylThiophosphoryl tribromide

trichloride (alpha)trifluoride

Thiosulfinyl difluorideThorium

chloridefluorideiodidenitrate

TeTeBrTeCl2TeCl4TeF4

TeF6TeI4

TeO2

TbTbCl3Tb(NO3)3 • 6H2OTlTIBrT12CO3

T1C1T1CNT1OC2H5

TIPT1F3

TilT1NO3

T12OT1203

Tl2SeO4

Tl2SeT12SO4

T12SS=CC1(SCN)2

PSBr3

PSC13

PSF3

S=SF2

ThThCl4ThF4

Till,Th(N03)4

127.60447.22198.51269.41203.59241.59635.22159.60158.9254265.28453.03204.383284.29468.78239.84230.40249.44223.38261.38331.29266.39424.77456.77551.73487.73504.83440.83114.98116.16

302.78169.41120.03102.13232.038373.85308.03739.66400.06

6.244.36.93.0

10.601 g/L5.055.98.234.35

11.857.57.117.006.5233.498.368.657.15.559.52

10.26.8759.056.778.391.50915

2.85"1.635

11.74.596.16.00

449.8380208225129-37.68280733135658889.3303.5460272430d-3326550 d442206579834>400340632448

ca. -2

38.0-40.8- 148.8-16517507701110570d 630, ThO2

989.9=20 d328380d>195subi -38.9

124532301550

1457820

720

d 130826

823d4501080-02, 875

d136773.5

209 d125-52.2-10.647889211680837

s HNO3, KOH, cone H2SO4

s HBr, eth, HOAcdisprop with eth, diox; s acidhyd aq; s HC1, abs ale, bzd aqhyd aq, KOHhyd aq; s HI, alkali; si s acets HC1, HF, NaOHs acidsv s aqs aqi aq; s HNO3

0.0520 aq; s ale4.1g/100mL20aq;ialc0.3320 aq; i ale16.8 g/100 mL28 aq; s ale, acids eth; si s ale; d aq78.6%15 aqd aqi aq, ale; s KI9.55 g/100 mL20 aq; i alev s aq; s acid, alei aq; d by HC1, H2SO4

2.8 g/100 mL20 aq; i ale, ethi aq, acid4.87 g/100 mL20 aq0.0220 aq; s mineral acidsd aq; s ethd aq; s ale, CS2, eth

s aq, eth, CS2hyd aq; s bz, chl, CS2

hydaqs acidss aq, ales acidshyd aq191 g/100 mL20 aq; v s ale

1.5

9

(Continued )

oxidesulfate 9-water

Thulliumchloridefluoride

Tin (white)(II) acetate(II) bromide(IV) bromide(II) chloride(IV) chloride(II) fluoride(IV) fluoridehexafluorozirconate(H) iodide(IV) iodide(H) oxalate(H) oxide(IV) oxide(II) selenide(H) sulfate(H) sulfide(IV) sulfide

(II) tellurideTitanium (hexagonal)

(HI) bromide(IV) bromide(II) chloride(IH) chloride(IV) chloridedihydride(IV) fluoride(IV) iodide(IV) isopropoxide(H) oxide

Th02

Th(S04)2 • 9H20TmTmCl3TmF3SnSn(C2H302)2

SnBr2

SnBr4

SnCl2SnCl4SnF2

SnF4

Sn[ZrF6]SnI2

SnI4

SnC2O4

SnOSnO2

SnSeSnSO4

SnSSnS2

SnTeTiTiBr3

TiBr4

TiCl2TiCl3TiCl4TiH2

TiF4

TO,Ti[OCH(CH3)J4

TiO

264.04586.30168.9342275.29225.93118.710236.80278.52438.33189.61260.52156.71194.70323.92372.52626.33206.73134.71150.71197.67214.77150.78182.84

246.3147.867

287.58367.48118.77154.23189.6849.88

123.86555.49284.2263.87

10.02.779.32

7.9717.2652.315.123.343.902.2344.574.784.215.2854.463.566.456.956.1794.155.084.5

6.54.5064.243.373.132.641.733.7522.7984.30.971 If4.95

3390anhyd 40015458241158231.928182.521531246.9-3.3213

320143280 dto SnO2, 3001630861to SnO2, 378880d600

7901668

391035425 d-25d450>400150-201750

4400

1950149022302602240639205623114.1850subi 705

714364

1210

3287subi 7942301500

136.4

subi 285.53772203660

s hot H2SO4

1.57 g/100 mL25 aqs acidss aq, aies H2S04s cone HC1, hot H2SO4

d aq; s dilute HC185 g/100 mL° aq; s aie, ethv a (hyd) aq; s acet, aie84 g/100 mL° aq; s acet, aie, eths aq (hyd), aie, acet, bz, eth30% aqhyd aqs aq0.9820 aq (d); s bz, chl, alk Cl- or I~hyd aq; s aie, bz, chl, eth, CC14, CS2

s dilute HC1s acids, cone KOHs hot cone KOH (slow)s aqua regia, alkali sulfides18.9 g/100 mL20 aq; s dilute H2SO4

s cone HC1, hot cone H2SO4

s aq reg, alkali hydroxides & sul-fides

i aqs hot acid, HF

hyd aq; 187 g/100 mL abs alcd aq; s alcs aq (heat evolved), alcs cold aq, alc

s aq (slow hyd); s alc, pyrs dry nonpolar solventsd aq; s bz, chl, eths H2SO4

1.6

0

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

(m) oxide(IV) oxide (rutile)oxide sulfate(DI) sulfate

Tungsten

(V) bromide(VI) bromide(V) chloride(VI) chloridedichloride dioxide(VI) fluoride(IV) oxide(VI) oxide(IV) sulfidetetrachloride oxidetetrafluoride oxide

Uranium(IV) bromide(HI) chloride(IV) chloride(V) chloride(VI) chloride(IV) fluoride(VI) fluoride(IE) hydride(IV) iodide(IV) oxide (pitchblende)(VI) oxideoctaoxide [(V,VI) oxide]peroxide 2-water

Uranyl(VI) acetate 2-waterchloridefluoride

Ti203

TiO2

TiOSO4

Ti2(S04)3

W

WBr5

WBr6

WC15

WC16WC12O2

WF6

W02WO3

WS2WC14OWF40UUBr4

UC13

UC14

UC15

UC16UF4

UF6

UH3

UI4

UO2

U03U,08UO4-2H2O

U02(C2H302)2 • 2H20U02C12

U02F2

143.7379.87

159.94383.93183.84

583.36663.26361.10396.56286.74297.83215.84231.84247.97341.65275.83238.0289557.65344.39379.84415.29450.75314.02352.02241.05745.65270.03286.03842.08338.06

422.13340.93308.03

4.4864.23

19.25

6.93.8753.524.673.441

10.87.167.6

11.925.07

19.15.555.514.725

3.66.705.09

11.15.6

10.977.298.38

2.8935.436.37

18421843

3387

2863092422792652.315501472d!2502111061135519837590287177103664.0

5062827dl300d 1300 to UO2

d 90- 195 toU2O7 (slow)

anhyd 110577d300

5900

333subí 327286347d36917.5d!7241837

227186413111116577905273921417subí 56.5

757

d >200 to UO2

d275

s H2SO4, hot HFs HF, hot cone H2SO4

d aqs dilute HC1, dilute H2SO4

s HNO3 + HF, fusion NaOH +NaNO3

hyd aq; s chl, ethhyd aq; s eth CS2hyd aqhyd aq; s CS2, CC14

hyd aq; s HC1hyd aq; s anhyd HFs acids, KOHi aq; s hot alkalis HNO3 + HFhyd aq

s acidv s aqv s aqv s aq (d); s polar org solventsd aq; s CS2hyd aq; s chls cone acids (d); alk (d)hyd aq; s chl, CC14

i aqs aqs cone HNO3

i aq; s HC1, HNO3

sHN03

d by HC1

7.7 g/100 mL15 aq; si s ale320 g/100 mL18 aq; s acet, alev s aq

1.6

1

(Continued )

nitrate 6-watersulfate 3 -water

Vanadium(IV) chloridedichloride oxide(ffl) fluoride(IV) fluoride

(V) fluoride(II) oxide(IE) oxide(IV) oxide(V) oxide(IV) oxide sulfate(IE) sulfate(IH) sulfide

Xenondifluoridehexafluoridetetrafluoridetrioxide

Ytterbium(II) chloride(in) chloride 6-water(HI) fluoride(in) nitrate 4-water(HI) oxide(m) sulfate 8-water

Yttriumchloridefluoridenitrate 6-wateroxidesulfate 8-water

Zincacetate dihydratearsenate(mXl-)

U02(N03)2 • 6H20UO2SO4 • 3H2OVVCL,VC120VF3VF4

VF5

voV203

V02

V205

VOSO4

V2(S04)3V2S3XeXeFXeF6

XeF4

XeO3

YbYbCl2YbCl3 • 6H2OYbF3

Yb(N03)3 • 4H20Yb203

Yb2(SO4)3 • 8H2OYYC13

YF3Y(NO3)3 • 6H2OY203

Y2(S04)3 - 8H20ZnZn(C2H302)2 • 2H20Zn(AsO2)2

502.13420.1450.9415

192.75137.86107.94126.94

145.9366.94

149.8882.94

181.88163.00390.07198.08131.29169.29245.28207.28179.29173.04243.95387.49230.04431.12394.08778.3988.9059

195.26145.90383.01225.81610.1265.39

219.51279.23

2.8073.286.1119

1.822.883.3633.15

2.505.764.874.343.35

4.725.761 g/L4.323.564.044.556.905.272.578.17

9.183.34.4722.614.02.685.032.567.141.735

60d 1001917-25.7disprop 384= 1400subi 120 (vac)

& disprop19.5179019401967670

410 (vac)d600-111.8129.049.5117.1explodes 25819721anhyd 1801157

2435

15227211152-3H20, 1002440anhyd 400419.527237 d

d 118

3421148

subi 800

48

d 1800

- 108.04subi 114.375.6subi 115.7

11961930mp: 8652230

334515102230

4300d>1000907

155 g/100 mL2U aq; v s ale, ethg/100 mL: 21 aq, 4 ale

s HF, HNO3, hot H2SO4, aq reghyd aq; s nonpolar solventshyd (slow) aq; s abs aie, HOAci almost all organic solventss aq, acet, HOAc

hyd aq; v s anhyd HF, acet, alesHClsi s acidss acids, alkalis0.07 aq; s cone acids, alkaliss aqs (slow) aq, HNO3

s hot acids, alkali Sulfides10.8 mL/100 mL20 aq2.5 g/100 mL° aqhyd aqhyd aq; s F3CCOOHs aq giving xenic acids acidss aqv s aqs H2SO4

s aqs dilute acids34.8 g/100 mL20 aqs hot water (d)79 g/100 mL20 aq; s ales cone acids (d)171 g/100 mL20 aqs acids9.6 g/100 mL20 aqi aq; s acids, alkalis (slow)g/100 mL: 41.620 aq, 3.3 ales acids

1.6

2

TABLE 1.3 Physical Constants of Inorganic Compounds (Continued )

Melting point, Boiling point, Solubility inName Formula Formula weight Density °C °C 100 parts solvent

arsenate(V)(3-) 8- waterbromide

carbonatechloride

chromate(VI)cyanidefluoridehexafluorosilicate 6-wateriodateiodidenitrate 6-wateroxideperoxide1 ,4-phenolsulf onate

8-waterphosphate(V)phosphidepropionateselenidesilicate(2-)stéaratesulfatesulfate 7-watersulflde (wirzite)telluridethiocyanate

Zirconium

(IV) bromidecarbide(H) chloride

Zn3(AsO4)2 • 8H2OZnBr2

ZnCO3

ZnCl2

ZnCrO4

Zn(CN)2

ZnF2

Zn[SiF6] • 6H2OZn(I03)2

ZnI2

Zn(N03)2 • 6H20ZnOZnO2

Zn[C6H4(OH)SO3]2 • 8H2O

Zn3(P04)2

Zn3P2

Zn(C3H502)2

ZnSeZn2SiO4

Zn(Ci8H3502)2

ZnSO4

ZnSO4 • 7H2OZnSZnTeZn(SCN)2Zr

ZrBr4

ZrCZrCl2

618.13225.20

125.40136.29

181.39117.43103.39315.56415.20319.20297.4981.3997.39

555.84

386.11258.12211.53144.35222.86632.34161.45287.5697.46

192.99181.56

91.224

410.84103.23162.13

3.334.5

4.42.907

3.401.8524.92.1045.0634.742.0675.601.57

3.9984.55

5.654.101.0953.81.974.096.34

6.52

3.986.733.6

394

-CO2>300290

d800872dlOOd446-6H2O, 1311975d>150anhyd 120

900420

>11001512130680 danhyd 28017221239

1852

4503532727

697

732

1500

625 d

explodes 212

1100

d>500

3577

subi 35751001292

s acids and alkalisg/100 mL: 47 125 aq, 200 ale; s

KOH, eth0.0225 aq; s acids, KOH, NH4 saltsg/100 ml: 39520 aq, 77 ale, 50 glyc;

v s acets acids0.05818 aq; s acids, KCN, KOHs HNO3, HC1, NH4OHv s aq0.8720 aq; s HNO3, KOHg/100 mL: 33220 aq, 50 glyc; v s ale146 g/100 mL° aq; v s aiei aq; s acids, KOH, NH4OHd (slow) aq; s dilute acids (d)g/100 mL: 63 aq, 56 aie

s acids, NH4OHd aq, HC1 (viol); s bz, CS2

32%15 aq; 2.8%15 aied dilute HNO3

i aq or dilute acidsd dil acids; s bz; i aq, aie, eth53.8%20 aqg/100 mL: 167 aq, 40 glyc; i alei aq; s dilute mineral acidsd (slow) aq or dilute HC10.14 aq; s ales aq reg, HF, hot H3PO4, fusion with

KOH + KNO3

si s cone H2SO4

d aq

1.6

3

(IV) Chloridediboridedichloride oxide 8-waterdihydride(IV) fluoride(TV) hydroxide(IV) iodide

(TV) nitrate 5-water(IV) oxide(IV) silicate(4-)

sulfate 4-water

ZrCl4ZrB2

ZrCl2O • 8H2OZrH2

ZrF4

Zr(OH)4

ZrI4

Zr(NO3)4 • 5H2OZrO2

ZrSiO4

Zr(SO4)2 • 4H2O

233.03112.85322.2593.24

167.22159.25598.84

429.32123.22183.31

355.41

2.806.171.915.614.4363.25

5.684.56

2.80

437 (25 atm)3245anhyd 210

932*to ZrO2, 500499 (sealed

tube)d 1002678d 1540 to

ZrO2 + SiO2

anhyd 380

subí 334d4193d410

subí 912

subí 432.5

4300

hyd aq to ZrCl2O; s ale, eth

v s aq, alei aq1.32 g/100 mL20 aqs mineral acidss aq (d), eth

v s aq; s ales hot H2SO4, HF (slow)unaffected by aqueous reagents

52.5 g/100 g aqueous solution

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds

Abbreviations Used in the Table

Color Crystal SymmetryB brown R red C cubicBE blue SL silver H hexagonalBK black V violet M monoclinicCL colorless W white R rhombicG gray Y yellow RH RhombohedralGN green T tetragonalO orange TG trigonalP purple TR triclinic

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

ActiniumBromide AcBr3 466.7 W HChloride AcCl3 333.4 W HFluoride AcF3 284.0 W HOxide Ac2O3 502.0 W H

AluminumBromide AlBr3 266.7 CL RCarbide Al4C3 143.9 Y H 2.70Chloride ACl3 133.3 W H 1.56Fluoride AlF3 84.0 CL TR 1.38Hydroxide Al(OH)3 78.0 W MIodide AlI3 407.7 WNitrate Al(NO3)3 ⋅ 9H2O 375.1 CL R 1.54Nitride AlN 41.0 W HOxide Al2O3 102.0 CL H 1.68Phosphate AlPO4 122.0 W R 1.56Silicate Al2SiO5 162.0 W R 1.66Sulfate Al2(SO4)3 342.2 W R 1.47Sulfide Al2S3 150.2 Y H

AmericiumOxide IV AmO2 275.1 B C

AmmoniumBromide NH4Br 98.0 W C 1.711Carbonate (NH4)2CO3 ⋅ H2O 114.1 W CChlorate NH4ClO3 101.5 W MChloride NH4Cl 53.5 W C 1.642Chromate (NH4)2CrO4 152.1 Y MFluoride NH4F 37.0 W H 1.315Iodate NH4IO3 192.9 W RIodide NH4I 144.9 W C 1.703Nitrate NH4NO3 80.0 W R 1.413Nitrite NH4NO2 64.0 YOxalate (NH4)2C2O4 ⋅ H2O 142.1 CL R 1.44–1.59Perchlorate NH4ClO4 117.5 W R 1.49Hydrogen Phosphate (NH4)2HPO4 132.1 W M 1.53Dihydrogen Phosphate NH4H2PO4 115.0 W T 1.48–1.53Sulfate (NH4)2SO4 132.1 W R 1.53Hydrogen sulfide NH4HS 51.1 W R 1.74Thiocyanate NH4SCN 76.1 CL M 1.61–1

1.64 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry Index nD

AntimonyBromide III SbBr3 361.5 CL R 1.74Chloride III SbCl3 228.1 CL R 1.74Chloride V SbCl5 299.0 W LIQ 1.6011

Fluoride III SbF3 178.8 CL RFluoride V SbF5 216.7 CL LIQHydride III SbH3 124.8 CL GASIodide III SbI3 502.5 RD HIodide V SbI5 756.3 BOxide III Sb2O3 291.5 CL R 2.35Oxide V Sb2O5 323.5 Y COxychloride III SbOCl 173.2 W MSulfate III Sb2(SO4)3 531.7 WSulfide III Sb2S3 339.7 BK R 4.064Sulfide V Sb2S5 403.8 Y

ArsenicAcid, ortho H3AsO4 ⋅ 1/2H2O 151.0 CLBromide III AsBr3 314.7 CL RChloride III AsCl3 181.3 CL LIQ 1.598Chloride V AsCl5 252.2 CLFluoride III AsF3 131.9 CL LIQFluoride V AsF5 169.9 CL GASHydride III AsH3 77.9 CL GASIodide III AsI3 455.6 R HIodide V AsI5 709.5 B MOxide III As2O3 197.2 CL COxide V As2O5 229.9 WSulfide II As2S2 214.0 R M 2.46–2.52Sulfide III As2S3 246.0 Y M 2.4–2.6Sulfide V As2S5 310.2 Y M

BariumBromate Ba(BrO3)2 ⋅ H2O 411.2 CL MBromide BaBr2 297.2 CL R 1.75Carbide BaC2 161.4 G TCarbonate BaCO3 197.4 W R 1.676Chlorate Ba(ClO3)2 ⋅ H2O 322.3 CL M 1.56–1Chloride BaCl2 208.3 CL M 1.736Chromate BaCrO4 253.3 Y RFluoride BaF2 175.3 CL C 1.474Hydride BaH2 139.4 GHydroxide Ba(OH)2 ⋅ 8H2O 315.5 CL M 1.502Iodide BaI2 391.2 CL MNitrate Ba(NO3)2 261.4 CL C 1.572Oxalate BaC2O4 225.4 WOxide BaO 153.3 CL C 1.98Perchlorate Ba(ClO4)2 336.2 CL HSulfate BaSO4 233.4 W R 1.636Sulfide BaS 169.4 CL C 2.155Titanate BaTiO3 233.3 T/H 2.40

INORGANIC CHEMISTRY 1.65

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

BerylliumBromide BeBr2 168.8 W ORCarbide Be2C 30.0 Y HChloride BeCl2 79.9 W ORFluoride BeF2 47.0 CL THydroxide Be(OH)2 43.0 W RIodide BeI2 262.8 CL RHNitrate Be(NO3)2 ⋅ 3H2O 187.1 WNitride Be3N2 55.1 CL COxide BeO 25.0 W H 1.72Sulfate BeSO4 105.1 CL TSulfate BeSO4 ⋅ 4H2O 177.1 CL T 1.44–1.47

BismuthBromide III BiBr3 448.7 YChloride III BiCl3 315.4 WFluoride III BiF3 266.0 G C 1.74Hydroxide III Bi(OH)3 260.0 WIodide III BiI3 589.7 RD HNitrate III Bi(NO3)3 ⋅ 5H2O 485.1 CL TRNitrate, Basic III BiO(NO3) ⋅ H2O 305.0 W HOxide III Bi2O3 466.0 Y R 1.91Oxide IV Bi2O4 ⋅ 2H2O 518.0 BOxide V Bi2O5 498.0 BOxychloride III BiOCl 260.5 W T 2.15Phosphate III BiPO4 304.0 W MSulfate III Bi2(SO4)3 706.1 WSulfide III Bi2S3 514.2 B R 1.34–1.46

BoronArsenate BAsO4 149.7 W T 1.68Boric Acid H3BO3 61.8 W TRBromide BBr3 250.5 CL LIQ 1.531216

Carbide B4C 55.3 BK RHChloride BCl3 117.2 CL LIQDiborane B2H6 27.7 CL GASFluoride BF3 67.8 CL GASIodide BI3 391.6 WNitride BN 24.8 W HOxide B2O3 69.6 W CSulfide B2S3 117.8 W

BromineChloride I BrCl 115.4 R GASFluoride I BrF 98.9 B GASFluoride III BrF3 136.9 CL LIQ 1.453625

Fluoride V BrF5 174.9 CL LIQ 1.352925

Hydride I H Br 80.9 CL GAS 1.32510

CadmiumBromide CdBr2 272.2 W HCarbonate CdCO3 172.4 W TGChloride CdCl2 228.4 W H

1.66 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color wymmetry index nD

Cadmium (Continued)Fluoride CdF2 150.4 W C 1.56Hydroxide Cd(OH)2 146.4 W TRIodide CdI2 366.2 B HNitrate Cd(NO3)2 ⋅ 4H2O 308.5 WOxide CdO 128.4 B CSulfate CdSO4 208.5 W RSulfate 3CdSO4 ⋅ 8H2O 769.6 CL M 1.565Sulfide CdS 144.5 Y H 2.51

CalciumBromate CaBrO3 ⋅ H2O 313.9 MBromide CaBr2 ⋅ 6H2O 308.0 CL HCarbide CaC2 64.1 CL T 1.75Carbonate CaCO3 100.1 CL R 1.681Chloride CaCl2 111.0 CL C 1.52Chloride CaCl2 ⋅ 6H2O 219.1 C T 1.417Chromate CaCrO4 ⋅ 2H2O 192.1 Y MFluoride CaF2 78.1 CL C 1.434Hydride CaH2 42.1 W RHydroxide Ca(OH)2 74.1 CL H 1.574Iodide CaI2 293.9 W HNitrate Ca(NO3)2 164.1 CL CNitrate Ca(NO3)2 ⋅ 4H2O 236.2 CL M 1.498Nitride Ca3N2 148.3 B HOxalate CaC2O4 128.1 CL COxide CaO 56.1 CL C 1.838Perchlorate Ca(ClO4)2 239.0 CLPeroxide CaO2 72.1 W TSulfate CaSO4 136.1 CL M 1.576Sulfate CaSO4 ⋅ 2H2O 172.2 CL M 1.5226Sulfide CaS 72.1 CL C 2.137

CarbonDioxide CO2 44.0 CL GASDisulfide CS2 76.1 CL LIQ 1.6290Monoxide CO 28.0 CL GASOxybromide COBr2 187.8 CL LIQOxychloride COCl2 (Phosgene) 98.9 CL GASOxysulfide COS 60.1 CL GAS

CeriumBromide III CeBr3 380.0 HChloride III CeCl3 246.5 CL HFluoride III CeF3 197.1 W HIodate IV Ce(IO3)4 839.7 YIodide III CeI3 520.8 Y RMolybdate III Ce2(MoO4)3 760.0 Y T 2.01Nitrate III Ce(NO3)3 ⋅ 6H2O 434.2 CLOxide III Ce2O3 328.2 GN HOxide IV CeO2 172.1 W CSulfate III Ce2(SO4)3 568.4 CL M/RSulfide Ce2S3 376.4 Y C

INORGANIC CHEMISTRY 1.67

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

CesiumBromide CsBr 212.8 CL C 1.642Carbonate Cs2CO3 325.8 CLChloride CsCl 168.4 CL C 1.534Fluoride CsF 151.9 CL C 1.481Hydroxide CsOH 149.9 WIodide CsI 259.8 C 1.661; 1.669Iodide III CsI3 513.7 BK RNitrate CsNO3 194.9 W H 1.55Oxide Cs2O 281.8 RPerchlorate CsClO4 232.4 CL R 1.479Periodate CsIO4 323.8 W RPeroxide Cs2O2 297.8 Y RSulfate Cs2SO4 361.9 CL R 1.564Superoxide CsO2 164.9 YTrioxide Cs2O3 313.8 B C

ChlorineDioxide ClO2 67.5 Y GASFluoride ClF 54.5 CL GASTrifluoride ClF3 92.5 CL GAsMonoxide Cl2O 86.9 B GASHydrochloric Acid HCl 36.5 CL GAS 1.25410

Perchloric Acid HClO4 100.5 CL LIQ

ChromiumBromide II CrBr2 211.8 W MCarbide III Cr3C2 180.0 G RChloride II CrCl2 122.9 W RChloride III CrCl3 158.4 V RFluoride II CrF2 90.0 GN MFluoride III CrF3 109.0 GN RIodide II CrI2 305.8 B MNitrate III Cr(NO3)3 238.0 GNNitrate III CrN 66.0 COxide II CrO 68.0 BK HOxide III Cr2O3 152.0 GN H 2.551Oxide IV CrO2 84.0 BOxide VI CrO3 100.0 RD RPhosphate III CrPO4 ⋅ 6H2O 255.1 V TRSulfate III Cr2(SO4) ⋅ 18H2O 716.5 V C 1.564Sulfide II CrS 84.1 BK MSulfide III Cr2S3 200.2 B TG

CobaltBromide II CoBr2 218.8 GN HChlorate II Co(ClO3)2 ⋅ 6H2O 333.9 R C 1.55Chloride II CoCl2 129.8 BE HFluoride II CoF2 96.9 R MFluoride III CoF3 115.9 B HHydroxide II Co(OH)2 92.9 R RIodate II Co(IO3)2 408.7 V

1.68 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Cobalt (Continued)Iodide II CoI2 312.7 BK HNitrate II Co(NO3)2 ⋅ 6H2O 291.0 R MOxide II CoO 74.9 GN COxide III Co2O3 165.9 B ROxide II–III Co3O4 240.8 BK CPerchlorate II Co(ClO4)2 257.8 R 1.50Sulfate II CoSO4 155.0 BE CSulfate II CoSO4 ⋅ 7H2O 281.1 R M 1.48Sulfide II CoS 91.0 R HSulfide III Co2S3 214.1 BK

CopperBromide I CuBr 143.5 W CBromide II CuBr2 223.4 BK MCarbonate, Basic II 2CuCO3 ⋅ Cu(OH)2 344.7 BE M 1.731Chloride I CuCl 99.0 W CChloride II CuCl2 134.5 Y MChloride II CuCl2 ⋅ 2H2O 170.5 Y RFluoride II CuF2 ⋅ 2H2O 137.6 W MHydroxide I CuOH 80.6 YHydroxide II Cu(OH)2 97.6 BEIodide I CuI 190.5 W C 2.346Nitrate II Cu(NO3)2 ⋅ 3H2O 241.6 BEOxide I Cu2O 143.1 R C 2.705Oxide II CuO 79.5 BK TR 2.63Sulfate II CuSO4 159.6 W RSulfate II CuSO4 ⋅ 5H2O 249.7 BE TR 1.52Sulfide I Cu2S 159.1 BK CSulfide II CuS 95.6 BK HThiocyanate I CuSCN 121.6 W

CuriumBromide III CmBr3 488 RChloride III CmCl3 353 W HFluoride III CmF3 304 W HFluoride IV CmF4 323 B MIodide III CmI3 628 W H

DysprosiumBromide DyBr3 402.3 CL RChloride DyCl3 268.9 Y MFluoride DyF3 219.5 CL HIodide DyI3 543.2 GN HNitrate Dy(NO3)3 ⋅ 5H2O 438.6 Y TROxide Dy2O3 373.0 W CSulfate Dy2(SO4)3 ⋅ 8H2O 757.3 Y M

ErbiumBromide ErBr3 407.1 V RChloride ErCl3 273.6 V MFluoride ErF3 224.3 RD R

INORGANIC CHEMISTRY 1.69

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Erbium (Continued)Iodide ErI3 548.0 V HOxide Er2O3 382.6 R CSulfate Er2(SO4)3 622.7 WSulfide Er2S3 263.5 R M

EuropiumBromide II EuBr2 311.8 RBromide III EuBr3 391.7 G RChloride II EuCl2 222.9 W RChloride III EuCl3 258.3 Y HFluoride II EuF2 190.0 Y CFluoride III EuF3 209.0 W RIodide II EuI2 405.8 GN MIodide III EuI3 532.7Oxide III Eu2O3 351.9 R CSulfate III Eu2(SO4)3 ⋅ 8H2O 736.2 R M

FluorineDioxide F2O2 70.0 B GASHydride HF 20.0 CL GASOxide F2O 54.0 CL GAS

CadoliniumBromide GdBr3 397.0 W HChloride GdCl3 263.6 W HFluoride GdF3 214.3 W RIodide GdI3 538.0 Y HNitrate Gd(NO3)3 ⋅ 6H2O 451.4 TOxide Gd2O3 362.5 W CSulfate Gd2(SO4)3 602.7 CLSulfide Gd2S3 410.7 Y C

GalliumArsenide III GaAs 144.6 G CBromide III GaBr3 309.5 CLChloride II Ga2Cl4 281.3 WChloride III GaCl3 176.0 CL TRFluoride III GaF3 126.7 W RHIodide III GaI3 450.4 YOxide I Ga2O 155.4 GOxide III Ga2O3 187.4 G M (b) 1.95Sulfide I Ga2S 171.5 GSulfide II Ga2S3 235.6 Y H

GermaniumBromide IV GeBr4 392.2 G 1.627Chloride IV GeCl4 214.4 CL LIQ 1.464Fluoride IV GeF4 148.6 CL GASHydride IV GeH4 (Germane) 76.6 CL GAS 1.00089Iodide IV GeI4 580.2 R COxide II GeO 88.6 G 1.607

1.70 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Germanium (Continued)Oxide IV GeO2 104.6 CL HSulfide II GeS 104.7 Y RSulfide IV GeS2 136.7 W R

GoldBromide I AuBr 276.9 GBromide III AuBr3 436.7 BChloride I AuCl 232.4 Y RChloride III AuCl3 303.3 RHydroxide III Au(OH)3 248.0 BIodide AuI 323.9 Y TRIodide III AuI3 577.7 GSulfate III Au2(SO4)3 · H2O 490.5 BSulfide I Au2S 426.0 BSulfide III Au2S3 490.1 B

HafniumBromide HfBr4 498.1 WCarbide HfC 190.5 CChloride HfCl4 320.3 WFluoride HfF4 254.5 CL M 1.56Iodide HfI4 686.1Nitride HfN 192.5 Y COxide HfO2 210.5 W TSulfide HfS2 242.6 H

HolmiumBromide HoBr3 404.7 Y RChloride HoCl3 271.3 Y MFluoride HoF3 221.9 B HIodide HoI3 545.6 YOxide Ho2O3 377.9 C

HydrogenBromide HBr 80.9 CL GAS 2.77–67

Chloride HCl 36.5 CL GASFluoride HF 20.0 CL GASIodide HI 127.9 CL GAS 1.466Oxide H2O 18.0 CL LIQ 1.3333Oxide-Deutero 2H2O 20.0 CL LIQ 1.3284Peroxide H2O2 34.0 CL LIQ 1.41422

Selenide H2Se 81.0 CL GASSulfide H2S 34.1 CL GAS 1.374Telluride H2Te 129.9 CL GAS

IndiumBromide I InBr 194.7 BBromide III InBr3 354.5 CLChloride I InCl 150.3 R CChloride III InCl3 221.2 CL MFluoride III InF3 171.8 CL H

INORGANIC CHEMISTRY 1.71

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Indium (Continued)Iodide I InI 241.7 BIodide III InI3 495.5 Y MOxide III In2O3 277.6 Y CSulfate III In2(SO4)3 517.8 W MSulfide III In2S3 325.8 R (b ) C

IodineBromide I IBr 206.8 BK ORChloride I, a ICl 162.4 R CChloride I, b ICl 162.4 R LIQChloride III ICl3 233.3 Y RFluoride V IF5 221.9 CL LIQFluoride VII IF7 259.9 CL GASOxide IV I2O4 317.8 YOxide V I2O5 333.8 CLIodic Acid HIO3 175.9 W RHydrogen Iodide HI 127.9 CL GAS 1.466

IridiumBromide II IrBr3 · 4H2O 504.0 GNBromide IV IrBr4 511.8 BKChloride III IrCl3 298.6 GN HChloride IV IrCl4 334.0 R CFluoride VI IrF6 306.2 Y TIodide III IrI3 572.9 GNIodide IV IrI4 699.8 BKOxide IV IrO2 224.2 BKSulfide IV IrS2 256.3 BK

IronArsenide FeAs 130.8 W RArsenide, di– FeAs2 205.7 G RBromide II FeBr2 215.7 GN HBromide III FeBr3 · 6H2O 403.7 RCarbide Fe3C 179.6 G CCarbonate II FeCO3 115.9 GChloride II FeCl2 126.8 G HChloride III FeCl3 162.2 GN HFluoride III FeF3 112.9 W RHydroxide II Fe(OH)2 89.9 GN HHydroxide III Fe(OH)3 106.9 BIodide II FeI2 309.7 BK HNitrate II Fe(NO3)2 · 6H2O 288.0 GN RNitrate III Fe(NO3)3 · 9H2O 404.0 CL MNitride Fe2N 125.7 GOxide II FeO 71.9 BK C 2.32Oxide III Fe2O3 159.7 B TG 3.04Oxide II-III Fe3O4 231.6 BK C 2.42Phosphate III FePO4 · 2H2O 186.9 W M 1.35Phosphide Fe2P 142.7 G HSulfate II FeSO4 · 7H2O 278.0 GN M 1.48

1.72 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Iron (Continued)Sulfate III Fe2(SO4)3 399.9 Y R 1.81Sulfate II, Ammonium (NH4)2 Fe(SO4) · 6H2O 392.2 GN M 1.49Sulfide II FeS 87.9 BK HSulfide III Fe2S3 207.9 BK HSulfide, di FeS2 120.0 Y C

LanthanumBromate La(BrO3)3 · 9H2O 684.8 HBromide LaBr3 378.6 W HChloride LaCl3 245.3 W HFluoride LaF3 195.9 W HIodide LaI3 519.6 G RMolybdate La2(MoO4)3 757.6 TOxide La2O3 325.8 W RSulfate La2(SO4)3 566.0 WSulfide La2S3 374.0 Y H

LeadAcetate II Pb(C2H3O2)2 325.3 WAcetate IV Pb(C2H3O2)4 443.4 CL MArsenate II Pb3(AsO4)2 899.4 WBromide II PbBr2 367.0 W RCarbonate II PbCO3 267.2 CL R 1.80–2.08Chloride II PbCl2 278.1 W R 2.22Chloride IV PbCl4 349.0 Y LIQChromate II PbCrO4 323.2 Y M 2.33Fluoride II PbF2 245.2 CL RHydroxide II Pb(OH)2 241.2 W HIodate II Pb(IO3)2 557.0 WIodide II PbI2 461.0 Y HMolybdate II PbMoO4 367.2 CL T 2.30Nitrate II Pb(NO3)2 331.2 CL C 1.782Oxide II PbO 223.2 R TOxide IV PbO2 239.2 B TOxide II–IV Pb3O4 685.6 R TPhosphate, III Pb3(PO4)2 811.6 W H 1.95Sulfate II PbSO4 303.3 W R 1.85Sulfide II PbS 239.3 BK C 3.911Tungstate II PbWO4 455.1 CL M

LithiumAluminum Hydride LiAlH4 37.9 WBromide LiBr 86.9 W C 1.784Carbonate Li2CO3 73.9 W M 1.43; 1.5Chloride LiCl 42.4 W C 1.662Fluoride LiF 25.9 W C 1.391Hydride LiH 8.0 CL CHydroxide LiOH 24.0 W T 1.46Iodide LiI 133.9 W C 1.955Nitrate LiNO3 68.9 W TG 1.435;1.439Oxide Li2O 29.9 W C 1.644

INORGANIC CHEMISTRY 1.73

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Lithium (Continued)Peroxide Li2O2 45.9 HPerchlorate LiClO4 160.4 W HPhosphate Li3PO4 115.8 CL RSulfate, Li2SO4 109.9 CL M 1.465Sulfide Li2S 45.9 W C

LutetiumBromide LuBr3 414.7 W TGChloride LuCl3 281.3 W MFluoride LuF3 232.0 W RIodide LuI3 555.7 B HOxide Lu2O3 397.9 C

MagnesiumAluminate MgO · Al2O3 142.3 CL C 1.723Bromide MgBr2 184.1 W HCarbonate MgCO3 84.3 W TG 1.51; 1.70Chloride MgCl2 95.2 W H 1.59; 1.67Fluoride MgF2 62.3 CL T 1.38Hydroxide Mg(OH)2 58.3 CL H 1.57Iodide MgI2 278.2 W HNitrate Mg(NO3)2 · 6H2O 256.4 CL MOxide MgO 40.3 CL C 1.736Silicide Mg2Si 76.7 BE CSilicate, m MgSiO3 100.4 W M 1.66Silicate, o Mg2SiO4 140.7 W R 1.65Sulfate MgSO4 120.4 CL RSulfide MgS 56.4 R C 2.271

ManganeseBromide II MnBr2 214.8 W HCarbonate II MnCO3 114.9 W R 1.817Chloride II MnCl2 125.9 W HFluoride II MnF2 92.9 R TIodide II MnI2 308.8 W HOxide II MnO 70.9 GN C 2.16Oxide III Mn2O3 157.9 BK COxide IV MnO2 86.9 BK ROxide II–IV Mn3O4 228.8 BK RPotassium Permanganate KMnO4 158.0 P R 1.59Silicide MnSi 83.0 CSulfate II MnSO4 151.0 RSulfide II MnS 87.0 GN C

MercuryBromide I Hg2Br2 561.1 W TBromide II HgBr2 360.4 CL RChloride I Hg2Cl2 472.1 W T 1.97; 2.66Chloride II HgCl2 271.5 CL R 1.72; 1.97Cyanide II Hg(CN)2 252.7 CL T 1.645Fluoride I Hg2F2 439.2 Y C

1.74 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Mercury (Continued)Fluoride II HgF2 238.6 CL CIodide I Hg2I2 655.0 Y TIodide II HgI2 454.4 R/Y T/R 2.45; 2.7Nitrate I Hg2(NO3)2 · 2H2O 561.2 CL MNitrate II Hg(NO3)2 · 1/2H2O 333.6 WOxide I Hg2O 417.2 BKOxide II HgO 216.6 Y/R R 2.37; 2.6Sulfate I Hg2SO4 497.3 CL MSulfate II HgSO4 296.7 CL RSulfide III HgS 232.7 R H 2.85; 3.2

MolybdenumCarbide II Mo2C 203.9 W HCarbide IV MoC 108.0 G HChloride II MoCl2 166.9 YChloride III MoCl3 202.3 RChloride V MoCl5 273.2 BK MFluoride VI MoF6 202.9 ClIodide II MoI2 349.8 BMolybdic Acid H2MoO4 · 4H2O 180.0 Y MOxide IV MoO2 127.9 G TOxide VI MoO3 143.9 CL RSilicide IV MoSi2 152.1 G TSulfide IV MoS2 160.1 BK H 4.7

NeodymiumBromide NdBr3 384.0 V RChloride NdCl3 250.6 V HFluoride NdF3 201.2 V HIodide NdI3 524.9 G ROxide Nd2O3 336.5 BE HSulfide Nd2S3 384.7 GN

NeptuniumBromide II NpBr3 476.7 GN RChloride III NpCl3 343.4 GN HChloride IV NpCl4 378.8 BN TFluoride III NpF3 294.0 P HFluoride VI NpF6 351.0 O RIodide III NpI3 617.7 B ROxide IV NpO2 269.0 GN C

NickelArsenide NiAs 133.6 W HBromide II NiBr2 218.5 YCarbonyl Ni(CO)4 170.7 CL LIQ 1.45810

Chloride II NiCl2 129.6 Y HFluoride II NiF2 96.7 Y THydroxide II Ni(OH)2 92.7 GNIodide II NiI2 312.5 BK HNitrate II Ni(NO3)2 · 6H2O 290.8 GN MOxide II NiO 74.7 G C 2.37

INORGANIC CHEMISTRY 1.75

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Nickel (Continued)Phosphide Ni2P 148.4 GSulfate II NiSO4 154.8 Y CSulfide II NiS 90.8 BK TR

NiobiumBromide NbBr5 492.5 R RCarbide NbC 104.9 BK CChloride NbCl5 270.2 W MFluoride NbF5 187.9 CL MIodide NbI5 727.4 BRASS MOxide Nb2O5 265.8 W R

NitrogenAmmonia NH3 17.0 CL GAS 1.325Hydrazine N2H4 32.0 CL LIQ 1.4707Hydrazoic Acid NH3 43.0 CL LIQHydroxylamine NH2OH 33.0 W R 1.44023.5

Nitric Acid HNO3 63.0 CL LIQ 1.39716

Chloride NCl3 120.4 Y LIQFluoride NF3 71.0 CL GASIodide NI3 394.7 BKOxide I (nitrous-) N2O 44.0 CL GASOxide II (nitric-) NO 30.0 CL GAS 1.19316

Oxide III (tri-) N2O3 76.0 B GASOxide IV (per-) NO2 46.0 B GASOxide V (penta-) N2O5 108.0 W RSulfide II N4S4 184.3 O M 2.046Nitrosyl Chloride NOCl 65.5 O GASNitrosyl Fluoride NOF 49.0 CL GASNitryl Chloride NO2Cl 81.5 CL GAS

OsmiumChloride IV OsCl4 332.0 RFluoride V OsF5 285.2 G MFluoride VI OsF6 304.2 GN CFluoride VIII OsF8 342.2 YIodide IV OsI4 697.8 BKOxide IV OsO2 222.2 BK TOxide VIII OsO4 254.1 CL MSulfide IV OsS2 254.3 BK C

OxygenFluoride OF2 54.0 B GASOzone O3 48.0 CL GAS

PalladiumBromide II PdBr2 266.6 BChloride II PdCl2 177.3 R CFluoride II PdF2 144.4 B TIodide II PdI2 360.2 BKOxide II PdO 122.4 G TSulfide II PdS 138.5 BK T

1.76 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

PhosphorusHypophosphorous Acid H3PO2 66.0 CLPhosphoric Acid H3PO4 98.0 CL RPhosphorous Acid H3PO3 82.0 CLBromide III PBr3 270.7 CL LIQ 1.694519

Bromide V PBr5 430.5 Y RChloride III PCl3 137.3 CL LIQChloride V PCl5 208.3 W TFluoride III PF3 88.0 CL GASFluoride V PF5 126.0 CL GASHydride (Phosphine) PH3 34.0 CL GASIodide III PI3 411.7 R HOxide III P4O6 219.9 W MOxide IV PO2 63.0 CL ROxide V P2O5 142.0 W HOxybromide V POBr3 286.7 CLOxychloride POCl3 153.4 CL LIQOxyfluoride POF3 104.0 CL GASSulfide P4S7 348.4 YSulfide V P2S5 222.3 YThiobromide V PSBr3 302.8 Y CThiochloride V PSCl3 169.4 CL LIQ 1.63525

PlatinumBromide II PtBr2 354.9 B CBromide IV PtBr4 514.8 BChloride II PtCl2 260.0 GN HChloride IV PtCl4 336.9 BFluoride IV PtF4 271.2 RFluoride VI PtF6 309.1 RHydroxide II Pt(OH)2 229.1 BKHydroxide IV Pt(OH)4 263.1 BIodide II PtI2 448.9 BKOxide II PtO 211.1 G TOxide IV PtO2 227.1 BKSulfate IV Pt(SO4)2 · 4H2O 459.4 YSulfide II PtS 227.2 BK TSulfide III Pt2S3 486.6 GSulfide IV PtS2 259.2 G

PlutoniumBromide III PuBr3 481.7 GN RCarbide IV PuC 256.0 SL CChloride III PuCl3 346.4 GN HFluoride III PuF3 299.0 P HFluoride IV PuF4 318.0 B MFluoride VI PuF6 356.0 B RIodide III PuI3 622.7 GN RNitride III PuN 256.0 BK COxide IV PuO2 274.0 GN C 2.4

INORGANIC CHEMISTRY 1.77

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Polonium (Continued)Bromide IV PoBr4 529.7 R CChloride II PoCl2 281.0 R RChloride IV PoCl4 351.9 Y MOxide IV PoO2 242.0 R/Y T/C

PotassiumBromate KBrO3 167.0 CL TRBromide KBr 119.0 CL C 1.559Carbonate K2CO3 138.2 CL M 1.426; 1.431Chlorate KClO3 122.6 CL M 1.409; 1.423Chloride KCl 74.6 CL C 1.490Cyanide KCN 65.1 CL C 1.410Dichromate K2Cr2O7 294.2 O M/TR 1.738 TRFerrocyanide K4[Fe(CN)6] · 3H2O 422.4 Y M/T 1.577Fluoride KF 58.1 CL C 1.35Hydroxide KOH 56.1 W C/RIodate KIO3 214.0 CL MIodide KI 166.0 W C 1.677Nitrate KNO3 101.1 CL R/TR 1.335; 1.?Oxide K2O 94.2 CL CPerchlorate KClO4 138.6 CL R 1.47Periodate KIO4 230.0 CL T 1.63Permanganate KMnO4 158.0 P R 1.59Peroxide K2O2 110.2 Y RPhosphate, o K3PO4 212.3 CL TRSulfate K2SO4 174.3 CL R/H 1.495Sulfide K2S 110.3 B CSuperoxide KO2 71.1 Y TThiocyanate KSCN 97.2 CL R

PraseodymiumBromide PrBr3 380.6 GN HChloride PrCl3 247.3 GN HFluoride PrF3 197.9 GN HIodide PrI3 521.6 G ROxide Pr2O3 329.8 Y HSulfate Pr2(SO4)3 · 8H2O 714.1 GN M 1.55Sulfide Pr2S3 378.0 B

ProtactiniumBromide IV PaBr4 470.9 R TChloride IV PaCl4 372.9 GN TFluoride IV PaF4 307.1 B MIodide III PaI3 611.8 BK ROxide IV PaO2 263.1 BK C

RadiumBromide RaBr2 385.8 Y MChloride RaCl2 296.1 Y MSulfate RaSO4 322.1 CL R

1.78 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

RheniumBromide III ReBr3 425.9 BChloride III ReCl3 292.6 RChloride V ReCl5 363.5 BFluoride IV ReF4 262.5 GN TFlouride VI ReF6 300.2 Y LIQFlouride VII ReF7 319.2 O COxide IV ReO2 218.2 BK MOxide VI ReO3 234.2 R COxide VII Re2O7 484.4 Y HOxybromide VII ReO3Br 314.1 WOxychloride VII ReO3Cl 269.7 CL LIQSulfide IV ReS2 250.4 BK HSulfide VII Re2S7 596.9 BK T

RhodiumChloride III RhCl3 209.3 RFluoride III RhF3 159.9 R RHydroxide III Rh(OH)3 155.9 YOxide III Rh2O3 253.8 GOxide IV RhO2 134.9 BSulfide III Rh2S3 302.0 BK

RubidiumBromate RbBrO3 213.4 CL CBromide RbBr 165.4 CL C 1.5530Carbonate Rb2CO3 231.0 CLChloride RbCl 120.9 CL C 1.493Fluoride RbF 104.5 CL C 1.398Hydroxide RbOH 102.5 W RIodide RbI 212.4 CL C 1.6474Nitrate RbNO3 147.5 CL 1.52Oxide Rb2O 187.0 Y CPerchlorate RbClO4 189.4 C/R 1.4701Peroxide Rb2O2 202.9 Y CSulfate Rb2SO4 267.0 CL R 1.513Sulfide Rb2S 203.0 YSuperoxide RbO2 117.5 Y T

RutheniumChloride III RuCl3 207.4 R TR/HFluoride V RuF5 196.1 GN MOxide IV RuO2 133.1 BE TOxide VIII RuO4 165.1 Y RSulfide IV RuS2 165.2 BK C

SamariumBromate III Sm(BrO3)3 · 9H2O 696.2 Y HBromide II SmBr2 310.2 BBromide III SmBr3 390.1 Y RChloride II SmCl2 221.3 B R

INORGANIC CHEMISTRY 1.79

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Samarium (Continued)Chloride III SmCl3 256.7 Y HFluoride II SmF2 188.4 Y CFluoride III SmF3 207.4 W RIodide II SmI2 404.2 Y MIodide III SmI3 531.1 Y HNitrate III Sm(NO3)3 · 6H2O 444.5 Y TROxide III Sm2O3 348.7 Y MSulfate III Sm2(SO4)3 · 8H2O 733.0 Y M 1.55Sulfide III Sm2S3 396.9 Y C

ScandiumBromide ScBr3 284.7 WChloride ScCl3 151.3 CL RHFluoride ScF3 102.0 RHIodide ScI3 425.7 W HNitrate Sc(NO3)3 231.0 CLOxide Sc2O3 137.9 W CSulfate Sc2(SO4)3 378.1 CL

SeleniumBromide I Se2Br2 317.7 R LIQBromide IV SeBr4 398.6 BChloride I Se2Cl2 228.8 B LIQChloride IV SeCl4 220.8 CL C 1.807Fluoride IV SeF4 154.9 CL LIQFluoride VI SeF6 192.9 CL GAS 1.895Hydride II H2Se 81.0 CL GASOxide IV SeO2 111.0 CL T >1.76Oxide VI SeO3 127.0 W TOxybromide SeOBr2 254.8 O LIQOxychloride SeOCl2 165.9 Y LIQ 1.651Oxyfluoride SeOF2 133.0 CL LIQSelenic Acid H2SeO4 145.0 W RSelenous Acid H2SeO3 129.0 CL H

SiliconBromide SiBr4 347.7 CL LIQ 1.57971

Carbide SiC 40.1 BK C/H 2.67Chloride SiCl4 169.9 CL LIQFluoride SiF4 104.1 CL GASHydride (silane) SiH4 32.1 CL GASHydride (disilane) Si2H6 62.2 CL GASHydride (trisilane) Si3H8 92.3 CL LIQIodide SiI4 535.7 CL CNitride Si3N4 140.3 G HOxide II SiO 44.1 W COxide IV (amorph) SiO2 60.1 CL 1.4588Oxychloride Si2OCl6 284.9 CL LIQSulfide SiS2 92.2 W R

1.80 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

SilverBromate AgBrO3 235.8 CL T 1.874,1.904Bromide AgBr 187.8 Y C 2.253Carbonate Ag2CO3 257.8 YChlorate AgClO3 191.3 W TChloride AgCl 143.3 W C 2.071Cyanide AgCN 133.9 W H 1.685,1.9Fluoride AgF 126.9 Y CIodate AgIO3 282.8 CL RIodide AgI 234.8 Y H/C 2.21Nitrate AgNO3 169.9 CL R 1.74Nitrite AgNO2 153.9 Y ROxide Ag2O 231.8 B CPerchlorate AgCIO4 207.4 W CPhosphate, o Ag3PO4 418.6 Y CSulfate Ag3SO4 311.8 W RSulfide Ag2S 247.8 BK C/RTelluride Ag2Te 343.4 G MThiocyanate AgSCN 166.0 CI

SodiumBicarbonate NaHCO3 84.0 W M 1.500Bromate NaBrO3 150.9 CL C 1.594Bromide NaBr 102.9 Cl C 1.6412Carbonate Na2CO3 106.0 W 1.535Chlorate NaCIO3 106.4 CL C 1.513Chloride NaCl 58.4 CL C 1.544Cyanide NaCN 49.0 CL C 1.452Fluoride NaF 42.0 CL C 1.336Hydride NaH 24.0 SL C 1.470Hydroxide NaOH 40.0 W R/C 1.358Iodate NaIO3 197.9 W RIodide NaI 149.9 CL C 1.775Nitrate NaNO3 85.0 CL TR 1.34;1Nitrite NaNO2 69.0 Y ROxide Na2O 62.0 G CPerchlorate NaClO4 122.4 W C/R 1.46Periodate NaIO4 213.9 CL TPeroxide Na2O2 78.0 Y HPhosphate, o Na3PO4 163.9 WSilicate, m Na2SiO3 122.1 CL M 1.52Sulfate Na2SO4 142.1 CL R 1.48Sulfide Na2S 78.1 W CSulfite Na2SO3 126.1 W H 1.5Thiosulfate Na2S2O3 158.1 CL M

StrontiumBromide SrBr2 247.5 W R 1.575Carbonate SrCO3 147.6 CL R 1.521Chloride SrCl2 158.5 CL C 1.650Fluoride SrF2 125.6 CL C 1.442Hydride SrH2 89.6 W R

INORGANIC CHEMISTRY 1.81

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Strontium (Continued)Hydroxide Sr(OH)2 121.7 WIodate Sr(IO3)2 437.4 TRIodide SrI2 341.4 CL ––Nitrate Sr(NO3)2 211.7 CL C 1.567Oxide SrO 103.6 W C 1.870Peroxide SrO2 119.6 CL TSulfate SrSO4 183.7 CL R 1.62Sulfide SrS 119.7 CL C 2.107

SulfurBromide I S2Br2 224.0 R LIQ 1.736Chloride I S2Cl2 135.0 Y LIQ 1.66614

Chloride II SCl2 103.0 R LIQ 1.557Chloride IV SCl4 173.9 R LIQFluoride I S2F2 102.1 CL GASFluoride VI SF6 146.0 CL GASHydride H2S 34.1 CL GAS 1.374Oxide IV SO2 64.1 CL GASOxide VI SO3 80.1 CL LIQPyrosulfuric Acid H2S2O7 178.1 CL LIQSulfuric Acid H2SO4 98.1 CL LIQ 1.42923

Sulfuryl Chloride SO2Cl2 135.0 CL LIQ 1.44412

Thionyl Bromide SOBr2 207.9 Y LIQThionyl Chloride SOCl2 119.0 CL LIQ 1.52710

TantalumBromide TaBr5 580.5 Y RCarbide TaC 193.0 BK CChloride TaCl5 358.2 Y MFluoride TaF5 275.9 CL MIodide TaI5 815.4 BK RNitride TaN 194.9 BK HOxide Ta2O5 441.9 CL RSulfide Ta2S4 490.1 BK H

TelluriumBromide II TeBr2 287.4 GNBromide V TeBr4 447.3 YChloride II TeCl2 198.5 GNChloride IV TeCl4 269.4 W MFluoride VI TeF6 241.6 CL GASHydride H2Te 129.6 CL GASIodide IV TeI4 635.2 BK ROxide IV TeO2 159.6 W T/R 2.00–2.35Oxide VI TeO3 175.6 YTelluric Acid, o H2TeO6 229.7 W C

TerbiumBromide TbBr3 398.6 WChloride TbCl3 265.3 W

1.82 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued)

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

Terbium (Continued)Fluoride TBF3 215.9 W RIodide TbI3 539.6 HNitrate Tb(NO3)3 · 6H2O 453.0 CL MOxide Tb2O3 365.8 W C

ThalliunBromide I TlBr 284.3 W C 2.4–2.8Carbonate I Tl2CO3 468.8 CL MChloride I TlCl 239.8 W C 2.247Chloride III TlCl3 310.8 W HFluoride TlF 223.4 CL RHydroxide I TlOH 221.4 Y RIodide I TlI 331.3 Y/R R/C 2.78Nitrate I TlNO3 266.4 W C/TROxide I Tl2O 424.7 BK RHOxide III Tl2O3 456.7 CL CSulfate I Tl2SO4 504.8 CL R 1.87Sulfide I Tl2S 440.8 BK T

ThoriumBromide ThBr4 551.7 W TCarbide ThC2 256.1 Y TChloride ThCl4 373.9 W TFluoride ThF4 308.0 W MIodide ThI4 739.7 Y MOxide ThO2 264.0 W CSulfate Th(SO4)2 424.2 W MSulfide ThS2 296.2 BK R

ThuliumBromide TmBr3 408.7 W HChloride TmCl3 275.2 Y MFluoride TmF3 225.9 W RIodide TmI3 549.6 Y HOxide Tm2O3 385.9 Y C

TinBromide II SnBr2 278.5 Y RBromide IV SnBr4 438.4 CL RChloride II SnCl2 189.6 W RChloride IV SnCl4 260.5 CL LIQ 1.512Fluoride II SnF2 156.7 W MFluoride IV SnF4 194.7 W MHydride SnH4 122.7 GASIodide II SnI2 372.5 R RIodide IV SnI4 626.3 R C 2.106Oxide II SnO 143.7 BK TOxide IV SnO2 150.7 W T 1.996Sulfide II SnS 150.8 BK RSulfide IV SnS2 182.8 Y H

INORGANIC CHEMISTRY 1.83

(Continued)

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

TitaniumBromide IV TiBr4 367.6 O MCarbide IV TiC 59.9 G CChloride II TiCl2 118.8 BK HChloride III TiCl3 154.3 V HChloride IV TiCl4 189.7 Y LIQ 1.61Fluoride IV TiF4 123.9 WIodide IV TiI4 555.5 B CNitride TiN 61.9 Y COxide II TiO 63.9 BK COxide IV TiO2 79.9 BK T 2.55Sulfide IV TiS2 112.0 Y H

TungstenBromide V WBr5 583.4 BCarbide II W2C 379.7 G HCarbide IV WC 195.9 G CChloride V WCl5 361.1 GNChloride VI WCl6 396.6 BE CFluoride VI WF6 297.8 CL GASOxide IV WO2 215.9 B TOxide VI WO3 231.9 Y MSulfide IV WS2 248.0 BK HTungstic Acid H2WO4 250.0 Y R 2.24

UraniumBromide III UBr3 477.8 R HBromide IV UBr4 557.7 B MCarbide UC 250.0 BK CCarbide UC2 262.0 BK TChloride III UCl3 344.4 R HChloride IV UCl4 379.9 GN TFluoride IV UF4 314.1 GN MFluoride VI UF6 352.1 Y R 1.38Nitride UN 252.0 B COxide IV UO2 270.1 BK COxide VI UO3 286.1 R HOxide IV–VI U3O8 842.2 BK RUranyl Acetate UO2(C2H3O2)2 · 6H2O 422.1 Y RUranyl Nitrate UO2(NO3)2 · 6H2O 502.1 Y R 1.49

VanadiumCarbide IV VC 62.9 BK CChloride IV VCl4 192.7 R LIQ 1Fluoride III VF3 107.9 GN RFluoride V VF5 145.9 CL RIodide II VI2 304.7 V HOxide III V2O3 149.9 BK RHOxide IV VO2 82.9 BE TOxide V V2O5 181.9 R ROxychloride V VOCl3 173.3 Y LIQSulfide II VS 83.0 BK H

1.84 SECTION ONE

TABLE 1.4 Color, Crystal Symmetry and Refractive Index of Inorganic Compounds (Continued )

Molecular Crystal RefractiveCompound Formula weight Color symmetry index nD

XenonFluoride II XeF2 169.3 CL TFluoride IV XeF4 207.3 CL MFluoride VI XeF6 245.3 CL MOxide VI XeO3 179.3 CL R 1.79

YttebiumBromide III YbBr3 412.8 CLChloride II YbCl2 244.0 GN RChloride III YbCl3 279.3 W MFluoride III YbF3 230.0 W RIodide II YbI2 426.9 BK HIodide III YbI3 553.8 Y HOxide III Yb2O3 394.1 CL CSulfate III Yb2(SO4)3 634.3 CL

YttriumBromide YBr3 328.6 WChloride YCl3 195.3 W MFluoride YF3 145.9 WIodide YI3 469.6 W HOxide Y2O3 225.8 W CSulfate Y2(SO4)3 466.0 W

ZincAcetate Zn(C2H3O2)2 183.5 CL MBromide ZnBr2 225.2 CL R 1.5452Calbonate ZnCO3 125.4 CL TR 1.168Chloride ZnCl2 136.3 W H 1.687Fluoride ZnF2 103.4 CL MHydroxide Zn(OH)2 99.4 CL RIodide ZnI2 319.2 CL CNitrate Zn(NO3)2 · 6H2O 297.5 CL TOxide ZnO 81.4 W H 2.01Sulfate ZnSO4 161.4 CL R 1.669Sulfide ZnS 97.5 CL C/H 2.36

ZirconiumBromide ZrBr4 410.9 WCarbide ZrC 103.2 G CChloride ZrCI4 233.1 W CFluoride ZrF4 167.2 W M 1.59Iodide ZrI4 598.8 WNitride ZrN 105.2 BOxide ZrO2 123.2 W M

INORGANIC CHEMISTRY 1.85

1.86 SECTION ONE

Mineral name Refractive index

Actinolite 1.618–1.641Adularia moonstone 1.525Adventurine feldspar 1.532–1.542Adventurine quartz 1.544–1.533Agalmatoite 1.55Agate 1.544–1.553Albite feldspar 1.525–1.536Albite moonstone 1.535Alexandrite 1.745–1.759Almandine garnet 1.76–1.83Almandite garnet 1.79Amazonite feldspar 1.525Amber 1.540Amblygonite 1.611–1.637Amethyst 1.544–1.553Anatase 2.49–2.55Andalusite 1.634–1.643Andradite garnet 1.82–1.89Anhydrite 1.571–1.614Apatite 1.632–1.648Apophyllite 1.536Aquamarine 1.577–1.583Aragonite 1.530–1.685Augelite 1.574–1.588Axinite 1.675–1.685Azurite 1.73–1.838

Barite 1.636–1.648Barytocalcite 1.684Benitoite 1.757–1.8Beryl 1.577–1.60Beryllonite 1.553–1.562Brazilianite 1.603–1.623Brownite 1.567–1.576

Calcite 1.486–1.658Cancrinite 1.491–1.524Cassiterite 1.997–2.093Celestite 1.622–1.631Cerussite 1.804–2.078Ceylanite 1.77–1.80Chalcedony 1.53–1.539Chalybite 1.63–1.87Chromite 2.1Chrysoberyl 1.745Chrysocolla 1.50Chrysoprase 1.534Citrine 1.55Clinozoisite 1.724–1.734Colemanite 1.586–1.614Coral 1.486–1.658Cordierite 1.541Corundum 1.766–1.774

Mineral name Refractive index

Crocoite 2.31–2.66Cuprite 2.85

Danburite 1.633Demantoid garnet 1.88Diamond 2.417–2.419Diopsite 1.68–1.71Dolomite 1.503–1.682Dumortierite 1.686–1.723

Ekanite 1.60Elaeolite 1.532–1.549Emerald 1.576–1.582Enstatite 1.663–1.673Epidote 1.733–1.768Euclase 1.652–1.672

Fibrolite 1.659–1.680Fluorite 1.434

Gaylussite 1.517Glass 1.44–1.90Grossular garnet 1.738–1.745

Hambergite 1.559–1.631Hauynite 1.502Hematite 2.94–3.22Hemimorphite 1.614–1.636Hessonite garnet 1.745Hiddenite 1.655–1.68Howlite 1.586–1.609Hypersthene 1.67–1.73

Idocrase 1.713–1.72Iolite 1.548Ivory 1.54

Jadeite 1.66–1.68Jasper 1.54Jet 1.66

Kornerupine 1.665–1.682Kunzite 1.655–1.68Kyanite 1.715–1.732

Labradorite feldspar 1.565Lapis gem 1.50Lazulite 1.615–1.645Leucite 1.5085

Magnesite 1.515–1.717Malachite 1.655–1.909Meerschaum 1.53.… none

TABLE 1.5 Refractive Index of Minerals

INORGANIC CHEMISTRY 1.87

Mineral name Refractive index

Microcline feldspar 1.525Moldavite 1.50Moss agate 1.54–1.55

Natrolite 1.48–1.493Nephrite 1.60–1.63Nephrite jade 1.600–1.627

Obsidian 1.48–1.51Oligoclase feldspar 1.539–1.547Olivine 1.672Onyx 1.486–1.658Opal 1.45Orthoclase feldspar 1.525

Painite 1.787–1.816Pearl 1.52–1.69Periclase 1.74Peridot 1.654–1.69Peristerite 1.525–1.536Petalite 1.502–1.52Phenakite 1.65–1.67Phosgenite 2.117–2.145Prase 1.54–1.533Prasiolite 1.54–1.553Prehnite 1.61–1.64Proustite 2.79–3.088Purpurite 1.84–1.92Pyrite 1.81Pyrope 1.74

Quartz 1.55

Rhodizite 1.69Rhodochrisite 1.60–1.82Rhodolite garnet 1.76Rhodonite 1.73–1.74Rock crystal 1.544–1.553Ruby 1.76–1.77Rutile 2.61–2.90

Sanidine 1.522Sapphire 1.76–1.77Scapolite 1.54–1.56Scapolite (yellow) 1.555Scheelite 1.92–1.934

Mineral name Refractive index

Serpentine 1.555Shell 1.53–1.686Sillimanite 1.658–1.678Sinhalite 1.699–1.707Smaragdite 1.608–1.63Smithsonite 1.621–1.849Sodalite 1.483Spessartite garnet 1.81Spinel 1.712–1.736Sphalerite 2.368–2.371Sphene 1.885–2.05Spodumene 1.65–1.68Staurolite 1.739–1.762Steatite 1.539–1.589Stichtite 1.52–1.55Sulfur 1.96–2.248

Taaffeite 1.72Tantalite 2.24–2.41Tanzanite 1.691–1.70Thomsonite 1.531Tiger eye 1.544–1.553Topaz (white) 1.638Topaz (blue) 1.611Topaz (pink, yellow) 1.621Tourmaline 1.616–1.652Tremolite 1.60–1.62Tugtupite 1.496–1.50Turquoise 1.61–1.65Turquoise gem 1.61

Ulexite 1.49–1.52Uvarovite 1.87

Variscite 1.55–1.59Vivianite 1.580–1.627

Wardite 1.59–1.599Willemite 1.69–1.72Witherite 1.532–1.68Wulfenite 2.300–2.40

Zincite 2.01–1.03Zircon 1.801–2.01Zirconia (cubic) 2.17Zoisite 1.695

TABLE 1.5 Refractive Index of Minerals (Continued)

TABLE 1.6 Properties of Molten Salts

Surface Sound Density at Volume tension at Viscosity velocity at

Melting Boiling melting Critical change on melting at melting melting Cryoscopicpoint point point temperature melting point point point constant

Material Tm (°K) (°K) (g ⋅ cm−3) (°K) ΔVf /ΔVs 100 (dynes ⋅ cm−1) (centipoise) (m ⋅ cm−1) (°K/mole ⋅ kg)

LiF 1121 1954 1.83 4140 29.4 252 2546 2.77NaF 1268 1977 1.96 4270 27.4 185 2080 16.6KF 1131 1775 1.91 3460 17.2 141 1827 21.8RbF 1048 1681 — 3280 — 167 38.4LiCl 883 1655 1.60 3080 26.2 137 1.73 2038 13.7NaCl 1073 1738 1.55 3400 25.0 116 1.43 1743 20.0KCl 1043 1680 1.50 3200 17.3 99 1.38 1595 25.4LiBr 823 1583 2.53 3020 24.3 — 1470 27.6NaBr 1020 1665 2.36 3200 22.4 100 1325 34.0KBr 1007 1656 2.133 3170 16.6 90 1256 55.9NaNO2 544 d > 593 1.81 — 120KNO2 692 d623 — — 109LiNO3 527 — 1.78 21.4 116 5.46 1853 5.93NaNO3 583 d653 1.90 10.7 116 2.89 1808 15.4KNO3 610 d > 613 1.87 3.32 110 2.93 1754 30.8RbNO3 589 — 2.48 −0.23 109 89.0AgNO3 483 d > 485 3.97 148 4.25 1607 25.9TlNO3 480 706 4.90 94 58Li2SO4 1132 — 2.00 225 142Na2SO4 1157 — 2.07 192 66.3K2SO4 1347 — 1.88 144 68.7ZnCl2 548 1005 2.39 53 1002HgCl2 550 577 4.37 — 39.3PbCl2 771 1227 3.77 137 4.25 4952Na2WO4 969 — 3.85 202Na3AlF6 1273 — 1.84 135KCNS 450 — 1.60 101 12.7

Notes: (a) 5893 Å; (b) 5890 Å.

1.8

8

Entropy of Measurement MeasurementHeat of fusion at Equivalent Decom- temperature Molar temperature

fusion at melting conductance position for refractivity forHeat melting point at 1.1 Tm potential decomposition at Refractive refractive

capacity, Cp point (entropy [(ohm)−1cm2 of melt potential 5461 Å index at index,Material (cal./°K ⋅ mole) (kcal ⋅ mole−1) units) (equiv)−1] (volts) (°K) (cm3 ⋅ mole−1) 5461 Å (°K)

LiF 15.50 6.47 5.77 151 2.20 1273 2.89 1.32 1223NaF 16.40 8.03 6.33 120 2.76 1273 3.41 1.25 1273KF 16.00 6.75 5.97 148 2.54 1273 5.43 1.28 1173RbF 6.15 5.76LiCl 15.0 4.76 5.39 178.5 3.30 1073 8.32 1.501 883NaCl 16.0 6.69 6.23 152.3 3.25 1073 9.65 1.320 1173KCl 16.0 6.34 6.08 122.4 3.37 1073 11.75 1.329 1173LiBr 4.22 5.13 181 2.95 1073 11.81 1.60 843NaBr 6.24 6.12 149 2.83 1073 13.19 1.486 1173KBr 6.10 6.06 108 2.97 1073 15.40 1.436 1173NaNO2 58 9.63a 1.416a 573KNO2 ~87 11.67 1.356a 873LiNO3 26.6 5.961 11.66 44 10.74 1.467 573NaNO3 37.0 3.696 6.1 58 11.54 1.431 573KNO3 29.5 2.413 4.58 46 13.57 1.426 573RbNO3 1.105 1.91 35 15.31b 1.431b 573AgNO3 30.6 2.886 38 16.20a 1.660a 573TlNO3 2.264 27 21.38 1.688b 573Li2SO4 1.975 123 14.87 1.452 1173Na2SO4 5.67 90 16.53 1.395 1173K2SO4 47.8 9.06 157 20.93 1.388 1173ZnCl2 24.1 2.45 ~0.08 1.43 973 18.2 1.588 593HgCl2 25.0 4.15 0.00096 0.86 973 22.9 1.661 563PbCl2 4.40 52.3 1.12 973 26.1 2.024 873Na2WO4 46 24.58 1.542 1173Na3AlF6 27.64 17.2 1.290 1273KCNS 3.07 17.3 19.65 1.537 573

1.8

9

1.90 SECTION ONE

TABLE 1.7 Triple Points of Various Materials

Substance Triplet point, oK Pressure, mmHg

Ammonia 195.46 45.58Argon 83.78 516Boron tribromide 226.67Bromine 280.4 44.1Carbon dioxide 216.65Cyclopropane 145.59Deuterium oxide 276.971-Hexene 133.39Hydrogen, normal 13.95 54Hydrogen, para 13.81Hydrogen bromide 186.1 ~232Hydrogen chloride 158.8Iodine heptafluoride 279.6Krypton 115.95 548Methane 90.67 87.60Methane-d1 90.40 84.52Methane-d2 90.14 81.80Methane-d3 89.94 80.12Methane-d4 89.79 79.13Molybdenum oxide tetrafluoride 370.3Molybdenum pentafluoride 340Neon 24.55 324Neptunium hexafluoride 328.25 758.0Niobium pentabromide 540.6Niobium pentachloride 476.5Nitrogen 63.15 941-Octene 171.45Oxygen 54.34Phosphorus, white 863 32 760Plutonium hexafluoride 324.74 533.0Propene 103.95Radon 202 ~500Rhenium dioxide trifluoride 363Rhenium heptafluoride 321.4Rhenium oxide pentafluoride 313.9Rhenium pentafluoride 321Succinonitrile (NIST standard) 331.23Sulfur dioxide 197.68 1.256Tantalum pentabromide 553Tantalum pentachloride 489.0Tungsten oxide tetrafluoride 377.8Uranium hexafluoride 337.20 1 139.6Water 273.16Xenon 161.37 612

INORGANIC CHEMISTRY 1.91

TABLE 1.8 Density of Mercury and Water

The density of mercury and pure air-free water under a pressure of 101, 325 Pa(1 atm) is given in units of gramsper cubic centimeter (g ⋅ cm–3). For mercury, the values are based on the density at 20°C being 13.545 884 g ⋅cm–.3. Water attains its maximum density of 0.999 973 g ⋅ cm–3 at 3.98°C. For water, the temperature (tm, °C) ofmaximum density at different pressures (p) in atmospheres is given by

tm = 3.98 – 0.0225(p – 1)

Densityof water

Temp.,°C

Densityof mercury

Densityof water

Temp.,°C

Densityof mercury

0.999 840.999 940.999 970.999 940.999 850.999 700.999 500.999 240.998 940.998 600.998 200.997 770.997 300.996 780.996 230.995 650.995 030.994 370.993 690.992 970.992 220.991 440.990 630.989 790.988 930.988 04

-20-18-16-14-12-10

0O

-6-4-202468101214161820222426283032343638404244464850

13.644 5913.639 6213.634 6613.629 7013.624 7513.619 7913.614 8513.609 9013.604 9613.600 0213.595 0813.590 1513.585 2213.580 2913.575 3613.570 4413.565 5213.560 6013.555 7013.550 7913.545 8813.540 9713.536 0613.531 1713.526 2613.521 3713.5164713.511 5813.506 7013.501 8213.496 9313.492 0713.487 1813.482 2913.477 4213.472 56

0.987 120.986 180.985 210.984 220.983 200.982 160.981 090.980 010.978 900.977 770.976 610.975 440.974 240.973 030.971 790.970 530.969 260.967 960.966 650.965 310.963 960.962 590.961 200.959 790.958 36

525456586062646668707274767880828486889092949698100120140160180200220240260280300

13.467 6813.462 8213.457 9613.453 0913.448 2313.443 3713.438 5213.433 6713.428 8213.423 9713.419 1313.414 2813.409 4313.404 6013.399 7713.394 9213.390 0913.385 2613.380 4213.375 6013.370 7713.365 9413.361 1213.356 3013.351 4813.303 413.255 413.207 613.159 813.112013.064 513.016912.969 212.921 512.873 7

1.92 SECTION ONE

TABLE 1.9 Specific Gravity of Air at Various Temperatures

The table below gives the weight in grams ⋅ 104 of 1 mL of air at 760 mm of mercury pressure and at the tem-perature indicated. Density in grams per milliliter is the same as the specific gravity referred to water at 4°C asunity. To convert to density referred to air at 70°F as unity, divide the values below by 12.00.

t°C. Sp.Gr. X 104

-25 14.240-24 14.182-23 14.125-22 14.069-21 14.013

-20 13.957- 19 13.902- 18 13.847- 17 13.793- 16 13.739

-15 13.685- 14 13.632-13 13.580- 12 13.527-11 13.476

- 10 13.424-9 13.373-8 13.322-7 13.272-6 13.222

-5 13.173-4 13.124-3 13.075-2 13.026- 1 12.978

0 12.931+ 1 12.8832 12.8363 12.7904 12.743

5 12.6976 12.6527 12.6068 12.5619 12.517

10 12.47211 12.42812 12.38513 12.34114 12.298

t°C. Sp.Gr. X 104

15 12.25516 12.21317 12.17018 12.12919 12.087

20 12.04621 12.00422 11.96423 11.92324 11.883

25 11.84326 11.80327 11.76428 11.72529 11.686

30 11.64731 11.60932 11.57033 11.53334 11.495

35 11.45836 11.42037 11.38338 11.34739 11.310

40 11.27441 11.23842 11.20243 11.16744 11.132

45 11.09746 11.06247 11.02748 10.99349 10.958

50 10.92452 10.85754 10.79156 10.72558 10.660

t°C. Sp.Gr. X 104

60 10.59662 10.53264 10.47066 10.40868 10.347

70 10.28672 10.22774 10.16876 10.10978 10.052

80 9.99582 9.93884 9.88286 9.82888 9.773

90 9.71992 9.66694 9.61396 9.56198 9.509

100 9.458102 9.408104 9.358106 9.308108 9.259

110 9.211112 9.163114 9.116116 9.069118 9.022

120 8.976122 8.931124 8.886126 8.841128 8.797

130 8.753132 8.710134 8.667136 8.625138 8.583

t°C. Sp.Gr. X 104

140 8.541142 8.500144 8.459146 8.419148 8.379

150 8.339155 8.242160 8.147165 8.054170 7.963

175 7.874180 7.787185 7.702190 7.619195 7.537

200 7.457205 7.379210 7.303215 7.228220 7.155

230 7.013240 6.881250 6.753260 6.624270 6.504

280 6.389290 6.277300 6.166310 6.062320 5.942

330 5.847340 5.755350 5.664360 5.578370 5.493

380 5.407400 5.248420 5.101440 4.952460 4.812

INORGANIC CHEMISTRY 1.93

TABLE 1.10 Boiling Points of Water

psi Boiling point, °F psi Boiling point, °F psi Boiling point, °F

0.5 79.6 44 273.1 150 358.51 101.7 46 275.8 175 371.82 126.0 48 278.5 200 381.93 141.4 50 281.0 225 391.94 125.9 52 283.5 250 401.05 162.2 54 285.9 275 409.56 170.0 56 288.3 300 417.47 176.8 58 290.5 325 424.88 182.8 60 292.7 350 431.89 188.3 62 294.9 375 438.4

10 193.2 64 297.0 400 444.711 197.7 66 299.0 425 450.712 201.9 68 301.0 450 456.413 205.9 70 303.0 475 461.914 209.6 72 304.9 500 467.114.69 212.0 74 306.7 525 472.215 213.0 76 308.5 550 477.116 216.3 78 310.3 575 481.817 219.4 80 312.1 600 486.318 222.4 82 313.8 625 490.719 225.2 84 315.5 650 495.020 228.0 86 317.1 675 499.222 233.0 88 318.7 700 503.224 237.8 90 320.3 725 507.226 242.3 92 321.9 750 511.028 246.4 94 323.4 775 514.730 250.3 96 324.9 800 518.432 254.1 98 326.4 825 521.934 257.6 100 327.9 850 525.436 261.0 105 331.4 875 528.838 264.2 110 334.8 900 532.140 267.3 115 338.1 950 538.642 270.2 120 341.3 1000 544.8

1.94 SECTION ONE

TABLE 1.11 Boiling Points of Water

A. Barometric Pressures

Temp. °C.

8081828384

8586878889

90919293949596979899

100

0.0°

mm of Hg355.40370.03385.16400.81416.99

433.71450.99468.84487.28506.32

525.97546.26567.20588.80611.08

634.06657.75682.18707.35733.28760.00

0.2°

mm of Hg358.28373.01388.25404.00420.29

437.12454.51472.48491.04510.20

529.98550.40571.47593.20615.62

638.74662.58687.15712.47738.56765.44

at Various Temperatures

0.4°

mm of Hg361.19376.02391.36407.22423.61

440.55458.06476.14494.82514.11

534.01554.56575.76597.63620.19

643.45667.43692.15717.63743.87770.91

0.6°

mm of Hg364.11379.05394.49410.45426.95

444.01461.63479.83498.63518.04

538.07558.75580.08602.09624.79

648.19672.32697.19722.81749.22776.42

0.8°

mm of Hg367.06382.09397.64413.71430.32

447.49465.22483.54502.46521.99

542.15562.96584.43606.57629.41

652.96677.23702.25728.03754.59781.95

Pressure, Boilingatm. Point, °C.

0.5 80.91 100.02 119.63 132.94 142.9

5 151.16 158.1

Pressure, Boilingatm. Point, °C.

7 164.28 169.69 174.5

10 179.011 183.2

12 187.113 190.7

Pressure, Boilingatm. Point, °C.

14 194.115 197.416 200.417 203.418 206.1

19 208.820 211.4

Pressure, Boilingatm. Point, °C.

21 213.922 216.223 218.524 220.825 222.9

26 225.027 227.0

B. Boiling Points of Water at Various Pressures

INORGANIC CHEMISTRY 1.95

TABLE 1.12 Refractive Index, Viscosity, Dielectric Constant, and Surface Tension of Water at VariousTemperatures

TABLE 1.13 Compressibility of Water

In the table below are given the relative volumes of water at various temperatures and pressures. The volume at 0°Cand one normal atmosphere (760 mm of Hg) is taken as unity.

Temp.,°C

Refractiveindex, nD

ViscositymN ⋅ s ⋅ m−2

Surface tension

mN ⋅ s ⋅ m−2Dielectricconstant, e

Temp.,°C

05

101520253035405060708090

100

Refractiveindex, no

1.333 951.333 881.333 691.333 391.333 001.332 501.331 941.331 311.330611.329 041.327 251.325 11

ViscositymN • s • rrT2

1.7931.5211.3071.1351.0020.890 30.797 70.719 00.653 20.547 00.466 50.404 00.354 40.314 50.281 8

Dielectricconstant, e

87.9085.8483.9682.0080.2078.3576.6074.8373.1769.5866.7363.7360.8658.1255.51

Surfacetension

mN • s • rrT2

75.8375.0974.3673.6272.8872.1471.4070.6669.9268.4566.9765.4964.0162.5461.07

P, atm

15001000150020002500300035004000450050006000700080009000100001100012000

- 10°C.

1.00170.97880.95810.93990.92230.90830.89620.88520.87510.86580.8573

0°C.

1.00000.97670.95660.93940.92410.91120.89930.88840.87830.86920.86060.8452

10°C.

1.00010.97780.95910.94240.92770.91470.90280.89190.88180.87250.86390.84810.8340

20°C.

1.00160.98040.96190.94560.93120.91830.90650.89560.88550.87620.86750.85170.83740.82440.81280.8027

40°C.

1.00760.98670.96890.95290.93860.92570.91390.90300.89310.88380.87520.85950.84560.83300.82190.81190.80230.7931

60°C.

1.01680.99670.97800.96170.94720.93430.92250.91150.90120.89190.88320.86740.85340.84080.82970.81960.81010.8009

80°C.

1.02871.00710.98840.97170.95680.94370.93150.92030.90970.90010.89130.87520.86100.84830.83710.82680.81720.8080

1.3 THE ELEMENTS

The chemical elements are the fundamental materials of which all matter is composed. From themodern viewpoint a substance that cannot be broken down or reduced further is, by definition, anelement.

The Periodic Table presents organized information about the chemical elements. The elementsare grouped into eight classes according to their properties.

The electronic configuration for an element’s ground state is a shorthand representation givingthe number of electrons (superscript) found in each of the allowed sublevels (s, p, d, f) above a noblegas core (indicated by brackets). In addition, values for the thermal conductivity, the electrical resis-tance, and the coefficient of linear thermal expansion are included.

Hund’s Rule states that for a set of equal-energy orbitals, each orbital is occupied by one electronbefore any oribital has two. Therefore, the first electrons to occupy orbitals within a sublevel haveparallel spins.

1.96 SECTION ONE

TABLE 1.14 Flammability Limits of Inorganic Compounds in Air

Limits of Flammability

Lower UpperCompound volume % volume %

Ammonia 15.50 27.00Carbon monoxide 12.50 74.20Carbonyl sulfide 11.90 28.50Cyanogen 6.60 42.60Hydrocyanic acid 5.60 40.00Hydrogen 4.00 74.20Hydrogen sulfide 4.30 45.50

TABLE 1.15 Subdivision of Main Energy Levels

Main energy level 1 2 3 4Number of sublevels(n) 1 2 3 4Number of orbitals(n2) 1 4 9 16Kind and no. of orbitals s s p s p d s p d f

per sublevel 1 1 3 1 3 5 1 3 5 7Maximum no. of electrons

per sublevel 2 2 6 2 6 10 2 6 10 14Maximum no. of electrons per main level (2n2) 2 8 18 32

INORGANIC CHEMISTRY 1.97

TABLE 1.16 Chemical Symbols, Atomic Numbers, and Electron Arrangements of the Elements

Element name Chemical symbol Atomic number

Actinium Ac 89Aluminum Al 13Americium Am 95Antimony Sb 51Argon Ar 18Arsenic As 33Astatine At 85Barium Ba 56Berkelium Bk 97Beryllium Be 4Bismuth Bi 83Bohrium Bh 107Boron B 5Bromine Br 35Cadmium Cd 48Calcium Ca 20Californium Cf 98Carbon C 6Cerium Ce 58Cesium Cs 55Chlorine Cl 17Chromium Cr 24Cobalt Co 27Copper Cu 29Curium Cm 96Dubnium Db 105Dysprosium Dy 66Einsteinium Es 99Erbium Er 68Europium Eu 63Fermium Fm 100Fluorine F 9Francium Fr 87Gadolinium Gd 64Gallium Ga 31Germanium Ge 32Gold Au 79Hafnium Hf 72Hassium Hs 108Helium He 2Holmium Ho 67Hydrogen H 1Indium In 49Iodine I 53Iridium Ir 77Iron Fe 26Krypton Kr 36Lanthanum La 57Lawrencium Lr or Lw 103Lead Pb 82Lithium Li 3Lutetium Lu 71Magnesium Mg 12Manganese Mn 25

(Continued)

1.98 SECTION ONE

TABLE 1.16 Chemical Symbols, Atomic Numbers, and Electron Arrangements of the Elements (Continued)

Element name Chemical symbol Atomic number

Meitnerium Mt 109Mendelevium Md 101Mercury Hg 80Molybdenum Mo 42Neodymium Nd 60Neon Ne 10Neptunium Np 93Nickel Ni 28Niobium Nb 41Nitrogen N 7Nobelium No 102Osmium Os 76Oxygen O 8Palladium Pd 46Phosphorus P 15Platinum Pt 78Plutonium Pu 94Polonium Po 84Potassium K 19Praseodymium Pr 59Promethium Pm 61Protactinium Pa 91Radium Ra 88Radon Rn 86Rhenium Re 75Rhodium Rh 45Rubidium Rb 37Ruthenium Ru 44Rutherfordium Rf 104Samarium Sm 62Scandium Sc 21Seaborgium Sg 106Selenium Se 34Silicon Si 14Silver Ag 47Sodium Na 11Strontium Sr 38Sulfur S 16Tantalum Ta 73Technetium Tc 43Tellurium Te 52Terbium Tb 65Thallium Tl 81Thorium Th 90Thulium Tm 69Tin Sn 50Titanium Ti 22Tungsten W 74Ununbium Uub 112Ununhexium Uuh 116Ununnilium Uun 110Ununoctium Uuo 118Ununquadium Unq 114Unununium Uuu 111Uranium U 92

Hydrogen (1) Symbol, H. A colorless, odorless gas at room temperature. The most commonisotope has atomic weight 1.00794. The lightest and most abundant element in the universe.

• Electrons in first energy level: 1

Helium (2) Symbol, He. A colorless, odorless gas at room temperature. The most common iso-tope has atomic weight 4.0026. The second lightest and second most abundant element in the universe.

• Electrons in first energy level: 2

Lithium (3) Symbol, Li. Classified as an alkali metal. In pure form it is silver-colored. Thelightest elemental metal. The most common isotope has atomic weight 6.941.

• Electrons in first energy level: 2

• Electrons in second energy level: 1

Beryllium (4) Symbol, Be. Classified as an alkaline earth. In pure form it has a grayish colorsimilar to that of steel. Has a relatively high melting point. The most common isotope has atomicweight 9.01218.

• Electrons in first energy level: 2

• Electrons in second energy level: 2

Boron (5) Symbol, B. Classified as a metalloid. The most common isotope has atomic weight10.82. Can exist as a powder or as a black, hard metalloid. Boron is not found free in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 3

Carbon (6) Symbol, C. A nonmetallic element that is a solid at room temperature. Has a char-acteristic hexagonal crystal structure. Known as the basis of life on Earth. The most common isotopehas atomic weight 12.011. Exists in three well-known forms: graphite (a black powder) which iscommon, diamond (a clear solid) which is rare, and amorphous.

Another form of carbon is graphite. Used in electrochemical cells, air-cleaning filters, thermo-couples, and noninductive electrical resistors. Also used in medicine to absorb poisons and toxins inthe stomach and intestines. Abundant in mineral rocks such as

• Electrons in first energy level: 2

• Electrons in second energy level: 4

Nitrogen (7) Symbol, N. A nonmetallic element that is a colorless, odorless gas at room tem-perature. The most common isotope has atomic weight 14.007. The most abundant component of the

INORGANIC CHEMISTRY 1.99

TABLE 1.16 Chemical Symbols, Atomic Numbers, and Electron Arrangements of the Elements (Continued)

Element name Chemical symbol Atomic number

Vanadium V 23Xenon Xe 54Ytterbium Yb 70Yttrium Y 39Zinc Zn 30Zirconium Zr 40

*As of the time of writing, there were no known elements with atomic numbers 113, 115, or 117.

earth’s atmosphere (approximately 78 percent at the surface). Reacts to some extent with certaincombinations of other elements.

• Electrons in first energy level: 2

• Electrons in second energy level: 5

Oxygen (8) Symbol, O. A nonmetallic element that is a colorless, odorless gas at room temper-ature. The most common isotope has atomic weight 15.999. The second most abundant componentof the earth’s atmosphere (approximately 21 percent at the surface).

Combines readily with many other elements, particularly metals. One of the oxides of iron, for exam-ple, is known as common rust. Normally, two atoms of oxygen combine to form a molecule (O2). In thisform, oxygen is essential for the sustenance of many forms of life on Earth. When three oxygen atomsform a molecule (O3), the element is called ozone. This form of the element is beneficial in the upperatmosphere because it reduces the amount of ultraviolet radiation reaching the earth’s surface. Ozone is,ironically, also known as an irritant and pollutant in the surface air over heavily populated areas.

• Electrons in first energy level: 2

• Electrons in second energy level: 6

Fluorine (9) Symbol, F. The most common isotope has atomic weight 18.998. A gaseous ele-ment of the halogen family. Has a characteristic greenish or yellowish color. Reacts readily withmany other elements.

• Electrons in first energy level: 2

• Electrons in second energy level: 7

Neon (10) Symbol, Ne. The most common isotope has atomic weight 20.179. A noble gas pre-sent in trace amounts in the atmosphere.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

Sodium (11) Symbol, Na. The most common isotope has atomic weight 22.9898. An elementof the alkali-metal group. A solid at room temperature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 1

Magnesium (12) Symbol, Mg. The most common isotope has atomic weight 24.305. Amember of the alkaline earth group. At room temperature it is a whitish metal.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 2

Aluminum (13) Symbol, Al. The most common isotope has atomic weight 26.98. A metallicelement and a good electrical conductor. Has many of the same characteristics as magnesium, exceptit reacts less easily with oxygen in the atmosphere.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 3

1.100 SECTION ONE

Silicon (14) Symbol, Si. The most common isotope has atomic weight 28.086. A metalloidabundant in the earth’s crust. Especially common in rocks such as granite, and in many types of sand.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 4

Phosphorus (15) Symbol, P. The most common isotope has atomic weight 30.974. A non-metallic element of the nitrogen family. Found in certain types of rock.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 5

Sulfur (16) Symbol, S. Also spelled sulphur. The most common isotope has atomic weight32.06. A nonmetallic element. Reacts with some other elements.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 6

Chlorine (17) Symbol, Cl. The most common isotope has atomic weight 35.453. A gas at roomtemperature and a member of the halogen family. Reacts readily with various other elements.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 7

Argon (18) Symbol, A or Ar. The most common isotope has atomic weight 39.94. A gas atroom temperature; classified as a noble gas. Present in small amounts in the atmosphere.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 8

Potassium (19) Symbol, K. The most common isotope has atomic weight 39.098. A member ofthe alkali metal group.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 8

• Electrons in fourth energy level: 1

Calcium (20) Symbol, Ca. The most common isotope has atomic weight 40.08. A metallic ele-ment of the alkaline-earth group. Calcium carbonate, or calcite, is abundant in the earth’s crust, espe-cially in limestone

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 8

• Electrons in fourth energy level: 2

INORGANIC CHEMISTRY 1.101

Scandium (21) Symbol, Sc. The most common isotope has atomic weight 44.956. In the pureform it is a soft metal. Classified as a transition metal.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 9

• Electrons in fourth energy level: 2

Titanium (22) Symbol, Ti. The most common isotope has atomic weight 47.88. Classified as atransition metal.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 10

• Electrons in fourth energy level: 2

Vanadium (23) Symbol, V. The most common isotope has atomic weight 50.94. Classified as atransition metal. In its pure form it is whitish in color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 11

• Electrons in fourth energy level: 2

Chromium (24) Symbol, Cr. The most common isotope has atomic weight 51.996. Classifiedas a transition metal. In its pure form it is grayish in color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 13

• Electrons in fourth energy level: 1

Manganese (25) Symbol, Mn. The most common isotope has atomic weight 54.938. Classifiedas a transition metal. In its pure form it is grayish in color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 13

• Electrons in fourth energy level: 2

Iron (26) Symbol, Fe. The most common isotope has atomic weight 55.847. In its pure form itis a dull gray metal.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 14

• Electrons in fourth energy level: 2

Cobalt (27) Symbol, Co. The most common isotope has atomic weight 58.94. Classified as atransition metal. In the pure form it is silvery in color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

1.102 SECTION ONE

• Electrons in third energy level: 15

• Electrons in fourth energy level: 2

Nickel (28) Symbol, Ni. The most common isotope has atomic weight 58.69. Classified as atransition metal. In its pure form it is light gray to white.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 16

• Electrons in fourth energy level: 2

Copper (29) Symbol, Cu. The most common isotope has atomic weight 63.546. Classified as atransition metal. In its pure form it has a characteristic red or wine color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 1

Zinc (30) Symbol, Zn. The most common isotope has atomic weight 65.39. Classified as a tran-sition metal. In pure form, it is a dull blue-gray color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 2

Gallium (31) Symbol, Ga. The most common isotope has atomic weight 69.72. A semicon-ducting metal. In pure form it is light gray to white.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 3

Germanium (32) Symbol, Ge. The most common isotope has atomic weight 72.59. A semi-conducting metalloid.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 4

Arsenic (33) Symbol, As. The most common isotope has atomic weight 74.91. A metalloidused as a dopant in the manufacture of semiconductors. In its pure form it is gray in color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 5

INORGANIC CHEMISTRY 1.103

Selenium (34) Symbol, Se. The most common isotope has atomic weight 78.96. Classified as anonmetal. In its pure form it is gray in color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 6

Bromine (35) Symbol, Br. The most common isotope has atomic weight 79.90. A nonmetallicelement of the halogen family. A reddish-brown liquid at room temperature. Has a characteristicunpleasant odor. Reacts readily with various other elements.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 7

Krypton (36) Symbol, Kr. The most common isotope has atomic weight 83.80. Classified as anoble gas. Colorless and odorless. Present in trace amounts in the earth’s atmosphere. Some commonisotopes of this element are radioactive.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 8

Rubidium (37) Symbol, Rb. The most common isotope has atomic weight 85.468. Classifiedas an alkali metal. In its pure form it is silver-colored. Reacts easily with oxygen and chlorine.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 8

• Electrons in fifth energy level: 1

Strontium (38) Symbol, Sr. The most common isotope has atomic weight 87.62. A metallicelement of the alkaline-earth group. In pure form it is gold-colored.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 8

• Electrons in fifth energy level: 2

Yttrium (39) Symbol, Y. The most common isotope has atomic weight 88.906. Classified as atransition metal. In its pure form it is silver-colored.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 9

• Electrons in fifth energy level: 2

1.104 SECTION ONE

Zirconium (40) Symbol, Zr. The most common isotope has atomic weight 91.22. Classified asa transition metal. In its pure form it is grayish in color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 10

• Electrons in fifth energy level: 2

Niobium (41) Symbol, Nb. The most common isotope has atomic weight 92.91. Classified as atransition metal. This element is sometimes called columbium. In pure form it is shiny, and is lightgray to white in color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 12

• Electrons in fifth energy level: 1

Molybdenum (42) Symbol, Mo. The most common isotope has atomic weight 95.94.Classified as a transition metal. In its pure form, it is hard and silver-white.

Used as a catalyst, as a component of hard alloys for the aeronautical and aerospace industries,and in steel-hardening processes. It is known for high thermal conductivity, low thermal-expansioncoefficient, high melting point, and resistance to corrosion. Most molybdenum compounds are rela-tively nontoxic.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 13

• Electrons in fifth energy level: 1

Technetium (43) Symbol, Tc. Formerly called masurium. The most common isotope hasatomic weight 98. Classified as a transition metal. In its pure form, it is grayish in color. This elementis not found in nature; it occurs when the uranium atom is split by nuclear fission. It also occurs whenmolybdenum is bombarded by high-speed deuterium nuclei (particles consisting of one proton andone neutron). This element is radioactive.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 14

• Electrons in fifth energy level: 1

Ruthenium (44) Symbol, Ru. The most common isotope has atomic weight 101.07. A rare ele-ment, classified as a transition metal. In pure form it is silver-colored.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 15

• Electrons in fifth energy level: 1

INORGANIC CHEMISTRY 1.105

Rhodium (45) Symbol, Rh. The most common isotope has atomic weight 102.906. Classified asa transition metal. In its pure form it is silver-colored. Occurs in nature along with platinum and nickel.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 16

• Electrons in fifth energy level: 1

Palladium (46) Symbol, Pd. The most common isotope has atomic weight 106.42. Classified as atransition metal. In its pure form it is light gray to white. In nature, palladium is found with copper ore.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 0

Silver (47) Symbol, Ag. The most common isotope has atomic weight 107.87. Classified as atransition metal. In its pure form it is a bright, shiny, and silverish-white colored metal.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 1

Cadmium (48) Symbol, Cd. The most common isotope has atomic weight 112.41. Classifiedas a transition metal. In its pure form it is silver-colored.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 2

Indium (49) Symbol, In. The most common isotope has atomic weight 114.82. A metallic ele-ment used as a dopant in semiconductor processing. In pure form it is silver-colored. In nature, it isoften found along with zinc.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 3

Tin (50) Symbol, Sn. The most common isotope has atomic weight 118.71. In pure form it is awhite or grayish metal. It changes color (from white to gray) when it is cooled through a certain tem-perature range. It is ductile and malleable.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

1.106 SECTION ONE

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 4

Antimony (51) Symbol, Sb. The most common isotope has atomic weight 121.76. Classified as ametalloid. In pure form, it is blue-white or blue-gray in color. Has a characteristic flakiness and brittleness.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 5

Tellurium (52) Symbol, Te. The most common isotope has atomic weight 127.60. A rare met-alloid element related to selenium. In pure form, it is silverish-white and has high luster. In nature itis found along with other metals such as copper. It has a characteristic brittleness.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 6

Iodine (53) Symbol, I. The most common isotope has atomic weight 126.905. A member of thehalogen family. In pure form it has a black or purple-black color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 7

Xenon (54) Symbol, Xe. The most common isotope has atomic weight 131.29. Classified as anoble gas. Colorless and odorless; present in trace amounts in the earth’s atmosphere.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 8

Cesium (55) Symbol, Cs. Also spelled caesium (in Britain). The most common isotope hasatomic weight 132.91. Classified as an alkali metal. In pure form, it is silver-white in color, is ductile,and is malleable.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 1

INORGANIC CHEMISTRY 1.107

Barium (56) Symbol, Ba. The most common isotope has atomic weight 137.36. Classified asan alkaline earth. In pure form it is silver-white in color, and is relatively soft; it is sometimes mis-taken for lead.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Lanthanum (57) Symbol, La. The most common isotope has atomic weight 138.906.Classified as a rare earth. In pure form it is white in color, malleable, and soft.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 18

• Electrons in fifth energy level: 9

• Electrons in sixth energy level: 2

Cerium (58) Symbol, Ce. The most common isotope has atomic weight 140.13. Classified as arare earth. In pure form it is light silvery-gray. It reacts readily with various other elements and ismalleable and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 20

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Praseodymium (59) Symbol, Pr. The most common isotope has atomic weight 140.908.Classified as a rare earth. In pure form it is silver-gray, soft, malleable, and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 21

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Neodymium (60) Symbol, Nd. The most common isotope has atomic weight 144.24.Classified as a rare earth. In pure form it is shiny and is silvery in color.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 22

1.108 SECTION ONE

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Promethium (61) Symbol, Pm. Formerly called illinium. The most common isotope has atomicweight 145. Classified as a rare earth. In pure form it is gray in color, and is highly radioactive.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 23

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Samarium (62) Symbol, Sm. The most common isotope has atomic weight 150.36. Classifiedas a rare earth. In pure form it is silvery-white in color with high luster.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 24

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Europium (63) Symbol, Eu. The most common isotope has atomic weight 151.96. Classifiedas a rare earth. In pure form it is silver-gray in color, and has ductility similar to that of lead.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 25

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Gadolinium (64) Symbol, Gd. The most common isotope has atomic weight 157.25. Classifiedas a rare earth. In pure form it is silver in color, is ductile, and is malleable.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 25

• Electrons in fifth energy level: 9

• Electrons in sixth energy level: 2

Terbium (65) Symbol, Tb. The most common isotope has atomic weight 158.93. Classified asa rare earth. In pure form it is silver-gray, soft, malleable, and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

INORGANIC CHEMISTRY 1.109

• Electrons in fourth energy level: 27

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Dysprosium (66) Symbol, Dy. The most common isotope has atomic weight 162.5. Classifiedas a rare earth. In pure form it has a bright, shiny silver color. It is soft and malleable, but it has a rel-atively high melting point.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 28

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Holmium (67) Symbol, Ho. The most common isotope has atomic weight 164.93. Classified asa rare earth. In pure form it is silver in color. It is soft and malleable.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 29

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Erbium (68) Symbol, Er. The most common isotope has atomic weight 167.26. Classified as arare earth. In pure form it is silverish, soft, malleable, and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 30

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Thulium (69) Symbol, Tm. The most common isotope has atomic weight 168.93. Classified asa rare earth. In pure form this element is grayish in color, soft, malleable, and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 31

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Ytterbium (70) Symbol, Yb. The most common isotope has atomic weight 173.04. Classifiedas a rare earth. In pure form it is silver-white in color, soft, malleable, and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

1.110 SECTION ONE

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 8

• Electrons in sixth energy level: 2

Lutetium (71) Symbol, Lu. The most common isotope has atomic weight 174.967. Classifiedas a rare earth. In its pure form, it is silver-white and radioactive, with a half-life on the order of thou-sands of millions of years.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 9

• Electrons in sixth energy level: 2

Hafnium (72) Symbol, Hf. The most common isotope has atomic weight 178.49. Classified asa transition metal. In pure form, it is silver-colored, shiny, and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 10

• Electrons in sixth energy level: 2

Tantalum (73) Symbol, Ta. The most common isotope has atomic weight 180.95. Classified asa transition metal; an element of the vanadium family. In pure form it is grayish-silver in color, duc-tile, and hard, with a high melting point.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 11

• Electrons in sixth energy level: 2

Tungsten (74) Symbol, W. Also known as wolfram. The most common isotope has atomicweight 183.85. Classified as a transition metal. In pure form it is silver-colored. It has an extremelyhigh melting point.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 12

• Electrons in sixth energy level: 2

INORGANIC CHEMISTRY 1.111

Rhenium (75) Symbol, Re. The most common isotope has atomic weight 186.207. Classifiedas a transition metal. In pure form it is silver-white, has high density, and has a high melting point.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 13

• Electrons in sixth energy level: 2

Osmium (76) Symbol, Os. The most common isotope has atomic weight 190.2. A transitionmetal of the platinum group. In pure form it is bluish-silver in color, dense, hard, and brittle.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 14

• Electrons in sixth energy level: 2

Iridium (77) Symbol, Ir. The most common isotope has atomic weight 192.22. A transitionmetal of the platinum group. In pure form it is yellowish-white in color with high luster; it is hard,brittle, and has high density.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 15

• Electrons in sixth energy level: 2

Platinum (78) Symbol, Pt. The most common isotope has atomic weight 195.08. Classified asa transition metal. In pure form it has a brilliant, shiny, white luster. It is malleable and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 17

• Electrons in sixth energy level: 1

Gold (79) Symbol, Au. The most common isotope has atomic weight 196.967. A transitionmetal. In pure form it is shiny, yellowish, ductile, malleable, and comparatively soft.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

1.112 SECTION ONE

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 1

Mercury (80) Symbol, Hg. The most common isotope has atomic weight 200.59. Classified asa transition metal. In pure form it is silver-colored and liquid at room temperature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 2

Thallium (81) Symbol, Tl. The most common isotope has atomic weight 204.38. A metallicelement. In pure form it is bluish-gray or dull gray, soft, malleable, and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 3

Lead (82) Symbol, Pb. The most common isotope has atomic weight 207.2. A metallic element.In pure form it is dull gray or blue-gray, soft, and malleable; relatively low melting temperature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 4

Bismuth (83) Symbol, Bi. The most common isotope has atomic weight 208.98. A metallic ele-ment. In pure form it is pinkish-white and brittle.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 5

Polonium (84) Symbol, Po. The most common isotope has atomic weight 209. Classified as ametalloid. It is produced from the decay of radium and is sometimes called radium-F. Polonium isradioactive; it emits primarily alpha particles.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

INORGANIC CHEMISTRY 1.113

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 6

Astatine (85) Symbol, At. The most common isotope has atomic weight 210. Formerly calledalabamine. Classified as a halogen. The element is radioactive.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 7

Radon (86) Symbol, Rn. The most common isotope has atomic weight 222. Classified as anoble gas. It is radioactive, emitting primarily alpha particles, and has a short half-life. Radon is acolorless gas that results from the disintegration of radium.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 8

Francium (87) Symbol, Fr. The most common isotope has atomic weight 223. Classified as analkali metal. This element is radioactive, and all isotopes decay rapidly. Produced as a result of theradioactive disintegration of actinium.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 1

Radium (88) Symbol, Ra. The most common isotope has atomic weight 226. Classified as analkaline earth. In pure form it is silver-gray, but darkens quickly when exposed to air. This element isradioactive, emitting alpha particles, beta particles, and gamma rays. It has a moderately long half-life.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 2

1.114 SECTION ONE

Actinium (89) Symbol, Ac. The most common isotope has atomic weight 227. Classified as arare earth. In pure form it is silver-gray in color. This element is radioactive, emitting beta particles.The most common isotope has a half-life of 21.6 years.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 9

• Electrons in seventh energy level: 2

Thorium (90) Symbol, Th. The most common isotope has atomic weight 232.038. Classifiedas a rare earth and a member of the actinide series. In pure form it is silver-colored, soft, ductile, andmalleable.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 18

• Electrons in sixth energy level: 10

• Electrons in seventh energy level: 2

Protactinium (91) Symbol, Pa. Formerly called protoactinium. The most common isotope hasatomic weight 231.036. Classified as a rare earth. In pure form it is silver-colored.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 20

• Electrons in sixth energy level: 9

• Electrons in seventh energy level: 2

Uranium (92) Symbol, U. The most common isotope has atomic weight 238.029. Classified asa rare earth. In pure form it is silver-colored, malleable, and ductile.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 21

• Electrons in sixth energy level: 9

• Electrons in seventh energy level: 2

Neptunium (93) Symbol, Np. The most common isotope has atomic weight 237. Classified as arare earth. In pure form it is silver-colored, and reacts with various other elements to form compounds.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

INORGANIC CHEMISTRY 1.115

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 23

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 2

Plutonium (94) Symbol, Pu. The most common isotope has atomic weight 244. Classified as arare earth. In pure form it is silver-colored; when it is exposed to air, a yellow oxide layer forms.Plutonium reacts with various other elements to form compounds.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 24

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 2

Americium (95) Symbol, Am. The most common isotope has atomic weight 243. Classified asa rare earth. In pure form it is silver-white and malleable.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 25

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 2

Curium (96) Symbol, Cm. The most common isotope has atomic weight 247. Classified as arare earth. In pure form it is silvery in color, and it reacts readily with various other elements. Thiselement, like most transuranic elements, is dangerously radioactive.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 25

• Electrons in sixth energy level: 9

• Electrons in seventh energy level: 2

Berkelium (97) Symbol, Bk. The most common isotope has atomic weight 247. Classified as arare earth. It is radioactive with a short half-life. Berkelium is a human-made element and is notknown to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

1.116 SECTION ONE

• Electrons in fifth energy level: 26

• Electrons in sixth energy level: 9

• Electrons in seventh energy level: 2

Californium (98) Symbol, Cf. The most common isotope has atomic weight 251. Classified asa rare earth. It is radioactive, emitting neutrons in large quantities. It is human-made element, notknown to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 28

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 2

Einsteinium (99) Symbol, E or Es. The most common isotope has atomic weight 252.Classified as a rare earth. It is radioactive with a short half-life. Einsteinium is a human-made ele-ment and is not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 29

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 2

Fermium (100) Symbol, Fm. The most common isotope has atomic weight 257. Classified as arare earth. It has a short half-life, is human-made, and is not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 30

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 2

Mendelevium (101) Symbol, Md or Mv. The most common isotope has atomic weight 258.Classified as a rare earth. It has a short half-life, is human-made, and is not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 31

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 2

INORGANIC CHEMISTRY 1.117

Nobelium (102) Symbol, No. The most common isotope has atomic weight 259. Classified asa rare earth. It has a short half-life (seconds or minutes, depending on the isotope), is human-made,and is not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 8

• Electrons in seventh energy level: 2

Lawrencium (103) Symbol, Lr or Lw. The most common isotope has atomic weight 262.Classified as a rare earth. It has a half-life less than one minute, is human-made, and is not known tooccur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 9

• Electrons in seventh energy level: 2

Rutherfordium (104) Symbol, Rf. Also called unnilquadium (Unq) and Kurchatovium (Ku).The most common isotope has atomic weight 261. Classified as a transition metal. It has a half-lifeon the order of a few seconds to a few tenths of a second (depending on the isotope), is human-made,and is not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 10

• Electrons in seventh energy level: 2

Dubnium (105) Symbol, Db. Also called unnilpentium (Unp) and Hahnium (Ha). The mostcommon isotope has atomic weight 262. Classified as a transition metal. It has a half-life on the orderof a few seconds to a few tenths of a second (depending on the isotope), is human-made, and is notknown to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 11

• Electrons in seventh energy level: 2

1.118 SECTION ONE

Seaborgium (106) Symbol, Sg. Also called unnilhexium (Unh). The most common isotope hasatomic weight 263. Classified as a transition metal. It has a half-life on the order of one second orless, is human-made, and is not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 12

• Electrons in seventh energy level: 2

Bohrium (107) Symbol, Bh. Also called unnilseptium (Uns). The most common isotope hasatomic weight 262. Classified as a transition metal. It is human-made and is not known to occur innature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 13

• Electrons in seventh energy level: 2

Hassium (108) Symbol, Hs. also called unniloctium (Uno). The most common isotope has atomicweight 265. Classified as a transition metal. It is human-made and not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 14

• Electrons in seventh energy level: 2

Meitnerium (109) Symbol, Mt. Also called unnilenium (Une). The most common isotope hasatomic weight 266. Classified as a transition metal. It is human-made and not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 15

• Electrons in seventh energy level: 2

Ununnilium (110) Symbol, Uun. The most common isotope has atomic weight 269.Classified as a transition metal. It is human-made and not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

INORGANIC CHEMISTRY 1.119

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 17

• Electrons in seventh energy level: 1

Unununium (111) Symbol, Uuu. The most common isotope has atomic weight 272. Classifiedas a transition metal. It is human-made and not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 18

• Electrons in seventh energy level: 1

Ununbium (112) Symbol, Uub. The most common isotope has atomic weight 277. Classifiedas a transition metal. It is human-made and not known to occur in nature.

• Electrons in first energy level: 2

• Electrons in second energy level: 8

• Electrons in third energy level: 18

• Electrons in fourth energy level: 32

• Electrons in fifth energy level: 32

• Electrons in sixth energy level: 18

• Electrons in seventh energy level: 2

(113) As of this writing, no identifiable atoms of an element with atomic number 113 have beenreported. The synthesis of or appearance of such an atom is believed possible because of the obser-vation of ununqadium (Uuq, element 114) in the laboratory.

Ununquadium (114) Symbol, Uuq. The most common isotope has atomic weight 285. Firstreported in January 1999. It is human-made and not known to occur in nature.

(115) As of this writing, no identifiable atoms of an element with atomic number 115 have beenreported. The synthesis or appearance of such an atom is believed possible because of the observa-tion of ununhexium (Uuh, element 116) in the laboratory.

Ununhexium (116) Symbol, Uuh. The most common isotope has atomic weight 289. Firstreported in January 1999. It is a decomposition product of ununoctium, and it in turn decomposesinto ununquadium. It is not known to occur in nature.

(117) As of this writing, no identifiable atoms of an element with atomic number 117 have beenreported. The synthesis or appearance of such an atom is believed possible because of the observa-tion of ununoctium (Uuo, element 118) in the laboratory.

Ununoctium (118) Symbol, Uuo. The most common isotope has atomic weight 293. It is theresult of the fusion of krypton and lead and decomposes into ununhexium. It is not known to occur innature.

1.120 SECTION ONE

TABLE 1.17 Atomic Numbers, Periods, and Groups of the Elements (The Periodic Table)

GroupPeriod 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 2H H He

2 3 4 5 6 7 8 9 10Li Be B C N O F Ne

3 11 12 13 14 15 16 17 18Na Mg Al Si P S Cl Ar

4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

5 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

6 55 56 * 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86Cs Ba Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

7 87 88 ** 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118Fr Ra Lr Unq Unp Unh Uns Uno Mt Uun Uuu Uub Uut Uuq Uup Uuh Uus Uuo

*Lanthanides * 57 58 59 60 61 62 63 64 65 66 67 68 69 70La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

†Actinides ** 89 90 91 92 93 94 95 96 97 98 99 100 101 102Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No

1.1

21

1.122 SECTION ONE

TABLE 1.18 Atomic Weights of the Elements

Name Atomic number Symbol Atomic weight

Actinium 89 Ac [227]Aluminium 13 Al 26.981538Americium 95 Am [243]Antimony 51 Sb 121.76Argon 18 Ar 39.948Arsenic 33 As 74.9216Astatine 85 At [210]Barium 56 Ba 137.327Berkelium 97 Bk [247]Beryllium 4 Be 9.012182Bismuth 83 Bi 8.98038Bohrium 107 Bh [264]Boron 5 B 10.811Bromine 35 Br 79.904Cadmium 48 Cd 112.411Caesium 55 Cs 132.90545Calcium 20 Ca 40.078Californium 98 Cf [251]Carbon 6 C 12.0107Cerium 58 Ce 140.116Chlorine 17 Cl 35.4527Chromium 24 Cr 51.9961Cobalt 27 Co 8.9332Copper 29 Cu 63.546Curium 96 Cm [247]Dubnium 105 Db [262]Dysprosium 66 Dy 162.5Einsteinium 99 Es [252]Erbium 68 Er 167.26Europium 63 Eu 151.964Fermium 100 Fm [257]Fluorine 9 F 18.9984032Francium 87 Fr [223]Gadolinium 64 Gd 157.25Gallium 31 Ga 69.723Germanium 32 Ge 72.61Gold 79 Au 196.96655Hafnium 72 Hf 178.49Hassium 108 Hs [265]Helium 2 He 4.002602Holmium 67 Ho 164.93032Hydrogen 1 H 1.00794Indium 49 In 114.818Iodine 53 I 126.90447Iridium 77 Ir 192.217Iron 26 Fe 55.845Krypton 36 Kr 83.8Lanthanum 57 La 138.9055Lawrencium 103 Lr [262]Lead 82 Pb 207.2Lithium 3 Li 6.941Lutetium 71 Lu 174.967Magnesium 12 Mg 24.305Manganese 25 Mn 54.938049Meitnerium 109 Mt [268]Mendelevium 101 Md [258]

INORGANIC CHEMISTRY 1.123

TABLE 1.18 Atomic Weights of the Elements (Continued )

Name Atomic number Symbol Atomic weight

Mercury 80 Hg 200.59Molybdenum 42 Mo 95.94Neodymium 60 Nd 144.24Neon 10 Ne 20.1797Neptunium 93 Np [237]Nickel 28 Ni 58.6934Niobium 41 Nb 92.90638Nitrogen 7 N 14.00674Nobelium 102 No [259]Osmium 76 Os 190.23Oxygen 8 O 15.9994Palladium 46 Pd 106.42Phosphorus 15 P 30.973761Platinum 78 Pt 195.078Plutonium 94 Pu [244]Polonium 84 Po [209]Potassium 19 K 39.0983Praseodymium 59 Pr 140.90765Promethium 61 Pm [145]Protactinium 91 Pa 231.03588Radium 88 Ra [226]Radon 86 Rn [222]Rhenium 75 Re 186.207Rhodium 45 Rh 102.9055Rubidium 37 Rb 85.4678Ruthenium 44 Ru 101.07Rutherfordium 104 Rf [261]Samarium 62 Sm 150.36Scandium 21 Sc 44.95591Seaborgium 106 Sg [263]Selenium 34 Se 78.96Silicon 14 Si 28.0855Silver 47 Ag 107.8682Sodium 11 Na 22.98977Strontium 38 Sr 87.62Sulfur 16 S 32.066(6)Tantalum 73 Ta 180.9479Technetium 43 Tc [98]Tellurium 52 Te 127.6Terbium 65 Tb 158.92534Thallium 81 Tl 204.3833Thorium 90 Th 232.0381Thulium 69 Tm 168.93421Tin 50 Sn 118.71Titanium 22 Ti 47.867Tungsten 74 W 183.84Ununbium 112 Uub [277]Ununnilium 110 Uun [269]Ununnunium 111 Uuu [272]Uranium 92 U 238.0289Vanadium 23 V 50.9415Xenon 54 Xe 131.29Ytterbium 70 Yb 173.04Yttrium 39 Y 88.90585Zinc 30 Zn 65.39Zirconium 40 Zr 91.224

TABLE 1.19 Physical Properties of the Elements

The relative atomic masses in the following table are based on the 12C = 12 scale; a value in brackets denotes the mass number of the most stable isotope. The data arebased on the most recent values adopted by IUPAC, with a maximum of six significant figures.r denotes density, qC,m denotes melting temperature, qC, b denotes boiling temperature, and cp denotes specific heat capacity.subl. denotes sublimes

RelativeAtomic atomic Oxidation

Element Symbol number mass r/g cm−3 qC,m/°C qC,b /°C cp /J kg−1 K−1 states

Actinium Ac 89 227.028 10.1 1050 3200 3Aluminium Al 13 26.9815 2.70 660 2470 900 3Americium Am 95 (243) 11.7 (1200) (2600) 140 3, 4, 5, 6Antimony Sb 51 121.75 6.62 630 1380 209 3, 5Argon Ar 18 39.948 1.40 (87 K) −189 −186 519Arsenic (a, grey) As 33 74.9216 5.72 613 subl. 326 3, 5Astatine At 85 (210) (302) (380) (140)Barium Ba 56 137.33 3.51 714 1640 192 2Berkelium Bk 97 (247) 3, 4Beryllium Be 4 9.01218 1.85 1280 2477 1.82 × 103 2Bismuth Bi 83 208.980 9.80 271 1560 121 3,5Boron B 5 10.81 2.34 2300 3930 1.03 × 103 3Bromine Br 35 79.904 3.12 −7.2 58.8 448 1, 3, 4, 5, 6Cadmium Cd 48 112.41 8.64 321 765 230 2Caesium Cs 55 132.905 1.90 28.7 690 234 1Calcium Ca 20 40.08 1.54 850 1487 653 2Californium Cf 98 (251) 3Carbon C 6 12.011 2.25 (graphite) 3730 subl. 4830 711 (graphite) 2,4

3.51 (diamond) 519 (diamond)Cerium Ce 58 140.12 6.78 795 3470 184 3,4Chlorine Cl 17 35.453 1.56 (238 K) −101 −34.7 477 1, 3, 4, 5, 6, 7Chromium Cr 24 51.996 7.19 1890 2482 448 2,3,6Cobalt Co 27 58.9332 8.90 1492 2900 435 2,3Copper Cu 29 63.546 8.92 1083 2595 385 1,2Curium Cm 96 (247) 3Dysprosium Dy 66 162.50 8.56 1410 2600 172 3Einsteinium Es 99 (252) 3

1.1

24

Erbium Er 68 167.26 9.16 1500 2900 167 3Europium Eu 63 151.96 5.24 826 1440 138 2, 3Fermium Fm 100 (257) 3Fluorine F 9 18.9984 1.11 (85 K) −220 −188 824 1Francium Fr 87 (223) (27) (680) (140) 1Gadolinium Gd 64 157.25 7.95 1310 3000 234 3Gallium Ga 31 69.72 5.91 29.8 2400 381 3Germanium Ge 32 72.59 5.35 937 2830 322 4Gold Au 79 196.967 19.3 1063 2970 130 1, 3Hafnium Hf 72 178.49 13.3 2220 5400 146 4Helium He 2 4.00260 0.147 (4 K) −270 −269 5.19 × 103

Holmium Ho 67 164.930 8.80 1460 2600 163 3Hydrogen H 1 1.0079 0.070 (20 K) −259 −252 1.43 × 104 1Indium In 49 114.82 7.30 157 2000 238 1, 3Iodine I 53 126.905 4.93 114 184 218 1, 3, 5, 7Iridium Ir 77 192.22 22.5 2440 5300 134 2, 3, 4, 6Iron Fe 26 55.847 7.86 1535 3000 448 2, 3, 6Krypton Kr 36 83.80 2.16 (121 K) −157 −152 247 2Lanthanum La 57 138.906 6.19 920 3470 201 3Lawrencium Lr 103 (260)Lead Pb 82 207.2 11.3 327 1744 130 2, 4Lithium Li 3 6.941 0.53 180 1330 3.39 × 103 1Lutetium Lu 71 174.967 9.84 1650 3330 155 3Magnesium Mg 12 24.305 1.74 650 1110 1.03 × 103 2Manganese Mn 25 54.9380 7.20 1240 2100 477 2, 3, 4, 6, 7Mendelevium Md 101 (258) 3Mercury Hg 80 200.59 13.6 −38.9 357 138 1, 2Molybdenum Mo 42 95.94 10.2 2610 5560 251 2, 3, 4, 5, 6Neodymium Nd 60 144.24 7.00 1020 3030 188 3Neon Ne 10 20.179 1.20 (27 K) −249 −246 1.03 × 103

Neptunium Np 93 237.048 20.4 640 3, 4, 5, 6Nickel Ni 28 58.69 8.90 1453 2730 439 2, 3Niobium Nb 41 92.9064 8.57 2470 3300 264 3, 5

1.1

25

(Continued )

TABLE 1.19 Physical Properties of the Elements (Continued )

RelativeAtomic atomic Oxidation

Element Symbol number mass r/g cm−3 qC,m/°C qC,b/°C cp/J kg−1 K−1 states

Nitrogen N 7 14.0067 0.808 (77 K) −210 −196 1.04 × 103 1, 2, 3, 4, 5Nobelium No 102 (259)Osmium Os 76 190.2 22.5 3000 5000 130 2, 3, 4, 6, 8Oxygen O 8 15.9994 1.15 (90 K) −218 −183 916 2Palladium Pd 46 106.42 12.0 1550 3980 243 2, 4Phosphorus P 15 30.9738 1.82 (white) 44.2 (white) 280 (white) 757 (white) 3, 5

2.34 (red) 590 (red) 670 (red)Platinum Pt 78 195.08 21.4 1769 4530 134 2, 4, 6Plutonium Pu 94 (244) 19.8 640 3240 3, 4, 5, 6Polonium Po 84 (209) 9.4 254 960 126 2, 4Potassium K 19 39.0983 0.86 63.7 774 753 1Praseodymium Pr 59 140.908 6.78 935 3130 192 3, 4Promethium Pm 61 (145) 1030 2730 184 3Protoactinium Pa 91 231.036 15.4 1230 121 4, 5Radium Ra 88 226.025 5.0 700 1140 121 2Radon Rn 86 (222) 4.4 (211 K) −71 −61.8 92Rhenium Re 75 186.207 20.5 3180 5630 138 2, 4, 5, 6, 7Rhodium Rh 45 102.906 12.4 1970 4500 243 2, 3, 4Rubidium Rb 37 85.4678 1.53 38.9 688 360 1Ruthenium Ru 44 101.07 12.3 2500 4900 238 3, 4, 5, 6, 8Samarium Sm 62 150.36 7.54 1070 1900 197 2, 3Scandium Sc 21 44.9559 2.99 1540 2730 556 3Selenium Se 34 78.96 4.81 217 685 322 2, 4, 6Silicon Si 14 28.0855 2.33 1410 2360 711 4Silver Ag 47 107.868 10.5 961 2210 234 1Sodium Na 11 22.9898 0.97 97.8 890 1.23 × 103 1Strontium Sr 38 87.62 2.62 768 1380 284 2Sulphur (a, rhombic) S 16 32.06 2.07 (a) 113 (a) 445 732 2, 4, 6

1.96 (b) 119 (b)Tantalum Ta 73 180.948 16.6 3000 5420 138 5Technetium Tc 43 (98) 11.5 2200 3500 243 7Tellurium Te 52 127.60 6.25 450 990 201 2, 4, 6

1.1

26

Terbium Tb 65 158.925 8.27 1360 2800 184 3, 4Thallium Tl 81 204.383 11.8 304 1460 130 1, 3Thorium Th 90 232.038 11.7 1750 3850 113 3, 4Thulium Tm 69 168.934 9.33 1540 1730 159 2, 3Tin (white) Sn 50 118.71 7.28 (white) 232 2270 218 2, 4

5.75 (grey)Titanium Ti 22 47.88 4.54 1675 3260 523 2, 3, 4Tungsten W 74 183.85 19.4 3410 5930 134 2, 4, 5, 6Uranium U 92 238.029 19.1 1130 3820 117 3, 4, 5, 6Vanadium V 23 50.9415 5.96 1900 3000 481 2, 3, 4, 5Xenon Xe 54 131.29 3.52 (165 K) −112 −108 159 2, 4, 6, 8Ytterbium Yb 70 173.04 6.98 824 1430 146 2, 3Yttrium Y 39 88.9059 4.34 1500 2930 297 3Zinc Zn 30 65.39 7.14 420 907 385 2Zirconium Zr 40 91.224 6.49 1850 3580 276 2, 3, 4

1.1

27

TABLE 1.20 Conductivity and Resistivity of the Elements

1.1

28

Name SymbolAtomicnumber

Electronicconfiguration

Thermal conductivity,W ⋅ (m ⋅ K)−1 at 25°C

Electrical resistivity,mΩ ⋅ cm at 20°C

Coefficient of linearthermal expansion

(25°C), m ⋅ m−1(× 106)

ActiniumAluminumAmericiumAntimonyArgonArsenicAstatineBariumBerkeliumBerylliumBismuthBoronBromineCadmiumCalciumCaliforniumCarbon

(amorphous)(diamond)(graphite)

CeriumCesiumChlorineChromiumCobaltCopperCuriumDysprosiumEinsteiniumErbiumEuropium

AcAlAmSbArAsAtBaBkBeBiBBrCdCaCfC

CeCsClCrCoCuCmDyEsErEu

891395511833855697

4835

354820986

5855172427299666996863

[Rn] 6d2 7s[Ne] 3s2 3p[Rn] 5f 7s2

[Kl] 4d'° 5s2 5p3

[Ne] 3i2 3p6

[Ar] 3d10 4s2 4p3

[Xe] 4/14 5dto 6s2 6p*[Xe] 6s2

[Rn] S/8 6d 7s2

[He] 2s2

[Xe] 4/4 5d'° 6s2 6p3

[He] 2s2 1p[Ar] 3d10 4s2 4p5

[Kr] 4d'° 5s2

[Ar] 4s2

[Rn] 5/"> 7i2

[He] 2i2 2p2

[Xe]4/5d6s2

[Xe] 6s[Ne] 3s2 3p5

[Ar] 3d5 4s[Ar] 3d7 4i2

[Ar] 3d10 4s[Rn] 5f 6d 7s2

[Xe] 4/10 6s2

[Rn] 5/11 7i2

[Xe] 4/14 6s2

[Xe] 4f 6s2

12237

1024.40.017 72

50.21.7

18.410

2007.97

27.40.122

96.6201

1.59900-2320119-16511.335.90.0089

93.9100401

10.7

14.513.9

2.6548

41.7

33.3

33.2

3.56129

1.5 X 1012

7.8 X 10'8

7.27 (22°C)3.36

0.81375

82.8 (ß, hex)20.5

>109

12.56.241.678

92.6

86.090.0

23.1

11.0

20.6

11.313.45-7

30.822.3

6.3

4.913.016.5

9.9

12.235.0

1.1

29

(Continued)

FermiumFluorineFranciumGadoliniumGalliumGermaniumGold (aurum)HafniumHeliumHolmiumHydrogenIndiumIodineIridiumIronKryptonLanthanumLawrenciumLeadLithiumLutetiumMagnesiumManganeseMendeleviumMercuryMolybdenumNeodymiumNeonNeptuniumNickelNiobiumNitrogenNobeliumOsmiumOxygen

Palladium

FmFFrGdGaGeAuHfHeHoHInIIrFeKrLaLrPbLiLuMgMnMdHgMoNdNeNpNiNbNNoOsO

Pd

1009

8764313279722

671

495377263657

103823

711225

101804260109328417

10276

8

46

[Rn] 5/'2 Is2

[He] 2s1 2p5

[Rn]7s[Xe] 4f 5d 6s2

[Ar] 3d10 4s2 4p[Ar] 3d10 4s2 4p2

[Xe] 4/14 5d10 6s[Xe] 4/14 Sd2 6s2

Is2

[Xe] 4/" 6s2

Is[Kr] 4d10 5s2 5p[Kr] 4d10 5s2 5p5

[Xe] 4/14 5a7 6s2

[Ar] 3d6 4s2

[Ar] 3d10 4î2 4p6

[Xe] 5d 6s2

[Rn] 4/14 6d Is2

[Xe] 4/14 5d'° 6s2 6p2

Is22i[Xe] 4/14 5d 6s2

[Ne] 3s2

[Ar] 3d5 4s2

[Rn] 5/13 Is2

[Xe] 4/14 5d'° 6s2

[Kr] 4d5 5s[Xe] 4/4 6s2

\s2 2s2 2p6

[Rn] 5/4 6d Is2

[Ar] 3d8 4s2

[Kr] 4d4 5sIs2 2s2 2pi[Rn] 5/14 7s2

[Xe] 4/14 Sd6 6s2

Is2 2i2 2/74

[Kr] 4d10

0.0277

10.529.4(lq) 40.6(c)60.2

31823.00.1513

16.20.1805

81.8449

14780.49.43

13.4

35.384.816.4

1567.81

8.30138

16.50.04916.3

90.953.70.025 83

87.60.026 58 (g)0.149 (Iq)

71.8

13125.795 (30°C)

530002.214

33.1

81.4

8.371.3 X 1015 (0°C)4.719.61

61.5

20.89.28

58.24.39

144

95.8(lq); 21(c)5.34

64.3

122.0 (22°C)6.93

15.2 (0°C)

8.12 (0°C)

10.54

9.4 (100°C)120

6.014.25.9

11.2

32.1

6.411.8

12.1

28.9469.9

24.821.7

4.89.6

13.47.3

5.1

11.8

1.1

30

TABLE 1.20 Conductivity and Resistivity of the Elements (Continued)

Name SymbolAtomicnumber

Electronicconfiguration

Thermal conductivity,W ⋅ (m ⋅ K)−1 at 25°C

Electrical resistivity,mΩ ⋅ cm at 20°C

Coefficient of linear thermal expansion

(25°C), m ⋅ m−1(× 106)

PhosphorusPlatinumPlutoniumPoloniumPotassiumPraseodymiumPromethiumProtactiniumRadiumRadonRheniumRhodiumRubidiumRutheniumSamariumScandiumSeleniumSiliconSilverSodiumStrontiumSulfurTantalumTechnetiumTelluriumTerbiumThalliumThoriumThulliumTin (stannum)

PPtPuPoKPrPmPaRaRnReRhRbRuSmScSeSiAgNaSrSTaTeTeTbTIThTmSn

157894841959619188867545374462213414471138167343526578906950

[Ne] 3í2 3/>3

[Xe] 4/14 5<¿9 6í[Rn] S/6 7í2

[Xe] 4/14 5dw 6s2 6p4

[Ai]4s[Xe] 4/1 6s2

[Xe] 4/5 6í2

[Rn] S/2 6d Is2

[Rn] 7s2

[Xe] 4/'4 Sel10 6s2 6p6

[Xe] 5/14 5d5 6s2

[Kr] 4a8 5s[Kr]5s[Kr] 4d7 5s[Xe] 4/s 6í2

[Ar]3d4s2

[Ar] 3d10 4í2 4p4

[Ne] 3i2 3p2

[Kr] 4d10 5i[Ne] 3s[Kr] 5í2

[Ne] 3í2 3p4

[Xe] 4/14 5d3 6s2

[Kr] 4d5 5i2

[Kr] 4dw 5s2 5p4

[Xe] 4/9 6s2

[Xe] 4/14 5d10 6í2 6^[Rn] 6d2 Is2

[Xe] 4/13 6í2

[Kr] 4d10 5í2 5p2

0.236 1771.66.740.2

102.512.517.94718.60.003 61

48.015058.2

11713.315.80.519

14942914235.40.205

57.550.6

1.97-3.3811.146.154.016.966.8

1010.6

146.0 (0°C)40.0 (0°C) alpha7.2

70.064.0 (25°C)19.1 (22°C)

100

19.34.33 (0°C)

12.87.1 (0°C)

94.056.2

1.2 (0°C)105

1.5874.77

13.22 X 1023

13.522.6 (100°C)(5.8-33) X 103

1151815.4 (22°C)67.611.5 (0°C)

8.846.7

6.7est [11.]

6.28.2

6.412.710.237

18.97122.5

6.3

10.329.911.113.322.0

1.1

31

TitaniumTungsten (wolframium)UraniumVanadiumXenonYtterbiumYttriumZincZirconium

TiWUVXeYbYZnZr

227492235470393040

[Ar] 3d2 4s2

[Xe] 4/14 5d4 6s2

[Rn] 5f 6d 7s2

[Ar] 3d3 4s2

[Kr] 4d10 5s2 5p6

[Xe] 4/14 6s2

[Kr] 4d 5i2

[Ar] 3d10 4í2

[Kr] 4a2 5s2

21.917327.530.70.005 65

38.517.2

11622.6

42.05.28

28.0 (0°C)19.7

2559.65.9

42.1

8.64.5

13.98.4

26.310.630.25.7

1.132 SECTION ONE

TABLE 1.21 Work Functions of the Elements

The work function f is the energy necessary to just remove an electron from the metal surface in thermoelectricor photoelectric emission. Values are dependent upon the experimental technique (vacua of 10–9 or 10–10 torr,clean surfaces, and surface conditions including the crystal face identification).

TABLE 1.22 Relative Abundances of Naturally Occurring Isotopes

MassElement number Percent

Aluminum 27 100Antimony 121 57.21(5)

123 42.79(5)Argon 36 0.337(3)

38 0.063(1)40 99.600(3)

Arsenic 75 100Barium 130 0.106(2)

132 0.101(2)134 2.42(3)135 6.59(2)136 7.85(4)137 11.23(4)138 71.70(7)

Beryllium 9 100Bismuth 209 100Boron 10 19.9(2)

11 80.1(2)Bromine 79 50.69(7)

81 49.31(7)

MassElement number Percent

Cadmium 106 1.25(4)108 0.89(2)110 12.49(12)111 12.80(8)112 24.13(14)113 12.22(8)114 28.7(3)116 7.49(9)

Calcium 40 96.941(18)42 0.647(9)43 0.135(6)44 2.088(12)46 0.004(3)48 0.187(4)

Carbon 12 98.89(1)13 1.11(1)

Cerium 136 0.19(1)138 0.25(1)140 88.43(10)142 11.13(10)

Element f, eV

Ag 4.64Al 4.19As (3.75)Au 5.32B (4.75)Ba 2.35Be 5.08Bi 4.36C (5.0)Ca 2.71Cd 4.12Ce 2.80Co 4.70Cr 4.40Cs 1.90Cu 4.70Eu 2.50Fe 4.65Ga 4.25Ge 5.0Gd 3.1Hf 3.65

Element f, eV

Hg 4.50In 4.08Ir 5.6K 2.30La 3.40Li 3.10Mg 3.66Mn 3.90Mo 4.30Na 2.70Nb 4.20Nd 3.1Ni 5.15Os 4.83Pb 4.18Pd 5.00Po 4.6Pr 2.7Pt 5.40Rb 2.20Re 4.95Rh 4.98

Element f,eV

Ru 4.80Sb 4.56Sc 3.5Se 5.9Si 4.85Sm 2.95Sn 4.35Sr 2.76Ta 4.22Tb 3.0Te 4.70Th 3.71Ti 4.10Tl 4.02U 3.70V 4.44W 4.55Y 3.1Zn 4.30Zr 4.00

INORGANIC CHEMISTRY 1.133

TABLE 1.22 Relative Abundances of Naturally Occurring Isotopes (Continued )

MassElement number Percent

Cesium 133 100Chlorine 35 75.77(7)

37 24.23(7)Chromium 50 4.345(13)

52 83.79(2)53 9.50(2)54 2.365(7)

Cobalt 59 100Copper 63 69.17(3)

65 30.83(3)Dysprosium 156 0.06(1)

158 0.10(1)160 2.34(6)161 18.9(2)162 25.5(2)163 24.9(2)164 28.2(2)

Erbium 162 0.14(1)164 1.61(2)166 33.6(2)167 22.95(15)168 26.8(2)170 14.9(2)

Europium 151 47.8(5)153 52.2(5)

Fluorine 19 100Gadolinium 152 0.20(1)

154 2.18(3)155 14.80(5)156 20.47(4)157 15.65(3)158 24.84(12)160 21.86(4)

Gallium 69 60.108(9)71 39.892(9)

Germanium 70 21.23(4)72 27.66(3)73 7.73(1)74 35.94(2)76 7.44(2)

Gold 197 100Hafnium 174 0.162(3)

176 5.206(5)177 18.606(13)178 27.297(4)179 13.629(6)180 35.100(7)

Helium 4 100Holmium 165 100Hydrogen 1 99.985(1)

2 0.015(1)Indium 113 4.29(2)

115 95.71(2)

MassElement number Percent

Iodine 127 100Iridium 191 37.27(9)

193 62.73(9)Iron 54 5.85(4)

56 91.75(4)57 2.12(1)58 0.26(1)

Krypton 78 0.35(2)80 2.25(2)82 11.6(1)83 11.5(1)84 57.0(3)86 17.3(2)

Lanthanum 138 0.0902(2)139 99.9098(2)

Lead 204 1.4(1)206 24.1(1)207 22.1(1)208 52.4(1)

Lithium 6 7.5(2)7 92.5(2)

Lutetium 175 97.41(2)176 2.59(2)

Magnesium 24 78.99(3)25 10.00(1)26 11.01(2)

Manganese 55 100Mercury 196 0.15(1)

198 9.97(8)199 16.87(10)200 23.10(16)201 13.18(8)202 29.86(20)204 6.87(4)

Molybdenum 92 14.84(4)94 9.25(3)95 15.92(5)96 16.68(5)97 9.55(3)98 24.13(7)

100 9.63(3)Neodymium 142 27.13(12)

143 12.18(6)144 23.80(12)145 8.30(6)146 17.19(9)148 5.76(3)150 5.64(3)

Neon 20 90.48(3)21 0.27(1)22 9.25(3)

Nickel 58 68.077(9)60 26.223(8)

(Continued)

1.134 SECTION ONE

TABLE 1.22 Relative Abundances of Naturally Occurring Isotopes (Continued )

MassElement number Percent

61 1.140(1)62 3.634(2)64 0.926(1)

Niobium 93 100Nitrogen 14 99.634(9)

15 0.366(9)Osmium 184 0.020(3)

186 1.58(2)187 1.6(4)188 13.3(1)189 16.1(1)190 26.4(2)192 41.0(3)

Oxygen 16 99.76(1)17 0.0418 0.20(1)

Palladium 102 1.02(1)104 11.14(8)105 22.33(8)106 27.33(3)108 26.46(9)110 11.72(9)

Phosphorus 31 100Platinum 190 0.01(1)

192 0.79(6)194 32.9(6)195 33.8(6)196 25.3(6)198 7.2(2)

Potassium 39 93.258(4)40 0.0117(1)41 6.730(3)

Praseodymium 141 100Protoactinium 230 100Rhenium 185 37.40(2)

187 62.60(2)Rhodium 103 100Rubidium 85 72.17(2)

87 27.83(2)Ruthenium 96 5.52(6)

98 1.88(6)99 12.7(1)

100 12.6(1)101 17.0(1)102 31.6(2)104 18.7(2)

Samarium 144 3.1(1)147 15.0(2)148 11.3(1)149 13.8(1)150 7.4(1)152 26.7(2)

MassElement number Percent

154 22.7(2)Scandium 45 100Selenium 74 0.89(2)

76 9.36(11)77 6.63(6)78 23.78(9)80 49.61(10)82 8.73(6)

Silicon 28 92.23(2)29 4.67(2)30 3.10(1)

Silver 107 51.839(7)109 48.161(7)

Sodium 23 100Strontium 84 0.56(1)

86 9.86(1)87 7.00(1)88 82.58(1)

Sulfur 32 95.02(9)33 0.75(4)34 4.21(8)36 0.02(1)

Tantalum 180 0.012(2)181 99.988(2)

Tellurium 120 0.096(2)122 2.603(4)123 0.908(2)124 4.816(6)125 7.139(6)126 18.952(11)128 31.687(11)130 33.799(10)

Terbium 159 100Thallium 203 29.52(1)

205 70.48(1)Thorium 228 100Thullium 169 100Tin 112 0.97(1)

114 0.65(1)115 0.34(1)116 14.53(11)117 7.68(7)118 24.23(11)119 8.59(4)120 32.59(10)122 4.63(3)124 5.79(5)

Titanium 46 8.25(3)47 7.44(2)48 73.72(3)49 5.41(2)50 5.4(1)

INORGANIC CHEMISTRY 1.135

TABLE 1.22 Relative Abundances of Naturally Occurring Isotopes (Continued )

MassElement number Percent

Tungsten 180 0.12(1)182 26.50(3)183 14.31(1)184 30.64(1)186 28.43(4)

Uranium 234 0.0055(5)235 0.720(1)238 99.275(2)

Vanadium 50 0.250(2)51 99.750(2)

Xenon 124 0.10(1)126 0.09(1)128 1.91(3)129 26.4(6)130 4.1(1)131 21.2(4)132 26.9(5)134 10.4(2)136 8.9(1)

Ytterbium 168 0.13(1)

MassElement number Percent

170 3.05(6)171 14.3(2)172 21.9(3)173 16.12(2)174 31.8(4)176 12.7(2)

Yttrium 89 100Zinc 64 48.6(3)

66 27.9(2)67 4.1(1)68 18.8(4)70 0.6(1)

Zirconium 90 51.45(3)91 11.22(4)92 17.15(2)94 17.38(4)96 2.80(2)

TABLE 1.23 Radioactivity of the Elements (Neptunium Series)

Element Symbol Radiation Half-life

Plutonium 241Pu b 13.2 years↓

Americium 241Am a 462 years↓

Neptunium 237Np a 2.20 × 106 years↓

Protactinium 233Pa b 27.4 days↓

Uranium 233U a 1.62 × 105 years↓

Thorium 229Th a 7.34 × 103 years↓

Radium 225Ra b 14.8 days↓

Actinium 225Ac a 10.0 days↓

Francium 221Fr a 4.8 min↓

Astatine 217At a 1.8 × 10−2 sec↓

(Continued )

1.136 SECTION ONE

TABLE 1.23 Radioactivity of the Elements (Neptunium Series) (Continued)

Element Symbol Radiation Half-life

Bismuth 213Bi b and a 47 min98% | 2%↓−−−−−−−−−−−−|

Polonium | 213Po a 4.2 × 10−6 sec|

| Thallium 209Tl b 2.2 min|____________|

↓Lead 209Pb b 3.32 hr

↓Bismuth 209Bi Stable —(End Product)

TABLE 1.24 Radioactivity of the Elements (Thorium Series)

CorrespondingRadioelement element Symbol Radiation Half-life

Thorium Thorium 232Th a 1.39 × 1010 years↓

Mesothorium I Radium 228Ra b 6.7 years

↓Mesothorium II Actinium 228Ac b 6.13 hr

↓Radiothorium Thorium 228Th a 1.91 years

↓Thorium X Radium 224Ra a 3.64 days

↓Th Emanation Radon 220Rn a 52 sec

↓Thorium A Polonium 216Po a 0.16 sec

↓Thorium B Lead 212Pb b 10.6 hr

↓Thorium C Bismuth 212Bi b and a 60.5 min66.3% | 33.7%↓−−−−−−−−−−−−|

Thorium C′ | Polonium 212Po a 3 × 10−7 sec|

| Thorium C′′Thallium 208Tl b 3.1 min|____________|

↓Thorium D Lead 208Pb Stable —(End Product)

INORGANIC CHEMISTRY 1.137

TABLE 1.25 Radioactivity of the Elements (Actinium Series)

CorrespondingRadioelement element Symbol Radiation Half-life

Actinouranium Uranium 235U a 7.13 × 108 years↓

Uranium Y Thorium 231Th b 25.6 hr↓

Protactinium Protactinium 231Pa a 3.43 × 104 years↓

Actinium Actinium 227Ac b and a 21.8 years98.8% | 1.2%↓−−−−−−−−−−−−|

Radioactinium | Thorium 227Th a 18.4 days|

↓| Actinium K Francium 223Fr b 21 min|____________|

↓Actinium X Radium 223Ra a 11.7 days

↓Ac Emanation Radon 219Rn a 3.92 sec

↓Actinium A Polonium 215Po a and b 1.83 × 10−3 s�100% | �5 × 10−4%↓−−−−−−−−−−−−|

Actinium B | Lead 211Pb b 36.1 min|

↓| Astatine-215 Astatine 215At a �10−4 sec|____________|

↓Actinium C Bismuth 211Bi a and b 2.16 min99.7% | 0.3%|−−−−−−−−−−−−↓| Actinium C′ Polonium 211Po a 0.52 sec↓Actinium C′′ Thallium 207Tl b 4.8 min|____________|

↓Actinium D Lead 207Pb Stable —(End Product)

TABLE 1.26 Radioactivity of the Elements (Uranium Series)

CorrespondingRadioelement element Symbol Radiation Half-life

Uranium I Uranium 238U a 4.51 × 109 years↓

Uranium X1 Thorium 234Th b 24.1 days↓

Uranium X2* Protactinium 234Pa b 1.18 min

↓Uranium II Uranium 234U a 2.48 × 105 years

↓Ionium Thorium 230Th a 8.0 × 104 years

↓Radium Radium 226Ra a 1.62 × 103 years

(Continued )

1.4 IONIZATION ENERGY

1.138 SECTION ONE

TABLE 1.26 Radioactivity of the Elements (Uranium Series) (Continued)

CorrespondingRadioelement element Symbol Radiation Half-life

Ra Emanation Radon 222Rn a 3.82 days↓

Radium A Polonium 218Po a and b 3.05 min99.98% | 0.02%↓−−−−−−−−−−−−|

Radium B | Lead 214Pb b 26.8 min|

↓| Astatine-218 Astatine 218At a 2 sec|____________|

↓Radium C Bismuth 214Bi b and a 19.7 min99.96% | 0.04%↓−−−−−−−−−−−−|

Radium C′ | Polonium 214Po a 1.6 × 10−4 sec|

| Radium C′′ Thallium 210Tl b 1.32 min|____________|

Radium D Lead 210Pb b 19.4 years↓

Radium E Bismuth 210Bi b and a 5.0 days�100% | 2 × 10−4%↓−−−−−−−−−−−−|

Radium F | Polonium 210Po a 138.4 days|

| Thallium-206Thallium 206Tl b 4.20 min|____________|

↓Radium G Lead 206Pb Stable —(End Product)

*Uranium X2 is an excited state of 234Pa and undergoes isomeric transition to a small extent to form uranium Z (234Pa in itsground state); the latter has a half-life of 6.7 h, emitting beta radiation and forming uranium II (234U).

TABLE 1.27 Ionization Energy of the Elements

The minimum amount of energy required to remove the least strongly bound electron from a gaseous atom (or ion)is called the ionization energy and is expressed in MJ ⋅ mol–1.

Spectrum (in MJ ⋅ mol−1)At.no. Element I II III IV V VI

1234567g9

HHeLiBeBCNOF

1.3122.3720.5200.8990.8011.0861.4021.3141.681

5.2517.2981.7572.4272.3532.8563.3883.374

11.81514.8493.6604.6204.5785.3006.147

21.00725.0276.2237.4757.4698.408

32.82837.8329.445

10.98911.022

47.19153.26813.32615.164

INORGANIC CHEMISTRY 1.139

TABLE 1.27 Ionization Energy of the Elements (Continued )

Spectrum (in MJ ⋅ mol−1)At.no. Element I II III IV V VI

(Continued )

10111213141516171819202122232425262728293031323334353637383940

4142434445464748495051525354555657585960

NeNaMgAlSiPSClArKÇaSeTiVCrMnFeCoNiCuZnGaGeAsSeBrKrRbSrYZr

NbMoTeRuRhPdAgCdInSnSbTeIXeCsBaLaCePrNd

2.0810.4960.7380.5780.7861.0121.0001.2511.5210.4190.5900.6310.6580.6500.6530.7170.7590.7580.7370.7450.9060.5790.7620.9470.9411.1401.3510.4030.5490.6160.660

0.6640.6850.7020.7110.7200.8050.7310.8680.5580.7090.8340.8691.0081.1700.3760.5030.5380.5280.5230.530

3.9524.5621.4511.8171.5771.9032.2512.2972.6663.0511.1451.2351.3101.4141.5921.5091.5611.6461.7531.9581.7331.9791.5371.7982.0452.102.3502.6321.0641.1811.267

1.3821.5581.4721.6171.7441.8752.0731.6311.8211.4121.5951.7951.8462.0462.2340.9651.0671.0471.0181.035

6.1226.9127.7332.7453.2312.9123.3613.8223.9314.4114.9122.3892.6522.8282.9873.2482.9573.2323.3933.5553.8332.9633.3022.7352.9743.473.5653.94.1381.9802.218

2.4162.6212.8502.7472.9973.1773.3613.6162.7042.9432.442.6983.23.099

1.8501.9492.0862.13

9.3709.543

10.54011.5774.3554.9564.5645.1585.7715.8776.4747.0894.1754.5074.7434.945.634.955.305.5365.736.24.4104.8374.1434.565.075.085.55.963.313

3.6954.477

5.23.9304.263.610

4.8203.5473.7613.90

12.17713.35313.62914.83116.0916.2747.0046.547.2387.9768.1448.8449.5736.2996.706.997.247.677.347.707.95

9.0226.0436.995.766.246.856.917.437.75

4.8775.91

6.9745.45.668

5.946.3255.551

15.23816.61017.99418.37719.78421.2688.4959.3628.7879.649

10.49610.71911.51612.3628.7389.229.569.84

10.49.9

10.4

12.317.8838.557.578.148.768.97

9.8476.641

10.46.82

7.487

1.140 SECTION ONE

TABLE 1.27 Ionization Energy of the Elements (Continued)

Spectrum (in MJ ⋅ mol−1)At.no. Element I II III IV V VI

616263646566676869707172737475767778798081828384858687888990919293949596979899

100101102

PmSmEuGdTbDyHoErTmYbLuHfTaWReOsIrPtAuHgTIPbBiPoAtRnFrRaAcThPaUNpPuAmCmBkCfEsFmMdNo

0.5350.5430.5470.5920.5640.5720.5810.5890.5960.6030.5240.680.7610.7700.7600.840.880.870.8901.0070.5890.7160.7030.812

1.037

0.5090.670.5870.5680.5980.6050.5850.5780.5810.6010.6080.6190.6270.6350.642

1.0521.0681.0851.1671.1121.1261.1391.1511.1631.1741.341.44

.791

.98

.810

.971

.4501.610

0.9791.171.11

2.152.262.401.992.1142.202.2042.1942.2852.4172.0222.25

3.302.8783.0812.466

1.93

3.973.994.124.263.8393.994.104.134.134.2034.3663.216

4.083 6.644.371 5.40 8.52

2.78

INORGANIC CHEMISTRY 1.141

TABLE 1.28 Ionization Energy of Molecular and Radical Species

Ionization energy

In MJ ⋅ mol−1Species In electron voltsΔf H (ion)in kJ ⋅ mol−1

(Continued )

Aluminum tribromideAluminum trichlorideAluminum trifluorideAluminum triiodideAmidogen (NH2)AmmoniaAntimony trichlorideArsenic trichlorideArsenic trifluorideArsineBarium oxideBismuth trichlorideBorane (BH3)Boron dioxide (BO2)Boron oxide (B2O3)Boron tribromideBoron trichlorideBoron trifluorideBoron triodideBromine (Br2)Bromine chloride (BrCl)Bromine fluoride (BrF)Bromine pentafluorideBromosilane (BrSiH3)Calcium oxideCesium chlorideCesium fluorideCesium fluorideChlorine (C12)Chlorine difluorideChlorine dioxideChlorine oxideChlorine trifluorideChlorosilane (ClSiH3)Chromyl chloride (CrO2Cl2)Diborane (B2H6)Dichlorosilane (Cl2SiH2)Difluoramine (HNF2)Difluoroamidogen (NF2)Difluorosilane (F2SiH2)Dioxygen fluorideDisilaneDisulfur oxideFluorine (F2)Fluorosilane (FSiH3)Gallium bromideGallium chlorideGallium triiodideGallium(I) fluoride

1.001.1591.3940.881.075(1)0.980(1)0.97(1)1.018(3)1.239(5)0.9540.667(6)1.001.19(1)1.30(3)1.303(14)1.014(2)1.119(2)1.501(3)0.893(3)1.0146(5)1.0621.136(1)1.271(1)1.020.670.756(5)1.221(1)0.849(10)1.1424(5)1.232(5)1.000(2)1.0571.221(5)1.101.121.098(3)1.101.112(8)1.122(1)1.181.22(2)0.941.017(4)1.5146(3)1.131.0031.1120.9070.93(5)

10.412.0114.459.1

11.14(1)10.16(1)10.1(1)10.55(3)12.84(5)9.896.91(6)

10.412.3(1)13.5(3)13.50(15)10.51(2)11.60(2)15.56(3)9.25(3)

10.515(5)11.0111.77(1)13.17(1)10.66.97.84(5)

12.65(1)8.80(10)

11.840(5)12.77(5)10.36(2)10.9512.65(5)11.411.611.38(3)11.411.53(8)11.628(1)12.212.6(2)9.7

10.54(4)15.697(3)11.710.4011.529.409.6(5)

593573282673

1264934661754452

1021543736

12871001460809718365964

104610791077840943691510

1170489

11081128109611591057899580

1134765

10461155386

12281015967

1515752711648765700

1.142 SECTION ONE

TABLE 1.28 Ionization Energy of Molecular and Radical Species (Continued)

Ionization energy

In MJ ⋅ mol−1Species In electron voltsΔf H (ion)in kJ ⋅ mol−1

Germane (GeH4)Germanium oxide (GeO)Germanium sulflde (GeS)Germanium tetrachlorideGermanium tetrafluorideGermanium tetraiodideHafnium bromideHafnium chlorideHexaborane (B6H10)HydrazineHydrazoic acid (HN3)Hydrogen (H2)Hydrogen bromideHydrogen chlorideHydrogen fluorideHydrogen iodideHydrogen peroxideHydrogen selenideHydrogen sulfideHydroperoxy (HOO)Hydroxyl (OH)Hydroxylamine (NH2OH)Hypochlorous acid (HOC1)Hypofluorous acid (HOF)Imidogen (NH)Iodine (I2)Iodine bromideIodine chlorideIodine fluorideIodine pentafluorideLead oxide (PbO)Lead(II) chlorideLead(II) fluorideLead(II) sulfideLithium bromideLithium chlorideLithium hydrideLithium iodideLithium oxideMagnesium fluorideMagnesium oxideMercapto (SH)Mercury(II) bromideMercury(H) chlorideMercury(n) iodideMolybdenum hexafluorideMolybdenum(V) chlorideNiobium(V) chlorideNitric acid

1.0931.085(1)0.963(2)1.1270(5)1.500.9091.051.130.877.82(14)1.0344(24)1.488413(5)1.125(3)1.22991.5481(3)1.0004(1)1.0170.9535(1)1.0085(8)1.095(1)1.2540.9471.073(1)1.226(1)1.302(1)0.90694(12)0.9446(4)0.9734(10)1.0251.2488(5)0.976(10)0.961.110.8250.840.9230.740.720.8151.290.931.0011.019(3)1.0988(3)0.91748(22)1.40(1)0.841.0581.153(1)

11.3311.25(1)9.98(2)

11.68(5)15.59.42

10.911.79.08.10(15)

10.720(25)15.42589(5)11.66(3)12.74716.044(3)10.368(1)10.549.882(1)

10.453(8)11.35(1)13.0010.0011.12(1)12.71(1)13.49(1)9.3995(12)9.790(4)

10.088(10)10.6212.943(5)9.08(10)

10.011.58.5(5)8.79.577.77.58.45(20)

13.49.7

10.3710.560(3)11.380(3)9.5088(22)14.5(1)8.7

10.9711.95(1)

118510441055629307850366246965877

132814881087113712761028881983988

11061293923993

11301678969986991930408939789679954685727882633895569992

1140935952900

-159392656

1019

INORGANIC CHEMISTRY 1.143

TABLE 1.28 Ionization Energy of Molecular and Radical Species (Continued )

Ionization energy

In Mj ⋅ mol−1

(Continued)

Species In electron voltsΔf H (ion)in kJ ⋅ mol−1

Nitric oxideNitrogen (N2)Nitrogen dioxideNitrogen pentoxideNitrogen tetroxideNitrogen trichlorideNitrogen trifluorideNitrosyl bromideNitrosyl chloride (NOCÍ)Nitrosyl fluoride (NOF)Nitrous acid (HONO)Nitrous oxide (N2O)Nitryl chloride (NO2C1)Nitryl fluoride (NO2F)Osmium tetroxideOxygen (O2)Oxygen dichlorideOxygen difluoride (OF2)Oxygen fluorideOzone (O3)Pentaborane (B5H9)Perchloryl fluoride (C1O3F)Phosphine (PH3)Phosphorus (P2)Phosphorus nitridePhosphorus pentachloridePhosphorus pentafluoridePhosphorus sulfur trichloride (PSC13)Phosphorus tribromidePhosphorus trichloridePhosphorus trifluoridePhosphoryl chloride (POC13)Phosphoryl trifluoride (POF3)Potassium bromidePotassium chloridePotassium iodideRhenium(VII) oxideRubidium bromideRubidium chlorideRuthenium tetroxideSilaneSilicon oxide (SiO)Silicon tetrachlorideSilicon tetrafluorideSilver chlorideSilver fluorideSodium bromideSodium chlorideSodium iodideStibine (SbH3)

0.893900(6)1.593360.941(1)1.151.04(2)0.9765(10)1.254(2)0.981(3)1.049(1)1.219(3)1.091.24331.1421.2631.18951.1647(1)1.0561.265(1)1.2321.1990.955(4)1.2490(5)0.9522(2)1.0161.1431.031.460.9560.940.9561.1041.096(2)1.231(1)0.757(10)0.77(4)0.696(29)1.23(2)0.766(3)0.820(3)1.172(3)1.1241.1031.136(1)1.510.9731.06(3)0.802(10)0.861(6)0.737(2)0.920(3)

9.26436(6)15.58089.75(1)

11.910.8(2)10.12(10)13.00(2)10.17(3)10.87(1)12.63(3)11.312.88611.8413.0912.32012.071(1)10.9413.11(1)12.7712.439.90(4)

12.945(5)9.869(2)

10.5311.8510.715.19.919.79.91

11.4411.36(2)12.76(1)7.85(10)8.0(4)7.21(30)

12.7(2)7.94(3)8.50(3)

12.15(3)11.6511.4311.79(1)15.710.0811.0(3)8.31(10)8.92(6)7.64(2)9.54(3)

9851503974

1161105012441125106510991152977

132511551154850

1165113512901341134210281224958

11601248656

-137668798668146540-24578557570125583590988

11581002527

-10010651071660681659

1067

1.144 SECTION ONE

TABLE 1.28 Ionization Energy of Molecular and Radical Species (Continued)

Ionization energy

In Mj ⋅ mol−1Species In electron voltsΔf H (ion)in kJ ⋅ mol−1

Source: Sharon, G., et al., J. Phys. Chem. Ref. Data, 17:Suppl. No 1 (1988).

Strontium oxideSulfur (S2)Sulfur chloride pentafluorideSulfur dichlorideSulfur difluorideSulfur dioxideSulfur hexafluorideSulfur oxide (SO)Sulfur pentafluorideSulfur trioxideSulfuryl chloride (SO2C12)Sulfuryl fluoride (SO2F2)Tantalum(V) chlorideTetraborane (B4H10)Tetrafluorohydrazine (gauche)Thallium(I) bromideThallium(I) chlorideThallium(I) fluorideThionitrosyl fluoride (NSF)Thionyl chlorideThionyl fluorideThiophosphoryl trifluoride (PSF3)Thorium(IV) oxideTin(II) bromideTin(H) chlorideTin(II) fluorideTin(n) oxideTin(H) sulfideTin(IV) bromideTin(IV) chlorideTin(IV) hydrideTitanium(IV) bromideTitanium(IV) chlorideTitanium(rV) oxideíríws-DifluorodiazineTrifluorarnine oxide (NOF3)Trifluorosilane (F3SiH)TrisilaneTungsten(VI) chlorideUranium hexafluorideUranium(IV) oxideUranium(VI) oxideVanadium(IV) chlorideVanadium(V) oxychloride (VOC13)WaterXenon difluorideXenon tetrafluorideZirconium bromideZirconium chloride

0.675(14)0.9027(2)1.1921(5)0.912(3)0.9731.189(2)1.479(3)0.996(2)1.01(1)1.235(4)1.1631.1101.0691.038(4)1.152(3)0.882(2)0.936(3)1.0151.111(4)1.0581.1821.066(4)0.847(14)0.870.9651.070.926(2)0.851.021.146(5)1.0370.991.124(14)0.920(10)1.241.279(1)1.350.890.921.350(10)5.2(1)1.01(5)0.891.1201.2170(10)1.192(1)1.221(10)1.031.08

7.00(15)9.356(2)

12.335(5)9.45(3)

10.0812.32(2)15.33(3)10.32(2)10.5(1)12.80(4)12.0511.511.0810.76(4)11.94(3)9.14(2)9.70(3)

10.5211.51(4)10.9612.2511.05(4)8.70(15)9.0

10.011.19.60(2)8.8

10.611.88(5)10.7510.311.65(15)9.54(10)

12.813.26(1)14.09.29.5

14.00(10)5.4(1)

10.5(5)9.2

11.6112.612(10)12.35(1)12.65(10)10.711.2

6621031144895676892259

100197

839807679348

11051119844869835

1090844688

58342830760586944966709673

1200375363623

13151116150

1009348

-79657

214210425975

10831016388392

1.5 ELECTRONEGATIVITY

Electronegativity c is the relative attraction of an atom for the valence electrons in a covalent bond.It is proportional to the effective nuclear charge and inversely proportional to the covalent radius:

where n is the number of valence electrons, c is any formal valence charge on the atom and the signbefore it corresponds to the sign of this charge, and r is the covalent radius. Originally the elementfluorine, whose atoms have the greatest attraction for electrons, was given an arbitrary electronega-tivity of 4.0. A revision of Pauling’s values based on newer data assigns −3.90 to fluorine. Values inTable 1.29 refer to the common oxidation states of the elements.

The greater the difference is electronegativity, the greater is the ionic character of the bond. Theamount of ionic character I is given by:

I = 0.46 | cA – cB | + 0.035(cA – cB)2

The bond is fully covalent when (cA – cB) < 0.5 (and I < 6%).

χ = + ± +0 31 10 50

. ( ).

n c

r

INORGANIC CHEMISTRY 1.145

TABLE 1.29 Electronegativity Values of the Elements

H2.20

Li Be B C N O F0.98 1.57 2.04 2.55 3.04 3.44 3.90

Na Mg Al Si P S Cl0.93 1.31 1.61 1.90 2.19 2.58 3.16

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br0.82 1.00 1.36 1.54 1.63 1.66 1.55 1.83 1.88 1.91 1.90 1.65 1.81 2.01 2.18 2.55 2.96

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I0.82 0.95 1.22 1.33 1.6 2.16 2.10 2.2 2.28 2.20 1.93 1.69 1.78 1.96 2.05 2.1 2.66

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At0.79 0.89 1.10 1.3 1.5 1.7 1.9 2.2 2.2 2.2 2.4 1.9 1.8 1.8 1.9 2.0 2.2

Fr Ra Ac0.7 0.9 1.1

Ce Pr Nd Sm Gd Dy Ho Er Tm LuLanthanides 1.12 1.13 1.14 1.17 1.20 1.22 1.23 1.24 1.25 1.0

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md NoActinides 1.3 1.5 1.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

1.6 ELECTRON AFFINITY

1.146 SECTION ONE

TABLE 1.30 Electron Affinities of Elements, Molecules, and Radicals

Electron affinity of an atom (molecule or radical) is defined as the energy difference between the lowest (ground)state of the neutral and the lowest state of the corresponding negative ion in the gas phase.

A(g) + e– = A–(g)

Data are limited to those negative ions which, by virtue of their positive electron affinity, are stable. Uncertaintyin the final data figures is given in parentheses. Calculated values are enclosed in brackets.

Atom

Electron affinity,

AluminumAntimonyArsenicAstatineBariumBismuthBoronBromineCalciumCarbonCesiumChlorineChromiumCobaltCopperFluorineFranciumGalliumGermaniumGoldHafniumHydrogenHydrogen-^ deuteriumIndiumIodineIridiumIronLanthanumLeadLithiumMolybdenumNickelNiobiumOsmiumOxygenPalladiumPhosphorusPlatinumPolonium

0.441(10)1.046(5)0.81(3)

[2.8(3)][0.15]0.946(10)0.277(10)3.363590(3)0.0185(25)1.2629(3)0.471626(25)3.612690.666(12)0.662(3)1.235(5)3.401190(4)

[0.46]0.30(15)1.233(3)2.30863(3)

[-0.]0.75195(19)0.75459(7)0.3(2)3.05904(1)1.565(8)0.151(3)

[0.5(3)]0.364(8)0.6180(5)0.748(2)1.156(10)0.893(25)

[0.2(1)]1.4611103(7)0.562(5)0.7465(3)2.128(2)

[1.9(3)]

42.5(10)100.9(5)78.(3)

[270.(30)][14.]91.3(10)26.7(10)

324.5367(3)1.78(24)

121.85(3)45.5048(24)

348.57064.3(12)63.9(3)

119.2(5)328.1638(4)[44]29.(15)

119.0(3)222.748(3)[=0.]

72.552(18)72.807(7)29.(2)

295.151(1)151.0(8)14.6(3)

[48.(30)]35.1(8)59.63(5)72.2(2)

111.5(10)86.2(24)

[19.(10)]140.97523(7)

54.2(5)72.03(3)

205.3(2)[183.(30)]

in eV in kJ • mol" '

INORGANIC CHEMISTRY 1.147

TABLE 1.30 Electron Affinities of Elements, Molecules, and Radicals (Continued )

Atom

Molecule

(Continued )

Electron affinity,

Electron affinity,

PotassiumRheniumRubidiumRutheniumScandiumSeleniumSilverSodiumStrontiumSulfurTantalumTechnetiumTelluriumThalliumTinTitaniumTungstenVanadiumYttriumZirconium

0.50147(10)[0.15(15)]0.48592(2)

[1.05(15)]0.188(20)2.020670(25)1.302(7)0.547926(25)0.048(6)2.077104(1)0.322(12)[0.55(20)]1.9708(3)0.2(2)1.112(4)0.079(14)0.815(2)0.525(12)0.307(12)0.426(14)

48.384(10)[14.(14)]46.884(2)

[101.(14)]18.1(19)

194.9643(24)125.6(7)52.86666(24)4.6(6)

200.4094(1)31.1(12)[53.(19)]190.15(3)19.(19)

107.3(4)7.6(14)

78.6(2)50.7(12)29.6(12)41.1(14)

in eV in kj • mol"1

BF3BH3

1,4-BenzoquinoneBr2

CBrF3

CF3ICOSCS2C6F6 hexafluorobenzene1,2-C6H4(NO3)2 (also 1,3-)1,4-C6H4(N03)2

C6H5Br bromobenzeneC6H5C1 chlorobenzeneC6H5I iodobenzeneC6H5NO2 nitrobenzene1,4-C6H4(CN)NO2

C12CoH2

CsClCuOF2FeOI2

2.650.038(15)1.91(10)2.55(10)0.91(20)1.57(20)0.46(20)0.895(20)0.52(10)1.65(10)2.00(10)1.15(11)0.82(11)1.41(11)1.01(10)1.72(10)2.38(10)1.450(14)0.455(10)1.777(6)3.08(10)1.493(5)2.55(5)

2563.7(15)

184.(10)246.(10)

89.(19)151.(19)44.(19)86.3(19)50.(10)

159.(10)193.(10)lll.(ll)79.(11)

136.(11)97.(10)

166.(10)229.(10)139.9(13)43.9(10)

171.5(6)297.(10)144.1(5)246.(5)

in eV in kJ • mol"1

1.148 SECTION ONE

TABLE 1.30 Electron Affinities of Elements, Molecules, and Radicals (Continued )

Molecule

Radical

Electron affinity,

Electron affinity

IBrIrF6

KBrKC1KILiClLiHMoO3

NONO2

N2ONaBrNaClNalNaK02

03OsF6

PBr3

PC13

PF5

POC13

PbOPtF6

RbClRuF6

SF4

SF6

S02SeF6

SeOSeO2

TeF6

TeOUF6

V4010

WO3

2.55(10)6.5(4)0.642(10)0.582(10)0.728(10)0.593(10)0.342(12)2.9(2)0.026(5)2.273(5)0.22(10)0.788(10)0.727(10)0.865(10)0.465(30)0.451(7)2.103(3)6.0(3)1.59(15)0.82(10)0.75(15)1.41(2)0.722(6)7.0(4)0.544(10)7.5(3)1.5(2)1.05(10)1.107(8)2.9(2)1.456(20)1.823(50)3.34(17)1.695(22)5.1(2)4.2(6)3.9(2)

246.(10)627.(40)61.9(10)56.1(10)70.2(10)54.3(10)33.0(12)

280.(20)2.5(5)

219.3(5)21.(10)76.0(10)70.1(10)83.5(10)44.9(30)43.5(7)

202.9(9)579.(29)153.(14)79.(10)72.(14)

136.(2)69.7(6)675.(40)52.5(10)

724.(28)145.(19)101.(10)106.8(8)280.(19)140.5(19)175.9(48)322.(16)163.5(21)492.(19)405. (60)376.(19)

C. Radicals

AsH2

CC12

CF2

CHCHBrCHC1CHF

1.27(3)1.591(10)0.165(10)1.238(8)1.454(5)1.210(5)0.542(5)

123.(3)153.5(10)15.9(10)

119.4(8)140.3(5)117.5(5)52.3(5)

in eV in kj • mol"1

in eV in kj • mol"1

INORGANIC CHEMISTRY 1.149

TABLE 1.30 Electron Affinities of Elements, Molecules, and Radicals (Continued)

Radical

(Continued)

Electron affinity,

C. Radical

CHICHO2

CH2

CH2SCH2=SiHCH3

CH3CH2O ethoxideCH30CH3SCH3SCH2

CH3SiCH3SiH2

C2F2 difluorovinylideneC2H2 vinylideneCH2=CH vinylC2H3O acetaldehyde enolateCH3CH2SHC=C— CH2

CH3CHCNC2H5O ethoxideC2H5S ethyl sulfideC3H3 propargyl radicalCH3CH— CNC3H5 allylC3H5O acetone enolate

propionaldehyde enolateC3H5O2 methyl acetate enolateC3H7O propoxide

isopropyl oxideC3H7S propyl sulfide

isopropyl sulfideC4H5O cyclobutanone enolateC4H,O butyraldehyde enolateC4H9O fert-butoxylC4H9S butyl sulfide

iert-butyl sulfideC5H5 cyclopentadienylC5H, pentadienylC5H7O cyclopentanone enolateC5H9O 3-pentanone enolateC5HnSpentyl sulfideC6H5 phenylC6H5NH anilideC6H5O phenoxylC6H5S thiophenoxideC6H5CH2 benzylC6H5CH2O benzyl oxideC6H9O cyclohexanone enolateH2C=CH— CH=CH— CH=CH— CH2 heptatrienylCN

1.42(17)3.498(5)0.652(6)0.465(23)2.010(10)0.08(3)1.726(33)1.570(22)1.861(4)0.868(51)0.852(10)1.19(4)2.255(6)0.490(6)0.667(24)1.82476(12)1.953(6)0.893(25)1.247(12)1.726(33)1.953(6)0.893(25)1.247(12)0.362(19)1.758(19)1.621(6)1.80(6)1.789(33)1.839(29)2.00(2)2.02(2)1.801(8)1.67(5)1.912(54)2.03(2)2.07(2)1.804(7)0.91(3)1.598(7)1.69(5)2.09(2)1.096(6)1.70(3)2.253(6)

< 2.47(6)0.912(6)2.14(2)1.526(10)1.27(3)3.862(4)

137.(17)337.5(5)62.9(6)44.9(22)

193.9(10)7.7(3)

166.5(32)151.5(21)179.6(4)83.7(49)82.2(10)

115.(4)217.6(6)47.3(6)64.3(23)

176.062(12)188.4(6)86.2(24)

120.3(12)166.5(31)188.4(6)86.2(24)

120.3(12)34.9(18)

169.2(18)156.4(6)174.(6)172.6(31)177.4(28)193.(2)195.(2)173.8(8)161.(5)184.5(52)196.(2)200.(2)174.1(7)88.(3)

154.2(7)163.(5)202.(2)105.7(6)164.(3)217.4(6)

<238.(6)88.0(6)

206.(2)147.2(10)122.(3)372.6(4)

CHICHO2

CH2

CH2SCH2=SiHCH3

CH3CH2O ethoxideCH30CH3SCH3SCH2

CH3SiCH3SiH2

C2F2 difluorovinylideneC2H2 vinylideneCH2=CH vinylC2H3O acetaldehyde enolateCH3CH2SHC=C— CH2

CH3CHCNC2H5O ethoxideC2H5S ethyl sulfideC3H3 propargyl radicalCH3CH— CNC3H5 allylC3H5O acetone enolate

propionaldehyde enolateC3H5O2 methyl acetate enolateC3H7O propoxide

isopropyl oxideC3H7S propyl sulfide

isopropyl sulfideC4H5O cyclobutanone enolateC4H,O butyraldehyde enolateC4H9O fert-butoxylC4H9S butyl sulfide

iert-butyl sulfideC5H5 cyclopentadienylC5H, pentadienylC5H7O cyclopentanone enolateC5H9O 3-pentanone enolateC5HnSpentyl sulfideC6H5 phenylC6H5NH anilideC6H5O phenoxylC6H5S thiophenoxideC6H5CH2 benzylC6H5CH2O benzyl oxideC6H9O cyclohexanone enolateH2C=CH— CH=CH— CH=CH— CH2 heptatrienylCN

1.42(17)3.498(5)0.652(6)0.465(23)2.010(10)0.08(3)1.726(33)1.570(22)1.861(4)0.868(51)0.852(10)1.19(4)2.255(6)0.490(6)0.667(24)1.82476(12)1.953(6)0.893(25)1.247(12)1.726(33)1.953(6)0.893(25)1.247(12)0.362(19)1.758(19)1.621(6)1.80(6)1.789(33)1.839(29)2.00(2)2.02(2)1.801(8)1.67(5)1.912(54)2.03(2)2.07(2)1.804(7)0.91(3)1.598(7)1.69(5)2.09(2)1.096(6)1.70(3)2.253(6)

< 2.47(6)0.912(6)2.14(2)1.526(10)1.27(3)3.862(4)

137.(17)337.5(5)62.9(6)44.9(22)

193.9(10)7.7(3)

166.5(32)151.5(21)179.6(4)83.7(49)82.2(10)

115.(4)217.6(6)47.3(6)64.3(23)

176.062(12)188.4(6)86.2(24)

120.3(12)166.5(31)188.4(6)86.2(24)

120.3(12)34.9(18)

169.2(18)156.4(6)174.(6)172.6(31)177.4(28)193.(2)195.(2)173.8(8)161.(5)184.5(52)196.(2)200.(2)174.1(7)88.(3)

154.2(7)163.(5)202.(2)105.7(6)164.(3)217.4(6)

<238.(6)88.0(6)

206.(2)147.2(10)122.(3)372.6(4)

in eV in kj • mol"1

1.7 BOND LENGTHS AND STRENGTHS

Distances between centers of bonded atoms are called bond lengths, or bond distances. Bond lengthsvary depending on many factors, but in general, they are very consistent. Of course the bond ordersaffect bond length, but bond lengths of the same order for the same pair of atoms in various mole-cules are very consistent.

The bond order is the number of electron pairs shared between two atoms in the formation of thebond. Bond order for C=C and O=O is 2. The amount of energy required to break a bond is calledbond dissociation energy or simply bond energy. Since bond lengths are consistent, bond energies ofsimilar bonds are also consistent.

Bonds between the same type of atom are covalent bonds, and bonds between atoms when theirelectronegativity differs slightly are also predominant covalent in character. Theoretically, even ionicbonds have some covalent character. Thus, the boundary between ionic and covalent bonds is not aclear line of demarcation.

1.150 SECTION ONE

TABLE 1.30 Electron Affinities of Elements, Molecules, and Radicals (Continued)

Radical

C. Radical

Source: H. Hotop and W. C. Lineberger, J. Phys. Chem. Reference Data 14:731 (1985).

Electron affinity,

CNCH2 cyanomethylC03

CSCIOHCOHNOHO2

FON3

NCONCSNHNO3

NSO2ArylOCIOOHOIOPHPH2

POP02

SFSHSOSeHSiF3

SiHSiH2

SiH3

1.543(14)2.69(14)0.205(21)2.275(6)0.313(5)0.338(15)1.078(17)2.272(6)2.70(12)3.609(5)3.537(5)0.370(4)3.937(14)1.194(11)0.52(2)2.140(8)1.82767(2)2.577(8)1.028(10)1.27(1)1.092(10)3.42(1)2.285(6)2.314344(4)1.125(5)2.21252(3)

< 2.95(10)1.277(9)1.124(20)1.406(14)

148.9(14)259.(14)

19.8(20)219.5(6)

30.2(5)32.6(14)

104.0(6)219.2(6)260.(12)348.2(5)341.3(5)

35.7(4)379.9(14)115.2(11)50.(2)

206.5(8)176.343(2)248.6(8)

99.2(10)123.(1)105.4(10)330.(1)220.5(6)223.300(4)108.5(5)213.475(3)285.(10)123.2(9)108.4(19)106.7(14)

in eV in kj • mol"1

For covalent bonds, bond energies and bond lengths depend on many factors: electron affinities,sizes of atoms involved in the bond, differences in their electronegativity, and the overall structure ofthe molecule. There is a general trend in that the shorter the bond length, the higher the bond energy butthere is no formula to show this relationship, because of the widespread variation in bond character.

1.7.1 Atom Radius

The atom radius of an element is the shortest distance between like atoms. It is the distance of thecenters of the atoms from one another in metallic crystals and for these materials the atom radius isoften called the metal radius. Except for the lanthanides (CN = 6), CN = 12 for the elements.

1.7.2 Ionic Radii

One of the major factors in determining the structures of the substances that can be thought of asmade up of cations and anions packed together is ionic size. It is obvious from the nature of wavefunctions that no ion has a precisely defined radius. However, with the insight afforded by electrondensity maps and with a large base of data, new efforts to establish tables of ionic radii have beenmade.

Effective ionic radii are based on the assumption that the ionic radius of O2– (CN 6) is 140 pm andthat of F– (CN 6) is 133 pm. Also taken into consideration is the coordination number (CN) and elec-tronic spin state (HS and LS, high spin and low spin) of first-row transition metal ions. These radiiare empirical and include effects of covalence in specific metal-oxygen or metal-fluorine bonds.Older “crystal ionic radii” were based on the radius of F– (CN 6) equal to 119 pm; these radii are14–18 percent larger than the effective ionic radii.

1.7.3 Covalent Radii

Covalent radii are the distance between two kinds of atoms connected by a covalent bond of a giventype (single, double, etc.).

INORGANIC CHEMISTRY 1.151

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements

Coordinator number

(Continued)

Effective ionic radii, pm

Element

ActiniumAluminumAmericium

Antimony

Atomradius,

pm

187.8143.1173

145

Effective ionic radii, pm

Ioncharge

3+3+2+3 +4+5 +6+3-1 +3 +5 +

Coordinator number

4

39

76

6

11153.5

97.5898680

245897660

8

12610995

12

1.152 SECTION ONE

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements (Continued)

Effective ionic radii, pm

Coordinator number

*CN = 3

Arsenic

Astatine

BariumBerkelium

Beryllium

Bismuth

Boron

Bromine

CadmiumCalciumCalifornium

Carbon

Cerium

CesiumChlorine

Chromium

Cobalt

Copper

124.8

217.3

111.3

154.7

86

148.9197186(2)

181.8

265

128

125

128

3-3 +5 +1-5 +7 +2+2+3 +4+1-2+3-3 +5+1 +3 +1-3 +5 +7 +2+2+2+3 +4+4-4+3 +4+1 +1-5+7+1 +2+

3 +4+5 +6+2+

3 +

4+1 +2+3 +

33.5

19527

3511

5931*

78

26015

348

81

4134.52638

406057

2225846

2275762

1361189887

4521310376

27196

472595

1001179582.1

1610287

167181

27

73 LS80 HS61.555494465 LS74.5 HS54.5 LS61 HS53 HS777354 LS

142

93

111

110112

114.397

174

57

90

160

131135

134114188

Atomradius, Ion

Element pm charge 4 6 8 12

INORGANIC CHEMISTRY 1.153

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements (Continued)

Effective ionic radii, pm

Coordinator number

*CN = 10 (Continued)

Curium

Dysprosium

EinsteiniumErbiumEuropium

Fluorine

FranciumGadoliniumGallium

Germanium

Gold

HafniumHolmiumHydrogenIndium

Iodine

Iridium

Iron

Lanthanum

Lead

LithiumLutetiumMagnesiumManganese

174

178.1

186(2)176.1208.4

71.7

270180.4135

128

144

159176.2

167

135.5

126

183

175

152173.8160127

3 +4+2+3 +3+3 +2+3 +1-7 +1 +3 +2+3 +2+4+1 +3 +4+3 +1-1 +3 +1

5 +7+3 +4+5 +2+

3 +

4+6+3 +

2+4+1 +3 +2+2+

3 +

4+5 +6+7+

131

47

39.0

6858

62

42

63 HS

49 HS

25

98

59

5766 HS

393325.525

9785

10791.29889.0

11794.7

1338

18093.8

12062.07353.0

137857190.1

15414080.0

22095536862.55761 LS78 HS55 LS64.5 HS58.5

103.2

119787686.172.067 LS83 HS58 LS64.5 HS53

46

95119102.7

100.4125106.6

105.3

83101.5*

92

92 HS

78 HS

116.0

12994

97.78996

135

112

136

149

Atomradius, Ion

Element pm charge 4 6 8 12

1.154 SECTION ONE

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements (Continued)

Effective ionic radii, pm

Coordinator number

*CN = 3†CN = 7

Mercury

Molybdenum

Neodymium

Neptunium

Nickel

Niobium

Nitrogen

NobeliumOsmium

OxygenPalladium

Phosphorus

Platinum

Plutonium

151

139

181.4

155

124

146

135

137

108

138.5

159

1 +2+3 +4+5 +6+2+3 +2+3 +4+5 +6+7+2+3+

4+3 +4+5 +3-1 +3 +5 +2+4+5 +6+7+8+2-2+3 +4+a

3 +5 +2+4+5 +3 +4+5 +6+

111*96

4641

55

4814625

3913864

17

1191026965.06159

98.31101018775727169.056 LS60 HS48 LS726864

1613

11063.057.554.552.5

140867661.5

21244388062.557

100867471

114

73t129110.9

98

7974

142

96

127

Atomradius, Ion

Element pm charge 4 6 8 12

INORGANIC CHEMISTRY 1.155

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements (Continued )

Coordinator number

(Continued)

Effective ionic radii, pm

Polonium

PotassiumPraseodymium

PromethiumProtoactinium

RadiumRhenium

Rhodium

RubidiumRuthenium

Samarium

ScandiumSelenium

SiliconSilver

SodiumStrontiumSulfur

Tantalum

Technetium

Tellurium

164

232182.4

183.4163

(220)137

134

248134

180.4

162116

118144

186215106

146

136

142

2-4+6+1 +3+4+3 +3+4+5 +2+4+5 +6+7+3 +4+5 +1 +3 +4+5 +7+8+2+3+3+2-4+6+4+1 +2+3 +1 +2+2-4+6+3 +4+5 +4+5 +7+2-4+6+

137

38

3836

26100796799

12

37

6643

(230)9467

138998597

1049078

6358555366.56055

1526862.056.5

95.874.5

198504240.0

1159475

102118184372972686464.56056

2219756

108

151112.696109.3

10191

148

161

127107.987.0

130

118126

74

164

170

172

124

139144

Atomradius, Ion

Element pm charge 4 6 8 12

1.156 SECTION ONE

TABLE 1.31 Atom Radii and Effective Ionic Radii of Elements (Continued)

Coordinator number

Element 4Ion

Charge

Atomradius,

pm 6 8 12

*CN = 11

Effective ionic radii, pm

Terbium

Thallium

ThoriumThullium

Tin

Titanium

Tungsten

Uranium

Vanadium

XenonYtterbium

YttriumZincZirconium

177.3

170

179175.9

151

147

139

156

134

193.3

180134160

3 +4+1 +3 +4+2+3 +2+4+2+3 +4+4+5+6+3 +4+5 +6+2+3 +4+5 +8 +2+3 +3 +2+4+

75

55

42

42

52

35.540

6059

92.376

15088.594

10388.0

11869.08667.060.5666260

102.58976737964.0585448

10286.890.074.072

104.088

15998

105

99.4

81

74

100

86

72

11498.5

101.99084

170

121

105*

117

104*108*

89*

Atomradius, Ion

Element pm Charge 4 6 8 12

TABLE 1.32 Approximate Effective Ionic Radii in Aqueous Solutions at 25°C

1.1

57

å (in Å) Inorganic ions å (in Å) Organic ions

2.5 RtT, Cs+, NHJ,T1+, Ag+ 3.5 HCOQ-, H2Cir, CH.NHf, (CH3)2NHJ3 K+, Cl-, Br-, I", CN-, NOj, NOj 4 H3N

+CH2COOH, (CH3)3NH+, C2H5NH3+

3.5 OH-, F-, SCN-, OCN-, HS-, ClO3-,ClO4-,BrO3-,IO4,MnO4 4.5 CH3COO-, C1CH2COO-, (CH3)4N+, (C2H5)2NHJ,

4 Na-, CdCr, Hgi+ , ClO^ , lOj , HCOj , H2POi , HSO3- , H2NCH2COO", oxalate2-, HCit2-H2AsU4 , SO4-, S2Oi-, S2Oi-, SeO^-, CrO|-, HPC^-, S^-, 5 C12CHCOO-, C13COO-, (C2H5)3NH+, C3H7NH3

+, Cit3-, succi-PC^-, Fe(CN)¿-, Cr(NH3)|

+, Co(NH3)i+, Co(NH3)5H2O

3+ nate2", malonate2-, tartrate2-4.5 Pb2-, CO¡-, SO?-, MoOJ-, Co(NH3)5Cl2+, Fe(CN)5NO2- 6 benzoate-, hydroxybenzoate", chlorobenzoate-, phenylace-5 Sr2-, Ba2+, Ra2+, Cd2+, Hg2+ , S2^, S2OJ-, WO2-, Fe(CN)J- täte-, vinylacetate-, (CH3)2C=CHCOQ-, (C2H5)4N

+,6 Li+, Ca2+, Cu2+, Zn2+, Sn2+, Mn2+, Fe2+, Ni2+, Co2+, Co(en)i+, (C3H7)2NHJ, phthalate2", glutarate2-, adipate2-

Co(S2O3)(CN)^" 7 trinitrophenolate", (C3H7)3NH+, methoxybenzoate", pime-8 Mg2+, Be2+ late2", suberate2", Congo red anión2"9 H+, A13+, Fe3+, Cr3+, Sc3+, Y3+, La3+, In3+, Ce3+, Pr3+, Nd3+, 8 (C6H5)2CHCOO-, (C3H7)4N+

Sm3+, Co(SO3)2(CN)|-11 Th4+, Zr4+, Ce4+, Sn4+

1.158 SECTION ONE

TABLE 1.33 Covalent Radii for Atoms

Single-bond Double-bond Triple-bondElement radius, pm* radius, pm radius, pm

Aluminum 126Antimony 141 131Arsenic 121 111Beryllium 106Boron 88Bromine 114 104Cadmium 148Carbon 77.2 66.7 60.3Chlorine 99 89Copper 135Fluorine 64 54Gallium 126Germanium 122 112Hydrogen 30Indium 144Iodine 133 123Magnesium 140Mercury 148Nitrogen 70 60 55Oxygen 66 55Phosphorus 110 100 93Silicon 117 107 100Selenium 117 107Silver 152Sulfur 104 94 87Tellurium 137 127Tin 140 130Zinc 131

* Single-bond radii are for a tetrahedral (CN = 4) structure.

TABLE 1.34 Octahedral Covalent Radii for CN = 6

Atom

Cobalt(H)Cobalt(ni)Gold(IV)Iridium(III)Iron(II)Iron(IV)Nickel(II)

Octahedralcovalent

radius, pm

132122140132123120139

Atom

Nickel(III)Nickel(IV)Osmium(II)Palladium(IV)Platínum(IV)Rhodium(m)Ruthenium(n)

Octahedralcovalent

radius, pm

130121133131131132133

Elements Bond type Bond Length, pm

Boron

B-B B2H6 177(1)B-Br BBr3 187(2)B-Cl BCl3 172(1)B-F BF3, R2BF 129(1)B-H Boranes 121(2)

Bridge 139(2)B-N Borazoles 142(1)B-O B(OH)3, (RO)3B 136(5)

Hydrogen

H-Al AlH 164.6H-As AsH3 151.9H-Be BeH 134.3H-Br HBr 140.8H-Ca CaH 200.2H-Cl HCl 127.4H-F HF 91.7H-Ge GeH4 153H-I HI 160.9H-K KH 224.4H-Li LiH 159.5H-Mg MgH 173.1H-Na NaH 188.7H-Sb H3Sb 170.7H-Se H2Se 146.0H-Sn SnH4 170.1D-Br DBr (2HBr) 141.44D-C1 DCl 127.46D-I DI 161.65T-Br TBr (3HBr) 141.44T-Cl TCl 127.40

Nitrogen

N-Cl NO2Cl 179(2)N-F NF3 136(2)N-H NH+

4 103.4(3)NH3, RNH2 101.2H2NNH2 103.8R[CO[NH2 99(3)HN˙C˙S 101.3(3)

N-D ND (N2H) 104.1N-N HN3 102(1)

R2NNH2 145.1(5)N2O 112.6(2)N+

2 111.6N-O NO2Cl 124(1)

RO[NO2 136(2)NO2 118.8(5)

N˙O N2O 118.6(2)RNO2 122(I)NO+ 106.19

N-Si SiN 157.2

Elements Bond type Bond Length, pm

Oxygen

O-H H2O 95.8ROH 97(1)OH+ 102.89HOOH 96.0(5)D2O (2H2O) 95.75OD 96.99

O-O HO[OH 148(1)O+

2 122.7O−

2 126(2)O2−

3 149(2)O3 127.8(5)

O-Al AlO 161.8O-As As2O6 bridges 179O-Ba BaO 190.0O-Cl ClO2 148.4

OCl2 168O-Mg MgO 174.9O-Os OsO4 166O-Pb PbO 193.4

Phosphorus

P-Br PBr3 223(1)P-Cl PCl3 200(2)P-F PFCl2 155(3)P-H PH3, PH+

4 142.4(5)P-I PI3 252(1)P-N Single bond 149.1P-O Single bond 144.7

p3 bonding 167sp3 bonding 154(4)

P-S p3 bonding 212(5)sp3 bonding 208(2)In rings 220(3)

P-C Single bond 156.2p3 bonding 187(2)

Silicon

Si-Br SiBr4, R3SiBr 216(1)Si-Cl SiCl4, R3SiCl 201.9(5)Si-F SiF4, R3SiF 156.1(3)

SiF6 158Si-H SiH4 148.0(5)

R3SiH 147.6(5)Si-I Sil4 234

R3Sil 246(2)Si-O R3SiOR 153.3(5)Si-Si H3SiSiH3 230(2)

Sulfur

S-Br SOBr2 227(2)S-Cl S2Cl2 158.5(5)S-F SOF2 158.5(5)S-H H2S 133.3

RSH 132.9(5)D2S 134.5

S-O SO2 143.21SOCl2 145(2)

S-S RSSR 205(1)

TABLE 1.35 Bond Lengths between Elements

1.159

1.160 SECTION ONE

TABLE 1.36 Bond Dissociation Energies

The bond dissociation energy (enthalpy change) for a bond A—B which is broken through the reaction

AB → A + B

is defined as the standard-state enthalpy change for the reaction at a specified temperature, here at 298 K. That is,

ΔHf298 = ΔHf298(A) + ΔHf298(B) – ΔHf298(AB)All values refer to the gaseous state and are given at 298 K. Values of 0 K are obtained by subtracting $RT fromthe value at 298 K.

To convert the tabulated values to kcal/mol, divide by 4.184.

BondΔHf298,kJ/mol Bond

ΔHf298,kJ/mol

Aluminum

Al— AlAl— AsAl— AuAl— BrAl — CAl— ClA1C1 — ClA1C12— ClA1O— ClAl— CuAl— DAl— FA1F— FA1F2— FA1O— FAl— HAl— IAl— LiAl— NAl— OA1C1— OA1F— OAl— PAl— PdAl— SAl— SeAl— SiAl— TeAl— U

186(9)180326(6)439(8)255494(13)402(8)372(8)515(84)216(10)291664(6)546(42)544(46)761(42)285(6)368(4)176(15)297(96)512(4)540(41)582213(13)259(12)374(8)334(10)251(3)268(10)326(29)

Antimony

Sb— SbSb— BrSb— ClSb— FSb— N

299(6)314(59)360(50)439(96)301(50)

Antimony (continued)

Sb— OSb— PSb— SSb— Te

372(84)357379277.4(38)

Arsenic

As — AsAs— ClAs — GaAs— HAs— NAs— OAs— PAs— SAs — SeAs— TI

382(11)448209.6(12)272(12)582(126)481(8)534(13)

(478)96

198(15)

Astatine

At— At (115.9)

Barium

Ba — BrBa— ClBa— FBa— IBa— OBa— OHBa— S

370(8)444(13)487(7)

>431(4)563(42)477(42)400(19)

Beryllium

Be— BeBe— BrBe— Cl

59381(84)388(9)

INORGANIC CHEMISTRY 1.161

TABLE 1.36 Bond Dissociation Energies (Continued )

(Continued )

BondΔHf298,kJ/mol Bond

ΔHf298,kJ/mol

Beryllium (continued)

Bed— ClBe— FBe— HBe— OBe— S

540(63)577(42)226(21)448(21)372(59)

Bismuth

Bi— BiBi— BrBi— ClBi— DBi— FBi — GaBi— HBi— OBi— PBi— PbBi— S

Bi— SeBi TeBi— TI

197(4)267(4)305(8)284259(29)159(17)279343(6)280(13)142(15)316(5)251(4)280(6)232(11)121(13)

Boron

B— BHgB BHßOB— BOB— BrB— CB— ClBO— ClB— DB— FBF— FBF2— FB— HB— IB— NB— OBC1— OB— PB— SB— SeB— SiB— Te

297(21)146506(84)435(21)448(29)536(29)460(42)341(6)766(13)523(63)557(84)330(4)384(21)389(21)806(5)715(41)347(17)581(9)462(15)289(29)354(20)

Bromine

Br— BrBr— CBr— CH3

Br— CH2BrBr— CHBr2

Br— CBr3

Br— CC13

Br— CF3

Br— CF2CF3

Br— CF2CF2CF3

Br— CHF2

Br— ClBr— CNBr— CO— C6H5

Br— FBr— NBr— NF2

Br— NOBr— O

193.870(4)280(21)284(8)255(13)259(17)209(13)218(13)285(13)287.4(63)278.2(63)289218.84(4)381268233.8(2)276(21)222120.1(63)235.1(4)

Cadmium

Cd— CdCd— BrCd— ClCd— FCd— HCd— ICd— InCd— OCd— SCd— Se

11.3(8)159(96)206.7(34)305(21)

69.0(4)138(21)138142(42)196310

Calcium

Ça— ÇaÇa— BrÇa— ClÇa— FÇa— HÇa— IÇa— OÇa— S

14.98(46)321(23)398(13)527(21)167.8285(63)464(84)314(19)

Cerium

Ce— CeCe— FCe— NCe— OCe— SCe— SeCe— Te

243(21)582(42)519(21)795(13)573(13)495(15)389(42)

1.162 SECTION ONE

TABLE 1.36 Bond Dissociation Energies (Continued )

BondΔHf298,kJ/mol Bond

ΔHf298,kJ/mol

Cesium Chromium (continued)

Cs— Cs 41.75(93) Cr— Cu 155(21)Cs— Br 397.5(42) Cr— F 437(20)Cs— Cl 439(21) Cr— Ge 170(29)Cs— F 514(8) Cr— H 280(50)Cs— H 178.1(38) Cr— I 287(24)Cs— I 339(4) Cr— N 378(19)Cs— O 297(25) Cr— O 427(29)Cs— OH 385(13) OCr— 0 531(63)

O2Cr— O 477(84)Chlorine Cr— S 339(21)

Cl— Cl 242.580(16) CobaltCl— C 338(42)Cl— CH3 339(21) Co— Co 167(25)Cl— CH3

+ 213 Co— Br 331(42)Cl— C(CH3)3 328.4 Co— Cl 398(8)Cl— CH2C1 310(13) Co— Cu 162(17)Cl— CC13 293(21) Co— F 435(63)Cl— CF3 360(33) Co— Ge 239(25)Cl— CC12F 305(8) Co— I 235(81)Cl— CC1F2 318(8) Co— O 368(21)Cl— CF2CF2 346.0(71) Co— S 343(21)Cl— CH=CH2 351Cl— CN 439 CopperCl— COC1 328Cl— COCH3 349.4 Cu— Cu 202(4)Cl— COC6H5 310(13) Cu— Br 331(25)Cl— Cl+ 393 Cu— Cl 383(21)Cl— CIO 143.3(42) Cu— F 431(13)03C1— C104 243 Cu— Ga 216(15)Cl— F 250.54(8) Cu— Ge 209(21)03C1— F 255 Cu— H 280(8)Cl— N 389(50) Cu— I 197(21)Cl— NCI 280 Cu— Ni 206(17)Cl— NC12 381 Cu— O 343(63)Cl— NF2 ca. 134 Cu— S 285(17)Cl— NH2 251(25) Cu— Se 293(38)Cl— NO 159(6) Cu— Sn 177(17)Cl— N02 142(4) Cu— Te 176(38)Cl— O 272(4)OC1— O 243(13) CuriumO2C1— O 201(4)Cl— P 289(42) Cm— O 736Cl— SiCl3 464

DysprosiumChromium

Dy— F 527(21)Cr-Cr 155(21) Dy-C- 611(42)Cr-Br 328(24) Dy-Se 322(42)Cr-Cl 366(24) Dy~Te 234(42)

INORGANIC CHEMISTRY 1.163

TABLE 1.36 Bond Dissociation Energies (Continued )

Bond Bond

(Continued)

ΔHf298,kJ/mol

ΔHf298,kJ/mol

Erbium Gallium (continued)

Er— F 565(17) Ga— O 285(63)Er— O 611(13) Ga— P 230(13)Er— S 418(42) Ga— Sb 209(13)Er— Se 326(42) Ga— Te 251(25)Er— Te 239(42)

GermaniumEuropium

Ge— Ge 274(21)Eu— Eu 33.5(165) Ge— Br 255(29)Eu— Cl ca. 326 Ge— Cl 431.8(4)Eu— F 528(18) Ge— F 485(21)Eu— 0 557(13) Ge— H 321.3(8)Eu— S 364(15) Ge— 0 662(13)Eu— Se 301(15) Ge— S 551.0(25)Eu— Te 243(15) Ge— Se 490(21)

Ge— Si 301(21)Fluonne Ge— Te 402(8)

F-F 156.9(96)F— F+ >9<M

F-CH3 452(21) Au-Au 221.3(21)F-C(CH3)3 439 AU_B 368(11)

F— ÇA 485 Au— Be 285(8)F-CC13 444(21) Au_Bi 293(84)F-CC12F 460(25) Au_cl 343(10)

F-CC1F2 490(25) Au_Co 215(13)

F-CF3 523(17) Au_Cr 215(6)

F— COCH3 498 Au— Cu 232(9)F— FO 272(13) Au_Fe 187(17)

F— F02 81.0 Au— Ga 294(15)F-N 301(42) Au_Ge 277(15)F-NF 318(25) Au_H 314(10)

F— NF2 243(8) Au-La 80(5)F-NO 235.6(42) Au_Li 68.0(16)

F-N02 197(25) Au-Mg 243(42)„ , ,. . Au— Mn 185(13)Gadolinium Au_M 2W2n

Gd— F 590(27) Au— Pb 130(42)Gd-0 716(17) Au-pd 143<21)Gd-S 525(15) ^-^ 231(29)Gd-Se 431(15) A«-S 418<25)

Au— Si 312(12)Gallium Au— Sn 244(17)

Au— Te 247(67)Ga— Ga 138(21) Au— U 318(29)Ga— Br 444(17)(CH3)3Ga— CH3 253 HafniumGa— Cl 481(13)Ga-F 577(15) Hf-C 548(63)Ga— H <274 Hf— N 534(29)Ga— I 339(10) Hf— O 791(8)

(Continued)

1.164 SECTION ONE

TABLE 1.36 Bond Dissociation Energies (Continued )

BondΔHf298,kJ/mol Bond

ΔHf298,kJ/mol

Hydrogen Hydrogen (continued)

H— H 436.002(4) H— CHC12 414.2H— 2 HorH— D 439.446(4) H— CC13 377(8)2H— 2 HorD— D 443.546(4) H— CBr3 377(8)H— Br 365.7(21) H— CC12CHC12 393(8)H— C 337.2(8) H— CH2F 423(8)H— CH 452(33) H— CHF2 423(8)H— CH2 473(4) H— CF3 444(13)H— CH3 431(8) H— CF2C1 435(4)2H— C2H3 or D— CD3 442.75(25) H— CH2CF3 446(45)H— C^CH 523(4) H— CF2CH3 416(4)H— CH=CH2 427 H— CF2CF3 431(63)H— CH2CH3 410(4) H— CH2I 431(8)H— CH2C=CH 392.9(50) H— CHI2 431(8)H— CH2CH=CH2 356 H— CN 540(25)H— cyclopropyl 423(13) H— CH2CN ca. 389H— CH2CH2CH3 410(8) H— CH(CH3)CN 377(8)H— CH(CH3)2 395.4 H— C(CH3)2CN 364(8)H— cyclobutyl 397(13) H— CH2NH2 397(8)H— CH2CH(CH3)2 360 H— CH2Si(CH3)3 414(4)H— CH(CH3)CH2CH3 397(4) H— CH2COCH3 393(75)H— C(CH3)3 381 H— Cl 431.8(4)

/^ H— CO 126(8)H— ( 339(4) H— CHO 364(4)

\f^ H— COOH 377CH=CH2 H-COCH3 364(4)

H_CH/ 335(4) H-COCH2CH3 364(4)

\H=CH2 H_T^ 3g5

/***] °H— \ I 343(4) H— COC6H5 364(4)X^ H— COCF3 381(8)

H— CH2 CH3 H— F 568.6(13)C 414(4) H— I 298.7(8)

/ \ H— N 314(17)C"3 LH3 H-NH 377(8)

H— C(CH3)2CH=CH2 331 H— NH2 435(8)H— cyclopentyl 395(42) H— NHCH3 431(8)H— CH2C(CH3)3 418(4) H— N(CH3)2 397(8)H— C6H5 431 H— NHC6H5 335(13)H— CH2C6H5 356(4) H— N(CH3)C6H5 310(13)H— C(C6H5)3 314 HNF2 318(13)

/=x H— N3 356•R—/ \ 310 H— NO <205

\ / H— O 428.0(21)H— cyclohexyl 399.6(42) H— OH 498.7(8)H-cycloheptyl 387.0(42) H— OCH3 436.8(42)H-norbornyl 406(13) H-OCH2CH3 436.0H-CH2Br 410(25) H-OC(CH3)3 439(4)H-CHBr2 435 H-OC6H5 368(25)H-CH2C1 423 H-ONO 327.6(25)

INORGANIC CHEMISTRY 1.165

TABLE 1.36 Bond Dissociation Energies (Continued)

BondΔHf298,kJ/mol Bond

ΔHf298,kJ/mol

(Continued)

Hydrogen (continued) Indium

H— ON02 423.4(25) Ir— O 352(21)H— OOH 374(8) Ir— Si 463(21)H— OOCCH3 469(17)H— OOCCH2CH3 460(17) IronH— OOCC3H, 431(17)H— P 343(29) Fe— Fe 100(21)H— S 344(12) Fe— Br 247(96)H— SH 381(4) Fe— Cl ca. 352H— SCH3 ca. 368 Fe— O 409(13)H— Se 305(2) Fe— S 339(21)H— Si 298.49(46) Fe— Si 297(25)H— SiH3 393(13)H— Si(CH3)3 377(13) KryptonH— Te 268(2)

Kr— Kr 5.4(8)Indium Kr— F 54

In— In 100(8) LanthanumIn— Br 418(21)In— Cl 439(8) La— La 247(21)In— F 506(15) La— C 506(63)In-0 360(21) La-F 598(42)In— P 197.9(85) La— N 519(42)In— S 289(17) La-O 799(13)In-Sb 152(11) La-S 577(25)In— Se 247(17)In— Te 218(17) Lead

Iodine Pb-Pb 339(25)Pb— Br 247(38)

—I 152.549(8) Pb(CH3)3— CH3 207(42)— Br 179.1(4) Pb— Cl 301(29)-CH3 232(13) Pb-F 356(8)_CH5 223.8 Pb-H 176(21)-CH(CH3)2 222 Pb-I 197(38)-C(CH3)3 207.1 Pb-0 378(4)— CH2CF3 234(4) Pb~S 346.0(17)-CF2CH3 216(4) Pb-Se 303(4)-C3F7 209(4) Pb-Te 251(13)— CH==CHCH3 172— C6H5 268(4) Lithium— C6F5 276

Q 213 3(4) Li — Li 106(4)I-COCH3 219.7 Li~Br 423<21>I-CN 305(4) Li-Cl 469d3)I— F 280(4) Li— F 57?(21>I— N 159(17) Li— H 247

I-NO 71(4) L'"1 352<13)I— N02 75(4) Li— Na 881-0 184(21) Li-0 341(6)

Li— OH 427(21)

1.166 SECTION ONE

TABLE 1.36 Bond Dissociation Energies (Continued)

BondΔHf298,kJ/mol Bond

ΔHf298,kJ/mol

Lutetium Molybdenum

Lu— Lu 142(34) Mo— I 372Lu— F 569(42) Mo— O 607(34)Lu— O 695(13) MoO— O 678(84)Lu— S 507(15) Mo02— 0 565(84)Lu— Te 326(17)

NeodymiumMagnésium

Nd— F 545(13)Mg— Mg 8.522(4) Nd— O 703(34)Mg— Br 297(63) Nd— S 474(15)Mg— Cl 318(13) Nd— Se 385(17)Mg— F 462(21) Nd— Te 305(17)MgF— F 569(42)Mg— H 197(50) NéonMg— I ça. 285Mg— O 394(35) Ne— Ne 3.93Mg— OH 238(21)Mg— S 310(75) Neptunium

Manganese Np— O 720(29)

Mn— Mn 42(29) NickelMn— Br 314(10)Mn-Cl 361(10) Ni— Ni 261.9(25)Mn-F 423(15) Ni-Br 360(13)Mn-I 283(10) Ni— Cl 372(21)Mn— Cu 159(17) Ni~ F 435

Mn-0 402(34) Ni— H 289(13)Mn-S 301(17) Ni-I 293(21)Mn-Se 201(13) Ni— O 391.6(38)

Ni— S 360(21)Mercury Ni— Si 318(17)

Hg— Hg 17.2(21) NiobiumHg— Br 72.8(42)CH3-HgCH3 240.6 Nb— O 753(13)C2H5— HgC2H5 182.8(42)C3H7— HgC3H7 197.1 NitrogenIsopropyl — Hgisopropyl 170.3C6H5-HgC6H5 285 N~N 945.33(59)Hg-Cl 100(8) N-Br 276(21)H F 130(38) ON-Br 28.7(15)

Hg-H 39.8 N~C1 389(5°)H»— I 38 ON— Cl 159(6)Hg-K 8.24(21) O'N-Cl 142(4)Hg-Na >6.7 N-F 301(42)Hg-S 213 FN-F 318<21)Hg-Se (167) F2F-N 243(8)Hg-Te (142) ON-F 236(4)

O2N— F 188(21)

INORGANIC CHEMISTRY 1.167

TABLE 1.36 Bond Dissociation Energies (Continued )

ΔHf298,kJ/mol Bond

(Continued)

BondΔHf298,kJ/mol

N— I 159(17) C2H5O— OC2H5 159F2N— NF2 88(4) C3H7O— OC3H7 155H2N— NH2 297(8)H2N— NHCH3 271 PalladiumH2N— N(CH3)2 264H2N— NHC6H5 213 Pd— O 234(29)HN— N2 38ON— N 480.7(42) PhosphorusON— NO2 39.8(8)02N-N02 57.3(21) P-P 490(11)HN=NH 456(42) P— Br 266.5N=N 946 P-C 513(8)N—O 630:57(13) P~ Cl 289(42)HN=0 481 P-F 439(96)NN-0 167 P-H 343(29)ON-0 305 P-N 617(21)N-P 617(21) P— 0 596.6N-S 464(21) Br3P=0 498(21)

C13P— O 510(21)Osmium F3P=0 544(21)

P— S 346.0(17)030s— 0 301(21) P=S 347

P— Se 363(10)Oxygen P— Te 298(10)

O— O 498.34(20) PlatinumO— Br 235.1(4)HO— CH3 377(13) Pt— B 478(17)HO— CH=CH2 364 Pt— H 352(38)HO— CH2CH=CH2 456 Pt— O 347(34)HO— C6H5 431 Pt— P 417(17)HO— CH2C6H5 322 Pt— Si 501(18)HO— CHO 402(13)HO— COCH3 452(21) PotassiumHO— COC2H5 1800-C1 272(4) K-K 57.3(42)HO-C1 251(13) K-Br 383(8)0-F 222(17) K-Q 427(8)0-FO 467 K-F 497.5(25)FO-OF 261(84) K— H 183(15)0-1 184(21) K-I 331(13)HO-I 234(13) K-Na 63.6(29)0-N 630.57(13) K— O 239(34)HO-NCH3 209 K-OH 343(8)HO— OC(CH3)3 192(8)HO— OH 213.8(21) PraseodymiumO— OH 268(4)CF30-OCF3 192 Pr~F 582(46)CH3O— OCH3 157.3(8) Pr— O 753(17)

Pr— S 492.5(46)

1.168 SECTION ONE

TABLE 1.36 Bond Dissociation Energies (Continued)

ΔHf298,kJ/mol BondBond

ΔHf298,kJ/mol

Pr— Se 446(23) Se— Se 163(21)Pr— Te 326(42) Se— Br 444(63)

Se— C 393(63)Promethium Se — Cl 318

Se— F 589(13)Pm— F 540(42) Se— N 469(84)Pm— O 674(63) Se— O 674(13)Pm— S 423(63) Se— S 478(13)Pm— Se 339(63) Se— Se 385(17)Pm— Te 255(63) Se— Te 289(17)

Radium Selenium

Ra— Cl 343(75) Se— Se 332.6(4)Se— Br 297(84)

Rhodium Se— C 582(96)Sg £i 322

Rh-Rh 285(21) Se-F 339(42)Rh— B 476(21) se— H 305(2)Rh— C 583.7(63) Se— N 381(63)Rh— 0 377(63) se— 0 423(13)Rh— Si 395(18) Se— P 364(10)Rh— Ti 391(15) se— S 381(21)

Se— Si 531(25)Rubidium Se— Te 268(8)

Rb-Rb 45.6(21) siliconRb— Br 389(13)Rb— Cl 448(21) si-si 327(10)Rb— F 494(21) si— Br 343(50)Rb-H 167(21) si-C 435(21)Rb— I 335(13) si— Cl 456(42)Rb— 0 255(84) si— F 540(13)Rb— OH 351(8) si— H 298.49(46)

Si— I 339(84)Ruthénium si_N 439(38)

Si— O 798(8)Ru-0 481(63) Si_s 619(13)

03Ru-0 439 si-Se 531(25)Ru-si 397<21) H3Si-SiH3 339(17)Ru-Th 592(42) (CH3)3Si-Si(CH3)3 339

(Aryl)3Si— Si(aryl)3 368(31)Samarium Si— Te 506(38)

Sm-Cl 423(13) SUver

Sm— F 531(18)Sm-0 619(13) Ag_Ag 163(8)

Sm— S 389 Ag— Au 203(9)Sm— Se 331(15) Ag— Bi 193(42)Sm— Te 272(15)

INORGANIC CHEMISTRY 1.169

TABLE 1.36 Bond Dissociation Energies (Continued)

BondΔHf298,kJ/mol Bond

ΔHf298,kJ/mol

(Continued)

Ag— Br 293(29) Ta— N 611(84)Ag— Cl 341.4 Ta— O 805(13)Ag— Cu 176(8)Ag— F 354(16) TelluriumAg— Ga 180(15)Ag— Ge 175(21) Te— B 354(20)Ag— H 226(8) Te— H 268(2)Ag— I 234(29) Te— I 193(42)Ag— In 176(17) Te— 0 391(8)Ag— 0 213(84) Te— P 298(10)Ag— Sn 136(21) Te— S 339(21)Ag— Te 293(96) Te— Se 268(8)

Sodium Terbium

Na— Na 77.0 Tb— F 561(42)Na— Br 370(13) Tb— O 707(13)Na— Cl 410(8) Tb— S 515(42)Na— F 481(8) Tb— Te 339(42)Na— H 201(21)Na— I 301(8) ThalliumNa— K 63.6(29)Na— O 257(17) TI— TI 63Na-OH 381(13) TI— Br 333.9(17)Na-Rb 59(4) T1-C1 372.8(21)

TI— F 445(19)Strontium TI— H 188(8)

TI— I 272(8)Sr— Br 332(19)Sr— Cl 406(13) ThoriumSr— F 542(7)Sr— H 163(8) Th— Th 289Sr-I 263(42) Th-C 484(25)Sr-0 454(15) Th-N 577.4(21)Sr— OH 381(42) Th— O 854(13)Sr— S 314(21) Th— P 377

Sulfur Thullium

S— S 429(6) Tm— F 569(42)S— Cl 255 Tm— 0 557(13)S— F 343(5) Tm— S 368(42)02S-F 71 Tm-Se 276(42)S— N 464(21) Tm— Te 276(42)S— 0 521.70(13)OS— O 551.4(84) Tm

O2S— O 348.1(42)HS— SH 272(21) Sn— Sn 195(17)

Sn— Br 339(4)

1.170 SECTION ONE

TABLE 1.36 Bond Dissociation Energies (Continued)

BondΔHf298,kJ/mol

BrSn— Br 326 V— Cl 477(63)Br3Sn— Br 272 V— F 590(63)(C2H5)3Sn— C2H5 ca. 238 V— N 477(8)Sn— Cl 406(13) V— 0 644(21)Sn— F 467(13) V— S 490(16)Sn— H 267(17) V— Se 347(21)Sn— I 234(42)Sn— O 548(21) XenonSn— S 464(3)Sn— Se 401.3(59) Xe— Xe 6.53(30)Sn— Te 319.2(8) Xe— F 13.0(4)

Xe— 0 36.4Titanium

YtterbiumTi— Ti 141(21)Ti— Br 439 Yb— Cl 322Ti— C 435(25) Yb— F 521(10)Ti— Cl 494 Yb— H 159(38)Ti— F 569(34) Yb— O 397.9(63)Ti— H ca. 159 Yb— S 167Ti— I 310(42)Ti— N 464 YttriumTi— 0 662(16)Ti-S 426(8) Y-Y 159(21)Ti-Se 381(42) Y-Br 485(84)Ti-Te 289(17) Y-C 418(63)

Y— Cl 527(42)Tungsten Y— F 605(21)

Y— N 481(63)W— Cl 423(42) Y— 0 715.1(30)W— F 548(63) Y— S 528(11)W-0 653(25) Y-Se 435(13)OW— 0 632(84) Y— Te 339(13)O2W— O 598(42)W— P 305(4) Zinc

Uranium Zn— Zn 29Zn— Br 142(29)

U— 0 761(17) C2H5C— C2H5 ca. 201OU— O 678(59) Zn— Cl 229(20)02U— 0 644(88) Zn— F 368(63)U— S 523(10) Zn— H 85.8(21)

Zn— I 138(29)Vanadium Zn— O 284.1

Zn— S 205(13)V— V 242(21) Zn— Se 136(13)V— Br 439(42) Zn— Te 205V— C 469(63)

1.8 DIPOLE MOMENTS

The dipole moment is the mathematical product of the distance between the centers of charge of twoatoms multiplied by the magnitude of that charge. Thus, the dipole moment (m) of a compound ormolecule is:

m = Q × r

where Q is the magnitude of the electrical charge(s) that are separated by the distance r; the unit ofmeasurement is the Debye (D)

All bonds between equal atoms are given zero values. Because of their symmetry, methane andethane molecules are nonpolar. The principle of bond moments thus requires that the CH3 groupmoment equal one H—C moment. Hence the substitution of any aliphatic H by CH3 does not alterthe dipole moment, and all saturated hydrocarbons have zero moments as long as the tetrahedralangles are maintained.

INORGANIC CHEMISTRY 1.171

TABLE 1.36 Bond Dissociation Energies (Continued)

TABLE 1.37 Bond Dipole Moments

Bond Moment, D* Bond Moment, D*

H—C C—N, aliphatic 0.45Aliphatic 0.3 C==N 1.4Aromatic 0.0 C≡≡N (nitrile) 3.6

C—C 0.0 NC (isonitrile) 3.0C≡≡C 0.0 N—H 1.31C—O N—O 0.3

Ether, aliphatic 0.74 N==O 2.0Alcohol, aliphatic 0.7 N (lone pair on sp3 N) 1.0

C==O C—P, aliphatic 0.8Aliphatic 2.4 P—O (0.3)Aromatic 2.65 P==O 2.7

O—H 1.51 P—S 0.5C—S 0.9 P==S 2.9C==S 2.0 B—C, aliphatic 0.7S—H 0.65 B—O 0.25S—O (0.2) Se—C 0.7S==O Si—C 1.2

Aliphatic 2.8 Si—H 1.0Aromatic 3.3 Si—N 1.55

*To convert debye units D into coulomb-meters, multiply by 3.33564 × 10−30.

Zirconium

Zr— CZr— FZr— N

561(25)623(63)565(25)

Zirconium (continued)

Zr— OZr— S

760(8)575(17)

The group moment always includes the C—X bond. When the group is attached to an aromaticsystem, the moment contains the contributions through resonance of those polar structures postulatedas arising through charge shifts around the ring.

1.8.1 Dielectric Constant

The dielectric constant (also referred to as the relative permittivity, K ) is the ratio of the permittivityof the material to the permittivity of free space and is the property of a material that determines therelative speed with which an electrical signal will travel in that material.

K = −CT/−C0

Signal speed is roughly inversely proportional to the square root of the dielectric constant. A lowdielectric constant will result in a high signal propagation speed and a high dielectric constant willresult in a much slower signal propagation speed.

The dielectric loss factor is the tangent of the loss angle and the loss tangent (tan Δ) is defined bythe relationship:

tan Δ = 2s/e u

s is the electrical conductivity, e is the dielectric constant, and u is the frequency. The loss tangent isroughly wavelength independent.

1.172 SECTION ONE

TABLE 1.38 Group Dipole Moments

Bond Moment, D* Bond Moment, D*

*To convert debye units D into coulomb-meters, multiply by 3.33564 × 10−30.

Bond

H— SbH— AsH— PH— IH— BrH— ClH— FC — TeN— FP— IP— BrP— ClAs— IAs— BrAs— ClAs— FSb— ISb— BrSb— ClS— ClCl— OI— BrI— ClBr— Cl

Moment, D*

-0.08-0.10

0.360.380.781.081.94060.170.30.360.810.781.271.642.030.81.92.60.70.71.210.57

Bond

Br— FCl— FLi— CK— ClK— FCs— ClCs— F

Moment, D*

1.30.881.4

10.67.3

10.57.9

Dative (coordination) bonds

N->BO^BS-»BP-»BN->OP->Os-»oAs->OSe-» OTe-» OP^SP->SeSb^-S

2.63.63.84.44.32.93.04.23.12.33.13.24.5

INORGANIC CHEMISTRY 1.173

Dielectric DipoleSubstance constant, e moment, D

Air 1.000 536 4AlBr3 3.38100 5.2Ar

(g) 1.000 517 2(lq) 1.538−191,

1.325−132 0AsBr3 8.8335 1.61AsCl3 12.620 1.59AsH3 (arsine) 2.40−72, 2.0520 0.20BBr3 2.580 0BCl3 0BF3 0B2H6 (diborane) 1.872−92.5 0B4H10 0.486B5H9 21.125 2.13B6H10 2.50B3H6N3 0Br2 (g) 1.012820

(lq) 3.148425 0BrF3 106.825 1.1BrF5 7.9124.5 1.51Cl2 (g) 0

(lq) 2.147−65,1.9114

ClF3 4.39420, 4.2925 0.554ClF5 4.28−80

ClO3F 2.194−123 0.023CO (g) 1.000 700 0.112

(lq)CO2 (g) 1.000 922 0

(lq) 1.60°C, 50 atm,1.44923

COCl2 4.3422 1.17COF2 0.95COS 4.47−88 0.712COSe 3.4710 0.73CS 1.98CS2 (g) 1.00290 0

(lq) 2.63220

CrO2Cl2 2.620 0.47D2 (deuterium) 1.290−255,

1.277−253

DH 1.26916.78 K

D2O 79.7520, 1.8778.2525

F2 1.491−220,1.54−202

GaCl3 0.85GeBr4

GeBr4 2.95526

GeCl4 2.4630, 2.43025 0

Dielectric DipoleSubstance constant, e moment, D

GeClH3 2.13H2(g) 1.000 253 8 0t

(lq) 1.27913.5 K,1.22820.4 K

HBr(g) 1.003 130 0.827(lq) 8.23−86, 3.8225

He (g) 1.000 0565 0 0(lq) (II) 1.0552.055 K

(III)(IV)

HCl (g) 1.00460 1.109(lq) 14.3−114,

4.6028

HClO 1.3HCN 114.920 2.98HCNO (isocyanate) 1.6HCNS 1.7HF 83.60 1.826HFO 2.23HI (g) 1.002 340 0.448

(lq) 3.87−53, 2.9022

HN3 (azide) 1.70H2O (see Table 1.12)H2O2 84.20, 74.617 1.573HNO3 2.17H2S (g) 1.00400 0.97

(lq) 5.9310

H2Se 0.24HSO3Cl 6060

HSO3F ca. 12025

H2SO4 10025

H2Te <0.2Hg 0

I2 11.1118 0IBr 0.726IF 1.95IF5 37.1320 2.18IF7 1.9723

IOF5 1.7525

Kr (g) <0.05(lq) 1.644−153.4

Mn2O7 3.2820

Ne (g) 1.000 063 920 0(lq) 1.1907−247.1

N2 (g) 1.000 548 020 0(lq) 1.468−210,

1.454−203

NH3 (g) 1.00720 1.471(lq) 22.4−33.5

16.6120

TABLE 1.39 Dipole Moments and Dielectric Constants

(Continued)

1.9 MOLECULAR GEOMETRY

Molecular geometry is the specific three-dimensional arrangement of atoms and the positions of theatomic nuclei in a molecule.

Various instrumental techniques such as x-ray crystallography and other experimental techniquescan be used to derive information about the locations of atoms in a molecule.

Thus, molecular geometry is associated with the specific orientation of bonding atoms. A carefulanalysis of electron distribution in various orbitals will usually result in correct determination of themolecular geometry.

1.174 SECTION ONE

Dielectric DipoleSubstance constant, e moment, D

N2H4 (hydrazine) 52.920, 51.725 1.75Ni(CO)4

NO 0.159N2O (g) 1.001 130 0.161

(lq) 1.5215

NO2 0.316N2O4 2.5625, 2.4420 0.5N2O3 2.122NOBr 13.415 1.8NOCl 18.212 1.9NO2Cl 0.53NOF 1.73NO2F 0.47NO3 31.13−70

O2 (g) 1.000 494 720 0

(lq) 1.568−218.7,1.507−193

O3 4.75−183 0.534OF2 0.297O2F2 (FOOF) 1.44OsO4 0P (lq) 4.09634

PBr3 3.920 0.56PCl3 3.4325, 3.5017 0.78PCl5 2.85160, 2.7165 0.9PCl2F3 2.813−45

PCl3F2 2.375−5

PCl4F 2.650.5

PF3 1.03PF5 0PH3 2.915 0.574PI3 4.1265 0PO3

POCl3 13.725 2.54POF3 1.868PSCl3 5.822 1.42PSF3 0.64PbCl4 2.7820

ReO2Cl3

ReO3ClS 3.499134

SCl2 2.91525 0.36

Dielectric DipoleSubstance constant, e moment, D

S2Cl2 dimer 4.7915 1.0S2F2

FSSF isomer 1.45S = SF2 isomer 1.03SF4 0.632SF6 1.81−50 0

S2F10 2.02020 0SO2 (g) 1.00930 1.63

(lq) 16.325

SO3 3.1118 0SOBr2 9.0620 9.11SOCl2 9.2520, 8.67525 1.45SOF2 1.63SO2Cl2 9.1520 1.81SO2F2 1.12SbCl3 33.275 3.93SbCl5 3.2220 0SbF5

SbH3 0.12Se (lq) 5.44237.5

SeF4 1.78SeF6 0SeOCl2 46.220 2.64SeO2 2.62SiCl4 2.2480 0SiF4 0SiH4 0SiHCl3 0.86SiH3Cl 1.31SnBr4 3.16930 0SnCl4 3.0140, 2.8920 0TeF6 0TiCl4 2.84314, 2.8020 0UF6 (g) 1.002 9267 0

(lq) 2.1865

VCl4 3.0525 0VOBr3 3.625

VOCl3 3.425 0.3Xe (g) 1.001 23 0

(lq, II) 1.880−111.9

XeF6 4.10125

TABLE 1.39 Dipole Moments and Dielectric Constants (Continued)

INORGANIC CHEMISTRY 1.175

TABLE 1.40 Spatial Orientation of Common Hybrid Bonds

On the assumption that the pairs of electrons in the valency shell of a bonded atom in a molecule are arranged ina definite way which depends on the number of electron pairs (coordination number), the geometrical arrange-ment or shape of molecules may be predicted. A multiple bond is regarded as equivalent to a single bond as far asmolecular shape is concerned.

Coordinationnumber

Orbitalshybridized

Minimumradius ratioGeometrical arrangement

2

3

4

5

6

7

8

9

12

í/jdp

P2

dsd2

sp2

ds2

P3

d2p

sp2dp2d2

sp3

d3s

d4

sp^dd3sp

d>3

d*sp

¿V3

Linear

Bent (angular)

Trigonal planar

Trigonal pyramidal

Square planar

Tetrahedral

Tetragonal pyramidal

Trigonal bipyramidal

Octahedral

Trigonal prism

One atom above the faceof an octahedron,which is distortedchiefly by separatingthe atoms at the cor-ners of this face.

Square antiprism (dodec-ahedral)

Cube

Formed by adding atomsbeyond each of thevertical faces of a righttriangular prism.

Cube-octahedron

0.155

0.225

0.155

0.414

0.592

0.645

0.732

0.732

1.000

1.176 SECTION ONE

TABLE 1.41 Crystal Lattice Types

1.10 NUCLIDES

The nuclide is the nucleus of a particular isotope.

INORGANIC CHEMISTRY 1.177

TABLE 1.42 Crystal Structure

Unit cells of the different lattice types in each system are illustrated in Table 1.41

TABLE 1.43 Table of Nuclides

Explanation of Column Headings

Nuclide. Each nuclide is identified by element name and the mass number A, equal to the sum of the numbersof protons Z and neutrons N in the nucleus. The m following the mass number (for example, 69mZn) indicates ametastable isotope. An asterisk preceding the mass number indicates that the radionuclide occurs in nature. Half-life. The following abbreviations for time units are employed: y = years, d = days, h = hours, min = min-utes, s = seconds, ms = milliseconds, and ns = nanoseconds.Natural abundance. The natural abundances listed are on an “atom percent” basis for the stable nuclides pre-sent in naturally occurring elements in the earth’s crust.Thermal neutron absorption cross section. Simply designated “cross section,” it represents the ease with whicha given nuclide can absorb a thermal neutron (energy less than or equal to 0.025 eV) and become a differentnuclide. The cross section is given here in units of barns (1 barn = 10–24 cm2). If the mode of reaction is otherthan (n, g ), it is so indicated.Major radiations. In the last column are the principal modes of disintegration and energies of the radiations inmillion electronvolts (MeV). Symbols used to represent the various modes of decay are:

a, alpha particle emission K, electron captureb–, beta particle, negatron IT, isomeric transitionb+, positron x, X-rays of indicated element (e.g., O-x, g, gamma radiation oxygen X-rays, and the type, K or L)

For b – and b +, values of Emax are listed. Radiation types and energies of minor importance are omitted unlessuseful for identification purposes.

(Continued )

System CharacteristicsEssentialsymmetry

Axes inunit cell

Angles inunit cell

Cubic

Tetragonal

Orthorhombic(or rhom-bic)

Hexagonal ortrigonal

Monoclinic

Triclinic

Rhombohedral

Three axes equal and mutuallyperpendicular

Two equal axes and one un-equal axis mutually perpen-dicular

Three unequal axes mutuallyperpendicular

Three equal axes inclined at120° with a fourth axis un-equal and perpendicular tothe other three

Two axes at an oblique anglewith a third perpendicular tothe other two

Three unequal axes intersectingobliquely

Two equal axes making equalangle with each other

Four threefold axes

One fourfold axis

Three mutuallyperpendiculartwofold axes, ortwo planes inter-secting in a two-fold axis

One sixfold axis orone threefoldaxis

One twofold axisor one plane

No planes or axesof symmetry

a = b = c

a = b ¥= c

a 1= b ï c

a = b + c

a = b = c

a + b i= c

a =£ b ï c

a = ß = y = 90°

a = ß = y = 90°

a = ß = y = 90°

a = ß = 90°;y = 120°

a = ß = y * 90°

a = ß = 90°;y± 90°

a i= ß + y + 90°

1.178 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued )

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Hydrogen

Beryllium

Boron

Carbon

Nitrogen

Oxygen

Fluorine

Sodium

Magnesium

Aluminum

Silicon

Phosphorus

Sulfur

123

79

1010111112141314

151918192022

2324242527

28

26

272828293031323031323332343537

38

12.32 y

53.28 d

1.52 X 106y

20.3 min

5715 y

9.965 min

122.2 s26.9s1.8295 h

11.00s2.605 y

14.659 h

9.45 min

20.90 h

7.1 X 105 y

2.25 min

2.62 h1.6 X 102 y2.50 min

14.28 d25.3 d

87.51 d5.05 min

2.84 h

99.985(1)0.015(1)

100

19.9(2)80.1(6)

98.89(1)

99.634(9)

100

100

78.89(3)10.00(1)

100

92.23(2)4.67(2)3.10(1)

100

95.02(9)4.21(8)

0.332(2)0.000 52(1)

0.008(1)

3837(10)(n, a)0.005(3)

0.0035(1)

1.8(l)(n, P)

0.0095(7)

2800.(300)(n, p)

0.53

0.053(6)0.17(5)0.07(2)

0.230(2)

0.17(1)0.12(1)0.107(4)0.073(6)

0.16(2)

0.55(2)0.29(6)

0-(0.0186)K, y(0.478)

/3-(0.555)

/3+(0.961)

/3-(0.156)/3+(1.190)

/3+(2.754)/3-(4.82); 7(0.197, 1.357)ß+(0.635); K, O-x/3*(2.754)/3-(5.40); 7(1.63)/3+(0.545, 1.83); K, Ne-x,

7(1.275)

|8-(1.39); 7<2.75, 1.37)

0-(1.75, 1.59); 7(0.844,1.014)

j8-(0.459); 7(1.342,0.942, 0.401, 0.031)

|8+(1.16); K, Mg-x;7(1.809)

j8-(2.865); 7(1.778)

/3-(1.471); 7(1.266)/3-(0.213)/3+(3.245)

/3-(1.710)j3-(0.249)

j8-(0.167)|8-(4.75, 1.64); 7(3.103,

0.908)|8-(1.00, 3.0); 7(1.942,

0.196)

INORGANIC CHEMISTRY 1.179

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

(Continued)

Chlorine

Argon

Potassium

Calcium

Scandium

Titanium

Vanadium

35363738

39

3739404142

39*40

414243

40424344454749

42m

4344m

4445

46m46

4748

444548495051

48

3.01 X 10s y

37.24 min

55.6 min

35.0 d268 y

1.82h33 y

1.26 X 109 y

12.360 h22.3h

1.02 X 105 y

162.7 d4.536 d8.72 min

61.6s

3.89h2.442 d3.927 h

19.5s83.81 d

3.341 d1.821 d

47.3 y3.08h

5.76 min

16.0 d

75.77(5)

24.23(5)

99.600(3)

93.258(4)0.0117(1)

6.730(4)

96.941(18)

0.135(6)2.086(12)

100

73.72(3)5.41(2)5.18(2)

43.7(4)46.(2)0.4

0.64(3)0.5(1)

2.1(2)30.(8)

1.46(3)

0.41(3)=4

6.(1)0.8(2)

= 15

27

8.(1)

7.9(9)1.9(5)0.179(3)

0-(0.709); K, S-x

/3-(4.91, 1.11,2.77);7(2.168, 1.642)

j8-(1.91, 2.18, 3.45);7(1.267, 0.250, 1.52)

K, Cl-x/3-(0.565)

jß-(1.20, 2.49); 7(1.29)/3-(0.60)

j6-(1.312); K, Ar-x;7(1.461)

/3-(3.523, 1.97); 7(1.525)/3-(0.825, 0.45, 1.24,

1.814); 7(0.618, 0.373,0.39, 0.221)

/3-(0.257)j8-(1.98, 0.684); 7(1.297)jß-(1.95, 0.89); 7(3.084,

4.07)

(3+(2.82); 7(0.438, 1.227,1.524)

/3+(1.22)IT, Sc-x; 7(0.271)/3+(1.47); K, 7(1.16)

7(0.142)/3-(0.357); 7(1.12,

0.889); Ti-x0-(0.439, 0.60); 7(0.159)/3-(0.65); 7(1.31, 1.04,

0.984)

K, 7(0.68, 0.078)/3+(1.044); K, Sc-x

|8-(2.14, 1.50); 7(0.320,0.928)

/3+(0.698); 7(0.511,0.945, 0.983, 1.312,2.24)

1.180 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Vanadium(cant.)

Chromium

Manganese

Iron

Cobalt

Nickel

4950515248505152535152

53545556

52

5455565759

55

56

5758m

58

5960m

60

61

56

57

586063

330 d>1.4 X 1017 y

3.75 min

21.6h

27.70 d

46.2 min5.60 d

3.7 X 106 y312.2 d

2.5785 h

8.275 h

2.73 y

44.51 d

17.53 h

77.3 d

271.77 d9.1 h70.88 d

10.47 min5.271 y

1.650 h

6.08 d

35.6 h

100 y

0.250(2)99.750(2)

4.345(13)

83.79(2)9.50(2)

100

5.85(4)

91.75(4)2.12(1)

100

68.077(9)26.22(1)

40.(20)4.9(1)

15.(1)

0.8(1)18.(2)

70.(10)<10

13.3(1)

2.7(5)13.(2)2.6(2)2.5(5)

13.(3)

1.4(1) X 105

1.9(2) X 103

1958.(8)2.0(2)

4.6(4)2.9(3)

24.(3)

K, Ti-x

j3-(2.47); 7(1.434)

K, V-x; 7(0.116,0.305)

K, V-x; y(0.320)

/3+(2.2); 7(0.749, 1.15)j6+(0.575); 7(0.511,

0.744, 1.434)

7(0.834)

/3-(1.028, 1.03, 0.718);7(0.847, 1.81,2.11)

j6+(0.804); K, Mn-x;7<0.169)

K, Mn-x

/3-(0.273, 0.475); 7(1.10,1.29)

/3*(1.04, 1.50); K, Fe-x;7(0.932, 0.480, 1.41)

0+(1.46);K, Fe-x;7(0.847, 1.04, 1.24,1.77, 2.60, 3.26, 2.02)

K, Fe-x; 7(0.136, 0.122)7(0.025)K, 0+(0.474); Fe-x;

7(0.811)

0-(1.55)/3-(0.318); 7(1.173,

1.332)ß-(1.22); 7(0.842-

0.909)

K, Co-x; 7(0.158, 0.270,0.480, 0.75, 0.812,1.56)

K, /3+(0.849, 0.712); Co-x, 7(1.378, 0.0127,1.76)

/3-(0.067)

INORGANIC CHEMISTRY 1.181

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

(Continued)

Nickel (cont.)

Copper

Zinc

Gallium

Germanium

6465

6661

6364

656667

62

6465

666768

69m69

71m

72

66

67

68

69707172

73

66

6869.

7172737475

2.5 17 h

2.275 d

3.408 h

12.701 h

5.07 min2.580 d

9.26h

243.8 d

13.76 h56 min3.97h

46.5h

9.5h

3.260 d

1.130h

21.1 min

14.10h

3.120 d

2.66h

270.8 d1.63 d

11.2 d

1.380h

0.926(1)

69.17(3)

30.83(3)

48.6(3)

27.9(2)4.1(1)

18.8(4)

60.108(9)

39.892(9)

27.66(3)7.73(1)

35.94(2)

1.8(1)22.(2)

4.5(2)«270

2.17(3)1.4(1) X 102

0.4666.(8)

1.0(2)6.9(1)0.87

1.68(7)

4.7(2)

0.9(2)15.(1)0.3

ß~(2.14, 0.65, 1.020);7(1.48, 0.366, 1.116)

,S-(0.23)

/3+(1.220); K, Ni-x;7(0.283, 0.656)

|8-(0.578); /3+(0.65); Ni-x; 7(1.346)

;6-(2.74); 7(1.039)/3-(0.395, 0.484, 0.577);

7(0.185, 0.092)

K, /3+(0.66); Cu-x;7(0.041, 0.597)

K, /3*(0.325), Cu-x;7(1.116)

IT, Zn-x, 7(0.439)/3~(0.905)ß-(1.45); 7(0.386, 0.487,

0.620)j3-(0.30, 0.25); 7(0.145,

0.191)

j6+(1.84, 4.153); 7(1.039,2.752)

K, Zn-x; 7(0.093,0.184,0.300)

/3+(1.83); K, Zn-x;7(1.077)

/3-(1.65); 7(0.175, 1.042)

iß-(0.64, 1.51, 2.52,3.15); 7(0.63, 2.20,2.50)

jß-(1.59); 7(0.053,0.297)

K, /3+(1.02); Ga-x;7(0.044, 0.382)

Ga, K-x/3+(0.70, 1.22); 7(1,107,

0.574)Ga-x

j3-(1.19); 7(0.265, 0.419)

1.182 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Germanium(cont.)

Arsenic

Selenium

Bromine

Krypton

77

7871

72

7374

7576

77

78

72737475

lim118081

7576

7779

80m80

8182

7677

79

81m818384

85m

11.30 h

1.45 h

2.70 d

1.083 d

80.30 d17.78 d

100 4.0(4)1.096 d

38.8 h

91 min

8.40 d7.1h

0.89(2) 50.(4)119.78 d17.5s

7.63(6) 42.(4)49.61(10) 0.5

18.5 min

1.62 h16.2 h 224.(42)

2.376 d50.69(7) 10.8

4.42 h17.66 min

49.31(7) 2.61.4708 d

14.8h1.24h

1.455 d

13 s2.10 X W y

11.5(1) 183.(30)57.0(3) 0.10

4.48h

j3-(0.71, 1.38, 2.19);7(0.211,0.215,0.264)

/3-(0.95); 7(0.277, 0.294)

K, |8+(0.81); Ge-x;7(0.175, 1.096)

jS+(3.339, 2.498, 1.884);K, Ge-x; 7(0.834,1.051)

K, 7(0.0534, 0.0133)|3+(0.94); j8-(0.71, 1.35);

7(0.596, 0.635)

j3-(2.97, 2.41, 1.79);7(0.559, 0.657)

|8-(0.683); 7(0.239,0.250, 0.521)

/3-(4.21); 7(0.614, 0.70,1.31)

K, As-x; 7(0.046)J8+(1.32); 7(0.361, 0.067)

K, 7(0.265, 0.136); As-x7(0.162)

|S-(1.58); 7(0.276, 0.290,0.828)

jß+(3.03); 7(0.287)j8+(1.9, 3.68); K, Se-x;

7(0.559, 1.86)7(0.239, 0.521)

IT, Br-x; 7(0.037, 0.049)/3-(1.997, 1.38); K,

;3+(0.85), Se-x;7(0.617)

/3-(0.444); 7(0.554,0.619, 0.776)

K, 7(0.252)ß+( 1.875, 1.700, 1.550);

K, Br-x; 7(0.130,0.147)

0+(1.626); 7(0.261,0.398, 0.606)

IT, Kr-x; 7(0.190)K, Br-x; 7(0.276)

jß-(0.83); 7(0.151, 0.305)

INORGANIC CHEMISTRY 1.183

(Continued)

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Krypton(cont.)

Rubidium

Strontium

Yttrium

Zirconium

8587

88

84

8586878889

8285m

8587m

88899091

92

85m

85

86

87m88

9091m

9192

93

8687

8889

919395

97

10.72 y1.27h

2.84h32.9 d

72.17(2)18.65 d4.88 X 1010 y 27.83(2)17.7 min15.4 min

25.36 d1.126h

64.84 d2.795 h

82.58(1)50.52 d29.1 y9.5h

2.71 h

4.86h

2.68h

14.74 h

12.9h106.6 d

2.67 d49.71 min58.5 d3.54h

10.2h

16.5h1.73h

83.4 d3.27 d

11.22(4)1.5 X 106 y64.02 d

16.90 h

/3-(0.67); 7(0.517)0-(3.49, 0.389, 1.38);

7(0.403, 2.55)j8-(2.91); 7(0.196, 2.392)

ß-(0.894); /3+(2.681);7<0.882)

0.5<20 j8-(1.775); 7<1.08)

0.10(1) /3-(0.283)1.2(3) ;6-(5.31); 7(1.836, 0.898)

ß-(1.26, 2.2, 4.49);7(1.032, 1.248, 2.196)

K, Rb-xK, Rb-x, Sr-x; 7(0.150,

0.231)K, Rb-x; y(0.514)IT, 7(0.388)

0.0058(4)0.42(4) /3-(1.497); 7(0.909)0.0097(7) j8-(0.546)

;8-(1.09, 1.36, 2.66);7(0.556, 0.750, 1.024)

^(0.55, 1.5); 7(1.383)

/3+(2.24); K, Sr-x;7(0.767, 0.232, 2.124)

/3+(1.58, 1.15); K, Sr-x;7(0.504, 0.232)

/3+(5.24); 7(0.307, 0.628,1.077, 1.153, 1.921)

Y-x; 7(0.381)£-(0.76); 7(0.898, 1.836,

2.734, 3.219)<7 ^(2.28); 7(2.186)

Y-x; IT; 7(0.556)1.4(3) ß-(1.545); 7(1.21)

/3-(3.64); 7(0.448, 0.561,0.934, 1.405)

/3-(2.88); 7(0.267, 0.947,1.918)

K, Y-x; 7(0.243, 0.612)0+(2.260); K, Y-x;

7(0.381, 1.228)K, Y-x; 7(0.393)K, jß+(0.897); Y-x;

7(0.909)1.2(3)

/3~(0.091)/3-(0.366, 0.400);

7(0.724, 0.757)/3-(1.91); 7(0.743)

1.184 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Niobium 8990

91m

9192m93m

9394m

94

95m9596

97m97

Molybdenum 90

93m

95979899

101

Technetium 93

94

95m

9596

97m9798

99m99

Ruthenium 95

97

100

2.03h14.60 h

62 d

700 y10.15 d16.1 y

100 1.16.26 min2.4 X 104 y

3.61 d35.0 d <723.4h

58.1 s1.23h

5.67h

6.85h

15.92(5) 13.4(5)9.55(3) 2.5(3)

24.13(7) 0.14(1)2.75 d

14.6 min

2.73h

4.88h

61 d

20.0h4.3 d

90 d2.6 X 106 y4.2 X 106 y6.012 h2.13 X 105 y 20

1.64h

2.88 d

12.6(1) 5.8(6)

^-(3.320); X1.627)|3+(1.50); K, Zr-x;

7(0.141, 1.129, 2.186,2.319)

IT,Nb-x;7(0.1045,1.205)

Mo-xK, 7(0.913, 0.934, 1.848)Nb-x

7(0.871)j3-(0.473); 7(0.703,

0.871)7(0.204, 0.236)¿-(0.160); 7(0.765)/3-(0.748, 0.500);

7(0.778, 1.091)IT; 7(0.766)/3-(1.267); 7(0.481,

0.658)

K, /3+(1.085); Nb-x;7(0.122, 0.257)

IT, Mo-x; 7(0.264,0.685, 1.477)

ß-(l. 357); Tc-x;7(0.181, 0.366, 0.739)

/3-(2.23, 0.7); 7(0.192,0.591)

/3+(0.81); 7(1.363, 1.477,1.520)

ß+(4.256); 7(0.449,0.703, 0.850, 0.871)

/3+(0.71); 7(0.204, 0.582,0.835)

K, Mo-x; 7(0.766, 1.074)K, Mo-x; 7(0.778, 0.813,

0.850, 1.122)K, Tc-x; 7(0.0965)K, Mo-x/3-(0.40); 7(0.652, 0.745)IT, Tc-x; 7(0.141, 0.143)/3-(0.292)

/3+(1.20, 0.91); y(0.290,0.336, 0.627)

K, Tc-x; 7(0.216, 0.324,0.461)

INORGANIC CHEMISTRY 1.185

(Continued)

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Ruthenium 101(cora.) 102

103

105

106

Rhodium 99m

99

100

101m

101

102m

102

103m103

104m104

105m105

106m

106

Palladium 100

101

103105107108109

17.0(1)31.6(2)

39.27 d

4.44h

1.020 y

4.7h

16 d

20.8h

4.35 d

3.3 y

207 d

2.9 y

56.12 min100

4.36 min42.3s

40s35.4h

2.18h

29.80 s

3.63 d

8.47h

16.99 d22.33(8)

6.5 X 106 y26.46(9)

13.5h

5.(1)1.2(1)

<20 j8-(0.12, 0.223); 7(0.295,0.4444, 0.497, 0.557,0.610)

j8-(l. 187, 0.11, 1.134);7(0.149, 0.263, 0.317,0.469, 0.676, 0.724)

£-(0.0394)

|3+(0.74); 7(0.277, 0.341,0.618, 1.261)

|3+(0.54, 0.68); 7(0.089,0.353, 0.528)

|3+(2.62, 2.07); 7(0.446,0.540, 0.588, 0.823,1.553, 2.376)

K, IT, Ru-x, Rh-x;7(0.127, 0.307, 0.545)

K, Ru-x; 7(0.127,0.198,0.325)

ßr(l.l5); ß+(l.29, 0.82);7(0.469, 0.475, 0.557,0.628, 1.103)

K, Ru-x; 7(0.475,0.631,0.697, 0.767, 1.047,1.103)

IT, Rh-x, 7(0.0.040)145SOO.(IOO) 7(0.051, 0.097, 0.556)40.(30) j8-(2.44), 7(0.358, 0.556,

1.237)IT, Rh-x; 7(0.130)

1.1(3) X 104 0-(0.567, 0.247);7(0.280, 0.306, 0.319)

ß-(0.92); 7(0.222, 0.451,0.512,0.616,0.717,0.784, 1.046, 1.528)

jß-(3.54, 3.0, 2.4);7(0.512, 0.622)

K, Rh-x; 7(0.0748,0.0840, 0.0327)

K, Rh-x; ß+(0.716);7(0.296, 0.590)

K, Rh-x; 7(0.357, 0.497)22.(2)

1.8(2) j8-(0.03)8.7

/3-(1.028); Ag-x;7(0.088,0.311,0.636)

1.186 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Palladium(cant.}

Silver

Cadmium

Indium

Him

111

112

103

104

105

106m

107m107

108m108

109110m

Him111112

107

109Him

111113m

113115m

115

117m

117

109

110m110

111

5.5 h

23.4 min

21.4h1.10 h

69 min

41.29 d

8.4 d

44.2 s51.839(7) 35

130 y2.42 min

48.161(7) 91249.8 d 82.(11)

1.08 min7.47 d 3.(2)3.13h

6.52h

462 d48.5 min

12.80(8) 24.(3)14.1 y9 X 1015 y 12.22(6) 20 O60.(40)44.6 d

2.228 d

3.4h

2.49h

4.2h

4.9h1.15h

2.805 d

/3-(0.35, 0.77); 7(0.070,0.172, 0.391)

j6-(2.2); 7(0.060, 0.245,0.580, 0.650, 1.389,1.459)

j6-(0.28); 7(0.018)

j8+(1.7, 1.3); 7(0.119,0.148)

j8+(0.99); 7(0.556, 0.926,0.942)

K, Pd-x; 7(0.064, 0.280,0.344, 0.443)

K, Pd-x; 7(0.451, 0.512,0.717, 1.046)

K, Ag-x; 7(0.093)

7(0.434, 0.614, 0.723)j8-(1.65); 0+(0.90);

7(0.434, 0.619, 0.633)

ß-(0.087, 0.530); IT,7(0.658, 0.764, 0.885,0.937, 1.384)

K, Ag-x; 7(0.060, 0.245)/3-(1.04); 7(0.245,0.342)jß-(3.94, 3.4); 7(0.607,

0.617, 1.39)/3+(0.302); K, Ag-x;

7(0.093, 0.829)K, Ag-x; 7(0.088)K, Cd-x; 7(0.151, 0.245)

/3-(0.59); 7(0.264)

|3-(1.62); 7(0.934, 1.29,0.485)

j8-(l.ll, 0.593); In-x;7(0.231, 0.260, 0.336,0.492, 0.528)

(3-(0.72); 7(0.159,0.553); In-x

|3-(0.67, 2.2); 7(0.221,0.273, 0.345, 1.303)

K, Cd-x; ß+(0.79);7<0.203, 0.623)

7(0.658, 0.885, 0.937)j6+(2.22); K, Cd-x;

7(0.658)K, Cd-x; 7(0.171, 0.245)

Palladium(cant.}

Silver

Cadmium

Indium

Him

111

112

103

104

105

106m

107m107

108m108

109110m

Him111112

107

109Him

111113m

113115m

115

117m

117

109

110m110

111

5.5 h

23.4 min

21.4h1.10 h

69 min

41.29 d

8.4 d

44.2 s51.839(7) 35

130 y2.42 min

48.161(7) 91249.8 d 82.(11)

1.08 min7.47 d 3.(2)3.13h

6.52h

462 d48.5 min

12.80(8) 24.(3)14.1 y9 X 1015 y 12.22(6) 20 O60.(40)44.6 d

2.228 d

3.4h

2.49h

4.2h

4.9h1.15h

2.805 d

/3-(0.35, 0.77); 7(0.070,0.172, 0.391)

j6-(2.2); 7(0.060, 0.245,0.580, 0.650, 1.389,1.459)

j6-(0.28); 7(0.018)

j8+(1.7, 1.3); 7(0.119,0.148)

j8+(0.99); 7(0.556, 0.926,0.942)

K, Pd-x; 7(0.064, 0.280,0.344, 0.443)

K, Pd-x; 7(0.451, 0.512,0.717, 1.046)

K, Ag-x; 7(0.093)

7(0.434, 0.614, 0.723)j8-(1.65); 0+(0.90);

7(0.434, 0.619, 0.633)

ß-(0.087, 0.530); IT,7(0.658, 0.764, 0.885,0.937, 1.384)

K, Ag-x; 7(0.060, 0.245)/3-(1.04); 7(0.245,0.342)jß-(3.94, 3.4); 7(0.607,

0.617, 1.39)/3+(0.302); K, Ag-x;

7(0.093, 0.829)K, Ag-x; 7(0.088)K, Cd-x; 7(0.151, 0.245)

/3-(0.59); 7(0.264)

|3-(1.62); 7(0.934, 1.29,0.485)

j8-(l.ll, 0.593); In-x;7(0.231, 0.260, 0.336,0.492, 0.528)

(3-(0.72); 7(0.159,0.553); In-x

|3-(0.67, 2.2); 7(0.221,0.273, 0.345, 1.303)

K, Cd-x; ß+(0.79);7<0.203, 0.623)

7(0.658, 0.885, 0.937)j6+(2.22); K, Cd-x;

7(0.658)K, Cd-x; 7(0.171, 0.245)

INORGANIC CHEMISTRY 1.187

(Continued)

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Indium 113m(cont.) 114m

114

115m

*115116m

117m

117

Tin 110113116

117m119m

119121m

121123

125127

Antimony 115116m

117118m

118119120121122

123124

126

127

128

1.658 h49.51 d1.1983 min

4.486 h

4.4 X 1014 y 95.71(2) 20554.1 min

1.94h

44 min

4.1 h115.1 d =9

14.53(11) 1.1(1)13.60 d293 d

8.59(4) 2.(1)=55 y

1.128 d129.2 d

9.63 d2.10h

32.1 min1.00h

2.80h5.00h3.6 min38.1h15.89 min

57.21(5) 62.72 d

42.7(9) 3.360.20 d

12.4 d

3.84 d

9.1 h

U, In-x; y(0.392)IT, K, In-x; 7(0.190)/3-(1.99); K, Cd-x,

£+(0.40); y(0.558,0.573, 1.30)

£-(0.83); K, In-x;7(0.336, 0.497)

/3-(0.495)£-(1.00); 7(0.138,0.417,

1.09, 1.293)j3-(1.77); 7(0.159,0.315,

0.553)£-(0.74); 7(0. 159, 0.397,

0.553)

K, In-x; 7(0.283)K, In-x, 7(0.392, 0.255)

K, Sn-x; 7(0.159)K, Se-x; 7(0.239)

£-(0.354); K, In-x;7(0.0372)

£^(0.383)£-(1.42); 7(0.160, 1.030,

1.089)£-(2.35); 7(1.067)£-(2.42, 3.2); 7(0.823,

1.096)

£+(1.51); 7(0.499)£+(1.16); 7(0.407,0.543,

0.973, 1.293)£+(0.57); 7(0.159)7(0.254, 1.051, 1.280)£+(2.65); 7(1.230)7(0.0239)£+(1.72); 7(0.704, 1.171)

£-(1.414); £+(1.980);7(0.564, 0.693, 1.141,1.257)

£-(0.61, 2.301); 7(0.603,0.646, 1.69, 0.723)

£-(1.9); 7(0.279, 0.415,0.666, 0.695, 0.720)

£-(0.89, 1.10, 1.50);7(0.252, 0.291, 0.412,0.437, 0.686, 0.784)

£-(2.3); 7(0.215,0.314,0.527, 0.743, 0.754)

1.188 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Antimony(font.)

Tellurium

Iodine

Xenon

129

116117

119m119

121m121

123m125

127m127

129m129

131m

131

132

121122123124

125126

127128129130

131

132

133

135

123125

4.40 h

2.49 h1.03h

4.69 d16.0h

~154d16.8 d119.7d

7.139(6)109 d9.35 h33.6 d1.160 h

1.35 d

25.0 min

25.0 min

2.12h3.6 min13.2h4.18 d

59.4 d13.0 d

10024.99 min1.7 X 107 y12.36 h

8.040d

208h

20.8h

6.57h

2.00h17.1 h

/3-(0.65); -K0.181, 0.359,0.460, 0.545, 0.813,0.915, 1.030)

7(0.0937)/3+(1.78); 7(0.920, 1.716,

2.300)7(0.154, 0.271, 1.213)/3+(0.627; 7(0.644,

0.700)7(0.212)7(0.508, 0.573)7(0.159)

1.6(2)|8-(0.77); 7(0.088)/3-(0.696); 7(0.360)/3-(1.60); 7(0.460, 0.696)/3-(1.453, 0.989); I-x,

7(0.460, 0.487)J3-(0.42); IT, Te-x, I-x;

7(0.150, 0.774, 0.794,0.852)

j3-(2.14, 1.69, 1.35); I-x;7(0.150, 0.453, 0.493)

/3-(0.215); 7(0.050,0.112, 0.228)

ß+(l.2); 7(2.12)/3+(3.1); 7(0.564)K, Te-x; 7(0.159)/3+(1.54, 2.14, 0.75);

7(0.603, 0.723, 1.691)9.(1) X 102 K, Te-x; 7(0.035)

/3+(1.13); |8-(0.87, 1.25);7(0.389, 0.662)

6.15(10)22.(4) ß~(2.13); 7(0.443, 0.527)

|8-(0.15); 7(0.040)18.(3) jß+(1.13); /3-(0.87, 1.25);

7(0.389, 0.662)=»0.7 /3-(0.606); y(0.284,

0.364, 0.637)j3-(0.80, 1.03, 1.2, 1.6,

2.16); 7(0.098, 0.506,0.523, 0.630, 0.651,0.667, 0.723, 0.955)

^-(1.24); 7(0.51 1,0.530,0.875)

/3-(0.9, 1.3); y(0.418,0.527, 1.132, 1.260)

0+(1.51); 7(0.149, 0.178)7(0.188, 0.243)

INORGANIC CHEMISTRY 1.189

(Continued)

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Xenon (cont.) 127m127

129m129

131m131

133m133

135m135

Cesium 126

127

128129132133

134m134

135136

137

Barium 126128

129m

129

131133m

133135m

135137

137m138139

140

142

1.15 min36.4 d8.89 d

26.4(6) 22.(5)11.9 d

21.2(4) 90.(10)2.19 d5.243 d 190.(90)

15.3 min9.1h

1 .64 min

6.2h

3.62 min1.336 d6.48 d

100 282.91 h

2.065 y 140.(10)

2.3 X 106 y 8.9(5)13.16 d

30.2 y

1.65h2.43 d2.17h

2.2h

11.7 d1.621 d10.53 y 4.(1)1.196d

6.59(2) 5.811.23(4) 5.(1)

2.552 min71.70(7) 0.41(2)

1.396h 5.1

12.75 d

10.7 min

7(0.127, 0.173)7(0.172, 0.203, 0.375)7(0.040, 0.197)

7(0.164)

7(0.233)j8-(0.346); Cs-x;

y(0.081)7(0.527)jß-(0.91); 7(0.250, 0.608)

jß+(3.4, 3.7); 7(0.0389,0.491, 0.925)

jß+(0.65, 1.06); 7(0.125,0.412)

/3+(2.44, 2.88); 7(0.443)7(0.372, 0.412)7(0.465, 0.630, 0.668)

IT, K, Cs-x; 7(0.127)/3-(0.658, 0.089);

7(0.563, 0.569, 0.605,0.796)

j3-(0.205)/3-(0.341); 7(0.341,

0.819, 1.048)0-(0.514); K, Ba-x;

7(0.662)

7(0.218, 0.234, 0.258)7(0.273); K, Cs-x7(0.177, 0.182, 0.202,

1.459)|8+(1.42); 7(0.129,0.214,

0.221)7(0.124, 0.216, 0.496)7(0.276)7(0.081, 0.356)IT, Ba-x; y(0.268)

IT, K, Ba-x; 7(0.662)

/3-(2.27, 2.14); K, La-x;7(0.166, 1.254, 1.421)

0-(0.48, 1.02); 7(0.163,0.305, 0.537)

0-(1.0, 1.1); 7(0.231,0.255, 0.309, 1.204)

1.190 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Lanthanum

Cerium

Praseodymium

Neodymium

131

132

133

134135136

*138139140141142132133

135

137m

137139140141

142143

144

136137

138m

139

141142143145

139m141142143

*144145

59 min

4.8 h

3.91 h

6.5 min19.5h8.87 min1.06 X 1011 y

99.9098(2)1.68 d3.90h1.54h3.5h5.4h

17.7h

1.43 d

9.0h137.6 d

88.43(10)32.50 d

11.13(10)1.38 d

284.6 d

13.1 min1.28h

2.1h

4.41h

10019.12h13.57 d5.98h

5.5h2.49h

27.13(2)12.18(6)

2.1 X 1015 y 23.8(1)8.3(6)

57.(6)9.2(2)2.7(3)

0.58(4)

0.97(3)6.1(7)

1.0(1)

11.520.(3)90.(10)

19.(1)220.(10)

3.6(3)47.(6)

ß+(\A2, 1.94); 7(0.526,0.109, 0.366)

ß+(2.6, 3.2, 3.7);7(0.465, 0.567)

ß+(l. 2); 7(0.279, 0.290,0.302)

/3+(2.67); 7(0.605)7(0.481)/3+(1.8); 7(0.816)

ß"(1.670, 1.35)/3-(2.43)ß-(2.1 1,2.98, 4.52)

7(0.154, 0.182)j8+(1.3); 7(0.058, 0.131,

0.472, 0.510)/3+(0.8); 7(0.266, 0.300,

0.607)IT K, Ce-x; 7(0.169,

0.254)7(0.447)7(0.166)

j3-(0.436, 0.581); K,Pr-x; 7(0.145)

/3-(1.404, 1.110); K,Pr-x; 7(0.293)

j8-(0.318, 0.185); K,Pr-x; 7(0.080, 0.134)

j3+(2.98); 7(0.540, 0.552)j8+(1.68); 7(0.434,0.514,

0.837)/3+(1.65); 7(0.304, 0.789,

1.038)/3+(1.09); 7(0.255, 1.347,

1.631)

)3-(2.164); 7(1.576)/3-(0.933); 7(0.742)/3-(1.80); 7(0.073, 0.676,

0.748)

0+(1.17); 7(0.114,0.738)/3+(0.802)

INORGANIC CHEMISTRY 1.191

(Continued )

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Neodymium(con?.)

Promethium

Samarium

Europium

146147

149

143144146

147

148m

148

149

150

151

142144145146

*147148149150151152153154155156

148149

150m

150151

152m

152

153

17.19(9)10.98 d

1.73h

265 d360 d5.53 y

2.6234 y

41.29 d

5.37 d

2.212 d

2.68h

1.183d

1.208 h3.1(1)

340 d1.03 X 108 y1.06 X 1011 y 15.0(2)7 X 1015y 11.3(1)1016y 13.8(1)

7.4(1)90 y

26.7(2)1.929 d

22.7(2)22.2 min9.4h

54.5 d93.1 d12.8h

36 y47.8(5)

9.30h

13.48 y

52.2(5)

1.5(2)440.(150)

8.4(2) X 103

180

106.(8) X 102

= 1000

14.(2) x 102

= 150

1.6(1)280.(20)

56.(4)2.4(6)

401. (6) X 102

102.(5)

206.(15)420.(180)

7.5(3)

9000

ll.(2) X 103

320.(20)

/3-(0.805); 7(0.091,0.531)

j6-(1.03, 1.13); 7(0.211,0.114)

K, Nd-x; 7(0.742)K, Nd-x; 7(0.618, 0.696)K, £-(0.795); Nd-x;

7(0.453, 0.75)£-(0.224); 7(0.122,

0.197)£-(0.69, 0.50, 0.40); IT,

Pm-x, Sm-x; 7(0.550,0.630, 0.726)

jß-(1.02, 2.47); y(0.550,0.915, 1.465)

£-(1.072, 0.78); 7(0.286,0.591, 0.859)

/3-(1.6, 2.3, 1.8);7(0.334, 1.166, 0.132)

£-(0.84); r(0.168, 0.275,0.340)

£+(1.0); K, Pr-x

7(0.061, 0.492); K, Pm-xa(2.50)a(2.23)a(1.96)

£-(0.076)

/3-(0.64, 0.69); 7(0.103)

j6-(1.52); 7(0.104)£-(0.43, 0.71); 7(0.166,

0.204)

£+(0.92); 7(0.550, 0.630)K, Sm-x; 7(0.277, 0.328)£-(1.013); 7(0.334,

0.407)7(0.334, 0.439, 0.584)

£-(1.85); 7(0.122, 0.841,0.963)

K, £-(1.47, 0.690); K,Gd-x, K, Sm-x;7(0.122, 0.344, 1.408)

1.192 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Europium(cont.)

Gadolinium

Terbium

Dysprosium

Holmium

Erbium

154

155156

157

158

146147

151153155157158159

160158159160

159161162163164165

165m

156159

167

165166m

166

166167168169170

8.59 y

4.76 y15.2 d

15.13h

45.9 min

48.3 d1.588 d

124 d241.6 d

18.56 h

180 y

72.3 d

144 d

2.33h1.26 min

56 min33.0 min

3.1h

1.2 X 103 y

1.117 d

9.40 d

14.80(5)15.65(3)24.84(12)

21.86(4)

100

18.9(2)25.5(2)24.9(2)28.2(2)

100

33.6(2)22.95(15)26.8(2)

14.9(2)

1.5(3) X 103

3.9(2) X 103

61.(1) X 103

2.54(3) X 105

2.3(5)

1.5(7)

23.2(5)5.7(11) X 102

8.(2) X 103

600.(150)170.(20)120.(10)

20003.5(3) X 103

619.14(65) X 103

207.(2) X 102

2.0(6)

6.2(2)

£-(0.27, 0.58, 0.843,1.87); y(0.123, 0.723,1.274)

£-(0.15); 7(0.087,0.105)£-(0.30, 0.49, 1.2, 2.45);

7(0.089, 0.646, 0.723,0.812)

£-(1.30); 7(0.064, 0.371,0.411)

£-(2.5); 7(0.898, 0.944,0.977)

£+(0.35); 7(0.115, 0.155)£+(0.93); 7(0.229, 0.370,

0.396, 0.929)a(2.73); 7(0.154,0.243)7(0.94, 0.103)

£-(0.971); Tb-x;7(0.363)

7(0.944, 0.962)

£-(0.57, 0.86); 7(0.299,0.879, 0.966)

K, Tb-x; 7(0.326)

£-(1.29); Ho-x; 7(0.095)7(0.108, 0.515)

7(0.138, 0.267)7(0.121,0.132,0.253,

0.310)£-(0.31,0.62,0.96);

7(0.238, 0.321, 0.347)

Er-x; 7(0.810, 0.712,0.184)

£-(1.855, 1.776);7(1.379)

£-(0.35)

INORGANIC CHEMISTRY 1.193

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

†Two different metastable states possessing the same mass number but different half-lives. (Continued )

Erbium (COMÍ.)

Thullium

Ytterbium

Lutetium

Hafnium

171

172

166

169170171172

173

165166

169171173174175

176177

178

164

165

175176m

176177

178179

1 179m,tl79m2

180180m

181

7.52h

2.05 d

7.70h

100128.6 d1.92 y2.65 d

8.2h

9.9 min2.363 d

32.03 d14.3(2)16.12(21)31.8(4)

4.19 d

12.7(2)1.9h

1.23h

3.14min

16.7 min

97.41(2)3.66h

3.8 X 1016 y6.75 d

27.297(4)13.629(6)

18.7s25.1 d

35.100(7)5.519h

42.4 d

370.(40)

106100.(20)

= 160

3.6(3) X 103

50.(10)16.(2)

120

3.1(2)

24

210010.(3) X 102

8546

13.(1)

30.(25)

|3-(1.49); Tm-x; 7(0.112,0.296, 0.308)

j8-(0.28, 0.36); 7(0.407,0.610)

7(0.184,0.779, 1.273,2.052)

jß-(0.968, 0.884)/3-(0.096); 7(0.067)ß-(l.79, 1.86); 7(1.387,

1.466, 1.530, 1.609)|6-(0.80, 0.86); 7(0.399,

0.461)

j6+(1.58); 7(1.090)7(0.184, 0.779, 1.273,

2.052)7(0.110,0.177,0.198)

/3-(0.466); Lu-x;7(0.396)

/3-(1.40); K, Lu-x;7(0.150)

/3-(0.25); 7(0.141,0.325,0.352, 0.381, 0.613)

ß+(l.6, 3.8); 7(0.124,0.262, 0.740, 0.864,0.880)

j3+(2.06); 7(0.121, 0.132,0.174, 0.204)

jß-(1.229, 1.317); Hf-x;7(0.0884)

7(0.202, 0.307)¿-(0.497), Hf-x; 7(0.113,

0.208)

7(0.161, 0.214)7(0.123, 0.146, 0.363,

0.454)

IT, Hf-x; 7(0.215, 0.332,0.443)

/3-(0.408); Ta-x;7(0.133, 0.346, 0.482)

1.194 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Hafnium(cont.)

Tantalum

Tungsten

Rhenium

Osmium

Iridium

183

184

181182m

182

183

184182183184185186187

188

182m

184185186

*187188

189

186188

190m

190191

192193

196184

185186188

1.07h

4.1 h

16.5 min114.43d

5.1 d

8.7h

74.8 d

23.9h

69.4 d

12.7h

38 d

3.718 d

4.2 X 1010

16.94 h

24h

2 X 1015 y

9.9 min

15.4 d

30.5h

34.9 min

3.0h

14h15.7h1.72 d

£-(1.18, 1.54); 7(0.459,0.784)

£-(0.74, 0.85, 1.10);7(0.139, 0.345)

99.988(2) 207(0.147, 0.172, 0.184)

8.2(6) X 103 £-(0.25, 0.44, 0.52);7(0.068, 1.121)

£-(0.62); 7(0.108, 0.246,0.304)

£-(1.17); 7(0.253,0.414)

26.50(3) 20.(1)14.31(1) 10.5(3)30.64(1) 2

=3.3 £-(0.433); 7(0.125)28.43(4) 37. (2)

70.(10) £-(1.315, 0.624; K,Re-x; 7(0.072, 0.480,0.686)

£-(0.349); 7(0.227,0.291)

£+(0.55, 1.74); 7(1.121,1.221)

7(0.790, 0.903)37.40(2) 110

£-(1.07, 0.933); K, W-x,Os-x; 7(0.123, 0.137,0.632, 0.768)

62.60(2) 74£-(2.12, 1.96); Os-x;

7(0.155)£-(1.01); 7(0.147, 0.22,

0.245)

1.58(2) «8013.3(1) «5

IT, Os-x; 7(0. 187, 0.361,0.503, 0.616)

26.4(2) 133.8(6) X 102 £-(0.143); Os-x;

7(0.129)41.0(3) 3.(1)

£-(1.04);Ir-x; 7(0.139,0.460)

£^(0.84); 7(0.126, 0.408)

£+(2.3, 2.9); X0.120,0.264, 0.390)

7(0.254, 1.829)7(0.137,0.296,0.435)7(0.155,0.478,0.633,

2.215)

INORGANIC CHEMISTRY 1.195

(Continued)

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Iridium (cont.)

Platinum

Gold

Mercury

Thallium

189190

191192

193194

195m

187

188189

194195m

195196

197m197

199m199

200197

197m

198

199

200m

200

196197m

197199m

199200202203201202203204

13.2 d11.8 d

73.83 d

19.3 h

3.9 h

2.35h

10.2 d10.89 h

4.02 d

1.573 h18.3h

14.1 s30.8 min

12.5h

7.8s

2.694 d

3.139 d

18.7h

48.4 min

23.8h2.6725 d42.6 min

46.61 d

3.040 d12.23 d

3.78 y

K, Os-x; 7(0.245)7(0.187,0.407,0.519,

0.558, 0.605)37.27(9) 920

0-(0.672); K, Pt-x;7(0.316, 0.468)

62.73(9) 1161.5(3) X 103 |8-(2.25); 7(0.294, 0.328,

0.645)|8-(0.41, 0.97); 7(0.320,

0.365, 0.433, 0.685)

7(0.105,0.110,0.201,0.285, 0.709)

7(0.188, 0.195)K, Ir-x; 7(0.094, 0.608,

0.721)32.9(6) 1.2

IT, Pt-x; 7(0.099)33.8(6) 28.(1)25.3(6) 55

IT, Pt-x; 7(0.053, 0.346)jS-(0.719); K, Au-x;

7(0.191, 0.269)7(0.392)

«16 j8-(0.90, 1.14); 7(0.186,0.317, 0.494, 0.549)

7(0.136, 0.227, 0.244)

100 98.7(1)IT, K, Au-x; 7(0.130,

0.279)26.5(15) X 103 |8-(0.961); K, Hg-x;

7(0.412)|8-(0.292, 0.250); K,

Hg-x; 7(0.158, 0.208)j3-(0.56); 7(0.111,0.368,

0.498, 0.597, 0.760)|8-(2.2); 7(0.368, 1.225)

0.15(1) 3150IT, K, Hg-x; 7(0.134)K, Au-x; 7(0.077)7(0.158)

16.87(10) 2.1(2) X 103

23.10(16) <6029.86(20) 4.9(5)

|8-(0.213); 7(0.279)

K, Hg-x; 7(0.135,0.167)K, Hg-x; 7(0.440)

29.52(1) ll.(l)22.(2) £-(0.763); K, Hg-x

1.196 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Thallium(cont.)

Lead

Bismuth

Polonium

Astatine

205*206

*207208

209210

201203

204m

207209

*210*211

*212

*214

205206209

*210212

*214

204205

206

208209

210212214216218207

208

70.48(1)4.20 min

4.77 min3.053 min

2.16 min1.30 min

9.33h2.1615 d1.120h

22.1(1)3.253 h22.6 y36.1 min

10.64h

26.9 min

15.31 d6.243 d

1005.013 d1.0092 h

19.7 min

3.53h1.7h

8.8 d

2.898 y102 y

138.38 d298ns0.1637 ms145ms3.04 min

1.81h

1.63h

0.11(2)J8-(1.53); K, Pb-x;

7(0.803)/3-(1.43); 7(0.897)/3-(1.796, 1.28, 1.52);

7(0.277, 0.511, 0.583,0.614)

/3-(1.8); 7(1.567, 0.465)jß-(1.9, 1.3); 7(0.298,

0.798)

7(0.331, 0.361)7(0.279)IT, Pb-x; 7(0.375, 0.899,

0.912)0.70(1)

j8-(0.645)a(3.72)0-(1.36); 7(0.405, 0.427,

0.832)j8-(0.569, 0.28); Bi-x;

7(0.239)|6-(0.67, 0.73); 7(0.24,

0.30, 0.352)7(0.703, 1.764)7(0.516, 0.803, 0.881)

0.034j3-(1.16); 7(0.266, 0.352)/3-(2.25); 7(0.288, 0.727,

0.786, 1.621); Tl-x;a(6.05, 6.09)

ß-(3.26); 7(0.609, 1.120,1.764)

7(0.270, 0.884, 1.016)7(0.837, 0.850, 0.872,

1.001)a(5.233); 7(0.286,0.312,

0.807)a(5.116)a(4.88); IT, K, Bi-x;

7(0.260, 0.896)a(5.304); 7(0.803)a(8.784)a(7.686)a(6.778)o(5.18)

a(5.76); 7(0.168, 0.588,0.814)

«(5.641); K, Po-x,7(0.177, 0.660, 0.685,0.845, 1.028)

INORGANIC CHEMISTRY 1.197

(Continued )

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Astatine(com.)

Radon

Francium

Radium

Actinium

Thorium

Protactinium

209

210

211

210

211

212220222212

220

221222223

*224

*226

*228

*227

*228

226

228

*230

231*232233

*234

230

*231

5.41 h

8.1h

7.214 h

2.4h

14.68 h

24min55.6s2.8235 d

20min

27.4s

4.8 min14.3 min22.0 min

3.66 d

1599 y

5.76 y

21.77 y

6.15h

30.6 min

1.913 y

7.54 X 104 y

1.063 d1.405 X 10'Oy22.3 min24.10 d

17.4 d

3.25 X 104 y

a(5.65), K, Po-x;7(0.545, 0.782, 0.790)

K, Po-x; 7(0.245, 0.528,1.181, 1.437, 1.483)

a(5.87); K, Po-x;7(0.669, 0.742)

a(6.039); 7(0.196,0.458,0.571, 0.649)

a(5.784, 5.851); 7(0.169,0.250, 0.370, 0.674,0.678, 1.363)

a(6.260)o(6.288)

0.74(5) a(5.49); 7(0.510)

a(6.41, 6.26); 7(1.186,1.275)

0(6.686, 0.641, 6.582);7(0.106, 0.154, 0.162)

a(6.341); 7(0.218, 0.409)£-(0.178)/3-(0.117)

12.0(5) a(5.685, 5.45); K, Rn-x;7(0.241, 0.409, 0.650)

«13 a(4.78, 4.60); K, Rn-x;7(0.186, 0.262)

36.(5) 7(0.0135)

8.8(7) X 102 /3-(0.045); o(4.95, 4.94);K, Th-x; 7(0.084,0.160, 0.270)

£-(2.18, 1.85, 1.11); K,Th-x; 7(0.339, 0.911,0.969)

«(6.337, 6.228); 7(0.206,0.242)

1.2(2) X 102 a(5.42, 5.34, 5.18); K,Ra-x

23.4(5) a(4.68, 4.62); K, Ra-x;7(0.068)

£-(0.305, 0.218, 0.138)7.37(4) o(4.01, 3.95); 7(0.059)1.5(1) X 103 £-(1.245); 7(0.459)1.8(5) £-(0.198, 0.102); K,

Pa-x

1.5(3) X 103 £-(0.51); 7(0.444, 0.455,0.899, 0.952)

2.0(1) X 102 0(5.06, 5.03, 5.01, 4.95,4.73); K, Ac-x;7(0.260, 0.284, 0.300,0.330)

1.198 SECTION ONE

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Protactinium(cont.)

Uranium

Neptunium

Plutonium

Americium

Curium

Berkelium

232

233

234m235230232233

*234

*235

237*238239

236237238239

237238

239

240242

244246

241

243

242243244

247249250

1.31 d

27 .Od

1.17 min24.4 min

20.8 d68.9 y1.592 X 10s y

2.454 X 10s y 0.0055(5)

7.037 X 108 y 0.720(1)

6.75 d4.46 X 109 y 99.2745(15)23.47 min

1.55 X 105 y2.14 X 106y2.117 d2.355 d

45.7 d87.74 y

2.411 X 10* y

6.537 X 103 y3.763 X 105 y

8.2 X 107 y10.85 d

432.2 y

7370 y

162.8 d28.5 y18.11 y

1.4 X 103 y320 d3.217 h

4.6(10) X 102

73.(2)47.(2)

96.(2)

95.(5)

= 1002.7(1)

22,(2)

180515.1(2) X 102

2.7(1) X 102

2.9(1) X 102

19.(1)

1.7(1)

600

80=20

1.3(1) X 102

15.(1)

7.(1) X 102

£-(1.34); -y(0.109,0.150,0.894, 0.969)

£-(0.256, 0.15, 0.568);K,L U-x; -K0.300,0.312, 0.341)

ß~(2.29); IT, K, U-x£-(1.4)«(5.89, 5.82)«(5.320, 5.263)«(4.825, 4.783); L, Th-x;

7(0.029, 0.042, 0.055,0.097,0.119,0.146,0.164, 0.22, 0.291,0.32)

«(4.776, 4.723); L, Th-x;7(0.121)

a(4.40, 4.37, 4.22); K,LTh-x; 7(0.14, 0.16,0.186, 0.20)

«(4.196,4.147)£-(1.21, 1.29)

£-(0.49), 7(0.104,0.160)a(4.79, 4.77); K,L Pa-x£-(1.2); 7<0.984, 1.029)£-(0.438, 0.341);

7(0.228, 0.278)

K,L Np-x«(5.50, 5.46); K, U-x;

7(0.0435)«(5.16,5.14, 5.11); K,

U-x; 7(0.375, 0.414,0.129)

«(5.168, 5.124); L, U-x0(4.90, 4.86); 7(0.045,

0.103)«(4.59, 4.55); L, U-x£-(0.150, 0.35); 7(0.224)

0(5.49, 5.44); 7(0.12,0.14)

«(5.277, 5.234); 7(0.075)

«(6.113, 6.069); L, Pu-x«(5.786, 5.742)a(5.805, 5.753); 7(0.099,

1.526)

«(5.532, 5.678, 5.712)«(5.42); j8-(0.125)£-(0.74); 7(0.989, 1.032)

1.11 VAPOR PRESSURE

Vapor pressure is the pressure exerted by a pure component at equilibrium, at any temperature, whenboth liquid and vapor phases exist and thus extends from a minimum at the triple point temperatureto a maximum at the critical temperature (the critical pressure), and is the most important of the basicthermodynamic properties affecting liquids and vapors.

Except at very high total pressures (above about 10 MPa), there is no effect of total pressure onvapor pressure. If such an effect is present, a correction can be applied. The pressure exerted above asolid-vapor mixture may also be called vapor pressure but is normally only available as experimentaldata for common compounds that sublime.

1.11.1 Vapor Pressure Equations

Numerous mathematical formulas relating the temperature and pressure of the gas phase in equilib-rium with the condensed phase have been proposed. The Antoine equation (Eq. 1) gives good corre-lation with experimental values. Equation 2 is simpler and is often suitable over restrictedtemperature ranges. In these equations, and the derived differential coefficients for use in theHaggenmacher and Clausius-Clapeyron equations, the p term is the vapor pressure of the compoundin pounds per square inch (psi), the t term is the temperature in degrees Celsius, and the T term is theabsolute temperature in kelvins (t°C + 273.15).

INORGANIC CHEMISTRY 1.199

TABLE 1.43 Table of Nuclides (Continued)

Natural Crossabundance, section,

Element A Half-life % barns Radiation (MeV)

Californium

Einsteinium

Fermium

Mendelevium

Nobelium

Lawrencium

251252

253254255255257

258260255259260261262

900 y2.645 y

20.47 d275.7 d40 d

20.1 h100.5 d

51.5 d32 d

3.1 min58 min

3 min40 min3.6h

2.9(2) X 102

20.(2)

18628.(3)

=5526.(3)

«(5.677, 5.851, 6.014)«(6.118, 6.076); L,

Cm-x; y(0.043, 0.100)

a(6.64); y(0.389)«(6.43)/3-(0.29); a(6.26)

a(7.023)«(6.519); L, Cf-x;

-K0.179, 0.241)

«(6.718, 6.763); y(0.368)

«(8.12, 7.93); 7(0.187)«(7.52, 7.55)

Eq. Vapor-pressure equation dp/dT −[d(ln p)/d(1/T)]

1 log p =

2 log p = 2.303B

3 log p = log T 2.303B – CT

Equations 1 and 2 are easily rearranged to calculate the temperature of the normal boiling point:

(5.1)

(5.2)

The constants in the Antoine equation may be estimated by selecting three widely spaced datapoints and substituting in the following equations in sequence:

In these equations, yi = log pi.

By y

t tt C t C

A yB

t C

= −+

⎛⎝⎜

⎞⎠⎟

+ +

= ++

⎛⎝⎜

⎞⎠⎟

3 1

2 11 3

22

( )( )

y y

y y

t t

t t

t t

t C3 2

2 1

2 1

3 2

3 1

3

1−−

⎛⎝⎜

⎞⎠⎟

−−

⎛⎝⎜

⎞⎠⎟

= − −+

⎛⎝⎜

⎞⎠⎟

TB

A p=

− log

tB

A pC=

−−

log

pB

T

C

T

2 3032

. −⎛⎝

⎞⎠A

B

TC− −

2 3032

. pB

TAB

T−

2 303 2

2

.

( )

BT

t C+2 303

2

.

( )

pB

t C+AB

t C−

+

1.200 SECTION ONE

TABLE 1.44 Vapor Pressures of Selected Elements at Different Temperatures

Vapor pressure temperature, °CAtomic Atomic Boiling

Element number symbol point, °C E-08 E-07 E-06 E-05 E-04 E-03 E-02 E-01 1

Aluminum 13 Al 2467 685 742 812 887 972 1082 1217 1367 1557Antimony 52 Sb 1750 279 309 345 383 425 475 533 612 757Arsenic 33 As 613 104 127 150 174 204 237 277 317 372Barium 56 Ba 1140 272 310 354 402 462 527 610 711 852Beryllium 4 Be 2970 707 762 832 907 997 1097 1227 1377 1557Bismuth 83 Bi 1560 347 367 409 459 517 587 672 777 897Boron 5 B 2550 1282 1367 1467 1582 1707 1867 2027 2247 2507Cadmium 48 Cd 765 74 95 119 146 177 217 265 320 392Calcium 20 Ca 1484 282 317 357 405 459 522 597 689 802Carbon 6 C 4827 1657 1757 1867 1987 2137 2287 2457 2657 2897Cobalt 27 Co 2870 922 992 1067 1157 1257 1382 1517 1687 1907Chromium 24 Cr 2672 837 902 977 1062 1157 1267 1397 1552 1737Copper 29 Cu 2567 722 787 852 937 1027 1132 1257 1417 1617Dysprosium 66 Dy 2562 625 682 747 817 897 997 1117 1262 1437Erbium 68 Er 2510 649 708 777 852 947 1052 1177 1332 1527Europium 63 Eu 1597 283 319 361 409 466 532 611 708 827Gallium 31 Ga 2403 619 677 742 817 907 1007 1132 1282 1472Germanium 32 Ge 2830 812 877 947 1037 1137 1257 1397 1557 1777Gold 79 Au 2807 807 877 947 1032 1132 1252 1397 1567 1767Indium 77 In 2000 488 539 597 664 742 837 947 1082 1247Iron 26 Fe 2750 892 957 1032 1127 1227 1342 1477 1647 1857Lanthanum 57 La 3469 1022 1102 1192 1297 1422 1562 1727 1927 2177Lead 82 Pb 1740 342 383 429 485 547 625 715 832 977Lithium 49 Li 1347 235 268 306 350 404 467 537 627 747Magnesium 12 Mg 1107 185 214 246 282 327 377 439 509 605Manganese 25 Mn 1962 505 554 611 675 747 837 937 1082 1217Mercury 80 Hg 357 −72 −59 −44 −27 7 16 46 80 125Molybdenum 42 Mo 4612 1592 1702 1822 1957 2117 2307 2527 2787 3117Nickel 28 Ni 2732 927 997 1072 1157 1262 1382 1527 1697 1907Niobium 41 Nb 4927 1762 1867 1987 2127 2277 2447 2657 2897 3177Palladium 46 Pd 2927 842 912 992 1082 1192 1317 1462 1647 1877Phosphorus 15 P 2804 54 69 88 108 129 157 185 222 2611

.201 (Continued)

TABLE 1.44 Vapor Pressures of Selected Elements at Different Temperatures (Continued)

Vapor pressure temperature, °CAtomic Atomic Boiling

Element number symbol point, °C E-08 E-07 E-06 E-05 E-04 E-03 E-02 E-01 1

Platinum 78 Pt 3827 1292 1382 1492 1612 1747 1907 2097 2317 2587Potassium 19 K 774 21 42 65 91 123 161 208 267 345Praseodymium 59 Pr 3127 797 867 947 1042 1147 1277 1427 1617 1847Rhenium 75 Re 5627 1947 2077 2217 2387 2587 2807 3067 3407 3807Rhodium 45 Rh 3727 1277 767 1472 1582 1707 1857 2037 2247 2507Scandium 21 Sc 2832 772 837 917 1007 1107 1232 1377 1567 1797Selenium 34 Se 685 63 83 107 133 164 199 243 297 363Silicon 14 Si 4827 992 1067 1147 1237 1337 1472 1632 1817 2057Silver 47 Ag 2212 574 626 685 752 832 922 1027 1162 1322Sodium 11 Na 553 74 97 123 155 193 235 289 357 441Strontium 38 Sr 1384 241 273 309 353 394 465 537 627 732Sulfur 16 S 45 −10 3 17 37 55 80 109 147 189Tantalum 73 Ta 5425 1957 2097 2237 2407 2587 2807 3057 3357 3707Tellurium 52 Te 990 155 181 209 242 280 323 374 433 518Thallium 81 TI 1457 283 319 359 407 463 530 609 706 827Tin 50 Sn 2270 682 747 807 897 997 1107 1247 1412 1612Titanium 22 Ti 3287 1062 1137 1227 1327 1442 1577 1737 1937 2177Tungsten 74 W 5660 2117 2247 2407 2567 2757 2977 3227 3537 3917Ytterbium 70 Yb 1466 247 279 317 365 417 482 557 647 787Yttrium 39 Y 3337 957 1032 1117 1217 1332 1467 1632 1832 2082Zinc 30 Zn 907 123 147 177 209 247 292 344 408 487

1.2

02

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere

Pressure, mm Hg

1 5 10 20 40 60 100 200 400 760Compound Melting

name Formula Temperature, °C point, °C

Aluminum Al 1284 1421 1487 1555 1635 1684 1749 1844 1947 2056 660borohydride Al(BH4)3 −52.2 −42.9 −32.5 −20.9 −13.4 −3.9 +11.2 28.1 45.9 −64bromide AlBr3 81.3 103.8 118.0 134.0 150.6 161.7 176.1 199.8 227.0 256.3 97chloride Al2Cl6 100.0 116.4 123.8 131.8 139.9 145.4 152.0 161.8 171.6 180.2 192.4fluoride AlF3 1238 1298 1324 1350 1378 1398 1422 1457 1496 1537 1040iodide AlI3 178.0 207.7 225.8 244.2 265.0 277.8 294.5 322.0 354.0 385.5oxide Al2O3 2148 2306 2385 2465 2549 2599 2665 2766 2874 2977 2050

Ammonia NH3 −109.1 −97.5 −91.9 −85.8 −79.2 −74.3 −68.4 −57.0 −45.4 −33.6 −77.7heavy ND3 −74.0 −67.4 −57.0 −45.4 −33.4 −74.0

Ammonium bromide NH4Br 198.3 234.5 252.0 270.6 290.0 303.8 320.0 345.3 370.8 396.0carbamate N2H6CO2 −26.1 −10.4 −2.9 +5.3 14.0 19.6 26.7 37.2 48.0 58.3chloride NH4Cl 160.4 193.8 209.8 226.1 245.0 256.2 271.5 293.2 316.5 337.8 520cyanide NH4CN −50.6 −35.7 −28.6 −20.9 −12.6 −7.4 −0.5 +9.6 20.5 31.7 36hydrogen sulfide NH4HS −51.1 −36.0 −28.7 −20.8 −12.3 −7.0 0.0 +10.5 21.8 33.3iodide NH4I 210.9 247.0 263.5 282.8 302.8 316.0 331.8 355.8 381.0 404.9

Antimony Sb 886 984 1033 1084 1141 1176 1223 1288 1364 1440 630.5tribromide SbBr3 93.9 126.0 142.7 158.3 177.4 188.1 203.5 225.7 250.2 275.0 96.6trichloride SbCl3 49.2 71.4 85.2 100.6 117.8 128.3 143.3 165.9 192.2 219.0 73.4pentachloride SbCl5 22.7 48.6 61.8 75.8 91.0 101.0 114.1 2.8triiodide SbI3 163.6 203.8 223.5 244.8 267.8 282.5 303.5 333.8 368.5 401.0 167trioxide Sb4O6 574 626 666 729 812 873 957 1085 1242 1425 656

Argon A −218.2 −213.9 −210.9 −207.9 −204.9 −202.9 −200.5 −195.6 −190.6 −185.6 −189.2Arsenic As 372 416 437 459 483 498 518 548 579 610 814Arsenic tribromide AsBr3 41.8 70.6 85.2 101.3 118.7 130.0 145.2 167.7 193.6 220.0

trichloride AsCl3 −11.4 +11.7 +23.5 36.0 50.0 58.7 70.9 89.2 109.7 130.4 −18trifluoride AsF3 −2.5 +4.2 13.2 26.7 41.4 56.3 −5.9pentafluoride AsF5 −117.9 −108.0 −103.1 −98.0 −92.4 −88.5 −84.3 −75.5 −64.0 −52.8 −79.8trioxide As2O3 212.5 242.6 259.7 279.2 299.2 310.3 332.5 370.0 412.2 457.2 312.8

Arsine AsH3 −142.6 −130.8 −124.7 −117.7 −110.2 −104.8 −98.0 −87.2 −75.2 −62.1 −116.3Barium Ba 984 1049 1120 1195 1240 1301 1403 1518 1638 850

1.2

03

(Continued)

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere (Continued)

Pressure, mm Hg

1 5 10 20 40 60 100 200 400 760Compound Melting

name Formula Temperature, °C point, °C

Beryllium borohydride Be(BH4)2 +1.0 19.8 28.1 36.8 46.2 51.7 58.6 69.0 79.7 90.0 123bromide BeBr2 289 325 342 361 379 390 405 427 451 474 490chloride BeCl2 291 328 346 365 384 395 411 435 461 487 405iodide BeI2 283 322 341 361 382 394 411 435 461 487 488

Bismuth Bi 1021 1099 1136 1177 1217 1240 1271 1319 1370 1420 271tribromide BiBr3 261 282 305 327 340 360 392 425 461 218trichloride BiCl3 242 264 287 311 324 343 372 405 441 230

Diborane hydrobromide B2H5Br −93.3 −75.3 −66.3 −56.4 −45.4 −38.2 −29.0 −15.4 0.0 +16.3 −104.2Borine carbonyl BH3CO −139.2 −127.3 −121.1 −114.1 −106.6 −101.9 −95.3 −85.5 −74.8 −64.0 −137.0

triamine B3N3H6 −63.0 −45.0 −35.3 −25.0 −13.2 −5.8 +4.0 18.5 34.3 50.6 −58.2Boron hydrides

dihydrodecaborane B10H14 60.0 80.8 90.2 100.0 117.4 127.8 142.3 163.8 99.6dihydrodiborane B2H6 −159.7 −149.5 −144.3 −138.5 −131.6 −127.2 −120.9 −111.2 −99.6 −86.5 −169dihydropentaborane B5H9 −40.4 −30.7 −20.0 −8.0 −0.4 +9.6 24.6 40.8 58.1 −47.0tetrahydropentaborane B5H11 −50.2 −29.9 −19.9 −9.2 +2.7 10.2 20.1 34.8 51.2 67.0tetrahydrotetraborane B4H10 −90.9 −73.1 −64.3 −54.8 −44.3 −37.4 −28.1 −14.0 +0.8 16.1 −119.9

Boron tribromide BBr3 −41.4 −20.4 −10.1 +1.5 14.0 22.1 33.5 50.3 70.0 91.7 −45trichloride BCl3 −91.5 −75.2 −66.9 −57.9 −47.8 −41.2 −32.4 −18.9 −3.6 +12.7 −107trifluoride BF3 −154.6 −145.4 −141.3 −136.4 −131.0 −127.6 −123.0 −115.9 −108.3 −100.7 −126.8

Bromine Br2 −48.7 −32.8 −25.0 −16.8 −8.0 −0.6 +9.3 24.3 41.0 58.2 −7.3pentafluoride BrF5 −69.3 −51.0 −41.9 −32.0 −21.0 −14.0 −4.5 +9.9 25.7 40.4 −61.4

Cadmium Cd 394 455 484 516 553 578 611 658 711 765 320.9chloride CdCl2 618 656 695 736 762 797 847 908 967 568fluoride CdF2 1112 1231 1286 1344 1400 1436 1486 1561 1651 1751 520iodide CdI2 416 481 512 546 584 608 640 688 742 796 385oxide CdO 1000 1100 1149 1200 1257 1295 1341 1409 1484 1559

Calcium Ca 926 983 1046 1111 1152 1207 1288 1388 1487 851Carbon (graphite) C 3586 3828 3946 4069 4196 4273 4373 4516 4660 4827

dioxide CO2 −134.3 −124.4 −119.5 −114.4 −108.6 −104.8 −100.2 −93.0 −85.7 −78.2 −57.5disulfide CS2 −73.8 −54.3 −44.7 −34.3 −22.5 −15.3 −5.1 +10.4 28.0 46.5 −110.8monoxide CO −222.0 −217.2 −215.0 −212.8 −210.0 −208.1 −205.7 −201.3 −196.3 −191.3 −205.0

1.2

04

oxyselenide COSe −117.1 −102.3 −95.0 −86.3 −76.4 −70.2 −61.7 −49.8 −35.6 −21.9oxysulfide COS −132.4 −119.8 −113.3 −106.0 −98.3 −93.0 −85.9 −75.0 −62.7 −49.9 −138.8selenosulfide CSeS −47.3 −26.5 −16.0 −4.4 +8.6 17.0 28.3 45.7 65.2 85.6 −75.2subsulfide C3S2 14.0 41.2 54.9 69.3 85.6 96.0 109.9 130.8 +0.4tetrabromide CBr4 96.3 106.3 119.7 139.7 163.5 189.5 90.1tetrachloride CCl4 −50.0 −30.0 −19.6 −8.2 +4.3 12.3 23.0 38.3 57.8 76.7 −22.6tetrafluoride CF4 −184.6 −174.1 −169.3 −164.3 −158.8 −155.4 −150.7 −143.6 −135.5 −127.7 −183.7

Cesium Cs 279 341 375 409 449 474 509 561 624 690 28.5bromide CsBr 748 838 887 938 993 1026 1072 1140 1221 1300 636chloride CsCl 744 837 884 934 989 1023 1069 1139 1217 1300 646fluoride CsF 712 798 844 893 947 980 1025 1092 1170 1251 683iodide CsI 738 828 873 923 976 1009 1055 1124 1200 1280 621

Chlorine Cl2 −118.0 −106.7 −101.6 −93.3 −84.5 −79.0 −71.7 −60.2 −47.3 −33.8 −100.7fluoride CIF −143.4 −139.0 −134.3 −128.8 −125.3 −120.8 −114.4 −107.0 −100.5 −145trifluoride CIF3 −80.4 −71.8 −62.3 −51.3 −44.1 −34.7 −20.7 −4.9 +11.5 −83monoxide Cl2O −98.5 −81.6 −73.1 −64.3 −54.3 −48.0 −39.4 −26.5 −12.5 +2.2 −116dioxide ClO2 −59.0 −51.2 −42.8 −37.2 −29.4 −17.8 −4.0 +11.1 −59heptoxide Cl2O7 −45.3 −23.8 −13.2 −2.1 +10.2 +18.3 29.1 44.6 62.2 78.8 −91

Chlorosulfonic acid HSO3Cl 32.0 53.5 64.0 75.3 87.6 95.2 105.3 120.0 136.1 151.0 −80Chromium Cr 1616 1768 1845 1928 2013 2067 2139 2243 2361 2482 1615

carbonyl Cr(CO)6 36.0 58.0 68.3 79.5 91.2 98.3 108.0 121.8 137.2 151.0oxychloride CrO2Cl2 −18.4 +3.2 13.8 25.7 38.5 46.7 58.0 75.2 95.2 117.1

Cobalt chloride CoCl2 770 801 843 904 974 1050 735nitrosyl tricarbonyl Co(CO)3NO −1.3 +11.0 18.5 29.0 44.4 62.0 80.0 −11

Columbium fluoride CbF3 86.3 103.0 121.5 133.2 148.5 172.2 198.0 225.0 75.5Copper Cu 1628 1795 1879 1970 2067 2127 2207 2325 2465 2595 1083Cuprous bromide Cu2Br2 572 666 718 777 844 887 951 1052 1189 1355 504

chloride Cu2Cl2 546 645 702 766 838 886 960 1077 1249 1490 422iodide Cu2I2 610 656 716 786 836 907 1018 1158 1336 605

Cyanogen C2N2 −95.8 −83.2 −76.8 −70.1 −62.7 −57.9 −51.8 −42.6 −33.0 −21.0 −34.4bromide CNBr −35.7 −18.3 −10.0 −1.0 +8.6 14.7 22.6 33.8 46.0 61.5 58chloride CNCl −76.7 −61.4 −53.8 −46.1 −37.5 −32.1 −24.9 −14.1 −2.3 +13.1 −6.5fluoride CNF −134.4 −123.8 −118.5 −112.8 −106.4 −102.3 −97.0 −89.2 −80.5 −72.6

Deuterium cyanide DCN −68.9 −54.0 −46.7 −38.8 −30.1 −24.7 −17.5 −5.4 +10.0 26.2 −12Fluorine F2 −223.0 −216.9 −214.1 −211.0 −207.7 −205.6 −202.7 −198.3 −193.2 −187.9 −223

oxide F2O −196.1 −186.6 −182.3 −177.8 −173.0 −170.0 −165.8 −159.0 −151.9 −144.6 −223.9

1.2

05

(Continued )

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere (Continued )

Pressure, mm Hg

1 5 10 20 40 60 100 200 400 760Compound Melting

name Formula Temperature, °C point, °C

Germanium bromide GeBr4 43.3 56.8 71.8 88.1 98.8 113.2 135.4 161.6 189.0 26.1chloride GeCl4 −45.0 −24.9 −15.0 −4.1 +8.0 16.2 27.5 44.4 63.8 84.0 −49.5hydride GeH4 −163.0 −151.0 −145.3 −139.2 −131.6 −126.7 −120.3 −111.2 −100.2 −88.9 −165

Trichlorogermane GeHCl3 −41.3 −22.3 −13.0 −3.0 +8.8 16.2 26.5 41.6 58.3 75.0 −71.1Tetramethylgermane Ge(CH3)4 −73.2 −54.6 −45.2 −35.0 −23.4 −16.2 −6.3 +8.8 26.0 44.0 −88Digermane Ge2H6 −88.7 −69.8 −60.1 −49.9 −38.2 −30.7 −20.3 −4.7 +3.3 31.5 −109Trigermane Ge3H6 −36.9 −12.8 −0.9 +11.8 26.3 35.5 47.9 67.0 88.6 110.8 −105.6Gold Au 1869 2059 2154 2256 2363 2431 2521 2657 2807 2966 1063Helium He −271.7 −271.5 −271.3 −271.1 −270.7 −270.6 −270.3 −269.8 −269.3 −268.6para−Hydrogen H2 −263.3 −261.9 −261.3 −260.4 −259.6 −258.9 −257.9 −256.3 −254.5 −252.5 −259.1Hydrogen bromide HBr −138.8 −127.4 −121.8 −115.4 −108.3 −103.8 −97.7 −88.1 −78.0 −66.5 −87.0

chloride HCl −150.8 −140.7 −135.6 −130.0 −123.8 −119.6 −114.0 −105.2 −95.3 −84.8 −114.3cyanide HCN −71.0 −55.3 −47.7 −39.7 −30.9 −25.1 −17.8 −5.3 +10.2 25.9 −13.2fluoride H2F2 −74.7 −65.8 −56.0 −45.0 −37.9 −28.2 −13.2 +2.5 19.7 −83.7iodide HI −123.3 −109.6 −102.3 −94.5 −85.6 −79.8 −72.1 −60.3 −48.3 −35.1 −50.9oxide(water) H2O −17.3 +1.2 11.2 22.1 34.0 41.5 51.6 66.5 83.0 100.0 0.0sulfide H2S −134.3 −122.4 −116.3 −109.7 −102.3 −97.9 −91.6 −82.3 −71.8 −60.4 −85.5disulfide HSSH −43.2 −24.4 −15.2 −5.1 +6.0 12.8 22.0 35.3 49.6 64.0 −89.7selenide H2Se −115.3 −103.4 −97.9 −91.8 −84.7 −80.2 −74.2 −65.2 −53.6 −41.1 −64telluride H2Te −96.4 −82.4 −75.4 −67.8 −59.1 −53.7 −45.7 −32.4 −17.2 −2.0 −49.0

Iodine I2 38.7 62.2 73.2 84.7 97.5 105.4 116.5 137.3 159.8 183.0 112.9heptafluoride IF −87.0 −70.7 −63.0 −54.5 −45.3 −39.4 −31.9 −20.7 −8.3 +4.0 5.5

Iron Fe 1787 1957 2039 2128 2224 2283 2360 2475 2605 2735 1535pentacarbonyl Fe(CO)5 −6.5 +4.6 16.7 30.3 39.1 50.3 68.0 86.1 105.0 −21

Ferric chloride Fe2Cl6 194.0 221.8 235.5 246.0 256.8 263.7 272.5 285.0 298.0 319.0 304Ferrous chloride FeCl2 700 737 779 805 842 897 961 1026Krypton Kr −199.3 −191.3 −187.2 −182.9 −178.4 −175.7 −171.8 −165.9 −159.0 −152.0 −156.7Lead Pb 973 1099 1162 1234 1309 1358 1421 1519 1630 1744 327.5

bromide PbBr2 513 578 610 646 686 711 745 796 856 914 373chloride PbCl2 547 615 648 684 725 750 784 833 893 954 501fluoride PbF2 861 904 950 1003 1036 1080 1144 1219 1293 855

1.2

06

iodide PbI2 479 540 571 605 644 668 701 750 807 872 402oxide PbO 943 1039 1085 1134 1189 1222 1265 1330 1402 1472 890sulfide PbS 852 928 975 1005 1048 1074 1108 1160 1221 1281 1114

Lithium Li 723 838 881 940 1003 1042 1097 1178 1273 1372 186bromide LiBr 748 840 888 939 994 1028 1076 1147 1126 1310 547chloride LiCl 783 880 932 987 1045 1081 1129 1203 1290 1382 614fluoride LiF 1047 1156 1211 1270 1333 1372 1425 1503 1591 1681 870iodide LiI 723 802 841 883 927 955 993 1049 1110 1171 446

Magnesium Mg 621 702 743 789 838 868 909 967 1034 1107 651chloride MgCl2 778 877 930 968 1050 1088 1142 1223 1316 1418 712

Manganese Mn 1292 1434 1505 1583 1666 1720 1792 1900 2029 2151 1260chloride MnCl2 736 778 825 879 913 960 1028 1108 1190 650

Mercury Hg 126.2 164.8 184.0 204.6 228.8 242.0 261.7 290.7 323.0 357.0 −38.9Mercuric bromide HgBr2 136.5 165.3 179.8 194.3 211.5 221.0 237.8 262.7 290.0 319.0 237

chloride HgCl2 136.2 166.0 180.2 195.8 212.5 222.2 237.0 256.5 275.5 304.0 277iodide HgI2 157.5 189.2 204.5 220.0 238.2 249.0 261.8 291.0 324.2 354.0 259

Molybdenum Mo 3102 3393 3535 3690 3859 3964 4109 4322 4553 4804 2622hexafluoride MoF6 −65.5 −49.0 −40.8 −32.0 −22.1 −16.2 −8.0 +4.1 17.2 36.0 17oxide MoO3 734 785 814 851 892 917 955 1014 1082 1151 795

Neon Ne −257.3 −255.5 −254.6 −253.7 −252.6 −251.9 −251.0 −249.7 −248.1 −246.0 −248.7Nickel Ni 1810 1979 2057 2143 2234 2289 2364 2473 2603 2732 1452

carbonyl Ni(CO)4 −23.0 −15.9 −6.0 +8.8 25.8 42.5 −25chloride NiCl2 671 731 759 789 821 840 866 904 945 987 1001

Nitrogen N2 −226.1 −221.3 −219.1 −216.8 −214.0 −212.3 −209.7 −205.6 −200.9 −195.8 −210.0Nitric oxide NO −184.5 −180.6 −178.2 −175.3 −171.7 −168.9 −166.0 −162.3 −156.8 −151.7 −161Nitrogen dioxide NO2 −55.6 −42.7 −36.7 −30.4 −23.9 −19.9 −14.7 −5.0 +8.0 21.0 −9.3Nitrogen pentoxide N2O5 −36.8 −23.0 −16.7 −10.0 −2.9 +1.8 7.4 15.6 24.4 32.4 30Nitrous oxide N2O −143.4 −133.4 −128.7 −124.0 −118.3 −114.9 −110.3 −103.6 −96.2 −85.5 −90.9Nitrosyl chloride NOCl −60.2 −54.2 −46.3 −34.0 −20.3 −6.4 −64.5

fluoride NOF −132.0 −120.3 −114.3 −107.8 −100.3 −95.7 −88.8 −79.2 −68.2 −56.0 −134Osmium tetroxide (yellow) OsO4 3.2 22.0 31.3 41.0 51.7 59.4 71.5 89.5 109.3 130.0 56

(white) OsO4 −5.6 +15.6 26.0 37.4 50.5 59.4 71.5 89.5 109.3 130.0 42Oxygen O2 −219.1 −213.4 −210.6 −207.5 −204.1 −201.9 −198.8 −194.0 −188.8 −183.1 −218.7Ozone O3 −180.4 −168.6 −163.2 −157.2 −150.7 −146.7 −141.0 −132.6 −122.5 −111.1 −251Phosgene COCl2 −92.9 −77.0 −69.3 −60.3 −50.3 −44.0 −35.6 −22.3 −7.6 +8.3 −104Phosphorus (yellow) P 76.6 111.2 128.0 146.2 166.7 179.8 197.3 222.7 251.0 280.0 44.1

(violet) P 237 271 287 306 323 334 349 370 391 417 590tribromide PBr3 7.8 34.4 47.8 62.4 79.0 89.8 103.6 125.2 149.7 175.3 −40

1.2

07

(Continued)

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere (Continued )

Pressure, mm Hg

1 5 10 20 40 60 100 200 400 760Compound Melting

name Formula Temperature, °C point, °C

trichloride PCl3 −51.6 −31.5 −21.3 −10.2 +2.3 10.2 21.0 37.6 56.9 74.2 −111.8pentachloride PCl5 55.5 74.0 83.2 92.5 102.5 108.3 117.0 131.3 147.2 162.0

Phosphine PH3 −129.4 −125.0 −118.8 −109.4 −98.3 −87.5 −132.5Phosphonium bromide PH4Br −43.7 −28.5 −21.2 −13.3 −5.0 +0.3 7.4 17.6 28.0 38.3

chloride PH4Cl −91.0 −79.6 −74.0 −68.0 −61.5 −57.3 −52.0 −44.0 −35.4 −27.0 −28.5iodide PH4I −25.2 −9.0 −1.1 +7.3 16.1 21.9 29.3 39.9 51.6 62.3

Phosphorus trioxide P4O6 39.7 53.0 67.8 84.0 94.2 108.3 129.0 150.3 173.1 22.5pentoxide P4O10 384 424 442 462 481 493 510 532 556 591 569oxychloride POCl3 2.0 13.6 27.3 35.8 47.4 65.0 84.3 105.1 2thiobromide PSBr3 50.0 72.4 83.6 95.5 108.0 116.0 126.3 141.8 157.8 175.0 38thiochloride PSCl3 −18.3 +4.6 16.1 29.0 42.7 51.8 63.8 82.0 102.3 124.0 −36.2

Platinum Pt 2730 3007 3146 3302 3469 3574 3714 3923 4169 4407 1755Potassium K 341 408 443 483 524 550 586 643 708 774 62.3

bromide KBr 795 892 940 994 1050 1087 1137 1212 1297 1383 730chloride KCl 821 919 968 1020 1078 1115 1164 1239 1322 1407 790fluoride KF 885 988 1039 1096 1156 1193 1245 1323 1411 1502 880hydroxide KOH 719 814 863 918 976 1013 1064 1142 1233 1327 380iodide KI 745 840 887 938 995 1030 1080 1152 1238 1324 723

Radon Rn −144.2 −132.4 −126.3 −119.2 −111.3 −106.2 −99.0 −87.7 −75.0 −61.8 −71Rhenium heptoxide Re2O7 212.5 237.5 248.0 261.0 272.0 280.0 289.0 307.0 336.0 362.4 296Rubidium Rb 297 358 389 422 459 482 514 563 620 679 38.5

bromide RbBr 781 876 923 975 1031 1066 1114 1186 1267 1352 682chloride RbCl 792 887 937 990 1047 1084 1133 1207 1294 1381 715fluoride RbF 921 982 1016 1052 1096 1123 1168 1239 1322 1408 760iodide RbI 748 839 884 935 991 1026 1072 1141 1223 1304 642

Selenium Se 356 413 442 473 506 527 554 594 637 680 217dioxide SeO2 157.0 187.7 202.5 217.5 234.1 244.6 258.0 277.0 297.7 317.0 340hexafluoride SeF6 −118.6 −105.2 −98.9 −92.3 −84.7 −80.0 −73.9 −64.8 −55.2 −45.8 −34.7oxychloride SeOCl2 34.8 59.8 71.9 84.2 98.0 106.5 118.0 134.6 151.7 168.0 8.5tetrachloride SeCl4 74.0 96.3 107.4 118.1 130.1 137.8 147.5 161.0 176.4 191.5

1.2

08

Silicon Si 1724 1835 1888 1942 2000 2036 2083 2151 2220 2287 1420dioxide SiO2 1732 1798 1867 1911 1969 2053 2141 2227 1710tetrachloride SiCl4 −63.4 −44.1 −34.4 −24.0 −12.1 −4.8 +5.4 21.0 38.4 56.8 −68.8tetrafluoride SiF4 −144.0 −134.8 −130.4 −125.9 −120.8 −117.5 −113.3 −170.2 −100.7 −94.8 −90

Trichlorofluorosilane SiFCl3 −92.6 −76.4 −68.3 −59.0 −48.8 −42.2 −33.2 −19.3 −4.0 +12.2 −120.8Iodosilane SiH3I −53.0 −47.7 −33.4 −21.8 −14.3 −4.4 +10.7 27.9 45.4 −57.0Diiodosilane SiH2I2 3.8 18.0 34.1 52.6 64.0 79.4 101.8 125.5 149.5 −1.0Disiloxan (SiH3)2O −112.5 −95.8 −88.2 −79.8 −70.4 −64.2 −55.9 −43.5 −29.3 −15.4 −144.2Trisilane Si3H8 −68.9 −49.7 −40.0 −29.0 −16.9 −9.0 +1.6 17.8 35.5 53.1 −117.2Trisilazane (SiH3)3N −68.7 −49.9 −40.4 −30.0 −18.5 −11.0 −1.1 +14.0 31.0 48.7 −105.7Tetrasilane Si4H10 −27.7 −6.2 +4.3 15.8 28.4 36.6 47.4 63.6 81.7 100.0 −93.6Octachlorotrisilane Si3Cl3 46.3 74.7 89.3 104.2 121.5 132.0 146.0 166.2 189.5 211.4Hexachlorodisiloxane (SiCl3)2O −5.0 17.8 29.4 41.5 55.2 63.8 75.4 92.5 113.6 135.6 −33.2Hexachlorodisilane Si2Cl6 +4.0 27.4 38.8 51.5 65.3 73.9 85.4 102.2 120.6 139.0 −1.2Tribromosilane SiHBr3 −30.5 −8.0 +3.4 16.0 30.0 39.2 51.6 70.2 90.2 111.8 −73.5Trichlorosilane SiHCl3 −80.7 −62.6 −53.4 −43.8 −32.9 −25.8 −16.4 −1.8 +14.5 31.8 −126.6Trifluorosilane SiHF3 −152.0 −142.7 −138.2 −132.9 −127.3 −123.7 −118.7 −111.3 −102.8 −95.0 −131.4Dibromosilane SiH2Br2 −60.9 −40.0 −29.4 −18.0 −5.2 +3.2 14.1 31.6 50.7 70.5 −70.2Difluorosilane SiH2F2 −146.7 −136.0 −130.4 −124.3 −117.6 −113.3 −107.3 −98.3 −87.6 −77.8Monobromosilane SiH3Br −85.7 −77.3 −68.3 −57.8 −51.1 −42.3 −28.6 −13.3 +2.4 −93.9Monochlorosilane SiH3Cl −117.8 −104.3 −97.7 −90.1 −81.8 −76.0 −68.5 −57.0 −44.5 −30.4Monofluorosilane SiH3F −153.0 −145.5 −141.2 −136.3 −130.8 −127.2 −122.4 −115.2 −106.8 −98.0Tribromofluorosilane SiFBr3 −46.1 −25.4 −15.1 −3.7 +9.2 17.4 28.6 45.7 64.6 83.8 −82.5Dichlorodifluorosilane SiF2Cl2 −124.7 −110.5 −102.9 −94.5 −85.0 −78.6 −70.3 −58.0 −45.0 −31.8 −139.7Trifluorobromosilane SiF3Br −69.8 −55.9 −41.7 −70.5Trifluorochlorosilane SiF3Cl −144.0 −133.0 −127.0 −120.5 −112.8 −108.2 −101.7 −91.7 −81.0 −70.0 −142Hexafluorodisilane Si2F6 −81.0 −68.8 −63.1 −57.0 −50.6 −46.7 −41.7 −34.2 −26.4 −18.9 −18.6Dichlorofluorobromosilane SiFCl2Br −86.5 −68.4 −59.0 −48.8 −37.0 −29.0 −19.5 −3.2 +15.4 35.4 −112.3Dibromochlorofluorosilane SiFClBr2 −65.2 −45.5 −35.6 −24.5 −12.0 −4.7 +6.3 23.0 43.0 59.5 −99.3Silane SiH4 −179.3 −168.6 −163.0 −156.9 −150.3 −146.3 −140.5 −131.6 −122.0 −111.5 −185Disilane Si2H6 −114.8 −99.3 −91.4 −82.7 −72.8 −66.4 −57.5 −44.6 −29.0 −14.3 −132.6Silver Ag 1357 1500 1575 1658 1743 1795 1865 1971 2090 2212 960.5

chloride AgCl 912 1019 1074 1134 1200 1242 1297 1379 1467 1564 455iodide AgI 820 927 983 1045 1111 1152 1210 1297 1400 1506 552

Sodium Na 439 511 549 589 633 662 701 758 823 892 97.5bromide NaBr 806 903 952 1005 1063 1099 1148 1220 1304 1392 755chloride NaCl 865 967 1017 1072 1131 1169 1220 1296 1379 1465 800

1.2

09

(Continued )

TABLE 1.45 Vapor Pressures of Inorganic Compounds up to 1 Atmosphere (Continued)

Pressure, mm Hg

1 5 10 20 40 60 100 200 400 760Compound Melting

name Formula Temperature, °C point, °C

cyanide NaCN 817 928 983 1046 1115 1156 1214 1302 1401 1497 564fluoride NaF 1077 1186 1240 1300 1363 1403 1455 1531 1617 1704 992hydroxide NaOH 739 843 897 953 1017 1057 1111 1192 1286 1378 318iodide NaI 767 857 903 952 1005 1039 1083 1150 1225 1304 651

Strontium Sr 847 898 953 1018 1057 1111 1192 1285 1384 800Strontium oxide SrO 2068 2198 2262 2333 2410 2430Sulfur S 183.8 223.0 243.8 264.7 288.3 305.5 327.2 359.7 399.6 444.6 112.8

monochloride S2Cl2 −7.4 +15.7 27.5 40.0 54.1 63.2 75.3 93.5 115.4 138.0 −80hexafluoride SF5 −132.7 −120.6 −114.7 −108.4 −101.5 −96.8 −90.9 −82.3 −72.6 −63.5 −50.2

Sulfuryl chloride SO2Cl2 −35.1 −24.8 −13.4 −1.0 +7.2 17.8 33.7 51.3 69.2 −54.1Sulfur dioxide SO2 −95.5 −83.0 −76.8 −69.7 −60.5 −54.6 −46.9 −35.4 −23.0 −10.0 −73.2

trioxide (a) SO3 −39.0 −23.7 −16.5 −9.1 −1.0 +4.0 10.5 20.5 32.6 44.8 16.8trioxide (b ) SO3 −34.0 −19.2 −12.3 −4.9 +3.2 8.0 14.3 23.7 32.6 44.8 32.3trioxide (g ) SO3 −15.3 −2.0 +4.3 11.1 17.9 21.4 28.0 35.8 44.0 51.6 62.1

Tellurium Te 520 605 650 697 753 789 838 910 997 1087 452chloride TeCl4 233 253 273 287 304 330 360 392 224fluoride TeF5 −111.3 −98.8 −92.4 −83.0 −78.4 −73.8 −67.9 −57.3 −48.2 −38.6 −37.8

Thallium Tl 825 931 983 1040 1103 1143 1196 1274 1364 1457 3035Thallous bromide TlBr 490 522 559 598 621 653 703 759 819 460

chloride TlCl 487 517 550 589 612 645 694 748 807 430iodide TlI 440 502 531 567 607 631 663 712 763 823 440

Thionyl bromide SOBr2 −6.7 +18.4 31.0 44.1 58.8 68.3 80.6 99.0 119.2 139.5 −52.2Thionyl chloride SOCl2 −52.9 −32.4 −21.9 −10.5 +2.2 10.4 21.4 37.9 56.5 75.4 −104.5Tin Sn 1492 1634 1703 1777 1855 1903 1968 2063 2169 2270 231.9Stannic bromide SnBr4 58.3 72.7 88.1 105.5 116.2 131.0 152.8 177.7 204.7 31.0Stannous chloride SnCl2 316 366 391 420 450 467 493 533 577 623 246.8Stannic chloride SnCl4 −22.7 −1.0 +10.0 22.0 35.2 43.5 54.7 72.0 92.1 113.0 −30.2

iodide SnI4 156.0 175.8 196.2 218.8 234.2 254.2 283.5 315.5 348.0 144.5hydride SnH4 −140.0 −125.8 −118.5 −111.2 −102.3 −96.6 −89.2 −78.0 −65.2 −52.3 −149.9

1.2

10

Tin tetramethyl Sn(CH3)4 −51.3 −31.0 −20.6 −9.3 +3.5 11.7 22.8 39.8 58.5 78.0trimethyl-ethyl Sn(CH3)3 ⋅ C2H5 −30.0 −7.6 +3.8 16.1 30.0 38.4 50.0 67.3 87.6 108.8trimethyl-propyl Sn(CH3)3 ⋅ C3H7 −12.0 +10.7 21.8 34.0 48.5 57.5 69.8 88.0 109.6 131.7

Titanium chloride TiCl4 −13.9 +9.4 21.3 34.2 48.4 58.0 71.0 90.5 112.7 136.0 −30Tungsten W 3990 4337 4507 4690 4886 5007 5168 5403 5666 5927 3370Tungsten hexafluoride WF6 −71.4 −56.5 −49.2 −41.5 −33.0 −27.5 −20.3 −10.0 +1.2 17.3 −0.5Uranium hexafluoride UF6 −38.8 −22.0 −13.8 −5.2 +4.4 10.4 18.2 30.0 42.7 55.7 69.2Vanadyl trichloride VOCl3 −23.2 +0.2 12.2 26.6 40.0 49.8 62.5 82.0 103.5 127.2Xenon Xe −168.5 −158.2 −152.8 −147.1 −141.2 −137.7 −132.8 −125.4 −117.1 −108.0 −111.6Zinc Zn 487 558 593 632 673 700 736 788 844 907 419.4

chloride ZnCl2 428 481 508 536 566 584 610 648 689 732 365fluoride ZnF2 970 1055 1086 1129 1175 1207 1254 1329 1417 1497 872diethyl Zn(C2H5)2 −22.4 0.0 +11.7 24.2 38.0 47.2 59.1 77.0 97.3 118.0 −28

Ziroconium bromide ZrBr4 207 237 250 266 281 289 301 318 337 357 450chloride ZrCl4 190 217 230 243 259 268 279 295 312 331 437iodide ZrI4 264 297 311 329 344 355 369 389 409 431 499

1.2

11

1.212 SECTION ONE

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds

Substance State Eq. Range,°C A B C

*Crystalline solid.

AluminumA1C13

A1203Ammonium

NH3

NH4BrNH4C1NH4INH4N3

AntimonySbSbBr3

SbCl3SbI3Sb2Se3

ArgonAr

ArsenicAs

AsCl3

As2O3

BariumBaBaH2 [97% pure]

BismuthBiBiClj

BoronBBr3

BC13

B(CH3)3

B2H,B5Hn

BromineBr2

BrF3

BrF5

BrO2FCadmium

Cd

CdI2

CalciumCa

c*liqsubi csubi csubi cc

c

subi c

cliq

liqliq

cliqliqliqliq

22

111111

22222

11

22222

22

22

21212

11111

222

22

70-1901840-2000

1070-1325235-324170-253330-445

440-815800-86050-100

100-310315-490

930-1130500-1000

1210-142091-213

-40 to 90

-118 to -20

-43 to 8.4

150-321500-840385-450

500-700960-1100

16.2414.22

9.963 827.360 509.220 09.355 79.147 0

10.433 4

9.0518.0058.0907.8318.790 6

7.505 816.616 51

10.8006.6927.953

12.1276.513

15.7656.86

8.8762.681

7.6556.188 117.459 56.366 387.901

9.72096.877 807.729 747.273 687.436 51

8.5647.8979.269

9.69716.240

600628200

1 617.907926.132

39473 703.73 8582 821.0

987128732 582.33 350.556 432.3

399.085304.227

694724602 042.75 815.812 722.2

182804000

10446685.519

1 740.3756.89

1 157.99521.490

1 690.3

2 041.31 119.681 673.951 219.281 195.8

569352186383

1018519325

272.55240.17227.0232.0226.0240.0

272.63267.32

214.0

241.98

260.1221.38219.48236.40260.1

INORGANIC CHEMISTRY 1.213

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued )

Substance State Eq. Range,°C A B C

(Continued )

CarbonC [as C(g)]

[as C2(g)][all species]

CarbonCNBrCNFCO

C02

C302

COC12

COF2

COSCS2CSe2

CSeSCesium

CsCsBrCsClCsFCsH

CslChlorine

C12

C1FC1F3

C1F5

C1O2

C12OC10C103

C1207

C1O2FC103F

CopperCuBrCuClCul

FluorineF2FN03

GermaniumGeCl4

Helium3He

4He

liqliqliq

subi c

c iliqcliqliq

cliqliqliq

liqliqliqliqliqliq

liqliq

liqliq

1

111111

2222222

11111111111

222

11

2

-76 to -47

-71 to 7

-109 to -84-111 to -49

3-800-50

- 16 to 84

200-350978-1305986-1295

1033-1255245-378340-440

1052-1280

997-1351878-1369991-1154

10.4-86

-271. 13 to -270.86-271.1310 -269.92-271.410 -270.1-271 .4 to -268.9-271.410 -268.1

11.042812.583 29.381 3

9.488 96.778 97.414 86.694 229.810667.188 996.971 336.885 56.907 236.942 796.776 736.699 6

6.9497.9908.3407.703

11.799.259.124

9.705 126.937 906.9897.366 856.269 336.036 117.132 687.538 676.869 296.677 156.895 19

5.4605.4545.570

6.765 886.658 6

7.340

4.272 75.10004.558 75.320 756.004 60

377364328127240

2 041.8697.61342.50291.743

1 347.7861 100.94

998.770576.70804.48

1 169.111 353.201 161.97

3 833.78 022.538 523.947 359.21590044109699.11

1 444.19861.34682.1

1 096.28653.06590.09

1 021.561 404.181 214.00

809.78791.73

4 173.24215.04215.0

304.35769.5

2 010.9

5.59411.0628.1548

14.651524.0668

302.2318.3264.0

251.70224.95269.0267.99273.00249.15236.68228.58250.0241.59219.95219.59

267.13246.33256232.63206.6176.15238.16257.00220.79218.96243.88

266.54248.0

273.840274.950273.710274.950276.650

1.214 SECTION ONE

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued )

Substance State Eq. Range,°C A B C

Hydrogen'H2 normal, 25% para c :

liqequilibrium c

liqWH (DH) c

liq2H2 (D2) normal, c

66.7% ortho liq2H2 equilibrium, c

97.8% ortho liq3H2 (T2) normal, 25% c

para liq'HBr c

liq2HBr (DBr) c

liq'HC1 c

liq2HC1 (DC1) c

liqHCN liq'HF liq2HF (DF) liq'HI c

liq2HI (DI) c

liqHN3 liqHN03 liq'H202H20 (D20)H2

18O

H2O2 liqHPO2F liqH2S c

liqH2S2 liqH2S3 liqH2S4 liqH2S5 liqHSO3C1 liqHSO3F liqH2Se c

liqH2Te liq

IodineI2 c

liqICI liqIF5 c

liqIF, c

6.043 865.824 386.042 075.814 646.960 086.016 127.726 056.128 257.751 106.044 686.184 036.089 217.667 616.287 537.500 93

1 6.162 381 8.134731 7.170 001 7.850 471 6.935 961 - 16 to 46 7.528 21 7.680 981 7.217 041 7.315 61 5.608 91 7.314 91 5.601 81 6.8571 7.5119

[See Tables 5.4 and 5.6][See Table 5.7]

1 0-60 8.133 21 60-120 7.972081 7.969 171 6.735 31 7.614 181 6.993 921 6.9741 6.8071 6.9451 7.3201 7.0491 7.399 51 7.635 41 6.966 01 7.000

1 9.810 91 7.018 11 7.702 11 10.9641 7.464 81 7.998

66.50767.507865.96166.794599.96877.1349

135.46183.5251

135.5879.588876.744581.8971

878.57540.82820.68505.68941.57745.80843.32668.20

1329.51475.601268.37

11

1111

111211

894.32416.04889.52413.98066406

762.39668.84886.76342.9885.319768.130232488772104480521927.6787.67935

2901.011211

610.9517.9538460340

274.630275.700274.60275.650276.590275.620278.550275.216278.50274.680271.850273.650253.2225.44247.3220.6268.06258.88258.32249.50260.4287.88273.87239.6188.1238.8187.8232221.0

235.660227.700220.6232.0250.25249.09225209196189201174.0240.0235.0229

256.00205.0217.0245216.0256

INORGANIC CHEMISTRY 1.215

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued )

(Continued )

Substance State Eq. Range,°C A B C

IridiumIrF6

IronFeCl2

FeCl3FeI2

KryptonKr

LeadPbPbBr2

PbCl2PbF2

LithiumLiBrLiClLiFLiH

LilMagnesium

MgMgH2

MercuryHgHgBr2

HgCl2

Hg2Cl2HgI2

NeonNe

NeptuniumNpF6

NickelNi(CO)4

NiobiumNbBr5

NbCl5

NbF5

NitrogenN2 natural

15N2

NC13NF3

NH3

cliq

liqliqc

cliq

cliq

liq

liqliqliq

cliqcliq

liq

22

22222

11

2222

222222

22

22212

11

3

2

222

111111

0.4-4444-54

708-834700-930160-304517-577601-686

525-1325735-918500-950

1078-1289

1010-12651045-13251398-1666500-650700-800940-1140

900-1070337-415

130-270130-270275-309

266-360

55.1-76.8

2-40

210-254

8.6187.952

9.7948.33

15.1113.1839.674

7.539 556.630 70

7.8278.0648.9618.391

8.0687.9398.753

11.2279.9268.011

12.9939.78

[See Table 5.3]10.09410.0948.4098.521 518.115

7.065 166.084 44

0.010 23

7.780

8.928.378.439

7.345 126.494 577.363 966.494 146.9566.779 66

[See Table 1.49]

1 8681 657

745570617 142

107787716

539.48416.38

9 845.46 163.17411.48 623.2

7 975.58 142.7

11407960082047500

13 579.83857

4 168.04 118.343 187.13 110.963 278.5

110.6178.380

1 191.1

1 556.5

3 85028272824

322.222255.680323.17255.535

1 190501.913

269.8264.45

168.0

272.00270.550

-2.5825

269.980266.550269.88266.451221257.79

1.216 SECTION ONE

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued)

Substance State Eq. Range,°C A B C

Nitrogen (cont.)N2H4

NO natural

N2O

N2O4 equilibriummixture

N205

NOCÍ

N203

NOFNO2C1NO2F

OsmiumOsF5

OsF6

OsF8

OsO4

OsO3F2

Oxygen0203OF2

02F2

03F2

PalladiumPdCl2

PhosphorusP red, V

whiteP4 black, o-rhPBr3

PBr5

PBrF2

PBr2FPC13

PC15

PC1F2

PC12FP(OCN)3

PF3

PF5

PH3

P2H4

P406

P4010

POBr3

POBrCl2POBrCIF

liqcliqcliqC

liqccliq

liqliqliq

liqliqliqliq

subí csubí c

liqliqliqliqliqcliqliqliqliqliqliqcliqliqliqcIIIciliqliqliqliq

11111111112111

22222

11112

2

111111111

2

111

-25toO

75-18034-4838-47

-38 to 4059-105

79-114

680-857

-40 to 173to 104

- 133 to - 16-115 to 78-92 to 76

to 160

-165 to -47- 144 to 14

-2 to 169- 152 to - 101-93.8 to -84.5

24-175

51-19231-165

7.801 99.628 268.743 009.437 007.003 94

10.736 318.917 12

11.64458.540 87.361 54

10.306.44355.372 36.833 4

9.757.4707.650

10.71007.994

6.691 446.8377.236 196.779 026.1343

6.32

11.0606.936 9

12.4056.915 56.9486.904 26.858 06.826 7

10.206 87.0336.639 66.796 568.745 56.860 46.914 47.482 356.715 596.862 86.716 379.707 0

10.843 26.935 27.007 86.9246.914

1 679.07758.736682.938

1 174.020654.260

2 075.531 798.5425101 397.31 094.732 057.9

556.13395.40654.55

34291 4731 5252 951.001 911

319.013552.5545.05756.39675.57

5032

53231 907.666711 590.51 320

885.121 210.31 1962 903.11 490

780.88982.332

2595620.22647.21794.496645.512

1 1371 412.83 822642430691 609.21 4111 214

227.7266.00268.27268.22247.16252.80276.80253.0261.0249.70

216.0174.0238.0

266.697251.0269.91250.16

220190.0247221.0214236.0226.0227.0237.0200.0255.0237.00

257.0245.0265.20256.066227.0193.0201.0213152198.0213222

INORGANIC CHEMISTRY 1.217

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued )

(Continued )

Substance State Eq. Range,°C A B C

Phosphorus (continued)

POBrF2

POBr2FPOC13

POC1F2

POC12FPOF3

PO(OCN)3

PO(SCN)3

£"4^10PSBr3

PS(OCN)3

PlatinumPtPtF6

PoloniumPoPoCl4

PotassiumKKBrKC1KFKOHKI

ProtactiniumRadon

Rn

RheniumReF5

ReF6

ReF7

ReO2

ReO3

Re2O7

ReOF4

ReOF5

ReS2

Re2S7

RubidiumRbRbClRbF

RutheniumRuOF4

SeleniumSeSeCl4

liqliqliqliqliqcliq

cliq

liq

iiqliq

liq

cliq

ccliqcliqcliqcliqliqliqliqcc

iiqc

11222222

21

11

2222222

11

23333222222222

222

2

11

-85 to 32-117 to 110

1.2-105-96 to 3-80 to 53

5-19314-300

1425-176561.3-81.7

260-7601095-13751116-14181278-15001170-13271063-1333

-3.45 to 18.518.5-48

- 14.5 to 48.348.3-74.6650-785480-660325-420300-480230-360108-17241-73

500-700260-410

250-3701142-13951142-1400

120-160

7.101 96.721 26.865 86.926 67.084 65

10.930 57.11559.168 28.533 09.17

10.1058.338 3

10.032

7.78689.15

7.041 47.554

7.1837.9368.1309.0007.3307.949

17.27

7.495 56.701 5

9.0249.123 0

18.208 113.043 2

-21.583511.655.345

15.167.7458.98

10.097.7273.2148.86

6.9769.1118.570

8.60

7.631 610.250 9

1 118.91 328.91 297.2

946.961 201.861783

810.12931324049403 196.22 641.93492

253845686

5 017.62360

4 434.338 555.38 863.4

108387 103.38 132.27377

884.41718.25

30371 765.41 956.72 205.8

244.28144374742

1088249663 86832061 67949764800

3 969.5103739 568.4

2616

4213.03 068.8

233.0236.0220.0231.0233.00261.0231.0

27.49

241.0115

255.0250.0

0.17903.5991.470 3

-9.908 3

202.0225.0

1.218 SECTION ONE

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued )

(Continued )

Substance State Eq. Range,°C A B C

Selenium (Continued)

SeF4

SeF6

SeO2SeOCl2SeOF2

SiliconSiCl4SiHjSiASi3H8

SilverAgCl

SodiumNaNaClNaCINaCNNaFNalNaOH

StrontiumSr

SulfurS equilibriumS2Br2

SC12

S2C12S2F2

SF4

SF6S2F10

S02

SO3 "icelike""woollike"

SOBr2

SOC12SOC1FSOF2

SOF4

S202F10

S205C12S2O5C1FS205F2

S205F4

SO2BrFSO2C12S02C1FS02F2

TantalumTaBr5TaCl5

liqc

liqliq

liq

liqliqliqliqliqliqcliqcliqcIIIellciliqliqliqliqliqliqliqliqliqliqHqliqliqHqliqliqliq

1222

2

2222222

2

11111111111

1111

22

0-53-160 to -112-115 to -14.6-70 to 52

1255-1442

180-883976-1155

1156-1430800-1360

1562-17011063-13071010-1402

940-1140

220-240

7.888 78.385 46.577 816.257 37.420

6.857 266.8817.2587.676

8.179

7.5538.329 78.5487.4728.6408.3717.030

16.056

6.843 597.1778.4546.783 66.6846.839 58.41607.067 69.754 37.282 28

10.565 711.590 114.255 99.050 857.0567.287 457.173 16.959 067.071 86.8747.0197.015 66.8816.8857.142 87.001 76.521 56.907 0

8.118.68

1 603.01 121.41 879.81

970.871 380

1 138.92645.9

1 133.41 559.1

9 688.7

5 395.49 417.079 704.38 122.81

11 396.68 623.26894

18 802.8

2 500.121 6601 5941 341

628823.4

1 096.51 100.61 553.8

999.9002 273.82 665.63 692.11 735.3114451 446.71 100.1

775.48840.3

1 11014601 257.41 1201 1401 1551 209

793.73784.3

32602970

215.0250.0179.0112.0178

228.88

186.30185227206.0256248.0262.0234.0225.0237.190255.0264.0273.0236.50206252.7244.00234.00249.0229202204.0229227231.0224.0210.70250

INORGANIC CHEMISTRY 1.219

TABLE 1.46 Vapor Pressures of Various Inorganic Compounds (Continued)

(Continued )

Substance State Eq. Range,°C A B C

Tantalum (Continued)TaF5

TaI5Technetium

TcF6

TcO3FTc20,

TelluriumTeTeCL,TeF6

Te^oTe02

ThalliumTlTIP

ThoriumThF4

ThH2

TinSnCl4SnH4

TitaniumTiCl2TiCl3TiCl4TiI4

TungstenW

UraniumUF6

UH3 dissociationU2H3 (UD3)U3H3 (UT3)

VanadiumVBr2

VBr3

VC12

VC13

VC14

VF3

VF5

VI2

VOC13

XenonXe

XeF2

XeF4

ZincZn

liqliq

liqliqcliq

liqliqliqliq

liq

subi csubi cliqliq

liqliq

csubi c

subi c

liqsubi csubi cliqsubi cliq

cliqsubi csubi c

c

22

3222

11112

22

22

22

2222

2

11222

22222222222

1111

2

37.4-51.718.3-51.8

450-733

950-1200282-298

up to 883

-5210-38-148 to -49

455-550-23 to 136

160-360

2230-2770

64-116116-230200-430

541-716800-905314-427910-1100352-56730-153

650-920-20 to 19.519.5-45.5850-101615.4-125

250-419

8.5247.67

24.808 78.417

18.2798.999

7.301 07.558 66.748 86.901 8

12.328 4

6.124012.52

10.8219.50

9.8247.400

9.3010.4017.6837.577

9.920

6.994 647.690 699.399.439.46

9.085.9

11.125.725

11.207.62

12.3578.1687.5492.567.69

7.484 56.642 89

10.019 4710.913 87

9.200

28343950

2 405 5.803 6206572053571

5 370.6 2212355 115

807.0 247.01 150 227.0

13222

62685484

152707650

2 441.23999.68

850082961 9643054

46850

1 126.288 221.9631 683.165 302.148459045004471

1046098307470972197772020

156032608242356001 920

714.896 264.0566.282 258.660

2 683.96 261.683 095.06 269.56

6 946.6

1.220 SECTION ONE

TABLE 1.47 Vapor Pressure of Mercury

Temp. °C mm of Hg Temp. °C mm of Hg Temp. °C mm of Hg

0

246g10

1214161820

2224262830

3234363840

4244464850

5254565860

6264666870

7274767880

8284868890

0.000 185

0.000 2280.000 2760.000 3350.000 4060.000 490

0.000 5880.000 7060.000 8460.001 0090.001 201

0.001 4260.001 6910.002 0000.002 3590.002 777

0.003 2610.003 8230.004 4710.005 2190.006 079

0.007 0670.008 2000.009 4970.010 980.012 67

0.014 590.016 770.019 250.022 060.025 24

0.028 830.032 870.037 400.042 510.048 25

0.054 690.061 890.069 930.078 890.088 80

0.100 00.112 40.126 10.14130.1582

92949698100

102104106108110

112114116118120

122124126128130

132134136138140

142144146148150

152154156158160

162164166168170

172174176178180

182

0.17690.19760.22020.24530.2729

0.30320.33660.37310.41320.4572

0.50520.55760.61500.67760.7457

0.81980.90040.98821.0841.186

1.2981.4191.5511.6921.845

2.0102.1882.3792.5852.807

3.0463.3033.5783.8734.189

4.5284.8905.2775.6896.128

6.5967.0957.6268.1938.796

9.436

184186188190

192194196198200

202204206208210

212214216218220

222224226228230

232234236238240

242244246248250

252254256258260

262264266268270

272274

10.11610.83911.60712.423

13.28714.20315.17316.20017.287

18.43719.65220.93622.29223.723

25.23326.82628.50430.27132.133

34.09236.15338.31840.59542.989

45.50348.14150.90953.81256.855

60.04463.38466.88270.54374.375

78.38182.56886.94491.51896.296

101.28106.48111.91117.57123.47

129.62136.02

INORGANIC CHEMISTRY 1.221

TABLE 1.47 Vapor Pressure of Mercury (Continued )

Temp. °C mm of Hg Temp. °C mm of Hg Temp. °C mm of Hg

*Critical point.

276278280

282284286288290

292294296298300

302304306308310

312314316318320

322324326328330

142.69149.64156.87

164.39172.21180.34188.79197.57

206.70216.17226.00236.21246.80

257.78269.17280.98293.21305.89

319.02332.62346.70361.26376.33

391.92408.04424.71441.94459.74

332334336338340

342344346348350

352354356358360

362364366368370

372374376378380

382384386

478.13497.12516.74537.00557.90

579.45601.69624.64648.30672.69

697.83723.73750.43777.92806.23

835.38865.36896.23928.02960.66

994.341028.91064.41100.91138.4

1177.01.216.61257.3

388390

392394396398400

430460490

520550600650700

750800850900*950

1000105011001150120012501300

1299.11341.9

1386.11431.31477.71525.21574.1

246437155420

769110650

22.87 atm35.49 atm52.51 atm

74.86 atm103.31 atm138.42 atm180.92 atm226.58 atm

290.5 atm358.1 atm437.3 atm521.3 atm616.8 atm721.4 atm835.9 atm

1.222 SECTION ONE

TABLE 1.48 Vapor Pressure of Ice in Millimeters of Mercury

For temperatures from –99 to 0°C.

The values in the table are for ice in contact with its own vapor. Where the ice is in contact with air at a temper-ature t°C, this correction must be added: Correction = 20p/(100)(t + 273).

t, °C p, mm Hg t, °C p, mm Hg t, °C p, mm Hg

-99-98-97-96-95-94-93-92-91-90-89-88-87-86-85-84-83-82-81-80-79-78-77-76-75-74-73-72-71-70-69-68-67-66-65-64-63-62-61-60-59-58-57-56-55-54-53-52

0.000 0120.000 0150.0000180.000 0220.000 0270.000 0330.000 0400.000 0480.000 0580.000 0700.000 0840.000 100.000 120.000 140.000 170.000 200.000 240.000 290.000 340.000 400.000 470.000 560.000 660.000 770.000 900.001 050.001 230.001 430.001 670.001 940.002 250.002 610.003 020.003 490.004 030.004 640.005 340.006 140.007 030.008 080.009 250.010 60.012 10.013 80.015 70.017 80.020 30.023 0

-51-50-49-48-47-46-45-44-43-42-41-40-39-38-37-36-35-34-33-32-31-30.0-29.5-29.0-28.5-28.0-27.5-27.0-26.5-26.0-25.5-25.0-24.5-24.0-23.5-23.0-22.5-22.0-21.5-21.0-20.5-20.0-19.5-19.0-18.5-18.0-17.5-17.0

0.026 10.029 60.033 40.037 80.042 60.048 10.054 10.060 90.068 40.076 80.086 20.096 60.108 10.12090.135 10.150 70.168 10.187 30.208 40.231 80.257 50.285 90.3010.3170.3340.3510.3700.3890.4090.4300.4530.4760.5000.5260.5520.5800.6090.6400.6720.7050.7400.7760.8140.8540.8950.9390.9841.031

-16.5-16.0-15.5-15.0-14.5-14.0-13.5-13.0-12.5-12.0-11.5-11.0-10.5-10.0-9.8-9.6-9.4-9.2-9.0-8.8-8.6-8.4-8.2-8.0-7.8-7.6-7.4-7.2-7.0-6.8-6.6-6.4-6.2-6.0

e OJ.O

-5.6-5.4-5.2-5.0-4.8-4.6-4.4-4.2-4.0-3.8-3.6-3.4-3.2

1.0801.1321.1860.2411.3001.3611.4241.4901.5591.6321.7071.7851.8661.9501.9852.0212.0572.0932.1312.1682.2072.2462.2852.3262.3672.4082.4502.4932.5372.5812.6262.6722.7182.7652.8132.8622.9122.9623.0133.0653.1173.1713.2253.2803.3363.3933.4513.509

INORGANIC CHEMISTRY 1.223

TABLE 1.48 Vapor Pressure of Ice in Millimeters of Mercury (Continued )

TABLE 1.49 Vapor Pressure of Liquid Ammonia, NH3

t°C. p in atm t°C. p in atm t°C. p in atm

−78 0.0582 −6 3.3677 66 29.784−76 0.0683 −4 3.6405 68 31.211−74 0.0797 −2 3.9303 70 32.687−72 0.0929 0 4.2380 72 34.227−70 0.1078 +2 4.5640 74 35.813−68 0.1246 4 4.9090 76 37.453−66 0.1437 6 5.2750 78 39.149−64 0.1651 8 5.6610 80 40.902−62 0.1891 10 6.0685 82 42.712−60 0.2161 12 6.4985 84 44.582−58 0.2461 14 6.9520 86 46.511−56 0.2796 16 7.4290 88 48.503−54 0.3167 18 7.9310 90 50.558−52 0.3578 20 8.4585 92 52.677−50 0.4034 22 9.0125 94 54.860−48 0.4536 24 9.5940 96 57.111−46 0.5087 26 10.2040 98 59.429−44 0.5693 28 10.8430 100 61.816−42 0.6357 30 11.512 102 64.274−40 0.7083 32 12.212 104 66.804−38 0.7875 34 12.943 106 69.406−36 0.8738 36 13.708 108 72.084−34 0.9676 38 14.507 110 74.837−32 1.0695 40 15.339 112 77.668−30 1.1799 42 16.209 114 80.578−28 1.2992 44 17.113 116 83.570−26 1.4281 46 18.056 118 86.644−24 1.5671 48 19.038 120 89.802−22 1.7166 50 20.059 122 93.045−20 1.8774 52 21.121 124 96.376−18 2.0499 54 22.224 126 99.796−16 2.2349 56 23.372 128 103.309−14 2.4328 58 24.562 130 106.913−12 2.6443 60 25.797 132 110.613−10 2.8703 62 27.079 132.3 111.3(c.p.)−8 3.1112 64 28.407

t, °C p, mm Hg t, °C p, mm Hg t, °C p, mm Hg

-3.0-2.8-2.6-2.4-2.2-2.0

3.5683.3603.6913.7533.8163.880

-1.8-1.6-1.4-1.2-1.0

3.9464.0124.0794.1474.217

-0.8-0.6-0.4-0.2

0.0

4.2874.3594.4314.5044.579

1.224 SECTION ONE

TABLE 1.50 Vapor Pressure of Water

For temperatures from –10 to 120°C.

The values in the table are for water in contact with its own vapor. Where the water is in contact with air at a tem-perature t in degrees. Celsius, the following correction must be added: Correction (when t ≤ 40°C) = p(0.775 –0.000 313t)/100; correction (when t > 50°C) = p(0.0652 – 0.000 087 5t)/100.

t, °C p, mm Hg t, °C p, mm Hg t, °C p, mm Hg t, °C p, mm Hg

-10.0-9.5-9.0-8.5-8.0-7.5-7.0-6.5-6.0-5.5-5.0-4.5-4.0-3.5-3.0-2.5-2.0-1.5-1.0-0.5

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5

10.010.511.011.512.012.5

2.1492.2362.3262.4182.5142.6132.7152.8222.9313.0463.1633.2843.4103.5403.6733.8133.9564.1054.2584.4164.5794.7504.9265.1075.2945.4865.6855.8896.1016.3186.5436.7757.0137.2597.5137.7758.0458.3238.6098.9059.2099.5219.844

10.17610.51810.870

13.013.514.014.515.015.215.415.615.816.016.216.416.616.817.017.217.417.617.818.018.218.418.618.819.019.219.419.619.820.020.220.420.620.821.021.221.421.621.822.022.222.422.622.823.023.2

11.23111.60411.98712.38212.78812.95313.12113.29013.46113.63413.80913.98714.16613.34714.53014.71514.90315.09215.28415.47715.67315.87116.07116.27216.47716.68516.89417.10517.31917.53517.75317.97418.19718.42218.65018.88019.11319.34919.58719.82720.07020.31620.56520.81521.06821.324

23.423.623.824.024.224.424.624.825.025.225.425.625.826.026.226.426.626.827.027.227.427.627.828.028.228.428.628.829.029.229.429.629.830.030.230.430.630.831.031.231.431.631.832.032.232.4

21.58321.84522.11022.38722.64822.92223.19823.47623.75624.03924.32624.61724.91225.20925.50925.81226.11726.42626.73927.05527.37427.69628.02128.34928.68029.01529.35429.69730.04330.39230.74531.10231.46131.82432.19132.56132.93433.31233.69534.08234.47134.86435.26135.66336.06836.477

32.632.833.033.233.433.633.834.034.234.434.634.835.035.235.435.635.836.036.236.436.636.837.037.237.437.637.838.038.238.438.638.839.039.239.439.639.840.040.541.041.542.042.543.043.544.0

36.89137.30837.72938.15538.58439.01839.45739.89840.34440.79641.25141.71042.17542.64443.11743.59544.07844.56345.05445.54946.05046.55647.06747.58248.10248.62749.15749.69250.23150.77451.32351.87952.44253.00954.58054.15654.73755.32456.8158.3459.9061.5063.1364.8066.5168.26

INORGANIC CHEMISTRY 1.225

TABLE 1.50 Vapor Pressure of Water (Continued )

TABLE 1.51 Vapor Pressure of Deuterium Oxide

t, °C p, mm Hg t, °C p, mm Hg t, °C p, mm Hg

0 3.65 20 15.2 80 331.61 3.93 30 28.0 90 495.52 4.29 40 49.3 100 722.23 4.65 50 83.6 101.43 760.03.8 5.05 60 136.6

10 7.79 70 216.1

t, °C p, mm Hg t, °C p, mm Hg t, °C p, mm Hg t, °C p, mm Hg

44.545.045.546.046.547.047.548.048.549.049.550.050.551.051.552.052.553.053.554.054.555.055.556.056.557.057.558.058.559.059.560.060.561.061.562.062.5

70.0571.8873.7475.6577.6179.6081.6483.7185.8588.0290.2492.5194.8697.2099.65

102.09104.65107.20109.86112.51115.28118.04120.92123.80126.81129.82132.95136.08139.34142.60145.99149.38152.91156.43160.10163.77167.58

63.063.564.064.565.065.566.066.567.067.568.068.569.069.570.070.571.071.572.072.573.073.574.074.575.075.576.076.577.077.578.078.579.079.580.080.581.0

171.38175.35179.31183.43187.54191.82196.09200.53204.96209.57214.17218.95223.73228.72233.7238.8243.9249.3254.6260.2265.7271.5277.2283.2289.1295.3301.4307.7314.1320.7327.3334.2341.0348.1355.1362.4369.7

81.582.082.583.083.584.084.585.085.586.086.587.087.588.088.589.089.590.090.591.091.592.092.593.093.594.094.595.095.295.495.695.896.096.296.496.696.8

377.3384.9392.8400.6408.7416.8425.2433.6442.3450.9459.8468.7477.9487.1496.6506.1515.9525.76535.83546.05556.44566.99577.71588.60599.66610.90622.31633.90638.59643.30648.05652.82657.62662.45667.31672.20677.12

97.097.297.497.697.898.098.298.498.698.899.099.299.499.699.8

100.0101.0102.0103.0104.0105.0106.0107.0108.0109.0110.0111.0112.0113.0114.0115.0116.0117.0118.0119.0120.0

682.07687.04692.05697.10702.17707.27712.40717.56722.75727.98733.24738.53743.85749.20754.58760.00787.57815.86845.12875.06906.07937.92970.60

1004.421038.921074.561111.201148.741187.421227.251267.981309.941352.951397.181442.631489.14

1.12 VISCOSITY AND SURFACE TENSION

Viscosity is the shear stress per unit area at any point in a confined fluid divided by the velocity gra-dient in the direction perpendicular to the direction of flow. If this ratio is constant with time at agiven temperature and pressure for any species, the fluid is called a Newtonian fluid.

The absolute viscosity (m) is the sheer stress at a point divided by the velocity gradient at thatpoint. The most common unit is the poise (1 kg/m sec) and the SI unit is the Pa.sec (1 kg/m sec). Asmany common fluids have viscosities in the hundredths of a poise the centipoise (cp) is often used.One centipoise is then equal to one mPa sec.

The kinematic viscosity (v) is ratio of the absolute viscosity to density at the same temperatureand pressure. The most common unit corresponding to the poise is the stoke (1 cm2/sec) and the SIunit is m2/sec.

The molecules in a gas-liquid interface are in tension and tend to contract to a minimum surfacearea. This tension may be quantified by the surface tension (s), which is the force in the plane of thesurface per unit length.

1.226 SECTION ONE

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances

For the majority of compounds the dependence of the surface tension g on thetemperature can be given as:

g = a – bt

where a and b are constants and t is the temperature in degrees Celsius.The values of the dipole moment are for the gas phase.

SubstanceViscosity,

mN ⋅ s ⋅ m−2

Surface tensionmN ⋅ m−1

a b

Air

AlBr3

Ar(g)

(lq)

AsBr3

AsCljAsH3 (arsine)BBr3

BC13

BF3

B2H6 (diborane)B+HjoB5H9

BaHioB3H6N3

Br2 (g)(lq)

BrF3

BrF5

0.018220,0.023 1127

0.023320,0.0288127

0.017127,0.0217127

1.252°, 1.0316,0.74425

2.2220

0.6224

34.28

54.4141.67

31.90

-2.92

-3.13

45.5

38.3025.24

0.2493

0.10430.097 81

0.1280

0.2030

0.1783

0.1820

0.09990.1098

INORGANIC CHEMISTRY 1.227

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances(Continued)

SubstanceViscosity,

mN ⋅ s ⋅ m−2 a b

(Continued)

Surface tensionmN ⋅ m−1

C12 (g)(iq)

C1F3

C1F5

C103FC0(g)

(iq)C02 (g)

(iq)

COC12COF2

cosCOSecsCS2 (g)

(Iq)

CrO2Cl2D2 (deuterium)

DHD2O

F2

GaCl3GeBr4

GeBr4

GeCl4GeClH3

H2(g)t

(Iq)

HBr (g)

(Iq)He(g)

dq) (H)(IH)(IV)

HC1 (g)

(Iq)

0.013220

0.4812

0.017520,0.022 1127

0.014720,0.0197127

0.07 120

0.429°, 0.37520,0.35225

0.012627,0.0154127

0.011 125 (g),1.09825 (Iq)

0.008820,0.109127

0.83-«0.019627,

0.024427

0.014627,0.0197127

0.5 1-95

19.87

26.9

12.24

-30.20

6.14~10

22.59

12.12

35.29

6.53771.7220

-16.10

35.035.5 130

35.51™22.4430

2.80-258

13.10

0.35 10-50 K

0.151361K

03720.50 K

0.1897

0.1660

0.1576

0.2073

2.6710

0.1456

0.1779

0.1484

0.188368.3840

0.1646

0.100033.7050

33.7050

2.12-254

0.2079

03172.00K

0.131U3K

0.354L40K

1.228 SECTION ONE

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances(Continued)

SubstanceViscosity,

mN ⋅ s ⋅ m−2

Surface tensionmN ⋅ m−1

a b

HC1OHCN

HCNO (iso-cyanate)

HCNSHFHFOHI(g)

dq)HN3 (azide)H2O (see Table

5.19)H202

HN03

H2S (g)(lq)

H2Se

HSO3C1HSO3FH2S04

H2TeHg

I2mrIFtF5

IF7IOF5

Kr(g)

Oq)Mn2O,Ne(g)

(lq)N2(g)

(lq)

NH3(g)(lq)

N2H4 (hydra-zine)

Ni(CO)4

NO

0.235°, 0.20618,0.1 8325

0.256°

1.2520

0.412°

2.4320

1.5625

24.S425

1.55220, 1.52625,1.40250

1.98116

0.025020,0.033 1127

0.030320,0.0389127

0.017620,0.0222127

0.254-33-5

0.9720, 0.87625,0.62850

0.019227,0.0238127

19.4510

10.41

78.97

48.9522.32

29.03490.6

33.16

40.576 (in K)

26.42 (in K)

37 .91-50

72.41

18.11-67.48

18.3320

0.078 67

0.1549

0.17580.1482

0.26190.2049

0.1318

0.2890 (in K)

0.2265 (in K)

35.38-»°

0.2407

0.11170.5853

INORGANIC CHEMISTRY 1.229

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances(Continued)

SubstanceViscosity,

mN ⋅ s ⋅ m−2

Surface tensionmN ⋅ m−1

a b

(Continued )

N20 (g)

(iq)N02N204

N203NOBrNOCÍNO2C1NOFN02FNO3

02(g)

(Iq)

03OF2

O2F2 (FOOF)OsO4P(lq)PBr3

PC13

PC15

PC12F3

PC13F2

PC14FPF3

PF5

PH3

PI3P03

POC13POF3

PSC13PSF3

PbCl4ReO2Cl3ReO3ClSSC12S2C12 dimerS2F2

FSSF isomerS=SF2 isomer

SF4

SF6

0.014620,0.0194127

0.532°, 0.40225

0.020420,0.0261127

0.662°, 0.52925,0.43950

1.06525

0.015327,0.0198127

5.09

29.49

14.008.26

-33.72

38.1-183

45.3431.14

61.6640.4435.22

37.00

57.0054.05

46.23

12.875.66

0.2032

0.1493

0.11650.1854

0.2561

0.12830.1266

0.067 710.11580.1275

0.1272

0.24850.1979

0.1464

0.17340.1190

1.13 THERMAL CONDUCTIVITY

The thermal conductivity is a measure of the effectiveness of a material as a thermal insulator. Theenergy transfer rate through a body is proportional to the temperature gradient across the body andthe cross sectional area of the body. In the limit of infinitesimal thickness and temperature difference,the fundamental law of heat conduction is:

Q = lAdT/dx

1.230 SECTION ONE

TABLE 1.52 Viscosity and Surface Tension of Inorganic Substances(Continued)

SubstanceViscosity,

mN ⋅ s ⋅ m−2

Surface tensionmN ⋅ m−1

a b

S2F10S02 (g)

(iq)S03SOBr2

SOC12SOF2SO2C12

S02F2

SbCl3SbCl5SbF5SbH3

Se (Iq)SeF4

SeF6

SeOCl2SeO2

SiCl4SiF4SiH4

SiHCl3SiH3ClSnBr4SnCl4TeF6

TiCl4UF6(g)

(Iq)VC14

VOBr3

VOC13

Xe(g)

(iq, n>XeF6

0.012927,0.0175127

99.425, 96.250

0.415°, 0.32625

0.022820,0.030127

26.58

46.2836.10

32.10

47.87

49.07

38.61

20.78

20.43

29.92

33.5420

25.5

36.3620

0345 LOO K

0.1948

0.07500.1416

0.1328

0.1238

0.1937

0.1274

0.099 62

0.1076

0.1134

31.0640

0.1240

33.6040

0.3172-°°K

where Q is the heat flow, A is the cross-sectional area, dT/dx is the temperature/thickness gradient,and l is the thermal conductivity.

A substance with a large thermal conductivity value is a good conductor of heat; one with a smallthermal conductivity value is a poor heat conductor i.e. a good insulator.

INORGANIC CHEMISTRY 1.231

TABLE 1.53 Thermal Conductivity of the Elements

Thermal Thermalconductivity conductivity

Element Element (W/m)/K Element Element (W/m)/Knumber symbol 27°C, 81°F number symbol 27°C, 81°F

1 H 0.1815 2 He 0.1523 Li 84.7 4 Be 2005 B 27 6 C 1557 N 0.02598 8 O 0.026749 F 0.0279 10 Ne 0.0493

11 Na 141 12 Mg 15613 Al 237 14 Si 14815 P 0.235 16 S 0.26917 Cl 0.0089 18 Ar 0.017719 K 102.5 20 Ca 20021 Sc 15.8 22 Ti 21.923 V 30.7 24 Cr 93.725 Mn 7.82 26 Fe 80.227 Co 100 28 Ni 90.729 Cu 401 30 Zn 11631 Ga 40.6 32 Ge 59.933 As 50 34 Se 2.0435 Br 0.122 36 Kr 0.0094937 Rb 58.2 38 Sr 35.339 Y 17.2 40 Zr 22.741 Nb 53.7 42 Mo 13843 Tc 50.6 44 Ru 11745 Rh 150 46 Pd 71.847 Ag 429 48 Cd 96.849 In 81.6 50 Sn 66.651 Sb 24.3 52 Te 2.3553 I 0.449 54 Xe 0.0056955 Cs 35.9 56 Ba 18.457 La 13.5 58 Ce 11.459 Pr 12.5 60 Nd 16.561 Pm 17.9 62 Sm 13.363 Eu 13.9 64 Gd 10.665 Tb 11.1 66 Dy 10.767 Ho 16.2 68 Er 14.3

1.232 SECTION ONE

TABLE 1.54 Thermal Conductivity of Various Solids

All values of thermal conductivity, k, are in millijoules cm–1 ⋅ s–1 ⋅ K–1. To convert to mW ⋅ m–1 ⋅ K–1m, dividevalues by 10. For values in millicalories, divide by 4.184.

Substance t, °C k

AsphaltBasaltBauxiteBoiler scaleBrick, commonBlotting paperCardboardCement, PortlandChalkChemical elements, see Table 4. 1CoalConcreteCork, sp. grav. = 0.2Cork mealCotton, sp. grav. = 0.081Diatomaceous earthEboniteEiderdownFeathers (with air)FeldsparFelt (dark gray)Fire brickFlannelFlintGlass, crown

flintJenaquartz

soda

GraniteGraphite, sp. grav. = 1.58Graphite powder, sp. grav. = 0.7GypsumHorse hair, sp. grav. = 0.172IceLeather, cowhideLinenMagnesia brick

Marble, whiteMicaNaphthalenePaperParaffinPlaster of ParisPorcelainQuartz, parallel to axis

2020

600662020209020

02030

1000

200

209

204020602012.512.5220

10020

100205040

020

842020

1130

410

200

20950

100

7.44721.765.56

13.16.30.6282.12.979.2

1.699.20.540.5560.5690.541.580.0460.238

23.40.6234.60.148

10.06.825.989.50

13.8919.127.17.5

34.2441.4

11.9213.00.510

23.81.760.879

11.330.132.63.603.771.32.882.93

10.38136.090.0

1.14 CRITICAL PROPERTIES

Critical temperature (Tc), critical pressure (Pc), and critical volume (Vc) represent three widely usedpure component constants. These critical constants are very important properties in chemical engi-neering field because almost all other thermo chemical properties are predictable from boiling pointand critical constants with using corresponding state theory. Therefore, precise prediction of criticalconstants is very necessary.

1.14.1 Critical Temperature

The critical temperature of a compound is the temperature above which a liquid phase cannot beformed, no matter what the pressure on the system. The critical temperature is important in deter-mining the phase boundaries of any compound and is a required input parameter for most phase equi-librium thermal property or volumetric property calculations using analytic equations of state or thetheorem of corresponding states. Critical temperatures are predicted by various empirical methodsaccording to the type of compound or mixture being considered.

Another somewhat simpler method for estimating the critical temperature of pure compoundsrequires the normal boiling point, the relative density, and the compound family.

log Tc = A + B log10 (relative density) + C log Tb

where Tc and Tb are the critical and normal boiling temperatures, respectively, expressed in degreesKelvin. The relative density of the liquid at 15°C is 0.1 MPa. The regression constants A, B, and C areavailable by family (Table 2-384).

For pure inorganic compounds, the method only requires the normal boiling point as input.

Tc = 1.64Tb

1.14.2 Critical Pressure

The critical pressure of a compound is the vapor pressure of that compound at the critical tempera-ture. Below the critical temperature, any compound above its vapor pressure will be a liquid.

INORGANIC CHEMISTRY 1.233

TABLE 1.54 Thermal Conductivity of Various Solids (Continued )

Substance t, °C k

Quartz, perpendicular to axis

Plastics, see Section 10Roofing paperRubber, natural and synthetic, see Section 10Sand, drySandstone, sp. gray. = 2.259Silk, sp. grav. = 0.101SlateSoil, dryWax, beesWood, maple, parallel to face

perpendicular to faceWood, oak, parallel to face

perpendicular to faceWood, pine, parallel to face

perpendicular to face

0100

0

20400

202020205015152015

72.4355.77

1.90

3.8918.370.510

19.661.380.8664.251.823.492.093.491.51

1.14.3 Critical Volume

The critical volume of a compound is the volume occupied by a specified mass of a compound at itscritical temperature and critical pressure.

1.14.4 Critical Compressibility Factor

The critical compressibility factor of a compound is calculated from the experimental or predictedvalues of the critical properties.

Zc = (PcVc)/(RTc)

Critical compressibility factors are used as characterization parameters in corresponding statesmethods to predict volumetric and thermal properties. The factor varies from approximately 0.23 forwater to 0.26-0.28 for most hydrocarbons to above 0.30 for light gases.

1.234 SECTION ONE

TABLE 1.55 Critical Properties

Substance Tc, °C Pc, atm Pc, MPa Vc, cm3 ⋅ mol−1 pc, g ⋅ cm−3

Air −140.6 37.2 3.77 92.7 0.313Aluminum tribromide 490 28.5 2.89 310 0.860Aluminum trichloride 356 26 2.63 261 0.510Ammonia 132.4 111.3 11.28 72.5 0.235Antimony tribromide 631.4 56 5.67Antimony trichloride 521 270 0.84Argon −122.3 48.1 4.87 74.6 0.536Arsenic 1400Arsenic trichloride 318 58.4 5.91 252 0.720Arsine 99.9 63.3 6.41 133 0.588Arsine-d3 98.9

Bismuth tribromide 946 301 1.49Bismuth trichloride 906 118 11.96 261 1.21Boron pentafluoride 205Boron tribromide 308 48.1 4.87 272 0.921Boron trichloride 178.8 38.2 3.87 266 0.441Boron trifluoride −12.3 49.2 4.98 124 0.549Bromine 315 102 10.3 135 1.184Antimony tribromide 631.4 56 5.67Antimony trichloride 521 270 0.84Argon −122.3 48.1 4.87 74.6 0.536Arsenic 1400Arsenic trichloride 318 58.4 5.91 252 0.720Arsine 99.9 63.3 6.41 133 0.588Arsine-d3 98.9

Benzaldehyde 422 45.9 4.65 324 0.327Benzene 288.90 48.31 4.895 255 0.306Benzoic acid 479 41.55 4.21 341 0.358Benzonitrile 426.3 41.55 4.21 339 0.304Benzyl alcohol 422 42.4 4.3 334 0.324Biphenyl 516 38.0 3.85 502 0.307Bismuth tribromide 946 301 1.49Bismuth trichloride 906 118 11.96 261 1.21Boron pentafluoride 205Boron tribromide 308 48.1 4.87 272 0.921Boron trichloride 178.8 38.2 3.87 266 0.441

INORGANIC CHEMISTRY 1.235

TABLE 1.55 Critical Properties (Continued )

Substance Tc, °C Pc, atm Pc, MPa Vc,cm3 ⋅ mol-1 pc, g ⋅ cm-3

Carbon dioxide 31.1 72.8 7.38 94.0 0.468Carbon disulfide 279 78.0 7.90 173 0.41Carbon monoxide −140.2 34.5 3.50 93.1 0.301Carbonyl chloride 182 56 5.67 190 0.52Carbonyl sulfide 102 58 5.88 140 0.44Cesium 1806 300 0.44Chlorine 143.8 76.1 7.71 124 0.573Chlorine pentafluroide 142.6 51.9 5.26 230.9 0.565Chlorine trifluoride 153.5

Deuterium (equilibrium) −234.8 16.28 1.650 60.4 0.0668Deuterium (normal) −234.7 16.43 1.665 60.3 0.0669Deuterium bromide 88.8Deuterium chloride 50.3Deuterium hydride (DH) −237.3 14.64 1.483 62.8 0.0481Deuterium iodide 148.6Deuterium oxide 370.9 213.8 21.66 55.6 0.360Diborane 166 39.5 4.00Dihydrogen disulfide 299 58.3 5.91Dihydrogen heptasulfide 742 33 3.34Dihydrogen hexasulfide 707 36 3.65Dihydrogen octasulfide 767 32 3.24Dihydrogen pentasulfide 657 38.4 3.89Dihydrogen tetrasulfide 582 43.1 4.37Dihydrogen trisulfide 465 50.6 5.13

Flurorine −129.0 51.47 5.215 66.2 0.574

Germanium tetrachloride 276.9 38 3.85 330 0.650

Hafnium tetrabromide 473 415 1.20Hafnium tetrachloride 450 57.0 5.86 304 1.05Hafnium tetraiodide 643 528 1.30Helium (equilibrium) −267.96 2.261 0.2289 0.06930Helium-3 −269.85 1.13 0.1182 72.5 0.0414Helium-4 −267.96 2.24 0.227 57.3 0.0698Hydrazine 380 14.5 1.47 96.1 0.333Hydrogen (equilibrium) −240.17 12.77 1.294 65.4 0.0308Hydrogen (normal) −239.91 12.8 1.297 65.0 0.0310Hydrogen bromide 89.8 84.4 8.55 100.0 0.809Hydrogen chloride 51.40 82.0 8.31 81.0 0.45Hydrogen cyanide 183.5 53.2 5.39 139 0.195Hydrogen deuteride −237.25 14.64 1.483 62.8 0.048Hydrogen fluoride 188 64 6.5 69 0.29Hydrogen iodide 150.7 82.0 8.31 131 0.976Hydrogen selenide 137 88 8.9Hydrogen sulfide 100.4 88.2 8.94 98.5 0.31Iodine 546 115 11.7 155 0.164Krypton −63.75 54.3 5.50 91.2 0.9085Mercury 1477 1587 160.8Mercury(II) bromide 789Mercury(II)chloride 700Mercury(II) iodide 799

Neon −228.71 27.2 2.77 41.7 0.4835Niobium pentabromide 737 469 1.05Niobium pentachloride 534 400 0.68Niobium pentafluoride 464 62 6.28 155 1.21

(Continued )

1.236 SECTION ONE

TABLE 1.55 Critical Properties (Continued )

Substance Tc, °C Pc, atm Pc, MPa Vc,cm3 ⋅ mol−1 pc, g ⋅ cm−3

Nitric oxide −92.9 64.6 6.55 58 0.52Nitrogen-14 146.94 33.5 3.39 89.5 0.313Nitrogen-15 146.8 33.5 3.39 90.4 0.332Nitrogen chloride difluoride 64.3 50.8 5.15Nitrogen dioxide (equilibrium) 158.2 100 10.1 170 0.557Nitrogen trideuteride (ND3) 132.4Nitrogen trifluoride −39.3 44.7 4.53Nitrous oxide 36.434 71.596 7.2545 97.4 0.4525Nitrosyl chloride 167 90 9.12 139 0.471Nitryl fluoride 76.3

Osmium tetroxide 132 170 17.2Oxygen −118.56 49.77 5.043 73.4 0.436Oxygen difluoride −58.0 48.9 4.95 97.7 0.553Ozone −12.10 53.8 5.45 88.9 0.540

Phosgene 182 56 5.67 190 0.52Phosphine 51.3 64.5 6.54Phosphine-d3 50.4Phosphonium chloride 49.1 72.7 7.37Phosphorus 721Phosphorus bromide difluoride 113Phosphorus chloride difluoride 89.2 44.6 4.52Phosphorus dibromide fluoride 254Phosphorus dichloride fluoride 189.9 49.3 5.00Phosphorus pentachloride 372Phosphorus trichloride 290 260 0.528Phosphorus trifluoride −1.9 42.7 4.33Phosphoryl chloride difluoride 150.7 43.4 4.40Phosphoryl trichloride 329Phosphoryl trifluoride 73.4 41.8 4.24

Radon 104 62 6.28 139 1.6Rhenium(VII) oxide 669 334Rhenium(VI) oxide tetrachloride 508 161 0.95Rubidium 1832 250 0.34

Selenium 1493Silane −3.5 47.8 4.84Silicon chloride trifluoride 34.5 34.2 3.47Silicon tetrabromide 390Silicon tetrachloride 234 37 3.75 326 0.521Silicon tetrafluoride −14.0 36.7 3.72Silicon trichloride fluoride 165.4 35.3 3.57Sulfur 1041 116 11.7Sulfur dioxide 157.7 77.8 7.88 122 0.5240Sulfur hexafluoride 45.6 37.1 3.76 198 0.734Sulfur tetrafluoride 91.7Sulfur trioxide 217.9 81 8.2 130 0.633

Tantalum pentabromide 701 461 1.26Tantalum pentachloride 494 400 0.89Tin(IV) chloride 318.7 37.0 3.75 351 0.742Titanium tetrachloride 365 46 4.66 340 0.558Tungsten (VI) oxide tetrachloride 509 338 1.01

Uranium hexafluoride 232.7 45.5 4.61 250 1.41

Water 374.2 217.6 22.04 56.0 0.325

1.15 THERMODYNAMIC FUNCTIONS (CHANGE OF STATE)

All substances can exist in one of three forms (also called states or phases) that basically depend onthe temperature of the substance. These states or phases are (1) solid, (2) liquid, and (3) gas.

The solid-to-liquid transition is a melting process, and the heat required is the heat of melting.The liquid-to-solid transition is the reverse process, and the heat liberated is the heat of freezing. Thesolid-to-gas transition is a sublimation process, and the heat required is the heat of sublimation. Theliquid-to-gas transition is a vaporization process, and the heat required is the heat of vaporization(heat of boiling). Both the gas-to-solid and the gas-to-liquid processes are condensation processesand have an associated heat of condensation.

Each change of state is accompanied by a change in the energy of the system. Wherever thechange involves the disruption of intermolecular forces, energy must be supplied. The disruption ofintermolecular forces accompanies the state going toward a less ordered state. As the strengths of theintermolecular forces increase, greater amounts of energy are required to overcome them during achange in state. The melting process for a solid is also referred to as fusion, and the enthalpy-changeassociated with melting a solid is often called the heat of fusion (AHfus). The heat needed for thevaporization of a liquid is called the heat of vaporization (AHvap).

The specific heat is the amount of heat per unit mass required to raise the temperature by one degreeCelsius. The relationship between heat and temperature change is usually expressed in the form shownbelow where c is the specific heat. The relationship does not apply if a phase change is encountered,because the heat added or removed during a phase change does not change the temperature.

Q = cmΔT

i.e., heat added is equal to the specific heat multiplied by the mass (weight) multiplied by the tem-perature difference (ΔT = tfinal – tinitial)

INORGANIC CHEMISTRY 1.237

TABLE 1.55 Critical Properties (Continued)

Substance Tc, °C Pc, atm Pc, MPa Vc,cm3 ⋅ mol−1 pc, g ⋅ cm−3

Xenon 16.583 57.64 5.84 118 1.105

Zirconium tetrabromide 532 415 0.99Zirconium tetrachloride 505 56.9 5.77 319 0.730Zirconium tetraiodide 687 528 1.13

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds

Physical ΔiH° ΔiG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

Ac Actinium c 0 0 56.5 27.2Al Aluminum c 0 0 28.30(10) 24.4

g 330.0(40) 289.4 164.554(4) 21.4Al3+ std. state aq −538.4(15) −485.3 −325.(10)Al6BeO10 c −5624 −5317 175.6 265.19Al(BH4)3 lq −16.3 145.0 289.1 194.6AlBr3 c −527.2 −488.5 180.2 100.58

std. state aq −895 −799 −74.5Al4C3 c −216 −203 89Al(CH3)3 lq 136.4 −10.0 209.4 155.6Al(OAc)3 c −1892.4AlCl3 c −704.2 −628.8 109.29 91.13

std. state aq −1033 −878 −152.3AlCl3 ⋅ 6H2O c −2692 −2269 377AlF3 c −1510.4(13) −1431.1 66.5(5) 75.13

std. state aq −1531.0 −1322 −363.2

(Continued )

1.238 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued )

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

A1F3 • H2O

A1H3

A1I3

std. state

A1K(SO4)2 • 12H20

A1NA1(NO3)3 std. state

A1(N03)3-6H20

A1(NO3)3 • 9H2O

AlOj std. state

A12O3 corundum

A1(OH)3

Al(OH)i std. state

A1PA1PO4 berlinite

A12S3

Al2Se3

Al2SiO5 andalusite

A12(S04)3

std. state

Al2Te3

Americium

AmAm3+

Am4+

Am2O3

AmO2

Ammonium

NH3

undissoc; std. state

ND3

NHJ std. state

NH4OH undissoc;

std. state

ionized; std. state

NH4OAc

std. state

NH4A1(SO4)2

std. state

NH4AsO2 std. state

NH4H2AsO3 std. state

NH4H2AsO4

std. state

(NH4)2HAsO4 std. state

(NH4)3AsO4 std. state

NH4Br

std. state

NH4BrO3

NH4 carbamate

NH4C1

std. state

NH4C1O3 std. state

cccaqccaqccaqccaqccccccaqc

caqaqcc

gaq

gaqaq

aqcaqcaqaqccaqaqaqcaqaqccaqaq

-2297

-46.0

-313.8

-699

-6061.8

-318.1

-1155

-2850.5

-3757.1

-930.9

- 1675.7(13)

-1284

- 1502.5

- 166.5

-1733.8

-724.0

-565

-2592.0

-3435

-3790

-326

0-682.8

-511.7

-1757

- 1005.0

-45.94(35)

-80.29

-58.6

- 133.26(25)

-361.2

-362.50

-616.14

-618.52

-2352.2

-2481

-561.54

-847.30

- 1059.8

- 1042.07

-1171.1

- 1286.7

-271.8

-254.05

- 199.58

-657.60

-314.5

-299.66

-236.48

-2052

-300.8

-640

-5141.7

-287.0

-820

-2203.9

-2929.6

-830.9

- 1582.3

-1306

- 1305.3

- 1618.0

-640

-2444.8

-3507

-3205

0-671.5

-461.1

-1678

950.2

-16.4

-26.57

-26.0

-79.37

-254.0

-236.65

-448.78

-2038.4

-2054

-429.41

-666.60

- 833.0

-832.66

-873.20

-886.63

- 175.2

- 183.34

-60.84

-448.07

-202.9

-210.62

-87.40

20930.0

159.0

12.1

687.4

20.14

117.6

467.8

569-36.8

50.92(10)

71102.9

90.79

116.85

93.2

239.3

-583.3

62.7

- 159.0

-372

154.7

96.2

192.776(5)

111.3

203.9

111.17(40)

165.5

102.5

200.0

216.3

- 168.2

154.8

223.8

172.05

230.5

225.1

177.4

113.0

194.97

275.10

133.5

94.6

169.9

275.7

40.2

98.7

651.0

30.10

433.0

79.15

93.1

93.18

105.06

122.76

259.4

35.65

38.23

79.9

-68.6

73.6

226.44

151.17

96.0

-61.9

84.1

-56.5

INORGANIC CHEMISTRY 1.239

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued )

NH4C1O4

std. stateNH4CN

std. stateNHjCNO cyanate

std. state(NH4)2CO3 std. state(NH,)2C2O4 oxalate(NH4)2Cr04

std. state(NH4)2Cr207

NH4 dithiocarbonateNH4F

std. stateNH4 formate std. stateNH4HCO3

NH4Istd. state

NH,IO3

std. stateNH4N3 azide

NH4NO2

NH4NO3

std. stateNH4H2PO4

std. state(NH4)2HP04

std. stateNH4H3P2O,NH4HS

NH4HS03

NH4HSO4

std. state(NH4)3P04

std. stateCNHOiPjO, std. state(NH4)2PtCl6NH4ReO4

(NH4)2SNH4SCNNH4HSeO4 std. state(NH4)2Se04

(NH4)2SiF6

(NH4)2S03

(NH4)2S04

std. state(NH4)2S208

std. stateNH4VO3

caqcaqaq

aqccaqaqccaqaqcaqcaqcaqcaqaqcaqcaqcaqaqcaqaqcaqcaqaqccaqaqaqaqcaqcaqcaqc

-295.3-261.84

0.418.0

-278.7

-942.15-1123.0-1167.3-1144.3- 1755.2- 126.8-463.96-465.14-558.06-849.4-824.5-201.4- 187.69-385.8-354.0

115.5142.7

-237.2-365.56-339.87

-1145.07- 1428.79- 1556.91- 1557.16-2409.1-156.9- 150.2-758.7- 1026.96- 1019.85-1671.9- 1674.9-2801.2-803.3-945.6-231.8-56.1

-714.2-864.0

-2681.69-900.4

-1180.9-1174.28- 1648.08- 1610.0-1053.1

-88.8-87.99

92.9- 177.0

-686.64

-886.59- 1459.5

-348.78-358.19-430.5-665.9-666.1-112.5- 130.96

- 207.5274.1268.6

-111.6- 184.01- 190.71- 1210.56- 1209.76

- 1248.00-2102.6

-50.6-67.2

-607.0

-835.38

- 1256.9-2236.8

-774.9-72.8

13.4-531.6-599.8

-2365.3-645.0-901.70-903.37

- 1273.6-888.3

186.2295.4

207.5220.1

169.9

277.0488.7

71.9799.6

205.0120.9204.6117.0224.7

231.8112.6221.3236.4151.08259.8151.96203.8188.0193.3326.097.5

176.1253.1

245.2

117335

232.6212.1257.7262.8280.7280.24197.5220.1246.9

471.1140.6

128.1

134.0

226.0

65.27-26.8-7.9

81.8-62.3

-17.6139.3-6.7142.26

-3.8

237.7

39.7

228.11

187.49-133.1

129.33

1.240 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1Substance

AntimonySb

SbBr3

SbCl3SbCl5SbF3

SbH3

SbI3

Sb2O3

Sb2O5

Sb2S3

Sb2Te3

ArgonAr

ArsenicAs grayAsBr3

AsCl3

AsF3

AsH3

AsI3

AsOjAsO|-As205

As4O6 octahedralAs2S3

AstatineAt

BariumBaBa2+ std. stateBa(OAc)2 acetate

std. stateBaBr2

std. stateBaBr2 • 2H2OBa(Br03)2

BaC2O4 oxalateBaCl2

BaCl2 • 2H2OBa(C103)2

Ba(ClO3)2-H2OBaCO3 witheriteBaCrO4

BaF2

std. stateBa(HCO3)2 std. state

Physicalstate

c

gc

gc

iqc

gccccc

g

c

giqgiqggcaqaqccc

c

caqcaqcaqccccccccccaqaq

Af// °kj • mor1

0262.3

-259.4- 194.6-382.0-440.16-915.5

145.11- 100.4-708.8-971.9- 174.9-56.5

0

0- 130.0-305.0-261.5-821.3-785.8

66.44-58.2

-429.0-888.1-924.87- 1313.94- 169.0

0

0-537.64- 1484.5- 1509.67-757.3-780.73- 1366.1-752.66- 1368.6-855.0- 1456.9-762.7- 1691.6-1213.0- 1446.0- 1207.1- 1202.90- 1921.63

AfG °kj • mor1 J

0222.1

-239.3-223.9- 323.7-350.2

147.74

- 829.2

-55.2

0

0- 159.0-259.4-248.9-774.2-770.8

68.91-59.4

-350.0-648.4-782.3

-1152.52-168.6

0

0-560.74

- 1299.55-736.8-768.68- 1230.5-577.4

-806.7- 1293.2

- 1270.7-1134.4- 1345.3-1156.8-1118.38- 1734.4

5°• deg~' • mor1

45.7180.3207.1372.9184.1301

232.8215.5123.01125.1182.0234

154.846(3)

35.1363.9216.3327.06181.2289.1222.8213.0540.6

- 162.8105.4214.2163.6

121.3

62.489.6

182.8146.0174.5226243

123.67202.9

393112.1158.696.4

-17.0192.1

C°J • deg-|P mor1

25.220.8

80.2107.9

41.0597.57

101.25117.61117.74

20.79

24.6479.16

133.575.73

126.265.638.07

105.77

116.5191.29116.3

28.10

77.0

75.14161.96

86.0

71.20

INORGANIC CHEMISTRY 1.241

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued )

Ba(H2P02)2

BaI2

std. state

Ba(I03)2

std. stateBaMnO4

BaMoO4

Ba(N02)2

Ba(N03)2

std. stateBaOBaO2

Ba(OH)2

Ba(OH)2-H2OBaSBaSeBaSeO3

BaSiF6

BaSO3

BaSO4

BaTiOjBeryllium

Be

Be2+ std. stateBeAl2O4 chrysoberylBeBr2

Be2CBeCl2 ß formBeCOjBeF2 a formBeI2

Be3N2 cubicBeO a formBeOf3BeO • B2O3

Be(OH)2 ß formBeSBeSeO4

std. stateBe2SiO4

BeSO4

std. stateBeSO4 • H2OBeWO4

BismuthBi

BiBr3

BiCl3

BiH3

ccaqcaqccccaqccccccccccc

c

gaqcccccccccaqccccaqccaqcc

c

gcc

g

- 1762.3-602.1-648.02- 1027.2-980.3

-1548- 1507.5-768.2-988.0-952.36-548.0-634.3-944.7

-3342.2-460.0-372- 1040.6- 1952.2-1179.5-1473.19- 1659.8

0324.(5)

-382.8-2301.0-353.5

91-490.41025.0

- 1026.8- 192.5-588.3-609.4(25)-790.8

-3105-902.5-234.3- 1205.2-982.0

-2117- 1200.8- 1290.0-2423.75-1513

0207.1264

-379.1277.8

-601.4-663.92-864.8-816.7- 1439.7- 1439.7

-792.6-783.41-520.4

-859.5-2793.2-456.0

-968.2-2794.1

- 1362.2- 1572.4

0

-379.7-2178.5-337-88

-445.6

-979.4-187-532.9-580.1-640.1

-2939-815.0-233.0- 1093.8-820.9

-2003- 1089.4-1124.3-2080.66-1405

0168.2234

-315.1

165.1232.2249.4246.4138144.3

213.8302.572.07

107427

78.2

167163

132.2108.0

9.50(8)136.275(3)

- 129.766.29

108.016.375.8152.053.35

121.034.1313.77(4)

- 159.010045.534.077.9

-75.764.1977.97

- 109.6232.9788.4

56.7187.0226177.0

77.49

187.4

140.6114.7

151.38

47.28

101.6

49.37

101.75102.47

16.38

105.3869.443.262.4365.051.8271.164.3625.56

139.762.134.085.7

95.685.70

216.6197.3

25.520.8

109105.0

1.242 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

BiI3

Bi203

BiOCl

BÍ2S3

BÍ2(S04)3

Bi2Te3

Boron

B

BBr3

B4CBC13

BF3

BFj std. state

BH3

BHj std. state

B2H6 diborane(6)

B5H9 pentaborane(9)

B10H14 decaborane(14)

BNB3N3H6 borazine

BO2 std. state

B203

B(OH)4- std. state

B3O3H3 boroxin

B2S3

Bromine

Br atomic

Br- std. state

Br2

Br3 std. state

BrCl

BrEBrF3

BrF5

BrO- std. state

BrO3 std. state

BrO4-

Cadmium

Cd

Cd2+

CdBr2

std. state

CdCl2std. state

CdCl2 • 5/2H2O

cccccc

c

giqc

ggaq

gaq

giqcc

iqgaqcaqcc

gaq

iqgaq

ggiqgiqgaqaqaq

c

gaqcaqcaqc

- 100.4

-574.0

-366.9

-143.1

-2544.3

-78.24

0565.(5)

-239.7

-62.7

-403.8

-1136.0(8)

- 1574.9

100.0

48.16

35.6

42.7

-29.83

-254.4

-541.0

-510

-772.37

- 1273.5(14)

- 1344.03

-1262

-240.6

111.87(12)

-121.41(15)

030.91(11)

- 130.42

14.6

-93.8

-300.8

-255.6

-458.6

-428.9

-94.1

-67.07

13.0

0111.80(20)

-75.92(60)

-316.18

-318.99

-391.6

-410.20

-1131.94

- 175.3

-493.7

-322.2

- 140.6

0

-238.5

-62.1

-388.7

-1119.4

- 1487.0

111114.27

86.7

171.8

212.9

-228.4

-392.7

-389

-678.94

-1194.3

-1153.32

-11.56

82.4

- 103.97

0

- 107.07

-0.96

- 109.2

-240.5

229.4

-351.9

-351.6

-33.5

18.6

118.1

0

-296.31

-285.52

-343.9

-340.12

-944.08

151.5

120.5

200.4

260.91

5.90(8)

153.436(15)

229.7

27.18

290.1

254.42(20)

179.9

187.9

110.5

232.1

184.2

234.9

14.80

199.6

288.61

-37.24

53.97(30)

102.5

167100.0

175.018(4)

82.55(20)

152.21(30)

245.468(5)

215.5

239.91

229.0

178.2

292.5

225.1

323.2

42.0

161.71

199.6

51.80(15)

167.749(4)

-72.8(15)

137.2

91.6

115.3

39.8

227.2

113.5

122.2

152.21

11.1

128.03

53.76

62.7

50.45

36.22

56.9

151.13

221.2

19.72

96.94

62.8

98.3

111.7

20.8

-141.8

75.67

34.98

32.97

124.6

66.6

99.6

25.9

20.8

76.7

74.7

INORGANIC CHEMISTRY 1.243

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

Cd(CN)2

std. stateCdCO3

Cd(OAc)2 std. stateCdF2

std. stateCdI2

std. stateCdl; std. stateCd(NH3)f std. stateCd(N03)2

std. stateCdOCd(OH)2

CdSCdSO4

std. stateCdSO4 • 8/3H2OCdSeO4

std. stateCdTe

CalciumCa

Ca2+ std. stateCa(OAc)2

std. stateCa3(AsO4)2

Ca(BO2)2

CaB4O,CaBr2

std. stateCaC2

CaCl2std. state

CaCl2 • 2H2OCaCN2 cyanamideCa(CN)2

CaCO3 calcitearagonite

CaC2O4

CaC204 • H2OCaCrO4

CaF2

Ca(formate)2

CaH2

CaHPO4-2H2OCa(H2PO2)2 hypophosphiteCa(H2PO4)2 std. state

caqcaqcaqcaqaqaqcaqccccaqccaqc

c

gaqcaqccccaqccaqcccccaqccccaqccccaq

162.3225.5

-750.6- 1047.9-700.4-741.15-203.3- 186.3-341.8-450.2-456.3-490.6-258.35(40)-560.7-161.9-933.4-985.2- 1729.30(80)-633.0-674.9-92.5

0177.8(8)

-543.0(10)- 1479.5-1514.73-3298.7-2030.9-3360.3-682.8-785.9-59.8

-795.4-877.13- 1402.9-350.6- 184.5- 1207.6- 1207.8- 1220.0- 1360.6- 1674.9-1379.1- 1228.0-1208.1

1386.6-181.5

-2403.58- 1752.7-3135.41

267.4-669.4-816.4-647.7-635.21-201.4- 180.8-315.9-226.4

-300.2-228.7-473.6- 156.5- 822.7-822.2- 1465.3-531.8-518.8-92.0

0

-553.54

- 1292.35-3063.1-1924.1-3167.1-663.6-761.5-64.9

-748.8-816.05

-1129.1-1128.2- 1081.4

-1514.0- 1277.4-1175.6-1111.2

- 142.5-2154.75

-2814.33

115.192.5

10077.4

- 100.8161.1149.4326336.4

219.754.8(15)96.064.9

123.0-53.1229.65(40)IMA

-19.3100.0

41.59(40)154.887(4)

-56.2(10)

120.1226104.85134.7130.0111.769.96

108.459.8

91.788.0

-110.0

156.513468.6

-80.8

41.4189.45

127.6

80.0

43.4

55.599.6

213.3

25.9

103.98157.975.04

62.7272.9

738

83.582.3

152.8

67.0

41.0197.07

1.244 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

Ca(H2PO4)2- H2OCaI2

std. stateCa(I03)2

Ca[Mg(CO3)2] dolomiteCaMoO4

Ca3N2

Ca(N02)2

Ca(N03)2

std. stateCaOCa(OH)2

Ca3P2

Ca3(P04)2

CajPACa10(P04)6F2

fluoroapatite

CaSCaSeCaSiO3

CazSiO.,3CaO-SiO2

CaSO3 • 2H2OCaSO4

CaSO4-'/2H2OCaSO4 • 2H2OCa(V03)2

CaWO4

CarbonC graphite

diamondCN-(CN)2 cyanogenCNBrCNC1CNFCNI

CNN3 cyanogen azideOCN-COC02

undissoc; std. statecorC3O2 suboxideCOBr2

COC12 phosgeneCOC1FCOF2

ccaqccccccaqcccccc

cccccccaqcccc

c

gcaq

ggggc

gcaq

ggaqaq

ggggg

-3409.67-533.5-653.2- 1002.5-2326.3-1541.4-439.3-741.4-938.2-957.55-634.92(90)-985.2-506

-4120.8-3338.8

- 13,744

-482.4-368.2- 1634.9-2307.5-2929.2- 1752.7- 1425.2-1451.1- 1576.7-2022.6-2329.3-1645.15

0716.68(45)

1.897150.6306.7186.2137.95

166.2225.5387.4

- 146.0-110.53(17)-393.51(13)-413.26(20)-675.23(25)-93.7-96.2

-219.1

-639.8

-3058.42-528.9-656.7-839.3

-2163.6- 1434.7

-742.8-776.22-603.3-897.5

-3884.8-3132.1

- 12,983

-477.4-363.2- 1549.7-2192.8-2784.0- 1555.2- 1309.1-1298.1- 1436.8- 1797.5-2169.7-1538.50

0

2.900172.4297.2165.3131.02

185.0196.6

-97.4-137.16

394.39-386.0-527.9- 109.8-110.9-204.9

-623.33

259.8142.0169.5230155.18122.6105.0

193.3239.738.1(4)83.4

236.0189.24775.7

56.56781.92

127.7168.6184108.4

-33.1130.5194.1179.1126.40

5.74(10)158.100(3)

2.37794.1

241.9248.36236.2224.796.2

256.8

106.7197.660(4)213.785(10)119.36(60)

-50.0(10)276.4309.1283.50276.7258.89

258.8277.16

157.53114.3113.0

149.37

42.087.5

227.8187.8751.9

47.4

85.27128.8171.9178.799.0

119.4186.0166.8114.14

8.517

6.116

56.946.945.041.8

48.3

29.1437.13

67.061.857.7052.446.8

INORGANIC CHEMISTRY 1.245

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

COS carbonyl sulfideCS2

CTejCerium

Ce y, feeCe3+ std. stateCe4+ std. stateCeCl3

std. stateCeF3

CeI3

Ce(N03)3

CeO2

CeACeSCe2(S04)3

std. stateCe2(SO4)3 - 8H2O

CesiumCs

Cs+ std. stateCs acetateCsBO2

CsBrstd. state

CsClstd. state

CsClO4

Cs2C03

std. stateCsF

std. stateCs formateCsHCO3

CsHFCsHSO4

Cslstd. state

CsIO3

CsNO3

std. stateCs2OCsOH

std. stateCs2PtCl6 std. stateCs2SCs2Se

giqgiq

caqaqcaqcccccccaqc

c

iqgaqaqccaqcaqccaqcaqaqcccaqcaqccaqccaq

aqaqaq

- 142.089.0

117.7164.8

0-696.2-537.2- 1060.5-1197.5- 1635.9-669.3- 1225.9- 1088.7- 1796.2-459.4

-3954.3-4176.9-5522.9

02.087

76.5(10)-258.00(50)-744.3-972.0-405.8-379.8-442.8-425.4-443.1

-1139.7-1193.7-553.5-590.9-683.8-966.1-923.8

-1158.1-1145.6-346.6-313.5-525.9-506.0-465.6-345.8-417.2-488.3

-1184.9-483.7

- 166.9

67.1

0-672.0-503.8-984.8- 1065.7-1556-674

- 1024.7- 1706.2-451.5

-3652.6-5607.4

00.025

-292.0-661.3-915.0-391.4-396.0

414.4-423.3-314.3- 1054.4-1111.9-525.5-570.8-643.0

-858.9

- 1047.9-340.6-343.6-433.9-406.6-403.3- 308.2

370.7-449.3- 1066.9-498.3

454.8

231.56

237.8

72.0-205.0-301.0

151.0-38.0115.1209

62.30150.678.2

-318

85.23(40)92.1

175.601(3)132.1(5)219.7104.4113.05215.5101.18189.4175.1204.5209.292.8

119.2226.0

135.2

264.8123.1244.4

155.2279.5146.998.7

122.3485.8251.0

41.5074.645.4

26.9

87.4

99.3

61.63114.650.0

32.2032.4

-10.5

80.652.93

52.44- 146.9

108.3123.9

51.1

87.3

52.8- 152.7

167

-99.276.067.9

1.246 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

C^S04

std. state

Chlorine

Cl atomic

Cl" std. state

C12

OFC1F3

C1F5

CIOCIO- std. state

C102

ClOj std. state

ClOj std. state

C1O3F perchloryl fluoride

ClOj std. state

C12O

C1207

Chromium

CrCr2+ std. state

CrBr2

CrCl2CrCl3Cr(CO)6 hexacarbonyl

CrF2

CrF3

Cr2FeO4

CrI2

CrI3

CrNCrO2

Cr203

Cr304

Cr02Cl2CrOJf std. state

HCrOj std. state

Cr2O?- std. state

Cr2(S04)3

Cobalt

CoCo2+ std. state

Co3+ std. state

CoBr2

std. state

CoCl2std. state

CoC03

CoF2

CoF3

caq

gaq

gggggaq

gaqaq

gaq

giqg

caqccccccccccccc

gaqaqaqc

caqaqcaqcaqccc

- 1443.0

- 1425.8

121.301(8)

- 167.08(10)

0-50.3

- 163.2

-239

101.8

- 107.1

102.5

-66.5

-104.0

-23.8

- 128.10(40)

80.3

238.1

1138

0- 143.5

-302.1

-395.4

-556.5

- 1077.8

-778.0

-1159

-1444.7

- 156.9

-205.0

-117

-598.0

-1140

-1131.0

-538.1

-881.15

- 878.22

- 1490.3

-609.6

0-58.2

92-220.9

-301.3

-312.5

-392.5

-713.0

-692

-790

- 1323.6

- 1328.6

-131.3

0-51.84

- 123.0

-147

98.1

-36.8

120.5

17.2

-8.0

48.2

-8.62

97.9

0

-356.0

-486.1

-1088

- 1343.8

-93

-1058.1

-501.6

-727.85

-764.84

-1301.2

0-54.4

134

-262.3

-269.8

-316.7

-647

-719

211.9

286.2

165.190(4)

56.60(20)

233.08(10)

217.9

281.6

310.74

226.6

41.8

256.8

101.3

162.3

279.0

184.0(15)

266.2

23.8

115.3

123.0

293.01

93.9

146.0

38

81.2

329.8

50.21

184.1

261.9

269.9

30.0

-113

-305

50109.2

0

82.4

95

134.9

- 136.4

33.95

32.08

63.85

97.17

31.5

42.00

64.9

45.4

23.43

71.2

91.8

226.23

78.7

133.6

52.7

118.7

84.5

302.6

24.8

79.5

78.49

68.9

92

INORGANIC CHEMISTRY 1.247

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

CoI2

Co(NH3)|+ std. state

CoCNHs)!* std. stateCo(N03)2

std. stateCoOCo304

Co(OH)2

CoSCo2S3

CoS04

std. stateCoSO4-7H2O

CopperCu

Cu+ std. stateCu2* std. state

Cu(OAc)2 acetatestd. state

Cu3(AsO4)2 std. stateCuBrCuBr2

CuClCuCl2

Cu(ClO4)2 std. stateCuCNCuCNS std. stateCu(CNS)2 std. stateCuFCuF2

Cu(formate)2

CulCuCNHs)!"1" std. stateCu(N03)2

std. stateCuOCu2OCu(OH)2

CuSCu2SCuSeCu2SeCuSO4

std. stateCuSO4-5H2OCuWO4

DysprosiumDyDy3+ std. state

caqaqaqcaqccccccaqc

c

gaqaqcaqaqccccaqcaqaqccaqcaqcaqccccccccaqcc

caq

-88.7- 168.6-584.9

-420.5-472.8- 237.7-891-539.7-82.8- 147.3-888.3-967.3

-2979.93

0337.4(12)71.6764.9(10)

-893.3-907.25- 1581.97-104.6- 141.84-137.2-220.1- 193.89

95.0138.11217.65

-280-542.7-786.34

67.8-348.5-302.9-349.95- 157.3- 168.6-450-53.1-79.5-39.5-59.4

-771.4(12)-844.50

-2279.65-1105.0

0-699.0

- 157.7- 157.3-189.5

-277.0-214.0-774-454.4

-782.4-799.1

-2473.83

0

50.0065.52

-673.29-1100.48- 100.8

-119.9- 175.7

48.28108.4142.67250.87

-260-492-636.4-69.5

-111.3

-157.15- 129.7- 149.0-373-53.7-86.2

-662.2-679.11- 1880.04

0-665.0

109.0146

18053.0

102.579.0

118.0-92.0406.06

33.15(8)166.398(4)40.6

-98.(4)

73.6-804.2

96.2

86.2108.09264.490.00

184.93189.164.977.458496.7

273.6

193.342.693.1

108.466.5

120.9

157.3109.2(4)

-79.5300.4

75.6-231.0

55.3123.4

103

390.49

24.44

54.7

48.571.88

61.04

51.965.55

54.1

42.263.695.1947.876.3

88.7098.87

280

27.721.0

1.248 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

DyClä

DyF3

ItyAErbium

ErEr3+ std. stateErCl3

ErAEuropium

EuEu2* std. stateEu3+

EuCl2

EuClj

EuF3

Eu2O3 monoclinicEu304

Eu(OH)3

FluorineF atomicF-

F2

FNO3

FOF20F202

FranciumFrFrClFr2O

GadoliniumGdGd3+ std. stateGdCl3

std. stateGdF3

Gd2O3 monoclinicGallium

Ga

Ga3+GaAsGaBr3

GaCl3GaF3

GaI3

GaA rhombic

caqcc

caqcaqc

caqaqaqcaqcccc

gaq

ggggg

ccc

caqcaq

iqc

c

iqgaqcccccc

-1000-1197.0-1711.0-1863.1

0-705.4-998.7

-1207.1- 1897.9

0- 527.0-605.0-862.0-936.0

-1106.2-1571-1651.4-2272.0-1332

79.38(30)-335.35(65)

010.5

109.024.718.0

0-439-338

0- 686.0- 1008.0-1188.0-1297-1819.6

05.6

272.0-211.7-71.0

-386.6-524.7

-1163.0-238.9

-1089.1

- 1059.0

-1771.5

0-669.1

- 1062.7-1808.7

0540.2

-574.0

-856-967.7

- 1556.9-2142.0-1195

62.3-278.8

073.7

105.041.9

0

299.2

0-661.0-933- 1059.0

-1730

0

233.7- 159.0-67.8

-359.8-454.8- 1085.3

-998.3

-61.9

149.8

73.18-244.3

-75.3155.6

77.78-8.0

-222.0

144.1-54.0

146205.0119.9

158.751(4)- 13.8(8)202.791(5)292.9216.8247.4

95.40113.0156.9

68.07-205.9

151.4-36.8

150.6

40.8

169.0-331.0

64.2180.0142.084

205.084.98

100.0-389.0

116.27

28.1221.0

100.0-389.0

108.49

27.66

8.0

-402.0

122.2

22.7- 106.7

31.3065.2230.543.3

31.8053.56

37.03

88.0-410.0

106.7

26.06

25.3

46.2

10092.1

INORGANIC CHEMISTRY 1.249

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued )

Ga(OH)3

GaSbGermanium

Ge

GeBr4

GeCl4

GeF4

GeH4

GeI4

GeO2 tetragonalGePGeS

GoldAuAuBrAuBr3

AuClAuCl3

AuClj- std. state

Au(CN)2 std. stateAuF3

AuSb2

AuSnHafnium

Hf hexagonalHfCHfCUHfF4 monoclinicHf02

HeliumHe

HolmiumHoHo3+ std. stateHoCl3

std. stateHoF3

Ho2O3

HydrogenH atomicH+ std. stateH2

H2H2H2 (D2) deuteriumHAsO¿" undissoc;

std. state

cc

c

giqgiqgggc

gccc

cccccaqaqccc

ccccc

g

caqcaqcc

gaq

gggaq

-954.4-41.8

0372.0(30)

-347.7-300.0-531.8-495.8

-1190.20(50)90.8

- 141.8-56.9

-580.0(10)-21.0-69.0

0-14.0-53.3-34.7

-117.6-322.2

242.3-363.6- 19.46-30.5

0-230.1-990.4- 1930.5-1144.7

0

0-705.0- 1005.4- 1206.7- 1707.0- 1880.7

217.998(6)000.3210

-456.5

-831.3-38.9

0331.2

-331.4-318.0-462.8-457.3

-1150.0113.4

-144.4- 106.3-521.4-17.0-71.6

0

-237.32285.8

0

-901.3- 1830.5- 1088.2

0

0-673.7

- 1067.3

- 1791.2

203.300

-1.4630

-402.71

100.076.07

31.09(15)167.904(5)280.8396.2245.6347.7301.9(10)217.02271.1428.939.71(15)63.071

47.4

92.9148.1266.9172114.2119.293.7

43.5641.21

190.811359.3

126.153(2)

75.3226.8

-57.7

158.2

114.717(2)0

130.680(3)143.80144.96125.9

48.53

23.330.7

101.8

96.181.8445.02

104.152.1

25.36

48.7494.81

91.2977.4049.41

25.6934.43

120.46

60.25

20.786

27.1517.088

-393.0

115.0

20.80

28.8429.2029.19

1.250 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued )

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

H2AsO3 undissoc; std.state

H3AsO3 undissoc; std.state

HAsOJ- undissoc; std. stateH2AsOj undissoc; std.

stateH3AsO3

undissoc; std. stateHB02

H3B03

undissocHBr

std. stateHBrO undissoc; std. stateHBrO3 std. stateHC1

std. state2HC1 deuterium chlorideHC1O

undissoc; std. stateHC1O2 undissoc; std. stateHC1O3 std. stateHC104

std. stateHC1O4-H2OHC1O4-2H2OHCN

ionized; std. stateundissoc; std. state

HCNO ionized; std. stateundissoc; std. state

HCNS ionized; std. stateHCOO- formateCH3COO- acetateHCOf std. stateH2CO3 std. stateHC204-H2C204

c2oj-H2CS3 trithiocarbonic

acidHF

undissoc; std. state

F-2HFHF¿- std. stateH2F2 dimerH2Fe(CN)|" std. state

aq

aq

aqaq

caqccaq

gaqaqaq

gaq

ggaqaqaq

iqaqc

iqiqgaqaqaqaqaqaqaqaqaqaqcaq

iq

giqaqaq

gaq

gaq

-714.79

-742.2

-906.34-909.56

-906.30-902.5-794.3- 1094.8(8)- 1072.8(8)

-36.29(16)- 121.55-113.0-67.07-92.31(10)

-167.15-93.35-78.7- 120.9-51.9- 103.97-40.58- 129.33-302.21-677.98

108.87135.1150.6107.11

- 146.0- 154.39

76.44-425.6-486.0-689.93(20)-699.65-818.4-821.7-825.1

25.1

-273.30(70)-299.78-320.08-332.63-275.5-649.94-572.66

455.6

-587.22

-639.90

-714.70-753.29

-766.1-723.4-968.9

-53.4- 103.97-82.4

18.54-95.30

-131.25-95.94-66.1-79.9

5.9-8.03

-8.62

124.93124.7172.4119.66

-97.5-117.2

92.68-351.0-369.3-586.85-623.16-698.3-723.7-673.9

27.82

- 275.475.40

-296.86-278.8- 277.27-578.15-544.51

658.44

110.5

195.0

-1.7117

1843889.95(60)

162.4(6)198.700(4)82.4

142161.71186.902(5)56.5

192.63236.7142188.3162.3

182.0

112.84201.8194.1

124.7106.7144.8144.492.086.698.4(5)

187.4149.4109.845.6

233.0

173.779(3)51.6788.7

-13.8179.7092.5

238218

54.486.1

29.1-141.8

29.12-136.4

29.1737.15

70.6335.86

-40.2-87.9-6.3

91.0

149.8

29.14

- 106.729.14

44.89

INORGANIC CHEMISTRY 1.251

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued )

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued )

HFOHI

std. stateHIO undissoc; std. statem03

H2MoO4

HNHN3

H2N2H2N2 cii-diazineHNCO isocyanic acidHNCS isothiocyanic acidHNO2

HN03

std. stateH2N2O2 hyponitrous acidHO hydroxylHO-HO2

HOj std. stateH2O

WHO2H2O deuterium oxideH2O2 hydrogen peroxide

undissoc; std. stateHOCN undissoc; std. stateOCN- cyanate std. stateHP03

HPOJ- std. stateH2POj std. stateHPH2O2 hypophosphorous

acidH3P03

H3P04

ionized; std. stateundissoc; std. state

HP20|-

H2P2?-H4P207

undissoc; std. stateHReO4

HSHS~ std. stateH2S

undissoc; std. state

ggaqaqcc

giqggggggiqgaqaq

gaq

gaqc

iqggglqgaqaqaqcaqaq

ccc

iqaqaqaqaqcaqc

gaq

gaq

9826.50(10)

-55.19-138.1-230.1- 1046.0

351.5264.0294.1184.9207

-116.73127.61

-79.5- 174.1- 133.9-207.36-57.3

39.0-230.015

10.5- 160.33-292.72-285.830(40)-241.826(40)-245.37-249.20- 187.78- 136.3-191.17- 154.39- 146.02-948.51- 1299.0(15)- 1302.6(15)

-604.6-964.4- 1284.4-1271.7- 1277.4- 1288.34-2274.8-2278.6-2241.0-2268.6-762.3

142.7- 16.3(15)-20.6(5)-38.6(15)

-861.7

-51.59-99.2

345.6327.2328.1194.6241

- 107.36112.88

-46.0-80.7-73.54

-111.3436.034.2

- 157.2822.667.4

-237.14-228.61-233.18-234.54- 120.42- 105.6-134.10-117.2-97.5

- 1089.26-1130.39

-1124.3-1123.6-1018.8-1142.65- 1972.2-2010.2

-2032.2-656.4

113.312.05

-33.4-27. 87

226.8206.590(4)111.395.4

181.2140.6239.0195.0224.09238.11248.03254.1155.60266.9146.4218183.64- 10.90229.023.9

69.95(3)188.835(10)199.51198.33109.6232.7143.9144.8106.7

-33.5(15)92.5(15)

110.5150.8222158.246.0

163.0

268158.2195.767.(5)

205.81(5)126.(5)

35.9329.16

- 142.3

29.2

43.733.939.0244.8546.4045.5

109.954.1

-86.6

30.00- 148.5

34.9

37.1175.3533.6033.7934.2589.143.14

106.1145.06

32.3

34.19

1.252 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

2H2S gH2S2

HSbO2 undissoc; std. stateHSCN undissoc; std. stateSCN- std. stateHSe~ std. stateH2SeHSeOj std. stateH2Se03

undissoc; std. stateHSeOj- std. stateH2Se04

H2SiO3

undissoc; std. stateH4SiO4

undissoc; std. stateHSOj std. stateHSOjHSOjClHSO3F

H2SOj undissoc; std. stateH2S04

std. stateH2SO4 • H2OH2SO4 • 2H20H2SO4 • 3H2OH2SO4-4H2OH2S207

H2TeH2WO4

IndiumInIn3+

InAsInBr3

InCl3InFInHInlInI3

InOIP+

In(OH)JIn203

InPInSIn2S3

In2Se3

InSbIodine

I atomic

gaqaqaqaq

gaqcaqaqccaqcaqaqaq

iqiqgaq

iqaq

iqiqiqiqc

Sc

caqccc

ggccaqaqcccccc

g

-23.915.5

-487.976.476.4415.929.7

-514.55- 524.46-507.48-581.6-530.1

-1188.67-1182.8-1481.1- 1468.6-626.22-886.9(10)-601.2-795.0-753-608.81-814.0-909.27

-1127.6- 1427.1- 1720.4-2011.2- 1273.6

99.è-1131.8

0- 105.0-58.6

-428.9-537.2-203.4

215.5-116.3-238.0-370.3-619.0-925.27-88.7

-138.1-427-343-30.5

106.76(4)

-35.3

-407.597.792.6843.915.9

-411.54

-426.22-452.3

- 1092.4- 1079.5- 1333.0-1316.7-527.8-755.9

-691-537.90-689.9-744.63-950.3

-1199.6- 1443.9- 1685.8

- 1003.9

0-98.0-53.6

190.3- 120.5

-313.0-525.0-830.73-77.0

-131.8-412.5

-25.5

70.2

215.3

46.6144.3144.579.0

219.0135.1

207.9149.4

134.0109192180139.8131.7(30)

297232.2156.9020.1

211.5276.4345.4414.5

228.9145

57.8-151.0

75.7

207.53130.0

-88.025.0

104.259.867

163.6

86.2

180.787(4)

35.7651.5

-40.2-40.2

34.7

-84.0

75.24

138.9293214.3261.5319.1386.4

35.56113

26.7

47.78

29.58

9245.44

118.0

49.5

20.8

INORGANIC CHEMISTRY 1.253

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

I- std. state

I2

std. state

Ij std. state

IBr

ICI

IC13

IF

IF5

IF,IOIO~ std. state

lOj std. state

IOj std. state

I205

Indium

IrIrCl3

IrF6

IrO2

IrS2

Iron

Fe alpha

Fe2+ std. state

Fe3+ std. state

FeBr2

std. state

FeBr3

Fe3C a-cementite

FeCl2

FeCl3std. state

Fe(CN)l~ std. state

Fe(CN)g- std. state

FeCNS2+ std. state

FeCO3

Fe(CO)5

FeCr2O4

FeF2

std. state

FeF3

FeI2

std. state

aqc

gaqaqc

gc

iqgc

giqgggaqaqaqc

ccccc

caqaqcaqcaqccaqcaqaqaqaqc

iqccaqcaqcaq

-56.78(5)

062.42(8)

22.6

-51.5

-10.5

40.8

-35.4

-23.93

17.8

-89.5

-95.7

-864.8

-822.5

-961.1

175.1

- 107.5

-221.3

-151.5

- 158.07

0-245.6

-579.65

-274.1

- 138.0

0-89.1

-48.5

-249.8

-332.2

-286.2

-413.4

25.1

-341.8

-423.4

-399.4

-550.2

561.9

455.6

23.4

-740.6

-774.0

- 1446.0

-711.3

-754.4

-1042

- 1046.4

-113.0

- 199.6

-51.59

019.37

16.40

-51.5

3.7- 14.05

-13.6

-5.5

-22.34

-118.5

-751.5

-835.8

149.8

-38.5

- 128.0

-58.6

0180

-461.66

0-78.87

-4.7

-238.1

-286.81

-316.7

20.1

-302.3

-341.3

-333.9

-398.3

729.3

694.9

71.1

-666.7

-705.3

- 1343.9

-668.6

-636.5

-972

- 840.9

-111.7

-182.1

106.45(30)

116.14(30)

260.687(5)

137.2

239.3

258.8

97.93

135.1

247.6

167.4

236.3

327.7

347.7

245.5

-5.4

118.4

222

35.48

113247.7

57.3

27.32

-137.7

-315.9

140.7

27.2

-68.6

104.6

118.0

-24.7

142.34

- 146.4

270.3

95.0

-130

92.9

338.1

146.2

86.99

- 165.3

98-357.3

167.4

84.9

- 142.3

54.44

36.86

36.4

55.23

35.6

33.4

99.2

134.5

32.9

25.06

57.32

25.09

80.2

105.9

76.7

96.65

82.1

240.6

133.8

68.12

91.0

83.7

1.254 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

FeI3

FeMoO4

FesNFe(NO3)3 std. stateFeOF&f>3 hematiteFe3O4 magnetiteFeOH+ std. stateFe(OH)2+ std. stateFe(OH)2

Fe(OH)3

FeSFeS2 marcasiteFeS2 pyriteFeSiO3

FezSiO.,FeSO4

std. stateFe2(S04)3

std. stateFeTiO3

FeWO4

KryptonKr

LanthanumLaLa3+

LaCl3std. state

LaCl3-7H20LaI3

La(N03)3

std. stateL%03

Lai(S04)3

L%Te3

LeadPb

Pb2+

Pb(OAc)2

PbtBO^jPbB407

PbBr2

Pb(CH3)4

Pb^Hs),PbCl2

PbCl4

PbCIF

aqccaqcccaqaqccccccccaqcaqcc

g

caqcaqcccaqccc

c

gaqccccaq

iqiqcaq

iqc

-214.2- 1075.0

-3.8-670.7-272.0- 824.2

-1118.4-324.7-290.8-574.0-833- 100.0- 167.4- 178.2

-1155- 1479.9-928.4-998.3

-2583.0-2825.0- 1246.4-1155.0

0

0-707.1- 1072.2- 1208.8-3178.6-668.9- 1254.4- 1329.3- 1793.7-3941.3-724

0195.2(8)

0.92(25)-964.4

-1556-2858-278.7-244.8

97.952.7

-359.4-336.0- 329.3-534.7

-159.4-975.0

-338.5-251.4-742.2

-1015.4-277.4-229.4-490.0-705- 100.4-156.1- 166.9

- 1379.0-820.8-823.4

-2262.7-2243.0

- 1054.0

0

0683.7

- 1077.4-2713.3

- 1705.8

-714.6

0162.2

-24.4

-1450-2667-261.9-232.3

-314.1-286.9

-488.3

18.0129.3101.3123.460.7587.40

145.27-29

-14287.9

104.660.3253.8752.9287.5

145.18107.5

-117.6307.5

-571.5105.9131.8

164.085(3)

56.9-217.6

144.4-50.0462.8

127.32280231.63

64.80(30)175.375(5)18.5(10)

131167161.5175.3

464.6136123.4

121.8

118.570.0

49.91103.9143.4

97.1101.750.5262.3962.1289.4

132.9100.6

264.8

99.5114.4

20.786

27.11-13.0108.8

-423.0431.0

108.78

132.13

26.8420.8

107.116880.1

307.477.1

INORGANIC CHEMISTRY 1.255

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

PbCO3

PbC2O4

PbCrO4

PbF2

PbF4

PbI2

PbMoO4

Pb(N3)2 monoclinicPb(N03)2

PbO lithargePbO2

Pb304

Pb3(P04)2

PbSPbSePbSeO4

PbSiO3

PbSiO4

Pb2SiO4

PbSO3

PbSO4

PbSO4 • PbOPbTe

LithiumLi

Li+ std. stateLi3AlF6 cryoliteLiAlU,LÍA1O2

LiBeF3

LiBH4

LiBH4 • tetrahydroftiranLi2BeF4

LiB02

LÍ2B407

LiBrstd. state

LiBrO3

std. stateLiCl

LiClO4

std. stateLÍ2C03

LiFstd. state

ccccaqccaqcccaqcccccccccccccc

c

gaqccccccccccaqcaqcaqcaqcaqcaq

-699.2-851.4-930.9-664-666.9-941.8- 175.5-112.1

-1051.9478.2

-451.9-416.3-219.0-277.4-718.4

-2595.3- 100.4- 102.9-609.2

-1145.7-2023.8- 1363.1-669.9-919.97(40)

-1182.0-70.7

0159.3(10)

-278.47(8)-3317-116.3

-1188.7-1651.8- 190.8-415.5

-2274- 1032.2-3362-351.2-400.03-346.98-345.56-408.6-445.6-381.0-407.81

-1215.9- 1234.1-616.0-611.12

-625.5-750.2

-617.1-582.0

- 173.58- 127.6-951.4

624.7

-246.9-188.9-217.3-601.2

-2432.6-98.7-101.7

505.0- 1062.1- 1909.6- 1252.6

-813.0

-69.5

0

-293.30-3152

-44.7-1126.3- 1576.3- 125.0-220.5

-2171-976.1

-3170-342.00-397.27

-274.89-384.4-424.6-254-302.1

-1132.12-1114.6-587.7-571.9

131.0146.0

110.5-17.2

174.9233.0166.1148.1

303.366.5

68.60211.3353.191.3

102.5167.8109.684.01

186.6

148.50(60)225.06110.0

29.12(20)138.782(10)12.24(15)

238.578.753.389.2

75.9289130.651.5

15674.2795.81

174.959.369.9

126195.490.4

-29.735.66

-0.4

87.40105.4

72.3

77.4

119.70

45.864.6

146.9256.349.450.2

90.0498.66

137.2

103.2150.1650.5

24.8

68.6215.783.267.7891.882.6

135.359.8

183.048.91

-73.2

48.03-67.8105-7.599.1

41.6-38.1

1.256 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

LiHLil

std. stateLiIO3

std. stateUNLiN02

LiNOjstd. state

Li20Li202

LiOHstd. state

Li3P04

Li2SiO3

Li2Si2O5

Li2SO4

std. stateLi2Ti03

LutetiumLuLu3+

LuCl3

std. stateLuI3

Lu203

MagnesiumMg

Mg2+ std. stateMgAl204

MgBr2

std. stateMgBr2 • 6H2OMgCl2

std. stateMgCl2-6H20Mg(C104)2

std. stateMg(C104)2.6H20MgC03

MgC204

std. stateMgF2

Mg2GeMgH2

MgI2

std. stateMg3N2

MgNH4PO4 • 6H2OMg(N03)2

std. state

ccaqcaqcccaqcccaqccccaqc

caqcaqcc

c

gaqccaqccaqccaqcccaqccccaqcccaq

-90.5-270.4-333.67-503.38-499.82- 164.6-372.4-483.1-485.9- 597.9-634.3-484.9-508.40

-2095.8-1648.1-2561- 1436.4- 1466.2- 1670.7

0-665.0-945.6

-1167.0-548.0- 1878.2

0147.1(8)

-467.0(6)-2299-524.3-709.94

-2410.0-641.3-801.15

-2499.0-568.90-725.51

-2445.6- 1095.8- 1269.0- 1292.0-1124.2(12)- 108.8-75.3

-364.0-577.22-461.1

-3681.9-790.65-881.6

-68.45-270.3-344.8

-421.33- 128.6-302.0-381.1-404.5-561.2-578.9-439-451.9

- 1557.2-2417-1321.7-1331.2- 1579.8

0-628.0

-1021.0

-1789.1

0

-454.8-2177-503.8- 662.8

-2056.0-591.8-717.1

-2115.0

-472.0-1863.1-1012.1

-1128.81071.1

-105.9-35.9

-358.2-558.1-400.9

-589.5-677 .4

20.0486.8

124.7

131.462.5996.090.0

160.237.656.542.827.1

79.8125.5115.1

7.391.8

50.96-264.0

-96.0

109.96

32.67(10)148.648(3)

- 137.(4)89.0

117.226.8

39789.63

-25.1315.1

225.4520.165.7

-92.557.2(5)86.48

31.1129.784.587.9

164.0154.8

27.9651.0

-73.6

-55.275.27

-18.0

70.649.7

99.1138.1117.6

- 155.6109.9

26.8625.0

-385.0

101.75

24.87

116.2073.16

71.38

75.51

61.569.5435.474.8

104.5

141.9

INORGANIC CHEMISTRY 1.257

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued )

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

Mg(N03)2-6H20MgO microcrystalMg(OH)2

std. stateMg3(P04)2

MgSMgSeO4

std. stateMg2SiMgSiO3 clinoenstatiteMg2SiO4 forsteriteMg3Si4O10(OH)2 talcMgSO3 • 3H2OMgSO3 • 6H2OMgS04

std. stateMgSO4 • H2O kieseriteMgSO4 • 7H2O epsomiteMgTiOjMg2TiO4

MgTi205

Mg2V2O7 triclinic

MgW04

ManganeseMnMn2+ std. stateMnBr2

std. stateMn3CMnCl2

std. stateMnCO3

Mn2(CO)10

MnF2

MnI2

Mn(NO3)2

std. stateMnOMnO2

Mn2O3

MnOjMnO4-Mn3O4

Mn,(P04)2

MnSMnSeMnSiO3

MnSiO4

MnSO4

std. stateMnTiO3

cccaqcccaqcccccccaqccccccc

caqcaqccaqccccaqcaqcccaqaqcccccccaqc

-2613.3-601.6(3)-924.7-926.8

-3780.7-346.0-968.51

-1066.1-77.8

- 1548.9-2174.0-5922.5-1931.8-2817.5- 1284.9- 1376.1- 1602.1-3388.71- 1497.6-2164.0-2509-2835.9-1516

0-220.75-384.9-464.0

-4.6-481.3-555.05-894.1- 1677.4-795.0-242.7-331.0-576.26-635.6-385.2-520.1-959.0-541.4-653.0- 1387.8-3116.7-214.2- 106.7- 1320.9- 1730.5- 1065.3-1130.1- 1355.6

-2080.7-569.3-833.7-769.4

-3538.8-341.8

-896.2-77.1

- 1462.0-2055.1-5543.0

-1170.6-1199.5- 1428.8-2871.9- 1420.1-2048-2369-2645.29-1404

0-228.1-372-409.2

5.4-440.5-490.8-816.7

-749

-451.0-362.9-465.2-881.2-447.3-500.8- 1283.2

-218.4-111.7- 1240.6-1632.1-957.42-972.8

45226.95(15)63.24

- 149.0189.2050.3

-84.181.667.895.1

260.7

91.6-118.01

126.4372111.08115.0135.6200.4101.2

32.01-73.6138.1

98.7118.2038.985.8

92.26150.6

218.059.853.1

110.5191.259

155.6

78.290.889.1

163.2112.1

-53.6105.9

37.277.25

213.4745.6

67.981.9

118.5321.8

96.5

91.88129146.9203.47109.1

26.305075.31

93.5172.9

-22281.5

67.9975.35

-121.045.454.1

107.7-82.0

139.7

50.051.086.4

129.9100.4

-24399.8

1.258 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

Mercury

Hg

Hg2+

Hg+

HgBr2

Hg2Br2

Hg(CH3)2

Hg(C2H5)2

HgCl2Hg2Cl2Hg(CN)2

Hg2C03

HgC204

HgF2

Hg2F2

HgI2

Hg2I2

Hg2(N3)2

HgOHgSHgS04

Hg2S04

HgTeMolybdenum

MoMoBr,MoCl4MoCl5MoCl6Mo(CO)6

MoF6

MoO2

MoO3

MoOJ- std. stateMoS2

Mo2S3

NeodymiumNdNd3+ std. stateNdCl3

std. stateNdF3

Nd(N03)3

NdjOjNeon

NeNeptunium

NpNpF6

Np02

iqgaqaqcc

iqiqccccccccccccccc

cccccc

iqccaqcc

caqcaqccc

g

ccc

061.38(4)

170.21(20)166.87(50)

- 170.7-206.9

59.830.1

-224.3-265.37(40)

263.6-553.5-678.2-405-485- 105.4-121.3

594.1-90.79(12)-58.2

-707.5-743.09(40)-42.0

0-284-477-527-523-982.8- 1585.66-588.9-745.2-997.9-235.1-270.3

0-696.2

-1041.0-1197.9- 1657.0- 1230.9- 1807.9

0

0-1937-1029

031.8

-153.1-181.1

140.2

-178.6-210.7

-468.1

-362

-469-101.7-111.1

746.4-58.49

-50.6-594-625.8

0-259-402-423-391-877.8- 1473.17-533.0-668.1-836.4-225.9-278.6

0-671.5

- 1065.7

- 1720.9

0

0

-979

75.90(12)174.971(5)

-36.19(80)65.74(80)

172.0218.0209

146.0191.6(8)

180.0

134.3161180.0233.520570.25(30)82.4

200.70(20)

28.71175224238255325.9259.6946.377.827.262.57

181.2

71.6-206.7

-37.7

158.6

146.328(3)

80.3

28.0020.8

75.3104.6

73.9102.0

74.86100.477.75

105.9

44.0648.4

131.96

24.13105.4128155.6175242.3169.856.075.0

63.56109.3

27.5-21113

-431

111.3

20.786

29.46

66.1

INORGANIC CHEMISTRY 1.259

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

Nickel

NiNi2+ std. state

Ni(OAc)2 std. stateNiBr2

NiClj

std. stateNi(CN)3~ std. stateNi(CO)4

NiC204

NiF2

NiI2

Ni(N03)2

std. stateNiONÍ203

NiOH*Ni(OH)2

NiSNÍ3S2

NiS2

NiSO4

std. state

NiSO4 • 7H2ONiWO4

NiobiumNbNbBr5

NbCNbClj

NbF5

NbI5

NbNNbONbO2

Nb2O5

NbOCljNitrogen

N atomicN2

NÏNC13

NF2

NF3

H2NOHN2F2 cis

trans

caqaqcaqcaqaq

iqgccaqcaqcaqccaqcccccaqcc

ccccccccccc

ggaq

iqggc

gg

0-54.0

- 1025.9-212.1

-297.1-305.3-388.3

367.8-633.0

-602.9-856.9-651.5-719.2

-78.8-164.4

-415.1-468.6-240.6

-489.5

-287.9-529.7-82.0

-216.0-131.4

-872.9-963.2

-2976.3-1128.4

0-556- 138.9-797.5

-1813.8

-268.6-236.4-405.8

-796.2- 1899.5

-879.5

472.68(40)

0275.1230.043.1

- 132.1-114.2

69.582.0

0-45.6

-784.5

-253.6

-259.0-307.9

472.0-588.2

-587.2

-604.2-603.3

- 149.0

-268.6-211.7

-227.6

-447.3-79.5

-210- 124.7-759.8-790.3

-2462.2

0-508- 136.8-683.3

- 1699.0

-205.9-392.6

-740.5- 1765.8-782

0348.2

57.8-90.6

109120.5

29.87

- 128.944.4

36.097.7

-15.1218313410.6

73.6- 156.5

93.7

164.038.00

-71.088.053.0

133.97292.0

- 108.8378.94

118.0

36.4258.834.98

210.5160.334334.548.154.5

137.3159

153.301(3)191.609(4)

107.9

249.9260.8

259.8262.6

26.1

71.66

404.6145.2

64.1

44.31

47.1117.770.6

138.0327.9364.59

136.0

24.67147.936.23

148.1134.7155.639.041.357.45

132.0120.0

29.124

41.053.37

49.9653.47

1.260 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued )

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

N2F4

N2H4 hydrazine

N|H4 hydrazine-ii4N2H5

+ std. state

N2H5Br

std. state

N2H5C1

std. state

N2H5C1-HC1

N2H5OH

undissoc; std. state

N2H5N03

std. state

(N2H5)2S04

std. state

NONOBr

NOCÍ

NOFNOF3

N02

NOjNO2C1

NO2F

N03

N03-

N2ONAN2O¡~ hyponitrite

NAN204

NANSF

Osmium

OsOsCl3OsCl4OsF6

OsO4

Oxygen

O atomic

02

03

OF2

02F2

OH~Palladium

PdPd2+ std. state

giqgaqcaqcaqc

iqaqcaqcaq

ggggggaq

gggaq

ggaq

giqggg

ccc

gc

g

gggggaq

caq

-8.4

50.6

81.6-7.5

- 155.6- 128.9- 197.1- 174.9-367.4-242.7-251.50-251.58-215.10-959.0-924.7

91.2982.2351.71

-66.5-163

33.1-104.6

12.6-109

69.41-206.85(40)

81.6170.37

-17.286.6

-19.511.111.3

0- 190.4-254.8

-394.1-337.2

249.18(10)0

24.518.0

-230.015(40)

0149.0

79.9149.3150.982.4

-21.8

-49.0

- 109.2

-28.91

-579.987.6082.4266.10

-51.0-96

51.3-32.2

54.4-66114.35

-111.3103.7202.88138.9142.497.599.8

117.1

0-121-159

-305.0-292.8

231.70

142.741.861.42

- 157.28

0176.6

301.2121.2248.86151

233.1

207.1

207.9

297

322210.76273.7261.68248.02278.40240.1123.0272.19260.2252.5146.70(40)220.0287.5227.6

314.7209.20304.38355.7259.8

32.6130155358.1143.9293.8

161.059(3)205.152(5)163.2247.5268.11- 10.90(20)

37.61- 184.0

79.298.8455.5270.3

-71.6

-66.1

73.2

-15129.8545.4844.741.367.8637.2

-97.553.1949.846.9

-86.638.6263.51

72.72142.7179.295.3044.1

24.7

120.8

74.1

21.929.4

238.9257.1154.06

- 148.5

25.94

INORGANIC CHEMISTRY 1.261

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

PdBr2 c

PdBi^~ std. state

PdCl2PdCl^- std. state

PdjH

PdOPdSPdS2

Phosphorus

P white

red,V

P2

P4

PBr3

PBr,

PC13

PC15

PF3

PF5

PH3

std. state

PH4Br

PH4C1

PHJPHjOH undissoc; std. state

PI3

P02

P03

POi~ std. state

P2QJ- std. state

(P2O3)2 dimer

PAi,POBr3

POC13

POC1F2

POC12F

POF3

PSC13

PSF3

P4S3

Platinum

PtPtBr2

PtBr3

PtBr4

aqcaqcccc

c

gc

ggiqgc

iqgc

ggggaqcccaqc

gaqaqaqccc

giqggggggc

cccc

-104.2

-384.9

-171.5

-550.2

-19.7

-85.4

-75-81.2

0316.5(10)

- 17.46

144.0(20)

58.9(3)

- 184.5

-139.3

-269.9

-319.7

-227.1

-443.5

-374.9

-958

- 1594.4

5.4-9.50

- 127.6

- 145.2

-69.9

-295.35

-45.6

-279.9

-977.0

- 1277.4

-2271.1

-1640.1

-3009.9

-458.6

-389.11

-597.1

-558.5

-970.7

-765.7

- 1254.0

-363.2

-1009

-155

0-82.0

- 120.9

- 156.5

-318.0

- 125.1

-416.7

-5.0

-67-74.5

0280.1

- 12.46

24.4

- 175.5

- 162.8

-272.4

-267.8

-305.0

-937

- 1520.7

13.4

25.31

-47.7

0.8-211.88

-281.6

-1018.8

-1919.2

-2723.3

-390.91

-520.9

-512.9

-924.1

-721.6

-1206

-347.7

-985

-159

41.63

24710516791.6

56.1

4680

41.09(25)

163.1199(3)

22.85

218.123(4)

280.01(50)

240.2

348.15

217.2

311.8

364.6

273.1

300.8

210.24

120.1

110.0

123.0

190.0

252.1

-220.5

-117.0

228.78

-359.84

222.46

325.5

301.68

320.38

285.4

337.23

298.1

201

25.87

31.5

23.83

20.8

21.19

67.16

76.02

71.8

112.8

58.69

84.8

37.10

109.6

39.5

211.71

89.87

138.82

84.94

68.83

79.32

68.82

89.83

74.55

146

1.262 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

PtCl2PtClj

PtCl4ptcij-PtCl|- std. state

PtClg- std. state

PtF6

PtI4

PtSPtS2

Plutonium

PuPu3+

Pu4+

PuBr3

PuCl3PuCl4PuF3

PuF4

PuF6

PuH2

PuH3

PuI3

PuOPuO2

Pu2O3 beta

Pu(S04)2

PuSPu2S3

Polonium

PoPoO2

Potassium

K

K+ std. state

KOAc acetate

KAg(CN)2

KAgCl2K2AgI3

KA1CL,

K3A1C16

K3A1F6

KA1(S04)2

K3AsO4 std. state

KBF4

std. state

KBH4

std. state

ccccaqaq

gccc

caqaqccccccccccccccc

cc

c

iqgaqcaqaqaqaqccccaqcaqcaq

- 123.4

- 182.0

-3218

-231.8

-499.2

-668.2

-72.8

-81.6

- 108.8

0-579.9

-579.9

-831.8

-961.5

-1381

-1552

-1732

25.48

- 139.3

-138

-648.5

-565

- 1058.1

-1715.4

-2200.8

-439.3

-989.5

0-251

02.284

89.0(8)

-252.14(8)

-723.0

-738.39

18.0

-497.4

-686.6

97-2092.0

-3358.1

-2470.2

- 1645.27

-1887

- 1827.2

-227.4

-204.22

-134

-172

-361.5

-482.8

-76.2

-99.6

0-587.9

-1490

- 804.6

-892.7

- 1478.8

-1644.7

27.2

-101.7

-82.4

-643.9

-538.9

- 1005.8

- 1632.3

- 1969.5

-436.7

-985.5

0-197

00.264

-283.26

-652.66

22.2

-498.7

-720.5

-1094

-1938

-2240.1

- 1498.29

-1785

- 1770.3

- 160.2

- 168.99

117151

176155220.1

348.3

55.06

74.68

51.5

-163

192.88

159.00

112.97

161.9

222.59

59.8

64.9

214.2

70.7

82.4

152.3

163.18

78.24

192.46

62.8

71

64.68(20)

71.46

160.341(3)

101.20(20)

189.1

297333.9

458.1

197377284.5

204.47

144.8

133.9

285106.31

212.97

122.8

43.39

65.90

35.5

107.86

102.84

96.82

120.8

167.36

39.0

43.2

111.8

51.3

68.6

131.0

181.96

53.97

129.66

26.4

61.5

29.60

32.72

21.8

15.5

156.4

248.9

221.1

192.92

114.48

96.57

INORGANIC CHEMISTRY 1.263

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

KBO2

std. stateK2B407

KBrstd. state

KBrO3

KBrO4

KC1std. state

KC1O std. stateKC1O2 std. stateKC1O3

std. stateKC1O4

std. stateKCN

std. stateK2CO3

std. stateK2C204

K2CrO4

std. stateK2Cr2O7

K2CuCl4 • 2H2OKF

std. stateK3Fe(CN)6

std. stateK.FeiCN),

std. stateK formate

std. stateK glycinateKHK2HAsO4 std. stateKH2AsO4

std. stateKHCrO4 std. stateKHCO3

std. stateKHC2O4 std. stateKHF2

KHgBr,std. state

K2HgBr4

std. stateKHgCl3

std. state

caqccaqcaqccaqaqaqcaqcaqcaqcaqcaqcaqcccaqcaqcaqcaqaqcaqcaqaqcaqaqcaqcaqcaqcaq

-981.6- 1024.75-3334.2-393.8-373.92-360.2-319.45-287.86-436.5-419.53-359.4-318.8-397.73-356.35-432.8-381.71-113.1-101.7

-1151.0-1181.90- 1346.0- 1329.72- 1403.7- 1385.91-2061.5- 1707.1-567.2-585.01-249.8- 139.4-594.1-554.0-679.73-677.93-722.16-57.72

-1411.10-1180.7-1161.94-1130.5-963.2-944.33- 1070.7-927.7-902.32-550.20-545.6-963.6-935.5-671.1-641.0

-923.4-962.19

-3136.8-380.7-387.23-271.2-264.72- 174.47-408.5-414.51-320.1-266.1-296.31-291.29-303.1-291.88-101.9-110.9- 1063.5- 1094.41

- 1295.8- 1294.36- 1882.0- 1492.9-537.8-562.08- 129.7- 120.5-453.1-438.11

-634.3-598.23-53.01

- 1281.22- 1036.0- 1036.54- 1048.1-863.6-870.10

-981.7-859.7-861.40

-542.7

-937.6

-592.5

79.9865.3

20895.9

184.9149.2264.22170.0182.55

159.0146203.8143.1264.9151.0284.5128.52196.7155.5148.1

200.12255.2291.2355.4366.588.7

426.06577.8418.8505.0

192221.850.21

203.3155.02218286.6115.5193.7251.9104.3195.0

360

515

314

66.7

170.552.3

-120.1105.2

120.251.29

-114.6

100.3

112.41

66.3

114.44

145.98

219.2253.2248.98

-84.9

322.2

-66.1

37.91

126.73

76.94

1.264 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

K2Hg(CN)4

std. stateK2HgI4

std. stateKH2PO4

std. stateK2HPO4 std. stateK2H2P207

K3HP20,KHS

std. stateKHSO3

KHSO4

std. stateKI

KIO3

KIO4

KMnO4

K2MoO4

std. stateKNH2 amideKNO2

std. stateKNO3

std. stateK2Ni(CN)4 std. stateK20KO2

K202

KOCN cyanatestd. state

KOHstd. state

K2PdBr4

std. stateK3P04

std. state

KAO,K2PtBr4

std. stateK2PtBr6

std. stateK2PtCl4

std. stateK2PtCl6

std. stateK2ReCl6

std. state

caqcaqcaqaqcaqaqcaqaqcaqcaqcaqcaqccaqccaqcaqaqccccaqcaqcaqcaqaqcaqcaqcaqcaqcaq

-32.221.8

-775.0-739.7- 1568.33- 1548.67- 1796.90-2815.8-2783.2-3032.1-265.10-269.9-878.60

-1160.6-1139.72-327.9- 307.57-510.43-473.6-467.23-403.8-837.2- 1498.71- 1502.5- 128.9-369.82

-356.9-494.63-459.74- 136.8-361.5-284.9-494.1-418.65-398.3-424.7-482.37-938.1- 889.5- 1950.2-2034.7-3280.7-915.0-872.8

-1021.3-975.3- 1054.4- 1003.7- 1229.3-1171.8-1310.4- 1266.92

51.9

-778.2- 1415.95- 1622.85- 1655.78

-2576.9-2822.1

-271.21-811.07

-1131.4- 1039.26-324.9-334.85-418.4-411.3-361.41-341.8-737.6

- 1402.9

-306.60-315.5-394.93-394.59-94.6-322.1-239.4-425.1

-380.7- 378.7-440.53

-884.5

- 1868.6-3052.2

-828.4

-898.7

-928.0- 1078.6- 1049.4-1172.8-1156.0

510

565134.85192.9171.5

368351

165.3242.3138.1234.3106.3213.8151.46220.9175.7322171.71

232.2

152.09225.5133.05249.0423

94.1122.5102.0

209.278.991.6

452

87.9293

326.4

368

360333.9424.7371.71460

116.57

75.3

-63.052.9

- 120.5106.48

117.6

107.40

96.4-64.9

83.777.53

110

64.9- 126.8

180.2

205.60

214.68

INORGANIC CHEMISTRY 1.265

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

KReO4

std. stateK2S

std. state

KSCNstd. state

K2SeO3

std. stateK2SeO4

std. stateK2SiF6

std. stateK2SiO3

K2SnBr6

K2SnCl6K2SO3

std. stateK2SO4

K2S06

std. stateK2S203

std. stateK2S204

K2S207

K2S208

std. stateK2S406

std. stateKSO3FK2UO4

KVO4

std. stateK2Zn(CN)4

std. statePraseodymium

PiPr3+ std. statePr(OAc)3 std. statePrCl3

std. statePr(N03)3

Pr203

PromethiumPmCl3

ProtactiniumPaPa4+

PaBr4

PaBr5

caqcaqcaqcaqcaqcaqcaqccccaqcaqcaqcaqaqccaqcaqcccaqcaq

caqaqcaqcc

c

caqcc

- 1097.0- 1039.7-380.7-471.5-432.2-474.5-200.16- 175.94-979.5

-1013.8-1110.02-1103.7-2956.0-2893.7-1548.1- 1218.0- 1477.0-1125.5-1140.1- 1437.8- 1414.0- 1437.7- 1414.02-1173.6-1156.9- 1258.1- 1986.6-1916.10- 1849.3- 1780.7- 1728.8-1159.0-1921.3-1154.8-1140.6-100.0- 162.3

0-704.6

-2147.52- 1056.9- 1206.3- 1229.3- 1809.6

- 1054.0

0-619.2-824.0-862

-994.5-977.8-364.0-480.7

-487.0- 178.32- 190.58

-936.4- 1002.9- 1007.9-2798.7-2766.0- 1455.7-1160.2-1333.0

- 1053.1- 1321.4-1311.1-1319.6-1311.14

- 1089.1-1166.9-1791.6- 1697.41-1681.6- 1613.43- 1607.1

-1066.9

-119.7

0-679.1- 1805.56

- 1072.8

0

-787.9-820

167.82303.8105.0190.4

233.5124.26246.9

218.0222259.0225.9327.2146.1443.1366.5

176175.6225.1175.5225.1

272297255278.7449.4309.66462.3

155

431

73.2-209.0

164.9

-42.0

51.8

234.0289

122.558.4

74.7

88.53-18.4

118.4246.0246.0

131.5-251.0

131.3-251

213.2

230.79-24.3

27.20-29.0

100.0-439.0

117.40

1.266 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

PaCl4PaCl5

RadiumRaRa2+

RaCl2 std. stateRa(N03)2

std. stateRaSO4

std. stateRadon

RnRhenium

Re

Re~ std. stateReBr3

ReCl3ReCl|- std. stateReO2

ReO3

Re.0,

RhodiumRhRhCl3Rh2O3

RubidiumRb

Rb+ std. stateRb acetateRbBO2

RbBrstd. state

RbBrO3

Rb2CO3

std. stateRbCl

std. stateRbClO3

std. stateRbC104

std. stateRbF

std. stateRb formateRbHCO3

std. stateRbHF2

std. state

cc

caqaqcaqcaq

g

c

gaqccaqccc

g

ccc

c

gaqaqccaqccaqcaqcaqcaqcaqaqcaqcaq

- 1043.1-1144.7

0-527.6-861.9-992-942.2

-1471.1- 1436.8

0

0769.946.0

- 167.0-264-761-423-605.0- 1240.1-1100.0

0-299.2-343.0

080.9(8)

-251.12(10)-737.2-971.0-394.59-372.71-367.27

-1136.0-1179.5-435.35-418.32-402.9-355.14-437.19-380.49-557.7-583.79-676.7-963.2-943.16-922.6-901.11

-953.0- 1034.3

0-561.5-823.8-796.2-784.1- 1365.7- 1306.2

0

0724.6

10.1

-188-590-368-531

-1066.1-994.0

0

053.1

-283.97-653.3-913.0-381.79-387.94-278.11

-1051.0- 1095.8-407.81-415.22-300.4-291.9-306.9-292.59

-562.79-635.1-863.6-870.82-855.6-862.11

192.0238.0

7154.0

167.0222347.013875.0

176.235

36.9188.9230.0

123.9251172257.3207.1452.0

31.51

110.9

76.78(30)170.094(3)121.75(25)207.994.3

109.96203.93161.1181.33186.295.90

178.0151.9283.68161.1303.375.3

107.53213.0121.3212.71120.08213.8

20.79

25.520.8

92.4

166.1

24.98

104.0

31.0620.8

74.152.84

117.61

52.41

103.2

50.5

79.37

INORGANIC CHEMISTRY 1.267

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

RbHSO4

std. stateRbl

std. stateRbNO2

RbNO3

std. stateRb2ORb202

RbOHstd. state

RbzPtClsstd. state

RbReO4

std. stateRb2SRb2SeO4

std. stateRb2SO4

std. stateRuthenium

RuRuBr3

RuCl3

RuI3

RuO2

RuO4

SamariumSmSm3+ std. stateSmCl2SmCl3

std. stateSmF3

SmF3 • W2OSmI3

Sm(I03)3

Sm(N03)2

Sm2O3

Sm2(S04)3

ScandiumScSc3+ std. stateScBr3

ScCl3ScF3

ScOH2+

Sc203

caqcaqccaqcccaqcaqcaqaqcaqcaq

cccccc

iq

caqccaqcc

ccccc

caqcccaqc

-1159.0-1138.51-333.8-306.35-367.4-495.05-458.52

-339-472.0-418.19-481.16- 1245.6-1170.7-1102.9- 1038.5-469.4

-1114.2-1101.7- 1435.61-1411.60

0- 138.0-205.0-65.7

- 305.0-239.3-228.5

0-691.6-815.5- 1025.9-1193.3- 1778.0- 1825.1

-620.1-1381-1212.1- 1823.0-3899.1

0-614.2-743.1-925.1- 1629.2-861.5- 1908.8

- 1039.98-328.9-335.56-306.2- 395.85-395.30

-441.24-1109.6- 1056.6-996.2-978.6-482.0

- 1009.2-1316.96-1312.56

0

- 152.3-152.3

0-666.5

- 1060.2

- 1734.7

0-586.6

- 1555.6-801.2- 1819.41

253.1118.4232.6172.0147.3267.8

110.75406464167322.6228.4

297.1197.44263.2

28.53

146.4183.3

69.58-211.7

-42.7

151.0

34.64-255.0

121.392

- 134.076.99

53.18

102.1

134.06

24.1

29.54-21

-431

114.5

25.52

93.64

94.2

1.268 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

SeleniumSe

SeBr2

SeCL,SeF6

SeOSeO2

SeO3

SeOf " std. stateSeOf

SiliconSi

SiBr4

SiBiCljSiC alpha

betaSiCl4

SiClBr3

SiClF3

SiF4

SiH4

SiHBr3

SiHCl3

SiHF3

SiH2Cl2SiH3ClSiH3FSi2H6

SiI4

Si3N4

SiOSiO2 quartz

high cristobaliteSiOF2

SiS2

Silver

Ag

Ag+ std. stateAg2+ in 4M HC104

AgAtAgBrAgBr03

AgClAgC102

c

ggc

ggccaqaq

c

giqggcc

iqggggggiqggggggc

iqc

gcc

gc

c

gaqaqccccc

0227.1

-21.0-188.3

-1117.053.4

-225.4- 166.9-509.2-599.2

0450.(8)

-457.3-415.5

-62.8-65.3

-686.93-657.0

-1318- 1615.0(8)

34.3-317.6-539.3-513.0

-320.5-142-377

80.3-189.5- 174.60-743.5-99.6

-910.7(10)-905.5-967-213.4

0284.9(8)105.79(8)268.6

-45.2- 100.37-10.5- 127.01(5)

8.79

0187.0

- 1017.026.8

-369.9-441.4

0

-433.9-431.8

-60.2-62.8

-620.0-617.0

-1280- 1572.7

56.8-328.5-482.5-482.0

-295.0-119-353

127.2-191.6- 187.49-642.1- 126.4-856.4- 853.6-951-212.6

0

77.12269.0

-96.9071.3

- 109.875.7

41.97174.8

313.8234.0

1354.0

18.81(8)167.981(4)277.5377.9350.1

16.4916.61

239.7330.7377.1309282.76(50)204.65348.6227.6313.7271.9285.7250.8238.4272.7258.1294.30101.3211.641.46(20)50.05

271.380.3

42.55(20)172.997(4)73.45(40)

-88133.1107.11151.996.25(20)

134.56

24.9822.1

110.531.3

20.00

146.497.190.926.7626.9

145.390.2695.379.473.6242.8380.8

75.860.560.551.1047.2080.79

108.0159.7999.529.944.426.58

53.6977.5

25.4

21.8

55.752.38

50.7987.32

INORGANIC CHEMISTRY 1.269

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

AgClOjAgC104

std. stateAgCNAg(CN)2 std. stateAg2CrO4

Ag2C03

Ag2C204

AgFAgF2

AgiAgI03

AgN,Ag(NH3)ï std. stateAgN03

std. stateAgOAg20Ag203

Ag2S argentiteAg3SbAgSCNAg2SeAg2S04

std. stateAg2Te

SodiumNa

Na+ std. stateNaAg(CN)2 std. stateNaOAc

std. stateNaAlCl4

NasAlCljNaAlF4

Na3AlF6

NaAlH4

NaAlO2

NaAl(SO4)2 std. stateNaAlSiO4

NaAsO2

std. stateNa3AsO4

std. stateNaAu(CN)2

NaBF4

std. stateNaBH,

std. state

ccaqcaqccccccccaqcaqccccccccaqc

c

gaqaqcaqcc

gcccaqccaqcaqaqcaqcaq

-30.3-31.13-23.77146.0270.3

-731.74-505.9-673.2-204.6-360.0-61.84

-171.1308.8

-111.29-124.4- 101.80-12.15-31.1

33.9-32.59-23.0

87.9-38

-715.9-698.10-37.2

0107.5(7)

-240.34(6)30.12

-708.81-726.13

-1142.0- 1979.0- 1869.0-3361.2-115.5

-1137.3-2590-2092.8-660.53-669.15

-1540- 1608.50

2.1- 1844.7-1812.1- 188.6- 199.60

64.5

68.49156.9305.4

-641.83-436.8-584.1

-66.19-93.7376.1- 17.24

-33.47-34.23

13.83-11.21121.4

-40.67

101.38-44.4

-618.4-590.36-43.1

0

-261.8843.5

-607.27-631.28

-996.4

-1829- 1827.5-3136.7

- 1069.2-2238- 1978.2

-611.91

-1434.1923.9

-1750.1- 1748.9- 123.9- 147.61

142.0162.3254.8107.19192217.6167.4209

83.7

115.5149.4104.2245.2140.92219.258.5

121.3100.0143.9171.5131.0150.71200.4165.7154.8

51.30(20)153.718(3)58.45(15)

251123.0145.6188.3347.0345.7239.5

70.40-222.6

124.3

99.6

14.2230145.31243101.3169.5

66.73

142.26112.26

51.92

56.82102.93

93.05-64.9

44.065.86

76.53101.76381.76

131.4-251

87.5

28.15

46.4

79.940.2

154.98244.1105.9215.89

73.64

120.3

86.8

1.270 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

NaBO2

std. stateNaBO3-4H2ONa2B4O7

std. stateNa2B40, - 10H20NaBr

std. stateNaBr3 std. stateNaBrO std. stateNaBrO3

std. stateNaBrO4 std. state

NaJCdCCNMNaCl

std. stateNaCIO std. stateNaClO2

std. stateNaC103

std. stateNaClO4

std. stateNaCN

std. stateNa3[Co(N02)6]NajCOa

NajCO-j - H2ONa2CO3 • 10H2ONa2C2O4

std. stateNa2Cr04

std. stateNa2Cr2O7

std. stateNa ethoxideNaF

std. stateNa3[Fe(CN)6] std. stateNaJFeiCNy std. stateNa formate

std. stateNaHNa2HAsO4 std. stateNaH2AsO4 std. stateNaHCO3

std. stateNaHCrO4 std. stateNaHF2

std. state

caqccaqccaqaqaqcaqaqaqcaqaqcaqcaqcaqcaqccaqcccaqcaqcaqccaqaqaqcaqcaqaqcaqaqcaq

-977.0- 1012.49-2114.2-3291.1-3271.1-6298.6-361.08-361.66-370.54-384.3-334.09-307.19-227.19-52.3

-411.2-407.27-347.3-307.02-306.7-365.77- 344.09-383.3-369.45-87.5-89.5

- 1423.0-1130.7-1157.4-1431.26-4081.32-1318.0- 1305.4- 1342.2-1361.39

- 1978.6- 1970.7-413.80-576.6-572.75- 158.6-505.0-666.5-666.67-56.34

- 1386.58-1149.68-950.81-932.11

-1118.4-920.27-890.06

-920.7-940.81

-3096.0-3076.9-5516.6-349.00-365.85-368.95- 295.4-242.6-243.34- 143.93-16.3

-384.1-393.17-298.7

-244.8-262.34-269.91-254.9-270.50-76.4-89.5

-1044.4-1051.6- 1285.41-3428.20

-1197.9- 1235.0-1251.64

-1825.1

-546.3-540.70-56.5

-352.63-600.00-613.0-33.55

-1238.51-1015.16-851.0-848.72- 1026.8-852.20-840.02

73.5421.8

189.0192.958686.82

141.4274.5100128.9220.9

-258.5743972.1

115.5100115.9160.3123.4221.3142.3241.0115.6153.1

135.061.6

168.11564.0

163.6176.61168.2

379.9

51.1145.2

447.3231.0103.7615140.02

116.3176101.7150.2243.190.92

151.5

65.94

186.8

614.551.38

-95.4

50.51-90.0

111.3

70.4

112.3

145.60550.32142

142.13

46.85-60.3

82.68-41.4

36.39

87.61

75.02

INORGANIC CHEMISTRY 1.271

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

Na2H2[Fe(CN)6]

NaH2PO4

std. stateNa2HPO4

std. stateNaftPANaHS

std. stateNaHSeOj

std. state

NaHSeO4

std. state

NaHSO4

std. state

Nalstd. state

NaI3

NaIO3

std. state

NaIO4

std. stateNa methoxide

std. stateNaMnO4 std. stateNa2MnO4

std. stateNajMoOi

std. state

Na2Mo2O7

NaN3

std. stateNaNH2

NaNbO3

std. state

NaN02

std. stateNaNO3

std. state

NaJJiKOSOJNaO2

NajONa2O2

NaOCN cyanatestd. state

NaOH

std. stateNa3P04

std. stateNa4P20,

std. state

aqcaqcaqccaqcaqcaqcaqcaqaqcaqcaqcaqaqcaqcaqccaqccaqcaqcaqaqccccaqcaqcaqcaq

-24.7- 1536.8- 1536.4-1748.1

- 1772.38-2764.8-237.23

-257.73-759.23

-754.67-821.40-821.74

-1125.5

-1127.46-287.9-295.31

-291.6

-481.79-461.50

-429.28-391.62

-367.8-433.59-781.6

-1156.0

-1134-1468.12- 1478.2

-2245.0521.7135.02

- 123.9-1315.9- 1265.7

-358.65-344.8-467.85

-447.48-112.6-260.2

-414.2

-510.9-405.39-386.2

-425.6-469.15

- 1917.40- 1997.9-3188-3231.7

134.64

- 1386.2- 1392.27- 1608.3

- 1613.06-2522.5

-249.83

-673.41

-714.2

-992.9- 1017.88

-286.1-313.47

-313.4

- 389.95

-323.09-320.49

-294.80-332.46-709.2

- 1024.7- 1354.30- 1360.2

-2058.19

93.7686.2

-64.01233.0

-1194.1

-284.60-294.1-367.06-373.21

-51.9-218.4

-375.5

-449.6-358.2-359.4-379.4

-419.20

- 1788.87- 1804.6-2969.4

-2966.9

335127.49149.4150.50

84.5220.20

121.8

194.1

208.4

113.0190.898.50

170.3298.3135.1177.4163.0280110.5817.6

250.2

176159.70145.2250.6

96.86

166.976.90

117155103.8182.0116.52205.4

335115.975.0494.896.7

165.764.448.1

173.80-46270.29117

116.86

135.31

198.15

-3852.1

-95.8

92.1

69.45

141.71

217.15

76.61

66.15

-51.092.88

-40.2

72.1469.1089.386.6

59.5-102.1

153.47

241.12

1.272 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

NaRe04

std. stateNajS

std. stateNa2S2

std. stateNaSCN

std. stateNajSeNa2SeO3

std. stateNa2SeO4

NajSiF«NazSiOsNazSiAiNaSnBr3

NaSnCl,NajSOj

std. stateNa2SO4

std. stateNa2SO4-10H2ONa^Oj

std. stateNa2S2O3 • 5H2ON%S2O4 dithionate

std. stateNaAO,Na^OgNajTeNajTeO.,Na2TiO3

NazUOí betaNa3UO4

NaVO3

std. stateNa3VO4

Na2V20,Na2WO4

NaJZn(CN)4]Strontium

SrSr2* std. stateSr(OAc)2

Sr3(As04)2

SrBr2

SrCl2std. state

Sr(C104)2

std. state

caqcaqcaqcaqccaqccccaqaqcaqcaqccaqccaqcaqccccccaqcccaq

caqcccaqcaqcaq

- 1057.09- 1027.6-364.8-443.3-397.0-450.2- 170.50- 163.68-341.4-958.6-989.5- 1069.0-2909.6- 1554.9-2470.1-615.1-727.2

-1100.8-1115.87-1387.1- 1389.51-4327.26-1123.0-1132.40-2607.93- 1232.2- 1233.9-1925.1-1825.1-349.4- 1270.7-1591.2-1893.3-2025.1-1145.79-1128.4- 1757.87-2918.84- 1544.7-138.1

0-545.8- 1487.4-3317.1-717.6-788.89-828.9-880.10-762.69-804.46

-953.74-956.5-349.8-438.1-392-444.3

- 169.20

-893.7

-2754.2- 1462.8-2324.1-608.8-692.0- 1012.5- 1010.44- 1270.2- 1268.40-3647.40- 1028.0- 1046.0-2230.1

-1124.2-1722.1- 1638.9

- 1496.2- 1777.78-1901.2- 1064.12- 1045.6- 1637.83-2712.52- 1429.8

-77.0

0-559.44

-3080.3-697.1-767.39-781.1-821.95

-576.68

151.5260.2

83.7103.3151146.4

203.84

130

207.1113.8164.1310318145.9487.9

149.6138.1592.0155184.1

209.2202.1362.3

121.67166.02198.20113.68109190.0318.4160.3343

55.0-32.6

255135.1132.2114.980.3

331.4

133.89

82.8

6.3

187.1111.9157.0

120.25

128.2-201

125.65146.65173.0197.57

164.85269.74139.8

26.79

75.3

75.59

INORGANIC CHEMISTRY 1.273

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued )

SrC03

SrC2O4

SrF2

Sr formateSrHPO4

Sr(H2P04)2

SrI2

std. stateSr(I03)2

SrMoO4

Sr(N02)2

Sr(N03)2

std. stateSrOSrO2

Sr(OH)2

Sr3(P04)2

SrSSrSeSrSeO3

SrSeO4

SrSiO3

Sr2SiO4

SrSO3

SrSO4

Sr2TiO4

SulfurS rhombic

monoclinic

s2-S2

S8

S2Br2

SC12

SC1F5

S2C12

SCN-SF4

SF6

S2Fi0SOSO2

SO3

SOC12

SOF2

SO2C12

SO2C1FS02F2

caqccccccaqccccaqccccccccccccaqc

cc

gaq

ggiqiqiqiqaq

ggggggggggg

- 1220.1- 1222.9- 1370.7- 1216.3- 1393.3-1821.7-3134.7-558.1-656.18- 1019.2-1561.1-762.3-978.22-960.52-592.0-654.4-959

-4122.9-472.4-385.8- 1047.7- 1142.7- 1633.9-2304.6-1177.0- 1453.1- 1455.1-2287.4

00.360

277.17(15)33.1

128.60(30)101.25

-13.0-50.0

- 1065.7-59.4

76.4-763.2- 1220.5-2064

6.3-296.81(20)-395.7-212.50-544-364.0-556-759

-1140.1- 1087.3

-1164

- 1688.7

-557.7-662.62-855.2

-780.0-782.12-561.9

-881

-467

- 1549.8-2191.2

-1341.0- 1304.0-2178.6

0-0.070

85.8

49.16

-28.5

-3992.7

-722.0-1116.5-1861

-19.9-300.13-371.02- 198.3-502-320.0-513-712

97.1-89.5

82.1

121

159.1190.0234128.9

194.56260.254.45497

68.2

96.7153.1

117.0-12.6159.0

32.054(50)33.03

167.829(6)-14.6228.167(10)430.20

184

224144.3299.6291.5397222.0248.223(50)256.77309.8278.7311.9303284.0

81.42

70.0

77.95

117.07

149.87

45.079.4574.9

48.7

88.53134.26

107.78

143.68

22.6023.23

156.06

91.0

124.3-40.2

77.6096.96

176.730.239.8850.6666.556.8177.0171.666.0

1.274 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

sof-so|-s2oi-s2oj-s2o¡-

TantalumTaTaB2

TaBr5

TaCTafTaCl5TaF5

TazHTaI5

TaNTaO2

TaATaOCl3

TechnetiumTcTc207

TelluriumTeTeBr4

TeCl4TeF6

TeO2

Te(OH)JTerbium

TbTb3+ std. stateTbCl3

std. stateTbO2

Tb203

Tb2(SO4)3 std. stateThallium

TlTT std. stateT13+ std. stateTlBr

std. stateTlBr3

TlBrO3

std. stateT1C1

std. stateT1C13

std. stateT1C103

aqaqaqaqaq

cccccccccc

gc

g

cc

ccc

gcaq

caqcaqccaq

caqaqcaqaqcaqcaqcaqaq

-635.5-909.34(40)-652.3-753.5- 1344.7

0-209.2-598.3-144.1- 197.5-859.0- 1903.6

-32.6-490-251-201

-2046-780.7

0-1113

0- 190.4-326.4

-1318.0-322.6-322.6

0-682.8-997.1

-1184.1-971.5- 1865.2-4131.7

05.36

196.6- 173.2-116.19- 168.2-136.4-78.2

-204.10-161.80-315.1-305.0-93.7

-486.5-744.5-522.5-600.3

-1114.9

0

- 142.7

-746

-69.0

-209-1911.0

0

0

-270.3-496.1

0-651.9

- 1045.6

-3597.4

0-32.38214.6

- 167.36- 136.36-97.1-53.14-30.5- 184.93-163.64

- 179.1-35.6

-29.018.50(40)67.092.0

244.3

41.4744.4305.442.3783.7

222195.079.1

34350.6

280143.1361.5

33.47

49.70

209335.7779.5

111.7

73.22-226.0

-59.0

64.18125.5

- 192.0120.5207.954.0

168.6288.7111.30182.00

-23.0287.9

-293.0

25.4048.12155.7336.7960.96

148130.4690.8

155.642.144.0

135.098.53

24.27

25.70

138.5116.9063.89

28.9117.0

-393.0

115.9

26.32

50.50

50.92

INORGANIC CHEMISTRY 1.275

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued)

T12C03

TIPstd. state

Tilstd. state

T1NO3

T12O

T1OH

std. state

T12S

Tl2Se

T12SO4

std. state

Thorium

Th

Th4+ std. state

ThBr4

ThC,.94

ThCl4ThF3

ThF4

undissoc; std. state

ThH2

ThI4

ThNTh,N4

Th(N03)4

ThO2

ThOCl2ThOF2

Th(OH)3+

Th(OH)l+

Th3P4

ThS2

Th2S3

Th(S04)2

Thullium

TmTm3+ std. state

TmCl3std. state

Tm2O3

TinSn white

gray

Sn2+ in aqueous HC1

Sn4+ in aqueous HC1

SnBr2

ccaqcaqcaqccaqcccaq

c

gaqccc

gcaqccccccccaqaqcccc

caqcaqc

caqcaqaqc

-700

-324.6

-327.27

- 123.9

-49.83

-243.93

- 202.0

- 178.7

-238.9

-224.64

-97.1

-59.0

-931.8

-898.56

0602.(6)

-769.0

-965.3

-146

-1186.2

-1166.1

-2097.8

-2115.0

- 139.8

-664.8

-391.2

-1315.0

-1441.4

- 1226.4(35)

- 1232.2

- 1665.2

-1030.1

- 1282.4

-1140.2

-626.3

- 1083.7

-2542.6

0-697.9

-986.6

-1199.1

- 1888.7

0301.2(15)

-2.09

-8.9(10)

30.5

-243.5

-614.6

-311.21

- 125.39

-83.97

- 152.46

- 143.7

- 147.3

- 195.8

- 189.66

-93.7

-59.0

-830.48

- 809.40

0

-705.1

-927.2

- 147.7

- 1094.1

-1160.6

-2003.4

- 1947.2

- 100.0

-655.2

-363.6

-1212.9

-1169.20

-1156.0

- 1589.5

-920.5

-1140.9

-1112.9

-620.1

- 1077.0

-2310.4

0-661.9

- 1055.6

- 1794.5

0

0.13

-27.2

2.5

155.2

83.3

111.7

127.6

236.8

160.7

272.0

12688

114.6

151.0

172.0

230.5

271.1

51.8(5)

190.17(5)

-422.6

23068.49

190.4

339.2

142.05

-105

50.71

25556.07

201

65.23(20)

123.4

105- 343.0

-218.0

221.8

96.2

180159.0

74.01

-243.0

-75.0

139.8

51.08(8)

168.492(4)

44.14

- 16.7(40)

-117

54.77

52.51

99.50

27.32

56.69

120.3

73.3

110.7

36.69

45.2

155.90

61.76

91.25

173.47

27.03

25.0

-385.0

116.7

26.99

25.77

1.276 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1Substance

SnBr„

SnCl2std. state

SnCl4

SnH4

SnI2

Snl,SnO tetragonalSnO2 tetragonalSn(OH)+

Sn(OH)2

SnSSnS2

TitaniumTi

TiBTiB2

TiBr2

TiBr3

TiBr4

TiCTiCl2TiCl3TiCl4

TiF3

TiF4

TiH2

Til,TiNTiOTiO2

Ti20,Ti305

TungstenWWBr5

WBr6

W(CO)6

WC14

WC1,Wei«WF6

W02

WO3

woj-WOC14

Physicalstate

c

gcaq

iqggc

gccaqccc

c

gcccccccc

iqgccccccccc

ccccccc

iqgccaqc

AfH°kJ • mor1

-377.4-314.6-325.1-329.7-511.3-471.5

162.8- 143.5

-280.71(20)-577.63(20)-286.2-561.1-100- 167.4

0473.(3)

-160-280-402-548.5-616.7-184-513.8-720.9- 804.2-763.2(30)

-1435-1649-144-375-265.8-519.7-944.0(8)- 1520.9-2459.4

0-312- 348.5-953.5-443-515-602.5- 1747.7- 1721.7-589.9-842.9- 1075.7-671

AfG°kJ • mor1

- 350.2-331.4

-299.6-440.2-432.2

188.3

-251.9-515.8-254.8-491.6-98.3

0

-160-275-383-523.8-589.5-180-464.4-653.5-737.2-726.3

-1362-1559-105.1-371.5-243.8-495.0-888.8- 1434.2-2317.4

0-270-290.8

-360-402-456

-1631.4- 1631.4-533.86-764.1

-549

S°J • deg"1 • mol"1

264.4411.9130172258.6365.8227.7

446.157.17(30)49.04(10)50.0

155.077.087.4

30.72(10)180.298(10)3528.5

108176.6243.524.287.4

139.7252.3353.2(40)

88133.9629.71

249.452.7350.050.62(30)78.8

129.3

32.6272314331.8198.3217.6238.5251.5341.150.575.9

173

c°J • deg-1 • mor1

136.44103.479.33

165.398.348.95

105.444.3152.59

49.2570.12

25.0

29.744.378.7

101.7131.533.8169.897.2

145.295.492

114.2730.09

125.637.0839.955.097.4

154.8

24.3155181.4242.5129.7155.6175.4

119.056.173.8

146

INORGANIC CHEMISTRY 1.277

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

(Continued )

WOF4

WO2C12

Uranium

U

U3+

U4+UB2

UBr3

UBr4

UBr5

UCUC13

UC14

UC15

UC16

UF3

UF4

UF5

UF6

UH3

UI3

UI4

UNUO2

UO¡+ std. state

UO3 gamma

UAUAUAUOBr2

UOC12

UOF2

UO2(OAc)2

UO2Br2

UO2C12

std. state

UO2CO3

std. state

UO2C2O4

U02F2

std. state

U02(N03)2

std. state

UO2(OH)2 std. state

UO2SO4

std. state

US2

US3

cc

c

gaqaqcccccccaqcccccccccccaqccccccccccaqcaqccaqcaqaqcaqcc

-1407

-780

0533.(8)

-489.1

-591.2

-161.6

-699.2

-802.5

-810.9

-98.3

-866.5

- 1019.2

- 1259.8

-1058

-1092

-1502.1

- 1921.2

-2075.3

-2197.0

- 127.2

-460.7

-512.1

-290.8

- 1085.0(10)

- 1019.0(15)

- 1223.8(12)

-3427.1

-3574.8(25)

-4510.4

-973.6

- 1066.9

- 1499.1

- 1963.55

-1137.6

- 1243.9

- 1353.9

-1691.2

- 1696.6

- 1796.94

- 1653.5

- 1684.0

- 1349.3

- 1434.3

- 1479.5

- 1845.1

- 1928.8

-527

-549.4

-1298

-703

0

-476.2

-531.9

- 159.4

-673.6

-767.8

-769.9

-99.2

-799.1

-930.1

- 1056.8

-950

-962

- 1433.4

- 1823.3

- 1958.6

-2068.6

-72.8

-459.8

-506.7

-265.7

-1031.8

-953.5

-1145.7

-3242.9

-3369.8

-4275.1

-929.7

-996.2

- 1428.8

- 1066.5

-1146.4

- 1215.9

- 1562.7

-1481.6

- 1557.4

-1551.3

-1105.0

-1176.1

- 1267.8

- 1683.6

- 1698.3

-526.4

-547.3

176.0

200.8

50.20(20)

199.79(10)

-188.0

-410.0

55.52

192238.0

29359.20

159.0

197.1

- 184.0

242.7

285.8

123.43

151.67

199.6

227.6

63.68

22226462.43

77.03(20)

-98.2(30)

96.11(40)

250.5

282.55(50)

334.1

158.00

138.32

119.2

169.5

150.5

15.5

138- 154.4

135.56

- 125.1

243195.4

-118.8

154.8

-77.4

110.42

138.49

133.6

104.4

27.66

55.77

108.8

128.0

160.7

50.12

102.5

122.0

144.6

175.7

95.10

116.02

132.3

166.8

49.29

112.1

134.3

47.57

63.60

81.67

215.5

238.36

293.3

98.00

95.06

107.86

103.22

145.2

74.64

95.60

1.278 SECTION ONE

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

Vanadium

VVBr„

VC12

VC13

VC14

VF5

VNvoV02

VOJ std. state

VO¡+ std. state

VOj std. state

V203

V204

VAV305

VOClj

VOSO4

Xenon

XeXeF2

XeF4

XeF6

XeO3

XeOF4

Ytterbium

YbYb2+ std. state

Yb3+ std. state

Yb(OAc)3 undissoc; std.

state

YbCl2

YbCl3std. state

Yb(NO3)3 std. state

Yb203

Yttrium

YY3+ std. state

YC13

YF3

Y203

Y(OH)3

Zinc

Zn

Zn2+ std. state

c

gcc

iqiqgcccaqaqaqcccc

iqgc

gccc

gc

iq

caqaqaq

ccaqaqc

caqcccc

c

gaq

0-336.8

-452

-580.7

-569.4

- 1480.3

- 1433.9

-217.15

-431.8

-717.6

-649.8

-486.6

-888.3

-1218.8

-1427

-1550

-1933

-734.7

-695.6

- 1309.2

0-164.0

-261.5

-360

-297

402146

0

-674.5

-2105.0

-799.6

-959.8

-1176.1

- 1296.6

-1814.6

0-723.4

-1000

-1718.8

-1905.31

-1435

0130.40(40)

- 153.39(20)

0

-406

-511.3

-503.8

- 1373.2

- 1369.8

-191.08

-404.2

-587.0

-446.4

-783.7

-1139.3

-1318.4

-1419.3

-1803

-668.6

-659.3

-1169.9

0

- 123.0

0- 527.0

-643.9

- 1772.84

- 1037.6

- 1726.7

0-693.7

-1644.7

- 1816.65

-1291

0

-147.1

28.94

97.1

131.0

255.0

175.7

320.9

37.28

39.0

51.5

-42.3

- 133.9

50.2

98.3

103130163244.4

344.4

108.8

169.685(3)

59.87

238.0

183.3

-71.0

133.1

44.4

-251.0

136.8

10099.08

99.2

41.63(15)

160.990(4)

- 109.8(5)

24.90

72.22

93.18

161.7

98.58

38.00

45.5

62.59

103.2

115.4

130.6

150.62

89.9

20.786

26.74

25.0

-385.0

115.35

26.51

75.0

102.51

25.40

46.0

INORGANIC CHEMISTRY 1.279

TABLE 1.56 Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elementsand Inorganic Compounds (Continued)

Physical ΔfH° ΔfG° S° C°pSubstance state kJ ⋅ mol−1 kJ ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1 J ⋅ deg−1 ⋅ mol−1

ZnBr2

std. stateZnCl2

std. stateZn(CN)J~ std. stateZnCO3

ZnF2

std. stateZnI2

Zn(N03)2

ZnOZn(OH)2

std. stateZnS sphalerite

wurtziteZnSeZnSO4

Zn2SiO4

ZirconiumZrZrBZrBr2

ZrBr4

ZiCZrCl2ZrCl3ZrCL,ZrF2

ZrF4

ZnH2

ZrI2

ZrI3

Zrl,ZrNZrO2

ZrSiO4

ZrSO4

caqcaqaqccaqcaqcaqccaqccccaqc

cccccccccccccccccc

-328.65-396.98-415.05-488.19

342.3-812.78-764.4-819.14-208.03-264.3-483.7-568.6-350.46(27)-641.91-613.88-205.98- 192.6-163-982.84- 1063.2- 1636.7

0-322-405-760.7

197-502.0-714-981-962

-1911.3- 169.0-259-397.5-488-365

-1100.6-2033.4-2217.1

-312.13-354.97-369.45-409.53

446.9-731.57-713.3-704.67-208.95-250.2

-369.6-320.52-553.59-461.62

-201.29

-163-871.5-891.6- 1523.2

0-318.2-382-725.3-193-386-646-890-913- 1810.0- 128.8-258-394.9-485.4-336.7- 1042.8-1919.1

138.552.72

111.460.84

22682.473.68

-139.8161.1110.5

180.743.65(40)81.2

-133.557.7

84.0110.5

-92.0131.42

39.035.94

11622433.32

110146181.475

104.735.0

150.2204.626038.8650.3684.1

65.7-238.0

71.34-226.0

79.7165.7

- 167.065.69

-238.0

- 126.040.25

-25146.02

99.2-247.0

123.3

25.4048.2486.7

124.837.9072.696

119.866

103.631.094.1

103.8127.840.4456.1998.7

172.0

1.280 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds

Abbreviation Used in the Table

Hm, enthalpy of melting (at the melting point) in kJ ⋅ mol–1

Hv, enthalpy of vaporization (at the boiling point) in kJ ⋅ mol–1

Hs, enthalpy of sublimation (or vaporization at 298 K) in kJ ⋅ mol–1

Cp, specific heat (at temperature specified on the Kelvin scale) for the physical state in existence (or speci-fied: c, lq, g) at that temperature in J ⋅ K–1 ( mol–1

Ht, enthalpy of transition (at temperature specified, superscript, measured in degrees Celsius) in kJ ⋅ mol–1

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

AluminumAlA1(BH4)3

Al6Be010

AlBr3

ALAA1C13A1F3, Affi = 0.56455

A1I3A1NA12O3 corandumA10C1Al2SiO5 andalusite

kyanitesillimanite

Al6Si2Oj3 mulliteA12S3Al2TiO5

AmericiumAm

AmmoniumNH3

ND3 ammonia-íi3NH4Br, Mit = 3.22138

NH4C1, A/ft = 1.046-306

A/ÍÍ = 3.950184-6

NH4C1O4

NH4I, km = 2.93-13

NH4NO3

AntimonySbSbBr3

SbCl3SbCl5SbH3

SbI3

Sb2O3, A/ft = 7. 1573

Sb2S3

ArgonAr

10.71

40211.25

35.49815.9

111.4

55

14.39

5.66

20.96.40

19.8714.612.710.0

22.854.4

1.12

294.030

23.5

32.2

23.35

193.435945.248.421.368.674.6

6.43

326.4 25.8

324.3125.0138.5

116 100.186.3

112 108.536.796.164.3

149.6148.3147.5390.7115.0162.0

19.86 38.742.9

103

148.7168.5525 89.0

25.9125.5(lq)123.4(lq)

106.6(lq)108.5123.3

20.8

27.9

380.6125.0159.2117.797.3

121.343.5

112.572.6

174.5176.2173.0459.8124.1182.8

45.351.5

103.3

27.781.6(g)81.6(g)

143.5(lq)122.8134.4

20.8

30.6

407.8125.0169.7135.298.5

46.8120.176.9

186.1188.3185.0494.1129.7192.9

51.158.6

117.7

29.582.282.2

82.2(g)137.1145.4

20.8

34.9(lq)

425.2125.0176.1152.8100.8

48.5124.879.3

194.0196.2193.5513.4134.0200.0

56.264.3

31.482.582.5

82.5(g)150.6

20.8

INORGANIC CHEMISTRY 1.281

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued )

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

(Continued)

ArsenicAsAsBr3

AsCl3AsF3

AsF5

AsH3

AsI3

As2O3

BariumBaBaBr2

BaCl2> Afff = 16.9925

BaCO3, Atfi = 18.880«BaF2, AHi = 2.671207

BaH2

BaI2

BaMoO4

BaOBa(OH)2

BaSBaSO4

BaTiO3, Affi = 0.06775

BerylliumBeBeAl2O4, chrysoberylBeBr2

BejCBeCl2, A/ft = 6.8403

BeF2, A/ft = 0.92227

BeI2

Be3N2

BeO, Afff = 6.72100

BeSBe2SiO4

BeS04, Aift = 1.113590

Äfft = 19.55635

BeWO4

BismuthBiBiBr3

BiCl3BiI3

Bi2O3, Afff = 116.7717

Bi2S3

Bi2Te3

BoronBBBr3

B4C

24.4411.710.110.4

18.4

7.1232.215.854017.82526.5

46166340

7.895170.0

1875.3

8.664.77

18129.386

6

11.3021.710.9

28.5

120.5

50.2

105

41.835.029.720.816.759.3

140.3

246.4

285.4

43.9

330.6

297

100.0

105199.470.5

15175.472.620.9

48030.5

25.6

133.5(lq)

45.4

116.4

33.279.277.399.0

405.1 75.9

302.5 79.5129.5

424.3 49.9112.6

119.4111.5

291 20.0130.3

515 70.647.6

136.0 68.762.5

125 76.984.433.8

120.8103.9103.9

113.0

27.0(c)

116.9131.1164.3

552 15.772.6(g)76.4

27.5

88.3(g)

53.2

33.9(c)83.580.4

113.080.3

83.5143.553.2

122.7(c)

131.6121.8

23.3155.077.6(c)51.975.8(c)67.584.2

106.542.4

149.2126.8126.8

131.3

31.8(lq)

123.6136.2179.7

20.877.698.4

29.3

88.3

58.8

87.984.3

124.284.9

87.5(c)152.255.4

141.0(lq)

135.9126.1

25.5166.8113.0(lq)64.7

121.4(lq)74.1(c)

117.646.7

166.0149.8149.8

142.9

31.8

130.3141.3192.3

23.479.8

107.7

63.9

39.1(lq)92.289.5

134.694.6

113.0(lq)159.357.1

137.9128.7

27.3174.2113.073.2

121.485.6(lq)

123.649.3

174.1174.4174.4

153.0

31.8

137.0146.4

25.081.1

114.3

1.282 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

BC13BF3

F2B-BF2

BH3

B2H6

B4H9

B^ioB5HU

B 10̂ 14

BI3

BNB3N3H6 borazineB203

B3O3H3 boroxinBromine

Br2BrClBrFBrF3

BrF5

CadmiumCdCdBr2

CdCl2CdF2

CdI2

Cd(NO3)2 • 4H2OCdOCdSCdSO4

CalciumCa, ¿Jit = 0.934

Ca(B02)2

CaB4O7

CaBr2

CaC2 carbideCaCl2CaCN2 cyanamideCaC03

CaF2, Atff = 4.81151

CaH2

CaI2

Ca[Mg(CO3)2] dolomiteCaMoO4

Ca3N2

Ca(N03)2

CaOCa(OH)2, kHdec = 99.2Ca3(P04)2, ¿Jit = 15.5"°°CaS

2.104.20

4.446.13

32.5

81

24.56

10.5710.4

12.055.67

6.1920.948.5822.615.332.6

8.5474.1

113.429.132

28.050.432

3629.36.7

41.8

21.479.5

70

23.819.328

14.328.427.131.848.540.5

32.1390.4

29.9634.725.147.630.6

99.9115124.3214115

154.7

200

235

308.9

179.4

23.157.5

76.7

728

44.8

30.9

225.1209.6

298.3

441

243

68.4(g)67.1

38.974.3

130.2(g)

250.0(lq)

26.3126.977.9

120.1

36.7(g)

72.6113.0

27.1(c)

79.8

43.855.5

108.3

26.9125.0202.0

78.0

75.6

73.9

79.2143.3131.3122.2173.746.698.4

255.149.2

75.072.6

45.4101.3187.6

351.6(g)

35.2169.498.1(c)

162.8

37.3

78.0123.2

29.7(lq)

86.3

45.656.2

123.8

30.0144.9243.0

80.5

78.2

78.5

83.1163.3144.9140.8210.5

50.5107.4295.6

51.5

78.275.8

52.3121.7227.4

417.2

40.5197.2129.7(lq)194.6

37.6

80.1127.3

29.7

92.7

47.357.0

139.2

33.8157.2267.7

83.5

80.9

83.9

87.1176.8153.5159.2243.452.4

331.353.0

79.8

58.4136.4254.4

460.4

44.3216.6129.7214.2

37.8

81.2129.3

29.7

104.6

49.157.7

154.7

39.7176.2287.8

88.6

85.8

90.1

91.0188.3150.6

53.7

365.754.1

INORGANIC CHEMISTRY 1.283

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

(Continued)

CaSiO3, A/ft = 7.11190

Ca2SiO4, Äfft = 4.44675

Afff = 3.261420

3CaO • SiO2

CaSO4CaSO4 • '/2H2OCaSO4 • 2H2OCaTiO3, Aift = 2.301257

Ca(V02)2

CaW04Carbon

C graphite(CN)2 cyanogenCNBrCNC1CNICO, A/ft = 0.632-211-6

C02

C203COC12COF2

COSCS2

CeriumCe, Aift = 3.01730

CeCl3CeI3CeO2

CesiumCsCsBrCsCl, Aift = 3.77470

CsFCslCsIO3CsOH, A/ft = 1.30137

¿Jit = 6. 1220

Cs2SO4, A/ft = 4.3667

ChlorineC12C1FC1F3

C1F5

CIOC1O2C1O3FC120C1207

ChromiumCr, AHi = 0.000838 5

56.1

28.0

1178.1

11.4

0.8379.025.405.74

7.734.40

5.4654.451.9

2.0923.615.921.723.913.04.56

35.7

6.406

7.61

3.83

21.0

23.3 19.745.4

59.46.04

15.8 25.226.9435

24.416.118.626.7 27.5

398 419170.1 326

63.9 76.6151115.1115.5150.2

120

76.5

20.41 17.652427.522.9

3019.3325.934.69

339.5 397

100.4146.4

196.4109.7147.4260.7112.3182.9127.6

12.061.9(g)50.19(g)48.750.829.341.375.063.954.845.949.7

30.6

66.9

31.552.954.753.851.9

74.4(c)

112.1

35.333.870.6(g)

110.033.246.175.951.4

25.2

113.0162.8

218.4129.5167.2280.3123.1206.7140.2

16.668.253.752.853.730.447.385.571.164.951.354.6

30.8

69.0

31.055.059.157.457.8(c)

81.6(lq)

132.2

36.635.676.8

121.635.351.489.254.7

27.7

119.2 123.8179.2 184.0

230.8 240.4149.2 169.0186.9 206.7300.0 319.8127.7 130.4230.5 254.4147.3 152.8

19.7 21.772.9 76.456.2 58.155.7 57.755.8 57.431.9 33.251.4 54.392.7 97.775.0 77.470.8 74.454.7 57.057.4 59.3

32.1 33.8

71.1 73.2

30.9(lq) 20.8(g)57.2(c) 77.4(lq)63.7(c) 77.4(lq)60.9(c) 74.1(lq)65.5(lq) 67.8

81.6 81.6

163.2 194.2

37.1 37.436.5 37.079.4 80.7

126.3 128.636.3 36.954.2 55.896.1 100.056.2 56.9

29.4 31.9

1.284 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

CrCl2CrCl3Cr(CO)6

CrN, Mldec = 112CrO2Cl2Cr02F2

Cr03

Cr203

Cr2(S04)3

CobaltCo, A/ft = 0.452427

CoCl2CoF2

CoF3

CoOCo304

CoS04, Atff = 2.1a»Copper

CuCuBr, Affi = 5.86380

Afíf = 2.9465

CuClCuCl2, Afff = 0.700402

¿Jit = 15.001598

CuCNCuFCuF2

CulCuOCu2OCuSCu2S, A/if = 3.85103

àHt = 0.84350

Cu2Se, A/ft = 4.85»°CuSO4

DysprosiumDy

ErbiumEr

EuropiumEu

FluorineF2, A/ft = 0.728-227-6

FNO3

GadoliniumGdGd2O3

GalliumGaGaBr3

32.2

23.415.77

129.7

16.24559

13.269.6

10.220.4

5510.911.864.8

10.9

11.06

19.90

9.21

0.510

10.05

5.5912.1

196.7

35.134.3

377146202

300.4

54

12

156

280

280

176

6.62

301.3

25438.9

237.772.049.1

424219315

337.7

241.8

268261

290.4

317.2

178

72.693.1

233.950.4

63.9112.7316.9

26.581.775.79752.9

143119

25.356.5

56.976.3

55.572.455.446.867.648.897.3

90.9114.9

33.075.1

36.6113.4

27.1(lq)

77.099.0

51.7

72.5120.5345.2

29.784.680.8

10054.3

163141

26.559.8(c)

61.5(c)80.2(c)

66.759.681.957.850.873.351.097.3

91.7136.3

35.287.8

35.5120.1

26.7

81.5104.9

53.0

76.7124.3373.5

32.486.882.9

10254.8

185152

27.466.9(lq)

66.9(lq)82.4(lq)

73.1

87.060.253.277.653.285.0

92.5147.7

36.394.8

34.5124.4

26.6

85.9110.7

78.8127.0401.8

37.088.284.2

10456.0

210158

28.766.9

66.9100.0

78.0

90.466.955.081.555.485.0

93.4153.8

37.198.9

33.5127.9

26.6

INORGANIC CHEMISTRY 1.285

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

(Continued)

GaCljGaI3Ga2O3GaSb

GermaniumGe, Afff = 37.039383

GeBr4

GeCl4GeH4

Ge2H6Ge3H8

GeO2Gold

AuAuSn

HafniumHf, Affi = 5.91750

HfCl4Hf02, Affi = 10.51700

HeliumHe

HolmiumHo

HydrogenH2

WH2H2HBO2

H3BO3HBrHC1, ¿Jit = 1.188-'74-77

2HC1HC10HCNHF2HFH2F2 dimerHFOHIHNCO isocyanic acidHNCS isothiocyanic acidHNO2 ds

transHNO3

HN3

H2OWHO2H2OH2022H202

11.1312.9

10025.1

36.94

43.9

12.5525.6

27.275

104.6

0.0138

16.8

0.117

14.322.3

2.4061.992

8.4064.58

2.87

10.47

6.009

12.5012.68

23.956.5

33441.427.914.125.132.2

324

571 618.499.6

0.0829

71

0.904

242.1

17.61 12.716.14 9.1

25.22

19.77 17.4

39.46 39.130.540.66 44.0

51.6352.4

91.4

24.3

100.7

61.39

25.854.1

26.7125.467.7

20.79

280

29.229.229.261.5(c)

29.219.229.440.039.429.129.249.738.629.350.653.251.452.163.1

34.3(g)34.835.648.5

112.5

25.4

104.6

69.1

26.863.3(c)

28.6105.873.9

20.79

317

29.329.429.6

29.829.230.644.044.229.229.556.542.830.358.361.059.960.376.8

36.437.538.855.7

133.5

26.2

106.1

72.4

27.860.6(lq)

30.3106.777.3

20.79

29.629.930.5

31.129.632.146.647.929.530.561.045.731.863.565.965.465.685.0

38.840.442.259.8

26.9

106.8

75.0

28.8

31.9107.179.9

20.79

30.230.731.6

32.331.633.548.551.030.231.664.447.933.167.569.369.269.390.4

41.443.345.466.7

1.286 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

HPH2O2

H3P03

H3P04

H2S, A/ft = 1.531-'69-61

H2S2

H2SeHSO3FH2SO4

H2SO4 • H2OH2SO4 • 2H2OH2SO4 • 3H2OH2S04 • 4H20H2Te

IndiumInInBrInBr3

InClInCl3InF3

In!InI3

In203

InSbIodine

I2ICIIFIF5

IF7Iridium

IrIrF6

IrO2

IronFe, Aift = 0.90911

A/ft = 0.8371392

FeBr2

FeBr3, A/ft = 0.4 18377

Fe^C, A/ft = 0.75190

FeCl2FeCl3FeCO3

Fe(CO)5

FeCr2O4

FeF2

FeF3

FeI2, A/ft = 0.8377

Fe3NFeO

9.6712.8413.423.8

10.7119.4618.2424.030.64

3.28152621.3276417.318.5

10525.5

150.6611.60

41.128.40

13.81

50.250.251.543.0143.1

13.23

51.9

45

24.06

18.6733.819.7

50.2

19.2

231.892

90.8

41.6

41.3

231.836

340

26.343.76

33.72

224.4

104.6

175.714.1 38.9

87.5158.2228.5294.6347.8410.3

243.1 28.5(c)

62.4 79.6(lq)52.9 98.3(lq)

35.1476.1(g)152.0(g)

243.1 28.5(c)

63.8

415.5 27.4

207.5 83.0115.779.7

106.7(c)93.5

189.0152.0

316 72.0274 96.4192 83.9

72.651.8

236.042.5

102.6197.0(lq)

30.1(lq)

37.6(g)90.036.6

516.7167.6

30.1(lq)

76.5

32.1

87.0114.783.1

133.9(lq)115.9209.8167.777.196.884.477.754.9

296.245.8

111.0125.9(g)

30.1

37.981.637.3

533.0173.9

30.1

89.2

38.0

91.4117.285.582.3(g)

138.3223.1175.980.399.3

110.982.857.3

365.5

116.3132.7

30.1

38.173.237.7

541.4177.0

30.1

102.0

54.4

95.9119.8101.281.5

232.2182.282.1

101.8113.0(lq)87.959.4

INORGANIC CHEMISTRY 1.287

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

(Continued)

Fe2O3, Äfft = 0.67677

Fe304

Fe(OH)2

Fe(OH)3

FeS, A/ft = 0.40138

A/ft = 0.095325

FeS2 marcasitepyrite

FeSiO3

Fe2Si04

FeSO4

Fe2(S04)3

FeTiO3 ilminiteKrypton

KrLanthanum

La, A/ft = 2.85868

LaCl3La2O3

LeadPbPb(B02)2

PbB4O7

PbBr2

Pb(CH3)4

PbCCyy,PbCl2PbCO3

PbF2, A/ft = 1.46310

PbI2

PbMoO4

PbO, A/ft = 0.17488

Pb02

Pb304

PbSPbSiO3

Pb2SiO4

PbSO4, Afff = 17.2866

PbSO4 • PbOLithium

LiLi2AlF6, Aift = 9.5562

LiA102

LiBH4

LiBeF3

Li2BeF4

LiBO2

Li2B4O7

LiBrLiCl

138.1

31.5

92

90.8

1.37

6.2043.1

4.77

16.4410.868.80

21.9

14.723.4

25.5

18.826.051.040.2

3.00110.587

27.244.033.8

12117.619.9

120.1171.1

243.5 102.1118.089.2

69.268.9

100.8150.9116.7307.0

111.4 122.0 128.1

9.08

402.1 28.5192.1 105.8

117.3

179.5 195.2 27.7129.7207

133 173 81.3

127 185.3 80.199.7

157 76.1104 172 78.9

135.3207 50.4

67.6173.1

230 50.5101.5152.0108.7157.3

147.1 159.3 27.6(c)236.481.591.0

104.6150.5

265 81.1197.6

107.1 51.351.0

141.2212.5111.3140.662.0

74.674.3

114.3168.5138.0363.3132.8

29.8110.1124.7

29.4162.3265

88.8

85.9123.682.583.7(c)

148.955.4

190.852.4

113.5173.3128.6182.5

29.5(lq)262.892.7

129.7(c)180.2(c)85.1

241.156.155.6

158.2252.9118.9154.858.6

78.778.3

124.5179.7149.4393.3

31.2114.3128.9

30.0

305112.1(lq)

111.5(lq)147.689.1

108.6(lq)159.055.0

199.254.3

125.6184.2152.4211.7

28.9290.898.2

159.0(lq)232.1(lq)96.9

274.464.5(c)65.8

150.6

123.4164.959.0

82.882.5

133.9189.1

409.2

32.5118.7132.3

29.4

330112.1

111.5

95.6108.6168.257.8

56.2138.4189.1177.3242.0

28.8318.6102.0

159.0232.1108.3300.265.3(lq)

1.288 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued )

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

LiC104

Li2CO3, Af/f = 0.56l350

Äff? = 2.238410

LiFLiHLilLiI03, Äfft = 2.22260

Li3NLiNO3

Li2OLi202

LiOHLi2SiO3

Li2Si2O5, Affi = 0.94l936

Li2SO4, Äff? = 28.5575

Li2TiO3,Aff? = 11.5l1212

LutetiumLu

MagnesiumMgMgAl2O4

MgBr2MgCl2MgC03MgF2

MgH2MgI2Mg3N2) Äff? = 0.46550

Äff? = 0.92788

Mg(N03)2MgOMg(OH)2

Mg3(P04)2MgSMg2SiMgSiO3) Äff? = 0.67630

Äff? = 1.63985

Mg2SiO4

MgS04MgTiO3

Mg2Ti04

MgWO4

ManganeseMn, Äff? = 2.23727

Äff? = 2.121101

Äff? = 1.881137

MnBr2

Mn3C, A/ft = 14.941037

MnCl2

Mn2(CO)10

2941

27.09 146.822.614.6

24.958.6

20.88 187.928.053.87.50

110.7

(22) 414

8.48 12819239.3 14943.1 156.25958.5 274.11426

77

12163

85.871

14.6

12.9 221

33 113

30.7 149.0

130.0(c)112.2

276.1 46.5231.3 34.8

87.1

64.082.7(c)

250.6 58.0118.8174.9139.2127.4

147 26.1138.0

222 77.3249.2 75.7

89.9399.5 68.5

206 78.4107.6 113.8

168.542.691.7

240.2

73.894.2

137.6110.0105.2146123.4

28.5

77.8104.477.2

62.8

161.0(lq)149.4

51.646.4

106.4

73.880.2(g)68.2(c)

134.3205.7168.5141.5

28.2157.981.479.9

109.075.3

83.0119.9

225.547.4

282.2

79.8107.0

156.4127.6118.5164137.0

31.9

82.8115.081.8

161159.0

55.757.3

124.4

80.681.487.1(lq)

144.4222.6196.1149.0

30.5169.584.582.5

122.378.6

96.3(c)123.8

49.7

320.6

83.9115.8

167.1140.5125.4175146.1

34.9

87.7121.785.1

161

59.6

141.0

86.282.187.1

152.3235.4223.4153.9

178.7

131.880.5

100.4(lq)

51.2

351.5

87.4120.3

174.6151.7129.9184154.8

37.5

127.496.2(lq)

INORGANIC CHEMISTRY 1.289

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

(Continued)

MnF2

MnI2

MnOMnO2

Mn2O3

Mn3O4, A/ft = 20.791172

MnSMnSiO3

MnSO4

MnTiOjMercury

HgHgBr2

Hg2Br2

HgCl2Hg2Cl2HgF2

Hg2F2

HgI2, Affi = 2.52129

Hg2I2

HgOHgS, A/ft = 4.2386

MolybdenumMoMoBr3

MoCl4MoCl5Mo(CO)6

MoF6, Aift = 8.17-9-65

MoO2

MoO3

MoS2

Mo2S3

NeodymiumNd, A/ft = 2.98862

Nd2O3

NeonNe

NeptuniumNp, A/ft = 8.37280

NickelNiNiCl2Ni(CO)4

NiF2

NiONiS, A/ft = 6.4379

Ni3S2, A/ft = 56.2556

NiS2

NiS04

23.04254.4

26.466.9

2.29 59.117.9 58.9

19.41 58.9

23.0 92

18.9 59.227.8

37.48 617

17 61.518.8 62.8

72.54.33 27.2

48 138

130

7.14 289

0.335 1.71

3.20 336

17.48 377.571.213.8 29.3

30.119.765.7

70.678.147.563.4

109.0157.350.7

100.9119.0111.7

61.4 27.478.3

109.677.0(c)

106.077.0

104.782.0(c)

110.4(c)48.348.0

664 25.1106.9135.0(c)167.4(c)

69.928.0 133.1

63.583.168.9

117.5

28.2120.3

34.8

28.5231.0 76.3

160.4(g)76.452.212.1

127.172.8

142.6

75.783.650.371.1

120.8169.552.2

113.1136.7121.2

27.1(lq)102.1(lq)115.6102.9(lq)112.181.2

111.784.1(lq)

136.4(lq)54.151.0

26.5109.8146.4(lq)175.7(lq)

145.371.291.873.6

127.4

32.1130.0

30.079.9

173.278.551.813.2

139.970.0

150.8

80.789.052.475.1

129.4179.753.7

119.5147.7125.7

20.8(g)102.1

85.4(c)116.962.2(g)

54.1

27.4112.7

175.7

150.476.5

100.076.2

135.2

36.9137.7

31.080.9

182.182.653.613.7

150.781.0

159.2

85.9108.854.2

137.2189.355.2

124.2

128.8

20.8102.1

102.9(lq)

62.2

28.4

175.7

153.081.4

109.078.2

142.3

42.0144.4

32.2

188.6

55.215.1

188.685.2

167.4

1.290 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

NiWO4

NiobiumNbNbBr5

NbCl5

NbF5

NbI5NbN, Afff = 4.21370

NbONbO2) àHt = 3.42817

NbANitrogen

N2, Aift = 0.230-237-53

NF3

N2F2 cistrans

N2F4

NH3 (see Ammonium)N2H4

NONOCÍNOFNOF3

N02N02C1N02FN03N2ON204

N205

NSFOsmium

OsOsF6

OsO4Oxygen

O2, A/ft = 0.092-249-49

A/ft = 0.745-229-38

03OF202F2

PalladiumPdPdCl2PdO

PhosphorusPP4, A/ft = 0.521-'7-8

PBr3PC1F2

3024.038.312.237.746.08592

104.3

0.720

15.414.2

12.662.30

6.5414.65

57.85

9.8

0.444

16.7440.1

0.659

689.950.252.752.358.6

618

5.57711.691.687.913.3

41.813.8325.819.3

25.718.0

16.5338.12

22.2

73828.6239.54

6.820

10.8411.0919.1

362

0.6656.538.817.6

138.9

726 25.4112.5 147.9(c)

170.7(c)43.5(lq)

182.0(c)45.444.0

598.0 63.5145.0

29.261.958.260.2

44.7 61.7(g)29.947.144.678.740.559.657.055.942.788.5

62.3 110.9

25.1

8.204 30.11

43.7464.3

26.5

37.6

12.4 14.258.9 73.3(g)

78.9

144.6

26.3147.9(lq)127.9(g)

49.947.271.7

160.7

30.171.468.368.9

77.631.250.748.990.946.468.166.467.448.4

104.0128.4

25.9

32.09

49.8672.4

27.7

49.5

78.481.2

150.3

27.2

129.8

51.649.570.5

170.0

31.476.073.673.8

88.232.853.251.797.050.473.171.973.352.2

113.4137.0

26.7

33.74

53.1576.4

28.8

61.3

80.482.0

155.9

28.0

130.7

53.251.587.5

175.5

32.778.476.676.7

96.434.054.953.5

100.553.076.175.376.554.9

119.2141.4

27.4

34.88

55.0278.6

30.0

81.482.4

INORGANIC CHEMISTRY 1.291

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

(Continued)

PCIFjPC12FPC13

PC15

PF3

PF5

PH3

P2H4

PI3

P.APA»

POBr3

POC13

POC1F2

POC12FPOF3

PSC13

PSF3

P4S3

PlatinumPtPtSPtS2

PlutoniumPu, Aíft = 13.4122

¿jjt = 2.9205

Aífí = 3.3319

Affí = 66.9480

PuBr3

PuCl3PuF3

PuF4

PuF6

PuI3

PuO2

PoloniumPo

PotassiumKKA1C14

K3A1C16

K3A1F6

KBF4, Aífí = 14.06283

KBH4

KBO2

K2B407

KBrKC1KC104) AH? = 13.77299-6

KCN, Atfi = 1.167-104-9

7.10

1.130

14.0627.23813.1

15.06

9.2

22.17

2.82

55.263.659.865.317.650.2

2.321

17.7

3110425.526.53

14.6

17.624.930.5

16.517.214.6028.843.943.43

34.325.430.9623.22

19.5859.8

469

333.5

236.4241.0

29.9

559.8

102.91

76.90

238.9

149.2124.3

157.1

32.1 76.0(g)64.9 120.1(g)

66.3(g)99.2(g)41.8

172.1106.0 260.3

38.6 92.0(g)79.387.7

21.1 79.196.584.5

184.1

545 26.451.469.9

39.5

292.5304.6374.9299.648.5

88.8 31.5(lq)165.5259.2244.5130.8100.976.7

206.353.853.0

138.566.3

79.7126.874.0

114.750.9

200.8336.0(c)

99.191.696.691.2

102.495.3

184.1(lq)

27.553.875.9

46.9

30.1183.2279.5269.4142.1106.0

89.8250.556.455.9

165.366.4

81.2129.577.6

121.958.5

213.5

102.597.7

100.997.4

104.8100.3155.0(g)

28.556.281.9

40.6

29.8196.6295.8286.8150.9118.498.5

271.160.459.2

66.5(c)

81.9130.779.5

125.664.3

220.0

108.5101.1103.2100.9105.9102.9155.0

29.658.687.9

40.6

30.7202.1

302.0167.2

283.368.064.0

66.5(lq)

1.292 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

K2CO3

K2CrO4

K2Cr207

KFKHKHF2, A#f = 11.221967

KIKNO3> Äfft = 5.10128

K20, Äfft = 6.20372

K02, Affi = 0.302-7«Aift = 0.157-42-3

K202

KOH, Aiff = 6.4243

KPO3

K3P04

K2P207

KReO4

K2SK2SiO3

K2S04> ¿Jit = 8.45584

K2WO4

K2ZrCl6Praseodymium

PrPromethium

PmProtactinium

PaPaCl3

RadiumRa

RadonRn

RheniumReReF5

ReF6

ReF7

ReO2

ReO3

Re20,ReOCL,ReOF4

ReOF5

RhodiumRhRh2O3

RubidiumRbRbBr

27.629.0

36.727.2

6.6224.010.1

8.608.8

37.258.685.416.155034.3919.523.0

6.89

7.13

12.3492.9

8.5

3.247

60.43

4.67.5

21.864.2

13.5

26.59

2.1915.5

141.8 231.8

190.9 202.4

142.7 192

77.3 82.5

331 356

289 328

48161.3

113

18.10

704 77958.128.738.3

274.6208.4

74.145.661.032.0 37.4

494 556

75.77154.8

128.1

51.044.186.1(c)53.9

108.479.183.9

10772.5

87.7135.6147.6

26.0

26.0109.9

31.752.8

150.7 170.0

54.3 57.451.9

104.6(lq)57.3 62.6(c)

120.5100.0 100.090.2

12179.0(c) 83.0(lq)

157.7 170.7172.5 199.6

26.9 28.0

28.0 30.0121.4 133.0

30.9 30.754.9 57.1(c)

189.0

61.2

72.4(lq)

100.0

83.0

179.1226.1

29.1

32.0144.5

66.9(lq)

INORGANIC CHEMISTRY 1.293

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

(Continued)

RbClRbClO4, A/ff = 12.59284

RbFRblRbNO3

RbOHRuthenium

Run,Afff = 0.131035

Affi = 0.961500

SamariumSm,A£ft = 3.11917

Sm2O3, A/ft = 1.05922

ScandiumScScCl3Sc203

SeleniumSe, Affí = 0.75150

SeF„SeF6

SeO2

SeOCl2Silicon

SiSiBr4

SiC betaSiCl4SiClF3

SiCl2F2

SiF4

SiH4

Si2H6

Si3H8

SiH3BrSiH2Br2

SiHBr3

SiH3ClSiH2Cl2SiHCl3SiH3FSiH2F2

SiHF3

SiI4

Si3N4

SiO2 cristobaliteSiO2 quartz

A/ft = 0.73574

A/ft = 2.0806

SiOF2

SiS2

18.4

17.312.55.616.78

38.59

8.62

14.1

6.69

8.4

4.23

50.21

7.60

0.67

19.7

8.517.7

20.9

165.7

177.8150.6

591.6

165 207

332.7 376

95.4847.2

26.894.542.7

359 45037.9

28.7 29.718.721.2

25.712.121.228.524.43134.82125.2 24.226.6 25.718.816.316.256.9 79

600

52.3

51.9

24.5

33.3125.2

96.7106.4

28.1(c)

127.9

22.3146.4(lq)34.196.9(g)88.3

83.151.5

60.771.583.757.2

164.0(lq)110.7

53.5

61.378.6

54.3

57.955.1

25.7

39.1135.3

102.7111.1

35.2(lq)

141.3

24.5104.9(g)41.8

102.697.5

94.165.9

74.082.992.571.8

106.0(g)129.7

64.4

70.481.7

56.4(c)

64.957.3(c)

27.0

44.3141.4

108.7115.8

35.1

147.1

25.7106.245.9

104.8101.7

99.476.7

83.190.097.281.7

106.9145.8

76.2

75.083.4

64.0(lq)

72.366.9(lq)

28.2

49.3146.3

114.6120.5

150.7

26.5106.248.4

106.0103.8

102.384.5

89.494.6

100.288.3

107.3158.2

68.94

77.685.4

1.294 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

SilverAgAgBrAgClAg2C03

AgFAgí, Affí = 6.15147

AgN03, Afff = 2.5160

Ag20Ag2S, A/ft = 5.86176

¿Jit = 5.86586

SodiumNaNaAlCl4Na3AlCl6Na3AlF6, Affi = 8.37565

Affi = 0.42880

NaAlO2, ¿Jit = 1.297467

NaBH4, Atff = 0.999-83-3

NaBO2

Na^O,NaBrNaBrO3

NaClNaClO3

NaClO4, A//Í = 13.98308

NaCNNa2C03, ¿Jit = 0.690450

NaFNaHNalNaI03> Aift = 35.1422

NaNO3

NaO2, Aift = 1.464-76-7

Aift = 1.548-49-9

NaA A/ft = 1.767501

A/ft = 11. 92970-1

NaA, A/ft = 5.73512

NaOH, A/ft = 72299-6

Na2SNa2S2

Na2SiO3

Na2Si2O5, ¿Jit = 0.42678

Na2SO4, A/ft = 10.91241

Na^iO,,Na2WO4, ¿Jit = 30.85s87-7

A/ft = 4.113588-9

StrontiumSr, ¿Jit = 0.84547

SrBr2, AHi = 12.2645

11.959.12

13.2

16.79.41

11.5

14.1

2.60

107.28

36.276.926.1128.1128.1622.1

8.7929.6433.35

23.60

15

47.7

6.6019.3

51.835.623.670.323.80

7.4310.1

258 25.7198 59.0199 56.9

179.1 54.1(c)143.9 64.7

112.573.086.6

97.42 107.5 31.5(lq)164.8(c)254.4234.6

83.494.6

239.7 322.2 75.4221.7

160.7 217.5 53.5

52.3

136.0(c)148.1 172.8 68.7

125.1176.1 284.9 49.6

42.553.8

76.3

75.8

97.7175.3 228.2 64.9(c)

20.1104.3127.8183.4145.1

155.3

136.9 164.0 27.8194.1 310 79.0

26.871.8(c)54.4

122.658.456.5

128.0

90.5

29.3

273.0261.8

94.3108.688.6

268.656.1

55.5

68.8163.352.750.756.2

84.5

85.7

108.486.1(lq)20.9

115.4(c)147.1217.6175.3

178.2

29.882.7

28.462.3(lq)54.4

56.5

90.5

29.9

196.8

98.7

97.2444.9(lq)

58.6

59.3

69.0153.355.7

58.5(c)

92.6

91.3

113.684.921.5

124.7(lq)159.7235.2187.3

198.7

31.987.6(c)

30.062.354.4

58.6(lq)

90.5

29.0

282.8

102.3

103.2

61.1

72.5

179.859.5

64.9(lq)

94.9

83.722.0

124.7169.4292.9200.3

34.1116.4(lq)

INORGANIC CHEMISTRY 1.295

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

(Continued)

SrCl2, Atfí = 6.0'27

SrCO3, Aíft = 19.7924

SrF2, Aíft = 0.041148

¿Jit = 0.041211

SrI2

SrH2

SrMoO4

SrOSrO2

Sr(OH)2

SrSSrSO4

SulfurS monoclinic

Aííí = 0.400952

S8SC12S2C12

SF4

SF6

^2^10

S02SO3SOC12

SOF2

SO2C12

SO2C1FS02F2

TantalumTaTaB2

TaBr5

TaCTa^TaCl5TaF5

TaI5

TaNTaO2

Ta205

TechnetiumTcTcF6

TcO3FTellurium

TeTeCl4TeF4

TeF6

Te2F10

17.54028.5

19.6723

81

236336

1.727

5.02

7.408.60

36.5783.745.6

105

41.618.841.867

120

33.294.72

22.5

17.4918.8

248.1

320

189.7

45

32.436.026.417.1

24.9440.731.721.831.38

20.0

732.8

62.3

54.856.964.9

585.231.139.5

114.17734.3

39.5

356

451.0

286.6

62.2

9.0

22.9243.1431

30.1

778

94.1

28.2

78.995.174.7

80.7

131.548.581.388.550.2

113.5

23.2

167.153.6

124.3(lq)87.5

116.4211.443.4357.771.364.385.281.176.5

25.857.6

168.241.766.7

148.(c)182.0(lq)164.645.447.7

147.5

25.1

28.0138.9(c)

132.2

83.7107.179.8

86.3

145.452.085.0

115.0(c)53.2

124.6

23.3(lq)

177.956.080.8(g)97.3

136.1246.448.967.376.472.494.592.189.3

26.866.6

46.572.4

129.(g)

182.0(c)51.952.3

164.4

26.8

32.3(c)222.6(lq)

143.8

90.8116.181.0

91.8(c)

154.054.3

157.8(lq)54.9

135.7

21.8(g)

186.756.982.6

101.7144.8261.8

52.372.878.976.499.497.996.1

27.572.2

49.176.2

131

120.0(g)58.554.6

175.2

28.5

37.7(lq)108.8(g)

148.7

105.8124.085.8

HO.O(lq)

161.256.1

157.856.2

146.9

21.5

193.657.483.5

103.8149.3269.2

54.376.080.378.6

102.1101.199.9

27.983.3

51.179.5

132

120.665.055.7

182.8

30.1

37.7108.8

151.7

1.296 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

TeH2

TeO2

TerbiumTb

ThalliumTl, Äfft = 0.38234

TlBrT1C1T12C03

TIPTilT1NO3

T120T1203

T12ST12S04

ThoriumTh, AH? = 2.73 136°ThBr4

ThCl4, A#r = 5.0406

ThF4

ThI4

Th3N4

ThO2

ThOCl2Th(S04)2

ThulliumTm

TinSn white, Aift = 2.0913

SnBr2

SnBr4

SnCl2SnGl4SnH4

SnI2

SnOSnO2, Atff = 1.88410

Atfi = 1.26540

SnS, Atfi = 0.67602

SnS2Titanium

Ti, A/ft = 4.2893

TiBTiB2

TiBr2

TiBr3

TiBr4

TiCTiCl2

29.1

10.15

4.1416.415.5618.413.8714.739.56

30.3531223.0

13.8166.940.244.061.4

1218.0

16.84

7.037.2

11.912.89.20

14.15

100.4

12.971

23.9

293

16599.6

102.2

115.9104.7

154

514

146.425856.9

247

296.110243.586.834.919.1

105

425

44.4

232

67.9

389

181 27.5(c)53.553.6

53.9

28.4

126.7

169.567.497.0

197.0

232.2

28.9

158.0(lq)83.3(c)

45.864.4

50.571.9

469 26.940.354.9

206.2 79.9138.8 105.8

151.9(lq)40.7

212 73.4

72.5

30.1(lq)59.5(c)55.2(c)

66.8(lq)60.6(c)

30.5

132.7

196.572.4

102.5243.2

28.9(c)

106.8(g)92.1(lq)

48.773.9

55.575.4

28.648.666.282.1

125.5106.1(g)47.778.4

76.1

30.175.5(lq)59.4(lq)

67.372.0(lq)

32.7

136.4

222.775.3

105.9289.4

28.7(lq)

107.392.1

51.778.5

61.379.0

29.550.972.184.4

147.3106.949.982.2

79.2

30.167.859.4

72.0

34.4

139.6

77.7108.6

28.7

107.592.1

54.681.8

82.5

32.151.976.986.7

156.7107.351.285.9

INORGANIC CHEMISTRY 1.297

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

(Continued )

TiCl3TiCl4TiF3

TiF4

TiH2

TiI2

TU3

TiI4, Aíft = 9.9106

TiNTÍO, AHí = 4.2992

TiO2 rutileTi2O3, Aíff = 1.138197

TungstenWWBr5

WBr6

WC14

WC15WC16, A/ft = 4. 1177

W(CO)6

WF6> Affí = 2.067-85

W02WO3) Affí = 1.49777

WOC14

WOF4

WO2C12

UraniumU, Atff = 2.93672

Atff = 4.791772

UBr3

UBr4

UCUC13

UC14UC15

UC16UF3UF4

UF5

UF6

UH3

UI4

UNUO2UO3

U308

UOC12

U02C12

U02F2

9.97

19.866.941.858.0

105

52.3117.1

20.56.60

4.10

73.445

5.0

9.14

43.955.2

46.444.835.620.9

42.733.519.19

70.7

12436.2

58.4

806.781.5

68.152.7

27.05

76.667.856

417.1

119.2

193.0141.475.350.2

221.8

28.90

130.6

166.3 98.6146.2(lq)

222 9397.9 126.1 (c)

39.3217 87.0

117.5148.1(c)43.845.0

673 63.6117.5

851 24.9166.(c)192.5(c)135.3

100 167.4(c)79.2 192.5(c)72.026.65 132.4(g)

666.3 63.4550.2 82.2

157.(c)107.8115.1

525 29.0

131.464.6

102.8126.1150.9182.899.0

119.1136.4

48.20 140.5(g)50.9

140.652.272.788.9

266.0101.9118.1113.9

102.0104.4(g)98

100.2(g)53.888.4

119.0156.6(lq)48.750.870.9

136.4

25.9182.(lq)156.3(g)146.2(c)129.5(g)200.8(lq)

145.071.393.1

123.2(g)119.8135.6(c)

34.8

140.1(c)58.3

107.7134.4159.8(c)214.0104.9125.0143. l(c)148.757.4

149.5(c)56.379.895.3

290.7109.6126.2122.5

104.4106.0103103.363.189.9

120.4(c)25.7(g)50.655.273.9

143.0

26.7132.2(g)157.0106.7(g)131.0155.8(g)

150.375.598.2

127.0125.0

41.6

163.2(lq)60.3

113.6142.0186.7(lq)158.8111.0130.9166.6(lq)152.266.1

165.7(lq)58.383.299.0

304.2115.1130.0126.7

106.7106.7109104.968.591.320.6(g)27.852.159.175.3

146.4

27.6132.5157.4107.2131.8156.6

153.078.2

101.7129.1127.8

41.8

163.262.2

119.9162.5134.5(g)168.0117.2136.8

154.4

165.759.885.5

129.5

1.298 SECTION ONE

TABLE 1.57 Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of theElements and Inorganic Compounds (Continued)

Cp

Substance ΔHm ΔHv ΔHs 400 K 600 K 800 K 1000 K

VanadiumVVC14

VF5

VN, Midec = 227.62346

VOVO2, Aift = 4.2l72

V2O3, A/ft = 1.623-104-3

V2O4, Aift = 9.067

V205

VOC13

XenonXe

YtterbiumYb

YttriumY, Aiff = 4.971485

Y2O3, AHf = 1.301057

ZincZnZnBr2

ZnCl2

ZnF2

ZnO, Aííí = 13.41020

Zn2SiO4

ZnSO4, Aift = 20.3740

ZirconiumZr, AHi = 4.02862

ZrB2

ZrBr2

ZrBr4

ZrCZrCl2

ZrCl3ZrCl4

ZrF2

ZrF4

ZrI2

ZrI3

ZrI4

ZrNZrO2, Aift = 5.021205

ZrSiO4

21.52.30

50.0

6356.9

117.2112.164.5

1.81

7.66

11.42105

7.3216.710.25

52.3

21.00104.663

79.527

503364.225.1

67.487.0

45941.444.5

263.636.8

12.64

159

365

123.6118126190.1

573

131.5

45.0

289

113

624

51642.5

741

425

610.0

230

190110.5404237.7

176126.4

26.2161.7(lq)

43.349.667.2

117.5135.3151.0

20.79(g)

27.3113.3

26.370.1(c)69.9(c)66.949.4

129.4116.0

25.957.587.9

129.343.676.0

101125.470

113.595.0

105.9131.044.863.9

114.6

27.5lOO.l(g)

48.253.574.3

127.3148.4168.3

20.79

28.5121.3

28.6(c)78.8(lq)

100.8(lq)69.152.4

141.4137.4

27.365.890.2

133.3(c)49.480.0

106131. l(c)76

124.096.6

106.7134.6(c)48.770.2

133.7

28.7102.6

51.257.177.8

132.6155.5177.3

20.79

29.9124.7

31.4(lq)113.8100.871.454.1

153.4139.7

29.069.792.5

107.2(g)52.383.1

109106.5(g)81

129.4106.1107. l(c)107.6(g)50.973.5

142.7

30.1104.7

53.760.580.2

138.0160.7183.7

20.79

31.5126.9

31.461.5(g)

100.873.755.5

165.4142.0

31.172.194.8

107.653.485.9

112107.184

134.1123.682.9(g)

107.652.775.7

147.3

1.16 ACTIVITY COEFFICIENTS

The activity coefficient is the ratio of the chemical activity of any substance to its molar concentra-tion. The measured concentration of a substance may not be an accurate indicator of its chemicaleffectiveness, as represented by the equation for a particular reaction, in which case an activity coef-ficient is arbitrarily established and used instead of the concentration…

Although it is not possible to measure an individual ionic activity coefficient, fi, it may be esti-mated from the following equation of the Debye-Hückel theory:

where I is the ionic strength of the medium, and å is the ion-size parameter—the effective ionicradius (Table 1.32). The values of A and B vary with the temperature and dielectric constant of thesolvent; values from 0 to 100C for aqueous medium (å in angstrom units) are listed in Table 1.59.Corresponding values of A and B for unit weight of solvent (when employing molality) can beobtained by multiplying the corresponding values for unit volume (molarity units) by the square rootof the density of water at the appropriate temperature.

The ionic strength can be estimated from the summation of the product molarity times ioniccharge squared for all the ionic species present in the solution, i.e., I = 0.5 (c1z

21 + c2z

22 + … + ciz

2i ).

Values for the activity coefficients of ions in water at 25°C are given in Table 8.1 in terms of theireffective ionic radii.

At moderate ionic strengths a considerable improvement is effected by subtracting a term bI fromthe Debye-Hückel expression; b is an adjustable parameter which is 0.2 for water at 25°C. Table 1.58gives the values of the ionic activity coefficients (for zi from 1 to 6) with å taken to be 4.6Å.

In general, the mean ionic activity coefficient is given by

where f+, f– are the individual ionic activity coefficients, and x,y are the charge numbers (z+, z–) of therespective ions. In binary electrolyte solution.

In ternary electrolytes, e.g., BaCl2 or K2SO4,

In quaternary electrolytes, e.g., LaCl3 or K3[Fe(CN)6],

f f f f f f± + − ± + −= =34 34 or

f f f f f f± + − ± + −= =23 23 or

f f f± + −=

f f fx y x y±

++ −= ( )

− =+

log fAz I

I Ba Ii

i2

o

INORGANIC CHEMISTRY 1.299

1.300 SECTION ONE

TABLE 1.59 Constants of the Debye-Hückel Equation from 0 to 100°C

− =+

log fAz I

I Ba Ii

i2

o

TABLE 1.58 Individual Activity Coefficients of Ions in Water at 25°C

The values for unit weight of solvent (molality scale) can be obtained by multiplying the corresponding values for unitvolume by the square root of the density of water at the appropriate temperature.

Effective Ionic Radiiå (in Å) 0.001

Temp.,°C

Temp.,°C

fi at Ionic Strength of

0.005 0.01 0.05 0.1

Unit Volume of Solvent Unit Volume of Solvent

Univalent Ions9876543.532.5

Divalent Ions87654.54

Trivalent Ions654

Tetravalent Ions115

Pentavalent Ions9

0.9670.9660.9650.9650.9640.9640.9640.9640.964

0.8720.8720.8700.8680.8680.867

0.7310.7280.725

0.5880.57

0.43

0.9330.9310.9300.9290.9280.9280.9260.9250.924

0.7550.7550.7490.7440.7410.740

0.520.510.505

0.350.31

0.18

0.9140.9120.9090.9070.9040.9020.9000.8990.898

0.690.6850.6750.670.6630.660

0.4150.4050.395

0.2550.20

0.105

0.860.850.8450.8350.830.820.810.8050.80

0.520.500.4850.4650.450.445

0.1950.180.16

0.100.048

0.020

0.830.820.810.800.790.7750.760.7550.75

0.450.4250.4050.380.360.355

0.130.1150.095

0.0650.021

0.009

Temp.,°C

05

101520253035404550

Unit Volume of Solvent

A

0.49180.49520.49890.50280.50700.51150.51610.52110.52620.53170.5373

B

0.32480.32560.32640.32730.32820.32910.33010.33120.33230.33340.3346

Temp.,°C

556065707580859095

100

Unit Volume of Solvent

A

0.54320.54940.55580.56250.56950.57670.58420.59200.60010.6086

B

0.33580.33710.33840.33970.34110.34260.34400.34560.34710.3488

1.17 BUFFER SOLUTIONS

A buffer solution is a solution that resists changes in pH when small quantities of an acid or an alkaliare added.

An acidic buffer solution is a solution that has a pH less than 7. Acidic buffer solutions are com-monly made from a weak acid and one of its salts. A common example is a mixture of ethanoic acidand sodium ethanoate in solution. In this case, if the solution contained equal molar concentrationsof both the acid and the salt, the pH would be 4.76. The pH of the buffer solution can be changed bychanging the ratio of acid to salt, or by choosing a different acid and one of its salts.

An alkaline buffer solution has a pH greater than 7. Alkaline buffer solutions are commonly madefrom a weak base and one of its salts. An example is a mixture of ammonia solution and ammoniumchloride solution. If these were mixed in equal molar proportions, the solution would have a pH of 9.25.

To prepare the standard pH buffer solutions recommended by the National Bureau of Standards(U.S.), the indicated weights of the pure materials should be dissolved in water of specific conduc-tivity not greater than 5 micromhos. The tartrate, phthalate, and phosphates can be dried for 2 h at100°C before use. Potassium tetroxalate and calcium hydroxide need not be dried. Fresh-lookingcrystals of borax should be used. Before use, excess solid potassium hydrogen tartrate and calciumhydroxide must be removed. Buffer solutions pH 6 or above should be stored in plastic containersand should be protected from carbon doxide with soda-lime traps. The solutions should be replacedwithin 2 to 3 weeks, or sooner if formation of mold is noticed. A crystal of thymol may be added asa preservative.

1.17.1 Standards for pH Measurement of Blood and Biological Media

Blood is a well-buffered medium. In addition to the NBS phosphate standard of 0.025 M (pHs = 6.480at 38°C), another reference solution containing the same salts, but in the molal ratio 1:4, has an ionic

INORGANIC CHEMISTRY 1.301

TABLE 1.60 Individual Ionic Activity Coefficients at Higher Ionic Strengths at 25°C

The values were calculated from the modified Debye-Hückel equation utilizing the modifications proposed byRobinson and by Guggenheim and Bates:

where I is the ionic strength and å is assumed to be 4.6 Å.

− =+

−log .

..

f

z

I

IIi

i2

0 511

1 1 50 2

− log102

f

zi

iI/

0.050.10.20.30.40.50.60.70.80.91.0

0.07560.08960.09680.09360.08580.07530.06310.04960.03520.02010.0044

/,. for zi =

1

0.8400.8140.8000.8060.8210.8410.8650.8920.9220.9550.900

2

0.4980.4380.4100.4220.4540.5000.5590.6330.7230.8310.960

3

0.2090.1560.1380.1440.1690.2100.27050.3580.4820.6590.913

4

0.06170.03690.02830.03180.04240.06240.09780.1610.2730.4770.850

5

0.01290.005760.003800.004570.007160.01310.02650.057550.1320.3140.776

6

0.001900.0005950.0003280.0004270.0008150.001950.005350.01640.05410.1890.694

strength of 0.13. It is prepared by dissolving 1.360 g of KH2PO4 and 5.677 g of Na2HPO4 (air weights)in carbon dioxide-free water to make 1 liter of solution. The pHs is 7.416 ± 0.004 at 37.5 and 38°C.

The compositions and pHs values of tris(hydroxymethyl)aminomethane, covering the pH range7.0 to 8.9, are listed in Table 1.63.

When there are two or more acid groups per molecule, or a mixture is composed of several over-lapping acids, the useful range is larger. Universal buffer solutions consist of a mixture of acidgroups which overlap such that successive pKa values differ by 2 pH units or less. The Prideaux-Ward mixture comprises phosphate, phenyl acetate, and borate plus HCl and covers the range from 2to 12 pH units. The McIlvaine buffer is a mixture of citric acid and Na2HPO4 that covers the rangefrom pH 2.2 to 8.0. The Britton-Robinson system consists of acetic acid, phosphoric acid, and boricacid plus NaOH and covers the range from pH 4.0 to 11.5. A mixture composed of Na2CO3,NaH2PO4, citric acid, and 2-amino-2-methyl-1,3-propanediol covers the range from pH 2.2 to 11.0.

General directions for the preparation of buffer solutions of varying pH but fixed ionic strengthare given by Bates.* Preparation of McIlvaine buffered solutions at ionic strengths of 0.5 and 1.0 andBritton-Robinson solutions of constant ionic strength have been described by Elving et al.† andFrugoni,‡ respectively.

1.302 SECTION ONE

*Bates, Determination of pH, Theory and Practice, Wiley, New York, 1964, pp. 121–122.†Elving, Markowitz, and Rosenthal, Anal. Chem., 28:1179 (1956).‡Frugoni, Gazz. Chim. Ital., 87:L403 (1957).

TABLE 1.61 National Bureau of Standards (U.S.) Reference pH Buffer Solutions

1.3

03

Source: R. G. Bates, J. Res. Natl. Bur. Stand. (U.S.), 66A:179(1962) and B. R. Staples and R. G. Bates, J. Res. Natl. Bur. Stand. (U.S.), 73A:37 (1969).Note: The uncertainty is ±0.003 in pH in the range 0–50°C, rising to ±0.02 above 70°C.

Temperature°C

05

1015202530353840

4550556070809095

Dilution valueApHm

Secondarystandard0.05 M

Ktetraoxalate

.666

.668

.638

.642

.644

.646

.648

1.6491.650

1.653

1.660

1.6711.6891.721.73

+ 0.186

KH tartrate(saturated at 25°C)

3.5573.5523.5493.5483.547

3.5473.5493.5543.560

3.5803.6093.6503.674

+ 0.049

0.05 MKH2

citrate

3.8603.8403.8203.8023.788

3.7763.7663.7593.7563.753

3.749

0.024

0.05 MKH

phthalate

4.0033.9993.9973.9984.002

4.0054.0114.0184.0304.035

4.0474.0504.0754.081

4.1164.1644.2054.227

+ 0.052

0.025 MKH2PO4,0.025 MNa2HPO4

6.9846.9516.9236.9006.881

6.8656.8536.8446.8406.838

6.8346.8336.8346.836

6.8456.8596.8776.886

+ 0.080

0.0087 MKH2PO4,0.0302 MNa2HPO4

7.5347.5007.4727.4487.429

7.4137.4007.3897.3847.380

7.3737.367

+ 0.070

0.01 MNa2B4O7

9.4649.3959.3329.2769.225

9.1809.1399.1029.0889.068

9.0389.0118.9858.962

8.9218.8858.8508.833

+ 0.01

0.025 MNaHCO3,0.025 MNa2CO3

10.31710.24510.17910.11810.062

10.0129.9669.9259.9109.889

9.828

0.079

Secondarystandard Ca(OH)2

(saturated at 25°C)

13.42313.20713.00312.81012.627

12.45412.28912.13312.04311.984

11.84111.70511.57411.449

-0.28

1.304 SECTION ONE

TABLE 1.62 Compositions of Standard pH Buffer Solutions [National Bureau of Standards (U.S.)]

TABLE 1.63 Composition and pH Values of Buffer Solutions 8.107

Values based on the conventional activity pH scale as defined by the National Bureau of Standards (U.S.) andpertain to a temperature of 25°C [Ref: Bower and Bates, J. Research Natl. Bur. Standards (U.S.), 55:197 (1955)and Bates and Bower, Anal. Chem., 28:1322 (1956)]. Buffer value is denoted by column headed b.

KH3(C204)2 • 2H20, 0.05MPotassium hydrogen tartrate, about 0.034MPotassium hydrogen phthalate, 0.05MPhosphate:

KH2PO4, 0.025AÍNa2HPO4, 0.025M

Phosphate:KH2PO4, 0.008665AÍNa2HPO4, 0.03032M

Na2B4O7 • 10H2O, 0.01MCarbonate:

NaHCO3, 0.025MNa2CO3, 0.025AÍ

Ca(OH)2, about 0.0203M

12.61Saturated at 25

10.12

3.393.53

1.1794.303.80

2.102.65

Saturated at 25

°C

°C

25 ml 0.2M KC1 +x ml 0.2M HC1,

Diluted to 100 ml

PH

1.001.201.401.601.802.002.20

X

67.042.526.616.210.26.53.9

ß

0.310.340.190.0770.0490.0300.022

50 mlO. IM KH Phthalate+ *ml0.1M HC1,Diluted to 100 ml

pH

2.202.402.602.803.003.203.403.603.80

X

49.542.235.428.922.315.710.46.32.9

ß

0.0360.0330.0320.0300.0260.0230.0180.015

50 mlO. IM KH Phthalate+ jtmlO.lMNaOH,Diluted to 100 ml

PH

4.204.404.604.805.005.205.405.605.80

X

3.06.6

11.116.522.628.834.138.842.3

ß

0.0170.0200.0250.0290.0310.0300.0250.0200.015

INORGANIC CHEMISTRY 1.305

TABLE 1.63 Composition and pH Values of Buffer Solutions 8.107 (Continued)

pH

pH

pH

(Continued)

50ml0.1MKH2PO4

+ ;tml0.1AíNaOH,Diluted to 100 ml

5.806.006.206.406.606.807.007.207.407.607.808.00

X

3.65.68.1

11.616.422.429.134.739.142.444.546.1

ß

0.0100.0150.0210.0270.0330.0310.0250.0200.0130.009

50 ml 0.025AÍ Borax+ xmlO.lMHCl,Diluted to 100 mlApH/At = -0.008

/ = 0.025

8.008.208.408.608.80

X

20.519.716.613.59.4

ß

0.0100.0120.0180.023

50 ml 0.025M Borax+ *ml0.1MHCl,Diluted to 100 ml

ApH/Af = -0.008/ = 0.025

9.009.10

X

4.62.0

ß

0.026

50 ml 0.1M TnXhydroxy-methyl)aminomethane +

^mlO.lMHCl,Diluted to 100 mlApH/A/= -0.028

/ = O.OOU

PH

7.007.207.407.607.808.008.208.408.608.809.00

x

46.644.742.038.534.529.222.917.212.48.55.7

ß

0.0120.0150.0180.0230.0290.0310.0260.0220.016

50 ml 0.025M Borax+ *ml0.1MNaOH,Diluted to 100 ml

ApH/Af = -0.008/ = 0.001(25 + x)

pH

9.209.409.609.80

10.00

x

0.93.6

11.115.018.3

ß

0.0260.0220.0180.014

50 ml 0.025M Borax+ *ml0.1AfNaOH,Diluted to 100 mlApH/Ai= -0.0087 = 0.001(25 + x)

pH

10.2010.4010.60

x

20.522.123.3

ß

0.0090.0070.005

50 ml of a Mixture0.1M with Respect toBoth KC1 and H3BO3

+ *ml0.1MNaOH,Diluted to 100 ml

PH

8.008.208.408.608.809.009.209.409.609.80

10.0010.20

x

3.96.08.6

11.815.820.826.432.136.940.643.746.2

ß

0.0110.0150.0180.0220.0270.0290.0270.0220.0160.014

50 ml 0.05M NaHCO3

+ *ml0.1MNaOH,Diluted to 100 mlApH/Ai= -0.009/ = 0.001(25 + 2x)

pH

9.609.80

10.0010.2010.40

x

5.06.2

10.713.816.5

ß

0.0140.0160.0150.013

50ml0.05MNaHCO3

+ *ml0.1A/NaOH,Diluted to 100 mlApH/Ai= -0.009/ = 0.001(25 + 2x)

pH

10.6010.8011.00

x

19.121.222.7

ß

0.0120.009

The phosphate-succinate system gives the values of pHs

Molality MolalityKH2PO4

= Na2HC6H5O7 pHs Δ(pHs/Δt)

0.005 6.251 −0.000 86 deg−1

0.010 6.197 −0.000 710.015 6.1620.020 6.1310.025 6.109 −0.004

1.306 SECTION ONE

TABLE 1.63 Composition and pH Values of Buffer Solutions 8.107 (Continued)

TABLE 1.64 Standard Reference Values pH for the Measurementof Acidity in 50 Weight Percent Methanol-Water

OAc = acetate Suc = succinateReference: R. G. Bates, Anal Chem., 40(6):35A (1968).

50ml0.05MNa2HPO4

+ xml0.1MNaOH,Diluted to 100 mlApH/Af = -0.025/ = 0.001(77 + 2*)

pH

11.0011.2011.4011.6011.8011.90

X

4.16.39.1

13.519.423.0

ß

0.0090.0120.0170.0260.0340.037

25 ml 0.2AÍ KC1 +x ml 0.2M NaOH,Diluted to 100 mlApH/Ai = -0.033/ = 0.001(50 + 2x)

pH

12.0012.2012.4012.6012.8013.00

X

6.010.216.225.641.266.0

ß

0.0280.0480.0760.120.210.30

Temperature,°C

10152025303540

0.02m HOAc,0.02m NaOAc,

0.02m NaCl

5.5605.5495.5435.5405.5405.5435.550

0.02m NaHSuc,0.02m NaCl

5.8065.7865.7705.7575.7485.7435.741

0.02m KH2PO4,0.02m Na2HPO4,

0.02m NaCl

7.9377.9167.8987.8847.8727.8637.858

1.17.2 Buffer Solutions Other Than Standards

The range of the buffering effect of a single weak acid group is approximately one pH unit on eitherside of the pKa. The ranges of some useful buffer systems are collected in Table 1.66. After all thecomponents have been brought together, the pH of the resulting solution should be determined at thetemperature to be employed with reference to standard reference solutions. Buffer componentsshould be compatible with other components in the system under study; this is particularly signifi-cant for buffers employed in biological studies. Check tables of formation constants to ascertainwhether metal-binding character exists.

INORGANIC CHEMISTRY 1.307

TABLE 1.65 pH Values for Buffer Solutions in Alcohol-Water Solvents at 25°C

Liquid-junction potential not included.

Solventcomposition(weight per 0.01M H2C2O4, 0.01M H2Suc, 0.01M HSal,cent alcohol) 0.01M NH4HC2O4 0.01M LiHSuc 0.01M NaSal

Methanol-Water Solvents0 2.15 4.12

10 2.19 4.3020 2.25 4.4830 2.30 4.6740 2.38 4.8750 2.47 5.0760 2.58 5.3070 2.76 5.5780 3.13 6.0190 3.73 6.7392 3.90 6.9294 4.10 7.1396 4.39 7.4398 4.84 7.8999 5.20 8.23

100 5.79 8.75 7.53Ethanol-Water Solvents

0 2.15 4.1230 2.32 4.7050 2.51 5.0771.9 2.98 5.71

100 8.32

Suc = succinate Sal = salicylate

1.308 SECTION ONE

TABLE 1.66 pH Values of Biological and Other Buffers for Control Purposes

p-Toluenesulfonate and p-toluenesulfonic acidGlycine and HC1Citrate and HC1Formate and HC1Succinate and boraxPhenyl acetate and HC1Acetate and acetic acidSuccinate and succinic acid2-(Ar-Morpholino)ethanesulfonicacidBis(2-hydroxyethyl)iminotris(hydroxymethyl)methaneKH2PO4 and boraxAf-(2-Acetamido)-2-iminodiacetic acid2-[(2-Amino-2-oxoethyl)amino]ethanesulfonicacidPiperazine-A',W-bis(2-ethanesulfonic acid)3-(Af-Morpholino)-2-hydroxypropanesulfonic acidl,3-Bis[tris(hydroxymethyl)methylamino]propane

KH2PO4 and Na2HPO4

A',Ar-Bis(2-hydroxyethyl)-2-aminoethanesulfonicacid3-(Af-Morpholino)propanesulfonic acidAf-(2-Hydroxyethyl)piperazine-A''-(2-ethanesulfonicacid)AP-Tris(hydroxymethyl)methyl-2-ammoethanesulfonic acid3-[A',A'-Bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonicacid3-[Af-tris(hydroxymethyl)methylamino]-2-hydroxypropanesulfonic

acid5,5-Diethylbarbiturate (veronal) and HC1Tris(hydroxymethyl)aminoethaneN-(2-hy droxyethy ̂ piperazine-W -(2-hy droxypropanesulfonic acid)Piperazine-W,Ar'-bis(2-hydroxypropanesulfonicacid)TriethanolamineA'-Tris(hydroxymethyl)methylglycineBorax and HC1Af,A?-Bis(2-hydroxyethyl)glycineW-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid3- [( 1 , 1 -Dimethyl-2-hydroxyethyl)-2-hydroxypropanesulfonic acidAmmonia (aqueous) and NH4C12-(Af-Cyclohexylamino)-2-hydroxy-l-propanesulfonicacidGlycine and NaOHEthanolamine (2-aminoethanol) and HC13-(Cyclohexylamino)-2-hydroxy- 1 -propanesulfonic acid2- Amino-2-methyl- 1 -propanolCarbonate and hydrogen carbonateBorax and NaOH3-(Cyclohexylamino)-l-propanesulfonicacidNa2HPO4 and NaOH

MESBIS-TRIS

ADAACESPIPESMOPSOBIS-TRISPROPANE

BESMOPSHEPESTESDIPSOTAPSO

TRIZMAHEPPSOPOPSOTEATRICINE

BICINETAPSAMPSO

CHES

CAPSOAMP

CAPS

1.72.353.133.714.21, 5.644.314.764.21, 5.646.16.52.2, 7.2; 96.66.86.86.96.8, 9.0

7.27.17.27.57.57.67.6

8.08.17.87.87.88.1

8.38.49.09.29.39.79.59.69.7

10.3

10.411.9

1.1-3.31.0-3.71.3-4.72.8-4.63.0-5.83.5-5.03.7-5.64.8-6.35.5-6.75.8-7.25.8-9.26.0-7.26.1-7.56.1-7.56.2-7.66.3-9.5

6.1-7.56.4-7.86.5-7.96.8-8.26.8-8.27.0-8.27.0-8.2

7.0-8.57.0-9.17.1-8.57.2-8.56.9-8.57.4-8.87.6-8.97.6-9.07.7-9.18.3-9.78.3-9.28.6-10.08.2-10.18.6-10.48.9-10.39.0-10.59.2-11.09.4-11.19.7-11.1

11.0-12.0

INORGANIC CHEMISTRY 1.309

TABLE 1.66 pH Values of Biological and Other Buffers for Control Purposes (Continued)

(Continued )

x mL of 0.2M SodiumAcetate (27.199 g NaOAc • 3H2O

per liter) plus y mLof 0.2M Acetic Acid

NaOAc, AceticpH mL Acid, mL

3.60 7.5 92.53.80 12.0 88.04.00 18.0 82.04.20 26.5 73.54.40 37.0 63.04.60 49.0 51.04.80 60.0 40.05.00 70.5 29.55.20 79.0 21.05.40 85.5 14.55.60 90.5 9.5

pH

5.806.006.2006.406.606.807.007.207.40

x mL of O.IM KH2PO4 (13.617 g • L-') plusy mL of 0.05M Borax Solution (19.404 g

Na2B4O7 • 10H2O per Liter)

KH2PO4, Borax,mL mL

92.1 7.987.7 12.383.0 17.077.8 22.272.2 27.866.7 33.362.3 37.758.1 41.955.0 45.0

KH2PO4,pH mL

7.60 51.77.80 49.28.00 46.58.20 43.08.40 38.78.60 34.08.80 27.69.00 17.59.20 5.0

Borax,mL

48.350.853.557.061.366.072.482.595.0

x mL of Veronal (20.6 gNa Diethylbarbiturate per

Liter) plus y mL of O.IM HC1

Veronal, HC1,pH mL mL

7.00 53.6 46.47.20 55.4 44.67.40 58.1 41.97.60 61.5 38.57.80 66.2 33.88.00 71.6 28.48.20 76.9 23.18.40 82.3 17.78.60 87.1 12.98.80 90.8 9.29.00 93.6 6.4

x mL of 0.2M Aqueous NH3

Solution plus y mL of 0.2MNH4C1 (10.699 g • L-1)

Aq NH3, NH4C1,pH mL mL

8.00 5.5 94.58.20 8.5 91.58.40 12.5 87.58.60 18.5 81.58.80 26.0 74.09.00 36.0 64.09.25 50.0 50.09.40 58.5 41.59.60 69.0 31.09.80 78.0 22.0

10.00 85.0 15.0

x mL of O.IM Citrate (21.0 gCitric Acid Monohydrate +200 mL IM NaOH per Liter)

plus y mL of O.IM NaOH

Citrate, NaOHpH mL mL

5.10 90.0 10.05.30 80.0 20.05.50 71.0 29.05.70 67.0 33.05.90 62.0 38.0

x mL of 0.2M NaOH Added to 100 mL of Stock Solution(0.04M Acetic Acid, 0.04M H3PO4, and 0.04M Boric Acid)

PH

1.811.891.982.092.212.362.562.873.293.78

NaOH, mL

0.02.55.07.5

10.012.515.017.520.022.5

PH

4.104.354.564.785.025.335.726.096.376.59

NaOH, mL

25.027.530.032.535.037.540.042.545.047.5

PH

6.807.007.247.547.968.368.698.959.159.37

NaOH, mL

50.052.555.057.560.062.565.067.570.072.5

PH

9.629.91

10.3810.8811.2011.4011.5811.7011.8211.92

NaOH, mL

75.077.580.082.585.087.590.092.595.097.5

1.18 SOLUBILITY AND EQUILIBRIUM CONSTANT

The equilibrium constant is the value of the reaction quotient for a system at equilibrium. The reac-tion quotient is the ratio of molar concentrations of the reactants to those of the products, each con-centration being raised to the power equal to the coefficient in the equation.

For the hypothetical chemical reaction

A + B ↔ C + D

the equilibrium constant, K, is:

K = [C][D]/[A][B]

The notation [A] signifies the molar concentration of species A. An alternative expression for theequilibrium constant can involve the use of partial pressures.

The equilibrium constant can be determined by allowing a reaction to reach equilibrium, measur-ing the concentrations of the various solution-phase or gas-phase reactants and products, and substi-tuting these values into the relevant equation.

1.310 SECTION ONE

TABLE 1.66 pH Values of Biological and Other Buffers for Control Purposes (Continued)

.xmLofO.lMHClplusy rnL of 0. IM Glycine(7.505 g Glycine +

5.85 g NaCl per Liter)

HC1, Glycine,pH mL mL

1.20 84.0 16.01.40 71.0 29.01.60 61.8 38.21.80 55.2 44.82.00 49.1 50.92.20 42.7 57.32.40 36.5 63.52.60 30.3 69.72.80 24.0 76.03.00 17.8 82.23.30 10.8 89.23.60 6.0 94.0

x mL of 0. IM HC1 plus y mLof 0.1M Citrate (21.008 g

Citric Acid Monohydrate +200 ml IM NaOH per Liter)

HC1, Citrate,pH mL mL

3.50 52.8 47.23.60 51.3 48.73.80 48.6 51.44.00 43.8 56.24.20 38.6 61.44.40 34.6 65.44.60 24.3 75.74.80 11.0 89.0

x mL of 0.05M Succinic Acid(5.90 g • L-') plus y mL ofBorax Solution (19.404 g

Na2B4O7 • 10H2O per Liter)

Succinic Borax,pH Acid, mL mL

3.60 90.5 9.53.80 86.3 13.74.00 82.2 17.84.20 77.8 22.24.40 73.8 26.24.60 70.0 30.04.80 66.5 33.55.00 63.2 36.85.20 60.5 39.55.40 57.9 42.15.60 55.7 44.35.80 54.0 46.0

x mL of 0.2M Na2HPO4 • 2H2O (35.599 g • L'1) plusy mL of 0.1M Citric Acid (19.213 g • L-')

pH

2.202.402.602.803.003.203.403.603.804.00

Na2HPO4,mL

2.006.20

10.9015.8520.5524.7028.5032.2035.5038.55

CitricAcid, mL

98.0093.8089.1084.1579.4575.3071.5067.8064.5061.45

PH

4.204.404.604.805.005.205.405.605.806.00

NazHPO,,,mL

41.4044.1046.7549.3051.5053.6055.7558.0060.4563.15

CitricAcid, mL

58.6055.9053.2550.7048.5046.4044.2542.0039.5536.85

pH

6.206.406.606.807.007.207.407.607.808.00

Na2HPO4,mL

66.1069.2572.7577.2582.3586.9590.8593.6595.7597.25

CitricAcid, mL

33.9030.7527.2522.7517.6513.059.156.354.252.75

INORGANIC CHEMISTRY 1.311

TABLE 1.67 Solubility of Gases in Water

The column (or line entry) headed “a” gives the volume of gas (in milliliters) measured at standard conditions(0°C and 760 mm or 101.325 kN ⋅ m–2) dissolved in 1 mL of water at the temperature stated (in degrees Celsius)and when the pressure of the gas without that of the water vapor is 760 mm. The line entry “A” indicates the samequantity except that the gas itself is at the uniform pressure of 760 mm when in equilibrium with water.

The column headed “l” gives the volume of the gas (in milliliters) dissolved in 1 mL of water when the pres-sure of the gas plus that of the water vapor is 760 mm.

The column headed “q” gives the weight of gas (in grams) dissolved in 100 g of water when the pressure ofthe gas plus that of the water vapor is 760 mm.

*Free from NH3 and CO2; total pressure of air + water vapor is 760 mm.

Temp.,°C a a(×103)

% oxygenin airq

Acetylene Ammonia BromineAir*

a q a q

0123456789

101112131415161718192021222324

2526272829303540455060708090

100

1.731.681.631.581.53

1.491.451.411.371.34

1.311.271.241.211.18

1.151.131.101.081.05

1.031.010.990.970.95

0.930.910.890.870.85

0.84—————————

0.2000.1940.1880.1820.176

0.1710.1670.1620.1570.154

0.1500.1460.1420.1380.135

0.1310.1290.1250.1230.119

0.1170.1150.1120.1100.107

0.1050.1020.1000.0980.095

0.094—————————

29.1828.4227.6926.9926.32

25.6825.0624.4723.9023.36

22.8422.3421.8721.4120.97

20.5520.1419.7519.3819.02

18.6818.3418.0117.6917.38

17.0816.7916.5016.2115.92

15.64—

14.18—

12.97

12.16—

11.26—

11.05

34.9134.8734.8234.7834.74

34.6934.6534.6034.5634.52

34.4734.4334.3834.3434.30

34.2534.2134.1734.1234.08

34.0333.9933.9533.9033.86

33.8233.7733.7333.6833.64

33.60—————————

1130———

1047

——947—870—857837—770775———

680———639———586—530—400—290

200————

89.5———

79.6

——

72.0—

68.4—

65.163.6——

58.7———

52.9———

48.2———

44.0—

41.0—

31.6—

23.5

16.811.16.53.00.0

60.5—

54.1—

48.3

43.3—

38.9—

35.1—

31.5—

28.4

—25.7—

23.4—

21.3—19.4—17.7

—16.3—15.0—13.8—9.4—6.54.93.83.0——

42.9—

38.3—

34.2

30.6—

27.5—

24.8—

22.2—

20.0

18.0—16.4—14.9—13.5—12.3

—11.3—10.3—9.5—6.3—4.1

2.91.91.2

——

TABLE 1.67 Solubility of Gases in Water

1.3

12

Temp.°C

0123456789101112131415161718192021222324252627282930

Carbon dioxide

a q

1.713 0.33461.646 0.321 31.584 0.309 11.527 0.297 81.473 0.287 11.424 0.27741.377 0.268 11.331 0.258 91.282 0.249 21.237 0.240 31.194 0.231 81.154 0.223 91.117 0.21651.083 0.209 81.050 0.203 21.019 0.19700.985 0.19030.956 0.184 50.928 0.178 90.902 0.173 70.878 0.168 80.854 0.16400.829 0.15900.804 0.15400.781 0.149 30.759 0.14490.738 0.14060.718 0.136 60.699 0.13270.682 0.12920.665 0.125 7

Carbon monoxide

a q

0.035 37 0.004 3970.034 55 0.004 2930.033 75 0.004 1910.032 97 0.004 0920.032 22 0.003 9960.031 49 0.003 9030.030 78 0.003 8130.030 09 0.003 7250.029 42 0.003 6400.028 78 0.003 5590.028 16 0.003 4790.027 57 0.003 4050.027 01 0.003 3320.026 46 0.003 2610.025 93 0.003 1940.025 43 0.003 1300.024 94 0.003 0660.024 48 0.003 0070.024 02 0.002 9470.023 60 0.002 8910.023 19 0.002 8380.022 81 0.002 7890.022 44 0.002 7390.022 08 0.002 6910.021 74 0.002 6460.021 42 0.002 6030.021 10 0.002 5600.02080 0.0025190.020 51 0.002 4790.020 24 0.002 4420.019 98 0.002 405

Chlorine

i q

— —— —— —— —— —— —— —— —— —

3.148 0.997 23.047 0.965 42.950 0.934 62.856 0.905 02.767 0.876 82.680 0.849 52.597 0.823 22.517 0.797 92.440 0.773 82.368 0.751 02.299 0.729 32.238 0.710 02.180 0.691 82.123 0.673 92.070 0.657 22.019 0.641 31.970 0.625 91.923 0.611 21.880 0.597 51.839 0.58471.799 0.5723

Ethane

a q

0.098 74 0.013 170.094 76 0.012 630.090 93 0.012 120.08725 0.011620.083 72 0.011 140.080 33 0.010 690.077 09 0.010 250.074 00 0.009 830.071 06 0.009 430.068 26 0.009 060.065 61 0.008 700.063 28 0.008 380.061 06 0.008 080.058 94 0.007 800.056 94 0.007 530.055 04 0.007 270.053 26 0.007 030.051 59 0.006 800.050 03 0.006 590.048 58 0.006 390.047 24 0.006 200.045 89 0.006 020.044 59 0.005 840.043 35 0.005 670.042 17 0.005 510.041 04 0.005 350.039 97 0.005 200.038 95 0.005 060.037 99 0.004 930.037 09 0.004 800.036 24 0.004 68

Ethylene

a q

0.226 0.028 10.219 0.027 20.211 0.02620.204 0.025 30.197 0.024 40.191 0.023 70.184 0.022 80.178 0.022 00.173 0.021 40.167 0.02070.162 0.02000.157 0.01940.152 0.018 80.148 0.018 30.143 0.017 60.139 0.017 10.136 0.016 70.132 0.01620.129 0.015 80.125 0.015 30.122 0.014 90.119 0.01460.116 0.01420.114 0.01390.111 0.01350.108 0.013 10.106 0.012 90.104 0.012 60.102 0.012 30.100 0.012 10.098 0.011 8

Hydrogen

a q

0.021 48 0.000 192 20.021 26 0.000 190 10.021 05 0.000 188 10.020 84 0.000 186 20.020 64 0.000 184 30.020 44 0.000 182 40.020 25 0.000 180 60.020 07 0.000 178 90.019 89 0.000 177 20.019 72 0.000 175 60.019 55 0.000 174 00.019 40 0.000 172 50.019 25 0.000 171 00.019 11 0.000 169 60.018 97 0.000 168 20.018 83 0.000 166 80.018 69 0.000 165 40.018 56 0.000 164 10.018 44 0.000 162 80.018 31 0.000 161 60.018 19 0.000 160 30.018 05 0.000 158 80.017 92 0.000 157 50.017 79 0.000 156 10.017 66 0.000 154 80.017 54 0.000 153 50.017 42 0.000 152 20.017 31 0.000 150 90.017 20 0.000 149 60.017 09 0.000 148 40.016 99 0.000 147 4

1.3

13

(Continued)

354045506070809010001234567891011121314151617181920212223242526

0.592 0.11050.530 0.097 30.479 0.086 00.436 0.076 10.359 0.057 6— —— —— —— —

4.670 0.706 64.522 0.683 94.379 0.661 94.241 0.640 74.107 0.620 13.977 0.600 13.852 0.580 93.732 0.562 43.616 0.544 63.505 0.527 63.399 0.511 23.300 0.496 03.206 0.481 43.115 0.46743.028 0.454 02.945 0.441 12.865 0.428 72.789 0.416 92.717 0.405 62.647 0.394 82.582 0.384 62.517 0.374 52.456 0.364 82.396 0.355 42.338 0.346 32.282 0.337 52.229 0.329 0

0.018 77 0.002 2310.017 75 0.002 0750.016 90 0.001 9330.016 15 0.001 7970.014 88 0.001 5220.014 40 0.001 2760.014 30 0.000 9800.014 2 0.000 570.014 1 0.000 000.055 63 0.003 9590.054 01 0.003 8420.052 44 0.003 7280.050 93 0.003 6190.049 46 0.003 5130.048 05 0.003 4100.046 69 0.003 3120.045 39 0.003 2170.044 13 0.003 1270.042 92 0.003 0390.041 77 0.002 9550.040 72 0.002 8790.039 70 0.002 8050.038 72 0.002 7330.037 79 0.002 6650.036 90 0.002 5990.036 06 0.002 5380.035 25 0.002 4780.034 48 0.002 4220.033 76 0.002 3690.033 08 0.002 3190.032 43 0.002 2700.031 80 0.002 2220.031 19 0.002 1770.030 61 0.002 1330.030 06 0.002 0910.029 52 0.002 050

1.602 0.510 41.438 0.459 01.322 0.422 81.225 0.392 51.023 0.329 50.862 0.279 30.683 0.222 70.39 0.1270.00 0.0000.073 81 0.009 8330.071 84 0.009 5640.069 93 0.009 3050.068 09 0.009 0570.066 32 0.008 8160.064 61 0.008 5840.062 98 0.008 3610.061 40 0.008 1470.059 90 0.007 9430.058 46 0.007 7470.057 09 0.007 5600.055 87 0.007 3930.054 70 0.007 2330.053 57 0.007 0780.052 50 0.006 9300.05147 0.0067880.050 49 0.006 6520.049 56 0.006 5240.048 68 0.006 4000.047 85 0.006 2830.047 06 0.006 1730.046 25 0.006 0590.045 45 0.005 9470.044 69 0.005 8380.043 95 0.005 7330.043 23 0.005 6300.042 54 0.005 530

0.032 30 0.004 120.029 15 0.003 660.026 60 0.003 270.024 59 0.002 940.021 77 0.002 390.019 48 0.001 850.018 26 0.001 340.017 6 0.000 80.017 2 0.000 00̂ 023 54 0.002 9420.022 97 0.002 8690.022 41 0.002 7980.021 87 0.002 7300.021 35 0.002 6630.020 86 0.002 6000.020 37 0.002 5370.019 90 0.002 4770.019 45 0.002 4190.019 02 0.002 3650.018 61 0.002 3120.018 23 0.002 2630.017 86 0.002 2160.017 50 0.002 1700.017 17 0.002 1260.016 85 0.002 0850.016 54 0.002 0450.016 25 0.002 0060.015 97 0.001 9700.015 70 0.001 9350.015 45 0.001 9010.015 22 0.001 8690.014 98 0.001 8380.014 75 0.001 8090.014 54 0.001 7800.01434 0.0017510.014 13 0.001 724

— —— —— —— —— —— —— —— —— —OXW889 0.0069450.04758 0.0067560.046 33 0.006 5740.045 12 0.006 4000.043 97 0.006 2320.042 87 0.006 0720.041 80 0.005 9180.040 80 0.005 7730.03983 0.0056320.038 91 0.005 4980.038 02 0.005 3680.037 18 0.005 2460.036 37 0.005 1280.035 59 0.005 0140.034 86 0.004 9060.034 15 0.004 8020.033 48 0.004 7030.032 83 0.004 6060.032 20 0.004 5140.03161 0.0044260.031 02 0.004 3390.030 44 0.004 2520.029 88 0.004 1690.029 34 0.004 0870.02881 0.0040070.028 31 0.003 9310.027 83 0.003 857

0.016 66 0.000 142 50.016 44 0.000 138 40.016 24 0.000 134 10.016 08 0.000 128 70.01600 0.00011780.016 0 0.000 1020.016 0 0.000 0790.016 0 0.000 0460.016 0 0.000 00079.789 22.8377.210 22.0974.691 21.3772.230 20.6669.828 19.9867.485 19.3165.200 18.6562.973 18.0260.805 17.4058.697 16.8056.647 16.2154.655 15.6452.723 15.0950.849 14.5649.033 14.0447.276 13.5445.578 13.0543.939 12.5942.360 12.1440.838 11.7039.374 11.2837.970 10.8836.617 10.5035.302 10.1234.026 9.7632.786 9.4131.584 9.06

*Atmospheric nitrogen containing 98.815% N2 by volume + 1.185% inert gases.

1.3

14

TABLE 1.67 Solubility of Gases in Water (Continued)

Temp°c26272829303540455060708090100

Carbon dioxide

a q

2.229 0.329 02.177 0.320 82.128 0.313 02.081 0.305 52.037 0.298 3.831 0.264 8.660 0.236 1.516 0.2110.392 0.188 3.190 0.148 0.022 0.110 10.917 0.076 50.84 0.0410.81 0.000

Carbon monoxide

a q

0.029 52 0.002 0500.02901 0.0020110.028 52 0.001 9740.028 06 0.001 9380.027 62 0.001 9040.025 46 0.001 7330.023 69 0.001 5860.022 38 0.001 4660.021 34 0.001 3590.019 54 0.001 1440.018 25 0.000 9260.017 70 0.000 6950.017 35 0.000 400.017 0 0.000 00

Chlorine

i q0.042 54 0.005 5300.041 88 0.005 4350.041 24 0.005 3420.040 63 0.005 2520.040 04 0.005 1650.037 34 0.004 7570.035 07 0.004 3940.03311 0.0040590.031 52 0.003 7580.029 54 0.003 2370.028 10 0.002 6680.027 00 0.001 9840.026 5 0.001 130.026 3 0.000 00

Ethane

a q

0.014 13 0.001 7240.013 94 0.001 6980.013 76 0.001 6720.013 58 0.001 6470.013 42 0.001 6240.012 56 0.001 5010.011 84 0.001 3910.011 30 0.001 3000.010 88 0.001 2160.010 23 0.001 0520.00977 0.0008510.009 58 0.000 6600.009 5 0.000 380.009 5 0.000 00

Ethylene

a q

0.027 83 0.003 8570.02736 0.0037870.026 91 0.003 7180.02649 0.0036510.026 08 0.003 5880.024 40 0.003 3150.023 06 0.003 0820.021 87 0.002 8580.02090 0.0026570.019 46 0.002 2740.018 33 0.001 8560.017 61 0.001 3810.017 2 0.000 790.017 0 0.000 00

Hydrogen

a q

31.584 9.0630.422 8.7329.314 8.4228.210 8.1027.161 7.8022.489 6.4718.766 5.41— —— —— —— —— ——— —

1.3

15

TABLE 1.67 Solubility of Gases in Water

Substance

ArgonHeliumHydrogen bromideHydrogen chlorideKryptonNeonNitrous oxideOzoneRadonXenon

aA1aaAAg-L- 1

aa

0.052 80.009 86125120.1105

0.039 40.5100.242

10°

0.041 30.009 115824750.081 00.01 179'0.880.029 912'0.3260.174

20°

0.033 70.0086

4420.062 60.010 60.630.021 O19'0.2220.123

30°

0.028 80.008 39S3325'4120.051 10.010 0

0.013927'0.1620.098

40°

0.025 10.008 41

3850.04330.009 4842'

0.00420.1260.082

60°

0.020 90.009 0246950'3390.035 7

00.085

80°

0.018 40.009 42™'40675'

0.009 8473'

Sl8

'l

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures

Solubilities are expressed as the number of grams of substance of stated molecular formula which when dissolved in 100 g of water make a saturated solution at the temperature stated (°C).

1.3

16

Substance

Aluminum chloridefluoridenitrateperchloratesulfatethallium(l) sulfate

Ammonium aluminumsulfate

azidebromidechloridechloroiridate(IV)chloroplatinatefTV)chromatechromium(in) sulfatecobalt(n) sulfatedichromatedihydrogen arsenatedihydrogen phosphatedithionateformatehydrogen carbonatehydrogen phosphatehydrogen tartrateiodideiron(IT) sulfate

Ammonium magnesiumsulfate

nickel sulfatenitrateoxalateperchlorateselenite

Formula

A1C13

A1F3

A1(N03)3

A1(C104)3A12(S04)3

A12T12(S04)4

NH4A1(SO4)2

NH4N3

NH4BrNH4C1(NH^TrCJ«(NH4)2PtCl6(NH4)2Cr04

(NH4)Cr(S04)2

(NH4)2Co(S04)2

(NH4)2Cr207

NH4H2AsO4

NH4H2PO4

(NH4)2S206

NH4CHO2

NH,HCO3

(NH4)2HP04

NH4C4H506

NH4I(NlWeiSO^

(NH4)2Mg(S04)2

(NH4)2Ni(S04)2

NH4NO3

(NH4)2C204

NH4C1O4

(NH,),SeO,

43.90.56

60.012231.2

3.15

2.1016.060.529.40.560.289

25.03.956.0

18.233.722.7

13310211.942.9

1.0015512.5

11.81.00

1182.2

12.096

10°

44.90.56

66.712833.54.60

5.00

68.133.20.710.374

29.2

9.525.5

29.5151

16.162.9

1.88163

17.2

14.64.00

1503.21

16.4105

20°

45.80.67

73.913336.46.39

7.7425.376.437.20.950.499

34.0

13.035.648.737.4

16614321.768.92.70

17226.4

18.06.50

1924.45

21.7115

30°

46.60.78

81.8

40.49.37

10.9

83.241.4

1.200.637

39.318.817.046.5

46.4179

28.475.1

18233

21.79.20

2426.09

27.7126

40°

47,30.91

88.7

45.814.39

14.937.191.245.8

1.560.815

45.332.622.058.563.856.7

20436.681.8

19146

25.812.0

2978.18

34.6143

60°

48.11.1

106

59.235.35

26.7

10855.3

2.451.44

59.0

33.586.083.082.5

31159.297.2

209

35.117.0

42114.049.9

192

80°

48.61.32

132

73.0

12565.64.382.16

76.1

49.0115107118

533109

229

48.3

58022.468.9

90°

153

80.8

13571.2

2.61

58.0

122

170

74027.9

100°

49.01.72

16018289.0

14577.3

3.36

75.1156

173

354

250

65.7

87134.7

1.3

17

(Continued)

sulfatesulfitetartratethioantimonate(V)thiocyanatev añádatezinc sulfate

Antimony(ni) chloride

fluoride

Arsenic hydride(760 mm), ceoxide (pent-)oxide (tri-)

Barium acetateazidebrómatebromiden-butyratecaproatechloratechloridechloritefluorideformatehydroxideiodateiodidenitratenitriteperchloratepropionate¡sosuccinatesulfamatesulfidetartrate

Beryllium nitratesulfate

Boric acidCadmium bromide

(NH4)2S04

(NH4)2S03

(NH4)2C4H406

(NH4)3SbS4

NH4SCNNH4VO3

(NH4)2Zn(S04)2

SbCl3

SbF3

AsH3

AsAAs203

Ba(C2H3O2)2-3H2OBa(N3)2

Ba(BrO3)2 • H2OBaBr2 • 2H2OBaiC^O,),Ba(C6H,,02)2-3.5H20Ba(ClO3)2 • H2OBaCl2 • 2H2OBa(C102)2

BaF2

Ba(CH02)2

Ba(OH)2

BaaO3)2

BaI2 • 2H2OBa(N03)2

Ba(N02)2-H20Ba(ClO4)2 • 3H2OBa(C3H502)2-H20BaC4H4O4

Ba(SO3NH2)2

BaSBa(C2H203)2

Be(N03)2

BeSO4

H3BO3

CdBr2

70.647.945.071.2

120

7.0602

385

4259.5

1.2058.812.50.29

9837.011.7120.331.243.9

26.21.67

1824.95

50.323957.20.421

18.32.880.021

9737.02.67

56.3

73.054.055.0

144

9.5

3062.1

1.496216.10.44

10136.18.38

26.933.544.60.159

28.02.48

2016.67

60

56.80.432

22.34.890.024

10237.63.73

75.4

75.460.863.091.2

1700.48

12.5910

444

2865.8

1.827217.4"-0.65

10435.46.89

33.935.845.40.160

29.93.890.035

2239.02

72.8336

0.41826.87.860.028

10839.15.04

98.8

78.068.870.5

120208

0.8416.0

1087

562

69.82.31

75

0.9510934.95.87

41.638.1

0.16231.95.590.046

25011.48

57.50.393

32.510.380.032

11341.4

6.72129

8178.476.5

2341.32

20.01368

71.22.93

78.5

1.3111435.25.79

49.740.847.9

34.08.220.057

14.110241659.00.366

38.514.890.035

12545.8

8.72152

8810486.9

3462.42

30.0

95144

46.6

150

58.0[completely miscible at 72°]

73.04.31

75.0

2.2712337.28.39

66.746.253.8

38.620.94

26420.4

15149562.00.306

49.627.690.044

17853.114.81

153

75.16.11

74.0

3.5213541.714.7184.852.566.6

44.2101.4

27.222257567.80.237

61.549.910.053

67.223.62

156

4.26

45.519.28

55.8

47.6

291

261

73.0

67.34

30.38

103153

72.4

76.78.2

74.8

5.3914948. 195'

10559.480.8

51.3

30134.4

32565382.7

73.560.29

82.840.25

160

1.3

18

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

Substance

chloratechloride

formateiodidenitrateperchlorateselenatesulfate

Calcium acetatebenzoatobromidebutyratecacodylatechlorideenrómate

(mn)formategluconatehydrogen carbonatehydroxide

Calcium iodateiodideláclatelevulinatemalonatenitratenitritepropionateselenatesuccinatesulf amatesulfate

tartrateuranyl carbonate

Formula

Cd(C103)2

CdCl2-2.5H2OCdCl2-H2OCd(CH02)2

CdI2

Cd(N03)2

Cd(ClO4)2 • 6H2OCdSeO4

CdSO4

Ca(OAc)2-2H2OCa(OBz)2 • 3H2OCaBr2 • 6H2OCa(C4H,02)2

Ca(C2H<As02)2-9H20CaCl2 • 6H2OCaCrO4

CaCrO4-2H2OCa(CH02)2

Ca(C6H,,07)2-H20Ca(HC03)2

Ca(OH)2

Ca(I03)2 • 6H20CaI2

Ca(C3H5O3)2 • 5H2OCa(C10H,406) • 2H20Ca(C3H204)Ca(NO3)2 • 4H2OCa(NO2)2 • 4H2OCa(C3H502)2 - H20CaSeO4 • 2H2OCa(C3H2O2)2 • 3H2OCa(SO3NH2)2

CaSO4 • '/2H2OCaSO4 • 2H2OCaC4H4O6 • 4H2OCa2U02(C03)3 • 10H20

29990

8.378.7

122

72.575.437.42.32

12520.314859.54.5

17.316.15

16.150.189

0.09064.63.1

38.10.29

10263.942.80

9.731.127

56.5

0.2230.0260.1

10°

308100135

11.1

13618068.476.036.02.45

13219.155264.7

0.182

66.0

0.33115

9.771.22

62.8

0.2440.029

20°

322113135

14.484.7

15018864.076.634.72.72

14318.205974.5

2.2516.616.603.72

16.600.173

0.2467.65.415'

45.116-

0.3612984.518'39.859.221.28

72.30.320.25518'0.0340.423

30°

34813213518.687.9

16719558.9

33.83.02

18534'17.2571

1001.83

16.1

0.160

0.3869.07.9

55.00.40

152104

8.79

84.502925-

0.2640.046

40°

376

13525.392.1

19420355.078.533.2

3.42213

16.40

1281.49

17.055.29

17.050.141

0.5270.8

70.34y

0.42191

7.141.18

100.10.2635'0.2650.0630.8

60°

455

13659.5

10031022144.281.832.74.71

27815.15

1370.83

17.50

17.500.121

0.6574

88.755°0.46

13438.25

0.89150.0

0.2145'0.244«5"0.0911.555'

80°

14080.5

11171324332.566.733.5

6.87295

14.95

147

17.9512.1117.95

0.6678

0.4835815139.85

0.68215.2

0.14565'0.23475'0.130

90°

85.2

27.263.131.1

8.55

154

36.80

0.086

0.67

16642.15

24295'0.1275'

100°

14794.6

125

27222.060.829.7

8.70312io5-

15.85

159

18.4057.296'18.400.076

81

36317848.44

0.66

0.0710.205

1.3

19

(Continued)

valerate¡sovalerate

Carbon disulfideoxide sulflde (STP)

tnL/100 mLtetrafluoride (STP)

mL/lOOgCerium(IlI) ammonium

nitrate(IV) ammonium

nitrate(HI) ammonium

sulfate(HI) selenate

(ffl) sulfate

Cesium aluminum sulfatebrómatechloratechloridechloroaurate(IH)chloroplatinate(rV)formateiodidenitrateperchloratesulfate

Chlorine dioxideChromium(III) nitrate

(VI) oxide(III) perchlorate

Cohalt(II) bromidechloratechlorideiodatenitratenitritesulfate

Ca(C3H,A)2

Ca(C5H,O2)2 • 3H2OCS2

COS

CF4

Ce(NH4)2(N03)5

Ce(NH4)2(N03)6

Ce(NH4)(S04)2

Ce2(SeOi)3

Ce^SO^-gHjOCe2(SO4)3 • 8H2OCs2Al2(S04)4

CsBrO3

CsClOjCsClCsAuCl4Cs2PtCl6CsCHO2

CslCsN03

CsClO4

CSjSOiC1O2

Cr(N03)3

CrO3

Cr(C104)3

CoBr2

Co(C103)2

CoCl2Co(I03)2

Co(N03)2

Co(N02)2

CoSO4

CoSO4-7H2O

9.8226.050.204

133.3

39.5

21.4

18.80.21

2.46161

0.004733544.19.330.8

1672.76

1085'164.810491.9

13543.5

84.00.076

25.544.8

9.2522.700.194

83.6

0.595

242

37.2

0.30

3.8175

0.50.0064

38158.514.91.0

1736.00

12415'

123

16247.7

89.60.24

30.556.3

8.8021.800.179

56.1

0.490

276

135

5.5335.2

9.849.430.403.6625'6.2

1870.80.0087

45076.523.0

1.6179

8.7015"13025'167.213011218052.9

1.0297.40.40

36.165.4

8.4021.680.155

40.3

0.415

318

150

4.4933.2

7.247.100.614.539.5

1971.70.0119

5339633.92.6

184

15235'

12819559.70.90

1110.61

42.073.0

8.0522.000.111

0.366

376

169

3.4832.6

5.635.700.855.3035'

13.8208

3.30.0158

69412445-

47.24.0

190

172.5

16321469.50.88

1250.85

48.888.1

7.7818.38

681

213

2.0213.7

3.874.042.00

26.2230

8.90.0290

15083.87.3

200

183.9

22731693.80.82

174

55.0101

7.9516.88

1.334.6

5.40

45.0250

19.50.0525

19013414.4

210

191.6

241

97.60.73

204

53.8

8.2016.65

2.1

10.5

58.026027.70.0675

20516320.5

215

101

300

45.3

8.7816.55

22.7

79.027137.90.0914

19730.0

220

206.8

257

1060.70

38.9

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

1.3

20

Substance

Copper(n) ammonium chlorideammonium sulfatebromidechloridefluorosilicate

nitratepotassium sulfateselenatesulfatetartrate

Gadolinium brómatesulfate

Germanium(IV) oxideHolmium sulfateHydrazinium (1+) nitrate

(2+) sulfate(1+) sulfate

Hydrogen bromidechlorideselenide, mL at STP

IodineIridium(IV) ammonium chloride

sodium chlorideIron(H) ammonium

sulfate(u) bromide(H) chloride(m) chloride(H) fluoro-

silicate(H) nitrate(HI) nitrate(UT) perchlorate(H) sulfate

Lanthanum brómatenitrate

Formula

CuCl2 • 2NH4C1CuSO4 • (NH4)2SO4

CuBr2

CuCl2CuSiF6

Cu(N03)2

CuSO4-K2SO4

CuSeO4

CuSO4-5H2OCuCiHA • 3H2OGd(BrO3)3 • 9H2OGdjiSOJ,GeO2

Ho2(SO4)3 • 8H2ON2H5NO3

NASO,(N2H5)2S04

HBrHC1H2Se

I2(NH^IraNazIrCls

FeSO4-(NH4)2SO4-6H20FeBr2

FeCl2FeCl3 • 6H2O

FeSiF6-6H2OFe(NO3)2 • 6H2OFe(N03)3-9H20Fe(C104)3

FeSO4-7H2OLa(Br03)3

La(N03)3

28.211.5

10768.673.583.55.1

12.0423.1

50.23.98

221.282.3

3860.0140.556

17.2310149.774.4

72.1113112.028928.898

100

10°

32.012"15.1

11670.976.5

1007.2

14.5327.50.02015'

70.13.300.49

175

210.377.2

3510.0200.706

34.4615'

31.010959.0

74.4134

40.0120

20°

35.019.4

12673.081.6

12510.017.5132.00.042

95.62.600.438.18

2662.87

204.015'72.1

2890.0290.77

36.4711762.591.8

137.736848.0

149136

30°

38.324.4

12877.384. 125'

15613.621.0437.80.089

1262.320.506.7125'

4023.89

221

67.3

0.0391.21

56.17

45.012466.7

106.8

77.025'

42260.0

200

40°

43.830.5

13150-

87.691.250'

16318.225.2244.60.142

166

0.614.52

6074.15

300171.550-63.3

0.0521.57

96.00

13370.0

175.047873.3

168

60°

56.646.3

96.5

182

36.5061.80.197

21279.08

554

56.1

0.1002.46

191.2

14478.3

83.75°-266

772100.7

247

80°

76.569.7

10493.275-

208

53.6883.80.144

14.39

150.575'

0.2254.38

279.3

16888.7

88. 175"

79.9

90°

76.586.1

108

222

0.315dec

17692.3

68.3

100°

107

120

247

114

130.0

0.445

18494.9

100. 11«"

57.8

1.3

21

(Continued)

selenatesulfate

Lead(II) acetatebromidechloridefluorosilicate

Germanium(TV) oxideHolmium sulfateHydrazinium (1+) nitrate

(2+) sulfate(1+) sulfate

Hydrogen bromidechlorideselenide, mL at STP

IodineIridium(TV) ammonium chloride

sodium chlorideIron(II) ammom'um

sulfate(H) bromide(H) chloride(HI) chloride(U) fluoro-

silicate(H) nitrate(ffl) nitrate(HI) perchlorate(H) sulfate

Lanthanum brómatenitrateselenatesulfate

Lead(II) acetatebromidechloridefluorosilicate

La^SeOj);,La^SOAPbCCftOjkPbBr2

PbCl2PbSiF6

GeO2

Ho2(S04)3-8H20N2H5N03

NASO,(N2H5)2S04

HBrHC1H2Se

I2(NH^IraNajIrOs

FeSO4-(NH4)2SO4-6H20FeBr2

FeCl2FeCl3-6H2O

FeSiF6-6H2OFe(NO3)2 • 6H2OFe(NO3)3 • 9H2OFe(C104)3

FeSO4-7H2OLa(BrO3)3

La(N03)3

La2(Se03)3

La2(S04)3

PKC.HA),PbBr2

PbCl2PbSiF6

50.53.00

19.80.450.67

190

221.2

82.3386

0.014

0.556

17.23

10149.774.4

72.1113112.0289

28.898

10050.5

3.0019.80.450.67

190

452.72

29.50.630.82

0.49

175

210.3

77.2351

0.0200.706

34.4615'

31.0

10959.0

74.4134

40.0120

452.72

29.50.630.82

452.33

44.30.861.00

2220.43

8.18266

2.87

204.015'72.1

2890.0290.77

36.4711762.5

91.8

137.736848.0

14913645

2.3344.3

0.861.00

222

451.90

69.81.12

1.20

0.50

6.7125"402

3.89

221

67.3

0.0391.21

56.17

45.0

12466.7

106.8

77.025'

42260.0

200

451.90

69.81.12

1.20

451.67

1161.501.42

0.614.52

6074.15

300171.550-63.3

0.0521.57

96.00

13370.0

175.0

47873.3

16845

1.67

1161.501.42

18.5

1.26

2.291.94

403

2127

9.08554

56.1

0.1002.46

191.2

14478.3

83.75°-266

772100.7

24718.5

1.26

2.291.94

403

5.40.91

3.232.54

428

14.39

150.575'

0.2254.38

279.3

16888.7

88. 175"

79.9

5.40.91

3.232.54

428

2.20.79

3.862.88

0.315

dec

17692.3

68.3

2.20.79

3.862.88

0.68

4.553.20

463

130.0

0.445

18494.9

100. 1106"

57.8

0.68

4.553.20

463

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

1.3

22

Substance

iodidenitrate

Lithium acetateammonium sulfateazidebenzoateborate (meta-)brómatebromidecarbonatechloratechloridechloroaurate(IU)cyanoplatinate(n)formatehydrogen phosphitehydroxideiodidemolybdatenitratenitriteperchloratephosphate (meta-)selenitesulfatetartrate (d-)thiocyanatevanadate

Magnesium acetatebromidechloratechloridefluorosilicate

formateiodateiodide

Formula

PbI2

Pb(N03)2

LiCjHALiNH4SO4

LiN3

LiC,H5O2

LiBO2

LiBrO3

LiBrLi2CO3

LiClO3

LiClLiAuCliLi2Pt(CN)4

LiCHO2

Li2HPO3

LiOHLitLi2MoO4

LiNO3

LiNO2

LiClO4

LiPO3

Li2SeO3

Li2S04

Li2C4H406

LiSCNLi3VO4

Mg(C2H302)2

MgBr2

Mg(C103)2

MgCl2MgSiF6

Mg(CH02)2

Mg(I03)2

MgI2

0.04437.531.2

61.338.90.90

154143

1.5424169.2

10532.39.97

11.9115182.653.470.942.70.101

25.036.142.0

2.5056.798

11452.926.314.0

120

10°

0.05646.235.155.264.241.6

1.3166147

1.4328374.5

113

35.7

12.11157

60.882.549.0

23.335.531.8

59.799

12353.6

14.27.2

20°

0.06954.340.8

67.244.72.7

179160

1.3337283.5

13614139.3

12.3516579.570.196.856.10.05825'

21.534.827.1

1144.82

53.410113554.630.814.48.6

140

30°

0.09063.450.655.971.253.85.7

198183

1.26488

86.216715344.17.61

12.7017179.4

13811463.6

19.634.226.6

1316.28

68.610415555.8

14.910.0

40°

0.12472.168.656.175.4

10.9221211

1.17604

89.820616049.57.11

13.2217978.0

15213372.30.048

17.933.727.2

1534.38

75.710617857.534.915.911.7

173

60°

0.19391.6

56.586.6

269223

1.0111198.4

32417864.76.03

14.63202

17517792.3

14.732.629.5

2.6711811224261.044.417.915.2

80°

0.294111

308245

0.85

11259921692.7

16.56435

233128

11.931.4

66.1

20.515.5

186

90°

329

121

239116

440

272151

11.130.9

26869.5

22.215.6

100°

0.42133

100

355266

0.72

128

1384.43

19.1248173.9

324

9.9

125

73.3

23.9

1.3

23

(Continued)

Magnesium nitrateselenatesulfatesulfitetartrate

Manganese bromidechloridefluoride

nitrateoxalatesulfate

Mercnry(II) bromide(IT) chloride(I) perchlorate

Molybdenum trioxideNeodymium brómate

chloridenitrateselenatesulfate

Nickel bromidechloratechloridefluoride

iodate

iodidenitrateperchlorate

Nickel sulfate

Osmium tctroxideOxalic acidPotassium acetate

aluminum sulfateazidebenzoate

Mg(N03)2

MgSe04

MgS04

MgS03

MgC4H406

MnBr2

MnCl2MnF2

Mn(NO3)2

MnC2O4

MnSO4

HgBr2

HgCl2Hg2(C104)2

MoO3

Nd(BrO3)3

NdCl3Nd(N03)3

Nd2(Se03)3

Nd2(S04)3

NiBr2

Ni(C103)2

NiCl2NiF2

Ni(I03)2

Ni(IO3)2-4H2ONiI2

Ni(N03)2

Ni(C104)2

NiSO4-6H20

NiSO4-7H2OOsO4

H2C204

KC2H3O2

KA1(SO4)2

KN3

KC7H5O2

62.120.022.00.3390.54

12763.4

1020.020

52.90.303.63

282

43.9

12746.213.0

11311153.4

0.7412479.2

105(pale

blue)(green)26.25.263.54

2163.00

41.4

66.030.428.20.4460.78

13668.1

1180.024

59.70.404.82

325

59.296.7

13344.69.7

12212056.32.55

135

107

32.45.756.08

2333.99

46.265.8

69.538.333.70.5731.06

14773.9

1.06139

0.02862.90.566.57

3670.134

75.698.0

14241.87.1

13113360.82.56

1.0914894.2

11040.1

44.437.76.439.52

2565.90

50.870.7

73.644.338.90.751

15780.8

2060.033

62.90.668.34

4070.285

95.299.6

14539.95.3

13815570.6

1.151.43

16110511343.6

46.643.4

14.23283

8.3955.876.7

78.948.644.50.9591.02

16988.50.67

60.00.91

10.2455

0.45411610215939.94.1

14418173.2

17411911747.6

49.250.4

21.52324

11.761.082.1

78.955.854.60.779

197109

0.44

53.61.68

16.3499

1.08

10521143.9

2.8153221

81.22.561.06

184158

55.6

44.3235024.8

91.6

55.80.642

225113

45.62.77

30.0541

1.74

7.02.2

15430886.6

187187

64.5

84.538171.0

106

52.90.622

226114

40.9

3.31.2

2.591.00

188188

70.1

120398109

50.4

228115

0.48

35.34.9

61.3580

155

87.6

76.7

106

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

1.3

24

SubstanceSubstance

brómatebromidecadmium bromidecadmium chloridecarbonatechloratechloridechloroaurate(m)chloroplatinate(IV)chromatecitratecobalt(II) sulfatecopper(II) sulfatecyanoplatinate(n)dichromatedihydrogen phosphatedithionateferricyanideferrocyanidefluoridefluorogermanate(rV)fluorosilicatefluorotitanate(rV)formatehydrogen carbonate

Potassium hydrogenfluoride

hydrogen selenitehydrogen sulfatehydrogen tartratehydroxideiodateiodideiron(ü) sulfatemagnesium sulfate

Formula

KBrO3

KBrKCdBr3

KCdCl3K2C03

KC1O3

KC1KAuCl4

K2PtCl6K2CrO4

KsCAO,K2Co(S04)2

K2Cu(S04)2

K2Pt(CN)4

K2Cr207

KH2P04

K2S206

K3Fe(CN)6

K4Fe(CN)6

KFK2GeF6

K2SiF6

K2TiF6

KCH02

KHCO,KHF2

KH,(Se03)2

KHSO4

KC4H506

KOHKIO3

KIK2Fe(S04)2

K2Mg(S04)2

3.0953.6

11626.6

1053.3

28.0

0.4856.3

8.55.1

11.64.7

14.82.6

30.214.344.7

0.250.0770.55

22.524.5

11536.20.231

95.74.60

12819.614.0

10°

4.7259.5

13332.3

1085.2

31.238.30.60

60.0153

11.77.2

19.87.0

18.34.2

3821.153.50.360.1020.91

31327.430.1

162

0.358103

6.2713624.519.5

20°

6.9165.3

15038.9

1117.3

34.261.80.78

63.7172

15.510.033.912.322.66.6

4628.294.90.500.1511.28

33733.739.2

21548.60.523

1128.08

14432.125.0

30°

9.6470.7

17045.6

11410.137.294.9

1.0066.7

19419.313.652.018.128.09.3

5335.1

1080.660.202

36139.946.8

30054.30.762

12610.3

15339.130.4

40°

13.175.4

19153.1

11713.940.1

1451.36

67.8

23.318.278.326.333.5

59.341.4

1380.960.253

39847.556.5

40861.0

13412.6

16244.936.6

60°

22.785.5

23367.5

12723.845.8

4052.45

70.1

32.5

13945.650.2

7054.8

142

47165.678.8

90076.4

15418.3

17657.250.2

80°

34.194.9

27683.5

14037.651.3

3.71

47.7

17773.070.4

66.9150

580

114

96.1

24.8192

63.4

90°

99.2298

14846.053.9

74.5

194

83.5

71.5

658

198

100°

49.910432510115656.356.3

5.03

9174.2

122

17832.3

206

1.3

25

(Continued)

nickel sulfatenitratenitriteoxalateperchlorateperiodatepennanganateperoxodisulfateperrhenatephosphatesalicylateselenateselenitesulfatesulfitetelluratethioantimonate(V)thiocyanatethiosulfatezinc sulfate

Praseodymium brómatenitrateselenatesulfate

Rubidium aluminumsulfate

brómatebromidechloratechloridechloroaurate(in)chloroplatinate(rV)enrómatecobalt sulfatedichromate (mn)

(trie)fórmateiron(ni) sulfatenitrate

K2Ni(S04)2

KNO3

KNO2

K2C204

KCKX,KIO4

KMnO4

K2S208

KReO4

K3P04

KC,H5O3

K2SeO4

K2SeO3

K2SO4

K2SO3

K2TeO4

K3SbS4

KSCNK2S203

K2Zn(SO4)2-6H2OPr(Br03)3

Pr(N03)3

Pr2(Se03)3

Pr2(S04)3

Rb2Al2(S04)4

RbBrO3

RbBrRbClO3

RbClRbAuCL,Rb2PtCl6Rb2CrO4

Rb2Co(SO4)2

Rb2Cr2O7

RbCHO2

RbFe(SO4)2-12H2ORbNO3

3.3713.9

27925.50.760.172.831.650.34

21.2107169

7.4106

8.83061779613.055.9

36.219.8

0.72

902.1

77

0.01462.05.10

19.5

4.5021.2

29231.9

1.060.284.312.670.63

81.532.4

109186

9.3

320198

18.973.0

15.6

1.05

993.4

844.80.020

67.57.47

4438.0

33.0

5.9431.6

30636.4

1.680.426.344.700.99

92.347.1

111203

11.110627.5

22415525.991.8

112

12.6

1.50

1085.4

919.90.028

73.610.85.95.8

5542052.9

7.7245.3

32039.9

2.560.659.037.751.47

10861.3

113217

13.010750.4

30225517535.0

11416232.49.89

2.203.6

1198.0

9815.50.040

78.914.510.09.5

6143581.2

9.8561.3

32943.8

3.731.0

12.611.02.2

13378.6

115217

14.8107

31528920544.9

14417831.2

2.56

3.255.1

13211.6

10421.50.056

85.618.215.214.8

69452

117

15.410634853.27.32.1

22.1

4.58

116119220

18.2108

37223872.1

30.45.04

7.40

15822

11536.20.090

95.730.232.332.4

900

200

23.0167376

63.613.44.4

8.7

156121

21.4

381492293

5.433.5

21.6

3812754.60.182

44.9

310

27.820339069.217.75.9

22.9

571312

3.61.1

4913365.80.247

55.0

374

33.424541075.322.3

12221724.1

112

675

0.91

6314379.20.33:

70.1

452

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued)

1.3

26

SubstanceSubstance

perchloratesalicylatesulfate

Samarium brómatechloride

Selenic acidSelenious acidSelenium dioxideSilver acetate

brómatechloratefluoride

nitratenitriteperchloratesulf amatesulfate

Sodium acetatealuminum sulfateazidebenzoateborate (penta-)borate (tetra-)brómatebromidecarbonatechloratechloridechloroaurate(TJI)chloroiridate(TV)enrómatecyanidedichromatediethyl barbituratedihydrogen

phosphate (ortho-)

Formula

RbClO4

RbC,H5O3

Rb2SO4

Sm(BrO3)3

SmCljH2SeO4

H2SeO3

SeO2

AgC2H302

AgBrO3

AgC103

AgFAgN03

AgN02

AgC104

AgNH2SO3

Ag2SO4

NaC2H3O2

Na2Al2(S04)4

NaN3

NaC,H5O2

NajBjoO«Na^O,NaBrO3

NaBrNa2CO3

NaClO3

NaClNaAuO,NajIrClsNajCrOiNaCNNajCr2O7

NaC8H,,N2O3

NaH2PO4

1.09

37.534.2

42690.1

0.73

85.9122

0.16455

2.300.57

36.237.438.962.66.41.11

24.280.27.00

79.635.7

31.740.8

163

56.5

10°

1.1918742.647.692.4

122.2222

0.890.11

10.4120167

0.22484

4.820.70

40.839.339.962.8

8.61.60

30.385.212.587.635.8

13931.650.148.1

17212.7

69.8

20°

1.5521248.162.593.4

567166.7257

1.050.16

15.3172216

0.34525

7.530.80

46.439.740.862.812.02.56

36.490.821.595.935.9

15139.384.058.7

18321.5

86.9

30°

2.2023853.679.094.6

1328235.6291

Í.230.23

20.9190265

0.51594

10.30.89

54.641.7

62.916.43.86

42.698.439.7

10536.1

17856.288.071.2

19824.7

107

40°

3.2626858.598.596.9

344.4335

1.430.32

26.8203311

0.73635

15.30.98

65.643.8

63.122.0

6.6748.8

10749.0

11536.4

22796.196.0

215

133

60°

6.27324

67.5

383.1440

1.930.57

4401.39

28.51.15

139

64.537.919.062.6

11846.0

13737.1

900192115

269

172

80°

11.0

75.1

383.1

2.590.94

585

1.30153

68.663.431.475.7

12043.9

16738.0

279125

376

211

90°

15.5

78.6

385.4

1.33

652

1.36161

70.683.541.0

12143.9

18438.5

40548.0

234

100°

22.0

81.8

733

793

1.41170

55.373.3

10852.590.8

121

20439.2

126

415

1.3

27

(Continued)

dihydrogenphosphate (pyro-)

dithionatedodecanesulfonatedodecanoateEDTA (Y)*ferrocyanidefluoride

fluoroberyllate

fluorogermanatefluorosilicatefonnategermanatehydrogen arsenatehydrogen carbonatehydrogen phosphatehydrogen phosphitehydrogen succinatehydroxidehydroxostannate(rV)hypochloriteiodateiodidemolybdatenitratenitriteoxalateperchlorateperiodatephosphatepotassium tartratesalicylateselenateselenitesulfate

sulfidesulfitethioantimonate(V)thiocyanate

Na2H2P20,NajSANaC12H25S03

NaC12H2302

NazHjY^O

Na^eCCN)«NaFNa2BeF4

Na^eFNajSiF,NaCHO2

NajGeOaN%HAsO4

NaHCO3

Na^HPO.,NajHPO,,NaC4H5O4

NaOHNa2Sn(OH)6

NaCIONaIO3

NalNajMoOíNaNO3

NaNO2

Na2C2O4

NaClO4

NaIO4

Na3PO4

NaKC4H4O6

NaC,H5O3

NajSeOjNajSeO,,NajSO,,NajSOi • 7H2ONajSNajSOsNa3SbS4

NaSCN

4.476.3

10.611.23.661.331.524.35

43.914.45.97.01.68

41817.5

46.029.4

2.4815944.173.071.22.69

1671.834.5

31.9

13.378.64.9

19.59.6

14.413.4

6.9511.1

14.8

1.685.7

62.518.813.08.13.53

42425.398

36.44.59

16764.780.875.13.05

1835.68.2

46.644.725.281.29.1

30.012.119.520.0

111

12.015.10.13

11.118.84.061.44

7.281.223.833.99.67.83

42934.8

10943.753.48.08

17865.387.680.83.41

20110.312.167.895.326.986.219.544.115.726.327.9

134

17.119.60.254.58

12.823.84.22

2.258.6

10228.749.311.122.0

56647.7

11942.7

10010.7

19166.994.987.63.81

22219.916.3

10211177.094.240.8

20.535.537.2

164

18.424.76.54

22.714.229.94.401.922.83

10.310837.269.512.755.3

61.612938.9

11013.3

20568.6

10294.94.18

24530.420.2

11781.896.548.8

26.637.249.3

176

36.1

10517.043.7

4.682.24

14.312265.0

14416.082.8

74.5174

19.8257

71.8122111

4.93288

29.9

13078.691.645.3

39.132.653.8

192

49.3

17022.262.14.892.623.36

18.7138116186

92.3

90.1

26.6295

148133

5.71306

60.0

14474.886.643.7

55.029.488.3

210

56.3

24.3

2.73

21.5147

188

102

29.5

68.1

73.084.542.7

65.327.9

218

64.7

27.Q98-

5.08

24.5160

198

104

33.0302

180160

6.50329

77.0

72.782.542.5

TABLE 1.68 Solubility of Inorganic Compounds and Metal Salts of Organic Acids in Water at Various Temperatures (Continued )

1.3

28

SubstanceSubstance

thiosulfatetungstatevanadate

Strontium acetatebromidechloridechromate

Strontium fluorideformatehydroxideiodidenitratenitriteoxidesulfate

Sulfamic acidTelluric acidTerbium brómateThalliiim(l) azide

bromidecarbonatechloratechloridehydroxideiodidenitratenitriteperchloratepicrateselenatesulfate

Thorium nitratesulfate

Tin(U) iodideUranium(IV) sulfate

Formula

NajSjO, • 5H2ONajWO.,NaVO3

SriC^A),SrBr2

SrCl2SrCrO4

SrF2

Sr(CH02)2

Sr(OH)2

SrI2

Sr(N03)2

Sr(N02)2

SrOSrSO4

H2NS03HH2TeO4

Tb(BrO3)3 • 9H2OT1N3

TIBrT12C03

T1C1O3

T1C1T10H

TilT1NO3

T1NO2

T1C1O4

TlOCACNCy,Tl2SeO4

T12S04

Th(N03)4

Th(SO4)2 • 4H2OTh(SO4)2 • 9H2OSnI2

U(SO4)2 • 4H2OU(SO4)2-8H2O

50.2

71.5

37.0

85.243.5

0.01139.10.91

16539.5

0.011314.716.2

66.4

0.1710.022

2.000.21

25.40.0023.90

17.96.000.135

2.73186

0.74

10°

59.7

42.993.4

47.7

0.085

10.61.25

52.9

0.012918.6

33.889.7

0.2360.032

0.2529.6

6.22

28.98.04

2.173.70

187

0.99

20°

70.173.0

19.3

41.110252.90.0900.0117

12.71.77

17869.5

65

0.013221.341.6

1170.3640.0485.33.92

0.3335.00.0069.55

40.3

13.10.402.80

4.87

191

1.380.99

11.9

30°

83.2

22.5

39.511258.7

0.011915.2

2.64

88.772

1.030.0138

26.150.0

152

0.068

0.42

40.4

14.353.219.70.57

6.16

1.991.17

10.1

17.9

40°

10477.626.3

38.312365.3

17.8

3.9519289.4

791.050.0141

29.557.2

198

0.097

12.750-0.52

49.4

0.01521.0

83.628.30.83

7.53

4.043.001.42

9.029.2

60°

33.036.8

15081.8

25.0

8.4221893.4

973.400.0131

37.177.5

0.17712.2

0.80

73.30.035

46.121650.8

1.73

11.0

1.63

2.11

7.755.8

80°

90.8

40.836.1

18290.5

0.058

31.920.2

27096.9

1309.150.0116

47.1106

36.61.20

1060.070

1101150

81.5

8.5014.6

3.04

90°

36.2

32.9

44.536598.4

13413.130.0115

126

200750

16.5

3.58

100°

97.2

36.4

223101

34.491.2

383

12.15

155

27.2

57.31.80

1500.120

414

10.818.4

4.20

1.3

29

*Properly called dihydrogen ethylenediaminetetraacetate (Na2H2 EDTA ⋅ 2H2O).

Uranyl nitrateoxalate

Ytterbium sulfateYttrium bromide

chloride

nitratesulfate

Zinc bromide

chloratechloride

formateiodide

nitratesulfate (rh)sulfate (mn)

tartrate

U02(N03)2

UO2C2O4

Yb2(S04)3

YBr3

YC13

Y(N03)3

Y2(S04)3

ZnBr2

Zn(C103)2

ZnCl2Zn(CHO2)2

ZnI2

Zn(N03)2

ZnS04

ZnC4H406

98

44.2

63.977.3

93.18.05

389145342

3.704309841.6

1070.45

37.5

78.1106

7.67

152363

4.30

47.2

54.4

1220.50

75.178.8

1237.30

446200395

5.20432

53.860.00.022

1410.61

22.2

79.6143

6.78

528209437

6.10

13861.365.50.041

1670.80

17.287.380.8

1636.09

591223452

7.40

44521170.5

0.060

3171.22

10.4101

2004.44

618

48811.8

467

75.4

0.104

3881.946.4

116

2.89

645

54121.2

490

71.1

0.059

426

5.8123

2.2

28.8

4743.16

4.7

672

61438.0

510

60.5

1.330 SECTION ONE

TABLE 1.69 Dissociation Constants of Inorganic Acids

The dissociation constant of an acid Ka may conveniently be expressed in terms ofthe pKa value where pKa = −log10 (Ka/mol dm−3). The values given in the followingtable are for aqueous solutions at 298 K: the pK1, pK2, and pK3 values refer to thefirst, second, and third ionizations respectively.

Name Formula pKa

Aluminium ion (hydrated) [Al(H2O)6]3+ 4.9 (pK1)

Ammonium ion NH4+ 9.25

Arsenic(III) acid H3AsO3 9.22 (pK1)Arsenic(V) acid H3AsO4 2.30 (pK1)Boric acid H3BO3 9.24 (pK1)Bromic(1) acid HOBr 8.70Carbonic acid H2CO3 6.38a (pK1)

10.32 (pK2)Chloric(I) acid HOCl 7.43Chloric(III) acid HClO2 2.0Chromium(III) ion (hydrated) [Cr(H2O)6]

3+ 3.9 (pK1)Hydrazinium ion N2H5

+ 7.93Hydrocyanic acid HCN 9.40Hydrofluoric acid HF 3.25Hydrogen peroxide H2O2 11.62 (pK1)Hydrogen sulphide H2S 7.05 (pK1)

12.92 (pK2)Hydroxyammonium ion NH3OH+ 5.82Iodic(I) acid HOI 10.52Iodic(V) acid HIO3 0.8Iron(III) ion (hydrated) [Fe(H2O)6]

3+ 2.22 (pK1)Lead(II) ion (hydrated) [Pb(H2O)n]

2+ 7.8 (pK1)Nitrous acid HNO2 3.34Phosphinic acid H3PO2 2.0Phosphoric(V) acid H3PO4 2.15 (pK1)

7.21 (pK2)12.36 (pK3)

Phosphonic acid H3PO3 2.00 (pK1)6.58 (pK2)

Silicic acid H2SiO3 9.9 (pK1)11.9 (pK2)

Sulphuric acid H2SO4 1.92 (pK2)Sulphurous acid H2SO3 1.92 (pK1)

7.21 (pK2)

aSome of the unionized acid exists as dissolved CO2 molecules rather than H2CO3: pK1 forthe molecular species H2CO3 is approximately 3.7.

{

{

{{

{

{

INORGANIC CHEMISTRY 1.331

TABLE 1.70 Ionic Product Constant of Water

This table gives values of pKw on a modal scale, where Kw is the ionic activity product constant of water.Values are from W. L. Marshall and E. U. Franck, J. Phys. Chem. Ref. Data, 10:295 (1981).

TABLE 1.71 Solubility Product Constants

The data refer to various temperatures between 18 and 25°C, and were complied from values cited by Bjerrum,Schwarzenbach, and Sillen, Stability Constants of Metal Complexes, Part II, Chemical Society, London, 1958,and values taken from publications of the IUPAC Solubility Data Project: Solubility Data Series, internationalUnion of Pure and Applied Chemistry, Pergamon Press, Oxford, 1979–1992; H. L. Clever, and F. J. Johnston,J. Phys Chem. Ref. Data, 9:751 (1980); Y. Marcus, Ibid. 9:1307 (1980); H. L. Clever, S. A. Johnson, and M. E.Derrick, Ibid. 14:631 (1985), and 21:941 (1992).

In the table, “L” is the abbreviation of the organic ligand.

Compound Formula pKsp Ksp

(Continued)

Temp.,°C

05

1015182025303540

pKw

14.93814.72714.52814.34014.23314.16313.99513.83613.68513.542

Temp.,°C

45505560657075808590

pKw

13.40513.27513.15213.03412.92112.81412.71112.61312.52012.431

Temp.,°C

95100125150175200225250275300

pKw

12.34512.26411.91111.63711.43111.28811.20711.19211.25111.406

Actiniumhydroxide

Aluminumarsonatecupferratehydroxidephosphate8-quinolinolateselenidesulfide

Americium(ffl) hydroxide(IV) hydroxide

Ammoniumuranyl arsenate

Arsenic(III) sulfide

Ac(OH)3

AlAsO4

A1L3

A1(OH)3

A1PO4

A1L3

Al2Se3

A12S3

Am(OH)3

Am(OH)4

NH4UO2AsO4

As2S3

15

15.8018.6432.8920.0129.0024.46.7

19.5756

23.77

21.68

1 X 10~15

1.6 X 10-16

2.3 X 10-'9

1.3 X 10-33

9.84 X 10-21

1.00 X 10-29

4 X 10-25

2 X 10~7

2.7 X 10-20

1 X 10-56

1.7 X 10-24

2.1 X 10~22

1.332 SECTION ONE

TABLE 1.71 Solubility Product Constants (Continued)

Compound Formula pKsp Ksp

1.332 SECTION ONE

TABLE 1.71 Solubility Product Constants (Continued)

Compound

Bariumarsenatebrómatecarbonateenrómateferricyanide 6-hydratefluoridehexafluorosilicatehydrogen phosphatehydroxide 8-hydrateiodate hydratemolybdateniobatenitrateoxalateoxalate hydratepermanganateperrhenatephosphatepyrophosphate8-quinolinolateselenatesulfatesulfitethiosulfate

Berylliumcarbonate 4-hydratehydroxide (amorphous)molybdateniobate

Bismutharsenatecupferratehydroxideiodideoxide bromideoxide chlorideoxide hydroxideoxide nitrateoxide nitriteoxide thiocyanatephosphatesulfide

Cadmiumanthranilatearsenatebenzoate 2-hydrateborate, metacarbonatecyanideferrocyanidefluoride

Formula

Ba3(As04)2

Ba(BrO3)2

BaCO3

BaCrO4

Ba2[Fe(CN)6]-6H2OBaF2

BaSiF6

BaHPO4

Ba(OH)2-8H2OBa(IO3)2-H2OBaMoO4

Ba(NbO3)2

Ba(N03)2

BaC2O4

BaC2O4-H2OBa(MnO4)2

Ba(ReO4)2

Ba3(P04)2

Ba2P2O7

BaL2

BaSeO4

BaSO4

BaSO3

BaS2O3

BeCO3-4H2OBe(OH)2

BeMoO4

Be(NbO3)2

BiAsO4

BiL3

Bi(OH)3

BiI3

BiOBrBiOClBiO(OH)BiO(N03)BiO(NO2)BiO(SCN)BiP04

Bi2S3

CdL2

Cd3(As04)2

CdL2-2H2OCd(B02)2

CdC03

Cd(CN)2

Cd2[Fe(CN)6]CoF2

P^sp

50.115.508.599.937.496.7466.493.598.407.45

16.502.336.797.649.611.28

22.4710.508.307.479.979.304.79

321.16

1.4915.92

9.3527.2230.418.116.52

30.759.42.556.316.80

22.8997

8.2732.662.78.64

12.08.0

16.492.19

K*

8.0 X 10-51

2.43 X 10-4

2.58 X 10-9

1.17 X 10-'°3.2 X 10-8

1.84 X 10-'1 X 10-6

3.2 X 10-7

2.55 X 10-4

4.01 X 10~9

3.54 X 10-8

3.2 X 10-17

4.64 X 10-3

1.6 X 10-7

2.3 X 10-8

2.5 X 10-'°5.2 X 10~2

3.4 X 10-23

3.2 X 10-"5.0 X 10-9

3.40 X 10-8

1.08 X 10-'°5.0 X 10-10

1.6 X 10-5

1 X IQ-3

6.92 X 10-22

3.2 X 10-2

1.2 X 10~16

4.43 X 10^'°6.0 X 10-28

6.0 X 10-31

7.71 X 10-19

3.0 X 10-'1.8 X 10~31

4 X 10-'°2.82 X 10-3

4.9 X 10-7

1.6 X 10-7

1.3 X 10-23

1 X 10~97

5.4 X 10-9

2.2 X 10-33

2 X 10-3

2.3 X 10~9

1.0 X 10-12

1.0 X 10-8

3.2 X 10-'7

6.44 X 10-3

INORGANIC CHEMISTRY 1.333

TABLE 1.71 Solubility Product Constants (Continued)

Compound Formula pKsp Ksp

(Continued)

hydroxideiodateoxalate 3 -waterphosphatequinaldatesulfidetungstate

Calciumacetate 3-waterarsenatebenzoate 3-watercarbonatecarbonate (calcite)carbonate (aragonite)carbonatomagnesiumenrómatefluoridehexafluorosilicatehydrogen phosphatehydroxideiodate 6-watermolybdateniobateoxalate hydratephosphate8-quinolinolateselenateselenitesilicate, metasulfatesulfate dihydratesulfilesulfite 0.5-watertartrate dihydratetungstate

Cerium(III) fluoride(III) hydroxide(IV) hydroxide(III) iodate(IV) iodate(III) oxalate 9-water(III) phosphate(III) selenite(HI) sulfide(III) tartrate

Cesiumbrómatechloratecobaltihexanitritehexachloroplatinate(IV)hexafluoroplatinate(IV)hexafluorosilicate

Cd(OH)2 freshCd(I03)2

CdC2O4-3H2OCd3(P04)2

CdL2

CdSCdW04

Ca(OAc)2-3H2OCa3(As04)2

CaL2-3H2OCaCO3

CaCO3

CaCO3

Ca[Mg(CO3)2] dolomiteCaCrO4

CaF2

Ca[SiF6]CaHPO4

Ca(OH)2

Ca(IO3)2-6H2OCaMoO4

Ca(NbO3)2

CaC2O4-H2OCa3(P04)2

CaL2

CaSeO4

CaSeO3

CaSiO3

CaSO4

CaSO4-2H2OCaSO3

CaSO3-0.5H2OCaL-2H2OCaWO4

CeF3

Ce(OH)3

Ce(OH)4

Ce(I03)3

Ce(I03)4

Ce2(C204)3-9H20CePO4

Ce2(Se03)3

Ce2S3

Ce2L3

CsBrO3

CsClO3

Cs3[Co(N02)6]Cs2[PtCl6]Cs2[PtF6]Cs2[SiF6]

14.147.607.85

32.6012.3026.105.7

2.418.172.48.548.478.22

113.158.283.097.05.266.157.84

17.068.63

28.6811.123.095.537.604.314.507.176.516.118.06

15.119.8047.7

9.5016.325.502324.4310.2219.0

1.71.4

15.247.505.624.90

7.2 X 10-'5

2.5 X 10-8

1.42 X 10-8

2.53 X 10-'3

5.0 X 10-»8.0 X 10-27

2 X 10-6

4 X ID-3

6.8 X 10~19

4 x IQ-3

2.8 X 10-9

3.36 X 10-9

6.0 X 10~9

1 X 10-"7.1 X ID"4

5.3 X 10-9

8.1 x 10~4

1.0 X 10-'5.5 X 10-6

7.10 x 10~7

1.46 X 10-8

8.7 X 10-'8

2.32 X 10~9

2.07 X 10-29

7.6 X 10-'2

8.1 X 10-4

8.0 X 10-6

2.5 x 10-8

4.93 X 10-5

3.14 X 10~5

6.8 X 10~8

3.1 X 10-'7.7 X 10~7

8.7 X 10-9

8 X 10-'6

1.6 X 10-20

2 X 10-48

3.2 X 10~10

5 X 10- "3.2 X 10-26

1 X 10-23

3.7 x 10-25

6.0 X 10-"1.0 X 10-'9

5 X 10-2

4 X 10-2

5.7 X 10~16

3.2 X 10-8

2.4 X 10-6

1.3 X 10-5

1.334 SECTION ONE

TABLE 1.71 Solubility Product Constants (Continued)

Compound Formula pKsp Ksp

perchlorateperiodatepermanganateperrhanatetetrafluoroborate

Chromium(II)hydroxide

Chromium(III)arsenatefluoridehydroxidephosphate 4-water

Cobaltanthranilatearsenatecarbonateferrocyanidehydrogen phosphate(II) hydroxide(III) hydroxideiodatephosphateselenitequinaldate8-quinolinolatesulfide

Copper(I)azidebromidechloridecyanidehydroxideiodidesulfidetetraphenylboratethiocyanate

Copper(II)anthranilatearsenateazidecarbonatechromatedithiooxamideferrocyanidehydroxideiodateoxalatephosphatepyrophosphatequinaldate8-quinolinolate

CsClO4

CsIO4

CsMnO4

CsReO4

Cs[BF4]

Cr(OH)2

CrAsO4

CrF3

Cr(OH)3

CrPO4-4H2O greenviolet

CoL2

Co3(As04)2

CoCO3

Co2[Fe(CN)6]CoHPO4

Co(OH)2 freshCo(OH)3

Co(I03)2

Co3(P04)2

CoSeO3

CoL2

CoL2

a-CoSß-CoS

CuN3

CuBrCuClCuCNCuOHCulCu2SCuLCuSCN

CuL2

Cu3(As04)2

Cu(N3)2

CuCO3

CuCrO4

CuLCu2[Fe(CN)6]Cu(OH)2

Cu(I03)2

CuC2O4

Cu3(P04)2

Cu2P20,CuL2

CuL2

2.405.294.083.404.7

15.7

20.1110.1830.2022.6217.00

9.6828.1712.8414.746.7

14.2343.804.0

34.696.80

10.8024.8020.4024.70

8.318.206.76

19.461411.9047.60

8.012.75

13.2235.109.209.865.44

15.1215.8919.667.169.35

36.8515.0816.8029.70

3.95 X 10-3

5.16 X 10-6

8.2 X 10-5

4.0 X 10-4

5 X 10-5

2 X 10-'6

7.7 X 10"21

6.6 X 10-"6.3 X 10-31

2.4 X 10-23

1.0 X 10-'7

2.1 X 10-'°6.80 X 10-29

1.4 X 10-'3

1.8 X 10-'5

2 X 10-7

5.92 X 10-'5

1.6 x 10-*4

1.0 X 10-4

2.05 X 10-35

1.6 X 10-7

1.6 X 10-"1.6 X 10-25

4.0 X 10~21

2.0 X 10-25

4.9 X 10-9

6.27 X 10-9

1.72 X 10~7

3.47 X 10-20

1 X 10-'4

1.27 X 10-'2

2.5 X 10-48

1.0 X 10-»1.77 X 10-'3

6.0 X 10-14

7.95 X 10-36

6.3 x lO"10

1.4 X 10-'°3.6 X 10-6

7.67 x 10- 16

1.3 X 10-16

2.2 X 10-20

6.94 X 10-8

4.43 X 10-'°1.40 X 10~37

8.3 X 10-'6

1.6 X 10-'7

2.0 X 10-30

INORGANIC CHEMISTRY 1.335

TABLE 1.71 Solubility Product Constants (Continued)

Compound Formula pKsp Ksp

(Continued)

selenitesulfide

Dysprosiumenrómate 10- waterhydroxide

Erbiumhydroxide

Europiumhydroxide

Gadoliniumhydrogen carbonatehydroxide

Galliumferrocyanidehydroxide8-quinolinolate

Germaniumoxide

Gold(I)chlorideiodide

Gold(III)chloridehydroxideiodideoxalate

Hafniumhydroxide

Holmiumhydroxide

Indiumferrocyanidehydroxidequinolinolateselenitesulfide

Iron(II)carbonatefluoridehydroxideoxalate dihydratesulfide

rron(III)arsenateferrocyanidehydroxidephosphate dihydratequinaldateselenite

Lanthanumbrómate 9-waterfluoride

CuSeO3

CuS

Dy2(CrO4)3-10H2ODy(OH)3

Er(OH)3

Eu(OH)3

Gd(HCO3)3

Gd(OH)3

Ga4[Fe(CN)6]3

Ga(OH)3

GaL3

GeO2

AuClAul

AuCl3

Au(OH)3

AuI3

Au2(C204)3

Hf(OH)3

Ho(OH)3

In4[Fe(CN)6]3

In(OH)3

InL3

In2(Se03)3

In2S3

FeCO3

FeF2

Fe(OH)2

FeC2O4-2H2OFeS

FeAsO4

Fe4[Fe(CN)6]3

Fe(OH)3

FePO4-2H2OFeL3

Fe2(Se03)3

La(BrO3)3-9H2OLaF3

7.6835.20

821.85

23.39

23.03

1.722.74

33.8235.1440.80

57.0

12.7022.80

24.5045.264610

25.40

22.3

43.7233.231.3432.6073.24

10.505.63

16.316.50

17.20

20.2440.5238.5515.0016.8930.70

2.5016.2

2.1 X 10-8

6.3 X 10-36

1 X 10-8

1.4 X 10-22

4.1 X 10-24

9.38 X 10-24

2 x 10-2

1.8 X 10-23

1.5 X 10~34

7.28 X 10-36

1.6 X 10~41

1.0 x 10-57

2.0 X 10-'3

1.6 x 10-23

3.2 X 10-25

5.5 X lu"46

1 X 10-46

1 x 10-'°

4.0 X 10-26

5.0 X 10-23

1.9 x 10-44

6.3 X 10-34

4.6 x 10-32

4.0 X 10-33

5.7 X 10-74

3.13 X 10-"2.36 X 10-6

4.87 X 10-'7

3.2 X 10-7

6.3 X 10-'8

5.7 X 10-21

3.3 x 10-4'2.79 X 10-39

9.91 X 10-'6

1.3 x 10-'7

2.0 X 10"31

3.2 X 10~3

7 X 10-'7

1.336 SECTION ONE

TABLE 1.71 Solubility Product Constants (Continued)

Compound Formula pKsp Ksp

hydroxideiodatemolybdateoxalate 9-waterphosphatesulfidetungstate trihydrate

Leadacetateanthranilatearsenateazideborate, metabrómatebromidecarbonatechloridechloride fluoridechloritechromateferrocyanidefluoridefluoride iodidehydrogen phosphatehydrogen phosphitehydroxidehydroxide bromidehydroxide chloridehydroxide nitrateiodateiodidemolybdateniobateoxalatephosphatequinaldateselenateselenitesulfatesulfidethiocyanatethiosulfatetungstate

Lead(IV)hydroxide

Lithiumcarbonatefluoridephosphateuranylarsenate

Lutetiumhydroxide

La(OH)3

La(I03)3

La2(MoO4)3

La2(C204)3

LaPO4

La2S3

La2(WO4)3-3H2O

Pb(OAc)2

PbL2

Pb3(As04)3

Pb(N,)2

Pb(B02)3

Pb(Br03)2

PbBr2

PbCO3

PbCl2PbCIFPb(C102)2

PbCrO4

Pb2[Fe(CN)6]PbF2

PbFIPbHPO4

PbHPO3

Pb(OH)2

PbOHBrPbOHClPbOHN03

Pb(I03)2

PbI2

PbMoO4

Pb(NbO3)2

PbC2O4

Pb3(P04)2

PbL2

PbSeO4

PbSeO3

PbSO4

PbSPb(SCN)2

PbS2O3

PbW04

Pb(OH)4

Li2C03

LiFLi3PO4

LiUO2AsO4

Lu(OH)3

18.7011.1220.426.6022.4312.703.90

2.759.81

35.398.59

10.781.706.82

13.134.778.628.4

12.5514.467.488.079.906.24

14.8414.7013.73.55

12.438.01

13.0016.629.32

42.1010.606.84

11.507.60

27.104.706.406.35

65.50

1.602.74

10.6318.82

23.72

2.0 X 10-'9

7.50 X 10-12

4 X 10-21

2.5 X lO"27

3.7 X 10~23

2.0 X 10-13

1.3 X 10-4

1.8 X 10-3

1.6 X 10-'°4.0 X 10-36

2.5 X 10~9

1.6 X 10-"2.0 X 10-2

6.60 X 10-6

7.4 X 10-'4

1.70 X 10~5

2.4 X 10-9

4 X 10-9

2.8 X 10-'3

3.5 X 10-'5

3.3 x 10-8

8.5 X 10"9

1.3 X 10-'°5.8 X 10-'

1.43 X 10-15

2.0 X 10-15

2 X 10-'4

2.8 X 10~4

3.69 X 10-'3

9.8 x 10~9

1.0 X 10-'3

2.4 X 10-'7

4.8 X 10-'°8.0 X 10-43

2.5 X 10-"1.37 X 10-7

3.2 X 10-'2

2.53 X 10~8

8.0 X 10-28

2.0 X 10~5

4.0 X 10-7

4.5 x 10-7

3.2 X 10-«6

2.5 X 10-2

1.84 X 10-3

2.37 X 10-"1.5 X 10-'9

1.9 X 10~24

INORGANIC CHEMISTRY 1.337

TABLE 1.71 Solubility Product Constants (Continued)

Compound Formula pKsp Ksp

(Continued )

Magnesiumammonium phosphatearsenatecarbonatecarbonate trihydratefluoridehydroxideiodate 4-waterniobateoxalate dihydratephosphate8-quinolinolateselenitasulfite

Manganeseanthranilatearsenatecarbonateferrocyanideiodatehydroxideoxalate dihydrate8-quinolinolateselenitesulfide

Mercury(I)azidebromidecarbonatechloridecyanideenrómateferricyanidefluoridehydrogen phosphatehydroxideiodateiodideoxalatequinaldateselenitesulfatesulfilesulfidethiocyanatetungstate

Mercury(II)bromidehydroxideiodateiodide1 , 1 0-phenanthroline

MgNH4PO4

Mg3(As04)2

MgC03

MgCO3-3H2OMgF2

Mg(OH)2

Mg(IO3)2-4H2OMg(Nb03)2

MgC2O4-2H2OMg3(P04)2

MgL2

MgSeO3

MgS03

MnL2

Mn3(AsO4)2

MnCO3

Mn2[Fe(CN)6]Mn(I03)2

Mn(OH)2

MnC2O4-2H2OMnL2

MnSeO3

MnS amorphousMnS crystalline

Hg2(N3)2

Hg2Br2

Hg2C03

Hg2Cl2

Hg2(CN)2

Hg2Cr04

(Hg2)3[Fe(CN)6]2

Hg2F2

Hg2HP04

Hg2(OH)2

Hg2(I03)2

Hg2I2

Hg2C204

Hg2L2

Hg2Se03

Hg2S04

Hg2S03

Hg2SHg2(SCN)2

Hg2W04

HgBr2

Hg(OH)2

Hg(I03)2

HgI2

HgL2

12.6019.685.175.62

10.2911.252.50

16.645.32

23.9815.404.892.50

6.7528.7210.6312.106.36

12.726.77

21.706.909.60

12.60

9.1522.1916.4417.8439.3

8.7020.07

5.5112.4023.7013.7128.7212.7617.9014.206.19

27.047.019.4916.96

19.2125.5212.4928.5424.70

2.5 X 10-'3

2.1 X 10-20

6.82 X IG'6

2.38 X 10~6

5.16 X 10-11

5.61 X 10-'2

3.2 X 10-3

2.3 X 10-"4.83 X 10~6

1.04 X 10-24

4.0 X 10-'6

1.3 X 10-5

3.2 X 10-3

1.8 X 10-3

1.9 x ID'29

2.34 X 10-"8.0 X 10-'3

4.37 X 10~7

1.9 X 10-'3

1.70 X 10-7

2.0 X 10"22

1.3 X 10-7

2.5 X 10-'°2.5 X 10-'3

7.1 X 10-'°6.40 X 10-23

3.6 X 10-'7

1.43 X 10-'8

5 X 10-40

2.0 x 10-9

8.5 X 10-21

3.10 X 10-6

4.0 X 10-'3

2.0 X 10-24

2.0 X 10-'4

5.2 X 10~29

1.75 X 10-13

1.3 X 10-18

8.4 X 10-'5

6.5 X 10-7

1.0 X 10-27

1.0 X 10-47

3.2 X 10-20

1.1 X 10-'7

6.2 X 10-20

3.2 X 10-26

3.2 X 10-'3

2.9 X 10-29

2.0 X 10-25

1.338 SECTION ONE

TABLE 1.71 Solubility Product Constants (Continued)

Compound Formula pKsp Ksp

quinaldateseleniteSulfide

Neodymiumcarbonatehydroxide

Neptunyl(VI)hydroxide

Nickelammine perrhenateanthranilatearsenatecarbonateferrocyanidehydrazine sulfatehydroxideiodateoxalatephosphatepyrophosphatequinaldate8-quinolinolateselenitea-sulfide/3-sulfidey-sulfide

Palladium(II) hydroxide(IV) hydroxidequinaldatethiocyanate

Platinum(IV) bromide(II) hydroxide

Plutonium(III) fluoride(IV) fluoride(IV) hydrogen phosphate(III) hydroxide(IV) hydroxide(IV) iodate(VI) carbonate(V) hydroxide(VI) hydroxide

Poloniumsulfide

Potassiumhexabromoplatinatehexachloropalladinatehexachloroplatinatehexafluoroplatinate

HgL2

HgSe03

HgS redHgS black

Nd2(C03)3

Nd(OH)3

NP02(OH)2

[Ni(NH3)6][Re04]2

NiL2

Ni3(As04)2

NiCO3

Ni2[Fe(CN)6][Ni(N2H4)3]S04

Ni(OH)2 freshNi(I03)2

NiC2O4

Ni3(P04)2

Ni2P20,NiL2

NiL2

NiSeO3

a-NiS/3-NiS7-NiS

Pd(OH)2

Pd(OH)4

PdL2

Pd(SCN)2

PtBr4

Pt(OH)2

PuF3

PuF4

Pu(HPO4)2-xH2OPu(OH)3

Pu(OH)4

Pu(I03)4

PuO2CO3

Pu02(OH)PuO2(OH)2

PoS

K2[PtBr6]K2[PdCl6]K2[PtCl6]K2[PtF6]

16.8013.8252.451.80

32.9721.49

21.60

3.299.09

25.516.85

14.8913.1515.264.339.4

31.3212.7710.126.15.0

18.5024.025.70

31.070.2012.9022.36

40.5035

15.6019.2027.719.705512.312.779.3

24.7

28.26

4.205.225.134.54

1.6 X 10-"1.5 X 10-'4

4 x 10~53

1.6 X 10-52

1.08 x 10~33

3.2 X 10-22

2.5 X 10-22

5.1 X 10~4

8.1 X 10-'°3.1 X 10-26

1.42 X 10-7

1.3 X 10-15

7.1 X 10-'5

5.48 X 10- 16

4.71 X 10-5

4 X 10-'°4.74 X ID'32

1.7 X 10M3

8 X 10-"8 X 10-27

1.0 X 10-5

3.2 X 10-'9

1.0 X 10~24

2.0 X 10-26

1.0 X 10-31

6.3 X 10-71

1.3 X 10-'3

4.39 X 10-23

3.2 X 10-41

1 X 10-35

2.5 X 10-'6

6.3 X 10-20

2 X 10-28

2.0 X 10-20

1 X 10-55

5 x 10-'3

1.7 X 10-'3

5 x 10-'°2 X 10-25

5.6 x 10-29

6.3 x 10-5

6.0 X 10-6

7.48 X 10-6

2.9 x 10-5

INORGANIC CHEMISTRY 1.339

TABLE 1.71 Solubility Product Constants (Continued)

Compound Formula pKsp Ksp

(Continued )

hexafluorosilicatehexafluorozirconateiodateperchloratesodium cobaltinitrite

hydratetetraphenylborateuranyl arsenateuranyl carbonate

Praseodymiumhydroxide

Promethiumhydroxide

Radiumiodatesulfate

Rhodiumhydroxide

Rubidiumcobaltinitritehexachloroplatinatehexafluoroplatinatehexafluorosilicateperchlorateperiodate

Rutheniumhydroxide

Samariumhydroxide

Scandiumfluoridehydroxide

Silveracetatearsenateazidebrómatebromidecarbonatechloridechloritechromatecobaltinitritecyanamidecyanatecyanidedichromatedicyanimideferrocyanidehydroxidehyponi triteiodate

K2[SiF6]K2[ZrF6]KIO4

KC104

K2Na[Co(N02)6]-H20

K[B(C6H5)4]K[UO2AsO4]K4[U02(C03)3]

Pr(OH)3

Pm(OH)3

Ra(I03)2

RaSO4

Rh(OH)3

Rb3[Co(N02)6]Rb2[PtCl6]Rb2[PtF6]Rb2[SiF6]RbC104

RbIO4

Ru(OH)3

Sm(OH)3

ScF3

Sc(OH)3

AgOAcAg3AsO4

AgN3

AgBrO3

AgBrAg2C03

AgClAgC102

Ag2Cr04

Ag3[Co(N02)6]Ag2CN2

AgOCNAgCNAg2Cr20,AgN(CN)2

Ag4[Fe(CN)6]AgOHAg2N202

AgI03

6.063.33.431.98

10.66

7.6622.604.20

23.45

21

8.9410.44

23

14.837.206.126.302.523.26

36

22.08

23.2430.65

2.7121.998.544.27

12.2711.079.753.70

11.9520.0710.146.64

16.226.708.85

40.817.71

18.897.50

8.7 X 10^7

5 X 10-4

3.74 X 10-4

1.05 X 10-2

2.2 X 10-"

2.2 X 10-8

2.5 X 10-23

6.3 X 10-5

3.39 X 10-24

1 X 10-21

1.16 X 10-9

3.66 x 10-"

1 X 10-23

1.5 X 10-'5

6.3 X IQ-8

7.7 X 10-'5.0 X 10-'3.0 X 10-3

5.5 X 10-4

1 X 10-36

8.3 X 10-23

5.81 X 10-24

2.22 X 10-31

1.94 X 10~3

1.03 x 10~22

2.8 X 10-9

5.38 X 10-5

5.35 X 10~13

8.46 X 10-12

1.77 X 10- 10

2.0 X 10-4

1.12 X 10-'2

8.5 X 10-21

7.2 X 10-11

2.3 X 10-'5.97 X 10~17

2.0 X 10-'1.4 X 10-9

1.6 X 10-41

2.0 X 10-8

1.3 X 10-'9

3.17 X 10-8

1.340 SECTION ONE

TABLE 1.71 Solubility Product Constants (Continued)

Compound Formula pKsp Ksp

iodidemolybdatenitriteoxalatephosphatequinaldateperrhenateselenateseleniteselenocyanatesulfatesulfitesulfidethiocyanatevanadatetungstate

Sodiumammonium cobaltinitriteantimonatehexafluoroaluminateuranyl arsenate

Strontiumarsenatecarbonateenrómatefluorideiodateiodate hydratemolybdateniobateoxalate hydratephosphate8-quinolinolateselenateselenitesulfatesulfitetungstate

Terbiumhydroxide

Telluriumhydroxide

Thallium(I)azidebrómatebromidechlorideenrómateferrocyanide dihydratehexachloroplatinateiodateiodide

AgiAg2Mo04

AgN02

Ag2C204

Ag3P04

AgLAgReO4

Ag2Se04

Ag2Se03

AgSeCNAg2SO4

Ag2S03

Ag2SAgSCNAgV03

Ag2W04

Na(NH4)2[Co(N02)6]Na[Sb(OH)6]Na2[AlF6]NaUO2AsO4

Sr3(As04)2

SrC03

SrCrO4

SrF2

Sr(I03)2

Sr(IO3)2-H2OSrMoO4

Sr(NbO3)2

SrC2O4-H2OSr3(P04)2

SrL2

SrSeO4

SrSeO3

SrSO4

SrS03

SrWO4

Tb(OH)3

Te(OH)4

T1N3

TlBrO3

TIBrT1C1Tl2CrO4

Tl4[Fe(CN)6]-2H20Tl2[PtCl6]T1IO3

Til

16.0711.553.22

11.2716.0516.894.107.25

15.0015.404.92

13.8249.2011.996.3

11.26

10.667.49.39

21.87

18.379.254.658.366.946.426.7

17.386.80

27.399.33.095.746.467.49.77

21.70

53.52

3.664.965.433.73

12.069.3

11.405.517.26

8.52 X 10^17

2.8 X 10-'2

6.0 X 10-4

5.40 X 10-'2

8.89 x 10-"1.3 X 10-'7

8.0 X 10-5

5.7 x 10-8

1.0 X 10-'5

4.0 X 10-'6

1.20 X 10-=1.50 X 10-'4

6.3 X 10-50

1.03 X 10-12

5 X 10-7

5.5 X 10-'2

2.2 X 10-"4 X 10-8

4.0 x 10-'°1.3 X 10~22

4.29 X 10-'9

5.60 X 10-'°2.2 X 10-5

4.33 X 10-9

1.14 X 10-7

3.77 X 10-7

2 X 10~7

4.2 X 10-'8

1.6 X 10-7

4.0 X 10-28

5 X 10-'°8.1 X 10-4

1.8 X 10-6

3.44 X 10~7

4 X 10-8

1.7 X 10-'°

2.0 X 10-22

3.0 X 10-54

2.2 X 10-4

1.10 X 10-5

3.71 X 10~6

1.86 X 10~4

8.67 X 10- 13

5 x 10-'°4.0 X 10-'2

3.12 X 10-6

5.54 X 10~8

INORGANIC CHEMISTRY 1.341

TABLE 1.71 Solubility Product Constants (Continued)

(Continued)

Compound Formula pKsp Ksp

oxalateselenateselenitesulfidethiocyanate

Thallium(ffl)hydroxide8-quinolinolate

Thoriumhydrogen phosphatehydroxideiodateoxalatephosphate

Thulliumhydroxide

Tin(II) hydroxide(IV) hydroxide(II) sulfide

Titanium(III) hydroxide(IV) oxide hydroxide

Uranium(IV)fluoride 2.5-water

Uranyl(VI)(2+)carbonateferrocyanidehydrogen arsenatehydrogen phosphatehydroxideiodate hydrateoxalate trihydratephosphatesulfitethiocyanate

Vanadium(IV) hydroxide(III) phosphate

Ytterbiumhydroxide

Yttriumcarbonatefluoridehydroxideiodateoxalate

Zincanthranilatearsenateborate hydratecarbonateferrocyanide

T12C2O4

Tl2SeO4

TljSeOjT12ST1SCN

T1(OH)3

T1L3

Th(HP04)2

Th(OH)4

Th(I03)4

Th(C204)2

Th3(P04)4

Tm(OH)3

Sn(OH)2

Sn(OH)4

SnS

Ti(OH)3

TiO(OH)2

UF4-2.5H2O

UO2CO3

U02[Fe(CN)6]UO2HAsO4

UO2HPO4

U02(OH)2

U02(I03)2-H20UO2C2O4-3H2O(U02)3(P04)2

UO2SO3

(U02)(SCN)2

VO(OH)2

(V02)3P04

Yt(OH)3

Y2(C03)3

YF3

Y(OH)3

Y(IO,)3

Y2(C204)3

ZnL2

Zn3(AsO4)2

Zn(B02)2-H20ZnCO3

Zn2[Fe(CN)6]

3.74.00

38.720.30

3.80

43.7732.40

2044.4014.602278.60

23.48

27.265625.00

4029

21.24

11.7313.1510.5010.6721.957.503.7

46.78.583.4

22.1324.1

23.60

2.9920.0622.009.95

28.28

9.2327.5510.189.94

15.40

2 X 10-4

1.0 X 10-4

2 X 10~39

5.0 X 10-21

1.57 X 10-"

1.68 x 10-44

4.0 X 10-33

1 X 10-20

4.0 X 10-45

2.5 X 10-'5

1 X 10-22

2.5 X 10-™

3.3 X 10-24

5.45 X 10-28

1 X 10-56

1.0 X 10-25

1 X 10-40

1 X 10-29

5.7 X 10-22

1.8 X 10-'2

7.1 X 10-'4

3.2 X 10-"2.1 X 10-"1.1 X 10~22

3.2 X 10-8

2 X 10-4

2 X 10-47

2.6 X 10-9

4 X 10~4

5.9 X 10-23

8 x 10-25

2.5 x 10-24

1.03 X 10-3

8.62 X 10~21

1.00 X 10-22

1.12 X 10->°5.3 X 10~29

5.9 X 10-'°2.8 X 10~28

6.6 X 10-"1.46 X 10-'°4.0 X 10-'5

1.342 SECTION ONE

TABLE 1.71 Solubility Product Constants (Continued )

TABLE 1.72 Stability Constants of Complex Ions

The stability constant of a complex ion is a measure of its stability with respect to dissociation into its constituentspecies at a given temperature, e.g. the formation of the tetra-amminecopper(II) ion may be represented by theequation

Cu2+ + 4NH3 = [Cu(NH3)4]2+

and the stability constant is given by

The higher the stability constant the more stable the complex ion. v denotes the stoichiometric number of amolecule, atom or ion, and is positive for a product and negative for a reactant.

Equilibrium

Ag+ + 2CN- = [Ag(CH)2]− 1⋅0 × 1021 21⋅0

Ag+ + NH3 = [Ag(NH3)]+ 2⋅5 × 103 3⋅4

[Ag(NH3)]+ + NH3 = [Ag(NH3)2]

+ 6⋅3 × 103 3⋅8Ag+ + 2NH3 = [Ag(NH3)2]

+ 1⋅7 × 107 7⋅2Ag+ + 2S2O3

2− = [Ag(S2O3)2]3− 1⋅0 × 1013 13⋅0

Al3+ + 6F− = [AlF6]3− 6 × 1019 19⋅8

Al(OH)3 + OH− = [Al(OH)4]− 40 1⋅6

Cd2+ + 4CN− = [Cd(CN)4]2− 7⋅1 × 1016 16⋅9

Cd2+ + 4I− = [CdI4]2− 2 × 106 6⋅3

Cd2+ + 4NH3 = [Cd(NH3)4]2+ 4⋅0 × 106 6⋅6

Co2+ + 6NH3 = [Co(NH3)6]2+ 7⋅7 × 104 4⋅9

Co3+ + 6NH3 = [Co(NH3)6]3+ 4⋅5 × 1033 33⋅7

Cr(OH)3 + OH− = [Cr(OH)4]− 1 × 10−2 −2

Cu+ + 4CN− = [Cu(CN)4]3− 2⋅0 × 1027 27⋅3

Cu2+ + 4Cl− = [CuCl4]2− 4⋅0 × 105 5⋅6

Cu+ + 2NH3 = [Cu(NH3)2]+ 1 × 1011 11

log)

10 3

Kv

stab

(mol dm⋅⎧⎨⎩

⎫⎬⎭− Σ

Kv

stab3(mol dm⋅ − )Σ

KstabCu NH

Cu NH=

+

+[ ( ) ]

[ ][ ]3 4

2

23

4

Compound Formula pKsp Ksp

fluoridehydroxideiodate dihydrateoxalate dihydratephosphatequinaldate8-quinolinolateselenideselenite hydratesulfide

Zirconiumoxide hydroxidephosphate

ZnF2

Zn(OH)2

Zn(IO3)2-2H2OZnC2O4-2H2OZn3(P04)2

ZnL2

ZnL2

ZnSeZnSeO3-H2Oa-ZnSß-ZnS

ZrO(OH)2

Zr3(P04)4

1.5216.55.378.86

32.0413.8024.3025.44

6.8023.8021.60

48.20132

3.04 X 10-2

3 X 10-'7

4.1 X 10-6

1.38 X 10-'9.0 X 10^33

1.6 X 10-'4

5.0 X 10~2S

3.6 X 10-26

1.57 X 10-'1.6 x 10-24

2.5 X 10-22

6.3 X 10-49

1 X 10-'32

INORGANIC CHEMISTRY 1.343

TABLE 1.72 Stability Constants of Complex Ions (Continued )

Equilibrium

Cu2+ + NH3 = [Cu(NH3)]2+ 2⋅0 × 104 (K1) 4⋅3

[Cu(NH3)]2+ + NH3 = [Cu(NH3)2]

2+ 4⋅2 × 103 (K2) 3⋅6[Cu(NH3)2]

2+ + NH3 = [Cu(NH3)3]2+ 1⋅0 × 103 (K3) 3⋅0

[Cu(NH3)3]2+ + NH3 = [Cu(NH3)4]

2+ 1⋅7 × 102 (K4) 2⋅2Cu2+ + 4NH3 = [Cu(NH3)4]

2+ 1⋅4 × 1013 13⋅1(K = K1K2K3K4)

Fe2+ + 6CN− = [Fe(CN)6]4− ca. 1024 ca. 24

Fe3+ + 6CN− = [Fe(CN)6]3− ca. 1031 ca. 31

Fe3+ + 4Cl− = [FeCl4]− 8 × 10−2 −1⋅1

Fe3+ + SCN− = [Fe(SCN)]2+ 1⋅4 × 102 2⋅1[Fe(SCN)]2+ + SCN− = [Fe(SCN)2]

+ 16 1⋅2[Fe(SCN)2]

+ + SCN− = Fe(SCN)3 1 0Hg2+ + 4CN− = [Hg(CN)4]

2− 2⋅5 × 1041 41⋅4Hg2+ + 4Cl− = [HgCl4]

2− 1⋅7 × 1016 16⋅2Hg2+ + 4I− = [HgI4]

2− 2⋅0 × 1030 30⋅3I− + I2 = I3

− 7⋅1 × 102 2⋅9Ni2+ + 6NH3 = [Ni(NH3)6]

2+ 4⋅8 × 107 7⋅7Pb(OH)2 + OH− = [Pb(OH)3]

− 50 1⋅7Sn(OH)4 + 2OH− = [Sn(OH)6]

2− 5 × 103 3⋅7Zn2+ + 4CN− = [Zn(CN)4]

2− 5 × 1016 16⋅7Zn2+ + 4NH3 = [Zn(NH3)4]

2+ 3⋅8 × 109 9⋅6Zn(OH)2 + 2OH− = [Zn(OH)4]

2− 10 1⋅0

log)

10 3

Kv

stab

(mol dm⋅⎧⎨⎩

⎫⎬⎭− Σ

Kv

stab3(mol dm⋅ − )Σ

TABLE 1.73 Saturated Solutions

The following table provides the data for making saturated solutions of the substances listed at the temperature designated. Data areprovided for making saturated solutions by weight (g of substance per 100 g of saturated solution) and by volume (g of substance per100 ml of saturated solution and the ml of water required to make such a solution).

To make one fluid ounce of a saturated solution: multiply the grams of substance per 100 ml of saturated solution by 4.55 to obtainthe number of grains required, by 0.01039 to obtain the number of avoirdupois ounces, by 0.00947 to obtain the number of apothe-caries (Troy) ounces; also multiply the ml of water by 16.23 to obtain the number of minims, or divide by 100 to obtain the numberof fluid ounces.

To make one fluid dram: multiply the grams of substance per 100 ml of saturated solution by 0.5682 to obtain the number ofgrains required; also multiply the ml of water by 0.60 to obtain the number of minims required.

mlwater/

g/100 g g/100 ml 100 mlTemp, satd satd satd Specific

Substance Formula °C soln soln soln gravity

acetanilide C6H5NHCOCH3 25 0.54 0.54 99.2 0.997p-acetophenetidin C6H4(OC2H5)NHCH3CO 25 0.0766 0.0766 99.92 1.00p-acetotoluide CH3CONHC6H4CH3 25 0.12 0.12 99.7 0.9979alanine CH3CH(NH2)COOH 25 14.1 14.7 89.5 1.042aluminum ammonium sulfate Al2(SO4)3(NH4)2SO4 ⋅ 24H2O 25 12.4 13 92 1.05aluminum chloride hydrated AlCl3 ⋅ 6H2O 25 55.5 75 60 1.35aluminum fluoride Al2F6 ⋅ 5H2O 20 0.499 0.5015 100.0 1.0051aluminum potassium sulfate AlK(SO4)2 25 6.62 7.02 99.1 1.061aluminum sulfate Al2(SO4)3 ⋅ 18H2O 25 48.8 63 66 1.29

(Continued)

1.344 SECTION ONE

TABLE 1.73 Saturated Solutions (Continued)

mlwater/

g/100 g g/100 ml 100 mlTemp, satd satd satd Specific

Substance Formula °C soln soln soln gravity

o-aminobenzoic acid C6H4NH2COOH 25 0.52 0.519 99.4 0.999DL-a-amino-n-butyric acid CH3CH2CH(NH2)COOH 25 17.8 18.6 86.2 1.046DL-a-aminoisobutyric acid (CH3)2C(NH2)COOH 25 13.3 13.7 89.5 1.031ammonium arsenate NH4H2AsO4 20 32.7 40.2 83.0 1.228ammonium benzoate NH4C7H5O2 25 18.6 19.4 84.7 1.040ammonium bromide NH4Br 15 41.7 53.8 75.2 1.290ammonium carbnonate 25 20 22 88 1.10ammonium chloride NH4Cl 15 26.3 28.3 79.3 1.075ammonium citrate, dibasic (NH4)2HC6H5O7 25 48.7 60.5 61.5 1.22ammonium dichromate (NH4)2Cr2O7 25 27.9 33 85 1.18ammonium iodide NH4I 25 64.5 106.2 58.3 1.646ammonium molybdate (NH4)6Mo7O24 ⋅ 4H2O 25 30.6 39 88 1.27ammonium nitrate NH4NO3 25 68.3 90.2 41.8 1.320ammonium oxalate (NH4)2C2O4 ⋅ H2O 25 4.95 5.06 97.0 1.019ammonium perchlorate NH4ClO4 25 21.1 23.7 88.7 1.123ammonium periodate NH4IO4 16 2.63 2.68 99.2 1.018ammonium persulfate (NH4)2S2O8 25 42.7 53 71 1.24ammonium phosphate, (NH4)2 ⋅ HPO4 14.5 56.2 75.5 58.8 1.343dibasic

ammonium phosphate, NH4H2PO4 25 28.4 33 83 1.16monobasic

ammonium salicylate NH4C7H5O3 25 50.8 58.2 56.4 1.145ammonium silicofluoride (NH4)2SiF6 17.5 15.7 17.2 92.3 1.095ammonium sulfate (NH4)2SO4 20 42.6 53.1 71.7 1.248ammonium sulfite (NH4)2SO3.H2O 25 39.3 47.3 73.2 1.204ammonium thiocyanate NH4CNS 25 62.2 71 43 1.14amyl alcohol C5H11OH 25 2.61 2.60 96.9 0.995aniline C6H5NH2 22 3.61 3.61 96.2 0.998aniline hydrochloride C6H5NH2 ⋅ HCl 25 49 54 56 1.10aniline sulfate (C6H5NH2)2 ⋅ H2SO4 25 5.88 6 96 1.02L-asparagine NH2COCH2CH(NH2)COOH 25 2.44 2.46 98.2 1.007barium bromide BaBr2 20 51 87.2 83.8 1.710barium chlorate Ba(ClO3)2 25 28.5 36.8 92.6 1.294barium chloride BaCl2 20 26.3 33.4 93.8 1.27barium iodide BaI2 ⋅ 71

2 H2O 25 68.8 157.0 71.1 2.277barium nitrate Ba(NO3)2 25 9.4 10.2 97.9 1.080barium nitrite Ba(NO2)2 17 40 59.6 89.4 1.490barium perchlorate Ba(ClO4)2 25 75.3 145.8 47.8 1.936benzamide C6H5CONH2 25 1.33 1.33 98.6 0.999benzoic acid C7H6O2 25 0.367 0.367 99.63 1.00beryllium sulfate BeSO4 ⋅ 4H2O 25 28.7 37.3 93.0 1.301boric acid H3BO3 25 4.99 5.1 97 1.02n-butyl alcohol CH3(CH2)2CH2OH 25 79.7 67.3 17.1 0.845cadmium bromide CdBr2 ⋅ 4H2O 25 52.9 94.0 83.9 1.775cadmium chlorate Cd(ClO3)2 ⋅ 12H2O 18 76.4 174.5 54.0 2.284cadmium chloride CdCl2 ⋅ 21

2H2O 25 54.7 97.2 80.8 1.778cadmium iodide CdI2 20 45.9 73.0 86.3 1.590cadmium sulfate 3(CdSO4) ⋅ 8H2O 25 43.4 70.3 91.8 1.619calcium bromide CaBr2 20 58.8 107.2 75.0 1.82

INORGANIC CHEMISTRY 1.345

TABLE 1.73 Saturated Solutions (Continued )

mlwater/

g/100 g g/100 ml 100 mlTemp, satd satd satd Specific

Substance Formula °C soln soln soln gravity

calcium chlorate Ca(ClO3)2 ⋅ 2H2O 18 64.0 110.7 62.3 1.729calcium chloride CaCl2 ⋅ 6H2O 25 46.1 67.8 79.2 1.47calcium chromate CaCrO4 ⋅ 2H2O 18 14.3 16.4 98.7 1.149calcium ferrocyanide Ca2Fe(CN)6 25 36.5 49.6 86.2 1.357calcium iodide CaI2 20 67.6 143.8 69.0 2.125calcium lactate Ca(C3H5O3)2 ⋅ 5H2O 25 4.95 5 96 1.01calcium nitrite Ca(NO2)2 ⋅ 4H2O 18 45.8 65.7 77.8 1.427calcium sulfate CaSO4 ⋅ 2H2O 25 0.208 0.208 99.70 0.999camphoric acid C8H14(COOH)2 25 0.754 0.754 99.246 1.00carbon disulfide CS2 22 0.173 0.173 99.63 0.998cerium nitrate Ce(NO3)3 ⋅ 6H2O 25 63.7 119.9 68.2 1.880cesium bromide CsBr 21.4 53.1 89.8 79.5 1.693cesium chloride CsCl 25 65.7 126.3 65.9 1.923cesium iodide CsI 22.8 48.0 74.1 80.5 1.545cesium nitrate CsNO3 25 21.9 26.1 92.9 1.187cesium perchlorate CsClO4 25 2.01 2.03 99.0 1.010cesium periodate CsIO4 15 2.10 2.13 99.5 1.017cesium sulfate Cs2SO4 25 64.5 129.8 71.7 2.013chloral hydrate CCl3CHO ⋅ H2O 25 79.4 120 31 1.51chloroform CHCl3 29.4 0.703 0.705 99.57 1.0028chromic oxide CrO3 18 62.5 106.3 64.0 1.703chromium potassium sulfate Cr2K2(SO4)4 ⋅ 24H2O 25 19.6 22 90 1.12citric acid (CH2)2COH(COOH)3 ⋅ H2O 25 67.5 88.6 42.7 1.311cobalt chlorate Co(ClO3)2 18 64.2 119.3 66.5 1.857cobalt nitrate Co(NO3)2 18 49.7 78.2 79.1 1.572cobalt perchlorate Co(ClO4)2 26 71.8 113.5 44.7 1.581cupric ammonium chloride CuCl2 ⋅ 2NH4Cl ⋅ 2H2O 25 30.3 35.5 82 1.17cupric ammonium sulfate CuSO4 ⋅ (NH4)2SO4 19 15.3 17.3 96.0 1.131cupric bromide CuBr2 25 55.8 102.5 81.2 1.84cupric chlorate Cu(ClO3)2 18 62.2 105.2 64.1 1.692cupric chloride CuCl2 ⋅ 2H2O 25 53.3 80 70 1.50cupric nitrate Cu(NO3)2 ⋅ 6H2O 20 56.0 94.5 74.3 1.688cupric selenate CuSeO4 21.2 14.7 17.2 99.4 1.165cupric sulfate CuSO4 ⋅ 5H2O 25 18.5 22.3 98.7 1.211dextrose C6H12O6 ⋅ H2O 25 49.5 59 60 1.19ether (C2H5)2O 22 5.45 5.34 93.0 0.985ethyl acetate CH3COOC2H5 25 7.47 7.44 92.1 0.996ferric ammonium citrate 25 67.7 97 46 1.43ferric ammonium oxalate Fe(NH4)3(C2O4)3 ⋅ 3H2O 25 51.5 65 61 1.26ferric ammonium sulfate FeSO4 ⋅ (NH4)2SO4 16.5 19.1 22.4 94.3 1.165 ferric chloride FeCl3 25 73.1 131.1 48.3 1.793ferric nitrate Fe(NO3)3 25 46.8 70.2 79.8 1.50ferric perchlorate Fe(ClO4)3 ⋅ 10H2O 25 79.9 132.1 33.2 1.656ferrous sulfate FeSO4 ⋅ 7H2O 25 42.1 52.8 72.7 1.255gallic acid C6H2(OH)3COOH ⋅ H2O 25 1.15 1.15 99.05 1.002D-glutamic acid C5H9O4N 25 0.86 0.86 99.15 1.0002glycine NH2CH2COOH 25 20.0 21.7 86.8 1.083hydroquinone C6H4(OH)2 20 6.7 6.78 94.4 1.012m-hydroxybenzoic acid C6H4OHCOOH 25 0.975 0.975 99.03 1.000

(Continued)

1.346 SECTION ONE

TABLE 1.73 Saturated Solutions (Continued)

mlwater/

g/100 g g/100 ml 100 mlTemp, satd satd satd Specific

Substance Formula °C soln soln soln gravity

lactose C12H22O11 ⋅ H2O 25 15.9 17 90 1.07lead acetate Pb(C2H3O2)2 25 36.5 49.0 85.1 1.340lead bromide PbBr2 25 0.97 0.98 99.6 1.006lead chlorate Pb(ClO3)2 18 60.2 117.0 77.3 1.944lead chloride PbCl2 25 1.07 1.08 99.6 1.007lead iodide PbI2 25 0.08 0.08 99.7 0.998lead nitrate Pb(NO3)2 25 37.1 53.6 91.0 1.445DL-leucine C6H13O2N 25 0.976 0.975 98.9 0.999L-leucine C6H13O2N 25 2.24 2.24 97.85 1.0012lithium benzoate LiC7H5O2 25 27.7 30.4 79.6 1.100lithium bromate LiBrO3 18 60.4 110.5 72.5 1.830lithium carbonate Li2CO3 15 1.36 1.38 100.0 1.014lithium chloride LiCl ⋅ H2O 25 45.9 59.5 70.2 1.296lithium citrate Li3C6H5O7 25 31.8 38.6 82.8 1.213lithium dichromate Li2Cr2O7 ⋅ H2O 18 52.6 82.9 74.8 1.574lithium fluoride LiF 18 0.27 0.27 99.9 1.002lithium formate LiCHO2 18 27.9 31.8 80.4 1.140lithium iodate LiIO3 18 44.6 69.9 86.8 1.566lithium nitrate LiNO3 19 48.9 64.5 67.5 1.318lithium perchlorate LiClO4 ⋅ 3H2O 25 37.5 47.6 79.5 1.269lithium salicylate LiC7H5O3 25 52.7 63.6 57.1 1.206lithium sulfate Li2SO4 ⋅ H2O 25 27.2 33 88.5 1.21magnesium bromide MgBr2 ⋅ 6H2O 18 50.1 83.1 82.8 1.655magnesium chlorate Mg(ClO3)2 18 56.3 90.0 69.7 1.594magnesium chloride MgCl2 ⋅ 6H2O 25 62.5 79 47.5 1.26magnesium chromate MgCr2O4 ⋅ 7H2O 18 42.0 59.7 82.5 1.422magnesium dichromate MgCrO7 ⋅ 5H2O 25 81.0 138.8 32.6 1.712magnesium iodate Mg(IO3)2 ⋅ 4H2O 18 6.44 6.95 100.8 1.078magnesium iodide MgI2.8H2O 18 59.7 114.0 77.1 1.909magnesium molybdate MgMoO4 25 15.9 18.4 97.4 1.159magnesium nitrate Mg(NO3)2 ⋅ 6H2O 25 42.1 58.6 80.5 1.388magnesium perchlorate Mg(ClO4)2 ⋅ 6H2O 25 49.9 73.6 73.9 1.472magnesium selenate MgSeO4 20 35.3 50.8 93.0 1.440magnesium sulfate MgSO4 ⋅ 7H2O 25 55.3 72 58.5 1.30manganese chloride MnCl2 25 43.6 63.2 82.0 1.449manganese nitrate Mn(NO3)2 ⋅ 6H2O 18 57.3 93.2 69.2 1.624manganese silicofluoride MnSiF6 17.5 37.7 54.5 90.1 1.446manganese sulfate MnSO4 25 39.4 59.1 90.8 1.499mercuric acetate Hg(C2H3O2)2 25 30.2 38 88 1.26mercuric bromide HgBr2 25 0.609 0.610 99.6 1.0023mercury bichloride HgCl2 25 6.6 6.96 98.5 1.054methylene blue C16H18N3ClS ⋅ 3H2O 25 4.25 4.3 97 1.01methyl salicylate C6H4OHCOOCH3 25 0.12 0.12 99.88 1.00monochloracetic acid CH2ClCOOH 25 78.8 105 28 1.33b-naphthalenesulfonic acid C10H7SO3H 30 56.9 67.9 51.4 1.193nickel ammonium sulfate NiSO4(NH4)2SO4 ⋅ 6H2O 25 9.0 9.5 96 1.05nickel chlorate Ni(ClO3)2 18 56.7 94.2 72.0 1.658nickel chlorate Ni(ClO3)2 ⋅ 6H2O 18 64.5 107.2 59.1 1.661nickel nitrate Ni(NO3)2 ⋅ 6H2O 25 77 122 36 1.58

TABLE 1.73 Saturated Solutions (Continued)

mlwater/

g/100 g g/100 ml 100 mlTemp, satd satd satd Specific

Substance Formula °C soln soln soln gravity

nickel perchlorate Ni(ClO4)2 26 70.8 112.2 46.4 1.584nickel perchlorate Ni(ClO4)2 ⋅ 9H2O 18 52.4 82.7 75.1 1.576nickel sulfate NiSO4 ⋅ 6H2O 25 47.3 64 71 1.35DL-norleucine C6H13NO2 25 1.13 1.13 98.97 0.999oxalic acid H2C2O4 ⋅ 2H2O 25 9.81 10.3 94.2 1.044phenol C6H5OH 20 6.1 6.14 94.5 1.0057b-phenylalanine C6H5CH2CH(NH2)COOH 25 2.88 2.89 97.5 1.0035m-phenylenediamine C6H8N2 20 23.1 23.8 79.3 1.032p-phenylenediamine C6H8N2 20 3.69 3.70 96.67 1.0038phenyl salicylate C6H4OHCOOC6H5 25 0.015 0.015 99.84 0.999phenyl thiourea CS(NH2)NHC6H5 25 0.24 0.24 99.6 0.998phosphomolybdic acid 20MoO3 ⋅ 2H3PO4 ⋅ 48H2O 25 74.3 135 46 1.81phosphotungstic acid Approx. 20WO3 ⋅ 2H3PO4 ⋅ 25H2O 25 71.4 160 64 2.24potassium acetate KC2H3O2 25 68.7 97.1 44.3 1.413potassium antimony tartrate KSbOC4H4O6 25 7.64 8.02 96.9 1.049potassium bicarbonate KHCO3 25 26.6 31.6 87.5 1.188potassium bitartrate KC4H5O6 25 0.65 0.65 99.3 0.999potassium bromate KBrO3 25 7.53 7.89 97.5 1.054potassium bromide KBr 25 40.6 56.0 82.0 1.380potassium carbonate K2CO3 ⋅ 11

2H2O 25 52.9 82.2 73.5 1.559potassium chlorate KClO3 25 8.0 8.41 96.6 1.051potassium chloride KCl 25 26.5 31.2 86.8 1.178potassium chromate K2CrO4 25 39.4 54.1 83.7 1.381potassium citrate K3C6H5O7 25 60.91 92.1 59.2 1.514potassium dichromate K2Cr2O7 25 13.0 14.2 95.0 1.092potassium ferricyanide K3Fe(CN)6 22 32.1 38.1 80.8 1.187potassium ferrocyanide K4Fe(CN)6 25 24.0 28.2 89.2 1.173potassium fluoride KF ⋅ 2H2O 18 48.0 72.0 78.0 1.500potassium formate KCHO2 18 76.8 120.6 36.4 1.571potassium hydroxide KOH 15 51.7 79.2 74.2 1.536potassium iodate KIO3 25 8.40 8.99 98.0 1.071potassium iodide KI 25 59.8 103.2 69.1 1.721potassium meta-antimonate KSbO3 18 2.73 2.81 99.7 1.025potassium nitrate KNO3 25 28.0 33.4 86.0 1.193potassium nitrite KNO2 20 74.3 121.5 42.3 1.649potassium oxalate K2C2O4 ⋅ H2O 25 28.3 34 86 1.20potassium perchlorate KClO4 25 2.68 2.72 99.0 1.014potassium periodate KIO4 13 0.658 0.661 99.83 1.005potassium permanganate KMnO4 25 7.10 7.43 97.3 1.046potassium sodium tartrate KNaC4H4O6 ⋅ 4H2O 25 39.71 51.9 78.8 1.308potassium stannate K2SnO3 15.5 42.7 69.2 92.9 1.620potassium sulfate K2SO4 25 10.83 11.8 96.9 1.086quinine salicylate C20H24N2O2 ⋅ C6H4(OH)COOH.2H2O 25 0.065 0.065 99.84 0.999resorcinol C6H4(OH)2 25 58.8 67.2 47.2 1.142rubidium bromate RbBrO3 16 2.15 2.18 99.4 1.016rubidium bromide RbBr 25 52.7 85.6 76.9 1.625rubidium chloride RbCl 25 48.6 72.8 77.1 1.050rubidium iodate RbIO3 15.6 2.72 2.78 99.5 1.022rubidium iodide RbI 24.3 63.6 117.7 67.3 1.850rubidium nitrate RbNO3 25 40.1 55.0 82.4 1.375

INORGANIC CHEMISTRY 1.347

(Continued)

TABLE 1.73 Saturated Solutions (Continued)

mlwater/

g/100 g g/100 ml 100 mlTemp, satd satd satd Specific

Substance Formula °C soln soln soln gravity

rubidium perchlorate RbClO4 25 1.88 1.90 99.3 1.012rubidium periodate RbIO4 16 0.645 0.648 99.85 1.0052rubidium sulfate Rb2SO4 25 33.8 45.6 89.7 1.354silicotungstic acid H4SiW12O40 18 90.6 258 26.8 2.843silver acetate Ag(C2H3O2) 25 1.10 1.11 99.40 1.0047silver bromate AgBrO3 25 0.204 0.2037 99.65 0.9985silver fluoride AgF ⋅ 2H2O 15.8 64.5 168.4 92.7 2.61silver nitrate AgNO3 25 71.5 164 65.5 2.29silver perchlorate AgClO4 ⋅ H2O 25 84.5 237.1 43.5 2.806sodium acetate NaC2H3O2 25 33.6 40.5 80.0 1.205sodium ammonium sulfate NaNH4SO4 15 25.2 29.6 87.9 1.174sodium arsenate Na3AsO4 ⋅ 12H2O 17 21.1 23.5 88.0 1.119sodium benzenesulfonate NaC6H5SO3 25 16.4 17.6 90.1 1.076sodium benzoate NaC7H5O2 25 36.0 41.5 73.9 1.152sodium bicarbonate NaHCO3 15 8.28 8.80 97.6 1.061sodium bisulfate NaHSO4 ⋅ H2O 25 59 87 60 1.47sodium bromide NaBr ⋅ 2H2O 25 48.6 75.0 79.4 1.542sodium carbonate Na2CO3 ⋅ 10H2O 25 22.6 28.1 96.5 1.242sodium chlorate NaClO3 25 51.7 74.3 69.6 1.440sodium chloride NaCl 25 26.5 31.7 88.1 1.198sodium chromate Na2CrO4 18 40.1 57.4 85.7 1.430sodium citrate Na3C6H5O7 ⋅ 5H2O 25 48.1 61.2 66.0 1.272sodium dichromate Na2Cr2O7 18 63.9 111.4 63.0 1.743sodium ferrocyanide Na4Fe(CN)6 25 17.1 19.4 93.9 1.131sodium fluoride NaF 25 3.98 4.14 99.7 1.038sodium formate NaCHO2 18 44.7 58.9 73.0 1.316sodium hydroxide NaOH 25 50.8 77 74 1.51sodium hypophosphite NaH2PO2 16 52.1 72.4 66.6 1.386sodium iodate NaIO3 ⋅ H2O 25 8.57 9.21 98.5 1.075sodium iodide NaI 25 64.8 124.3 67.7 1.919sodium molybdate Na2MoO4 18 39.4 56.6 87.0 1.435sodium nitrate NaNO3 25 47.9 66.7 72.5 1.391sodium nitrite NaNO2 20 45.8 62.3 73.8 1.359sodium oxalate Na2(CO2)2 25 3.48 3.58 99.1 1.025sodium paratungstate (Na2O)3(WO3)7 ⋅ 16H2O 0 26.7 35.2 96.5 1.316sodium perchlorate NaClO4 25 67.8 114.1 54.1 1.683sodium periodate NaIO4 ⋅ 3H2O 25 12.6 13.9 96.2 1.103sodium phenolsulfonate C6H4(OH)SO3Na 25 16.1 17.4 90.5 1.079sodium phosphate dibasic Na2HPO4 17 4.2 4.4 99.9 1.043sodium phosphate tribasic Na3PO4 14 9.5 10.5 99.8 1.103sodium pyrophosphate Na2H2P2O7 ⋅ 6H2O 25 13.0 14.4 95.8 1.104sodium salicylate NaC7H5O3 25 53.6 67.0 58.0 1.248sodium selenate Na2SeO4 18 29.0 38.1 93.4 1.313sodium silicofluoride NaSiF6 20 0.773 0.737 99.76 1.0054sodium sulfate Na2SO4 25 21.8 26.4 94.5 1.208sodium sulfate Na2SO4 ⋅ 10H2O 25 27.7 33.3 87.0 1.207sodium sulfide Na2S ⋅ 9H2O 25 52.3 63 57 1.20sodium sulfite, anhydrous Na2SO3 25 23 28.5 95.5 1.24sodium thiocyanate NaCNS 25 62.9 87 51 1.38

1.348 SECTION ONE

TABLE 1.73 Saturated Solutions (Continued)

mlwater/

g/100 g g/100 ml 100 mlTemp, satd satd satd Specific

Substance Formula °C soln soln soln gravity

sodium thiosulfate Na2S2O3 ⋅ 5H2O 25 66.8 93 46 1.39sodium tungstate Na2WO4 ⋅ 10H2O 18 42.0 66.1 91.3 1.573stannous chloride SnCl2 15 72.9 133.1 49.5 1.827strontium chlorate Sr(ClO3)2 18 63.6 117.0 67.0 1.839strontium chloride SrCl2 ⋅ 6H2O 15 33.4 45.5 90.7 1.36strontium iodide SrI2 ⋅ 6H2O 20 64.0 137.8 77.5 2.15strontium nitrate Sr(NO3)2 25 44.2 65.3 82.5 1.477strontium nitrite Sr(NO2)2 19 39.3 56.8 87.8 1.445strontium perchlorate Sr(ClO4)2 25 75.6 158.5 50.8 2.084strontium salicylate Sr(C7H5O3)2 25 4.58 4.68 97.5 1.019succinic acid (CH2)2(COOH)2 25 7.67 7.82 94.5 1.021succinimide (CH2CO)2NH ⋅ H2O 25 30.6 32.7 74.2 1.067sucrose C12H22O11 25 67.89 90.9 43.0 1.340tartaric acid C2H2(OH)2(COOH)2 15 58.5 76.9 54.7 1.31tetraethyl ammonium iodide N(C2H5)4I 25 32.9 36.2 74.0 1.102tetramethyl ammonium N(CH3)4I 25 5.51 5.60 96.1 1.016

iodidethallium chloride TlCl 25 0.40 0.40 99.6 1.0005thallium nitrate TlNO3 25 10.4 11.4 98.0 1.093thallium nitrite TlNO2 25 32.1 43.7 92.5 1.360thallium perchlorate TlClO4 25 13.5 15.2 97.1 1.122thallium sulfate Tl2SO4 25 5.48 5.74 99.0 1.047trichloroacetic acid CCl3COOH 25 92.3 149.6 12.41 1.615uranyl chloride UO2Cl2 18 76.2 208.5 65.2 2.736uranyl nitrate UO2(NO3)2 ⋅ 6H2O 25 68.9 120 54.5 1.74urea (NH2)2CO 25 53.8 62 53.5 1.15urea phosphate CO(NH2)2 ⋅ H3PO4 24.5 52.4 66.1 60.1 1.26urethan NH2CO2C2H5 25 82.8 88.8 18.5 1.073D-valine (CH3)2CHCH(NH2)COOH 25 8.14 8.26 93.3 1.015DL-valine (CH3)2CHCH(NH2)COOH 25 6.61 6.68 94.5 1.012zinc acetate Zn(C2H3O2)2 25 25.7 30.0 86.5 1.165zinc benzenesulfonate Zn(C6H5SO3)2 25 29.5 34.9 83.4 1.182zinc chlorate Zn(ClO3)2 18 65.0 124.4 67.0 1.914zinc chloride ZnCl2 25 67.5 128 61 1.89zinc iodide Znl2 18 81.2 221.3 51.2 2.725zinc phenolsulfonate (C6H5OSO3)2Zn ⋅ 8H2O 25 39.8 47.3 71.5 1.185zinc selenate ZnSeO4 22 37.8 58.9 97.0 1.559zinc silicofluoride ZnSiF6 ⋅ 6H2O 20 32.9 47.2 96.3 1.434zinc sulfate ZnSO4 ⋅ 7H2O 25 36.7 54.6 94.7 1.492zinc valerate Zn(C5H9O2)2 25 1.27 1.27 98.8 1.001

INORGANIC CHEMISTRY 1.349

1.19 PROTON TRANSFER REACTIONS

A proton transfer reaction is a reaction in which the main feature is the intermolecular or intramole-cular transfer of a proton from one binding site to another.

In the detailed description of proton transfer reactions, especially of rapid proton transfersbetween electronegative atoms, it should always be specified whether the term is used to refer to theoverall process, including the more-or-less encounter-controlled formation of a hydrogen bondedcomplex and the separation of the products or, alternatively, the proton transfer event (including sol-vent rearrangement) by itself.

For the general proton transfer reaction:

HB = H+ + B

the acidic dissociation constant is formulated as follows:

The most common charge types for the acid HB and its conjugate base B are

CH3COOH = H+ + CH3COO–(acetic acid, acetate ion)

HSO4− = H+ + SO4

2− (hydrogen sulfate ion, sulfate ion)

NH4+ = H+ + NH3 (ammonium ion, ammonia)

Acids which have more than one acidic hydrogen ionize in steps, as shown for phosphoric acid:

H3PO4 = H+ + H2PO4− pK1 = 2.148 K1 = 7.11 × 10–3

H2PO4− = H+ + HPO4

2− pK2 = 7.198 K2 = 6.34 × 10–8

HPO42− = H+ + PO4

3− pK3 = 11.90 K3 = 1.26 × 10–12

If the basic dissociation constant Kb for the equilibrium such as

NH3 + H2O = NH4 + OH

is required, pKb may be calculated from the relationship

pKb = pKw – pKa

Ia general, for an organic acid, a useful estimate of its pKa value can sometimes be obtained by makinga comparison with recognizably similar compounds for which pKa values are known: (1) alkyl chains,alicyclic rings, or saturated carbocyclic rings fused to aromatic or heterocyclic rings can be replaced bymethyl or ethyl groups; (2) acid-strengthening inductive and mesomeric effects of a nitro groupattached to an aromatic ring are very similar to those of a nitrogen atom located at the same position ina heteroaromatic ring (e.g., 3-hydroxypyridine and 3-nitrophenol).

1.19.1 Calculation of the Approximate pH Value of Solutions

Strong acid: pH = −log [acid]

Strong base: pH = 14.00 + log [base]

Weak acid: pH = 1/2pKa – 1/2 log [acid]

Weak base: pH = 14.00 – 1/2pKb + 1/2 log [base]

Ka =+[ ][ ]H B

[HB]

1.350 SECTION ONE

Salt formed by a weak acid and a strong base:

pH = 7.00 + 1/2pKa + 1/2 log[salt]

Acid salts of a dibasic acid:

pH = 1/2pK1 + 1/2pK2 – 1/2 log [salt] + 1/2 log(K1 + [salt])

Buffer solution consisting of a mixture of a weak acid and its salt:

1.19.2 Calculation of Concentrations of Species Present at a Given pH

α

α

α

01

11 2

21 2

11

1

11

1 22

1 2

1

2

=+ + + +

=

=+ + + +

=

=

+

+ + − + −

+ −

+ + − + −−

[ ]

[ ] [ ] [ ]

[ ]

[ ]

[ ] [ ] [ ]

[ ]

H

H H H

H A

H

H H H

H A

acid

acid

n

n n nn

n

n

n n nn

n

K K K K K K C

K

K K K K K K C

K

L L

L L

11 22

11

1 22

1 2

2

1 2

11

1 22

1 2

K

K K K K K K C

K K K

K K K K K K

n

n n nn

n

nn

n n nn

n

[ ]

[ ] [ ] [ ]

[ ]

[ ] [ ] [ ]

[

H

H H H

H A

H H H

A

2

acid

+ −

+ + − + −−

+ + − + −

+ + + +=

=+ + + +

=

L L

M

L

L Lα ]]

Cacid

pH psalt H O OH

acid H O OH= + + −

+ −⎛⎝⎜

⎞⎠⎟

+ −

+ −Ka log[ ] [ ] [ ]

[ ] [ ] [ ]3

3

INORGANIC CHEMISTRY 1.351

TABLE 1.74 Proton Transfer Reactions of Inorganic Materials in Water at 25°C

1.3

52

Substance Formula or remarks pK1 pK2

Aluminio acidAluminum ion (aquo)Americium(in) ionAmmonium ionAmmonium-c?3Antimonio acidAntimony(III) ionBarium ionBerkelium(HI) ionBeryllium(II) ionBismuth(in) ionBoric acid, tetra-BromineCadmium ionCalcium ionCalifornium(III) ionCarbon dioxide

Cerium(HI) ionCerium(IV) ionChromium(III) ionCobalt(II) ionCobalt(III) ionCopper(II) ionCurium(IH) ionDeuterium oxideDysprosium(HI) ionErbium(in) ionEuropium(in) ionFermium(III) ionGadolinium(in) ionGallium(in) ion

Gold(ni) hydroxideHafnium(IV) ionHexaminotriphosphazeneHolmium(ni) ion

H3A1O3A13+ (aquo)Am3+ (aquo) ¡JL = 0.1NHJND3H+HSb(OH)6 = Sb(OH)e + H+ ju, = 0.5SbO+ + H2O = Sb(OH)3 + H+ ju, = 1.0p^ofBatOHy-ju. = 0.1piT for hydrolysis of Bk3+ /u = 0.1Be2+ (aquo) = BeOH+ + H+ ¿i = 1.0Bi3* = BiOH2+ + H+ /n = 3.0H2B407Br2 + H2O = HBrO + H+ + Br~Cd2+ (aquo) hydrolysisCa2+ (aquo) hydrolysisCf3+ (aquo) hydrolysis ¿u, = 0.1CO2 (aquo)CO2 in D2OCe3+ (aquo) hydrolysisHydrolysis to Ce(OH)3+ and Ce(OH)i+

Cr3+ (aquo) hydrolysisCo2+ (aquo) hydrolysisCo3+ (aquo) hydrolysis m = 1Cu2+ (aquo) hydrolysisCm3+ (aquo) hydrolysis m = 0.1D2O (molal scale)Dy3+ (aquo) hydrolysisEr3+ (aquo) hydrolysis fi = 3Eu3+ (aquo) hydrolysisFm3+ hydrolysis ß = 0.1Gd3+ hydrolysisGa3+ (successive values for hydrolysis)

H3AuO3Hf 4+ hydrolysis ¡j. = 1N3P3(NH2)6

Ho3+ hydrolysis p. = 0.3

11.24.98(4)5.929.246(2)9.7572.551.420.645.666.51.5847.929.2(1)

12.67(3)5.626.352(1)6.77

ca. 9.3-1.15

3.958.91.757.346.00(5)

14.956(1)8.109.08.033.88.272.92

pK2 4.75<11.7

-0.12<3.2

8.04

9

10.32910.93

0.82

3.77

13.360.237.68(3)

1.3

53

(Continued)

Hydrazinium(2+) ionHydrogen amidodisulfonateHydrogen amidophosphateHydrogen arsenateHydrogen-i/3 arsenateHydrogen arseniteHydrogen azideHydrogen-d azideHydrogen borate (3-)Hydrogen brómateHydrogen bromideHydrogen chlorateHydrogen chlorideHydrogen-d chlorideHydrogen chloriteHydrogen enrómateHydrogen cyanateHydrogen cyanideHydrogen-d cyanideHydrogen diamidophosphateHydrogen diamidothiophosphateHydrogen diimidotriphosphate

Hydrogen diphosphate

Hydrogen disulfateHydrogen dithionateHydrogen dithioniteHydrogen fluorideHydrogen germanateHydrogen hexafluorosilicateHydrogen hydrosulfiteHydrogen hypobromiteHydrogen hypochloriteHydrogen hypoioditeHydrogen hyponitriteHydrogen iodate

+H3N— NH3+

HNSO(OH)2H2NPO(OH)2 (26°C)H3AsO4D3AsO4HAsO2

HN3DN3 (in D2O)H3BO3HBrO3 (in formamide)HBrHC1O3 (theoretical prediction)HC1DC1 (in dimethylformamide)HC1O2

H2CrO4HOCNHCNDCN (in D2O) ¡JL = 0.11(NH2)PO(OH) (30°C)(NH2)PO(SH) (20°C)(HO)2PO(NH)PO(OH)(NH)PO(OH)2 p = 0.1

H4P207

H2S2O7 (theoretical prediction)H2S206H2S204H2F2

H2GeO4H2SiF6H2S204

HBrOHC1OHIOH2N202

HI03

0.27piT3 8.50

2.7392.2232.5969.28(10)4.625.1159.2361.02

-8.72(15)-2.7-6.2(1)

3.581.940.743.469.218.971.279(+1)2.0(+ 1)j

pK3 3.03pK5 9.84

0.91pK3 6.70-12-3.4

0.353.20(4)9.01

0.358.557.537

10.5(5)7.210.804

7.94(3)

8.1026.760

6.488

4.8894.3

~2pK4 6.61

2.10pK4 9.35

-8-0.2

2.45

12.301.922.50

11.45(10)

TABLE 1.74 Proton Transfer Reactions of Inorganic Materials in Water at 25°C (Continued)

1.3

54

Substance Formula or remarks pK1 pK2

Hydrogen-íí iodateHydrogen iodideHydrogen manganate(VI)Hydrogen nitrateHydrogen nitriteHydrogen perchlorateHydrogen periodateHydrogen peroxideHydrogen peroxophosphate

Hydrogen peroxosulfateHydrogen perrhenateHydrogen pertechnetateHydrogen perthiocarbonateHydrogen perxenateHydrogen phosphate(3— )

Hydrogen-d2 phosphateHydrogen phosphinateHydrogen phosphonateHydrogen selenateHydrogen selenideHydrogen seleniteHydrogen silicate(4— )Hydrogen sulfamateHydrogen sulfateHydrogen sulfideHydrogen sulfiteHydrogen tellurateHydrogen tellurideHydrogen telluriteHydrogen tetrafluoroborateHydrogen tetracyanonickelateHydrogen tetraperoxochromateHydrogen tetrapolyphosphate

DIO, (in D2O)HIH2MnO4 (35°C) p. = 0.1HNO3HNO2

HC1O4HIO4

H202H3PO5 fj. = 0.2

H2S05HReO4

HTcO4H2CS4

H4Xe06H3P04

D2P04 (in D20)H2PHO2

H2PHO3H2SeO4H2Se /i = 0.03H2SeO3H4SiO4H2NS03HH2SO4

H2SSO2 + H2O = HSC>3 = H+

H6Te06H2Te (18°C)H2TeO3 (20°C)HBF4

H2Ni(CN)4H3Cr08 (30°C) fji = 3H4P4013 ¡i = 0.034

1.15-8.56

-1.37(7)3.14(1)

-1.61.64

11.64(2)1.1

pK3 12.81.0

-1.250.33.54

pK3 10.52.148(20)

pK3 12.32(6)7.7801.231.43

3.892.629.60(10)0.99

6.971.897.65(5)2.646.270.54.697.161.99

pK, 6.62

10.15

5.5

9.86

7.24

7.198(10)

6.68(14)1.66

11.08.30(15)

11.8(1)

1.99(1)12.907.205

11.00(5)11-12

8.43

6.59

2.64piT4 8.2

1.3

55

(Continued)

Hydrogen tetrathiophosphate

Hydrogen thiocyanateHydrogen thiophosphate

Hydrogen thiosulfateHydrogen tripolyphosphate

Hydrogen triselenocarbonateHydrogen trithiocarbonateHydrogen tungstateHydrogen vanadate(- 1)Hydrogen vanadate(3— )Hydroxylamine-A'jiV-disulfonic acidHydroxylamine O-sulfonateImidodiphosphoric acid

Indium(in) ionIridium(in) ionIron(II) ionIron(III) ionLanthanum(III) ionLead(II) ionLead(IV) ionLithium(I) ionLutetium(ni) ionMagnesium(n) ionManganese(n) ionManganese(ni) ionMercury(I) ionMercury(II) ionNeodymium(III) ionNeptunium(III) ionNeptunium(IV) ionNeptunium(V) ionNickel(II) ionOsmium tetroxidePalladium(II) ionPentacyanoaquoferrate(II) ion

H3PS4

HSCN /A = 3H3P03S

H2S203H3P309

H2CSe3

H2CS3 (20°C)H2WO4

HVO3H3V04HON(SO3H)2 /n = 1.6+H3NOSO3- n = 1(HO)2PO(NH)PO(OH)2 ¡JL = 0.2

In3+ hydrolysisIr3+ hydrolysis /A = 1Fe2+ hydrolysis ¿i = 1Fe3+ hydrolysisLa3+ hydrolysisPb2+ hydrolysis /¿ = 0.3Pb4+ hydrolysisLi+

Lu3+ hydrolysisMg2+ hydrolysisMn2+ hydrolysisMn3+ hydrolysisHgi+ hydrolysis p = 0.5Hg2+ hydrolysis fi = 0.5Nd3+ hydrolysis /¿ = 3Np3+ hydrolysis /J. = 0.3Np4+ hydrolysis fj. = 2NpO2 hydrolysisNi2+ hydrolysisOsO4 hydrolysis /i = 1Pd2+ (stepwise pKb values)Fe(CN)5(H2O)3^ /A = 0.1

1.5p£3 6.6

-1.81.788

pAT3 10.080.6

^piT3 2.00(10)pí:4 5.83(7)pK5 8.51(6)

1.162.682.203.803.78

pK3 11.851.48

~2p/T3 7.08

3.544.376.82.199.067.81.8

13.87.94

11.4110.590.45.03.709.0(5)7.432.308.90(2)9.86

12.113.02.63

3.5

5.427

1.741.7

7.708.183.70

7.78(4)

2.85pK4 9.72

4.285.20

3.2

2.65

12.8

TABLE 1.74 Proton Transfer Reactions of Inorganic Materials in Water at 25°C (Continued)

Source: J. J. Christensen, L. D. Hansen, and R. M. Izatt, Handbook of Proton Ionization Heats and Related Thermodynamic Quantities, Wiley-Interscience, New York, 1976; D. D. Perrin, IonisationConstants of Inorganic Acids and Bases in Aqueous Solution, 2d ed., Pergamon Press, 1982.

1.3

56

Substance Formula or remarks pK1 pK2

Plutonium(III) ionPlutonium(IV) ionPlutonium(V) ionPlutonium(VI) ionPolonium(IV) ion

Praseodymium(IH) ionProtoactinium(IV) ionProtoactinium(V) ionScandium(ni) ionSilver(I) ionSodium ionStrontium ionTerbium(m) ionThallium(I) ionThallium(HI) ionThorium(IV) ionTin(II) ionTitanium(in)Titanium(IV)Tritium oxideUranium(IV) ionUranyl(VI) ionVanadium(II) ionVanadium(ni) ionVanadyl(IV) ionVanadyl(V) ionXenon trioxideYtterbium(III) ionYttrium(in) ionZinc ionZirconium(IV) ion

Pu3+ hydrolysis ¿i = 0.07Pu4+ hydrolysis /n = 2PuOJ hydrolysis ¿i = 0.003PuO¡+ hydrolysisPo4+ hydrolysis

Pr3+ hydrolysis f¿ = 0.3Pa4+ hydrolysis /j, = 3Pa5+ hydrolysis /JL = 3Sc3+ hydrolysis //, = 0.05Ag+ hydrolysisNa+ (aquo)Sr24" (aquo)Tb3+ hydrolysis fj. = 0.3Tl+

T13+ hydrolysis ß = 3Th4+ hydrolysis ¿u, = 0.5Sn2+ hydrolysis ¿i = 3Ti3+ hydrolysis /JL = 3TiO2+ + H2O = TiO(OH)+ + H+

pK„ for T2O = T+ + OH-U4+ hydrolysisUOi+ ¡JL = 0.035V2+ hydrolysisV3+ hydrolysisVO2+ hydrolysisVOî(20°C) M = 0.1XeO3 + H2O = HXeOi + H+

Yb3+ hydrolysisY3+ hydrolysis ¿i = 0.3Zn2+ hydrolysisZr4+ hydrolysis /j. = 1

7.2(2)1.269.73.330.48

pK3 5.588.550.141.054.58(3)

>11.114.67(10)13.188.16

13.36(15)1.143.893.81(10)2.551.3

15.210.685.826.852.926.86(10)1.83

10.57.99(6)8.348.96

-0.32p#3 0.35

4.052.74

0.38

4.20

3.5

0.06

1.20 FORMATION CONSTANTS

The formation constant of a metal complex is the equilibrium constant for the formation of a com-plex ion from its components in solution.

Each value listed is the logarithm of the overall formation constant for the cumulative binding ofa ligand L to the central metal cation M, viz.:

Comulative Stepwise formation constant stability constants

M + L = ML K1 k1

M + 2L = ML2 K2 k1k2

......................M + nL = MLn Kn k1k2

… kn

As an example, the entries in Table 1.75 for the zinc ammine complexes represent these equilibria:

Zn2+ + NH3 = Zn(NH3)2+

Zn2+ + 2NH3 = Zn(NH3)22+

Zn2+ + 3NH3 = Zn(NH3)32+

Zn2+ + 4NH3 = Zn(NH3)42+

If the stepwise stability or formation constants of the reactions are desired, for the first step log K1 =log k1 = 2.37. For the second and succeeding steps the equilibria and corresponding constants are as follows:

Zn(NH3)2+ + NH3 = Zn(NH3)2

2+ log k2 = log k2 − log k1 = 2.44

Zn(NH3)22+ + NH3 = Zn(NH3)3

2+ log k3 = log k2 − log k1 = 3.50

Zn(NH3)32+ + NH3 = Zn(NH3)4

2+ log k4 = log k4 − log k3 = 2.15

The reverse of the association or formation reactions would represent the dissociation or instabil-ity constant for the systems, i.e., –log Kf = log Kinstab.

The data in the tables generally refer to temperatures of about 20 to 25°C. Most of the values inTable 1.75 refer to zero ionic strength, but those in Table 1.76 often refer to a finite ionic strength.

K43 4

2

23

4=

+

+[ ( ) ]

[ ][ ]

Zn NH

Zn NH

K33 3

2

23

3=

+

+[ ( ) ]

[ ][ ]

Zn NH

Zn NH

K23 2

2

23

2=

+

+[ ( ) ]

[ ][ ]

Zn NH

Zn NH

K13

2

23

=+

+[ ( ) ]

[ ][ ]

Zn NH

Zn NH

INORGANIC CHEMISTRY 1.357

1.358 SECTION ONE

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands

log K1 log K2 log K3 log K4 log K5 log K6

AmmoniaCadmiumCobalt(H)Cobalt(HI)Copper(I)Copper(II)Iron(II)Manganese(II)Mercury(II)NickelPlatinum(II)Silver(I)Zinc

BromideAstatineBismuth(III)BromineCadmiumCerium(III)Copper(I)Copper(II)Gold(I)IndiumIodineIron(in)LeadMercury(II)Palladium(II)Platinum(n)Rhodium(III)ScandiumSilver(I)Thallium(I)Thallium(III)Tin(II)Uranium(IV)Yttrium

ChlorideAmericium(III)Antimony(III)Bismuth(III)CadmiumCerium(III)Copper(I)Copper(II)Curium(III)Gold(III)IndiumIron(II)Iron(III)LeadManganese(II)Mercury (II)

2.652.116.75.934.311.40.88.82.80

3.242.37

4.753.74

14.010.867.982.21.3

17.55.04

7.054.81

2.51 [AtBr]4.30 1 5.551.24 [Br3-]1.750.42

0.30

1.30

2.34

5.89

12.461.88

2.64 [IBr]-0.30

1.29.05

2.084.380.939.71.110.181.32

1.172.262.441.950.48

0.11.17

1.420.361.481.620.966.74

-0.501.9

17.32

14.33.087.33

16.61.81

3.494.72.50

5.5-0.6

9.82.23

2.132.44

13.22

6.194.79

20.1

11.02

18.56.77

7.31

5.89

3.32

2.48

19.74

16.3

8.00

21.21.46

4.185.02.60

5.7

3.23

1.991.70

14.07

7.125.55

25.7

13.32

19.287.96

9.46

7.82

3.70

1.121.0013.120.517.6

8.73

23.9

4.725.62.80

0.011.60

15.07

6.805.73

30.8

12.86

8.71

18.4

29.2

5.145.11

35.2

8.7435.3

9.70

17.2

31.6

INORGANIC CHEMISTRY 1.359

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued )

log K1 log K2 log K3 log K4 log K5 log K6

(Continued)

Palladium(II)Platinum(II)Plutonium(III)Silver(I)Thallium(I)Thallium(III)ThoriumTin(II)Tin(IV)Uranium(IV)Uranium(VI)ZincZirconium

CyanideCadmiumCopper(I)Gold(I)Iron(II)Iron(III)Mercury (II)NickelSilver(I)Zinc

FluorideAluminumBerylliumCerium(III)Chromium(III)GadoliniumGalliumIndiumIron(III)LanthanumMagnesiumManganese(II)Plutonium(III)ScandiumThallium(I)Thallium(III) [T1O+]ThoriumTitanium(IV) [TiO2+]Uranium(VI)YttriumZirconium

HydroxideAluminumAntimony(III)Arsenic [as AsO+]BerylliumBismuth(III)CadmiumCerium(in)Cerium(IV)

6.1

1.173.040.528.141.381.51

0.80.220.430.9

5.48

6.105.13.204.413.465.083.705.282.771.305.486.77

0.16.447.655.44.594.818.80

9.27

14.339.7

12.74.17

14.613.28

10.711.5

5.04

13.600.382.24

0.611.3

10.6024.038.3

21.1

11.158.8

7.81

6.259.30

13.469.87.938.54

16.12

24.318.7314.015.88.33

26.46

13.114.5

15.78

2.03

0.531.5

15.2328.59

21.7

15.0012.6

10.29

8.6012.06

17.9713.710.4712.1421.94

36.720.6015.2

9.02

15.716.0

5.30

18.00

1.48

0.201.2

18.7830.30

41.431.320.616.7

17.75

9.70

18.011.84

33.0338.321.20

35.28.62

19.37

4

3542

19.84

17.3

1.360 SECTION ONE

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued )

log K1 log K2 log K3 log K4 log K5 log K6

Chromium(HI)Copper(II)DysprosiumErbium(III)GadoliniumGalliumIndiumIodineIron(II)Iron(III)LanthanumLead(II)LutetiumMagnesiumManganese(II)NeodymiumNickelPraseodymiumPlutonium(III)Plutonium(IV)Plutonium [as PuOi+]Samarium(III)ScandiumTellurium(IV)Thallium(III)Titanium(III)Uranium(IV)Uranium(VI) [as UOÍ+]Vanadium(III)Vanadium(IV) [as VO2+]Vanadium(V) [as VO3+]YttriumZincZirconium

IodideBismuthCadmiumCopper(I)IndiumIodineIron(III)LeadMercury(II)SilverThallium(I)Thallium(III)

lodateBariumCalciumMagnesiumStrontiumThorium

10.17.05.25.44.6

11.09.99.495.56

11.873.37.826.62.583.905.54.974.307.0

12.398.34.88.9

12.8612.7113.39.5

11.18.6

5.04.40

14.3

3.632.10

1.002.891.882.00

12.876.580.72

11.41

1.050.890.721.002.88

17.813.68

21.719.811.24

9.7721.17

10.85

8.55

16.6

25.37

22.8021.6

25.2

11.3028.3

3.438.852.265.79

3.1523.8211.740.90

20.88

4.79

17.00

9.6729.67

14.58

8.3

11.33

20.9

41.6

29.918.5

34.328.7

8.58

53.0

32.4

[25.8 for V2O4(OH)-]

14.1441.9

4.49

3.9227.6013.681.08

27.60

7.15

46.2

17.6655.3

14.955.41

4.4729.83

31.82

38.0

64.8

41.2

58.5

16.80

40.3

61.0

72.0

18.80

INORGANIC CHEMISTRY 1.361

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued)

log K1 log K2 log K3 log K4 log K5 log K6

(Continued)

NitrateBariumBerylliumBismuth(III)CadmiumCalciumCerium(III)Curium(III)HafniumIron(III)LanthanumLeadMercury (II)NeodymiumNeptunium(IV)Plutonium(III)Plutonium(IV)StrontiumThallium(I)Thallium(III)ThoriumUranium(IV)Uranium(VI)YtterbiumZirconium [as ZrO2+]

PyrophosphateBariumCalciumCadmiumCopper(II)LeadMagnesiumNickelStrontiumYttriumZirconium

SulfateCerium(HI)ErbiumGadoliniumHolmiumIndiumIron(IH)LanthanumNeodymiumNickelPlutonium(IV)PraseodymiumSamariumThoriumUranium(IV)Uranium(VI)

0.921.621.260.400.281.040.570.921.00.261.180.350.520.380.770.540.820.330.920.780.200.340.45

4.64.65.66.7

5.75.84.7

3.403.583.663.581.782.033.643.642.43.663.623.663.323.241.70

2.55

2.43

0.69

1.18

1.93

1.890.370.451.301.91

9.05.3

7.4

9.76.5

1.882.98

5.505.422.45

4.32

1.27

3.09

2.89

2.42

2.36

3.30

6.40

3.63

3.54

8.48 10.29

1.362 SECTION ONE

TABLE 1.75 Cumulative Formation Constants for Metal Complexes with Inorganic Ligands (Continued )

log K1 log K2 log K3 log K4 log K5 log K6

YttriumYtterbiumZirconium

SulfiteCopper®Mercury(II)Silver

ThiocyanateBismuthCadmiumChromium(III)Cobalt(II)Copper(I)Gold(I)IndiumIron(III)Mercury (II)NickelRuthenium(III)SilverThallium(I)Uranium(IV)Uranium(VI)Vanadium(III)Vanadium(IV)Zinc

ThiosulfateCadmiumCopper(I)Iron(III)LeadMercury(II)Silver

3.473.583.79

7.5

5.30

1.151.391.87

-0.0412.11

2.582.95

1.181.78

0.801.490.762.00.921.62

3.9210.272.10

8.82

6.64

8.522.66

7.35

2.261.982.98

-0.705.18

233.003.36

17.471.64

7.57

2.110.74

6.4412.22

5.1329.4413.46

7.77

9.2

3.412.58

0

4.63

1.81

9.08

1.18

13.84

6.3531.90

4.233.6

3.00

42

21.23

10.08

33.24

INORGANIC CHEMISTRY 1.363

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands

Temperature is 25°C and ionic strengths are approaching zero unless indicated otherwise: (a) At 20°C, (b) at30°C, (c) 0.1 M uni-univalent salt, (d ) 1.0 M uni-univalent salt, (e) 2.0 M uni-univalent salt present.

(Continued)

log K1 log K2 log K3 log K4

AcetateAg(I)Ba(II)Ca(II)Cd(II)Ce(III)Co(II)Cr(III)Cu(II) aFe(II) cFe(III) a,dIn(III)Hg(II)La(III) a,eMg(II)Mn(II)Ni(II)Pb(II)Rare earths a,eSr(II)Ti(ni)UO2(II) a,eY(III) a,eZn(II)

AcetylacetoneAl(III) bBe(II)Cd(II)Ce(III)Cr(II)Co(II)Cu(II)Dy(III) bEr(III) bEu(III) bFe(H)Fe(ni)Ga(III)Gd(ni) bHf(IV)Ho(III)In(III)La(III) bLu(III) bMg(II)Mn(II)Mn(III)Nd(III)Ni(n) a

0.730.410.61.51.681.51.802.163.23.23.50

1.560.89.841.122.521.6-1.90.44

2.381.531.5

8.67.83.845.305.95.408.276.035.995.875.07

11.49.55.908.76.058.05.16.233.654.24

5.66.06

0.64

2.32.691.94.723.206.1

5.958.432.48

2.061.814.02.8-3.0

4.362.65

15.514.56.669.27

11.79.54

16.3410.7010.6710.358.67

22.117.910.3815.410.7315.18.90

11.006.277.35

9.910.77

2.43.13

8.3

7.90

2.98

6.43.3-3.7

6.343.38

12.65

14.0414.0913.64

26.723.613.7921.814.13

11.9013.63

3.8613.113.09

3.18

9.08

2.95

8.5

15.4

28.1

1.364 SECTION ONE

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

log K1 log K2 log K3 log K4

Pd(II) bPr(III) bPu(IV) cSc(III) bSm(III) bTb(III) bTh(IV)Tm(IV) ¿>U(IV) a,cUO2(II) èVO(II)V(II)Y(in) bYb(III) èZn(H) i>Zr(IV)

Alizarin redCr(VI)Cu(II)Hf(IV)Mo(VI)Pb(II)Th(IV)U02(H)V(V)W(VI)

ArsenazoHf(IV)Zr(IV)

Âurintricarboxylic acidBe(II)Cu(H)Fe(in)Th(IV)U02(E)

Benzoylacetone (75% dioxane)Ba(II)Be(H)Cd(H)Ce(III)Co(II)Cu(II)La(III)Mg(II)Mn(II)Ni(II)Pb(II)Pr(ni)U02(II)Y(III)Zn(II)

16.25.4

10.58.05.96.028.86.098.67.748.685.46.46.184.988.4

4.74.1

6.0

4.22

10.0712.95

4.544.14.685.044.77

12.597.79

10.099.42

12.056.337.698.669.588.847.02

12.158.249.62

27.19.5

19.715.210.410.6316.210.8517.014.1915.7910.211.111.048.81

16.0

10.49.6

8.24

8.67.8

8.81

9.424.0114.3619.4217.8323.0111.6614.0915.7818.0016.3513.6223.2714.9817.90

12.528.1

14.0422.514.3323.4

14.713.913.64

23.2

27.04

16.78

18.74

20.57

34.1

26.7

29.5

30.1

INORGANIC CHEMISTRY 1.365

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

(Continued)

CalmagíteÇaMg

Citric acidAgAlBaBeCaCdCe(III)Co(II)Cu(II)Eu(III)Fe(II)Fe(III)LaMgMn(II)Nd(III)NiPbPrRaSrT1(I)UO2

YYbZn

logiT,

6.058.05

Complex of HL2~ Anión

log K2 log K3 log AT4

Complex of L3~ Anión

log Kt log K2 log K!

7.17.02.984.524.683.98

4.84.35

3.0812.5

3.293.67

5.116.50

2.362.81.048.5

4.71

6.18

6.46

6.97

6.32

10.8

20.0

11.3

12.514.2

15.525.0

14.3

11.4

logí:2

9.65

9.80

9.45

9.70

8

log KI log KI log K3

l^-Diaminocyclohexane-A^A^W-tetraaceticacidAl cBa cCa cCd cCe(III) cCo(II) cCu(II) cDy(III) cEr(III) cEu(III) cFe(III) cGa c

17.638.64

12.319.8816.7619.5721.9519.6920.2018.7727.4822.91

Complex of H2L~

logK3

3.2

6.22

3.4

3.6

1.366 SECTION ONE

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

Gd cHg(II) cHo cLa cLu cMg cMn(II) cNd cNi cPb cPr cSm(in) cSr cTb cTm cVO(II) cY cYb cZn c

18.8024.419.8916.3521.5110.4117.4317.6919.420.3317.2318.638.92

19.3020.4619.4019.4120.8018.6

Dibenzoylmethane (75% dioxane)BaBeCaCdCe(ni)Co(II)Cu(II)CsFe(H)KLiMgMn(II)NaNiPbRbSrZn

6.1013.627.178.67

10.9910.3512.983.42

11.153.675.958.549.324.18

10.839.753.526.40

10.23

log*,

11.5026.0313.5516.6321.5320.0524.98

21.50

16.2117.79

20.7218.79

12.1019.65

logAT2

4,5-Dihydroxybenzene-l,3-disulfonic acid (Tirón)AlBaCaCd dCe(III)Co(H) dCu(H) d

19.024.105.807.69

8.1912.76

31.10

13.293.75

14.4123.73

30.38

log^

33.5

log Kf [MHL]

14.614.8

15.718.1

INORGANIC CHEMISTRY 1.367

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

(Continued)

log/C, logKj log #3 log/CIMHL]

Fe(HI) a,c 20.7 35.9 46.9 22.6La 12.9 18.6 [La(OH)L]Mg a,c 6.86 14.6Mn(II) c 8.6Ni a,c 8.56 14.90 15.6Pb d 11.95 18.28Sr c 4.55UO2(II) c 15.90VO(II) 15.88Zn d 9.00 16.91 15.9

log AT, logíT2 log^tM^J

2,3-Dimercaptopropan-l-of (BAL)Fe(II) 15.8Fe(ni) 30.6 [Fe(OH)L] 28Mn(II) 5.23 10.43Ni 22.78Zn 13.48 23.3 40.6

log i, logíT2 logK3 logÍT4

Dimethylglyoxime (50% dioxane)Cd 5.7 10.7Co(H) 9.80 18.94Cu(ü) 12.00 33.44Fe(II) 7.25La 6.6 12.5Ni 11.16Pb 7.3Zn 7.7 13.9

2,2'-DipyridylAg 3.65 7.15Cd 4.26 7.81 10.47Co(II) 5.73 11.57 17.59Cr(II) 4.5 10.5 14.0Cu(I) 14.2Cu(II) 8.0 13.60 17.08Fe(II) 4.36 8.0 17.45Hg(II) 9.64 16.74 19.54Mg 0.5Mn(II) d 4.06 7.84 11.47Ni 6.80 13.26 18.46Pb 3.0Ti(IH) 25.28V(II) 4.9 9.6 13.1Zn 5.30 9.83 13.63

Eriochrome Black TCa 5.4Mg 7.0Zn 13.5 20.6

1.368 SECTION ONE

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

EthanolamineAgCu(II)Hg(II)

EthylenediamineAgCd aCo(II)Co(III)Cr(II)Cu(I)Cu(H)Fe(II)Hg(H)MgMn(II)NiPd(II)V(II)Zn

3.29

8.51

4.705.475.91

18.75.15

10.674.34

14.30.372.737.52

4.65.77

6.926.68

17.32

7.7010.0910.6434.99.19

10.820.007.65

23.3

4.7913.8426.907.5

10.83Ethylenediamine-/V, N, N', W-tetraacetic acid

AgAlAm(III)BaBeBiCaCdCe(III)Cf(III)Cm(III)Co(II)Co(IH)Cr(II)Cr(III)Cu(II)DyErEu(III)Fe(II)Fe(III)GaGdHg(II)HoInLaLiLuMgMn(II)Mo(V)

7.3216.1118.187.789.3

22.811.016.416.8019.0918.4516.313613.62318.718.018.1517.9914.3324.2320.2517.221.8018.124.9516.342.79

19.838.64

13.86.36

12.0913.9448.69

21.09.70

5.6718.33

8.814.11

log/Q

16.48

INORGANIC CHEMISTRY 1.369

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

(Continued)

NaNdNiPbPd(II)Pm(III)PrPu(in)Pu(IV)Pu(VI)RaSeSmSn(II)SrTbThTi(HI)TiO(II)Tl(III)TmU(IV)V(II)V(III)VO(II)V(V)YYbZnZr

GlycineAgBaBeCaCdCo(II)Cu(II)DyErFe(II) aFe(III) a,dGdHg(II)LaMgMn(II)NiPbPd(II)PrSm

1.6616.618.5618.318.517.4516.5518.1217.6617.667.4

23.116.4322.18.80

17.623.221.317.322.519.4917.5012.7025.918.018.0518.3218.7016.419.40

3.410.77

1.384.745.238.60

4.310.0

10.3

3.443.66.185.479.12

6.89

4.95

8.609.25

15.5412.212.77.8

11.919.211.26.466.6

11.148.92

17.5511.511.7

10.7616.27

15

log/Q

(Continued)

1.370 SECTION ONE

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

SrYYbZn

0.91

5.52

12.513.09.96

N' -(2-Hy droxyethyl)ethylenediamine-A', N, N' -triacetic acidBa cÇa cCd cCe(III) cCo(II) cCu(II) cDy cEr cEu(IH) cFe(II) cFe(III) cGd cHg(II) cHo eLa cLu cMg cMn(II) cNd cNi cPb cPr cSm cSr cTb cTh cTm cY cYb cZn c

5.548.43

13.014.1114.417.4015.3015.4215.3511.619.815.2220.115.3213.4615.885.78

10.714.8617.015.514.6115.286.92

15.3218.515.5914.6515.8814.5

8-Hydroxy-2-methylquinoline (50% dioxane)CdCe(III)Co(II)Cu(II)Fe(II)MgMn(II)NiPbU02(II)Zn

9.007.719.63

12.488.755.247.449.41

10.309.49.82

8-HydroxyquinoIine-5-sulfonicacidBaCaCdCe(III)

2.313.527.706.05

9.00

18.5024.0017.109.64

13.9917.7618.501718.72

14.2011.05

16.60

14.95

log/Q

INORGANIC CHEMISTRY 1.371

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

(Continued )

Co(H)Cu(II)ErFe(II)Fe(III)GdLaMgMn(II)NdNiPbPrSmSrThU02(II)Zn

Lactic acidBaCaCdCe(III) a,cCo(II)Cu(II)ErEu(III)Fe(III)GdHoLa a,cLiMgMn(II)NdNiPbPr a,cRare earths a,cSmSrTbYYbZn

Nitrilotriacetic acidAlBa aCaCd cCe(III) c

8.1111.927.168.4

11.66.645.634.795.676.39.578.536.176.582.759.568.528.65

0.641.421.702.761.903.022.772.537.12.532.712.600.201.371.432.472.222.402.85

2.8-3.02.560.982.612.532.852.20

>105.887.609.80

10.83

15.0521.8713.3415.722.812.3710.138.19

10.7211.618.2716.1311.3712.28

18.2915.6716.15

4.73

4.855.114.60

4.634.974.34

4.37

3.804.90

4.9-5.44.58

4.734.705.273.75

11.6115.218.67

20.41

18.5621.7535.6517.2713.83

16.022.9

15.6717.04

25.92

5.96

6.705.88

5.916.555.64

5.60

6.106.1-7.8

5.90

6.016.127.96

log/Q

32.04

1.372 SECTION ONE

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

Co(II) cCr(III)Cu(II) cDy cEr cEu(III) eFe(II) cFe(III) cGd cHg(II)Ho cInLa cLi aLu cMg cMn(II)NaNd cNiPb a,cPr cSm(III) cSrTb cT1(I)Th cTm cY cYb cZn cZr c

10.38>10

13.1011.7412.0311.528.84

15.8711.5412.711.901510.363.28

12.495.368.602.15

11.2611.2611.811.0711.536.73

11.593.44

12.412.2211.4812.4010.4520.8

l-Nitroso-2-naphthol (75% dioxane)AgCdCo(II)Cu(II)MgNdNiPbPrTh cYZnZr

OxalateAgAlAm(III)Ba

7.746.18

10.6712.526.29.5

10.759.739.048.509.029.323.6

2.417.26

2.31

14.5

21.1521.2920.70

24.3220.80

21.25

17.60

21.9110.211.1

19.7316.0

19.2520.53

20.97

21.4520.4321.6913.45

11.3822.8123.3710.6017.721.2917.3117.0616.1317.7417.02

13.09.8

25.628.09

23.8524.0325.04

16.3

log/Q

30.29

[Am(HL)4 11.0]

INORGANIC CHEMISTRY 1.373

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued)

(Continued)

BeÇaCdCe(III)Co(II)Co(III)Cu(II)ErFe(II)Fe(III)GdHg(II)MgMn(II)Mn(III) eMo(III)Mo(VI)NdNiNp02(II)PbPu(III)Pu(IV)PuO2(II)SrThTiO(II)T1(I)U02(II)VO(II)V(II)YYbZnZr

1,10-PhenanthrolineAgCaCdCo(II)Cu(II)Fe(II)Fe(III)Hg(II)MgMn(II)NiPbVO(II)Zn

4.903.03.526.524.79

6.164.822.99.47.04

3.433.979.983.38

7.215.33.30

9.318.74

2.54

2.672.03

-2.76.527.304.899.80

5.020.75.937.259.085.856.5

1.23.888.804.655.476.55

5.7710.56.7

8.58.214.52

16.2

6.984.385.80

16.57

11.57.647.076.54

18.7016.9111.4

10.579.80

10.1011.77.60

17.14

12.07

10.5313.9515.7611.4511.419.65

7.0417.107.59.69

12.35

11.39.7

-20

10.035.22

20.2

19.42

>14-8.5

2823.39

11.47>14

8.1520.86

14.3119.9020.9421.323.523.35

10.1124.80

9

17.55

log K.

[MoO3(L)2- 13.0]

27.50

24.48

21.15

1.374 SECTION ONE

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

Phthalic acidBaCaCdCo(II)Cu(II)LaNiPb dU02(II)Zn

PiperidineAgHg(II)Pt(II)

Propylene-l,2-diamineCd b,cCo(II) dCu(II) cHg(II) cNi dZn b,c

PyridineAgCdCo(II)Cu(I)

Cu(II)

Fe(II)Hg(II)Mn(H)VO(II)Zn

2.332.432.51.813.46

2.143.44.382.2

3.308.70

5.426.41

10.787.435.89

1.971.401.14

2.59

0.715.11.92

-1.701.41

Pyridine-2,6-dicarboxylic acidBa a,dCa a,dCd a,dCe(III) a,dCo(II) a,dCu(II) a,aDy a,dEr a,¿Eu(III) a,dFe(II) a,dFe(III) a,dGd a,dHo a,dLa a,dLu a,d

3.464.65.78.347.09.148.698.778.845.71

10.918.748.727.989.03

4.514.837.74

6.4817.44

9.9711.4720.0623.5313.6210.87

4.351.951.543.34

4.33

10.02.77

1.11

7.210.014.4212.516.5216.1916.3915.9810.3617.1316.0616.2313.7916.80

log K5 5.7

12.1214.72

23.2517.8912.57

2.27

4.51

5.93log K5 7.00

10.43.37

1.61

18.80

22.1422.1421.00

21.8322.0818.0621.48

log*4

log K6 8.2

2.50

5.44log K6 6.896.54

log K6 10.2

3.50

1.93

INORGANIC CHEMISTRY 1.375

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

(Continued)

Hg(II) a,dMg a,dMn(II) a,dNd a,dNi a,dPb a,dPt a,dSm a,dSr a,dTb AdTm a,dY ö,dYb AdZn Ad

20.282.75.018.786.958.708.638.863.898.688.838.468.856.35

l-(2-Pyridylazo)-2-naphthol (PAN)Co(II)Cu(II)Mn(II)NiTl(III)Zn

>12168.5

12.72.29

11.2

4-(2-Pyridylazo)resorcinal (PAR)Co(II)Cu(II)Mn(II)NiSeTl(EI)Zn

8.4915.6013.5010.6015.1015.88

16.1116.5415.7316.6111.88

16.425.3

21.7

log Kf [ML]

10.3

4.84.23

log Kf [ML]

Pyrocatechol-3,5-disulfonate (Pyrocatechol Violet)AlBiCdCo(II)Cu(II)GaInMgMn(II)NiPbThZnZr

19.1327.07

8.139.01

16.4722.1818.104.427.139.35

13.2523.3610.4127.40

20.66

19.9421.23

22.0322.0421.3421.83

logi^tMHL]

>12

9.713.2

12.4

logXfpvyL]

4.955.25

4.654.814.6

4.38

4.426.214.18

log A4

log^EMCHLy

18.926.0

23.5

logÄ^MHL]

5.866.53

11.18

3.665.366.85

10.19

7.21

1.376 SECTION ONE

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

log K1 log K2 log K3 log K4log KI log K2 log A"3 log K4

8-QuinolinolBa 2.07Be 3.36Ca (75%dioxane) 7.3 13.2Cd 7.2 13.4Ce(III) (50%dioxane) 9.15 17.13Co(II) 9.1 17.2Cu(II) 12.2 23.4Fe(II) 8.58 16.93 22.23Fe(III) 12.3 23.6 33.9La 5.85 16.95Mg (50% dioxane) 6.38 11.81Mn(II) (50% dioxane) 8.28 15.45Ni (50% dioxane) 11.44 21.38Pb (50% dioxane) 10.61 18.70Sm 6.84 19.50Sr 2.89 6.08Th 10.45 20.40 29.85 38.80UO2(II) (50% dioxane) 11.25 20.89V(II) 12.8 23.6VO(H) 10.97 20.19Y 8.15 14.90 20.25Zn (50% dioxane) 9.96 18.86

log/CtMHL*] log Kf [M(HL)2]

SalicylaldoximeBa 0.53 3.72Be <7Ca 0.92 3.72Cd <4.4Co(II) 8.13Cu(II) 8.13Mg 0.64 4.10Ni 3.77Sr 3.77Zn <5.2

logíT, logíT2 log #3 log #4

Salicylic acidAl 14.11Be 17.4Cd 5.55Ce(III) 2.66Co(II) 6.72 11.42Cr(II) 8.4 15.3Cu(II) 10.60 18.45Fe(II) 6.55 11.25Fe(ffl) a,c 16.48 28.12 36.80La 2.64

INORGANIC CHEMISTRY 1.377

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

log K1 log K2 log K3 log K4

(Continued)

Mg (75% dioxane)Mn(II)NdNiPrThTiO(II)U02(II)V(II)Zn

Succinic acidBaBeCaCdCo(II)Cu(II)Fe(m)Hg(II)LaMgMn(II)NdNiPbRaSrZn

5-Sulfosalicylic acidAI cBe cCd cCo(II) cCr(II) cCr(III) cCu(II) cFe(II) cFe(III) cLa cMn(II) cNbO(III) cNi cUO2(II) cZn c

Tartaric acidBaBiCaCdCo(II)Cu(II)

log AT!

4.75.902.706.952.684.256.09

13.46.36.85

2.083.082.02.22.223.337.49

3.961.202.268.12.362.81.01.061.6

13.2011.7116.686.137.19.569.525.90

14.649.115.244.06.42

11.146.05

2.982.82.13.2

\ogK2

9.80

11.75

7.60

7.28

22.8320.8129.089.82

12.9

16.45

25.18

8.247.7

10.2419.2010.65

1.62

9.01

5.11

log K3

10.05

28.89

32.12

8.30

4.78

log-fCi

11.60

6.51log Kf 19.14 [Cu(OH)2L

2-]

1.378 SECTION ONE

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

log K1 log K2 log K3 log K4

Eu(III)Fe(III)LaMgNdPbRaSrZn

Thioglycolic acidCe(III) a,cCo(II)Fe(II)Hg(II)La a,cMn(II)PbNiRare earths a,cY a,cZn

ThioureaAgBiCdCu(I)Hg(II)PbRu(III)

ThoronTh

TriethanolamineAgCo(II)Cu(H)Hg(II)NiZn

log^!

4.987.493.06

9.03.781.241.602.68

1.995.84

1.984.388.56.98

1.9-2.11.917.86

7.4

0.6

1.41.21

2.301.734.306.902.72.00

Triethylenetetramine (Trien)AgCdCo(II)Cu(II)Fe(II)Fe(III)Hg(II)Mn(II)NiPbZn

7.710.7511.020.47.8

21.925.264.9

14.010.411.9

logic.

8.11

1.36

8.32

3.0312.1510.9243.822.987.56

13.533.0-3.3

3.1915.04

13.1

1.6

22.13.1

10.15

3.64

13.08

13.9

logATs

4.7

2.61324.74.70.72

logíí,

log Kf 14.1 [Pb(OH)2L2-]

log K6 11.94.6

15.426.8

8.3

INORGANIC CHEMISTRY 1.379

TABLE 1.76 Cumulative Formation Constants for Metal Complexes with Organic Ligands (Continued )

log K1 log K2 log K3 log K4logATi

l,M-Trifluoro-3-2'-Thenoylacetone(TTA)BaCu(II)Fe(III)NiPrPu(III)Pu(IV)ThU(IV)Zr

Xylcnol orangeBiFe(III)HfTl(III)ZnZr

ZinconZn

6.556.9

10.09.539.538.08.17.2

3.03 [asZrL3+]

5.525.706.504.906.157.60

13.1

\oeK2

10.613.0

\ogK3 \ogK4

1.21 ELECTRODE POTENTIALS

The electrode potential is the difference between the charge on an electrode and the charge in thesolution.

The electrode potential is denoted as the electromotive force (EMF) and the electromotive forceof any electrolytic cell is the sum of the potentials produced at two electrodes.

1.380 SECTION ONE

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C

Standard potentials are tabulated except when a solution composition is stated; the latter are formal potentialsand the concentrations are in mol/liter.

Half-reaction

Standardor formalpotential

Solutioncomposition

ActiniumAc3+ + 3e- = Ac

AluminumA13+ + 3e- = AlA1F|- + 3e- = Al + 6F-A1(OH)4 + 3e- = Al + 4OH~

AmericiumAmOi+ + 4H+ + 2e~ = Am4+ + 2H2OAmO¡+ + e- = AmO¿AmOJ + 4H+ + e- = Am4+ + 2H2OAmOJ + 4H+ + 2e- = Arn3* + 2H2OAm4+ + e~ = Am3+

Am4+ + 4e~ = AmAm3+ + 3e~ = Am

AntimonySb(OH>4 + 2e- = SbOj + 2OH- + 2H2OSbOj + 2H2O + 3e- = Sb + 4OH~Sb + 3H2O + 3e- = SbH3 + 3OH-Sb2O5 + 6H+ + 4e- = 2SbO+ + 3H2OSb2O5 + 4H+ + 4e- = Sb2O3 + 2H2OSb2O5 + 2H+ + 2e- = Sb2O4 + H2OSb2O4 + 2H+ + 2e- = Sb2O3 + H2

SbO+ + 2H+ + 3e- = Sb + H2OSb + 3H+ + 3e- = SbH3

ArsenicH3AsO4 + 2H+ + 2e~ = HAsO2 + 2H2OHAsO2 + 3H+ + 3e~ = As + 2H2OAs + 3H+ + 3e- = AsH3

AsOIr + 2H+ + 2e- = AsO2 + 4OH~AsOj + 2H2O + 3e- = As + 4OH~As + 3H2O + 3e- = AsH3 + 3OH-

AstatineHAtO3 + 4H+ + 4e- = HAtO + 2H2

2HAtO + 2H+ + 2e- = Atz + 2H2OAt2 + 2e- = 2At-

BariumBaO2 + 4H+ + 2e- = Ba2+ + 2H2OBa2+ + 2e- = Ba

-2.13

-1.676-2.07-2.310

1.201.590.821.722.62

-0.90-2.07

-0.4650.639

-1.3380.6050.6991.0550.3420.204

-0.510

0.5600.240

-0.225-0.67-0.68-1.37

ça. 1.4ça. 0.7

0.20

2.365-2.92

1 NaOH1 NaOH1 NaOH

INORGANIC CHEMISTRY 1.381

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Half-reaction

Standardor formalpotential

Solutioncomposition

(Continued)

BerkeliumBk4+ + 4e- = BkBk4+ + e~ = Bk3+

Bk3+ + 3e- = Bk

BerylliumBe2* + 2e~ = Be

BismuthBi2O4 (bismuthate) + 4H+ + 1e~ = 2BÍO+ + 2H2OBi3+ + 3e~ = BiBi + 3H+ + 3e- = BiH3

BiClj + 3e~ = Bi + 4C1-BiBr; + 3<r = Bi + 4Br-BiOCl + 2H+ + 3e- = Bi + H2O +

BoronB(OH)3 + 3H+ + 3e- = B + 3H2OBO? + 6H2O + 8e- = BHj + 8OHB(OH)J + 3e- = B + 4OH-

BromineBrU4 + 2H+ + 2e- = BrOj + H2OBrO3~ + 6H+ + 6e- = Br- + 3H2O

ci-

BrOj + 5H+ + 4e- = HBrO + 2H2O2BrO3- + 12H+ + 10«- = Br2 + 6H2

2HBrO + 2H+ + 2e- = Br2 + 2H2OHBrO + H+ + 1e~ = Br~ + H2OBrO- + H2O + 2e~ = Br~ + 2OH~Brj + 2e- = 3Br~Br2(aq) + 2e~ = 2Br"

CadmiumCd2+ + 2e- = CdCd2+ + Hg + 2e- = Cd(Hg)CdCl?- + 2e- = Cd + 4C1~Cd(CN)2- + 2e- = Cd + 4CN~Cd(NH3)|

+ + 2e- = Cd + 4NH3

Cd(OH)J- + 2e- = Cd + 4OR-

CalciumCaO2 + 4H+ + 2e- = Ca2+ + H2OCa2+ + 2e- = CaCa + 2H+ + 2e- = CaH2

CaliforniumCf3+ + 3e- = CfCf3+ + c- = Cf2+

Cf2+ + 2e- = Cf

CarbonCO2 + 2H+ + 2e- = CO + H2OCO2 + 2H+ + 2e- = HCOOH2CO2 + 2H+ + 2e- = H2C2O4

C2OJ- + 2H+ + 2e- = 2HCOO-

0

HCOOH + 2H+ + 2e- = HCHO + H2O

-1.051.67

-2.01

-1.99

1.590.317

-0.970.1990.1680.170

-0.890-1.241-1.811

1.8531.4781.4441.51.6041.3410.761.0501.087

-0.403-0.352-0.453-0.943-0.622-0.670

2.224-2.84

0.776

-1.93-1.6-2.1

-0.106-0.20-0.481

0.1450.034

1 NaOH

1.382 SECTION ONE

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Half-reaction

Standardor formalpotential

Solutioncomposition

C2N2 + 2H+ + le- = 2HCNHCNO + 2H+ + le- = CO + H2OECHO + 2H+ + le- = CH3OHCNO- + H2O + 2e- = CN~ + 2OH~

CeriumCe(IV) + e- = Ce(m)

Ce3+ + 3e- = Ce

CesiumCs+ + e~ = CsCs+ + Hg + e- = Cs(Hg)

ChlorineCIO; + 2H+ + 2e- = C103- + H2O2C1O4- + 16H+ + Ue- = C12 + 8H2OClOj + 8H+ + 8e~ = Cl- + 4H2OC1O3- + 2H+ + e~ = ClO2(g) + H2OClOj + 3H+ + le- = HC1O2 + H2O2C1O3- + 12H+ + \0e~ = C12 + 6H2OClOj + 6H+ + 6e~ = Cl- + 3H2OC102(g) + H+ + e- = HC102

HC1O2 + 2H+ + 2e~ = HC1O + H2OHC1O2 + 3H+ + 4e- = Cl~ + 2H2O2HC1O2 + 6H+ + 6e- = Cl2(g) + 4H2O2C1O- + 2H2O + 2e- = Cl2(g) + 4OH~C1O- + H2O + 1e~ = Cl- + 2OH-C13- + 2e~ = 3C1-Cl2(aq) + 2e- = 2C1~

ChromiumCr2O?- + 14H+ + de~ = 2Cr3+ + 7H2O

CrO5~ + 4H2O + 3e- = CrCOH)^ + 4OH~Cr3+ + e- = Cr2+

Cr3+ + 3e- = CrCr2+ + 2e- = Cr

CobaltCoO2 + 4H+ + e- = Co3+ + 2H2OCo(H20)i* + e- = Co(H20)¡+Co(NH3)l

+ + e- = Co(NH3)i+

Co(OH)3 + e- = Co(OH)2 + OH-Co(en)l+ + e~ = Co(en)§+ [en = ethylenediamine]Co(CN)|- + e- = Co(CN)f- + CN~Co2+ + 2e~ = CoCo(NH3)Í

+ + 2e- = Co + 6NH3

[Co(CO)4]2 + 2e- = 2Co(CO)4-

0.3730.3300.2323

-0.97

1.701.611.441.28

-2.34

-2.923-1.78

1.2011.3921.3881.1751.1811.4681.451.1881.641.5841.6590.4210.8901.4151.396

1.361.151.03

-0.13-0.424-0.74

0.90

1.4161.920.0580.17

-0.2-0.8

-0.277-0.422-0.40

1 HC104

1 HNO3

0.5 H2SO4

1HC1

1 NaOH1 NaOH

0.1 H2SO4

1 HC1O4

INaOH

7NH3

0.1 en0.8 KOH

INORGANIC CHEMISTRY 1.383

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Half-reaction

Standardor formalpotential

Solutioncomposition

(Continued)

CopperCu2+ + 1e~ = CuCu2+ + e~ = Cu+

Cu+ + e- = CuCu2+ + Cl- + e- = CuClCu2+ + 2Br~ + e~ = CuBrjCu2+ + I- + e~ + CulCu2+ + 2CN- + e~ = Cu(CN)jCu(NH3)a

+ + e- = Cu(NH3)J + 2NH3

Cu(en)2+ + e~ = Cu(en)+ + en

Cu(CN)j + e' = Cu + 2CN-CuCl|- + e~ = Cu + 3C1-Cu(NH3)í + e- = Cu + 2NH3

CuriumCm4+ + e~ = Cm3+

Cm3+ + 3e- = Cm

DysprosiumDy3+ + 3e~ = DyDy3+ + e~ = Dy2+

Dy2+ + le- = Dy

EinsteiniumEs3+ + 3e- = EsEs3+ + e- = Es2+

Es2+ + 1e~ = Es

ErbiumEr3+ + 3e~ = Er

EuropiumEu3+ + 3e- = EuEu3* + e~ = Eu2+Eu2+ + 2e~ = Eu

FermiumFm3+ + 3e^ = FmFm3+ + e- = Fm2+

Fm2+ + 1e^ = Fm

FluorineF2 + 2H+ + 2e- = 2HFF2 + H+ + 1e~ = HFjF2 + 1e~ = 2F-OF2 + 3H+ + 4e- = HFj + H2O

FranciumFr+ + e~ = Fr

GadoliniumGd3+ + 3e~ = Gd

GalliumGa3+ + 3e~ = GaGa3+ + e~ = Ga2+

Ga2+ + 2e~ = Ga

0.3400.1590.5200.5590.520.861.120.10

-0.35-0.44

0.178-0.100

3.2-2.06

-2.29-2.5-2.2

-2.0-1.5-2.2

-2.32

-1.99-0.35-2.80

-1.96-1.15-2.37

3.0532.9792.872.209

ca. -2.9

-2.28

-0.529-0.65-0.45

1 KBr

1NH3

1 HC1

1 HC1O4

1.384 SECTION ONE

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Half-reaction

Standardor formalpotential

Solutioncomposition

GermaniumGeO2(tetr) + 2H+ + 1e~ = GeO(yellow) + H2OGeO2(tetr) + 4H+ + 2e~ = Ge2+ + 2H2OGeO2(hex) + 4H+ + 2e~ = Ge2+ + 2H2OH2GeO3 + 4H+ + 4e- = Ge + 3H2OGe4+ + 2e~ = Ge2+

Ge2+ + 2e- - GeGeO + 2H+ + 2e~ = Ge + H2OGe + 4H+ + 4e- = GeH4

GoldAu3+ + 3e- = AuAu3+ + 2e- = Au+

Au+ + e~ = AuAuClj + 2e~ = AuClj + 2C1"AuBr; + 2e~ = AuBr2 + 2Br~Au(SCN)4 + 2e- = Au(SCN)ï + 2SCN-AuBrj + 3e~ = Au + 4Br~AuClj + 3e~ = Au + 4C1~Au(SCN)4 + 3e- = Au + 4SCN-Au(OH)3 + 3H+ + 3e- = Au + 3H2OAuBrj + e~ = Au + 2Br"AuClj + e~ = Au + 2C1-Aulj + e~ = Au + 21-AuCCN)^ + e~ = Au + 2CN-Au(SCN)2 + e- = Au + 2SCN~

HafniumHf4+ + 4e- = HfHfO2 + 4H+ + 4e- = Hf + 2H2O

HolmiumHo3+ + 3e- = Ho

Hydrogen2H+ + 2e- = H2

2D+ + 2e~ = D2

2H2O + le- = H2 + 2OH-

IndiumIn3+ + 3e- = InIn3+ + 2e- = In+

In+ + e~ = In

IodineH5IO6 + H+ + 2e- = IOj + 3H2Olui + 5H+ + 4e- = HIO + 2H2OHIO3 + 5H+ + 2C1- + 4e- = ICI? + 3H2O2IOJ + 12H+ + 10e- = I2(c) + 3H2OlOj + 3H2O + 6e- = l' + 6OH-2IBro: + 2e- = I2Br~ + 3Br~2IBrí + le- = I2(c) + 4Br-2IBr + 2e~ = I2Br" + Br~2IBr + 2e~ = I2 + 2Br~2IC1 + 2e~ = I2(c) + 2C1-

-0.255-0.210-0.132

0.0120.00.247

-0.255-0.29

1.521.361.830.9260.8020.6230.8541.0020.6621.450.9601.150.576

-0.5960.69

-1.70-1.57

-2.23

0.00000.029

-0.828

-0.338-0.444-0.126

1.6031.141.2141.1950.2570.8210.8740.9731.021.20

INORGANIC CHEMISTRY 1.385

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Half-reaction

Standardor formalpotential

Solutioncomposition

(Continued)

2IC1J + 2e- = I2(c) + 4C1-2ICN + 2H+ + 2e- = I2(c) + 2HCN2ICN + 2H+ + 2e- = I2(aq) + 2HCN2HIO + 2H+ + 2e- = I2 + 2H2OHIO + H+ + 2e- = I- + H2OI3- + 2e- = 31-I2(aq) + 2e- = 2l~I2(c) + 2e- = 21-

IridiumIrBr¡- + e- = IrBr3,-IrCl|- + e- = &C1|-Irl¡- + e- = IrirIrO2 + 4H+ + e- = Ir3+ + 2H2OIrO2 + 4H+ + 4e- = Ir + 2H2OIr3+ + 3e- = IrIrCir + 4e- = Ir + 6C1-IrCll- + 3e- = Ir + 6C1"

IronFeOI- + 8H+ + 3e^ = Fe3+ + 4H2OFeO2.- + 2H2O + 3e- = FeOj + 4OH~Fe3+ + e~ = Fe2+

Fe(CN)l- + e- = Fe(CN)¿-

Fe(EDTA)- + g- = Fe(EDTA)2-Fe(OH)4 + e- = Fe(OH)3-Fe2+ + 2e- = Fe[Fe(CO)4]3 + 6e- = 3Fe(CO)3-

LanthanumLa3+ + 3e- = La

LawrenciumLr3+ + 3e- = Lr

LeadPb4+ + 2e- = Pb2+

PbO2(alpha) + SO2,- + 4H+ + 2e~ = PbSO4 + 2H2OPbO2 + 4H+ + 2e- = Pb2+ + 2H2OPbO2 + 2H+ + 2e- = PbO + H2OPbO2- + H2O + 2e- = HPbO2 + 3OH-Pb2+ + 2e- = PbHPbOj + H2O + 2e- = Pb + 3OH~PbHPO4 + 2e- = Pb + HPO2.-PbSO4 + 2e- = Pb + SO2.-PbF2 + 2e- = Pb + 2F~PbCl2 + 2e- = Pb + 2C1-PbBr2 + 2e- = Pb + 2Br-PbI2 + 2e- = Pb + 21-Pb + 2H+ + 2e- = PbH2

1.070.6950.6091.450.9850.5360.6210.5355

0.8050.8670.490.2230.9351.1560.8350.77

2.20.550.7710.700.670.440.3610.710.12

-0.73-0.44-0.70

-2.38

-2.0

1.651.6901.460.280.3

-0.126-0.54-0.465-0.356-0.344-0.268-0.280-0.365-1.507

1 H2SO4

10 NaOH

1 MCI0.5 H2SO4

0.3 H3PO4

1 MCI0.1 EDTA, pH4-61 NaOH

2 NaOH

1.386 SECTION ONE

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Half-reaction

Standardor formalpotential

Solutioncomposition

LithiumLi+ + e- = LiLi+ + Hg + e- = Li(Hg)

LutetiumLu3+ + 3>e~ = Lu

MagnesiumMg2+ + 1e~ = MgMg(OH)2 + 2e~ = Mg + 2OH~

ManganeseMnOj + e~ = MnO4-MnU4 + 4H+ + 3e~ = MnO2(beta) + 2H2OMnO4 + 2H2O + 3e- = MnO2 + 4OH~MnU4 + 8H+ + 5e- = Mn2+ + 4H2OMnO2.- + e~ = MnO4~MnO2.- + 2H2O + 1e~ = MnO2 + 4OH-MnOfr + 2H2O + e~ = MnO2 + 4OR-MnO2 + 4H+ + e- = Mn3+ + 2H2OMnO2(beta) + 4H+ + 2e~ = Mn2+ + 2H2OMn3+ + e~ = Mn2+

Mn(H2P2O7)l- + 2H+ + e~ = Mn(H2P2O7)i- + H4P2O,Mn(CN)i- + e- = Mn(CN)|-Mn2+ + 1e~ = Mn

MendeleviumMd3+ + 3e~ = MdMd3+ + e~ = Md2+

Md2+ + le- = Md

Mercury2Hg2+ + le- = Hgi+

2HgCl2 + 2e- = Hg2Cl2 + 2C1-Hg2+ + le- = Hg(lq)HgO(c,red) + 2H+ + 2e~ = Hg + H2OHgi* + 2e- = 2HgHg2F2 + 2e~ = 2Hg + 2p-Hg2Cl2 + 2e- = 2Hg + 2C1~Hg2Br2 + 2e- = 2Hg + 2Br-Hg2I2 + le- = 2Hg + 21-Hg2SO4 + 2e- = 2Hg + SO2.-

MolybdenumMoOJ- + 4H2O + 6e~ = Mo + 8OR-H2MoO4 + 6H+ + 6e- = Mo + 4H2OH2MoO4 + 2H+ + le- = MoO2 + 2H2OMoO2 + 4H+ + 4e- = Mo + 2H2OH2MoO4 + 6H+ + 3e- = Mo3+ + 4H2OMo(CN)¡- + e- = Mo(CN)fMo3+ + 3e~ = Mo

NeodyniumNd3+ + 3e- = NdNd3+ + e~ = Nd2+

Nd2+ + 1e~ = Nd

-3.040-2.00

-2.30

-2.356-2.687

0.561.700.601.510.270.620.960.951.231.51.15

-0.24-1.17

-1.7-0.15-2.4

0.9110.630.85350.9260.79600.6560.26820.1392

-0.04050.614

-0.9130.1140.646

-0.1520.4280.725

-0.2

-2.32-2.6-2.2

0.4 H2P2O2,-1.5 NaCN

INORGANIC CHEMISTRY 1.387

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

(Continued)

Half-reaction

Standardor formalpotential

Solutioncomposition

NeptuniumNpOJ + 2H+ + e~ = NpO¡+ + H2ONpOl+ + e- = NpOJNpOi+ + 4H+ + 2e- = Np4+ + 2H2ONp4+ + e~ = Np3+

Np4+ + 4e- = NpNp3+ + 3«- = Np

NickelNiOJ- + 4H+ + 2e- = NiO2 + 2H2ONiO2 + 4H+ + le- = Ni2+ + 2H2ONiO2 + 2H2O + 1e~ = Ni(OH)2 + 2OR-Ni(CN)3~ + e- = Ni(CN)?.- + CN~Ni2+ + le- = NiNi(OH)2 + 2e- = Ni + 2OH~Ni(NH3)i

+ + 2e- = Ni + 6NH3

NiobiumNb2O5 + 10H+ + 4e- = 2Nb3+ + 5H2ONb2O5 + 10H+ + 10e- = 2Nb + 5H2ONb3+ + 3e- = Nb

Nitrogen2NO3- + 4H+ + 2e- = N2O4 + 2H2ONOj + 3H+ + 2e- = HNO2 + H2ON2O4 + 2H+ + 2e- = 2HNO2

HNO2 + H+ + e- = NO + H2O2HNO2 + 4H+ + 4e- = N2O(g) + 3H2O2HNO2 + 4H+ + 4e- = H2N2O2 + 2H2O2NO + 2H+ + 2e- = H2N2O2

2ND + 2H+ + 2e- = N2O + H2OH2N2O2 + 6H+ + 4e" = 2HONHJN2O + 2H+ + 2e- = N2 + H2ON2O + 6H+ + H2O + 4e- = 2HONH3

+

N2 + 2H2O + 4H+ + 2e- = 2HONH3+

N2 + 5H+ + 4e- = N2H5+

HONHJ + 2H+ + 2e- = NHJ + H2O2HONHÎ + H+ + 2e- = N2HJ + 2H2ON2H5

+ + 3H+ + 2e- = 2NHJ3N2 + 2H+ + 2e- = 2HN3

NobeliumNo3+ + 3e- = NoNo3+ + e- = No2*No2+ + 2e- = No

OsmiumOsO4(aq) + 4H+ + 4e~ = OsO2 • 2H2O + 2H2OOsO4(c, yellow) + 8H+ + 8e- = Os + 4H2OOsO2 + 4H+ + 4e- = Os + 2H2OOsCl¡- + e- = OsCli-OsBr2.- + e~ = OsBr|-

OxygenO3 + 2H+ + 2e- = O2 + H2OO3 + H2O + 2e- = O2 + 2OH-

2.041.340.950.18

-1.30-1.79

1.81.5930.490

-0.401-0.257-0.72-0.49

-0.1-0.65-1.1

0.8030.941.070.9961.2970.860.711.590.4961.77

-0.05-1.87-0.23

1.351.411.275

-3.40

-1.21.4

-2.5

0.9640.850.6870.450.35

2.0751.240 1 NaOH

1.388 SECTION ONE

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Half-reaction

Standardor formalpotential

Solutioncomposition

O2 + 4H+ + 4e- = 2H2OO2 + 2H+ + 2e- = H2OO2 + H2O + le- = HOj + OH-H202 + 2H+ + 2e- = 2H2OHOj + H2O + 2<r = 3OH-O2 + 2H2O + 4e- = 4OH-

PalladiumPdO3 + 2H+ + 2e- = PdO2 + H2OPdCl¡- + le- = PdClJ- + 2C1-PdBr¡~ + 2e- = PdBr2.- + 2Br~Pdl¡- + 2e- = Pdl|- + 21-Pd2+ + 2e- = PdPdClJ- + 2e- = Pd + 4C1-PdBr?- + 2e- = Pd + 4Br~Pd(NH3)2+ + 1e~ = Pd + 4NH3

Pd(CN)2.- + 2e- = Pd + 4CN-

PhosphorusH3PO4 + 2H+ + le- = H3PO3 + H2O2H3PO4 + 2H+ + 2e- = H4P2O6 + 2H2OH4P2O6 + 2H+ + 2e- = 2H3PO3

H3PO3 + 2H+ + 1e~ = HPH2O2 + H2OHPH2O2 + H+ + e~ = P + 2H2OH3PO3 + 3H+ + 3e- = P + 3H2O2P(white) + 4H+ + 4e~ = P2H4

P2H4 + 2H+ + 2e- = 2PH3

P(white) + 3H+ + 3e~ = PH3

PlatinumPtO3 + 2H+ + 2e- = PtO2 + H2OPtO2 + 2H+ + 2e- = PtO + H2OPtCli- + 2e- = PtClJ- + 2C1-PtBr|- + 2e- = PtBrJ- + 2Br~Pt^- + 2e- = Ptq- + 21-Pt2+ + 2e- = PtPtClJ- + 2e- = Pt + 4C1-PtBrJ- + 2e~ = Pt + 4Br~

PlutoniumPuOl* + e~ = PuOfPuOi+ + 4H+ + 2e- = Pu4+ + 2H2OPu4+ + e~ = Pu3+

Pu4+ + 4e- = PuPu3+ + 3e- = Pu

PoloniumPoO2 + 4H+ + 2e- = Po2+ + 2H2OPo4+ + 4e- = PoPo2+ + 2e~ = PoPo + 2H+ + 2e- = H2Po

1.2290.695

-0.0761.7630.8670.401

2.0301.4700.990.480.9150.620.490.0

-1.35

-0.276-0.933

0.380-0.499-0.365-0.502-0.100-0.006-0.063

2.01.0450.7260.6130.3211.1880.7580.698

1.021.041.010.800.50

-1.25-2.00

1.10.730.37

ca. -1.0

1 NaOH

1 HC1

1NH3

1 KCN

1 KBr1 KI

1 H3PO4

1 HF

INORGANIC CHEMISTRY 1.389

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half-reaction

Standardor formalpotential

Solutioncomposition

(Continued)

PotassiumK+ + e- = KK+ + Hg + e- = K(Hg)

PraseodymiumPr4* + e- = Pr3+

pr3+ + e- = Pr

PromethiumPm3+ + 3e~ = Pm

ProtoactiniumPaOOH2* + 3H+ + e- = Pa4+ + 2H2OPaOOH2+ + 3H+ + Se- = Pa + 2H2OPa4+ + 4e- - Pa

RadiumRa2+ + 1e~ = Ra

RheniumReO4 + 2H+ + e- = ReO3 + H2ORed; + 4H+ + 3e~ = ReO2 + 2H2OReOí + 2H2O + 3e- = ReO2 + 4OH-ReO4 + 6C1- + 8H+ + 3<r = ReCl2" + 4H2O2ReOï + 10H+ + Se- = Re2O3 + 5H2OReO3 + 2H+ + 1e~ = ReO2 + H2OReO2 + 4H+ + 4e~ = Re + 2H2OReCli- + 4e- = Re + 6C1-Re + e~ = Re~

RhodiumRhO2 + 4H+ + e~ = Rh3+ + 2H2ORh3+ + 3e" = RhRhCl|- + 3e- = Rh + 6C1-

RubidiumRb+ + e~ = RbRb+ + Hg + e- = Rb(Hg)

RutheniumRuO4 + e~ = RuOíRuO4 + 4H+ + 4e~ = RuO2 + 2H2ORuO4 + 8H+ + Se- = Ru + 4H2ORuO4 + e~ = RuO2,-RuO^ + 4H+ + 1er = RuO2 + 2H2ORuO2 + 4H+ + 4e- = Ru + 2H2ORu(H20)l+ + e- = Ru(H20)Í+

Ru(NH3)l+ + e- = Ru(NH3)i+

Ru(CN)¡- + e- = Ru(CN)rRu3+ + e~ = Ru2+

SamariumSm3+ + 3e- = SmSm3+ + e- = Sm2+

Sm2+ + 2e~ = Sm

ScandiumSc3+ + 3<r = Se

-2.924ca. - 1.9

3.2-2.35

-2.42

-0.10-1.19-1.46

-2.916

0.7680.51

-0.5940.12

-0.8080.630.220.51

-0.10

1.8810.760.5

-2.924-1.81

0.891.41.040.5932.00.680.2490.100.860.249

-2.30-1.55-2.67

-2.03

1.390 SECTION ONE

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued)

Half-reaction

Standardor formalpotential

Solutioncomposition

SeleniumSeO2.- + 4H+ + 2e- = H2SeO3 + H2OH2SeO3 + 4H+ + 4e- = Se + 3H2OSe(c) + 2H+ + 2e- = H2Se(aq)Se + H+ + 2e- = HSe~Se + 2e- = Se2-

SiliconSiO2(quartz) + 4H+ + 4e~ = Si + 2H2OSiO2 + 2H+ + 2e- = SiO + H2OSiO2 + 8H+ + Se- = SiH4 + 2H2OSiF2,- + 4<r = Si + 6F-SiO + 2H+ + 2e- = Si + H2OSi + 4H+ + 4e- = SiH4(g)

SilverAgO+ + 2H+ + e- = Ag2+ + H2OAg2O3 + 2H+ + 2e- = 2AgO + H2OAg2O3 + H2O + 2e- = 2AgO + 2OH~Ag2O3 + 6H+ + 4e- = 2Ag+ + 3H2OAg2+ + e~ = Ag+

AgO + 2H+ + e- = Ag+ + H2OAg+ + e~ = AgAg2SO4 + 2e~ = 2Ag + SO2.-Ag2C204 + 2e- = 2Ag + C2OJ-Ag2CrO4 + 2e~ = 2Ag + CrO4~Ag(NH3)J + e- = Ag + 2NH3

AgCl + e~ = Ag + Cl-AgBr + e~ = Ag + Br~AgCN + e~ = Ag + CN-Agl + e' = Ag + I-Ag(CN) + e~ = Ag + 2CN-AgSCN + e- = Ag + SCN-Ag2S + 1er = 2Ag + S2~

SodiumNa+ + e~ = NaNa+ + Hg + e- = Na(Hg)

StrontiumSrO2 + 4H+ + 2e- = Sr2+

Sr2+ + 1e~ = Sr

SulfurS2Oi- + 2e- = 2SOJ-S2Oir + 2H+ + 2e- = 2HSÛ4-2SOJ- + 4H+ + 2e- = S2C%- + 2H2OSOJ- + 4H+ + le- = SO2(aq) + H2OS04- + H20 + 2e- = SO?.- + 2OH~S2Oi- + 4H+ + 2e- = 2H2SO3

S2O¡- + le- = 2SO2-2HSOJ + 2H+ + le- = S2O4~ + 2H2O2SOi~ + 2H2O + le- = S2OJ- + 4OH-4H2SO3 + 4H+ + 6e~ = S4O¡- + 6H2O

1.1510.74

-0.115-0.227-0.670

-0.909-0.967-0.516-1.37-0.808-0.143

1.3601.5690.7391.6701.9801.7720.79910.6530.470.4470.3730.22230.071

-0.017-0.152-0.31

0.09-0.71

-2.713-1.84

2.33-2.89

1.962.08

-0.250.158

-0.9360.5690.0370.099

-1.130.507

1 NaOH

1 NaOH

INORGANIC CHEMISTRY 1.391

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Half-reaction

Standardor formalpotential

Solutioncomposition

(Continued)

4HSOJ + 8H+ + 6e- = S4O¿- + 6H2O2SO2(aq) + 2H+ + 4e~ = S2Oi.~ + H2O2SO?.- + 3H2O + 4e- = S2O§- + 6OH-SO§- + 3H2O + 4e- = S + 6OH~S/)2.- + 2e- = 2S20¡-S2O?.- + 6H+ + 4e- = 2S + 3H2OSF4(g) + 4e- = S + 4F-S2Cl2(g) + 2e~ = 2S + 2C1-S + H+ + 2e- = HS-S + 2H+ + 2e- = H2S(aq)S + 2H+ + 2e- = H2S(g)S + 2e- = S2-

TantalumTajOj + 10H+ + 10e- = 2Ta + 5H2OTaF?.- + 5e- = Ta + 7F~

TechnetiumTcOí + 4H+ + 3e- = TcO2 + 2H2OTcOí + 2H+ + e- = TcO3 + H2OTcU4 + e~ = TcO2-TcOj + 8H+ + le- = Te + 4H2OTcO2- + 4H+ + le' = TcO2 + 2H2OTcO2 + 4H+ + 4e- = Te + 2H2OTe + e~ = Tc-

TelluriumH2TeO4 + 6H+ + 2e- = Te4+ + 4H2OH2TeO4 + 2H+ + 2e~ = TeO2(c) + 2H2OTeO2- + 2H+ + le- = TeO¡- + H2OTeOOH+ + 3H+ + 4e~ = Te + 2H2OH2TeO3 + 4H+ + 4e~ = Te + 3H2OTeOf- + 6H+ + 4e- = Te + 3H2OTeO|- + 3H2O + 4e- = Te + 6OH~TeO2(c) + 4H+ + 4e- = Te + 2H2OTe + 2H+ + 2e~ = H2Te(aq)Te + H+ + 2e~ = HTe~Te2' + 2H+ + le- = 2HTe-

TerbiumTb3+ + ïe~ = Tb

ThalliumT13+ + le- = T1+

T13+ + 3e- = TITl+ + e- = TIT1C1 + e- = TI + Cl-TlBr + e- = TI + Bf-T1I + e- = TI + I-

ThoriumTh4+ + 4e- = Th

0.5770.400

-0.576-0.59

0.0800.50.971.190.2870.1440.174

-0.407

-0.81-0.45

0.7380.7000.5690.4721.390.272

ca. -0.5

0.9291.020.8970.5590.5890.827

-0.4150.521

-0.740-0.817-0.794

-2.31

1.250.770.72

-0.336-0.557-0.658-0.752

-1.83

1 NaOHINaOH

1 HC104

1 HC1

1.392 SECTION ONE

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Half-reaction

Standardor formalpotential

Solutioncomposition

ThulliumTm3+ + 3e- = Tm

TinSn4+ + 1e~ = Sn2+

SnCl¿- + 2e~ = SnCl2.- + 2C1-SnO¡- + 6H+ + le- = Sn2+ + 3H2OSnF|- + 4e- = Sn + 6F~Sn2+ + le- = SnSnCl2- + 2e- = Sn + 4C1"HSnOj + H2O + 2e- = Sn + 3OR-Sn + 4H+ + 4e- = SnH4

TitaniumTiO2+ + 2H+ + e- = Ti3+ + H2OTiO2+ + 2H+ + 4e- = Ti + H2OTi3+ + e- = Ti2+

Ti3+ + 3e- = TiTi2+ + 1e~ = Ti

Tungsten2WO3 + 2H+ + 1e~ = W2O5 + H2OWO3 + 6H+ + 6e- = W + 3H2OWO2- + 4H2O + 6e- = W + 8OH~WO2- + 2H2O + 2e- = WO2 + 4OH~W2O5 + 2H+ + 2e- = 2WO2 + H2OW(CN)1- + e- = W(CN)|~WO2 + 4H+ + 4e- = W + 2H2OWO2 + 2H2O + 4e- = W + 4OH~

UraniumUOi+ + e- = UOJUO|+ + 4H+ + 1e~ = U4+ + 2H2OUOJ + 4H+ + e~ = U4+ + 2H2OU4+ + e~ = U3+

U4+ + 4e- = UU3+ + 3e- = U

VanadiumVOJ + 2H+ + e- = VO2+ + H2OVOf + 4H+ + le- = V3+ + 2H2OVOJ + 4H+ + 3e- = V2+ + 2H2OVOJ + 4H+ + 5e- = V + 4H2OVO2+ + 2H+ + e- = V3+ + H2OV3+ + e~ = V2+

V2+ + 2e- = V

XenonH4XeO6 + 2H+ + 2e- = XeO3 + 3H2OHXeOl- + 2H2O + e~ = HXeO4 + 4OH-XeO3 + 6H+ + 2F- + 4e- = XeF2 + 3H2OXeO3 + 6H+ + 6e- = Xe(g) + 3H2OXeF2 + e- = XeF + F~XeF2 + 2H+ + 2e- = Xe(g) + 2HFXeF + e- = Xe(g) + F~

-2.32

0.1540.140.849

-0.200-0.1375-0.19-0.91-1.07

-0.10-0.86-0.37-1.21-1.63

-0.029-0.090-1.074- 1.259-0.031

0.457-0.119-0.982

0.160.270.38

-0.52-1.38-1.66

1.0000.6680.361

-0.2360.337

-0.255-1.13

2.420.91.62.100.92.643.4

1HC1

INORGANIC CHEMISTRY 1.393

TABLE 1.77 Potentials of the Elements and Their Compounds at 25°C (Continued )

Source: A. J. Bard, R. Parsons, and J. Jordan (eds.), Standard Potentials in Aqueous Solution (prepared under the auspicesof the International Union of Pure and Applied Chemistry), Marcel Dekker, New York, 1985; G. Charlot et al., SelectedConstants: Oxidation-Reduction Potentials of Inorganic Substances in Aqueous Solution, Butterworths, London, 1971.

TABLE 1.78 Potentials of Selected Half-Reactions at 25°C

A summary of oxidation-reduction half-reactions arranged in order of decreasing oxidation strength and usefulfor selecting reagent systems.

Half-reaction E°, volts

F2(g) + 2H+ + 2e− = 2HF 3.053O3 + H2O + 2e− = O2 + 2OH− 1.246O3 + 2H+ + 2 e− = O2 + H2O 2.075Ag2+ + e− = Ag+ 1.980S2O8

2− + 2e− = 2SO42− 1.96

HN3 + 3H+ + 2e− = NH4+ + N2 1.96

H2O2 + 2H+ + 2 e− = 2H2O 1.763Ce4+ + e− = Ce3+ 1.72MnO4

− + 4H+ + 3e− = MnO2(c) + 2H2O 1.702HClO + 2H+ + 2e− = Cl2 + H2O 1.6302HBrO + 2H+ + 2e− = Br2 + H2O 1.604H5IO6 + H+ + 2e− = IO3 + 3H2O 1.603NiO2 + 4H+ + 2e− = Ni2+ + 2H2O 1.593Bi2O4(bismuthate) + 4H+ + 2e− = 2BiO+ + 2H2O 1.59MnO4

− + 8H+ + 5e− = Mn2+ + 4H2O 1.512BrO3

− + 12H+ + 10e− = Br2 + 6H2O 1.478PbO2 + 4H+ +2e− = Pb2+ + 2H2O 1.468Cr2O7

2− + 14H+ + 6e− = 2Cr3+ + 7H2O 1.36Cl2 + 2e− = 2Cl− 1.35832HNO2 + 4H+ + 4e− = N2O + 3H2O 1.297N2H5

+ + 3H+ + 2e− = 2NH4+ 1.275

MnO2 + 4H+ + 2e− = Mn2+ + 2H2O 1.23O2 + 4H+ + 4e− = 2H2O 1.229ClO4

− + 2H+ + 2e− = ClO3− + H2O 1.201

Half-reaction

Standardor formalpotential

Solutioncomposition

(Continued )

YtterbiumW+ + e- = Yb2+

Yb2+ + 1e~ = YbYb3+ + 3e- = Yb

YttriumY3+ + 3e- = Y

ZincZn2+ + 2e- = ZnZn(NH3)f + le- = Zn + 4NH3

Zn(CN)2.- + 2<r = Zn + 4CN^Zn(tartrate)§- + 1e~ = Zn + 4(tartrate)2-Zn(OH)2,- + 2e- = Zn + 4OH~

ZirconiumZr4* + 4e^ = ZrZrO2 + 4H+ + 4e- = Zr + 2H2O

-1.05-2.8-2.22

-2.37

-0.7626-1.04-1.34-1.15-1.285

-1.55-1.45

1.394 SECTION ONE

TABLE 1.78 Potentials of Selected Half-Reactions at 25°C (Continued)

Half-reaction E°, volts

+ We" = I2 + 3H2ON2O4 + 2H+ + le- = 2HNO3

2IC1Í + 2e~ = 4C1- + I2

Br2(lq) + 1e~ = 2Br~N2O4 + 4H+ + 4e- = 2NO + 2H2OHNO2 + H+ + e- = NO + H2ONOj + 4H+ + 3e- = NO + 2H2ONOj + 3H+ + le- = HNO2 + H2O2Hg2+ + 2e- = Hgi+Cu2+ + I- + e~ = CulOsO4(c) + 8H+ + 8e- = Os + 4H2OAg+ + «- = AgHgi+ + 2e- = 2HgFe3+ + e~ = Fe2+

H2SeO3 + 4H+ + 4e~ = Se + 3H2OHN3 + 11H+ + 8<r = 2NHJO2 + 2H+ + 2e- = H2O2

Ag2SO4 + 2e~ = 2Ag + SO4-Cu2+ + Br- + e~ = CuBr(c)Au(SCN)4 + 3e~ = Au + 4SCN~2HgCl2 + 2e- = Hg2Cl2(c) + 2C1~Sb2O5 + 6H+ + 4e~ = 2SbO+ + 3H2OH3AsO4 + 2H+ + 2e- = HAsO2 + 2H2OTeOOH+ + 3H+ + 4e- = Te + 2H2OCu2+ + Cl- + e~ = CuCl(c)I3~ + 2e- = 31-I2 + 2e- = 21-Cu+ + e- = Cu4H2SO3 + 4H+ + 6e- = S4Oi- + 6H2OAg2CrO4 + 2e~ = 2Ag + CrO4~2H2SO3 + 2H+ + 4e~ = S2O

2- + 3H2OUOJ + 4H+ + e~ = U4+ + 2H2OFe(CN)i~ + e~ = Fe(CN)¿-Cu2+ + 2e~ = CuVO2+ + 2H+ + e~ = V3+ + H2OBiO+ + 2H+ + 3e- = Bi + H2OUOi+ + 4H+ + 2e- = U4+ + 2H2OHg2Cl2(c) + 2e~ = 2Hg + 2C1~AgCl + e~ = Ag + Cl-SbO+ + 2H+ + 3e- = Sb + H2OCuCl^- + e~ = Cu + 3C1-SO|- + 4H+ + 2e- = H2SO3 + H2OSn4+ + 2e- = Sn2+

S + 2H+ + 2e- = H2SHg2Br2(c) + 2e~ = 2Hg + 2Br~CuCl + e~ = Cu + Cl-TiO2+ + 2H+ + e- = Ti3+ + H2OS4O¡.- + 2e- = 2S2O

2-AgBr + e~ = Ag + Br~HCOOH + 2H+ + 2e- = HCHO + H2OCuBr + e~ = Cu + Br~2H+ + 2e~ = H2

Hg2I2 + 2e~ = 2Hg + 21-

1.1951.071.071.0651.0390.9960.9570.940.9110.8610.840.79910.79600.7710.7390.6950.6950.6540.6540.6360.630.6050.5600.5590.5590.5360.5360.530.5070.4490.4000.380.3610.3400.3370.320.270.26760.22230.2120.1780.1580.150.1440.13920.1210.1000.080.07110.0560.0330.0000

-0.0405

INORGANIC CHEMISTRY 1.395

TABLE 1.78 Potentials of Selected Half-Reactions at 25°C (Continued)

Half-reaction

Pb2+ + le- = PbSn2+ + 2e- = SnAgi + e~ = Ag + IN2 + 5H+ + 4e- = N2H5

+

V3+ + e- = V2+

Ni2+ + le- = NiCo2+ + le- = CoAg(CN)2 + e~ = Ag + 2CN-PbSO4 + le- = Pb + SO2.-Cd2+ + 2e- = CdCr3+ + e- = Cr2+

Fe2+ + 2e- = FeH3PO3 + 2H+ + 2e- = HPH2O2 + H2O2CO2 + 2H+ + le- = H2C2°4U4+ + e~ = U3+

Zn2+ + 2e~ = ZnMn2+ + 2e- = MnA13+ + 3e- = AlMg2+ + 2e- = MgNa+ + e- = NaK+ + e- = KLi+ + e- = Li3N2 + 2H+ + 2e- = 2HN3

E°, volts

-0.125-0.136-0.1522-0.225-0.255-0.257-0.277-0.31-0.3505-0.4025-0.424-0.44-0.499-0.49-0.52-0.7626-1.18-1.67-2.356-2.714-2.925-3.045-3.10

1.396 SECTION ONE

TABLE 1.79 Overpotentials for Common Electrode Reactions at 25°C

The overpotential is defined as the difference between the actual potential of an electrode at a given current den-sity and the reversible electrode potential for the reaction.

* At 0.23 A/cm2.† At 0.72 A/cm2.The overpotential required for the evolution of O2 from dilute solutions of HClO4, HNO3, H3PO4 or H2SO4 onto smooth plat-

inum electrodes is approximately 0.5 V.

Electrode

Current Density, A/cm2

0.001 0.01 0.1 0.5 1.0 5.0

Overpotential, volts

Liberation of H2 from IM H2SO4

AgAIAuBiCdCoCrCuFeGraphiteHgIrNiPbPdPt (smooth)Pt (platinized)SbSnTaZn

0.0970.30.0170.39

0.0020.80.00260.140.4000.00000.0000

0.48

Liberation of O2 from IM KOH

AgAuCuGraphiteNiPt (smooth)Pt (platinized)

0.580.670.420.530.350.720.40

0.130.83

0.41.130.20.4

0.56

0.930.20.30.40.040.160.0300.40.50.390.75

0.730.960.580.900.520.850.52

Liberation of CI2 from saturated NaCl solutionGraphitePlatinized PtSmooth Pt

0.0060.008 0.03

Liberation of Br2 from saturated NaBr solutionGraphitePlatinized PtSmooth Pt

0.0020.0020.002

Liberation of I2 from saturated Nal solutionGraphitePlatinized PtSmooth Pt

0.002 0.0140.0060.003

0.31.000.1

1.22

0.350.820.321.03

0.290.041

1.20.41.06

0.981.240.661.090.731.280.64

0.250.0260.054

0.0270.0120.006*

0.0970.0320.03

0.420.050.161

0.160.0690.26

0.12

0.481.290.240.781.25

0.481.290.601.07

0.560.52

0.680.048

1.23

1.131.630.791.240.851.490.77

0.53

0.236

0.330.210.38t

0.1960.22

0.69

0.330.98

0.55

0.73

0.711.06

0.051

INORGANIC CHEMISTRY 1.397

TABLE 1.80 Half-Wave Potentials of Inorganic Materials

All values are in volts vs. the saturated calomel electrode.

(Continued)

Element E1/2, volts Solvent system

Aluminum3 +

Ántimony3+ toO

5 +

5+ toOArsenic

3+ to 5 +3 +

Barium2 + toO

Bismuth3+ toO

Bromine5+ to 1-

Oto 1-Br~

Cadmium2+ toO

Calcium2+ toO

Cerium3+ toO

Cesium1+ toO

Chlorineci-

Chromium6+ to 3 +3+ toO3+ to 2 +

-0.5

-0.15-0.31(1)-0.8-1.0; -1.2-1.26-1.32

0.0; -0.257

-0.35

-0.26-0.8; -1.0-0.7; -1.0

-1.94

-0.025(15)-0.09-0.29-0.7-1.0

-1.750.130.00.1

-0.60-0.64-0.81

-2.22-2.13

-1.97

-2.05

0.25

-0.85-0.35; -1.70-0.95

0.2M acetate, pH 4.5-4.7, plus 0.07% azo dye PontochromeViolet SW; reduction wave of complexed dye is 0.2 Vmore negative than that of the free dye.

1MHC1\M HNO3 (or 0.5M H2SO4)0.5M tartrate, pH 4.50.5M tartrate, pH 9 (waves not distinct)\M NaOH; also anodic wave (3 + to 5 +) at - 0.450.5M tartrate plus O.IM NaOH6M HC1. First wave (5 + to 3 +) starts at the oxidation po-

tential of Hg; second wave is 3 + to 0.\M HC1 plus 4M KBr

0.5M KOH (anodic wave); only suitable wave0.1M HC1; ill-defined waves0.5M H2SO4 (or IM HNO3)

0.1M(C2H5)4NI

IM HNO3 (or 0.5M H2SO4)1MHC10.5M tartrate, pH 4.50.5M tartrate (pH 9), wave not well-developed0.5M tartrate plus O.IM NaOH, poor wave

O.IM alkali chlorides (or O.IM NaOH)0.05M H2S04

Wave (anodic) starts at zero; Hg2Br2 formsOxidation of Hg to form mercury(I) bromide

O.IM KC1, or 0.5M H2SO4, or IM HNO3

0.5M tartrate at pH 4.5 or 9IM NH4C1 plus \M NH3

0.1M(C2H5)4NC10.1M (C2H5)4NC1 in 80% ethanol

0.02M alkali sulfate

O.IM (C2H5)4NOH in 50% ethanol

Oxidation of Hg to form Hg2Cl2

CrOJ- to CrOj in 0.1 to IM NaOHIM NH4C1— NH3 buffer (pH 8-9); 3 + to 2+ to 0O.IM pyridine-O.lM pyridinium chloride

1.398 SECTION ONE

TABLE 1.80 Half-Wave Potentials of Inorganic Materials (Continued )

Element E1/2, volts Solvent system

2+ toO2+ to 3 +

Cobalt3+ toO2 + toO

3+ to 2 +

Copper2+ toO

2 +

Gallium3+ toO

Germanium2+ toO

Gold3 + to 1 +1+ toO

Indium3+ toO

Iodine10;

io3-

Oto 1-1-

Iron3 +

-1.54-0.40

-0.5; -1.3-1.07-1.03-1.4

0.0

0.04-0.085-0.09-0.20-0.22-0.4-0.568

0.04; -0.22-0.02; -0.39

0.05; -0.25

-0.24; -0.50

-1.1

-0.45

0-1.4

-0.60

0.36

-0.075-0.305-0.500-0.650-1.050-1.20

0.0-0.1

-0.44; -1.52-0.17; -1.50-0.9; -1.5

1MKC1IM KC1 (anodic wave)

1 M NH4C1 plus 1 M NH3 ; 3 + to 2 + to 00.1M pyridine plus pyridinium chlorideNeutral IM potassium thiocyanateCo(H2O)¡+ in noncomplexing systems\M sodium oxalate in acetate buffer (pH 5); diffusion cur-

rent measured between 0 and —0.1 V

0.1M KNO3, 0.1M NH4C1O4, or IM Na2SO4

0.1M Na4P2O7 plus 0.2M Na acetate, pH 4.50.5M Na tartrate, pH 4.50.1M potassium oxalate, pH 5.7 to 100.5M potassium citrate, pH 7.50.5M Na tartrate plus 0.1 Af NaOH (pH 12)0.1M KNO3 plus IM ethylenediamineIM KC1; consecutive waves: 2 + to 1 + to 00.1M KSCN; consecutive waves: 2+ to 1 + to 00.1M pyridine plus 0.1M pyridinium chloride; consecutive

waves: 2+ to 1+ to 0IM NH4C1 plus IM NH3 ; consecutive waves

Not more than O.OOlAf HC1 or wave masked by hydrogenwave which immediately follows

6M HC1; prior reduction with HPH2O2 to 2 +

\M KCN; wave starts at 0 VAu(CN)2~ wave best for analytical purposes

1MKC1In Na acetate, pH 3.9 to 4.2

First wave at pH 0 (shifts to —0.08 at pH 12); second wavecorresponds to iodate reduction

0.2M KNO3 (shifts -0.13 V/pH unit increase)0.1M hydrogen phthalate, pH 3.20.1M acetate plus 0.1M KC1, pH 4.90. IM citrate, pH 5.950.2M phosphate, pH 7.100.05M borax + 0.1M KC1, pH 9.2; or NaOH plus 0.1M

KC1, pH 13.0Wave starts from zero in acid media; Hg2I2 formedOxidation of Hg to form Hg2I2

IM (NH4)2CO3; two waves; 3+ to 2+ to 00.5AÍ Na tartrate, pH 5.8; two waves; 3 + to 2+ to 00.1 to 5M KOH plus 8% mannitol; 3 + to 2+ to 0

INORGANIC CHEMISTRY 1.399

TABLE 1.80 Half-Wave Potentials of Inorganic Materials (Continued )

Element E1/2, volts Solvent system

(Continued)

3+ to 2 +

2+ to 3 +

Lead2+ toO

Lithium1+ toO

Magnesium2+ toO

Manganese2+ toO

Molybdenum6+

Nickel2+ toO

Niobium5+ to 3 +

NitrogenNitrateHNO2

C2N2Oxamic acidCyanideThiocyanate

OsmiumOs04

Oxygen02

H2O2

-0.13-0.27-0.28-1.46(2)-1.36-0.28-0.27-0.17-1.36

-0.405-0.435-0.49(1)-0.72-0.75

-2.31

-2.2

-1.65-1.55-1.33

-0.26; -0.63

-0.70-0.78-1.09-1.1-1.36

-0.80(4)

-1.45-0.77-1.2; -1.55-1.55-0.45

0.18

0.0; -0.41;-1.16

-0.05; -0.9

-0.9

O.lAf EDTA plus IM Na acetate, pH 6-70.2AÍ Na oxalate, pH 7.9 or less0.5AÍ Na citrate, pH 6.5IM NH4C1O4

0.1MKHF2, pH 4 or less0.5AÍ Na citrate, pH 6.50.2AÍ Na oxalate, pH 7.9 or less0.5AÍ Na tartrate, pH 5.80.1MKHF2, pH 4 or less

1A/HNO3

IM KC1 (or HC1)0.5AÍ Na tartrate, pH 4.5 or 91MKCN\M KOH or 0.5AÍ Na tartrate plus O.lAf NaOH

0.1 AÍ (C2H5)4 NOH in 50% ethanol

0.1 Af (C2H5)4NC1 (poorly defined wave)

1AÍ NH4Clplus 1MNH,IM KCNS1.5MKCN

0.3M HC1, two waves: 6+ to 5+ to 3 +

IM KSCN\M KC1 plus 0.5AÍ pyridinelMNH4Clplus 1MNH3

Ni(H2O)¡+ in NH4C1O4 or KNO3

Ni(CN)a~ in IM KCN (alkaline media)

1MHNO3

0.017AÍ LaCl3 (reduced to hydroxylamine)0.1MHC1O.lAf Na acetate, two waves0.1 Ai Na acetate0.1AÍ NaOH; anodic wave starts at -0.45Anodic wave; neutral or weakly alkaline medium

Sat'd Ca(OH)2. Three waves: first starts at 0; second waveis OsO4~ to Os(V); and third wave is Os(V) to Os(III)

Buffer solutions of pH l to 10. Two waves: O2 to H2O2,and H2O2 to H2O. Second wave extends from —0.5 to-1.3

Very extended wave (see above); sharper in presence ofAerosol OT

1.400 SECTION ONE

TABLE 1.80 Half-Wave Potentials of Inorganic Materials (Continued )

Element E1/2, volts Solvent system

Palladium2+ toO

Potassium1+ toO

Rhenium7+ to 4+4+ to 3 +

Rhodium3+ to 2+

Rubidium1+ toO

Scandium3+ toO

Selenium4+ to 2-

2-

Silver1+ toO1+ toO

Sodium1+ toO

Strontium2+ toO

SulfurS02s2ors2orOto2-HS-

Tellurium4+ toO

4+ to 2-2- toO

Thallium3+ toO

Tin4+ to 2+2+ toO

2+ to 4+

-0.31-0.64-0.72

-2.10

-0.44-0.51

-0.41

-1.99

-1.80

-1.44-1.54-0.49-0.94

-0.3

-2.07

-2.11

-0.38-0.43-0.15-0.50-0.76

-0.4-0.63-1.22-0.72-0.08

-0.48

-0.25; -0.52-0.59-1.22-0.28-0.73

IM pyridine plus IM KC10.1 M ethylenediamine plus IM KC1IM NH4C1 plus IM NH3

0.1M (C2H5)4NOH in 50% ethanol

2M HC1 or (better) 4M HC1O4

ReCl|- ion in IM HC1

IM pyridine plus IM KC1

0.1M (C2H5)4NOH in 50% ethanol

O.lMLiCl, KC1, orBaCl2

IM NH4C1 plus NH3, pH 8.0Same system adjusted to pH 9.5Anodic wave at pH 0 due to HgSeAnodic wave at pH 12 (0.01M NaOH)

Wave starts at oxidation potential of Hg0.0014M KAg(CN)2 without excess cyanide

0.1M (C2H5)4NOH in 50% ethanol

0.1M (C2H5)4NI, water or 80% ethanol

IM HNO3 (or other strong acid); 4+ to 2+0.5M (NH4)2HPO4 plus IM NH3 (anodic wave)IM strong acid; anodic mercury wave90% methanol, 9.5% pyridine, 0.5% HC1 (pH 6)0.1M NaOH (anodic mercury wave)

Citrate buffer, pH l .6 (second of two waves)Ammoniacal buffer, pH 9.4O.lMNaOHIM HC1 (true anodic reversible wave)IM NaOH (same as above; intermediate values at pH l to

13)

IM KC1, KNO3, K2SO4, KOH, or NH3

4M NH4C1 + IM HC1; two waves: 4+ to 2+ to 00.5M tartrate, pH 4.3IM NaOH (stannite ion to tin)OiSM Na tartrate, pH 4.3 (anodic wave)IM NaOH (stannite ion to stannate ion)

INORGANIC CHEMISTRY 1.401

TABLE 1.80 Half-Wave Potentials of Inorganic Materials (Continued)

TABLE 1.81 Standard Electrode Potentials for Aqueous Solutions

Acidic solutions ([H+] = 1.0 mol kg−1)

Half-reaction E°(V)

Li+ + e−Í Li −3.045

K+ + e−Í K −2.925

Na+ + e-Í Na −2.714

La3+ + 3e−Í La −2.37

Mg2+ + 2e−Í Mg −2.356

12H2 + e−

Í H− −2.25Be2+ + 2e−

Í Be −1.97Zr4+ + 4e−

Í Zr −1.70Al3+ + 3e−

Í Al −1.67Ti3+ + 3e−

Í Ti −1.21Mn2+ + 2e−

Í Mn −1.18V2+ + 2e−

Í V −1.13SiO2(glass) + 4H+ + 4e−

Í Si + 2H2O −0.888Zn2+ + 2e−

Í Zn −0.763U4+ + e−

Í U3+ −0.52Fe2+ + 2e−

Í Fe −0.44Cr3+ + e−

Í Cr2+ −0.424Cd2+ + 2e−

Í Cd −0.403PbSO4 + 2e−

Í Pb + SO42− −0.351

Eu3+ + e−Í Eu2+ −0.35

Element E1/2, volts Solvent system

(Continued)

Titanium4+ to 3 +

Tungsten6+

Uranium6+

Yanadium5 + to 4+ to 2+4+ to 2+3 + to 2+4+ to 5 +4+ to 5 +2+ to 3 +

Zinc2+ toO

-0.173-1.22

0.0; -0.64

-0.180; -0.92

-0.97; -1.26-0.98-0.55-0.32

0.76-0.55

-0.995-1.01-1.15-1.23-1.33-1.53

0.1M K2C2O4 plus IM H2SO4

0.4M tartrate, pH 6.5

6M HC1; two waves: first wave starts at zero and is W(VI)to W(V), the second wave is W(V) to W(III)

UO¡+ to UOJ, then U3+ in 0.02M HCL

\M NH4C1 plus IM NH3 and 0.08AÍ Na2SO3

0.05MH2SO4

0.5M H2SO4

IM NH4C1, IM NH3, and 0.08M Na2SO3

0.05M H2SO4; anodic wave starting from zero0.5M H2SO4; anodic wave

0.1AÍKC10.1MKSCN0.5M tartrate, pH 90.5AÍ tartrate, pH 4.5lMNH4Clplus 1MNH3

IMNaOH

1.402 SECTION ONE

TABLE 1.81 Standard Electrode Potentials for Aqueous Solutions (Continued)

Acidic solutions ([H+] = 1.0 mol kg−1)

Half-reaction E°(V)

Co2+ + 2e−Í Co −0.277

H3PO4 + 2H+ +2e−Í H3PO3 + H2O −0.276

Ni2+ + 2e− Í Ni −0.257V3+ + e−

Í V2+ −0.2552SO4

2− + 4H+ + 2e−Í S2O6

2− + 2H2O −0.253N2 + 5H+ + 4e−

Í N2H5+ −0.23

CO2 + 2H+ + 2e−Í HCOOH −0.16

AgI + e−Í Ag + I− −0.152

Sn2+ + 2e−Í Sn −0.136

Pb2+ + 2e−Í Pb −0.125

2H+ + 2e−Í H2 0.000

HCOOH + 2H+ + 2e−Í HCHO + H2O +0.056

AgBr + e−Í Ag + Br− +0.071

TiO2+ + 2H+Í + e− Ti3+ + H2O +0.100

S + 2H+ + 2e−Í H2S +0.144

Sn4+ + 2e−Í Sn2+ +0.15

SO42− + 4H+ +2e−

Í H2SO3 + H2O +0.158Cu2+ + e−

Í Cu+ +0.159AgCl + e−

Í Ag + Cl− +0.222HCHO + 2H+ +2e−

Í CH3OH +0.232UO2

2+ + 4H+ + 2e−Í U4+ + 2H2O +0.27

VO2+ + 2H+ + e− Í V3+ + H2O +0.337Cu2+ + 2e−

Í Cu +0.340Fe(CN)6

3− + e−Í Fe(CN)6

4− +0.3612H2SO3 + 2H+ + 4e−

Í S2O32− + 3H2O +0.400

H2SO3 + 4H+ + 4e−Í S + 3H2O +0.500

4H2SO3 + 4H+ + 6e−Í S4O6

2− + 6H2O +0.507Cu+ + e−

Í Cu +0.520I2 + 2e−

Í 2I− +0.5355I3

− + 2e−Í 3I− +0.536

MnO4− + e−

Í MnO42− +0.56

S2O62− + 4H+ + 2e−

Í 2H2SO3 +0.569CH3OH + 2H+ + 2e−

Í CH4 + H2O +0.59HN3 + 11H+ + 8e−

Í 3NH4+ +0.695

O2 + 2H+ + 2e−Í H2O2 +0.695

Rh3+ + 3e−Í Rh +0.76

(NCS)2 + 2e−Í 2NCS− +0.77

Fe3+ + e−Í Fe2+ +0.771

Hg22+ + 2e−

Í 2Hg +0.796Ag+ + e−

Í Ag +0.7992NO3

− + 4H+ + 2e−Í N2O4 + 2H2O +0.803

Hg2+ + 2e−Í Hg +0.911

NO3− + 3H+ + 2e−

Í HNO2 + H2O +0.94NO3

− + 4H+ + 3e−Í NO + 2H2O +0.957

NHO2 + H+ + e− Í NO + H2O +0.996N2O4 + 4H+ + 4e−

Í 2NO + 2H2O +1.039Br2 + 2e−

Í 2Br− +1.065N2O4 + 2H+ + 2e−

Í 2HNO2 +1.07H2O2 + H+ + e−

Í ⋅OH + H2O +1.14ClO4

− + 2H+ + 2e−Í ClO3

− + H2O +1.201O2 + 4H+ + 4e−

Í 2H2O +1.229MnO2 + 4H+ + 2e−

Í Mn2+ + 2H2O +1.23

INORGANIC CHEMISTRY 1.403

TABLE 1.81 Standard Electrode Potentials for Aqueous Solutions (Continued)

Acidic Solutions ([H+] = 1.0 mol kg−1)

Half-reaction E°(V)

N2H5+ + 3H+ + 2e−

Í 2NH4+ +1.275

Cl2 + 2e−Í 2Cl− +1.358

Cr2O72− + 14H+ + 6e−

Í 2Cr3+ + 7H2O +1.36PbO2 + 4H+ + 2e−

Í Pb2+ + 2H2O +1.4682BrO3

− + 12H+ + 10e−Í Br2 + 6H2O +1.478

Mn3+ + e−Í Mn2+ +1.51

Au3+ + 3e−Í Au +1.52

NiO2 + 4H+ + 2e−Í Ni2+ + 2H2O +1.593

2HBrO + 2H+ + 2e−Í Br2 + 2H2O +1.604

2HClO + 2H+ + 2e−Í Cl2 + 2H2O +1.630

PbO2 + SO42− + 4H+ + 2e−

Í PbSO4 + 2H2O +1.698MNO4

− + 4H+ + 3e−Í MnO2 + 2H2O +1.70

Ce4+ + e−Í Ce3+ +1.72

H2O2 + 2H+ + 2e−Í 2H2O +1.763

Au+ + e−Í Au +1.83

Co3+ + e−Í Co2+ +1.92

HN3 + 3H+ + 2e−Í NH4

+ + N2 +1.96S2O8

2− + 2e−Í 2SO4

2− +1.96O3 + 2H+ + 2e−

Í O2 + H2O +2.075(OH + H+ + e−

Í H2O +2.38F2 + 2H+ +2e−

Í 2HF +3.053

Basic Solutions ([OH−] = 1.0 mol kg−1)

Half-reaction E°(V)

Ca(OH)2 + 2e−Í Ca + 2OH− −3.026

Mg(OH)2 + 2e−Í Mg + 2OH− −2.687

Al(OH)4- + 3e−

Í Al + 4OH− −2.310SiO3

2- + 3H2O + 4e−Í Si + 6OH− −1.7

Mn(OH)2 + 2e−Í Mn + 2OH− −1.56

2TiO2 + H2O + 2e−Í Ti2 O3 + 2OH− −1.38

Cr(OH)3 + 3e−Í Cr + 3OH− −1.33

Zn(OH)42− + 2e−

Í Zn + 4OH− −1.285Zn(NH3)4

2+ + 2e−Í Zn + 4NH3 −1.04

MnO2 + 2H2O + 4e−Í Mn + 4OH− −0.980

Cd(CN)42− + 2e−

Í Cd + 4CN− −0.943SO4

2− + H2O + 2e−Í SO3

2− + 2OH− −0.942H2O + 2e−

Í H2 + 2OH− −0.828HFeO2

− + H2O + 2e−Í Fe + 3OH− −0.8

Co(OH)2 + 2e−Í Co + 2OH− −0.733

CrO42− + 4H2O + 3e−

Í Cr(OH)4− + 4OH− −0.72

Ni(OH)2 + 2e−Í Ni + 2OH− −0.72

FeO2− + H2O + e−

Í HFeO2− + OH− −0.69

2SO32− + 3H2O + 4e−

Í S2O32− + 6OH− −0.58

Ni(NH3)62+ + 2e−

Í Ni + 6NH3 −0.476S + 2e−

Í S2− −0.45O2 + e−

Í O2− −0.33

CuO + H2O + 2e−Í Cu + 2OH− −0.29

Mn2O3 + 3H2O + 2e−Í 2Mn(OH)2 + 2OH− −0.25

2CuO + H2O + 2e−Í Cu2O + 2OH− −0.22

O2 + H2O + 2e-Í HO2

− + OH− −0.065MnO2 + 2H2O + 2e−

Í Mn(OH)2 + 2OH− −0.05

(Continued)

1.404 SECTION ONE

TABLE 1.81 Standard Electrode Potentials for Aqueous Solutions (Continued)

Basic solutions ([OH−] = 1.0 mol kg−1)

Half-reaction E°(V)

NO3− + H2O + 2e−

Í NO2− + 2OH− +0.01

Co(NH3)63+ + e−

Í Co(NH3)62+ +0.058

HgO (red form) + H2O + 2e−Í Hg + 2OH− +0.098

N2H4 + 2H2O + 2e−Í 2NH3 + 2OH− +0.1

Co(OH)3 + e−Í Co(OH)2 + OH− +0.17

HO2− + H2O + e−

Í−OH + 2OH− +0.184

O2− + H2O + e−

Í HO2− + OH− +0.20

ClO3− + H2O + 2e−

Í ClO2− + 2OH− +0.295

Ag2O + H2O + 2e−Í 2Ag + 2OH− +0.342

Ag(NH3)2+ + e− Í Ag + 2NH3 +0.373

ClO4− + H2O + 2e−

Í ClO3− + 2OH− +0.374

O2 + 2H2O + e−Í 4OH− +0.401

NiO2 + 2H2O + 2e−Í Ni(OH)2 + 2OH− +0.490

FeO42− + 2H2O + 3e−

Í FeO2− + 4OH− +0.55

BrO3− + 3H2O + 6e−

Í Br− + 6OH− +0.584MnO4

2− + 2H2O + 2e−Í MnO2 + 4OH− +0.62

ClO2− + H2O + 2e−

Í ClO− + 2OH− +0.681BrO− + H2O + 2e−

Í Br− + 2OH− +0.766HO2

− + H2O + 2e−Í 3OH− +0.867

ClO− + H2O + 2e−Í Cl− + 2OH− +0.890

ClO2 + e−Í ClO2

− +1.041O3 + H2O + 2e−

Í O2 + 2OH− +1.246OH + e−

Í OH− +1.985

TABLE 1.82 Potentials of Reference Electrodes in Volts as a Function of Temperature

Liquid-junction potential included.

* Bates et al., J. Research Natl. Bur. Standards, 45, 418 (1950).† Bates and Bower, J. Research Natl. Bur. Standards, 53, 283 (1954).‡ Hetzer, Robinson and Bates, J. Phys. Chem., 66, 1423 (1962).§ Hetzer, Robinson and Bates, J. Phys. Chem., 68, 1929 (1964).

Temp.,°C

05

101520253035

38404550

5560708090

0.1MKC1Calomel*

0.3367

0.33620.3361

0.33580.33560.33540.3351

0.33500.3345

0.3315

0.3248

1.0AÍ KC1Calomel*

0.2883

0.2868

0.28440.28300.2815

0.2782

0.2745

0.2702

3.5M KC1Calomel*

0.2556

0.25200.25010.2481

0.24480.2439

Satd. KC1Calomel*

0.25918

0.253870.2511

0.247750.244530.241180.2376

0.23550.23449

0.22737

0.2235

0.2083

l.OM KC1Ag/AgClf

0.236550.234130.231420.22857

0.225570.222340.219040.21565

0.212080.208350.20449

0.200560.196490.187820.17870.1695

l.OMKBrAg/AgBrt

0.081280.079610.077730.07572

0.073490.071060.068560.06585

0.063100.060120.05704

0.0251

l.OMKIAg/AgI§

-0.14637-0.14719-0.14822-0.14942

-0.15081-0.15244-0.15405-0.15590

-0.15788-0.15998-0.16219

INORGANIC CHEMISTRY 1.405

TABLE 1.83 Potentials of Reference Electrodes (in Volts) at 25°C for Water-Organic Solvent Mixtures

1.22 CONDUCTANCE

Conductivity. The standard unit of conductance is electrolytic conductivity (formerly called spe-cific conductance) k, which is defined as the reciprocal of the resistance [Ω−1] of a 1-m cube of liquidat a specified temperature [Ω–1 ⋅ m–1]. See Table 1.86 and the definition of the cell constant.

In accurate work at low concentrations it is necessary to subtract the conductivity of the pure sol-vent (Table 2.69) from that of the solution to obtain the conductivity due to the electrolyte.

Resistivity (Specific Resistance)

Conductance of an Electrolyte Solution

where S is the surface area of the electrode, or the mean cross-sectional area of the solution [m2], andd is the mean distance between the electrodes [m].

1 1

R

S

d= −k [ ]Ω

r = ⋅1

k [ ]Ω m

Solvent,wt %

5102030404550607080829094.29899

100

Methanol,Ag/AgCl

0.21530.2090

0.1968

0.1818

0.1492

0.11350.0841

-0.0099

Ethanol,Ag/AgCl

0.21460.20750.20030.1945

0.18590.1730.1580.136

0.096

0.0215

-0.0081

2-Propanol,Ag/AgCl

0.21800.21380.2063

Acetone,Ag/AgCl

0.21900.21560.2079

0.1859

0.158

-0.034

-0.53

Dioxane,Ag/AgCl

0.2031

0.1635

0.0659

-0.0614

Ethyleneglycol,

Ag/AgCl

0.21900.21600.21010.20360.1972

0.1807

Methanol,calomel

0.255

0.243

0.216

0.103

Dioxane,calomel

0.2501

0.2104

0.1126

-0.0014

where S is the surface area of the electrode, or the mean cross-sectional area of the solution [m2], andd is the mean distance between the electrodes [m].

Equivalent Conductivity

In the older literature, C is the concentration in equivalents per liter. The volume of the solution in cubiccentimeters per equivalent is equal to 1000/C, and Λ = 1000 k /C, the units employed in Table 8.32[Ω–1 ⋅ cm2 ⋅ equiv–1]. The formula unit used in expressing the concentration must be specified; forexample, NaCl, 1/2K2SO4, 1/3LaCl3.

The equivalent conductivity of an electrolyte is the sum of contributions of the individual ions. Atinfinite dilution: Λ° = l°c + l°a, where l°c and l°a are the ionic conductances of cations and anions,respectively, at infinite dilution (Table 1.87).

Ionic Mobility and Ionic Equivalent Conductivity

lc = Fuc and la = Fua [Ω−1 ⋅ m2 ⋅ equiv−1]

where F is the Faraday constant, and uc, ua are the ionic mobilities [m2 ⋅ s–1 ⋅ V–1].

Λ = aF(uc + ua) = a(lc + la)

where a is the degree of electrolytic dissociation, Λ/Λ°. The electric mobility u of a species is themagnitude of the velocity in an electric field [m ⋅ s–1] divided by the magnitude of the strength of theelectric field E[V ⋅ m–1].

Ostwald Dilution Law

where Kd is the dissociation constant of the weak electrolyte. In general for an electrolyte whichyields n ions:

Transference Numbers or Hittorf Transport Numbers

T T T T

T

T

u

u

T T

cc

c aa

a

c ac a

c

a

c

a

c

a

c c a a

=+

=+

+ =

= =

= =

ll l

ll l

ll

l l

1

Λ Λ

KC

d

n n

n=

( )

( )( )

1

1

ΛΛ Λ Λo o

KC

d =−

αα

2

1

Λ Ω= ⋅ ⋅− −km equiv

C [ ]1 2 1

1.406 SECTION ONE

TABLE 1.84 Properties of liquid Semi-conductors

Electrical Thermo-Density conductivity electricat °K* at °K* power Activation

(g cm−3) Ω−1 ⋅ cm−1 Atomization Heat of Entropy (mV per °K) energy for Entropy of Viscosity ofMelting energy fusion of fusion viscous flow viscous flow liquid at °K*

Material point (°K) Solid Liquid Solid Liquid (kcal/mole) (kcal/mole) (e.u.) Solid Liquid (kcal per mole) (e.u.) (centipoises)

Si 1693 2.30 2.53 580 12000 204 12.1 7.1 8.63 2.1 0.348Ge 1210 5.26 5.51 1250 14000 178 8.35 6.9 −90 0 2.74 2.85 0.135AlSb 1353 4.18 4.72 160 9900 160 14.2 5.2 −160 −60 10 2.2 0.250GaSb 985 5.60 6.06 280 10600 134 12.0 6.1 −60 0 2.7 5.0 0.368InSb 809 5.76 6.48 2900 10000 121 11.6 7.2 −120 −20 2.0 9.4 0.363GaAs 1511 5.16 5.71 300 7900 146 23.2 7.7 — — 6.5 7.8 0.320InAs 1215 5.5 5.89 3600 6800 130 12.6 5.2 — — 6.2 3 0.174ZnTe 1512 109 9.0 6.5 0.868CdTe 1365 99 5.75 7.7 0.435Cul 875 5.36 4.84 2.6 550 490 0.432Ga2Te3 1063 5.35 5.086 −290 −85 11 7 0.546In2Te3 940 5.77 5.54 −50 30 13 7.5 0.323Mg2Si 1375 1.84 2.27 1120 9800 20.4 5.0 13.9 2.3 0.299Mg2Ge 1388 3.20 1140 8400 9.5 3.8 0.311Mg2Sn 1051 3.45 3.52 2040 10600 11.4 3.6 9.5 5.8 0.520Mg2Pb 823 5.00 5.20 3530 8600 9.3 3.8 9.6 6.2 0.560GeTe 998 5.97 5.57 2400 2600 11.3 5.7 130 21 4.70 5.8 0.375SnTe 1063 6.15 5.85 1440 1800 8.0 3.7 140 28 4.90 6.1 0.348PbTe 1190 7.69 7.45 420 1520 7.5 3.1 −60 −10 6.85 6.0 0.243PbSe 1361 7.57 7.10 300 450 8.5 3.1 −120 −60 6.85 7.5 0.240PbS 1392 7.07 6.45 250 220 8.7 3.1 −220 −220 9.80 7.5 0.319Bi2Se3 979 7.27 6.97 450 900 −90 −35 9.7 5.05 0.540Bi2Te3 858 7.5 7.26 1250 2580 28.35 6.6 −45 −3 2.7 7.80 0.198Sb2Te3 895 6.29 6.09 900 1850 23.65 5.3 90 11 6.1 7.35 0.513Se (hex) 493 4.69 3.975 1.5 3 3.94 6.7 6.63Te 725 6.1 5.775 4.17 5.7 1.18 6.7 0.357

*At melting point.

1.4

07

1.408 SECTION ONE

TABLE 1.85 Limiting Equivalent Ionic Conductances in Aqueous Solutions

In 10–4 m2 ⋅ S ⋅ equiv–1 or mho ⋅ cm2 ⋅ equiv–1.

Ion

Inorganic cationsAg+A13+Ba2+

Be2+

Ca2+

Cd2+Ce3+

Co2*Co(NH3)l

+

Co(ethylenediamine)¡+

Cr3+

Cs+

Cu2+

D+ (deuterium)Dy3+

Er3+

Eu3+

Fe2+

Fe3+

Gd3+H+

Hgi+

Hg2+

Ho3*K*La3+

Li+

Mg2+

Mn2+

NHJN2HJ (hydrazinium 1 +)Na+

Nd3+

Ni2+

pb2+

Pr3+

Ra2+

Rb+

Sc3+

Sm3+

Sr2+

Tl+

Tm3+

UOi+

Y3 +

Yb3+

Zn2+

0

332933.6

30.828

28

4428

28

224.1

40.335.019.128.52740.3

25.85

2837.5

3343.5

3143.3

28

Temperature, °C

18

54.5

54.3

5145.1

45

6845.3

213.7

45.3

315.8

64.659.233.44644.564

43.5

4560.5

56.667.5

5166

45.0

25

61.96163.94559.5547053

10074.76777.356.6

65.766.067.953.56967.4

350.168.763.666.373.569.638.6953.0653.573.75950.1169.6507169.666.877.864.768.559.4674.965.5326265.252.8

INORGANIC CHEMISTRY 1.409

TABLE 1.85 Limiting Equivalent Ionic Conductances in Aqueous Solutions (Continued)

(Continued)

Ion

Inorganic anionsAu(CN)jAu(CN)4B(C6H5)4-Br~Br3-BrO3~ci-ClOíClOj-C1Û4

CN-COÍ+Co(CN)¿-CrOJ-F-Fe(CN)¿-Fe(CN)¿~H2AsC>4HCOjHFjHPOJ-H2P04-HS-HSOjHSOjH2SbO4I-io3-I0íMn04-MoOJ-NjN(CN)2-NOjNOjNH2SOj (sulfamate)OCN- (cyanate)OH-PFíPO3F

2-POj1-p2orP30|-P30f0-ReO4

SCN~ (thiocyanate)SeCN-SeOJ-soi-

0

43.1

31.041.4

3637.3

36

42

4027

42.021.0

36

4440.2

117.8

41.7

Temperature, °C

18

67.6

49.065.5

55.059.1

60.5

7246.6

2857

66.533.94953

5961.7

54.8175.8

46.556.6

65

25

50362178.14355.776.315264.667.37869.398.98555.4

110.4100.93444.57533336550503176.940.554.561.374.569.554.571.871.4248.664.6

19856.963.369.09683.6

10954.966.564.775.779.9

1.410 SECTION ONE

TABLE 1.85 Limiting Equivalent Ionic Conductances in Aqueous Solutions (Continued)

soj-s2o§-s2ors2o¿-s2o¡-woj-

41

34

35

68.3

59

80.085.066.5938669.4

Organic cationsDecylpyridinium*Diethylammonium*Dimethylammonium*Dipropylammonium*Dodecylammonium+Ethylammonium*Ethyltrimethylammonium+

Isobutylammonium+

Methylammonium*Piperidinium+

Propylammonium*Tetrabutylammonium*Tetraethylammonium*Tetramethylammonium+

Tetrapropylammonium+

Triethylsulfonium+

Trimethylammonium*Trimethylsulfonium*Tripropylammonium*

Organic anionsAcetate" 20Benzoate"Bromoacetate"Bromobenzoate"Butanoate"Chloroacetate"m-Chlorobenzoate"o-Chlorobenzoate~Citrate(3-)Crotonate"Cyanoacetate"Cyclohexanecarboxylate"Cyclopropane-l,3-dicarboxylate2~Decylsulfonate"Dichloroacetate"Diethylbarbiturate(2- )Dihydrogencitrate"Dimethylmalonate(2- )3,5-Dinitrobenzoate-Dodecylsulfonate"Ethylmalonate"Ethylsulfonate"

29.542.051.530.123.847.240.538.058.337.240.819.532.644.923.536.147.251.426.1

34 4132.439.23032.642.23130.570.233.243.428.753.42638.326.33049.428.32449.339.6

INORGANIC CHEMISTRY 1.411

TABLE 1.86 Standard Solutions for Calibrating Conductivity Vessels

The values of conductivity k are corrected for the conductivity of the water used. The cell constant q of a con-ductivity cell can be obtained from the equation

where R is the resistance measured when the cell is filled with a solution of the composition stated in the tablebelow, and Rsolv is the resistance when the cell is filled with solvent at the same temperature.

θ =−

KRR

R Rsolv

solv

*Virtually 0.0100 M.From the data of Jones and Bradshaw, J. Am. Chem. Soc., 55, 1780 (1933). The original data have been converted from (int.

ohm)–1cm–1.

Grams KCI per kilogramsolution (in vacuo)

71.135 27.419 130.745 263*

Conductivity in ohm~' • cm"1 at

0°C

0.065 144

0.007 1344

0.000 773 26

18°C

0.097 790

0.011 1612

0.001 219 92

25°C

0.111 287

0.012 8497

0.001 408 08

1.4

12

TABLE 1.87 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18°C

The unit of Λ in the table is Ω–1 ⋅ cm–2 ⋅ equiv–1. The entities to which the equivalent relates are given in the first column.

Electrolyte

Acetic acidAgN03i/2Ag2S04HAlBrj (25°)Î/3A1C13i/3AH3 (25°)>/3Al(N03)3 (25°)Í/6A12(SO4)3 (25°)i/2Ba(OAc)2!/2Ba(BrO3)2 (25°)i/2BaC!2!/2Ba(NO3)2!/2Ba(OH)2Butyric acid!/2Ca(OAc)2i/2CaC!2!/2Ca(N03)2!/2Ca(OH)2i/2CaSO4!/2CdBr2l/2CdC!2

!/2CdI2!/2Cd(NO3)2!/2CdSO4!/3CeCl3 (25°)'/6Ce2(C204)3 (25°)Chloroacetic acid (25°)Citric acid!/2CoCl2VSCrCL,

Concentration, Af

0.001

41113.2116.3132121.1131123107.285.0

113.6115.6111.7216

79.6112.0108.5

104.3

97.7137.485.5

88.4

0.005

20.0110.0108.4124105.012411576.880.4

106.8112.3105.3213

75.0106.7103.0233

86.386.59176.7

10079.7

54

5499.3

0.01

14.3107.8102.911993.8

11911060.677.1

102.7106.7101.0207

71.9103.499.5

22677.476.38365.69670.3

122.145.8

42.595.6

0.05

6.4899.5

103

10894

65.7

96.086.8

191

60.393.388.4

53.25940.186.449.6

29

22.082.3

0.1

4.6094.3

97

88

60.2

90.878.9

180

54.088.282.5

44.65031.080.842.299.0

42.916.175.0

0.5

2.0177.8

65.0

43.8

77.356.6

1.6636.374.965.7

25.330.818.363.928.7

20.27.3

51.568.6

1.0

1.3267.8

56.2

34.3

70.148.4

0.9826.367.555.9

18.322.415.454.523.6

13.65.4

45.356.8

2.0

56.0

44.2

60.3

0.46

58.343.5

12.514.412.341.017.7

8.1

40.344.8

3.0

0.5448.2

34.7

52.329.8

0.26

49.735.5

9.19.99.7

31.414.0

5.6

35.435.2

4.0

42.1

27.2

23.4

0.18

42.426.0

6.87.18.0

23.711.0

4.2

30.5

5.0

0.2937.2

0.11

35.621.5

5.35.4

17.68.35

3.3

26.4

1.4

13

(Continued )

!/2CrO3(H2CrO4) (25°)CsCl!/2Cu(OAc)2 (25°)!/2CuCl2'/2Cu(N03)2 (15°)i/2CuS04

Dichloroacetic acid (25°)!/2FeCl2 (25°)ViFeClj'/2FeS04

Formic acidH3AsO4 (1 M) (25°)H3BO3

HBrHBrO3 (25°)HC1HC103

HC104 (25°)HFHIHIO3

HNO3

H3PO4 (1 M)HSCN (25°)i/2H2SO4

>/2HgCl21/3lnBr3

KOAcKBrKBrO3

!/3K3 ci trateKC1KC1O3

KC1O4 (25°)

201130.755.7

107.998.5

131

82125.6308.2

13.5

401377

413

343.3375318399361

98.3129.4109.9

127.3116.9137.9

195127.550.6

97.181.0

125

75

230.0

387373

40690

332.8371279394330

95.7126.4106.9109.9124.4113.6134.2

193125.247.2

93.771.7

120

70

187.0

373370

40260

323.9368255390308

94.0124.4104.7103122.4111.6131.5

191

34.9

83.753.6

103

54

103.4

272360

39235.9

357

377253

1.85

87.7117.897.387.8

115.8103.7121.6

186113.528.4

78.243.8

207.593

44.5

80.4

35615635134338631.3

347253350

370225

1.2353.983.8

114.293.080.8

112.099.2

115.2

104.3

67.530.5

119

66.530.8

306

32731735827.0

322175324

205

37.071.6

105.4

102.485.3

100.3

56.825.682

52.925.85.18

282

301292

25.729714131066

198

28.763.4

102.5

98.3

95.7

41.245.419.744.6

37.619.53.68

243

247

255106

19.850.098.0

92.0

85.1

31.535.316.526.5

28.115.372.93

214

215207

24.2215

8722053.1

166.8

14.440.793.3

88.9

24.527.8

16.3

20.5

2.39

179

17971

10.131.487.9

19.121.4

9.6

15.9

1.92

152.2

24.0

15651.3

135.0

24.5

1.4

14

TABLE 1.87 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18°C (Continued)

The unit of Λ in the table is Ω–1 ⋅ cm–2 ⋅ equiv–1. The entities to which the equivalent relates are given in the first column.

Electrolyte

KCN (15°)'/2K2CO3

!/2K2C2O4

!/2K2CrO4

!/2K2Cr2O7

KFi/3K3[Fe(CN)6]i/4K4[Fe(CN)6]KHCO3 (25°)KH phthalateKHSKHSO4

KH2PO4 (1 M) (25°)KIKIO3

KIO4 (25°)KMnO4 (25°)KNO3

KOHKReO4 (25°)!/2K2S

KSCN'/2K2SO4

!/2LaCl3 (25°)i/3La(NO3)3

!/6La2(SO4)3

Lactic acidLiOAcLiBrLiClLiClO4 (25°)

Concentration, N

0.001

133.0122.4

108.9163.1167.2115.3119.3

107.1128.296.0

124.9133.3123.6234125.1

118.6126.9137.0

108.9

96.5103.4

0.005

121.6116.7

106.2150.7146.1112.2103.7

100.8125.393.2

121.2

120.5230121.3

115.8120.3127.5

53.5

93.9100.6

0.01

115.5112.5

104.3

134.8110.199.9

98.0123.491.2

118.5126.5118.2228118.5

113.9115.8121.8

39

92.198.6

0.05

100.7100.8

97.7

107.7

89.3

90.7117.384.1

106.7

109.9219106.4

107.7101.9106.286.125.718.1

87.986.192.2

0.1

94.194.9

100.598.294.0

97.9

83.8

85.6114.079.798.1

113104.821397.4

104.394.999.172.121.513.251.384.482.488.6

0.5

104.277.880.486.485.482.6

86.5

92.521.060.018

106.2

89.2197

95.778.5

65.4

37.773.970.7

1.0

99.770.773.779.5

76.0

78.9

91.718.445.818

103.6

80.5184

135.691.671.6

54.0

28.967.263.4

2.0

65.0

72.0

63.4

86.415.2

101.3

69.4

119.786.8

39.1

18.257.753.1

3.0

55.6

59.9

56.5

80.7

96.4

61.3140.6

108.374.6

28.5

11.9

45.3

4.0 5.0

49.2 42.9

51.7 46.5

69.3

89.0 81.2

105.8

97.2 86.1

19.9

7.244.2

33.3

1.4

15

(Continued )

i/2Li2CO3

LilLiIO3

LiNO3

LiOH'/2Li2SO4

!/2MgCl2!/2Mg(N03)2

V4MgSO4

i/2MnC!2

'/2MnSO4

NH3(aq)NH4OAcNH4C1NH4FNH4INH4NO3

NH4SCN'/2(NH4)2SO4

NaOAcNaBrNaBrO3

Na n-butyrate (25°)NaClNaClO4

'/2Na2CO3

!/2Na2CrO4

!/2Na2Cr2O, (25°)NaF!/4Na4[Fe(CN)6] (25°)Na fórmateNaHCO3 (25°)i/3Na2HPO4

NaH2PO4

í/4Na2H2P2O,Nal

65.392.9

96.4106.4102.699.8

28.0

127.3

124.5

75.2

80.3106.5114.925

112

87.8

88.693.558.467.941.1

124.2

62.990.3

101.397.784.5

13.292.9

124.3

120.072.4

77.6103.8111.725

102.5

10385.2

129.6

90.5

65.839.4

121.2

61.288.6

86.998.194.776.2

9.691.4

122.1

118.0

116.570.2

75.8102.0109.625

96.2

83.5120.0

88.454.064.438.2

119.2

64.2

55.382.7

74.788.585.356.9

4.684.9

115.2

118.0110.0

64.299.1

69.395.7

102.425

80.3

98.377.097.0

80.6

57.834.6

112.8

59.1

51.579.2

68.283.480.549.786.0

3.3

110.790.1

115.0106.6104.389.061.196.0

65.392.098.425

72.982.594.973.188.2

76.044.054.132.5

108.8

75.339.068.0

149.050.569.667.035.468.527.6

1.3560.5

101.474.5

106.094.594.079.549.484.661.8

80.971.754.566.4

60.0

61.4

33.5

25.497.5

69.231.260.8

134.541.361.559.028.961.024.4

0.8954.797.065.7

103.188.889.973.041.278.154.5

74.365.045.557.7

51.9

53.7

28.0

89.9

61.021.450.3

113.530.752.347.023.048.518.3

42.992.155.3

100.085.184.765.029.869.144.1

64.855.134.546.6

43.1

78.6

14.634.995.723.343.339.817.338.814.00.36

34.088.247.9

79.2

21.5

56.546.027.238.3

34.8

69.9

27.3

18.135.0

12.930.210.5

26.585.042.291 .471.974.055.215.353.0

49.438.8

31.1

28.2

62.2

13.928.0

9.323.07.30.20

80.7

84.547.6

10.5

42.7

1.4

16

TABLE 1.87 Equivalent Conductivities of Electrolytes in Aqueous Solutions at 18°C (Continued)

The unit of Λ in the table is Ω–1 ⋅ cm–2 ⋅ equiv–1. The entities to which the equivalent relates are given in the first column.

Electrolyte

NaIO3

'/2Na2MoO4

NaN3 (25°)NaNO2 (25°)NaNO3

NaOHNa picrate (25°)'/3Na3PO4

Na propionate (25°)i/zNazSNaSCN'/2Na2SiO3!/2Na2SO4

(mono) Na tartrate1ANa2WO4 (25°)!/2NiSO4

!/2 Oxalic acidi/2Pb(NO3)2

Propionic acidRbClRbOHViSnCL,!/2SrCl2'/2Sr(NO3)2

Tartaric acid (15°)'/4ThCl4T1C1TIPT1NO3

i/2Tl2SO4

Trichloroacetic acid(25°)

i/2UO2F2 (25°)i/2UO2SO4 (25°)!/3YCl3 (25°)i/2Zn(OAc)2 (25°)!/2ZnCl2!/2Zn(NO3)2

'/2ZnSO4

Concentration, A'

0.001

75.2120.8117.1

102.920878.6

12583.5

144106.7120116.196.3

180.7116.1

130.3

114.5108.3

128.2113.3124.7127.4

26.10106.512983

10712098.4

0.005

72.6113113.8

100.120375.7

12280.9

139100.881.5

109.279.5

108.6

127.4

108.9102.7

123.7108.2121.1118.4

12.3163.2

12277

10111482.1

0.01

70.9110110.5

98.220073.7

11979.1

13696.874.8

104.870.8

158.2103.5

125.3

105.499.0

120.2105.4118.4112.3

9.1749.2

1187398

11173.2

0.05

64.4

101.3

91.419066.391

12483.964.392.251.0

132.986.3

117.8

94.487.3

97.4107.992.7

5.4327.6

1095887

10053.0

0.1

60.5

95.7

87.218361.8

11678.460.485.843.8

116.977.3

113.9220.6

90.280.9

92.6101.283.1

4.7422.2

4982

45.6

0.5

74.1172

117.074.38859.7

30.475.953.2

1.57

204.8216.875.762.7

61.0

78.8

2733.75

14.4

65

32.3

1.0

68.075.965.9

160

104.368.97250.8

25.159.442.0

1.00101.9192.0121.768.552.17.03

54.0

71.5

2073.22

11.6

55

26.6

2.0

63.154.5

85.059.85140.0

19.3

31.00.54

97.1170.066.958.738.04.58

44.3

62.7

127

39.6

20.0

3.0

53.646.0

108.0

71.050.93833.5

15.1

92.7148.347.949.929.33.32

36.3

79

29.6

15.9

4.0

39.0

59.043.727

0.2087.2

32.742.229.32.48

29.8

44

23.2

12.0

5.0

39.7

69.0

47.2

19

16.41.83

19

2.7

18.5

9.0

INORGANIC CHEMISTRY 1.417

TABLE 1.88 Conductivity of Very Pure Water at Various Temperatures and the Equivalent Conductances ofHydrogen and Hydroxyl Ions

1.417

Source: Data from T. S Light and S.L. Licht. Anal Chem., 59: 2327–2330(1987).

Equivalent conductance,cm2 • ohm"1 •equivalent"1

Temp., °C

05

10151820253035404550556065707580859095

100150200250300

Conductivity, fjJS • cm"1

0.011610.016610.023 150.031 530.037 540.042 050.055 080.070 960.090 050.11270.13930.17020.205 50.245 70.291 20.341 60.397 80.459 30.525 80.597 70.675 30.756 91.842.993.312.42

Resistivity, Mft • cm

86.1460.2143.2131.7126.6423.7818.1514.0911.108.887.185.884.864.063.432.932.512.181.901.671.481.320.5430.3340.3020.413

A°, H+

224.1250.0275.6300.9315.8325.7350.1374.0397.4420.0442.0463.3483.8503.4522.0539.7556.4572.0586.4599.6611.6622.2

824

894

A", OH"

117.8133.6149.6165.9491.6182.5199.2216.1233.0267.2267.2284.3301.4318.5335.4352.2368.8385.2401.4417.3432.8448.1

701

821

1.23 THERMAL PROPERTIES

1.418 SECTION ONE

TABLE 1.89 Eutectic Mixtures

The eutectic temperature qC,E is the lowest temperature at which both the solid components of a mixture are inequilibrium with the liquid phase. qC,m denotes melting temperature.

Composition ofeutectic mixture

Component 1 qc,m/°C Component 2 qC,m/°C qC,E/°C (per cent by mass)

Sn 232 Pb 327 183 Sn, 63⋅0 Pb, 37⋅0Sn 232 Zn 420 198 Sn, 91⋅0 Zn, 9⋅0Sn 232 Ag 961 221 Sn, 96⋅5 Ag, 3⋅5Sn 232 Cu 1083 227 Sn, 99⋅2 Cu, 0⋅8Sn 232 Bi 271 140 Sn, 42⋅0 Bi, 58⋅0Sb 630 Pb 327 246 Sb, 12⋅0 Pb, 88⋅0Bi 271 Pb 327 124 Bi, 55⋅5 Pb, 44⋅5Bi 271 Cd 321 146 Bi, 60⋅0 Cd, 40⋅0Cd 321 Zn 420 270 Cd, 83⋅0 Zn, 17⋅0

TABLE 1.90 Transition Temperatures

θC,t denotes transition temperature

Substance System qC,t/°C

sulphur Rhombic (a) Í Monoclinic (b) 95.6Tin Grey (a) White (b)Iron a (body-centered cubic) Í g (face-centered cubic) 906

g (body-centered cubic) Í d (face-centered cubic) 1401Sodium sulphate Na2So4 10H2O Í Na2SO4 + 10H2O 32.4Mercury(II) iodide Tetragonal (red) Í Orthorhombic (yellow) 126Ammonium chloride a (CsCl structure) Í b (NaCl structure) 184Caesium chloride CsCl structure Í NaCl structure 445Copper(I) mercury(II) Tetragonal (red) Í Cubic (dark brown) 69Iodide