Ion Beam Therapy

18
Ute Linz Editor Ion Beam Therapy Fundamentals, Technology, Clinical Applications With 235 Figures 421 Springer

Transcript of Ion Beam Therapy

Ute LinzEditor

Ion Beam TherapyFundamentals,Technology,Clinical Applications

With 235 Figures

421 Springer

Contents

Part I Ion Beam Therapy in Perspective

1 From X-rays to Ion Beams: A Short History of RadiationTherapy 3James M. Slater1.1 Introduction 3

1.1.1 The Discovery Era 41.1.2 The Orthovoltage Era 61.1.3 Megavoltage Era 61.1.4 The Era of Ion Beams 8

1.2 Perspective 12References 14

2 The Place of Ion Beams in Clinical Applications 17Paul J. Kim and Helen A. Shih2.1 The Role of Proton Therapy 17

2.1.1 Ablative Intent with Singleand Hypofractionated Therapy 17

2.1.2 Organ Preservation 192.1.3 Dose Escalation Around Critical Structures

with Highly Fractionated Treatment 202.1.4 Reduction in Morbidity and Secondary

Malignancies 232.1.5 Investigational 23

2.2 Carbon Ion Radiotherapy 262.3 Conclusion 26References 27

3 Socio-Economic Aspects of Ion Beam Therapy 31Andre Konski3.1 Introduction 313.2 Facility Development Cost 33

vii

Contents

3.3 Cost-Effectiveness of IBT 353.4 Clinical Trials Prior to Adopting IBT 39References 40

Part II Physical and Biological Aspects

4 Physical and Biological Rationale for Using Ions in Therapy 45Ute Linz4.1 Introduction 454.2 Physical Properties 46

4.2.1 Interaction of Photons and Ions with Matter 464.2.2 Magnetic Deflection for Active Beam Shaping 48

4.3 Biophysical Properties 504.3.1 Stopping Power and LET 50

4.4 Biological Properties 524.4.1 Relative Biological Effectiveness 524.4.2 Oxygen Enhancement Ratio 534.4.3 Variation in Radiosensitivity with the Cell Cycle 544.4.4 Sublethal Cell Damage 55

4.5 Comparison of Protons and Heavier Ions 55References 57

5 Early and Late Responses to Ion Irradiation 61Reinhard Schulte and Ted Ling5.1 Basic Concepts 61

5.1.1 Definition of Early and Late Tissue Responses 615.1.2 Cellular and Molecular Origin of Radiation

Response 625.1.3 Dose—Volume Effects 635.1.4 Biological Dose Weighting 65

5.2 Early and Late Tissue Responses to Protonand Ion Irradiation 675.2.1 Early Normal Tissue Responses 685.2.2 Late Normal Tissue Responses 71

References 76

6 The Impact of Radiation Quality on Cure Rate 81John Gueulette, Reinhard Gahbauer, Dan Jones,Jacobus Slabbert, and Andre Wambersie6.1 Physical Selectivity and Radiation Quality 816.2 From Absorbed Dose to Radiobiological Effects 836.3 RBE for the Different Radiation Qualities Used

in Therapy 856.4 Criteria for Patient Selection for High-LET

Radiation Therapy 88

Contents ix

6.5 Quality Assurance 896.6 Conclusions 92References 92

Part III Models and Preclinical Studies

7 Monte Carlo Methods for Dose Calculations 97Katja Parodi7.1 Introduction 977.2 MC Codes for IBT 987.3 The Roadmap for MC Dose Calculations in IBT 101

7.3.1 Modeling of the Beam Delivery System 1017.3.2 Dose Calculations in Phantoms 1047.3.3 Dose Calculations in the Patient CT 106

7.4 Biological Dose Calculations 1107.5 Conclusion 112References 113

8 Modeling Heavy Ion Radiation Effects 117Thilo Elsässer8.1 Introduction 1178.2 Amorphous Track Models 1188.3 Early Approaches by Katz and Coworkers 1198.4 Microdosimetric Kinetic Model 1208.5 Local Effect Model 122

8.5.1 Original Local Effect Model 1228.5.2 LEM II 1248.5.3 LEM III 1258.5.4 Generalization of LEM (LEM IV) 1258.5.5 Comparison to Experimental In Vitro Cell

Survival Data 1268.6 Applying the Models to Complex Radiation Fields 1278.7 Comparison of LEM, MKM, and Katz Approach 1298.8 Application in Treatment Planning for Heavy Ions 1298.9 Conclusions and Future Directions 131References 132

9 Preclinical Radiobiology and Predictive Assays 135Eleanor A. Blakely and Polly Y. Chang9.1 Introduction 1359.2 Measurements of the Relative Biological Effectiveness 1369.3 Spatial Mapping of RBE 1379.4 RBE—LET Relation for Normal

and Malignant Tissues 138

x Contents

9.5 Additional Variables in Measuring RBE 1399.5.1 Different Doses and Dose Fractionation Regimes 1399.5.2 Differences in Biological Geometry

Relative to the Beam Exposure 1409.5.3 Differences in Cell Cycle Status 1409.5.4 Differences in Individual Radiosensitivity 1419.5.5 Differences Between Species 1419.5.6 Differences in the Gender of the Organism 141

9.6 Conclusions 142

References 143

Part IV Clinical Results and Indications

10 Ocular Proton Therapy Centers 149Andrzej Kacperek10.1 Introduction 14910.2 Principal Constituents of a PT Facility 152

10.2.1 Proton Accelerators 15210.2.2 Proton Beam Characteristics 15410.2.3 Beam-modifying Devices 15410.2.4 Patient Treatment Chair and Mask 15910.2.5 Patient Positioning, X-Ray Verification

Systems and Markers 16210.3 Radiation Protection 16410.4 Treatment Doses, Fractionation, and RBE 16510.5 Ocular PT-planning Systems 16710.6 Quality-assurance Methodology 170

10.6.1 In-Beam Dose Monitoring 17010.6.2 Daily Beam and Dosimetry Checks

for Treatment 17010.6.3 Pretreatment Checks 17110.6.4 Reference and Absolute Dosimetry Procedures 17110.6.5 Characterization of the Treatment Beam 17110.6.6 In Vivo Dosimetry 172

10.7 Discussion 17210.8 Conclusion 174References 175

11 Clinical Indications for Carbon Ion Radiotherapyand Radiation Therapy with Other Heavier Ions 179Stephanie E. Combs11.1 Introduction 17911.2 Skull Base Tumors 18011.3 Brain Tumors 18011.4 Hepatocellular Carcinoma 182

Contents xi

11.5 Prostate Cancer 18411.6 Recurrent Rectal Cancer 18411.7 Lung Cancer 18511.8 Head and Neck Tumors 18611.9 Soft-Tissue and Bone Sarcomas 18611.10 Gynecological Malignancies 18711.11 Conclusion 187References 188

12 Skull Base Tumors 193Daniela Schulz-Ertner12.1 Introduction 19312.2 Chordomas and Chondrosarcomas 194

12.2.1 Chordomas 19512.2.2 Chondrosarcoma 196

12.3 Malignant Salivary Gland Tumors 19712.4 Meningioma 19812.5 Neurinoma and Pituitary Adenoma 200

12.5.1 Neurinoma 20112.5.2 Pituitary Adenoma 202

References 203

13 Proton Therapy for Thoracoabdominal Tumors 207Hideyuki Sakurai, Toshiyuki Okumura, Shinji Sugahara,Hidetsugu Nakayama, and Koichi Tokuuye13.1 Introduction 20713.2 Lung 208

13.2.1 Stage I NSCLC 20813.2.2 Stage II—III NSCLC 211

13.3 Esophagus 21113.3.1 Survival, Local Control, and Sequelae

for Esophageal Cancer 21213.3.2 Treatment Procedures for Esophageal

Cancer Practiced at the PMRC 21213.4 Liver 214

13.4.1 General Management of HCC 21513.4.2 PT Procedure for HCC 21513.4.3 Clinical Outcome of PT for HCC 216

References 219

14 Carbon Ion Radiotherapy for Peripheral Stage INon-Small Cell Lung Cancer 223Tadashi Kamada, Naoyoshi Yamamoto, and Masayuki Baba14.1 Introduction 22314.2 CIRT for Lung Cancer at NIRS 224

xii Contents

14.3 Treatment Methodology 22514.3.1 Staging 22514.3.2 Marker Insertion 22514.3.3 Immobilization 22614.3.4 Respiratory Gating 22714.3.5 Treatment Planning 22714.3.6 Irradiation 228

14.4 Clinical Results 22914.4.1 Phase II Clinical Trial with 9 or 4 Fractions 22914.4.2 Phase I/II Clinical Trial: Single Fractionation 230

14.5 Comparisons of CIRT and Other Modalities 23114.6 Conclusion 234References 234

15 Ion Beam Therapy for Gynecological Tumors 237Tatsuya Ohno and Shingo Kato15.1 Introduction 23715.2 Proton Therapy for Gynecological Tumors 238

15.2.1 The Tsukuba University Experience 23815.3 Carbon Ion Radiotherapy for Gynecological Tumors 239

15.3.1 The NIRS Experience 23915.3.2 Locally Advanced Cervical Carcinoma 24115.3.3 Locally Advanced Cervical Squamous Cell

Carcinoma 24215.3.4 Locally Advanced Uterine Adenocarcinoma 244

15.4 Inter- and Intrafractional Tumor and Organ Motion 24715.5 Outlook 248References 250

16 Is Prostate Cancer a Good Candidate for Ion Beam Therapy? 253Carl J. Rossi Jr.16.1 Introduction 253

16.1.1 Proton Therapy Results 25416.1.2 CIRT Results 269

16.2 Conclusion 271References 274

17 Rationale for Proton Therapy in Pediatric Malignancies 277Shiao Y. Woo17.1 Introduction 27717.2 Pediatric Solid Tumors 27817.3 Late Toxicities of RT 27817.4 Methods to Potentially Reduce Late Effects of RT 27817.5 Rationale for PT in the Treatment of Pediatric Malignancies 27917.6 Clinical Results 28117.7 Challenges of PT 283References 285

Contents xiii

18 Tolerance of Normal Tissues to Ion Beam Therapy 287Jean-Louis Habrand, Jean Datchary, Pascal Pommier,Stdphanie Bolle, Lok Feuvret, Ismael Ghorbel,and Remi Dendale18.1 Introduction 28718.2 Ocular Tumors 289

18.2.1 Protons 28918.2.2 Light Ions 291

18.3 Tumors of the Head and Neck 29118.3.1 Brain 29118.3.2 Cranial Nerves and Cochlea 29418.3.3 Pituitary—Hypothalamic Axis 295

18.4 Tumors of the Trunk 29618.4.1 Genitourinary and Lower Digestive Tract 29618.4.2 Upper Digestive Tract 29818.4.3 Lungs 29918.4.4 Skin 300

18.5 Pediatric Tumors 30018.6 Second Cancers 302

18.6.1 Protons 30218.6.2 Light Ions 302

18.7 Conclusion 303References 303

19 Design and Implementation of Clinical Trials of Ion BeamTherapy 311James D. Cox19.1 Introduction 31119.2 Different Types of Clinical Trials 31219.3 Levels of Evidence 31319.4 Clinical PT Thais 31419.5 Clinical Trials with Protons and Carbon Ions 31519.6 Design Strategies for Clinical Trials 31619.7 Equipoise and the Ethics of Clinical Investigations

of Ion Beams 31719.8 Mechanisms for Clinical Investigations of IBT 31819.9 Summary 319References 319

Part V Medical Accelerators and Beam Line Design

20 Design Criteria for Medical Accelerators 325Hartmut Eickhoff, Udo Weinrich, and Jose Alonso20.1 Introduction 32520.2 Clinical Specifications 326

Contentsxiv

20.3 Technical Design Criteria for Medical Accelerators 32820.3.1 Accelerator and Beam Delivery System 32820.3.2 Beam Energy 32920.3.3 Beam Energy Variation 32920.3.4 Lateral Beam Quality 33020.3.5 Beam Intensity and Time Structure 33120.3.6 Beam Control and Safety Aspects 33220.3.7 Control System 333

20.4 Cost Considerations and Availability 33420.5 Design Criteria and Layout of Synchrotron-Based

Systems 33420.5.1 Basic Synchrotron Parameters 33520.5.2 The Synchrotron Injector System 33620.5.3 Beam Extraction from the Synchrotron 33720.5.4 The High-Energy Beam Transport Line

with Gantries 33820.6 New Accelerator Concepts 339

20.6.1 FFAG 33920.6.2 Linac Boosters 34020.6.3 Induction Linacs 34120.6.4 Lasers 34120.6.5 Antiprotons 342

20.7 Summary 342References 342

21 Shielding and Radiation Protection in Ion Beam TherapyFacilities 345Andrew J. Wroe and Steven Rightnar21.1 Introduction 34521.2 Dose Limits 34621.3 Radiation Shielding Basics 34721.4 Shielding Materials 34821.5 Maze and Door Construction 35021.6 Activation 35221.7 Dose Considerations for Electronics 35421.8 Out-of-Field Dose Equivalents 355References 358

22 Commercial Ion Beam Therapy Systems 361Yves Jongen22.1 The History of Commercial Ion Beam Therapy Systems 36122.2 Systems and Components of IBT Facilities 36422.3 Commercial PT Systems 365

22.3.1 IBA 36522.3.2 Sumitomo 36722.3.3 Hitachi 368

Contents xv

22.3.4 Mitsubishi 36922.3.5 Varian 36922.3.6 Still River Systems 37022.3.7 Optivus 371

22.4 Commercial Systems for Ions Heavier than Protons 37122.4.1 Sumitomo 37122.4.2 Mitsubishi 37222.4.3 Siemens 37222.4.4 IBA 373

22.5 Outlook 374

23 Advantages and Challenges of Superconducting Accelerators 377Detlef Krischel23.1 Introduction 37723.2 Material Properties of Superconductors

in Comparison to Normal-Conducting Materials 38023.3 Definition of a "Superconducting" Accelerator

for IBT 38223.4 Specifications of a Possible SC Accelerator for IBT 38223.5 The ACCEL/Varian Isochronous Cyclotron for PT 383

23.5.1 Overview 38323.5.2 Cyclotron Design Parameters

and Performance Data 38523.5.3 Operational Routines and Maintenance Aspects 388

23.6 Assessing the Potential Advantages of an SC Cyclotron 39023.6.1 Low Power Consumption 39023.6.2 Fast Morning Start-Up Time 39023.6.3 Compactness 39123.6.4 Ample Room for Particle Acceleration 391

23.7 Other SC Medical Accelerators for Protons 39123.8 SC Medical Accelerators for Ions Heavier

than Protons 39223.8.1 EULIMA 39323.8.2 SCENT300 39323.8.3 C400 IBA 394

23.9 SC Beam Line Magnets and SC Gantry Magnets 39423.10 Conclusions 395References 395

Part VI Beam Preparation and Control

24 All-in-One: An Attempt to Integrate the Full Potentialof Proton Pencil Beam Scanning in a New Gantry System 399Eros Pedroni24.1 Introduction 39924.2 The First Scanning Gantry at PSI 400

xvi Contents

24.3 The Rationale of Using a Proton Gantry 40124.4 The Motivation for a Gantry with Pencil Beam Scanning 40224.5 The Open Problem of Scanning: Sensitivity to Organ Motion 40424.6 Mechanical Layout of the New Gantry 2 40524.7 Gantry Beam Optics 40924.8 Nozzle Design 41024.9 Development of Novel Scanning Techniques 41224.10 Conclusions 414References 414

25 Beam Spreading Devices 417Jay Flanz25.1 Introduction 41725.2 Ion Beams Interacting with Matter 418

25.2.1 Scattering 41825.2.2 Energy Loss 42025.2.3 Relative Effects 420

25.3 Longitudinal Beam Conformance 42025.3.1 Longitudinal Beam Spreading 420

25.4 Transverse Beam Spreading 42725.4.1 Single Scattering 42725.4.2 Double Scattering 428

25.5 Three Dimensional Dose Conformation 42925.5.1 Additional Hardware and Related Beam Properties 43025.5.2 Scanning 434

25.6 Summary 438References 439

26 Dosimetry Techniques for Ion Beams 441Giacomo Cuttone26.1 Introduction 44126.2 Properties and Requirements of Ion Beams 44226.3 Absolute Dosimetry 44426.4 Detector Requirements for Relative Dosimetry 44826.5 Current Detector Types for IBT 45026.6 Summary 453References 454

27 Control and Safety Systems for Ion Beam Therapy 457Hiroshi Akiyama and Kazuo Tomida27.1 Overview 45727.2 Control System Design 458

27.2.1 Characteristics of an IBT System 45827.2.2 User and Mode Definitions 45827.2.3 Requirement Definition 45927.2.4 Structure of the Control System 459

Contents xvii

27.3 Design of the Safety System 46127.3.1 Safety Philosophy 46127.3.2 Role of the Safety System 46227.3.3 Function of the Safety System 46227.3.4 Configuration of the Safety System 46327.3.5 Risk Management and Safety Measures 46427.3.6 Typical Hazardous Situations and Safety Measures 46527.3.7 Other Safety Considerations 467

27.4 Interface to Other Systems 46727.5 Product Life Cycle 46827.6 Conclusions 469References 469

28 Considerations for an Effective Quality AssuranceProgram for Proton Therapy 471Michael Gillin, X. Ronald Zhu, and Narayan Sahoo28.1 Introduction 47128.2 Quality Assurance on CT Simulators for Protons 47228.3 Quality Assurance on PT Planning Systems 47328.4 Quality Assurance on the Electronic Medical Record

for Protons 47428.5 Quality Assurance on the PT Delivery System 47528.6 Daily Machine QA Tests 47528.7 Weekly Machine QA Tests 47828.8 Monthly Machine QA Tests 47828.9 Annual Machine QA Tests 47928.10 Patient-specific QA 48028.11 Summary 482References 484

Part VII Patient Positioning and Treatment Planning

29 Imaging and Tumor Localization for Ion Beam Therapy 489Oliver Jäkel29.1 Introduction 48929.2 Segmentation 49029.3 Dose Calculation 492

29.3.1 Position Verification 49229.4 Monitoring of Interfractional Motion 49429.5 Monitoring of Intrafractional Motion 49529.6 Treatment Verification 49829.7 Future Developments 498

29.7.1 Morphology: Increasing Imaging Resolution 49929.7.2 Movement: Integration of Imaging

and Treatment 49929.7.3 Molecular Profiling 500

References 501

xviii Contents

30 Treatment Planning for Ion Beam Therapy 503Oliver Jäkel30.1 Introduction 50330.2 Aspects of Patient Positioning and Immobilization 50430.3 Aspects of Imaging and Segmentation 50530.4 Definition of Treatment Parameters 506

30.4.1 Selection of Beam Directions 50630.4.2 Definition of the Planning Target Volume 51030.4.3 Selecting a Particle Type 511

30.5 Dose-Calculation Algorithms 51230.5.1 Absorbed-Dose Calculation 51230.5.2 Nuclear Fragmentation 51430.5.3 Biological Modeling 515

30.6 Optimization Algorithms 51830.6.1 Single-Field Uniform Dose 51830.6.2 Intensity-Modulated IBT 519

30.7 Plan Review and Assessment of Dose Distributions 52030.8 Planning of Combined Treatments 52030.9 Quality Assurance and Dosimetric Plan Verification 52130.10 Conclusion 522References 523

31 Online Irradiation Control by Means of PET 527Fine Fiedler, Daniela Kunath, Marlen Priegnitz,and Wolfgang Enghardt31.1 Introduction 52731.2 Physical Background 52831.3 Technology and Implementation 53131.4 Current PET Installations 534

31.4.1 GSI Helmholtzzentrum fürSchwerionenforschung, Darmstadt,Germany 534

31.4.2 HIMAC, Chiba, Japan 53531.4.3 National Cancer Center Hospital East,

Kashiwa, Japan 53531.4.4 Hyogo Ion Beam Medical Center, Tatsuno, Japan 53631.4.5 CATANA, Catania, Italia 53631.4.6 University of Florida Proton Therapy

Institute, Jacksonville, USA 53631.4.7 Massachusetts General Hospital, Boston, USA 536

31.5 Clinical Examples 537References 541

32 Compensation of Target Motion 545Christoph Bert and Eike Rietzel32.1 Introduction 54532.2 Impact of Organ Motion 546

Contents xix

32.3 Motion Monitoring 54632.4 Time-Resolved Volumetric Imaging 54832.5 Treatment Techniques for Intrafractionally Moving Organs 54832.6 Rescanning 54932.7 Gating 55032.8 Beam Tracking 55232.9 Comparison of Motion Mitigation Techniques 55332.10 Conclusions 556References 557

33 Industrial Robots for Patient Support 559Andres Sommer33.1 Introduction 55933.2 Patient Tables for Conventional RT 56033.3 Patient Tables for IBT 561

33.3.1 Positioner for a Gantry 56133.3.2 Positioner for a Fixed Beam 56133.3.3 Precision 562

33.4 Imaging Capability 56333.5 Tabletop 56333.6 Facility Workflow and QA 56433.7 Safety Aspects in Medical Equipment 565

33.7.1 Collision Control 56533.7.2 Speed 56533.7.3 Control Standards 56533.7.4 Power Failure 566

33.8 Design Principles of Robotic Patient Positioners 56633.8.1 Custom Manufactured Solutions 56633.8.2 Standardized Solutions 568

33.9 Design Steps and Challenges 57033.9.1 Service and Maintenance 57133.9.2 The User Interface 571

33.10 History and Today's Solutions 57233.10.1 The Pioneers of Robotic Positioners 57233.10.2 Current Solutions 572

33.11 Outlook 574References 576

Part VIII Individual Facilities and Management Issues

34 'fiventy Years of Proton Radiation Therapyat Loma Linda University Medical Center 581Jerry D. Slater34.1 Introduction 58134.2 The Origin of Proton Therapy at LLUMC 582

XX Contents

34.3 Developing Clinical Strategies for PT 58334.4 Clinical Applications 584

34.4.1 Stereotactic Radiosurgery of the CentralNervous System and Base of Skull 585

34.4.2 Fractionated Proton Treatment for Tumorsof the Central Nervous System 586

34.4.3 Diseases of the Eye 58634.4.4 Tumors of the Head and Neck 58634.4.5 Lung Cancer 58734.4.6 Breast Cancer 58734.4.7 Hepatocellular Carcinoma 58834.4.8 Prostate Cancer 58834.4.9 Pediatric Tumors 589

34.5 Clinical Perspective 59034.6 The Research Foundation 59134.7 Looking Ahead 592References 593

35 The Francis H. Burr Proton Therapy Center 597Jay Flanz, Hanne Kooy, and Thomas F. DeLaney35.1 Introduction 59735.2 The Facility 598

35.2.1 Cyclotron Accelerator 59935.2.2 The BTS Including Degrader and Energy Analyzer 60035.2.3 Gantries 60135.2.4 Beam Delivery Systems 60135.2.5 PPS 60135.2.6 Fixed-Beam Treatment Rooms 60235.2.7 Computer Control System 60235.2.8 Safety System 60235.2.9 Building 603

35.3 Mission and Capacity 60335.4 Clinical Results 60535.5 System Statistics 60635.6 Outlook 608References 609

36 HIMAC: A New Start for Heavy Ions 611Tadashi Kamada and Hirohiko Tsujii36.1 Introduction 61136.2 CIRT at NIRS 61236.3 Treatment Results by Tumor Type 614

36.3.1 Head and Neck Cancer 61436.3.2 Lung Cancer 61536.3.3 Liver Cancer 61636.3.4 Prostate Cancer 616

Contents xxi

36.3.5 Bone and Soft-Tissue Sarcomas 61736.3.6 Rectal Cancer 618

36.4 Future Prospects for CIRT 61936.5 Summary 619References 620

37 A National Action Plan in Japan: From ExperimentalStudies to Highly Advanced Medical Technology 623Koji Noda37.1 Introduction 62337.2 Progress of HIMAC 62437.3 Technology Development and Medical Physics of HIMAC 625

37.3.1 Beam Delivery System 62637.3.2 Medical Physics Program 628

37.4 Downsized Version of HIMAC 63037.4.1 Design and R&D Work 63037.4.2 Construction of a Pilot Facility 632

37.5 New Treatment Research Facility Project at NIRS 63237.5.1 Facility Planning 63337.5.2 3D Pencil Beam Rescanning 63337.5.3 Rotating Gantry 636

37.6 Japan's National Action Plan 637References 638

38 Operational and Training Issues Related to Facility Start-Up 641Nancy P. Mendenhall and Zuofeng Li38.1 Introduction 641

38.1.1 Governing Principles 64138.2 Operational and Training Issues 642

38.2.1 Program Design 64238.2.2 Operational Issues 64638.2.3 Tasks 650

38.3 Conclusion 658Reference 658

Part IX Future Developments

39 The Single-Room Ion Beam Facility 661Kenneth P. Gall39.1 Introduction 66139.2 Proton Therapy System Cost 66239.3 An Example of a PT System that Reduces Size

and Complexity 66339.4 System Deschphon 66539.5 Dosimetric Properties 66639.6 Facility 667

xxii Contents

39.7 Challenges 66939.7.1 Stray Magnetic Field 67039.7.2 Head Leakage 67039.7.3 Compatibility with IMPT 670

39.8 Outlook 671References 672

40 Smaller — Lighter — Cheaper: New Technological Conceptsin Proton Therapy 673John Cameron and Niek Schreuder40.1 Introduction 67340.2 PT Technology Circa 2010 67440.3 Future Systems 67640.4 Define What You Want to Treat 67640.5 Maintain the Ballistic Advantages of Proton Beams 67840.6 Smaller and Lighter Accelerators, Gantries, and Beam Lines 67940.7 Spread of PT 68140.8 Treatment Times and System Availability 68240.9 General Considerations of Cost Reduction 68240.10 Commissioning and Staff Training 68340.11 Summary 684References 685

41 New Facilities: Plans and Proposals 687Ramona Mayer and Stanislav Vatnitsky41.1 Introduction 68741.2 Situation in Europe 688

41.2.1 Proton Therapy Facilities 68841.2.2 Carbon Ion Beam Facilities 68841.2.3 Dual Ion Beam Facilities 68841.2.4 Cooperations Within the Ion Beam Community 696

41.3 Situation in the USA 69641.4 Situation in Asia 698

41.4.1 PT Facilities 69841.4.2 Carbon Ion Beam Facilities 69841.4.3 Dual Ion Beam Facilities 700

41.5 Conclusion 700References 700

42 Future Directions in Ion Beam Therapy 703Daniel Habermehl, Stephanie Combs, and Jürgen Debus42.1 Introduction 70342.2 Future Contributions of Radiobiology to IBT 70442.3 Future Challenges of Clinical Trials in IBT 707

42.3.1 Combined Treatment of Intensity-Modulated X-Ray RT (IMRT)and IBT 708

Contents xxiii

42.3.2 Comparison of IBTwith Nonradiotherapeutic Modalities 708

42.3.3 Testing of Different FractionationSchedules with CurativeIntent Using IBT in Both Arms 709

42.3.4 Dose-Searching Trials Comparing IBTat Different Dose Levels 709

42.3.5 Combination of Concurrent SystemicTherapies with IBTas Compared to Concurrent Chemotherapywith X-Ray RT 709

42.3.6 Comparison of Heavy Ion Therapy with PT 70942.4 Future Advances in Medical Physics of IBT 712

42.4.1 Moving Organs 71242.4.2 Role of Positron Emission Tomography 714

42.5 Summary 714References 715

Index 719

Name Index 729