Inversion of calcite twin data, paleostress reconstruction and multiphase weak deformation in...

84
Accepted Manuscript Inversion of calcite twin data, paleostress reconstruction and multiphase weak deformation in cratonic interior –evidence from the Proterozoic Cuddapah basin, India Vikash Tripathy, Dilip Saha PII: S0191-8141(15)00108-X DOI: 10.1016/j.jsg.2015.05.009 Reference: SG 3225 To appear in: Journal of Structural Geology Received Date: 28 August 2014 Revised Date: 4 May 2015 Accepted Date: 7 May 2015 Please cite this article as: Tripathy, V., Saha, D., Inversion of calcite twin data, paleostress reconstruction and multiphase weak deformation in cratonic interior –evidence from the Proterozoic Cuddapah basin, India, Journal of Structural Geology (2015), doi: 10.1016/j.jsg.2015.05.009. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Transcript of Inversion of calcite twin data, paleostress reconstruction and multiphase weak deformation in...

Accepted Manuscript

Inversion of calcite twin data, paleostress reconstruction and multiphase weakdeformation in cratonic interior –evidence from the Proterozoic Cuddapah basin, India

Vikash Tripathy, Dilip Saha

PII: S0191-8141(15)00108-X

DOI: 10.1016/j.jsg.2015.05.009

Reference: SG 3225

To appear in: Journal of Structural Geology

Received Date: 28 August 2014

Revised Date: 4 May 2015

Accepted Date: 7 May 2015

Please cite this article as: Tripathy, V., Saha, D., Inversion of calcite twin data, paleostressreconstruction and multiphase weak deformation in cratonic interior –evidence from the ProterozoicCuddapah basin, India, Journal of Structural Geology (2015), doi: 10.1016/j.jsg.2015.05.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service toour customers we are providing this early version of the manuscript. The manuscript will undergocopyediting, typesetting, and review of the resulting proof before it is published in its final form. Pleasenote that during the production process errors may be discovered which could affect the content, and alllegal disclaimers that apply to the journal pertain.

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 1 -

Title: Inversion of calcite twin data, paleostress reconstruction and multiphase 1

weak deformation in cratonic interior –evidence from the Proterozoic Cuddapah 2

basin, India 3

Author names and affiliations: Vikash TRIPATHY* and Dilip SAHA# 4

Geological Studies Unit, Indian Statistical Institute, 203, B.T Road, Kolkata-700108, 5

India. * [email protected], # [email protected] 6

Corresponding author: *Vikash Tripathy, +91-8790222021 7

* Present address: State Unit: T&AP, Geological Survey of India, Hyderabad- 8

500068, India. 9

Keywords: Calcite, Cuddapah basin, Cratonic interior, Gani-Kalva fault, mechanical 10

twin, paleostress11

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 2 -

Abstract 12

Paleostress orientations from mechanically twinned calcite in carbonate rocks and 13

veins in the neighbourhood of large faults were investigated to comment on the nature 14

of weak upper crustal stresses affecting sedimentary successions within the 15

Proterozoic Cuddapah basin, India. Application of Turner's P-B-T method and 16

Spang's Numerical dynamic analysis on Cuddapah samples provided paleostress 17

orientations comparable to those derived from fault-slip inversion. Results from the 18

neighbourhood of E-W faults cutting through the Paleoproterozoic Papaghni and 19

Chitravati Groups and the Neoproterozoic Kurnool Group in the western Cuddapah 20

basin, reveal existence of multiple deformation events − (1) NE-SW σ3 in strike-slip 21

to extensional regime along with an additional event having NW-SE σ3, for lower 22

Cuddapah samples; (2) compressional/transpressional event with ESE-WNW or 23

NNE-SSW σ1 mainly from younger Kurnool samples. 24

Integrating results from calcite twin data inversion, fault-slip analysis and regional 25

geology we propose that late Mesoproterozoic crustal extension led to initial opening 26

of the Kurnool sub-basin, subsequently influenced by weak compressional 27

deformation. The dynamic analysis of calcite twins thus constrains the stress regimes 28

influencing basin initiation in the southern Indian cratonic interior and subsequent 29

basin inversion in relation to craton margin mobile belts and plausible global tectonic 30

events in the Proterozoic. 31

1. Introduction 32

The theory of plate tectonics envisages that crustal deformation is usually 33

concentrated at the plate margins while the cratonic interior remains stable, rigid and 34

generally undeformed (Condie, 1997). Major seismic activities are more common at 35

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 3 -

plate margins compared to the plate interior, lending credence to postulation that 36

crustal deformation is localized along plate margins. However, the sensitivity of the 37

continental interior towards tectonic activities at the plate boundary has generated 38

considerable research interest (e.g. van der Pluijm et al., 1997; Craddock and van der 39

Pluijm, 1999). The continental interior is considered an ideal location to estimate 40

paleostress tensors, as the stress heterogeneities are less as compared to the any plate 41

margin (Hindle, 2008). However, reactivation of older structures and influence of pre-42

existing structural grains during later deformation event(s) call for a cautious 43

approach in interpreting results of paleostress inversion. For example, multiple sets of 44

calcite e-twins may provide different sets of stress orientations from the same sample, 45

which may be related to various deformational events. Ambient stress states of the 46

geologic past may be estimated from fault-slip analysis and dynamic analysis of 47

mechanical e-twins in calcite. The latter method is commonly employed where the 48

cover successions in cratonic interior contain calcite bearing rocks, either as stratified 49

limestone/marble or as veins and segregation within other rock types. Dynamic 50

analysis of calcite twins is a useful tool in areas where fault-slip data are sparse or 51

altogether absent, and for an independent check on the results obtained from fault-slip 52

analysis. The study of calcite e-twins for estimation of stress and strain has been used 53

in many areas across the world, such as from the Sevier Laramide continental interior 54

(van der Pluijm et al., 1997; Craddock and Van der Pluijm, 1999); Southern Pyrenean 55

foreland (González-Casado and García-Cuevas, 1999); Paris basin (Rocher et al., 56

2004); Sheep Mountain, Wyoming (Amrouch et al., 2010); Ogcheon Belt, South 57

Korea (Kang et al., 2005); Iberian Chain, Spain (González-Casado and Garcıa-58

Cuevas, 2002); various fold-and-thrust belts including western foreland of Taiwan, 59

Zagros fold belt and Northern Pyrenean foreland (Lacombe, 2010). These studies on 60

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 4 -

mechanical twins in calcite are instrumental in deciphering the regional patterns of 61

tectonic stress, and estimation of strain and differential stress. 62

The Eastern Dharwar craton (EDC) hosts the second largest intracratonic basin 63

in India namely the Cuddapah basin with several unconformity bound successions 64

formed in the Paleoproterozoic to the Neoproterozic times indicating recurrent crustal 65

mobility (e.g. Saha and Tripathy, 2012; Patranabis-Deb et al., 2012; Saha and 66

Patranabis-Deb, 2014). Flat lying to gently dipping sedimentary strata in the western 67

part of the basin are devoid of any regional penetrative deformation, but are affected 68

by large brittle faults indicating localized shallow crustal deformation. In this paper 69

we focus on the estimation of paleostress from mechanical twins in calcite with 70

samples from the western Cuddapah basin and examine how the estimated 71

paleostresses and their variation relate to regional tectonics. 72

2. Geological background 73

The Cuddapah basin is a composite of a number of sub-basins with distinct 74

evolutionary history, as evident from the disposition of the stratigraphic successions 75

and records of various Proterozoic tectonic events in the region (King, 1872; Nagaraja 76

Rao et al., 1987; Saha and Tripathy, 2012; Patranabis-Deb et al., 2012; Fig. 1). The 77

crustal thinning and sagging due to thermal perturbations in the mantle initiated the 78

Cuddapah basin opening (Bhattacharji and Singh, 1984). The alkaline rocks present 79

outside the Cuddapah basin, e.g., Paleoproterozoic Dancherla syenite (Rb-Sr WR, 80

2211 Ma; Suresh et al., 2010) post-orogenic and anorogenic granitoids in central part 81

of Eastern Dharwar craton – 2.2 Ga Dorigallu A-type granite (Zakaulla et al., 1998), 82

and mafic dyke swarms (~1.9 Ga, French et al., 2008; Heaman, 2008) are indicative 83

of such shallow to deep crustal thermal perturbations. These secular variations in 84

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 5 -

thermal regime in the Eastern Dharwar craton possibly led to changes in lithospheric 85

stress fields that helped in pulsed opening of the intracratonic Cuddapah basin. 86

The Paleoproterozoic Papaghni and Chitravati groups, consisting of siliciclastic to 87

carbonate sedimentary successions outcropping in the southwestern part in the 88

Papaghni sub-basin, represent the early development of the basin (Nagaraja Rao et al., 89

1987; Ramam and Murty, 1997; Saha and Tripathy, 2012). These rock units include 90

contemporaneous mafic to ultramafic dykes and sills of ~1900 Ma age (Bhaskar Rao 91

et al., 1995; French et al., 2008), connected to thermal perturbations and basin 92

opening in the Eastern Dharwar craton (Drury, 1984; Bhattacharji and Singh, 1984; 93

Nagaraja Rao et al., 1987; Dasgupta et al., 2005; Ravikant, 2010). The unconformably 94

overlying Kurnool Group, which are devoid of such mafic igneous intrusive is 95

understood to have been deposited during the Neoproterozoic. The source of diamond 96

and harzburgite garnets within the basal conglomerate of the Banganapalli Quartzite 97

of the Kurnool Group, is suggested to be either the 1090 Ma kimberlite pipes (Anil 98

Kumar et al., 1993; Joy et al. 2012), occurring just outside the western margin of the 99

Cuddapah basin, or the 1.4 to 1.3 Ga lamproites within the Tadpatri Formation (Joy et 100

al., 2012). 101

The Papaghni sub-basin is cut through by a number of faults such as the Gani-102

Kalva and Kona faults after the cessation of earlier sedimentation, probably during the 103

late Mesoproterozoic to early Neoproterozoic. Paleostress analysis using fault-slip 104

data from lower Cuddapah lithounits around these faults indicate strike-slip to 105

extensional tectonic regimes, suggesting fault controlled initiation of the Kurnool sub-106

basin (Tripathy and Saha, 2013). These analyses along with the occurrence of 107

intracratonic alkaline magmatism in the Eastern Dharwar craton during the late 108

Mesoproterozoic, e.g. 1100 Ma Kimberlite in Narayanpet (Gopalan and Anil Kumar, 109

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 6 -

2008) and 1092±15 Ma kimberlite of Wajrakarur field (Anil Kumar et al., 1993) 110

provide evidence for the development of Kurnool sub-basin in an extensional to 111

strike-slip regime. 112

The successions in the generally undeformed to weakly deformed Papaghni and 113

Kurnool sub-basins are thrusted over by the folded and faulted Nallamalai Group of 114

rocks constituting the Nallamalai fold belt (NFB) in the eastern part (Fig. 1). The 115

early deformational events (D1 and D2) within the NFB occurred prior to ~1.58 Ga, in 116

part related to the thrusting of the Nellore schist belt (NSB) along the Vellikonda 117

thrust front (Venkatakrishnan and Dotiwala, 1987; Saha, 2002; 2004; Saha and 118

Patranabis-Deb 2014; Collins et al., 2014). Thrusting of the NFB over the 119

Neoproterozoic Kurnool Group in the western part of Cuddapah basin is understood 120

to have happened during the late Neoproterozoic, possibly linked to the Pan-African 121

tectonic activity affecting the Eastern Dharwar craton margin. Imprint of such 122

compressional events are recorded in fault zones present within the Papaghni, 123

Chitravati and Kurnool groups. Unlike the NFB, the Paleoproterozoic sedimentary 124

rocks (Chitravati and Papaghni groups) in the southwestern part of the Cuddapah 125

basin are generally undeformed and devoid of any large folds and penetrative 126

cleavage. However, faults such as Gani-Kalva and Kona faults (Fig. 1), affect the 127

older succession (Chitravati Group) as well as the younger stratigraphic units of the 128

Kurnool Group with indications of fault reactivation (Tripathy and Saha, 2009; Saha 129

and Tripathy, 2012; Tripathy and Saha, 2013). The multiple events of brittle to brittle-130

ductile deformational imprint, particularly mechanical twins in calcite, in the 131

neighbourhood of Gani-Kalva and Kona faults are analysed here to understand their 132

significance in contemporaneous local and regional tectonics. 133

2.1. Gani-Kalva fault 134

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 7 -

The NE-SW trending Gani-Kalva fault (GKF), associated with a steep north 135

dipping monocline and left-lateral offset of strata, has been described as hinge-, 136

wrench- or transfer fault in earlier work (Coulson, 1933; Nagaraja Rao et al., 1987; 137

Chetty, 2011). Based on outcrop scale fault-slip criteria such as stratigraphic offset, 138

slickensides, rough and smooth surface, tension gashes, fault related folds, fault drag, 139

normal faults along releasing bend and outcrop scale faults, the GKF has been shown 140

as having oblique normal sense of displacement with maximum footwall throw in the 141

west, that progressively diminishes toward the east (Fig. 2; Tripathy and Saha 2013). 142

The fault at its westernmost part cuts through the basement granite gneiss around 143

Veldurti. Further eastward, subhorizontal strata of successively younger formations 144

namely the Gulcheru Quartzite, the Vempalle Formation, and the Tadpatri Formation, 145

and the still younger Narji Limestone and the Paniam Quartzite in the GKF footwall, 146

abut against the GKF. However, in the hanging wall side lithounits of the Kurnool 147

Group (Fig. 1) occur in juxtaposition with the ‘lower Cuddapah’ strata along the 148

GKF. The vertical separation of various formations along the fault diminishes 149

eastward, suggesting eastward reduction of throw. 150

2.2. Kona fault 151

The normal to left-lateral, WNW–ESE trending Kona fault (Tripathy and Saha, 152

2013) or Nossam fault (Meijerink et al., 1984) or Gudur-Cuddapah fault (Chetty, 153

2011) in the western part of the Cuddapah basin is another large scale fault that can be 154

traced westward on to the basement gneissic complex (Fig. 2). From west to east, a 155

differential throw is evident as viewed from the juxtaposition of successively younger 156

formations of the Kurnool Group against the Vempalle Formation occurring south of 157

the fault zone. Multiple events of slip along the Kona fault is evidenced by 158

slickensides and other slip markers like scratch mark and tool mark, tension gashes, 159

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 8 -

stratum parallel detachment, breccia zones and cross cutting relationships of slip 160

markers. Further, the stratigraphic offset and nature of fault-slip (Tripathy and Saha, 161

2013) suggests fault reactivation. 162

2.3. Fault-slip analysis: GKF and Kona fault neighbourhood 163

The fault-slip analysis based on outcrop data in the neighbourhood of the GKF 164

and the Kona fault has been interpreted in terms of distinct fault sets generated in 165

different stress regimes, affecting one or the other stratigraphic units, and their 166

possible correlation with regional deformational events has been proposed (Tripathy 167

and Saha, 2013). The paleostress obtained from fault-slip data collected from the 168

lower Cuddapah strata demonstrate paleostress orientations under strike-slip to 169

extensional/transtensive regime. However, data from the Kurnool Group offer 170

solutions indicative of strike-slip to compressional/transpressional regime. The 171

Neoproterozoic Kurnool Group, which unconformably overlies the Cuddapah 172

Supergroup, has been affected by fault sets that represent later deformation as 173

compared to the observations from the lower Cuddapah suggesting late 174

Paleoproterozoic and/or younger deformational episodes in the basin (cf. Kleinspehn 175

et al., 1989). 176

Some strike-slip solutions from the lower Cuddapah dataset are possibly related to 177

extensional/strike-slip reactivations that are well separated in time, as evident from 178

similar fault-slips obtained from the Kurnool Group (Tripathy and Saha, 2013). 179

Similarly, marks of compressional deformation are also recorded from the lower 180

Cuddapah, though separation of such data did not provide any representative reduced 181

tensor solutions. However, it is clear that the compressional/transpressional event 182

dominated the post-Kurnool deformational regimes. The extensional/transtensive 183

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 9 -

deformation is understood to be preeminent prior to the deposition of the Kurnool 184

Group. 185

The structural and stratigraphic disposition of the Proterozoic Cuddapah basin and 186

its proximity to the Eastern Ghat Granulite Belt (EGB) suggest multiple events of 187

deformation and metamorphism in the eastern margin of the Eastern Dharwar craton 188

(Saha and Tripathy, 2012; Henderson et al., 2014). It is expected that these 189

deformation events as also evident from the fault-slip data in the western part of the 190

Cuddapah basin, will also have imprints at the grain scale in easily deformable 191

minerals like calcite under low stress intensity in the cratonic interior. The paleostress 192

reconstruction based on mechanical twins in calcite in vein and calcite spar samples 193

from areas close to the Gani-Kalva and Kona faults in the western part of the 194

Cuddapah basin is thus important in validating the interpretations based on fault-slip 195

data presented in Tripathy and Saha (2013). In this contribution we present the 196

paleostress orientations determined using calcite twin analysis to understand the 197

variations in stress regimes through time. 198

Calcite samples studied for paleostress analysis were collected from carbonate 199

bearing stratigraphic horizons within the Proterozoic Cuddapah basin namely, the 200

Tadpatri Formation belonging to the Paleoproterozoic Chitravati Group, and the Narji 201

Limestone and Koilkuntla Limestone, belonging to the younger (Neoproterozoic) 202

Kurnool Group (Fig. 1 for stratigraphy; Fig. 2 for sample locations). 203

3. Analysis of calcite e-twin – theory and methods 204

The crystal–plastic deformation of calcite usually occurs by the formation of 205

twins along the {0112} plane (e-twin plane) in the temperature range 25º–400º C 206

(Turner, 1953; Fig. 3a, b). With increase in temperature, deformation is 207

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 10 -

accommodated by intracrystalline slip along the cleavage (and gliding plane) {1011} 208

i.e. r-plane (Burkhard, 1993; Sperner and Ratschbacher, 1994). Deformation above 209

400º C marks the transition from the “twinning regime” to the “intracrystalline slip 210

regime” (Schmid et al., 1987). Due to the trigonal symmetry of calcite, it has three 211

sets of e-twin {0112} planes and three r-twin planes {1011}, which are systematically 212

arranged around the c-axis, [0001] (Fig. 3c). For each twin plane i.e., e1, e2 and e3 213

having poles [e1], [e2] and [e3] in Fig. 3c the arrow defines the direction of twinning 214

where arrowhead indicates that the upper part of the crystal moves upward, towards 215

the c-axis, like a reverse microfault (after Laurent et al., 1990). The deformation 216

causes the c-axis in the twinned part to rotate in a manner as to result in a constant 217

angle of 52º between the c-axis of the host and that of the twinned part (Fig. 3b). The 218

rotation sense is opposite to the sense of shear (Fig. 3a, b). The orientations of the c-219

axes in the host and twinned part are symmetrical around an axis normal to the plane 220

of twinning i.e. e1. The sense of shear on the e1 is constant (Fig. 3b) and taken to be 221

positive (+) by convention (Fig. 3d). The positive sense (+) of shear represents a shear 222

in which the hanging wall move up while negative sense (-) is for the situation 223

where the hanging wall moves down (Laurent et al., 2000). However, on r1 both 224

positive and negative shear senses are equally possible (Fig. 3d; Laurent et al., 2000). 225

The twin formation leads to a strain hardening effect, where further strain is 226

accommodated by either increase in twin thickness or twin density depending on the 227

temperature of deformation (Kollmeier et al., 2000). Based on the appearance of the 228

twins, they are classified into four types that correspond to broad ranges of 229

deformation temperatures (Burkhard, 1993). Type I: Thin twins, straight, rational; 1, 2 230

or 3 sets per grain; developed under very weak deformation, at very low temperature, 231

< 200º C. Type II: Thick twins (>> 1µm), parallel sided, to slightly lens shaped, 232

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 11 -

developed under moderate deformation, in the temperature range: 150-300º C. Type 233

III : Curved thick twins, twins in twin, irrational, developed under significant 234

deformation, at temperatures > 200º C. Type IV: Thick, patchy, sutured twin 235

boundaries, irrational orientation, developed under strong deformation, at 236

temperatures > 250º C, often associated with dynamic recrystallization,. 237

3.1. Estimation of shear strain 238

The number of twin lamellae in a calcite grain is usually expressed in terms of 239

twin intensity (number of twin planes/mm). The intensity is estimated by dividing the 240

number of twins in a set by the width of the host grain, measured perpendicular to the 241

twins (Fig. 3e, f). The “mean twin intensity” for a sample is calculated by averaging 242

the twin-set averages for all twin sets measured in the sample (Fig. 3f). However, at 243

temperatures above 200ºC, calcite shows thick twins and low twin intensities (Fig. 244

3e). Thus, calcite twin strain can accumulate by increasing the number of twins (twin 245

intensity), increasing the size of twins (i.e., mean twin width, determined by 246

calculating the average of the ratio of the twin width, both the thick and thin and the 247

total number of twins in the set) or both. The relationship between shear strain 248

accommodated by a calcite twin set, grain size and twin width is presented by 249

Groshong (1972) and later modified by Ferrill et al. (2004). The relationship is given 250

by: 251

( )2/tan2 αγ Tt= ...................................................................................(1)

where γ = shear strain; T = twin intensity, t = mean twin width, and α = angle of 252

rotation of the grain edge from the untwinned to the twinned position and is equal to 253

38.28º (Fig. 3f; Groshong, 1972). 254

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 12 -

3.2. Estimation of paleostress orientation 255

The geometry of calcite e-twins and crystallographic parameters of calcite bear 256

a definite relation with the C (Compression, also denoted as P) and T (Tension) 257

directions (Turner, 1953) of the ambient stress field (Fig. 3a). The C and T axes are 258

derived from c-axis orientations in each e-twin lamella and adjoining host, measured 259

on the U-stage (Universal stage) fitted to a polarizing microscope. The contouring of 260

C and T axes orientations on stereographic net provides the best-fit results. Following 261

this classic method (Turner, 1953), Spang (1972) and Dietrich and Song (1984) 262

suggested improved versions. Here, the classical Turner method as well as the Spang 263

(1972) method is adopted for obtaining the best-fit C and T from rock samples with 264

twinned calcite from the western Cuddapah basin. 265

3.2.1. Turner P-B-T method 266

On each of the measured e-twin planes compressional (C-axis) and extensional 267

(T-axis) axes are assigned (Turner, 1953). The stress axes and c-axis lie on the plane 268

defined by the glide direction and e-plane normal (Fig. 3). Ideally, the maximum 269

resolved shear stress occurs on the twin plane as P (or T) bears an angle of 45º with 270

the e-plane normal. Further, the angle between the T-axis and c-axis in the twinned 271

domain is 18.5º. Turner (1953) suggested that the maximum concentrations of the P- 272

and T-axes, estimated as above are the loci of the σ1 and σ3. Either of P- and T-axes is 273

perpendicular to the B-axis (equivalent to σ2). 274

3.2.2. Numerical dynamic analysis (NDA) 275

The numerical method for the dynamic analysis of calcite e-twins proposed by 276

Spang (1972) assumes that all the twin sets accommodate the same amount of strain. 277

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 13 -

Therefore, the shear strain along each e-twin plane is assigned an arbitrary value of 278

1.0. Based the assumption of same strain on all twin sets, stress is calculated with 279

similar approach. Thus, strain in each twin set (Eαβ) is defined by a second order 280

tensor where compression axis is associated with strain value of +1.0 (E11) and 281

extension axis by -1.0 (E22): 282

+1.0 0 0

Eαβ = 0 -1.0 0 ..................................................(2)

0 0 0

283

where each twin lamella represent plane strain condition (E13 = E31 = E32 = E23 = E33 284

= 0). The final stress tensor referred to the thin section coordinate system is 285

determined for each e-twin set, and finally rotated to the same geographic reference 286

coordinate (e.g., north (+x); east (+y) and down (+z)) by the transformation formula 287

Eij = Eαβ lαi lβj...................................................................................(3) 288

The rotated or transformed stress tensor in each twin set (Eij) is thus represented in the 289

form: 290

p2 – p 2 pq – pq΄ pr – p r΄

Eij = pq – pq΄ q2 – q 2 qr –q r΄ ....................................................(4)

pr – p r΄ qr –q r΄ r2 – r 2

Where p, q and r are direction cosines of the angle between the compression axis and 291

+x, +y and +z respectively. Similarly p΄, q΄ and r΄ are direction cosines of the angle 292

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 14 -

between the extension axis and +x, +y and +z respectively (Spang, 1972). The average 293

of stress tensors for each twin set is called the bulk stress tensor. The relative 294

magnitudes and orientations of the principal stresses (σ1, σ2 and σ3) are the 295

eigenvalues and eigenvectors of the bulk stress tensor. 296

The program NDA (Sperner and Ratschbacher, 1994) used in the present 297

analysis calculates the angle β between the calculated directions of maximum shear 298

stress acting along the individual e-planes and the crystallographic glide directions (e1 299

: r2) estimated from bulk stress tensor. Each of these measured angles is checked for 300

the necessary positive sense of glide. This procedure permits the detection of twins of 301

incompatible orientations for a given stress state. This parameter is expressed in the 302

form of “negative expected value” (NEV, Groshong, 1974). The NEV of a dataset 303

implies that the calcite grain is not oriented according to the derived stress orientation 304

for the said sample. An approach in dealing with these negative values or the noise is 305

to discard some of them (Groshong, 1972; Burkhard, 1993). For example, Laurent et 306

al. (1990) rejected 20% of the incompatible twin data to derive the ‘largest deviations 307

reduced’ (LDR). In the present analysis a similar approach is adopted for such 308

negative values. Higher NEV percentages (>35%) is possibly related to a second, 309

non-coaxial strain which may be analysed separately as against the positive expected 310

values (PEV). The program NDA also provides the ratio of principal stress 311

differences, R = (σ2 - σ3) / (σ1 - σ3), which defines the shape of the stress ellipsoid. 312

The value of R varies from 0 to 1, and for values approaching 1, σ1 becomes 313

equivalent to σ2 and the orientations of the two principle axes can be interchanged. 314

Another numerically expressed parameter used here is stress regime index R' which is 315

determined by the nature of vertical stress axes (Delvaux et al., 1997). R' = R where 316

σ1 is vertical (extensional stress regime); R' = 2 − R where σ2 is vertical (strike-slip 317

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 15 -

stress regime); and R' = 2 + R where σ3 is vertical (compressional stress regime; 318

Delvaux et al., 1997; Delvaux and Sperner, 2003). For each of these stress regimes 319

(R') the value of R ranges from 0 to 1. 320

4. Samples and Measurement 321

4.1. Sample location and description 322

Oriented limestone samples with vein calcite or sparry calcite were collected 323

from the Tadparti Formation, Narji Limestone and Koilkuntla Limestone horizons 324

exposed in the neighbourhood of Gani-Kalva and Kona faults. For accuracy and 325

precision two perpendicular thin sections were cut for all the ten measured samples 326

(Fig. 2, Table 1). The veins range in thickness from 0.5 to 1.5 cm and are straight 327

sided with vertical to sub-vertical orientations (Table 1). The veins and sparry calcite 328

are coarse grained without any apparent shape preferred orientation and are clearly 329

distinguishable from the fine grained host rock (Fig. 4). Most of the vein samples in 330

the present analysis provided large NEV’s of more than 35%, so the data were also 331

analysed to determine the PEV. Some of these analysed solutions, either of the PEV 332

or NEV are possibly related to stresses responsible for the calcite vein opening and 333

such solutions are not used here for regional deformational correlations. 334

4.2. Sample preparation and measurement 335

Polished thin sections with marks corresponding to the bedding/vein 336

orientations were prepared from each of the above oriented samples with thickness of 337

the order of 5-10 µm (Kang et al., 2005; Sperner, personal communication, 2007). In 338

each section c-axis and twin orientations were measured on a standard polarizing 339

microscope (CZ Zenapol) fitted with a four axis universal stage (U-stage). Two 340

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 16 -

mutually perpendicular thin sections from each sample were measured for c-axis and 341

twin orientations to avoid the U-stage blind spot (González-Casado and García-342

Cuevas, 1999). The standard procedure of measuring 25 twinned grains from each of 343

two mutually perpendicular thin sections has been followed to obtain a statistically 344

reasonable result (Groshong et al., 1984). The measured parameters for each calcite 345

grain included c-axis orientations of host grain and twin lamellae, average thickness 346

of twins in a set, number of twins and grain width. The measured samples show 347

shallow to steeply plunging calcite c-axes with wide variations in azimuth (Appendix 348

A1 and A2; Fig. 5). The measured and tabulated calcite twin data were processed for 349

paleostress analysis by using applications software of Sperner and Ratschbacher 350

(1994), which adopted Turner΄s P-B-T method (Turner, 1953), and NDA method 351

(Spang, 1972). 352

4.3. Results 353

The measured samples show shallow to steeply plunging calcite c-axes 354

(untwined grains and host) with wide variation in azimuth (Fig. 5). Except in cases 355

with strong preferred orientation, which could bias the result for samples viz., 26N, 356

10M, 28N, & 2F, a near random to very weak calcite c-axis preferred orientation, 357

attest to the fact that the starting material represent diagenetic calcite cement or low 358

temperature hydrothermal veins, and that the deformation twins represent only weak 359

strain. Most of the calcite grains showed one or two twin sets along with occasional 360

third set. The measurements of twins were done without any bias toward twin density, 361

number of sets present or thickness of twins. However, a minimum thickness (in the 362

present case at least 2-3 microns) of individual twins is necessary for measurement 363

under the polarizing microscope. The mean grain size of calcite samples varied 364

between 0.66 and 4.80 mm. By their appearance, e-twins in the measured calcite 365

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 17 -

samples could be classified as type I to type II twins (Fig. 4d), suggesting deformation 366

at temperatures below 200º C (Burkhard, 1993). The mean twin width (t), grain size, 367

twin intensity (T) and the calculated shear strain (γ) were obtained for two 368

perpendicular sections in each sample. 369

The shear strain values obtained separately from two perpendicular sections 370

are similar with the maximum value in sample 2F (Koilkuntla Limestone) from the 371

eastern end of GKF (γ ≈ 0.14, Fig. 6a, Table 1). The plot of grain size vs. mean twin 372

width (t) clearly shows that on the whole large grain size is associated with greater 373

twin width (Fig. 6b). Similarly, the grain size vs. mean twin intensity (T) plot shows 374

that the twin intensity decreases with increasing twin width (Fig. 6c). The above 375

relationship suggests thickness of twins to be grain size dependent with thicker twins 376

more common in larger grains (Rowe and Rutter, 1990). 377

The paleostress solution estimated by using two different methods (Turner 378

PBT and NDA) provide roughly similar results. The paleostress estimation is from 379

two major stratigraphic units – Tadpatri Formation within the Paleoproterozoic lower 380

Cuddapah succession and the Narji Limestone and Koilkuntla Limestone within the 381

Neoproterozoic Kurnool Group which unconformably overlies the lower Cuddapah 382

succession (Fig. 1; Table 1). Except sample 103, 1N & 26N, the rest of the samples 383

showed large NEVs (>35%) which are analysed for both PEV and NEV. The tensor 384

solutions from the younger Kurnool Group represent the latest deformation from the 385

area while the results from lower Cuddapah samples may represent either pre-Kurnool 386

or post-Kurnool deformation. The results are discussed in the following paragraphs 387

(Fig. 7a,b and 8a,b,c) and are also compared with the results from fault-slip analysis 388

obtained from the same locations (Tripathy and Saha, 2013; Appendix A3). 389

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 18 -

4.3.1. Paleostress analysis of samples from Tadpatri Formation 390

Majority of the samples from the Tadpatri Formation show deformational 391

imprints with two sets of σ3 orientations i.e., NE-SW and NW-SE either under strike-392

slip or extensional regime both from Gani-Kalva and Kona fault (Figs. 8a, b, c, 9 & 393

10). Of the samples with coarse calcite spars collected from the neighbourhood of 394

Gani-Kalva fault viz., 1N and 19DPEV has imprint of a NE-SW trending σ3 under 395

extensional and strike-slip regimes respectively (Table 1). A flip between σ1 and σ2 is 396

thus apparent in change-over from extensional to strike-slip regime with σ3 remaining 397

relatively stable. It may be noted that 1N and 19D are spatially very close (about 2.2 398

km apart) and come from the same stratigraphic unit. However, sample 19D also 399

shows a second deformational event from the dataset 19DNEV with NW-SE trending 400

σ3 under strike-slip regime. Similarly, two events with different principal directions 401

i.e., NW-SE and NE-SW trending σ3 in strike-slip regime were required to produce 402

the observed calcite twins for the sample 10MPEV & 10MNEV respectively. Such 403

deformation with NW-SE σ3 is also derived from fault-slip analysis in the same 404

domain (g10, g10_1 of Tripathy, 2010; Saha and Tripathy, 2012; Tripathy and Saha, 405

2013). 406

Similar NE-SW σ3 stress orientation under extensional and strike-slip regimes 407

for datasets 28NNEV & 6DNEV respectively are deduced from the samples collected 408

from the footwall of the Kona fault. A set of NW-SE σ3 in strike-slip regime for 409

6DPEV may be related to the NE-SW trending vein opening. However, 28NPEV 410

represents a NE-SW σ1 in compressional regime (Fig. 10) which is also recorded from 411

fault-slip analysis of data from the Banganapalli Quartzite (k8, k8_1 of Tripathy, 412

2010; Saha and Tripathy, 2012; Tripathy and Saha, 2013). Thus, faulting events 413

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 19 -

affecting the younger Banaganapalli Quartzite (Kurnool Group) may have affected the 414

older Tadpatri Formation as well and produced mechanical twins in calcite. 415

Samples 26N and 261A represent calcite mineralization on NE-SW trending 416

oblique reverse faults with striations. The NDA method gives a steep σ2 for sample 417

26N with NW-SE trending σ1 in transtensional regime. A right-dihedra plot of the 418

fault orientation (Fig. 11) indicates σ1 plunging towards NNW, similar to the solution 419

derived by the NDA method on e-twins. In case of sample 261A, two sets are deduced 420

with E-W and N-S σ1 in strike-slip regime. The stress state corroborates results 421

obtained by fault-slip analysis showing ENE-WSW trending σ3 from the same 422

location (k5_1 of Tripathy, 2010; Saha and Tripathy, 2012; Tripathy and Saha, 2013; 423

Fig. 12). Both the methods suggest a strike-slip stress regime with WNW-ESE 424

trending maximum compression for mechanical twins in the sample (Fig. 10). 425

4.3.2. Paleostress analysis of samples from the Kurnool Group 426

Analysis of twin data from calcite veins of extensional type within the 427

Kurnool Group from Gani-Kalva fault provides stress orientations of compressional 428

regime which represent deformational imprints later than the vein formation. Sample 429

2F, from the N-S trending steeply W to NW dipping calcite veins (Fig. 8d) within the 430

horizontal to subhorizontal Koilkuntla Limestone demonstrates the calculated shear 431

strain (γ) value of 0.11-0.14 (Fig. 6a). This sample required at least two events to 432

produce the observed calcite twins. Analysis suggests deformation under 433

compressional and transpressional regime with σ1 trending NNE and E-W for PEV 434

and NEV datasets respectively. Similarly, the NE-SW trending and NW dipping 435

calcite vein, sample 103, present within the Narji Limestone gives an ESE-WNW 436

trending σ1 in compressional regime with steep σ3 (Fig. 9). Both the samples 437

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 20 -

demonstrate the latest deformational imprints on the Kurnool Group of rocks. Fault-438

slip analysis obtained from the Paniam Quartzite (g3, g5_1, g11 sets of Tripathy, 439

2010; Fig. 12) and the Banganapalli Quartzite (g2 and g8 sets of Tripathy, 2010; Fig. 440

12) around the Gani-Kalva fault provide tensor solutions similar to those derived from 441

the 2F and 103 samples (see also Saha and Tripathy, 2012; Tripathy and Saha, 2013; 442

Fig. 12). 443

The NNE trending ESE dipping vein, sample no. 30N, collected from the 444

footwall of the Kona fault cutting through the brecciated mass of the Narji Limestone 445

has shear strain value of 0.06 (Fig. 6a). The twin datasets provided two sets of tensor 446

solutions. Of these, the NEV data has ESE trending maximum extension (σ3) in 447

strike-slip regime (Fig. 10) possibly related to the opening of the NNE-SSW trending 448

vein. However, the PEV dataset with NE-SW (30°) maximum extension 449

approximately parallel to the strike of the vein shows stress regime unrelated to the 450

origin of vein emplacement. These stress events may be related to fault reactivation 451

under an extensional regime correlatable to local steepening of beds within the 452

Kurnool Group and outcrop scale fault-slips. 453

5. Discussion 454

5.1. Paleostress regimes 455

Lower Cuddapah samples of calcite vein, sparry calcite and calcite 456

mineralization along the Gani-Kalva fault (GKF) and the Kona fault indicate 457

dominant strike-slip/transtenstive deformation. The deduced maximum extension (σ3) 458

is either gently plunging towards NE-SW or towards N-S except in the case of 459

19DNEV and 10MPEV where σ3 is NW-SE trending. These extensional events can 460

either be during the opening of the Kurnool basin or post Kurnool deposition and 461

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 21 -

reactivation of faults. With the present dataset alone it is not possible to determine the 462

relative age of the extensional phases. However, the overall fault geometry and calcite 463

twin datasets do suggest that the NW-SE maximum extension in strike-464

slip/extensional regime is the result of the stress patterns that can be attributed to fault 465

formation. 466

The heterogeneity in deformation and stress perturbations around fault tips 467

(Homberg et al., 1997), as at the eastern termination of Gani-Kalva fault, is indicated 468

by higher shear strain values of 0.11-0.14 in sample 2F (Fig. 6a). On the other hand, 469

the other two Narji samples located near the central part of the major faults (103, 470

Gani-Kalva and 30N, Kona) present lower shear strain values (γ ≈ 0.02-0.06; Fig. 6a). 471

The Gani-Kalva samples show NNE-SSW and ESE-WNW trending maximum 472

compression axes for 2F and 103 samples representing the late Neoproterozoic or 473

younger deformation. A similar conclusion about stress orientation is drawn from 474

fault-slip analysis from the Gani-Kalva and Kona faults (Tripathy and Saha, 2013). 475

For the dataset 30NPEV, the NE-SW trending σ3 orientation is approximately parallel 476

to the strike of the corresponding calcite vein sample from Kona fault. The e-twin 477

data indicate possible normal sense reactivation along the fault line, post-dating at 478

least the deposition and lithification of the Narji limestone. 479

The results from the dynamic analysis of calcite e-twin data suggest mainly 480

strike-slip and extensional stress regimes for the lower Cuddapah samples (Figs. 7b; 481

8a, b, c). In contrast, the present data from the younger Kurnool Group demonstrate 482

two main phase of compressional stress system probably related to the late 483

Neoproterozoic deformation in the NFB further east. It has been argued elsewhere 484

that while thrusting along the western margin of the NFB (Maidukuru thrust) has led 485

to development of strong calcite c-axis fabric in carbonate mylonites derived from the 486

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 22 -

Narji Limestone, the quartzites do not show comparable crystallographic fabric 487

(Chakraborti and Saha, 2009). However, older contractional deformation along the 488

Vellikonda thrust front at the eastern margin led to quartz mylonites with type I cross 489

girdle fabric (Saha et al., 2010). Thus, inversion of e-twin corroborates multiphase 490

regional deformation, and a weak but recognizable imprint is present even in the 491

western part of the Cuddapah basin, 50-100 km west of the Nallamalai thrust front. 492

Compressional solutions such as those with NNE-SSW trending σ1 from Kurnool 493

Group are possibly related to similar stress states recorded from the Southern 494

Granulite Terrain (SGT) during Pan-African times (Collins et al., 2010). 495

5.2. Basin opening and larger tectonic context 496

Given the new results derived from dynamic analysis of calcite e-twins from 497

the western part of the Cuddapah basin, we discuss below how this may better 498

constrain our understanding of the regional tectonics and their broader framework. 499

Several authors in recent years have suggested the possibility of more than one cycle 500

of Proterozoic rifting, opening of sea and later convergence from records in the 501

southern part of the Eastern Ghats, Prakasam alkaline province, Nellore-Khammam 502

schist belt (NSB) and the Nallamalai fold belt (NFB), as well as those from the 503

intracratonic basins further west of the EGB and other fold-and-thrust belts (Saha, 504

2004; Leelanandam et al., 2006; Vijaya Kumar and Leelanandam, 2008; Saha et al., 505

2010; Ravikant, 2010; Henderson et al., 2014; Saha and Patranabis-Deb, 2014; Saha 506

et al., 2015). Although, the high grade terrains of the Eastern Ghats and adjoining 507

fold-and-thrust belts are important in linking India with other Gondwana fragments in 508

the Proterozoic, the intracratonic basins provide important clues in sea level 509

fluctuations which may be influenced by supercontinent break-up (Bradley, 2008; 510

2011; Patranabis-Deb et al., 2012; Nance and Murphy, 2013; Saha and Patranabis-511

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 23 -

Deb, 2014). Development of the Nallamalai fold belt (NFB), is related to the crustal 512

convergence, which is suggested to have possible link with the amalgamation of the 513

Columbia Supercontinent during the late Paleoproterozoic (e.g. Saha, 2002; Bradley, 514

2011; Meert, 2012; Nance and Murphy, 2013). In such a setup the position of NFB is 515

an important issue as early deformation in the NFB is possibly related to these global 516

scale orogenic activities. The absence of any comparable fold-and-thrust deformation 517

in the lower Cuddapah succession (c. 1900 Ma) suggests that the western Cuddapah 518

(Papaghni sub-basin) had an early evolutionary history, quite different from that of 519

the NFB. 520

The breakup of the Columbia Supercontinent post ~1500 Ma is documented in 521

the form of Mesoproterozoic anorogenic magmatism such as kimberlite, lamproites 522

and carbonatite in West Africa, Canada, East Greenland Caledonides, North China, 523

Russia, South Africa, India, South America and Western Australia (Rogers and 524

Santosh, 2004). In south India, west of the Cuddapah basin, similar ‘anorogenic’ 525

magmatism is recorded in the form of kimberlite, lamproite, mafic dyke, granite and 526

syenite ranging in age between 1400 Ma and 1200 Ma (Chalapathi Rao et al., 2004; 527

Leelanandam et al., 2006; Dobmeier et al., 2006; Sesha Sai, 2013). The extensional 528

regime may have initiated faults in the western part of the Cuddapah basin, namely 529

Gani-Kalva and Kona faults. These faults controlled the depocenter for Kurnool 530

sedimentation (Tripathy and Saha, 2013). Paleostress analysis of calcite e-twin 531

samples from the Tadpatri Formation (Table 1) suggest the existence of an early 532

strike-slip to extensional regime possibly linked to such late Mesoproterozoic 533

extensional setup. The deformational event with NE-SW σ3 is a possible result of such 534

extensitional to strike-slip regimes. Additional NW-SE trending σ3 orientations may 535

suggest multiple episodes of reactivation in the western part of the basin. 536

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 24 -

The final docking of the Eastern Ghats belt (Ongole domain), the adjoining 537

NSB and NFB on to the western part of the Cuddapah basin is possibly related to end-538

Neoproterozoic (Pan-African) crustal convergence (e.g. Henderson et al., 2014). Post-539

depositional deformation in the Kurnool sub-basin is reported to be due to the 540

thrusting of the NFB and strike-slip reactivation along faults like Gani-Kalva and 541

Kona faults (Saha, 2002; Tripathy and Saha, 2008; 2009; 2013; Saha et al., 2010). 542

Such activities at the craton margins are expected to leave imprints in the basins in the 543

cratonic interior, as in the case of the Cuddapah basin in the Eastern Dharwar craton 544

(Tripathy and Saha, 2013). The paleostress obtained from the fault-slip analysis 545

(Tripathy and Saha, 2013) and dynamic analysis of calcite e-twins (Table 1; Fig. 7a, 546

b) provide ample evidence of multiple tectonic activities and reactivation of faults. 547

Inversion of calcite twin data from samples of the Kurnool Group provide NNE or 548

ESE trending maximum compressional axis (σ1) under compressional/transpressional 549

regime which can be linked to regional contractional deformation, which is evident 550

from the Vellikonda thrust front and the Nallamalai thrust front (Maidukuru thrust). 551

The localized deformation may be interpreted as being due to far-field effects of 552

tectonic activity along the margin of the Eastern Dharwar craton outlined earlier. 553

Later reactivations of Kona fault in extensional regime with NE-SW σ3 may be 554

envisaged from twin data of 30NPEV. However, ESE-WNW trending σ3 derived 555

from sample 30NNEV are possible outcome of the stress orientations related to the 556

opening of the NNE-SSW calcite veins. 557

6. Concluding Remarks 558

The paleostress reconstruction from inversion of calcite e-twin data from 559

samples belonging to stratigraphically separate horizons around Gani-Kalva and Kona 560

faults in western part of Cuddapah basin define two distinct sets of stress regime and 561

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 25 -

orientations. (1) An early strike-slip to extensional regime with gently plunging NE-562

SW maximum extension (σ3), attested mainly by data from lower Cuddapah (Tadpatri 563

Formation) samples. This is in line with earlier interpretation of strike-slip to 564

extensional regime based on fault-slip analysis in the neighbourhood of the Gani-565

Kalva and Kona faults (Tripathy and Saha, 2013). (2) A later compressional regime 566

with NNE-SSW or ESE-WNW trending σ1 axis is obtained from samples from the 567

younger Kurnool Group. This late compressional regime (ESE-WNW σ3) is also 568

evident from the development of calcite mylonites derived from the Narji Limestone 569

(Kurnool Group) in the immediate footwall of the Maidukuru thrust in the western 570

margin of the Nallamalai fold belt (e.g. Saha et al., 2010). Extensional reactivation is 571

also common along the studied faults during later phases as evident from the NE-SW 572

σ3 from one sample (30NPEV). 573

The presented work suggests that the western part of Cuddapah basin was 574

affected by multiple sets of tectonic events throughout its evolution. This exercise on 575

derivation of paleostress fields from inversion of calcite twin data corroborates earlier 576

results of fault-slip analysis suggesting effects of multiple regional deformation (Fig. 577

12; Tripathy and Saha, 2013). The paleostress regime in the Proterozoic intracratonic 578

Cuddapah basin in southern India also lends support to the general view that craton 579

margin stresses leave weak but definite imprint on cratonic interior. 580

581

Acknowledgments 582

This work is supported by the Indian Statistical Institute, Kolkata in the form of 583

several research grants to DS. VT acknowledges a senior research fellowship granted 584

by ISI. We wish to thank Blanka Sperner for Turbo program package of calcite 585

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 26 -

paleostress. We are indebted to Joao Hippertt, the handling editor and Jim Hnat, who 586

made valuable comments and suggestions on an earlier versions of the manuscript. 587

Supplementary Data: Appendix A1, A2 and A3 588

589

References 590

Amrouch, K., Lacombe, O., Bellahsen, N., Daniel, Callot, J.-M., Callot, J.P., 2010. 591

Stress and strain patterns, kinematics and deformation mechanisms in a basement-592

cored anticline: Sheep Mountain Anticline, Wyoming, Tectonics 29, TC1005, 593

doi:10.1029/2009TC002525. 594

Anil Kumar, Padma Kumari, V.M., Dayal, A.M., Murthy, D.S.N., Gopalan, K., 1993. 595

Rb–Sr ages of Proterozoic kimberlites of India: evidence for contemporaneous 596

emplacement. Precambrian Research 79, 363–369. 597

Bhaskar Rao, Y.J., Pantulu, G.V.C., Damodar Reddy, V., Gopalan, K., 1995. Time of 598

early sedimentation and volcanism in the Proterozoic Cuddapah basin, South India: 599

evidence from Rb-Sr age of Pulivendla mafic sill. Geological Society of India 600

Memoirs 33, 329–338. 601

Bhattacharji, S., Singh, R.N., 1984. Thermomechanical structure of the southern part 602

of the Indian shield and its relevance to Precambrian basin evolution. Tectonophysics 603

105, 103–120. 604

Bradley, D. C., 2008. Passive margins through earth history. Earth-Science Reviews 605

91, 1-6. 606

Bradley, D.C., 2011. Secular trends in the geologic record and the supercontinent 607

cycle. Earth Science Reviews 108, 16–33. 608

Burkhard, M., 1993 Calcite twins, their geometry, appearance and significance as 609

stress–strain markers and indicators of tectonic regime: a review. Journal of Structural 610

Geology 15, 351–368. 611

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 27 -

Chakraborti, S., Saha, D., 2009. Tectonic stresses and thin-skinned tectonics in a 612

Proterozoic fold-and-thrust belt read from calcite mylonites in the Cuddapah basin, 613

south India. Indian Journal of Geology 78, 37–54. 614

Chalapathi Rao, N.V., Gibson, S.A., Pyle, D.M., Dickin, A.P., 2004. Petrogenesis of 615

Proterozoic Lamproites and Kimberlites from the Cuddapah basin and Dharwar 616

Craton, Southern India. Journal of Petrology 45, 907–948. 617

Chetty, T.R.K., 2011. Tectonics of Proterozoic Cuddapah Basin, southern India: A 618

conceptual model. Journal of Geological Society of India 78, 446-456. 619

Collins, A.S., Clark, C., Chetty, T.R.K., Santosh, M., 2010. Ediacaran-Cambrian 620

tectonicevolution of southern India. Indian Journal of Geology 80, 23–40. 621

Collins, A., Patranabis-Deb, S., Alexander, E., Bertram, C.N., Falster, G.M., Gore, 622

R.J., Mackintosh, J., Dhang, P.C., Saha, D., Payne, J.L., Jourdan, F., Backé, G., 623

Halverson, G.P., Wade, B.P., 2014. Detrital mineral age, radiogenic isotopic 624

stratigraphy and tectonic significance of the Cuddapah Basin, India. Gondwana 625

Research. In Press. http://dx.doi.org/10.1016/j.gr.2014.10.013 626

Condie, K.C., 1997. Plate Tectonics and crustal evolution. Butterworth Heinemann, 627

282 p. 628

Coulson, L., 1933. The Kalva (Calwa) ‘wall’ in the Kurnool district of the Madras 629

Presidency, An example of monoclinal folding, accompanied by faulting, probably 630

along an old line of weakness. Records of Geological Survey of India 66, 438–449. 631

Craddock, J.P., van der Pluijm, B.A., 1999. Sevier–Laramide deformation of the 632

continental interior from calcite twinning analysis, west-central North America. 633

Tectonophysics 305, 275-286. 634

Dasgupta, P.K., Biswas, A., Mukherjee, R., 2005. Cyclicity in Paleoproterozoic to 635

Neo-proterozoic Cuddapah Supergroup and its significance in basinal evolution. In: 636

Mabesoone, J.M., Neumann, V.H. (Eds.), Cyclic Development of Sedimentary 637

Basins. Developments in Sedimentology, vol. 57. Elsevier, Oxford 313–354. 638

Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, K., Ruzhich, 639

V., San’kov, V., 1997. Paleostress reconstructions and geodynamics of the 640

Baikalregion, Central Asia, Part 2. Cenozoic rifting. Tectonophysics 282, 1–38. 641

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 28 -

Delvaux, D., Sperner, B., 2003. New aspects of tectonic stress inversion with ref-642

erence to the TENSOR program. In: Nieuwland, D.A. (Ed.), New Insights into 643

Structural Interpretation and Modelling, vol. 212. Geological Society of London 644

Special Publication 75–100. 645

Dobmeier, C., Lütke, S., Hammerschmidt, H., Mezger, K., 2006. Emplacement and 646

deformation of the Vinukonda granite - implications for the geological evolution of 647

peninsular India and for Rodinia reconstructions, Precambrian Research 146 165-178. 648

Dietrich, D., Song, H., 1984. Calcite fabrics in a natural shear environment; the 649

Helvetic nappes of western Switzerland. Journal of Structural Geology 6, 19–32. 650

Drury, S. A., 1984. A Proterozoic intracratonic basin, dyke swarms and thermal 651

evolution in South India. Journal of the Geological Society India 25, 437-444. 652

Ferrill, D.A., 1998. Critical re-evaluation of differential stress estimates for calcite 653

twins in coarse-grained limestone. Tectonophysics 285, 77–86. 654

Ferrill, D.A., Morris, A.P., Evans, M.A., Burkhard, M., Groshong Jr, R.H., Onasch, 655

C.M., 2004. Calcite twin morphology: a low-temperature deformation 656

geothermometer. Journal of Structural Geology 26, 1521-1529. 657

French, J.E., Heaman, L.M., Chacko, T., Srivastava, R.K., 2008. 1891–1883 Ma 658

Southern Bastar–Cuddapah mafic igneous events, India: A newly recognized large 659

igneous province. Precambrian Research 160, 308-322. 660

González-Casado, J.M., García-Cuevas, C., 1999. Calcite twins from microveins as 661

indicators of deformation history. Journal of Structural Geology 21, 875-889. 662

González-Casado, J.M., Garcıa-Cuevas, C., 2002. Strain analysis from calcite e-twins 663

in the Cameros basin, NW Iberian Chain, Spain. Journal of Structural Geology 24, 664

1777-1788. 665

Gopalan, K., Anil Kumar, 2008. Phlogopite K-Ca dating of Narayanpet kimberlites, 666

south India: implications to the discordance between their Rb-Sr and Ar/Ar ages. 667

Precambrian Research 167, 377-382. 668

Groshong, R.H., 1972. Strain Calculated from Twinning in Calcite. Geological 669

Society of America Bulletin 83, 2025-2038. 670

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 29 -

Groshong, R.H., 1974. Experimental Test of Least-Squares Strain Gage Calculation 671

Using Twinned Calcite. Geological Society of America Bulletin 85, 1855-1864. 672

Groshong, R.H. Jr, Teufel, L.W., Gasteiger, C., 1984. Precision and accuracy of the 673

calcite strain-gage technique. Geological Society of America Bulletin, 95, 357-363. 674

Handin, J.W. and Griggs, D., 1951. Deformation of Yule Marble: part II-predicted 675

fabric changes. Bulletin of the Geological Society of America 62, 863-886. 676

Heaman, L. M., 2008. Precambrian Large Igneous provinces: an overview of 677

geochronology, origins and impact on earth evolution. Journal of the Geological 678

Society of India 72, 15-34. 679

Henderson, B., Collins, A., Payne, J., Forbes, C., Saha, D., 2014. Geologically 680

constraining India in Columbia: The age, isotopic provenance and geochemistry of the 681

protoliths of the Ongole Domain, Southern Eastern Ghats, India. Gondwana Research, 682

26, 888-906. 683

Hindle, D., 2008. How hard were the Jura mountains pushed? Swiss Journal of 684

Geosciences, 101, 305-310. 685

Homberg, C., Hu, J.C., Angelier, J., Bergerat, F., Lacombe, O., 1997. 686

Characterization of stress perturbations near major fault zones: insights from 2-D 687

distinct-element numerical modelling and field studies (Jura mountains). Journal of 688

Structural Geology 19, 703-718. 689

Joy, S., Jelsma, H.A., Preston, R.F., Kota, S., 2012. Geology and diamond provenance 690

of the Proterozoic Banganapalle conglomerates, Kurnool Group, India. From: 691

Mazumder, R. & Saha, D. (eds) 2012. Palaeoproterozoic of India. Geological Society, 692

London Special Publications 365, 197–218. 693

Kang, S.S., Kim, J.M., Jang, B.A., 2005. Paleostress fields from calcite twins in the 694

Pyeongan Supergroup South Korea. The Island Arc 14, 137-149. 695

King, W., 1872. Kudapah and Karnul Formations in the Madras Presidency. 696

Geological Survey of India Memoirs 8 (1), 346. 697

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 30 -

Kleinspehn, K.L., Pershing, J., Teyssier, C., 1989. Paleostress stratigraphy: A new 698

technique for analyzing tectonic control on sedimentary-basin subsidence. Geology 699

17, 253-256. 700

Kollmeier, J.M., van der Pluijm, B.A., Van der Voo, R., 2000. Analysis of Variscan 701

dynamics; early bending of the Cantabria-Asturias Arc, northern Spain. Earth and 702

Planetary Science Letters 181, 203-216. 703

Lacombe, O., 2010. Calcite Twins, a Tool for Tectonic Studies in Thrust Belts and 704

Stable Orogenic Forelands. Oil and Gas Science and Technology- Rev. IFP Energies 705

nouvelles 65, 809-838. 706

Laurent, P., Kern, H., Lacombe, O., 2000. Determination of deviatoric stress tensors 707

based on inversion of calcite twin data from experimentally deformed monophase 708

samples. Part II. Axial and triaxial stress experiments. Tectonophysics 327, 131–148. 709

Laurent, P., Tourneret, C., Laborde, O., 1990. Determining deviatoric stress tensors 710

from calcite twins: applications to monophased synthetic and natural polycrystals. 711

Tectonophysics 9, 379–389. 712

Leelanandam, C., Burke, K., Ashwal, L.D., S. J., Webb, S.J., 2006. Proterozoic 713

mountain building in Peninsular India: an analysis based primarily on alkaline rock 714

distribution. Geological Magazine 143, 195-212. 715

Meert, J.G., 2012. What's in a name? The Columbia (Paleopangaea/Nuna) 716

supercontinent. Gondwana Research 21, 987-993. 717

Meijerink, A.M.J., Rao, D.P., Rupke, J., 1984. Stratigraphic and structural 718

development of the Precambrian Cuddapah basin, SE India. Precambrian Research 719

26, 57–104. 720

Nagaraja Rao, B.K., Rajurkar, S.T., Ramalingaswamy, G., Ravindra Babu, B., 1987. 721

Stratigraphy, Structure and Evolution of the Cuddapah Basin. In: Radhakrishna, B.P. 722

(Ed.) Purana Basins of Peninsular India (Middle to Late Proterozoic). Geological 723

Society of India Memoir, 6, 33-86. 724

Nance, R.D., Murphy, J.B., 2013. Origins of the supercontinent cycle. Geoscience 725

Frontiers 4, 439–448. 726

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 31 -

Patranabis-Deb, S., Saha, D., Tripathy, V., 2012. Basin stratigraphy, sea-level 727

fluctuations and their global tectonic connections – evidence from the Proterozoic 728

Cuddapah Basin. Geological Journal 47, 263–283. 729

Ramam, P. K., Murty, V. N., 1997. Geology of Andhra Pradesh. Geological Society 730

of India Bangalore, 245 p. 731

Ravikant, V., 2010. Palaeoproterozoic (1.9 Ga) extension and breakup along the 732

eastern margin of the Eastern Dharwar Craton, SE India: new Sm–Nd isochron age 733

constraints from anorogenic mafic magmatism in the Neoarchean Nellore greenstone 734

belt. Journal of Asian Earth Sciences 37, 67–81. 735

Rocher, M., Cushing, M., Lemeille, F., Lozach, Y. and Angelier, J., 2004. Intraplate 736

paleostresses reconstructed with calcite twinning and faulting: improved method and 737

application to the eastern Paris Basin (Lorraine, France). Tectonophysics 387, 1-21. 738

Rogers, J. J. W., Santosh, M., 2004. Continents and Supercontinents. Oxford 739

University Press, Oxford 289 p. 740

Rowe, K.J., Rutter, E.H., 1990. Paleostress estimation using calcite twinning: 741

experimental calibration and application to nature. Journal of Structural Geology 12, 742

1-17. 743

Saha, D., 2002. Multi-stage deformation in the Nallamalai Fold Belt, Cuddapah basin, 744

South India – implications for Mesoproterozoic Tectonism along Southeastern Margin 745

of India. Gondwana Research 5, 701–719. 746

Saha, D., 2004. Structural Asymmetry and Plate Tectonic Set-up for a Proterozoic 747

Fold and Thrust Belt: Nallamalai Fold Belt and Adjoining Terrane, South India. 748

Geological Survey of India Special Publication 84, 101–119. 749

Saha, D., Chakraborti, S., Tripathy, V., 2010. Intracontinental thrusts and 750

inclinedtranspression along Eastern Margin of the East Dharwar craton, India. Journal 751

of Geological Society of India 75, 323–337. 752

Saha, D., Patranabis-Deb, S., 2014. Proterozoic evolution of Eastern Dharwar and 753

Bastar cratons, India – An overview of the intracratonic basins, craton margins and 754

mobile belts. Journal of Asian Earth Sciences 91, 230-251. 755

756

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 32 -

Saha, D., Tripathy, V., 2012. Palaeoproterozoic sedimentation in the Cuddapah Basin 757

south India and regional tectonics – a review. In: Mazumder, R., Saha, D. (Eds.), 758

Paleoproterozoic of India. Geological Society of London Special Publication 365, 759

159–182. 760

Saha, D., Sai, A., Nandi, P., Mazumder, R., Kar, R., 2015. Tectonostratigraphic 761

evolution of the Nellore schist belt, southern India, since the Neoarchaean. In: R. 762

Mazumder and P. Eriksson, P. (Eds.) Precambrian Basins of India: Stratigraphic and 763

Tectonic Context, Geological Society London, Memoir 43, 269-282. 764

Schmid, S.M., Panozzo, R. and Bauer, S. 1987. Simple shear experiments on calcite 765

rocks: rheology and microfabric. Journal of Structural Geology 9, 747-778. 766

Sesha Sai, V.V., 2013. Proterozoic Granite Magmatism along the Terrane Boundary 767

Tectonic Zone to the East of Cuddapah Basin, Andhra Pradesh – Petrotectonic 768

Implications for Precambrian Crustal Growth in Nellore Schist Belt of Eastern 769

Dharwar Craton. Journal of Geological Society of India 81, 167–182. 770

Spang, J.H., 1972. Numerical method for dynamic analysis of calcite twin lamellae. 771

Geological Society of America Bulletin 83, 467-472. 772

Sperner, B., Ratschbacher, L., 1994. A Turbo program package for graphical 773

presentation and stress analysis of calcite deformation. Zeitschrift der Deutschen 774

Geologischen Gesellschaft 145, 414-423. 775

Suresh, G., Ananthanarayana, R., Hanumanthu, R.C., Ghosh, S., Kumar, A.A., Reddy, 776

K.V.S., 2010. Geology of Pulikonda and Dancherla Alkaline complexes, Andhra 777

Pradesh. Journal Geological Society of India 75, 576-595. 778

Tripathy, V., Saha, D., 2013. Plate margin paleostress variations and intracontinental 779

deformations in the evolution of Cuddapah basin through the Proterozoic. 780

Precambrian Research 235, 107-130. 781

Tripathy, V., 2010. Brittle Deformation in the Western Cuddapah Basin, South India 782

and Implications for Intra-continental Tectonics. Jadavpur University, 264p. (Ph.D. 783

thesis). 784

Tripathy, V., Saha, D., 2008. Temporal stress variation around Gani–Kalva and 785

adjoin-ing faults, Cuddapah Basin: implications for continental tectonics in south 786

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 33 -

India. International Conference on Tectonics of Indian Subcontinent (TOIS), IIT, 787

Bombay. In: International Association for Gondwana Research Conference Series 788

No.5, 209–210. 789

Tripathy, V., Saha, D., 2009. Late structures in the Cuddapah basin, south India and 790

its possible relation with the Gondwana assembly. In: Asia Oceania Geosciences 791

Society conference, 11th–15th August, 2009 (AOGS, 2009) Singapore, SE61-A006. 792

Turner, F.J., 1953. Nature and dynamic interpretation of deformation lamellae in 793

calcite of three marbles. American Journal of Science 251, 276-298. 794

van der Pluijm, B.A., Craddock, J.P., Graham, B.R., Harris, J.H., 1997. Paleostress in 795

Cratonic North America: Implications for Deformation of Continental Interiors. 796

Science 277, 794-796. 797

Venkatakrishnan, R., Dotiwala, F.E., 1987. The Cuddapah salient: a tectonic model 798

for the Cuddapah basin, India, based on Landsat image interpretation, Tectonophysics 799

136, 237-253. 800

Vijaya Kumar, K., Leelanandam, C., 2008. Evolution of the Eastern Ghats belt, India: 801

a plate tectonic perspective. Journal of Geological Society of India 72, 720-749. 802

Zakaulla, S., Thirupathi, P.V., Pandey, B.K., Umamaheswar, K., Dhanaraju, K., 1998. 803

Early Proterozoic A-type pink granite from the Dorigallu-Timmanayanapalyam area, 804

Anantapur district, A.P., India. Journal Atomic Mineral Science 5, 65-76. 805

806

807

List of Tables 808

Table 1. Sample and outcrop details from Gani-Kalva and Kona faults along with the 809

measured shear strain values and summary results of dynamic analysis of calcite twins 810

using Turner P-B-T and NDA methods. ‘A’ and ‘B’ at the end of each sample number 811

in 5th column corresponds to the two perpendicular sections of the same sample. Also 812

see Fig. 6. 813

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 34 -

List of Figures 814

Figure. 1. Regional geology and abridged stratigraphic successions of the Cuddapah 815

basin, modified after Nagaraja Rao et al. (1987) and Geological Survey of India 816

(1990). Asterisk represents the stratigraphic horizons from where samples for calcite 817

e-twin analysis were collected. 818

Figure 2. Geological map of the western part of the Cuddapah basin around Gani-819

Kalva and Kona faults. Sample locations are shown as filled triangles. 820

Figure 3. (a) Single calcite e-twin lamellae with compressive and tensile stress axes 821

(C and T). (b) Anticlockwise rotation of calcite c-axis in the twinned part relative to 822

host (for right handed shear). (c) Lower hemisphere, equal area projection of calcite 823

twin planes. (d) The sense of shear on e1 and r1, on a plane perpendicular to e1 and 824

r1, which contains the c-axis, and the poles [e1], and [r1]. (e) Relationship between 825

twin width and strain in calcite (after Ferrill, 1998). (f) Shear strain in twinned calcite 826

grain (after Groshong, 1972). t1 and t2 are widths of the twin segments; t is the width 827

of the host grain perpendicular to the twin plane; α (=38º17, Handin and Griggs, 828

1951) is the angle of rotation of the grain edge from the untwined to the twinned 829

position. 830

Figure 4. (a) Sparry calcite in outcrop (darker spots, arrows) in sample 1N, Tadpatri 831

Formation. (b) Sparry calcite with common mechanical twins and fine grained host 832

material, sample 1N (b), (c) and (d) are photomicrographs under cross polars. (c) Part 833

of a coarse calcite vein, sample 2F; note sharp boundary between fine grained host 834

limestone (Koilkuntala Limestone) and vein material. (d) Calcite grains showing two 835

sets of twins, note relatively thin and thick straight twins (sample 103, Narji 836

Limestone). 837

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 35 -

Figure 5. Calcite c-axes orientation of both twinned and untwined part plotted on an 838

equal area lower hemisphere and contoured using Kamb contour method with a 839

contour interval of 2 sigma; orientations in true geographic framework from Gani-840

Kalva and Kona faults. Note preferred orientation of c-axis in four of the measured 841

samples. 842

Figure 6. Twin parameters and strain in measured calcite samples, western Cuddapah 843

basin. (a) Variation in mean twin intensity and shear strain. (b) Mean twin width 844

versus grain size. Logarithmic trend line shown, R2 = 0.419 (c) Mean twin intensity 845

versus mean twin width. ‘A’ and ‘B’ at the end of each sample number e.g., 1NA and 846

1NB correspond to the two perpendicular sections of the same sample i.e., 1N in the 847

example. 848

Figure 7. Stress tensor solutions obtained from inversion of calcite twin data. (a) 849

Gani–Kalva fault and (b) Kona fault. Kurnool Group samples 2F, 103 are from Gani-850

Kalva fault and 30N from Kona fault. Tadpatri Formation samples 10M, 1N, 19D are 851

from Gani-Kalva fault; 28N, 6D, 26N and 261A from Kona fault). See text for details. 852

Figure 8. Lower hemisphere, equal area projections showing (a) Maximum 853

compressional axis (σ1); (b) Intermediate compressional axis (σ2); (c) Minimum 854

compressional axis (σ3) of the derived paleostress orientations from lower Cuddapah 855

samples. (d) Poles of the calcite veins in the Koilkuntala Limestone from 856

Bilkalaguduru, eastern end of the Gani-Kalva fault, n=33. 857

Figure 9. Paleostress orientations from Gani-Kalva fault (Turner method and NDA 858

method). σ1: maximum compression; σ2: intermediate compression; σ3: minimum 859

compression. The distribution of angular misfit error between the perfect glide 860

directions in calcite crystal lattice and the calculated directions of maximum shear 861

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

- 36 -

stress on e-planes i.e., β values, are represented in fluctuation histogram. The β values 862

are also represented in the form of sine (error) function. ‘max’ is the maximum of 863

distribution in percent for ‘n’ number of measurements. 864

Figure 10. Paleostress orientations from Kona fault. Details of notations as in Figure 865

9. 866

Figure 11. Right dihedra plot for principal stress orientations from fault-slip data 867

along the mineralized fault (location and sample 26N, Tadpatri Formation). Note 868

subhorizontal σ1. 869

Figure 12. Evolution of paleostress fields in different areas of Gani-Kalva and Kona 870

faults. Grey shaded cells represent paleostress derived from calcite twins of the 871

present study. Other set of paleostress orientations (unshaded cells) are derived from 872

fault-slip analysis (Tripathy and Saha, 2013). See text for sample number convention. 873

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

Sample No./ Stratigraphy

Latitude/ Longitude

Type of sample/ Orientation of bedding/fault

(Pitch/sense of movement)

Vein Orientation

Shear strain (γ)

Cleaning Procedure

Trend/plunge of principal stress axes

nr/n NEV (%)

R R′

Type of

stress regime

Turner NDA

σ1 σ2 σ3 σ1 σ2 σ3

Gani-Kalva

2F/ KL

15.6852/ 78.4476

Vein/ ~Horizontal

009°/78° W 2FA=0.14 2FB= 0.11

PEV 185/15 084/36 285/52 020/16 122/35 270/51 63/74 15 0.580 2.58 C

NEV 271/29 024/35 134/26 260/44 082/46 351/01 36/38 5 0.130 1.87 TP

103/ NL

15.6087/ 78.1770

Vein/ 063°/54°NW

060°/85° E 103A=0.03 103B=0.03

LDR 094/08 185/05 310/81 101/09 194/19 347/69 72/83 13 0.641 2.641 C

10M/ TF

15.5536/ 78.1764

Vein/ 080°/05°N

102°/72°N 10MA=0.04 10MB=0.05

PEV 049/14 202/74 301/03 042/18 261/68 136/13 63/77 19 0.342 1.658 SS

NEV 140/13 297/76 065/09 157/24 289/57 057/22 26/30 13 0.374 1.626 SS

1N/ TF

15.5595/ 78.1728

Sparry calcite/ 120°/20°N

- 1NA=0.02 1NB=0.02

LDR 187/76 084/03 354/01 141/84 291/06 021/ 03

65/89 27 0.389 0.389 E

19D/ TF

15.5545/ 78.1860

Sparry calcite/ 110°/12°N

- 19DA=0.03 19DB=0.04

PEV 325/04 107/85 236/03 149/05 350/85 239/02 67/77 13 0.759 1.241 SS

NEV 238/04 009/85 144/04 236/06 027/83 146/03 27/28 04 0.735 1.265 SS

Kona

30N/ NL

15.1482/ 77.8967

Vein/ ~Horizontal

021°/76°E 30NA=0.06 30NB=0.06

PEV 131/32 290/56 037/11 143/60 294/27 030/13 66/87 24 0.456 0.456 E

NEV 010/26 174/64 264/00 010/34 219/52 110/14 32/35 15 0.469 1.531 SS

28N/ TF

15.1498/ 77.8939

Vein/ ~Horizontal

030°/76°E 28NA=0.06 28NB=0.06

PEV 054/23 317/16 166/71 033/21 299/09 188/68 70/73 4 0.683 2.683 C

NEV 189/67 310/12 050/36 209/60 309/06 043/29 21/21 0 0.503 0.503 E

6D/ TF

15.1433/ 77.9069

Vein/ ~Horizontal

036°/84°E 6DA=0.05 6DB=0.03

PEV 060/03 162/76 346/14 069/01 164/76 339/14 82/91 10 0.593 1.407 SS

NEV 345/05 243/68 073/22 344/04 238/75 075/14 27/28 4 0.357 1.643 SS

26N/ TF

15.1543/ 77.8869

CSFA/ 042°/34°S

(58°W/Reverse) -

26NA=0.07 26NB=0.06

LDR 152/16 337/74 233/04 327/05 210/79 057/10 71/95 25 0.802 1.198 TT

261A/ TF

15.1389/ 77.9066

CSFA/ 040°/30°S

(56°W/Reverse) -

261AA=0.07 261AB=0.07

PEV 292/23 104/67 008/03 105/22 232/56 004/24 57/75 24 0.494 1.506 SS

NEV 356/33 163/56 274/13 006/34 173/56 272/06 27/29 7 0.553 1.447 SS

TF= Tadpatri Formation; NL= Narji Limestone; KL= Koilkuntla Limestone; CSFA= Calcite segregation on fault planes; R = (σ2 - σ3) / (σ1 - σ3) is a measure of the stress ellipsoid shape; For R′ refer

to the text, C = Compressional, E = Extensional, SS = Strike-slip, TP= Transpressional, TT= Transtensional regimes

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

� Paleostress analysis using calcite e-twins along Gani-Kalva and Kona faults were performed.

� Observations from calcite twins and fault‒slips yields consistent stress states.

� Extensional to transtensive deformation dominantly affected the lower Cuddapah rocks

possibly related to Kurnool sub-basin opening.

� Compressional to transpressive regime which are dominant deformational imprint in

Kurnool Group are coeval to the Pan-African event.

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

1

Supplementary Data

Appendix A1

Calcite twin data from Gani-Kalva (Table A1) and Kona (Table A2) faults. The data are represented by the Turbo Pascal software TWIN of Sperner and

Ratschbacher (1994), using a convention where U-stage contains the vertical N axis (inner vertical axis) with zero in S and clockwise counting. The north trending H axis is horizontal and K axis is also horizontal with east trend. The record of the H and K axes is orientation-dependent: for c-axis or plane pole parallel to the K-axis (i.e. horizontal E-W, K= 0), H values are counted from the vertical towards the thin section plane with tilting towards the W being positive and towards the E being negative; when C-axis is vertical – H and K values are counted from the horizontal towards thin section plane. H is positive for tilting towards the east while K is positive for tilting towards north. Due to inaccuracies in U-stage handling, planes are identified as e-twins (α= 26˚) for 16º < α < 35º.

Sample: 2F

c e1 a1 e2 a2 e3 a3

N H K N H

N H

N H

310 28 0 207 16 35 313 15 13 350 72 52 45 20 0 360 20 15 48 18 2 0 20 15 42 53 0 0 22 39 20 41 20 20 0 53 99 50 0 20 0 50 25 18 47 0 50 71 112 22 0 20 40 45 16 0 22 180 17 22 47 17 0 198 20 36 174 16 29 300 78 83 172 15 0 121 20 16 178 25 10 298 76 85 180 20 0 120 20 20 174 22 3 0 313 71 173 16 0 121 16 14 173 18 2 302 75 85 173 17 0 124 22 17 172 20 3 303 74 85 170 22 0 120 22 18 217 20 17 0 357 69 217 20 0 177 20 13 225 20 3 356 75 90 229 14 0 178 20 15 223 22 8 356 82 89 227 14 0 178 16 12 228 18 4 3 60 81 227 12 0 176 15 12 226 14 2 356 83 89 225 21 0 181 20 15 226 14 7 3 60 76 56 22 0 195 15 35 56 20 2 0 13 18 54 18 0 195 15 31 55 15 3 0 18 16 56 16 0 198 15 29 55 15 1 0 18 16 19 18 0 255 19 33 20 20 2 0 74 57 23 16 0 176 16 31 20 15 1 360 74 59 22 14 0 174 14 27 20 15 1 0 360 76 235 15 0 189 10 11 230 15 1 0 88 83 4 57 0 0 16 41

325 20 0 236 12 23 0 15 11

314 21 0 228 15 25 0 8 16

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

2

24 53 0

314 22 0 313 19 3 240 13 22 0 15 16 235 15 0 196 16 10 310 20 21 245 20 6 300 17 0 316 20 6 240 18 17 0 10 15 276 25 0 335 20 22 272 12 13 3 35 87 176 81 0 3 32 11 20 2 83 277 15 84 148 33 0 278 20 48 0 330 63 23 2 34 280 21 0 330 20 17 201 18 25 22 74 86 108 29 0 16 20 35

275 23 0 328 15 18 203 24 27 22 78 88 110 35 0 16 20 41

278 15 0 333 20 17 201 20 22 22 80 87 110 26 0 18 20 33

344 25 0 128 22 45 33 51 65 25 0 25 106 22 0 20 0 22 132 21 10 33 44 86 105 45 0

221 14 0 5 20 32 221 15 1 0 12 24 350 43 0 0 8 35 20 50 23

77 21 0 226 17 37 0 10 21 27 46 35 74 20 0 195 17 32 63 18 4 0 13 20 74 20 0 195 17 32 63 18 4 0 13 20 189 22 0 54 17 36 190 20 2 0 50 72 41 47 0 0 0 47

354 20 0 303 28 21 33 50 69 21 0 20 28 85 0

164 66 0 97 17 60 0 300 29 20 2 68 278 16 0 300 20 8 280 20 4 0 305 87 180 93 0 2 98 2 162 70 16 20 0 87 31 92 0 18 0 88 312 16 89 270 20 78 158 57 0 214 22 47 3 53 40

220 15 0 168 18 15 218 20 5 3 53 80 220 22 0 160 15 19 217 14 8 351 74 89 221 15 0 173 15 12 222 22 7 350 80 90 218 12 0 168 15 12 228 15 4 352 82 90 227 10 0 175 20 16 229 15 5 356 84 90 227 16 0 175 14 13 228 15 1 360 80 89 229 15 0 177 20 16 230 12 3 0 358 81 201 15 0 261 16 15 208 15 2 0 77 89 206 17 0 256 16 14 204 20 3 0 78 87 204 16 0 65 21 35 206 15 1 0 68 83 296 14 0 0 59 54

182 15 0 241 15 15 183 16 1 0 58 73 181 15 0 238 16 15 3 21 36 184 15 1 342 60 0 0 15 46 180 16 75 0 58 16 174 15 0 241 15 16 357 20 35 179 15 1

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

3

341 59 0 4 20 41 173 14 73 0 65 18 180 15 0 240 15 15 2 20 35 180 14 1 342 63 0 356 18 46 149 18 81 0 18 46 153 18 0 201 21 16 147 20 3 0 23 40 147 14 0 194 15 11 147 15 1 0 18 31 177 16 0 15 16 32 222 15 12 177 17 1 46 21 0 226 21 42 176 6 25 0 15 15 358 71 0 175 15 86 0 18 53 16 70 17 179 14 0 10 14 28 251 30 29 180 16 2 42 21 0 250 20 40 176 18 36 0 15 14 352 57 0 33 54 34

53 25 0 240 20 45 174 22 41 0 8 21 63 23 0 33 53 78

42 13 0 25 18 7 33 58 79

37 19 0 22 20 5 33 54 73

52 19 0 23 15 9 183 15 31 0 20 17 63 25 0 180 15 34 0 18 23 12 18 19 281 15 0 0 13 18 6 20 24 20 0 15 176 16 0 15 10 26 14 15 31 198 10 8 25 56 0 201 13 69 0 44 22 20 2 54 200 10 0 40 18 28 195 10 1 0 52 61 347 28 0 0 50 23 20 2 26 200 15 41 28 63 0 196 20 83 0 52 26 20 1 62 201 15 0 45 16 30 223 15 6 0 8 23 351 40 0 0 4 36 8 3 37 220 12 49 45 14 0 222 15 29 0 6 11 15 4 11 218 13 0 178 10 8 217 20 7 0 93 81 216 20 0 274 29 25 214 19 1 0 96 75 219 22 0 278 31 27 207 18 6 0 73 90 204 15 0 257 23 18 40 16 31 209 15 1 340 86 0 49 20 79 210 18 82 0 80 21 204 15 0 262 20 17 46 15 29 208 14 1 339 89 0 214 21 79 0 93 21

210 20 0 270 20 20 212 15 5 0 87 76 208 14 0 268 20 18 199 20 7 0 52 65 320 26 0 0 59 41 15 16 21

12 50 0 197 15 65 0 50 9 13 1 49 196 16 0 51 14 29 1 16 32

21 59 0 193 9 68 0 55 18 15 13 46 195 11 0 57 15 24 196 14 3 0 48 59 338 19 0 0 49 32 14 17 11

18 55 0 194 14 69 0 48 16 15 1 54 196 10 0 46 15 24 194 16 6 0 50 60 342 19 0 0 54 36 14 1 18 193 10 28 21 59 0 194 11 70 0 46 21 13 23 36

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

4

200 20 0 186 11 10 205 15 5 0 8 28 334 31 0 0 5 27 11 22 18

86 13 0 204 16 25 0 6 14 10 24 24 200 15 0 10 11 26 204 18 3 0 8 23 340 28 0 0 5 23 15 2 26 204 15 40 72 16 0 177 15 24 0 21 22

179 15 0 200 5 10 177 13 2 0 333 76 173 21 0 159 12 10 170 20 1 335 70 90 179 15 0 200 5 10 178 21 6 340 76 90 176 20 0 158 10 11 1 15 35 3 27 71 184 18 0 147 20 12 182 20 2 325 73 87 184 10 0 153 19 12 182 15 5 331 81 89 183 12 0 155 17 8 184 15 3 0 333 79 186 15 0 156 11 8 185 13 2 327 76 88 6 12 0 145 12 22 182 10 22 3 22 77

143 16 0 173 14 8 150 15 2 0 5 20 149 14 0 182 10 8 149 15 1 357 79 89 150 14 0 180 10 7 143 15 2 0 1 15 150 17 0 174 10 9 149 16 1 3 59 76

Sample: 103

c e1 a1 e2 a2 e3 a3

N H K N H

N H

N H

186 20 0 342 20 39 187 16 4 0 342 71 177 29 0 190 16 14 0 340 62 25 330 66 330 21 0 0 352 71 26 12 17

110 27 0 188 14 27 0 339 82 20 310 89 188 14 0 339 20 33 130 18 16 190 15 1 133 28 0 132 20 8 192 15 24 0 328 72 133 28 0 191 15 23 0 340 72 16 332 79 191 15 0 340 16 30 152 15 10 195 15 1 139 23 0 150 15 9 191 14 18 0 341 74 224 63 0 191 17 49 0 342 51 18 317 38 191 17 0 342 18 34 137 17 15 191 13 4 141 26 0 128 11 15 192 15 20 0 340 71 219 52 0 194 17 37 0 338 53 20 318 43 194 17 0 338 20 35 138 15 15 196 15 2 140 29 0 135 56 16 190 18 23 342 50 84 191 18 0 340 15 32 150 20 13 192 15 3 142 34 0 153 17 18 193 16 27 0 345 65 230 58 0 192 9 51 0 344 58 17 47 81 192 9 0 344 17 25 227 20 14 193 18 9 139 30 0 236 15 35 190 17 23 0 344 69 349 46 0 1 13 33

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

5

135 26 0 228 14 30 197 16 23 0 349 73 358 53 0 199 10 62 0 351 36 24 60 23 199 10 0 351 24 33 240 16 11 102 16 20 198 11 0 347 26 36 233 16 9 103 13 18 200 10 0 352 20 29 229 20 12 103 16 20 198 15 0 350 23 37 229 20 10 104 19 25 313 20 0 0 344 76 24 44 41

101 18 0 189 13 22 0 336 88

192 19 0 148 15 13 1 14 33

145 23 0 239 16 29 104 10 17 1 10 32 190 12 0 345 15 26 240 15 12 22 13 25 125 25 0 226 56 0 191 14 23 334 33 56 194 14 0 341 14 27 230 15 9 195 15 1 142 25 0 231 48 0 190 19 20 334 41 84 194 19 0 345 20 38 239 15 13 194 10 9 206 36 0 191 9 27 0 310 59

9 0 0 130 18 18 0 2 2

206 39 0 194 10 29 0 317 56

195 12 0 136 15 13 197 4 8 0 313 79 194 14 0 341 14 27 230 15 9 195 15 1 142 25 0 231 12 27 190 9 20 0 334 72 359 48 0 194 19 66 0 345 41 20 59 20 197 4 0 133 16 15 191 9 5 310 87 89 191 9 0 130 15 13 185 10 1 312 82 87 185 10 0 132 20 16 188 13 3 0 322 81 190 9 0 140 11 9 60 15 22 188 12 3 193 50 0 52 13 61 190 15 35 310 43 77 190 15 0 130 9 13 58 18 30 198 12 4 192 63 0 60 18 76 13 13 76 0 47 71 13 13 0 227 12 24 327 15 11 190 6 19 334 51 0 338 15 36 190 11 60 0 40 21 190 11 0 220 16 8 333 12 22 192 11 0 338 55 0 335 16 39 190 11 65 0 48 19 190 11 0 228 16 10 340 15 25 15 10 21 332 44 0 333 15 29 12 11 36 0 44 19 12 11 0 224 20 30 338 15 8 16 10 1 337 49 0 338 12 37 10 10 41 0 48 17 10 10 0 228 15 24 340 14 7 14 10 1 339 47 0 344 20 27 10 11 38 0 46 15 10 11 0 226 17 27 338 18 10 195 2 13 334 49 0 343 15 34 190 8 56 0 48 19 190 8 0 228 20 15 345 14 22 20 7 15 339 47 0 345 14 33 22 10 40 0 42 15 22 10 0 222 15 25 340 15 10 18 10 1 338 47 0 344 14 33 20 8 41 0 45 16

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

6

20 8 0 225 17 24 345 15 10 92 15 15 193 10 0 216 14 6 348 20 29 95 17 21 192 11 0 220 13 6 345 18 28 98 15 19 194 10 0 224 15 8 341 10 19 105 15 18 190 12 0 222 15 8 340 12 23 1 1 13 190 12 0 222 15 8 340 12 23 100 13 18 18 7 0 228 15 21 338 14 10 102 13 14 200 10 0 226 19 11 343 15 24 98 15 20 200 11 0 233 18 11 333 10 19 96 15 21 193 8 0 222 17 11 344 15 22 96 15 18 192 11 0 228 16 10 341 18 28 94 13 18 190 12 0 225 17 10 343 15 26 99 15 19 195 11 0 223 15 7 340 15 25 96 14 19 196 12 0 224 15 7 339 17 28 97 15 21 190 15 0 220 16 8 338 15 29 96 15 22 192 15 0 224 18 9 340 14 28 97 15 22 12 10 0 225 17 26 335 19 12 99 11 14 10 11 0 224 15 25 336 20 12 97 10 14 16 16 0 224 23 38 341 20 11 96 15 20 14 10 0 222 20 29 340 15 9 99 15 17 189 11 0 221 8 6 336 17 27 97 13 17 190 10 0 224 12 7 340 15 24 97 15 18 13 10 0 224 13 22 337 13 8 96 13 15 10 10 0 225 15 24 338 10 5 97 12 15 12 12 0 226 15 26 340 12 7 96 15 18 190 11 0 222 13 7 342 10 20 95 12 17 13 5 0 218 13 18 334 20 16 93 10 10 13 8 0 220 13 20 340 18 12 93 13 14 10 9 0 217 14 22 332 13 8 95 11 14 11 10 0 218 15 24 338 16 9 97 10 14 15 7 0 222 16 22 345 15 10 1 1 6 14 10 0 220 16 25 343 15 8 193 10 20 339 42 0 341 16 26 12 9 35 0 45 15 12 9 0 225 15 23 346 15 8 18 5 4 345 43 0 343 12 31 14 8 36 0 45 11 18 5 0 222 10 15 343 12 8 14 8 3 206 16 0 360 22 37 210 20 4 0 356 77 349 30 0 0 357 60 20 26 15 205 20 48 102 18 0 2 29 36

122 30 0 210 20 35 0 350 76 26 3 30 204 18 0 358 20 37 2 26 43

102 18 0 200 15 25 0 360 87 20 15 22 195 15 0 354 21 35 10 0 15 0 57 72 10 0 0 237 20 20 180 19 19 354 9 9 337 57 0 209 15 67 7 0 57 0 46 21

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

7

8 5 0 230 15 19 215 16 21 358 4 1 337 41 0 159 15 56 197 4 44 0 47 17 20 0 0 220 15 15 180 20 20 192 10 10 337 51 0 208 21 66 172 6 57 0 54 18 12 4 0 238 17 20 182 23 27 10 2 2 335 43 0 180 16 58 5 5 39 0 40 17 5 5 0 220 20 24 192 20 25 190 6 11

303 34 0 201 15 40 197 4 35 0 50 40 195 8 0 212 20 13 190 10 2 9 2 10 336 49 0 175 20 68 7 0 49 0 59 22 8 0 0 228 20 20 165 20 20 6 0 0

337 49 0 176 22 70 2 0 49 0 43 18 23 0 0 146 25 25 352 18 18 24 0 0 239 12 0 300 18 16 120 35 42 0 45 52 20 0 0 213 18 18 12 0 0 0 28 28 12 0 0 208 21 21 18 0 0 0 30 30 18 0 0 210 18 18 8 0 0 0 32 32 8 0 0 212 20 20 13 0 0 0 101 89

108 18 0 0 0 18 213 33 41 18 0 18 327 35 0 17 0 35 0 26 19

107 27 0 0 0 27 220 30 47 162 20 22 18 0 0 212 25 25 153 16 16 20 0 0 316 34 0 170 20 52 15 0 34 0 21 23 15 0 0 201 17 17 175 10 10 20 0 0 325 45 0 37 15 42 18 0 45 0 34 24 167 29 0 14 0 29 0 30 59 24 338 68 100 15 0 0 0 15 25 20 21 342 15 26 18 0 0 200 16 16 343 21 21 344 5 5 95 20 0 328 27 42 3 347 90 0 0 20 176 21 0 21 343 72 0 0 21 357 24 45 135 34 0 5 0 34 355 20 51 167 19 20 340 5 0 358 22 17 168 22 27 3 349 84 90 1 0 17 33 33

349 0 0 8 20 20 170 25 25 3 350 89 349 0 0 359 17 17 213 20 20 349 0 0 69 21 0 170 25 35 34 350 72 5 0 21 31 24 0

342 0 0 10 24 24 168 25 25 3 348 89 98 3 0 16 310 89 20 4 4 0 0 3 357 15 0 0 0 15 345 15 3 0 11 4 90 15 0 12 80 77

90 12 0 15 15 17 15 0 12 0 348 89 359 71 0 11 0 71 0 346 18 10 1 70 10 0 0 344 16 16 249 20 20 16 0 0 94 15 0 248 17 31 13 0 15 0 342 90

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

8

16 14 0 0 343 76 19 78 64

11 0 0 346 13 13 249 25 25 10 0 0 123 18 0 250 16 30 12 0 18 0 338 81 2 82 0 4 0 82 0 349 7 15 78 13 4 0 0 349 15 15 258 10 10 17 0 0

130 20 0 256 11 28 20 0 20 0 350 78 354 75 0 15 0 75 0 344 15 15 70 21 15 0 0 344 15 15 250 16 16 13 0 0 85 11 0 255 14 25 14 0 11 0 4 11 355 75 0 12 0 75 0 10 65 13 72 18 12 0 0 10 13 13 252 15 15 3 0 0 151 37 0 228 22 38 359 0 37 0 298 59 349 53 0 3 360 38 0 0 53 306 15 43 203 22 0 0 0 22 323 15 32 223 16 9 5 0 0 303 16 16 223 24 24 0 5 5 90 44 0 20 35 43

8 0 0 310 18 18 224 25 25 10 0 0

151 37 0 228 20 37 12 0 37 0 306 59 353 53 0 3 0 53 0 320 37 15 37 22 3 0 0 320 15 15 217 27 27 6 0 0

161 52 0 214 30 40 18 0 52 0 345 43 356 79 0 19 0 79 0 359 11 14 80 18 19 0 0 359 14 14 260 21 21 13 0 0 150 31 0 259 24 44 17 0 31 0 350 64 357 73 0 1 18 55 0 0 73 352 15 58 203 28 0 0 0 28 350 14 40 260 19 23 22 0 0 330 12 12 262 14 14 2 22 22 90 14 0 14 66 63

20 0 0 344 23 23 253 15 15 2 21 21 90 28 0 15 78 72

Sample: 10M

c e1 a1 e2 a2 e3 a3

N H K N H N H N H

202 15 0 344 18 31 200 11 4 0 345 77 346 23 0 0 348 67 10 20 9 117 17 0 200 10 19 0 352 83 12 2 18 334 24 0 3 49 68 10 17 14 143 19 0 196 9 15 0 354 76 15 1 20 198 10 0 352 12 21 200 12 2 0 350 81 132 10 0 0 330 84 355 5 0 146 12 17 355 5 0 0 326 84 345 9 0 145 10 19 160 11 20 348 6 3 199 36 0 136 20 32 11 11 47 0 22 57

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

9

13 8 0 204 20 28 13 10 2 0 23 15 10 10 0 205 22 32 13 10 1 0 22 12 10 8 0 202 20 28 149 20 27 0 8 1 153 20 0 192 11 13 152 21 1 0 9 28 153 22 0 185 19 11 150 25 3 0 10 31 4 11 0 317 18 13 12 10 2 0 323 78 95 11 0 0 320 90 15 0 11 5 10 15 155 40 0 3 15 54 0 324 55 14 0 40 347 17 0 28 12 11 357 14 4 0 34 18 122 11 0 0 17 25 14 3 12 352 11 20 28 24 0 357 9 17 0 21 11 11 3 21 155 14 0 97 12 13 152 11 3 2 82 78 154 12 0 100 10 10 44 15 22 289 80 89 45 12 0 112 21 20 48 13 1 289 81 86 47 12 0 103 20 16 50 17 5 0 284 81 190 15 0 305 16 26 178 16 3 0 306 76 266 16 0 0 305 90 15 2 17 166 58 0 173 16 42 0 303 36 10 0 58 201 9 0 173 15 8 204 11 2 0 354 83 203 10 0 175 18 10 204 11 1 352 82 89 200 10 0 177 20 11 204 14 4 0 3 13 198 15 0 175 18 7 358 15 30 338 77 89 355 15 0 157 16 31 350 13 2 0 337 74 345 10 0 153 14 24 306 21 15 346 15 5 213 30 0 334 16 40 0 337 66 351 10 0 144 15 24 42 9 8 350 14 4 214 32 0 35 10 42 33 48 64 9 0 32 79 41 0 15 3 40 350 12 42 0 340 82 353 14 0 162 15 29 47 15 13 350 15 1 208 33 0 45 12 45 349 12 43 0 333 62 342 15 0 154 16 31 40 15 14 352 12 4 207 35 0 46 14 48 338 12 44 306 60 71 337 12 0 127 15 26 339 9 3 309 78 67 343 10 0 132 25 34 339 9 1 310 79 71 336 14 0 127 12 25 340 10 4 0 312 76 346 5 0 135 19 23 350 8 3 314 84 80 341 11 0 134 20 30 40 16 14 0 2 9 29 43 0 0 341 52 10 42 13 15 0 43 60 47 0 10 0 47 354 10 44 4 28 37 102 79 0

29 12 0 99 21 20 28 12 0 0 288 79 30 10 0 110 24 24 167 24 32 302 80 80 174 26 0 129 20 18 168 25 3 307 65 84 160 17 0 119 12 11 166 20 4 300 75 88 226 11 0 109 20 27 228 15 4 0 288 83

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

10

229 14 0 108 20 30 230 15 1 284 82 74 223 13 0 107 20 28 65 15 27 0 18 29 58 14 0 200 10 23 346 11 15 3 23 82 144 16 0 0 320 78 123 46 80 10 0 16 346 0 0 13 31 31 111 20 20 341 6 6 65 29 0 108 18 20 341 9 29 0 7 27 219 68 0 341 340 61 5 0 68 10 26 89 70 23 0 7 0 23 13 22 21 112 17 15 347 9 0 30 30 24 119 14 21 346 11 2 65 35 0 120 10 30 33 45 74 9 0 35 89 64 0

341 7 0 18 27 22 114 17 22 344 9 2 59 36 0 118 18 30 33 41 70 15 0 36 92 21 0 11 0 21 112 18 7 346 14 28 199 71 0 341 15 83 0 294 27 0 17 0 40 12 11 2 15 2 0 42 25

171 57 0 0 350 35 9 0 57 3 3 60 105 72 0

357 12 0 246 13 21 359 14 2 0 70 58 202 11 0 146 21 17 202 15 4 0 322 81 199 14 0 145 16 14 50 28 41 0 9 23 73 26 0 192 11 33 53 27 9 0 9 25 54 26 0 190 10 34 57 27 2 0 15 21 56 25 0 190 9 32 62 22 4 0 8 22 147 20 0 95 14 16 141 20 2 0 345 74 230 46 0 0 351 63 153 58 55 133 7 56 145 20 0 94 13 15 356 12 31 144 20 0 132 20 0 348 20 38 130 20 1 0 348 78 211 36 0 0 26 60 150 16 0 200 6 13 149 11 5 0 276 77 143 10 0 108 15 9 149 14 4 285 83 89 145 11 0 103 18 12 150 10 1 288 82 89 155 15 0 302 29 42 143 16 3 285 77 87 150 10 0 112 20 14 141 15 5 0 294 82 212 41 0 0 292 57 153 20 52 161 63 0 192 20 47 0 336 33 20 32 89 195 25 0 344 20 43 195 22 3 0 340 67 320 25 0 3 30 70 17 1 24 1 13 17 147 16 0 68 15 20 135 15 3 0 69 83 213 42 0 0 70 74 123 18 52 16 67 0 293 20 66 0 357 27 292 20 0 176 20 34 2 2 19 296 20 1 291 19 0 140 16 34 0 275 82 143 20 0 94 15 15 138 17 3 0 279 75 143 12 0 86 10 11 140 16 4 0 279 81

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

11

329 11 0 178 12 22 145 19 30 0 274 80 150 20 0 101 13 15 205 8 17 0 350 74 357 25 0 0 350 64 19 34 14 0 0 25 4 15 0 23 0 15 140 16 29 355 26 11

210 46 0 202 14 32 0 349 52 11 3 49 202 10 0 350 10 19 151 16 12 0 22 31 142 14 0 207 12 14 161 15 5 0 25 37 219 21 0 153 19 22 138 16 24 268 75 62 137 18 0 94 14 12 134 20 2 0 272 78 135 18 0 90 12 13 120 10 9 264 78 90 136 16 0 90 14 12 121 12 5 335 80 85 113 12 0 263 14 25 119 12 1 0 265 86 83 20 0 3 38 87 15 10 19 20 0 20 348 15 0 13 0 15 318 24 13 2 6 9 107 30 0 15 5 31 15 0 30 326 15 43 4 16 0 329 14 9 66 22 20 0 45 29

Sample: 1N

c e1 a1 e2 a2 e3 a3

N H K N H

N H

N H

143 30 0 180 16 20 141 31 1 0 354 67 144 32 0 175 15 20 131 20 13 0 10 40 236 49 0 0 12 56 20 84 57 183 25 54 140 32 0 360 20 49 140 27 5 0 4 35 150 30 0 270 18 42 150 35 5 0 359 65 249 41 0 0 360 77 203 23 65

288 16 0 7 20 23 0 25 25 20 3 16 165 20 0 130 21 12 188 15 8 73 43 73 166 20 0 167 23 3 2 17 37 0 324 72 356 18 0 175 11 29 350 20 3 350 71 53 2 12 0 139 20 30 354 20 8 330 77 67

354 15 0 176 16 31 350 16 1 350 74 59 357 16 0 24 18 8 353 11 5 345 73 57 163 18 0 174 15 4 170 20 3 350 74 88 174 14 0 168 17 3 180 18 4 344 77 89 350 13 0 140 22 34 180 18 31 0 344 76 128 20 0 175 27 19 133 24 4 346 79 85 130 24 0 170 24 16 224 40 47 136 22 3 250 27 0 224 40 19 130 22 42 348 82 86 132 22 0 175 21 15 8 15 33 126 25 4 51 23 0 215 31 53 130 24 29 0 10 18 103 22 0

95 20 0 160 10 6 360 20 53 3 3 31 140 23 0 323 23 46 190 10 18 131 19 5

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

12

140 23 0 323 23 46 190 10 18 131 19 5 152 47 0 152 30 17 0 320 51 203 25 61 158 10 0 358 20 30 136 22 13 350 82 88 128 20 0 170 28 18 136 22 3 350 79 86 133 26 0 132 15 11 136 22 4 0 350 74 338 11 0 37 15 13 338 12 1 0 28 18 171 25 0 0 30 55 12 3 28 345 9 34 25 32 0 338 11 26 0 36 14 25 3 29 337 10 0 31 10 9 219 25 31 33 45 80 100 45 0 9 43 59

337 12 0 44 10 12 41 15 14 33 34 78 100 1 0

338 8 0 340 7 1 0 44 37

113 34 0 336 10 42 0 42 62

215 20 0 336 10 27 0 54 71

334 9 0 47 22 21 346 5 4 0 17 10 339 9 0 193 14 22 205 11 18 335 15 6 277 15 0 216 18 17 338 15 15 0 28 30 337 16 0 200 12 26 346 10 6 0 33 19 339 15 0 208 15 27 211 11 23 339 11 4 312 33 0 336 10 24 0 24 24

343 11 0 189 12 22 33 45 79 13 0 11 136 49 0

337 10 0 192 10 19 190 6 15 346 7 3 337 29 0 344 10 19 0 34 13

345 9 0 213 13 20 206 10 18 33 42 80 101 33 0

163 19 0 10 0 19 206 18 13 125 17 12 336 10 0 202 15 23 33 39 80 10 0 10 151 16 0 5 0 16 200 10 12 33 50 77 98 8 0

107 21 0 11 0 21 188 15 24 33 49 86 96 12 0

135 21 0 10 0 21 192 10 18 33 45 77 95 29 0

347 10 0 189 12 22 33 48 79 10 0 10 141 18 0 10 0 18 190 11 14 344 13 30 311 12 0 43 18 22 340 10 6 0 10 9 348 8 0 205 15 22 344 12 4 0 20 12 344 10 0 202 15 24 338 10 1 0 26 17 337 10 0 183 10 19 343 10 1 0 37 28 332 14 0 227 18 25 353 18 7 303 18 9 340 10 0 315 20 12 229 15 21 343 10 1 347 12 0 162 24 36 313 20 12 350 10 2 217 27 0 313 20 35 345 11 35 0 338 70

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

13

346 15 0 161 26 41 208 19 32 355 7 8 225 29 0 198 10 21 347 10 35 0 337 71 345 9 0 160 15 24 192 13 21 347 12 3 216 26 0 187 10 18 33 44 69 10 0 26 131 21 0

353 8 0 157 17 25 198 10 18 33 45 81 96 16 0

128 19 0 9 0 19 153 16 8 199 16 20 345 12 0 163 15 27 195 11 22 33 51 78 101 17 0

17 16 0 8 0 16 154 16 30 315 15 16 347 10 0 206 20 28 232 11 18 33 51 79 96 23 0

147 15 0 10 0 15 160 14 3 208 15 15 76 11 0 223 19 29 213 22 31 73 47 85 100 5 0

114 31 0 14 0 31 35 16 32 33 43 80 100 40 0 203 45 83 10 0 40 38 15 35 344 10 0 201 19 28 128 20 29 341 11 1 31 42 0 337 14 35 0 38 20 203 58 48 167 17 0 0 38 55 19 3 20 343 10 27 354 5 0 227 10 14 189 15 20 354 5 0 243 28 0 315 17 28 360 9 33 0 15 37 166 49 0 33 49 45 10 0 49 222 11 44 164 12 0 10 0 12 224 10 11 205 15 10 357 7 0 230 10 15 33 37 82 10 0 7 119 38 0 203 47 85 10 0 38 199 17 38 339 10 0 184 11 20 213 10 18 33 30 80 97 6 0

331 10 0 175 10 20 33 41 81 13 0 10 115 44 0 20 3 44 1 10 49 0 13 51 355 10 0 191 10 20 355 0 10 0 6 4

Sample: 19D

c e1 a1 e2 a2 e3 a3

N H K N H

N H

N H

85 30 0 210 14 40 2 83 87 21 0 30 187 21 0 203 29 10 0 59 80 23 0 21 143 25 0 154 25 5 0 34 56 20 0 25 134 20 0 10 16 32 0 1 21 152 27 10 331 58 0 3 20 41

233 39 0 3 30 69

28 64 0 0 88 36 20 0 64 339 22 51 233 40 0 0 21 55 16 0 40 26 18 57

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

14

90 14 0 0 35 37 26 0 14 342 25 32 215 36 0 0 3 38 114 16 42 0 39 71 110 30 0 25 0 30 33 21 82

321 33 0 0 42 25

148 47 0 3 43 53

156 40 0 3 52 55 15 0 40 330 19 59 31 31 0 3 48 63 16 0 31 150 25 48 117 40 0 3 40 74

24 42 0 0 23 23

35 31 0 0 65 42

34 32 0 3 36 63 33 0 32 332 18 28 120 21 0 0 41 54 19 0 21 35 18 26 214 42 0 0 31 69 20 0 42 56 15 56 335 38 0 0 40 16 11 0 38 227 12 43 128 34 0 3 33 71 24 0 34 122 30 5 224 42 0 3 9 62 35 0 42 3 16 55 221 40 0 0 52 85

220 51 0 3 11 54

234 38 0 0 3 40 287 38 32 0 227 70 111 16 0 325 15 30 214 12 22 3 21 30 212 67 0 3 11 77 172 94 45

143 55 0 114 12 45 3 9 62 20 2 56 113 15 0 309 18 33 113 15 0 3 8 19 221 79 0 3 10 87 22 2 81 112 11 83 146 48 0 115 14 37 3 13 59

115 14 0 128 25 12 111 11 3 3 5 17 113 12 0 129 20 9 103 16 5 308 86 82 117 15 0 140 19 8 288 14 29 3 25 34 290 15 0 342 27 21 325 15 9 288 15 1 126 32 0 326 17 48 286 16 47 320 73 76 289 15 0 142 31 44 340 20 16 116 14 29 207 48 0 116 10 49 3 11 58

112 12 0 132 20 10 104 14 3 3 15 22 104 15 0 137 28 17 111 12 3 308 87 79 296 6 0 137 21 27 294 5 1 323 86 81 295 7 0 145 25 31 294 13 6 3 8 8 290 13 0 132 30 42 295 9 4 312 85 73 294 10 0 130 20 30 294 8 2 316 85 76 308 6 0 135 20 26 286 10 5 317 85 79 285 14 0 135 20 33 296 15 3 315 85 73 300 16 0 130 25 41 302 15 1 3 17 17 114 15 0 150 22 13 120 14 2 329 85 83 119 13 0 146 17 8 118 14 1 333 85 84 116 15 0 155 20 12 116 16 1 3 22 31 119 16 0 139 25 11 118 15 1 320 83 82

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

15

116 11 0 146 22 14 115 17 6 327 86 85 114 17 0 145 21 11 119 18 2 3 21 31 117 20 0 142 22 9 116 15 5 331 82 81 115 18 0 153 24 15 119 20 2 330 83 82 116 16 0 142 23 11 116 17 1 3 21 31 115 16 0 139 25 12 160 17 13 118 15 1 215 41 0 170 15 32 115 17 46 326 58 78 119 15 0 149 22 12 175 11 13 117 17 2 152 36 0 113 14 26 324 60 84 67 0 36 112 15 0 133 14 5 156 15 11 114 17 2 211 33 0 153 20 28 128 15 34 341 63 86 122 16 0 162 19 12 154 20 11 120 15 1 205 41 0 156 18 32 117 14 42 3 28 68 118 16 0 145 30 17 120 18 2 328 84 82 122 14 0 148 24 13 120 18 4 328 84 83 121 20 0 158 25 15 359 17 32 120 16 4 206 47 0 342 16 59 115 15 49 3 26 71 118 16 0 140 18 7 353 18 30 115 12 4 208 49 0 343 15 60 111 12 51 314 49 74 112 10 0 135 20 11 358 15 21 118 9 1 207 43 0 342 16 55 119 11 44 326 54 81 115 10 0 138 15 7 348 14 22 200 17 19 209 45 0 57 16 59 198 14 31 3 19 63 209 14 0 133 20 21 65 12 25 213 13 1 218 48 0 58 15 62 210 15 33 320 55 75 105 15 0 133 25 14 239 15 28 113 20 6 209 54 0 240 14 42 113 15 57 3 16 69 115 18 0 134 30 14 62 15 15 112 17 1 213 51 0 226 15 36 116 15 54 310 50 71 112 14 0 139 26 15 342 18 29 114 15 1 216 46 0 340 20 59 115 15 51 3 17 61 114 16 0 124 27 12 166 11 13 114 15 1 212 58 0 172 12 49 118 16 60 3 2 60

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

16

Appendix A2

Sample: 30N

c e1 a1 e2 a2 e3 a3

N H K N H

N H

N H

346 0 0 117 17 17 24 15 15 346 0 0 205 59 0 26 10 69 349 0 59 2 98 40 341 0 0 117 16 16 24 16 16 343 0 0 197 62 0 23 15 77 90 14 67 308 33 77 89 16 0 125 15 10 94 16 1 3 3 89 245 12 0 23 14 24 73 17 29 248 8 4 29 30 0 75 16 22 246 5 34 0 29 14 31 75 0 71 0 75 0 31 50 10 33 45 103 64 0

45 29 0 47 22 7 64 68 41

30 27 0 49 20 10 252 10 35 0 28 14 38 52 0 64 0 52 3 42 51 23 71 23 9 79 0 3 45 13 19 32 48 10 68 11 250 10 0 345 18 21 38 20 29 66 0 10 137 23 0 48 16 28 160 12 13 0 24 44 162 10 0 206 12 8 315 10 19 160 10 0 329 31 0 311 18 15 153 10 41 0 20 17 153 10 0 201 17 13 310 20 29 189 6 6 158 30 0 193 13 21 340 63 87 10 39 66 197 11 0 338 10 20 195 12 1 3 33 80 181 87 0 3 35 4

278 15 0 160 17 27 275 12 3 3 40 87 287 12 0 149 16 26 285 10 2 332 86 78 162 7 0 290 25 30 135 15 9 151 7 1 161 73 0 125 31 60 158 68 68 292 26 89 152 8 0 290 20 26 181 18 12 0 42 49 179 15 0 231 22 17 179 15 0 0 48 63 180 15 0 232 20 16 181 18 3 0 42 57 200 15 0 345 12 26 199 17 2 3 43 77 333 26 0 3 44 66 13 11 19

148 21 0 195 18 16 3 44 73 12 1 22 230 15 0 41 14 29 183 24 17 187 17 12 231 8 0 44 21 29 170 24 21 190 18 13 230 10 0 42 20 30 179 24 19 190 20 14 229 9 0 36 20 29 182 23 18 180 15 11 231 10 0 38 20 30 181 22 17 185 12 9 231 10 0 35 16 26 183 20 15 186 19 14 230 9 0 37 18 27 181 21 16 185 20 15 232 8 0 42 15 23 180 23 19 190 15 10

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

17

234 7 0 38 16 23 183 21 17 188 18 14 232 5 0 39 18 23 182 20 17 185 18 15 21 12 0 31 12 2 2 42 31

333 32 0 150 16 48 0 38 16

149 16 0 219 13 17 150 16 0 0 37 51 201 14 0 228 16 7 203 16 2 0 54 67 202 15 0 235 17 9 168 14 8 0 59 73 170 15 0 235 15 16 63 13 22 3 48 76 59 16 0 163 30 37 186 15 28 63 14 2 199 54 0 72 16 64 3 12 41

70 15 0 130 20 18 233 21 36 0 18 19 29 99 0 5 50 54

38 25 0 100 13 22 50 51 27 11 0 25 301 7 0 4 50 62 11 0 73 10 14 86 184 52 0 7 0 52 12 14 66 97 9 52 48 11 0 17 15 8 97 13 10 51 5 6 66 17 0 158 20 26 51 52 36 10 0 17 73 28 0

50 11 0 9 15 10 160 20 26 66 16 6 221 36 0 36 17 53 6 73 77 16 0 36 90 41 0 17 70 64 15 0 41 151 21 35 120 74 0 16 0 74 152 20 57 36 15 73 158 14 0 160 21 7 33 10 21 66 19 24 225 32 0 40 7 39 63 20 51 3 48 69 65 18 0 160 22 29 48 10 9 63 20 2 231 34 0 30 21 54 66 20 54 340 70 84 73 12 0 163 16 20 69 15 3 297 86 85 70 13 0 160 15 20 128 13 13 0 41 38 130 14 0 298 15 29 39 10 17 3 43 82 40 11 0 165 23 31 2 10 7 42 10 1 228 29 0 359 10 36 38 9 38 338 72 84 38 9 0 158 20 26 358 11 7 39 11 2 218 20 0 296 16 23 215 20 1 2 96 75 349 40 0 3 0 50 18 39 18

155 62 0 223 21 56 3 1 38 16 4 65 220 20 0 300 18 24 123 20 30 3 57 76 89 74 0

136 20 0 254 20 34 120 19 5 3 44 77 355 73 0 128 18 86 3 48 17 15 67 20 127 20 0 340 15 34 249 15 31 124 19 1 130 17 0 250 17 29 120 21 5 3 35 80 5 64 0 33 0 25

120 23 0 248 11 31 122 20 3 3 42 80 2 70 0 33 4 19

229 35 0 245 20 17 127 29 49 3 53 69

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

18

211 22 0 177 18 12 262 15 17 188 28 11 314 36 0 343 20 21 190 25 54 0 28 25 259 12 0 58 16 28 267 19 7 0 57 60 181 98 0 0 55 27 152 68 16 17 0 82 147 97 0 18 0 83 54 20 82 150 30 67 281 25 0 272 20 6 153 29 48 0 1 25 145 21 0 263 16 32 4 20 39 142 20 1 341 79 0 353 11 68 140 21 81 0 79 19 132 27 0 246 11 33 338 11 37 125 28 3 342 71 0 339 13 58 148 30 80 0 74 17 130 27 0 248 13 35 345 10 36 127 30 3 344 64 0 339 15 49 278 25 57 0 36 30 279 15 0 213 16 17 283 16 1 0 42 42 264 15 0 226 16 10 272 15 2 0 40 44 266 11 0 95 15 26 203 13 13 264 14 3 18 95 0 206 15 70 260 15 78 2 78 19 263 15 0 74 12 27 195 20 20 260 14 1 18 95 0 203 15 70 266 12 81 2 76 19 266 11 0 100 28 39 115 12 22 263 14 3 152 56 0 323 14 70 100 14 48 271 15 64 204 86 0 202 19 67 268 13 80 3 7 24 221 66 0 262 10 59 0 30 90

268 15 0 213 11 12 97 11 26 267 14 1 329 28 0 94 11 35 8 89 68

332 44 0 95 9 49 268 14 39 0 30 22 265 12 0 213 14 11 266 14 2 0 35 38 268 12 0 213 18 15 270 15 3 0 34 36 260 14 0 202 12 13 247 16 4 310 89 80 248 10 0 134 29 34 249 12 2 316 87 83 309 16 0 157 14 29 338 15 8 129 30 46 232 31 0 169 10 28 247 14 18 3 56 72 252 11 0 200 16 13 356 12 18 263 11 2 306 14 0 353 11 10 249 14 13 0 10 11 250 12 0 190 15 14 262 15 4 0 27 33 257 15 0 210 10 11 319 20 18 263 10 5 11 92 0 207 19 70 265 11 85 0 90 11 340 31 0 258 15 32 0 99 60 15 41 23 266 25 0 159 20 36 281 25 6 341 89 83 278 25 0 162 20 38 262 21 7 335 86 73 269 25 0 158 20 37 235 15 15 3 44 90 235 15 0 159 26 26 175 20 18 235 14 1 244 24 0 186 25 23 234 15 10 350 81 88 235 15 0 162 26 26 178 25 21 265 15 8 188 51 0 264 14 49 121 41 48 81 48 75 130 30 0 270 18 45 131 30 0 2 68 72

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

19

240 50 0 0 70 82

152 32 0 356 13 44 160 35 5 0 1 33 168 15 0 203 15 9 165 15 1 0 21 36 168 17 0 202 15 9 170 13 4 0 27 44 170 13 0 207 16 10 172 15 2 0 23 36

Sample: 28N

c e1 a1 e2 a2 e3 a3

N H K N H

N H

N H

17 4 0 127 21 23 17 26 22 16 15 11 205 53 0 40 24 76 32 0 53 327 45 83 214 16 0 143 14 17 179 18 10 35 0 16 212 25 0 200 22 6 31 0 25 332 70 84 197 15 0 210 15 3 183 12 4 338 77 89 181 11 0 150 25 17 123 20 17 183 10 1 225 37 0 120 22 47 181 12 29 0 338 66 180 10 0 155 20 12 128 22 18 181 16 6 207 46 0 131 15 44 181 15 33 320 51 77 180 11 0 134 20 15 163 15 5 331 0 11 77 21 0 329 0 21 0 359 84 15 330 79 90 3 0 18 329 88 0 0 3 353 22 23 28 34 0 332 0 34 0 352 59 20 274 55 56 15 0 359 18 16 35 10 7 0 341 81 129 11 0 0 340 84 15 4 13 16 0 11 324 26 0 13 0 26 315 25 4 360 15 16 152 49 0 150 10 39 0 20 67 30 3 51 148 12 0 22 30 38 3 330 81

206 68 0 333 0 68 0 348 34 20 12 80 99 26 0 20 14 27 16 0 26 327 18 40 14 11 0 323 25 20 1 14 4 15 10 1 139 44 0 10 15 54 0 325 59 26 1 44 46 14 0 0 323 79 25 1 13 7 16 10 149 42 0 10 15 54 0 324 56 25 354 69 7 11 0 321 26 20 179 15 26 10 11 1 144 42 0 175 15 30 10 15 53 0 323 58 70 14 0 15 0 14 305 21 31 180 16 25 12 15 0 312 25 22 180 16 31 7 11 4 145 45 0 169 15 32 0 10 53 11 0 45 342 28 0

9 16 0 296 24 24 299 19 20 5 8 8 148 36 0 170 6 31 0 7 42 11 0 36 342 21 0

8 10 0 157 20 29 182 15 25 10 10 0 213 35 0 180 15 24 1 0 35

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

20

165 54 0 105 15 48 0 11 65 0 0 54 185 15 0 14 8 23 0 0 15 195 15 3 8 15 0 2 0 15 184 17 32 103 13 21 0 0 0 185 15 15 105 15 15 196 7 7 75 16 0 205 14 27 199 5 19 0 358 85 339 30 0 195 7 36 0 5 25 11 24 16 193 5 0 3 10 15 202 12 7 190 5 0 84 10 0 204 16 23 194 4 12 0 1 10 319 35 0 195 4 37 357 63 39 17 29 30 195 4 0 357 15 19 197 20 16 195 5 1 108 16 0 200 22 27 195 5 16 0 358 86 326 30 0 1 17 19

46 17 0 207 17 34 17 15 8 0 0 17 71 29 0

197 6 0 3 17 23 203 25 19 195 5 1 72 16 0 200 22 34 1 17 19

52 19 0 204 16 34 15 0 19 0 7 16 331 32 0 29 18 27 0 40 19

44 27 0 13 0 27 218 10 37 16 11 18 31 18 0 218 15 33 346 16 13 23 18 2 339 43 0 22 16 33 27 15 34 0 42 14 25 15 0 220 14 29 360 15 6 21 10 5 331 47 0 8 11 39 21 20 37 12 0 47 190 21 0 10 2 23 17 12 33 0 39 60 32 15 0 224 15 30 14 12 5 17 15 4 335 39 0 17 14 30 20 16 30 0 35 15 21 15 0 210 10 25 353 12 7 20 15 0 328 40 0 342 13 28 21 15 33 0 36 20 31 15 0 217 21 36 353 14 9 20 15 3 334 37 0 345 16 21 25 15 30 0 39 16 23 12 0 213 10 22 7 15 5 25 11 1 342 34 0 350 12 22 30 12 27 0 30 10 23 15 0 213 14 29 345 16 10 23 16 1 42 39 0 346 9 35 26 15 25 0 29 25 9 12 0 216 15 26 13 12 1 27 15 5 337 41 0 15 10 34 22 15 32 0 27 19 24 16 0 214 25 41 335 30 23 18 16 2 342 39 0 59 19 39 19 14 29 0 30 14 19 13 0 210 15 28 66 18 13 25 12 2 342 35 0 60 11 34 344 15 20 0 34 10 350 15 0 215 7 21 1 6 9 25 14 9 341 32 0 64 17 34 3 14 20 0 34 11 22 15 0 215 11 26 19 16 1 25 17 2 336 40 0 18 16 30 20 15 31 0 35 15 36 11 0 216 15 26 21 14 4 30 15 4

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

21

331 38 0 22 16 30 25 17 31 0 35 17 218 20 0 177 16 13 220 11 9 353 75 89 222 15 0 169 13 13 217 15 1 347 80 89 218 16 0 169 15 13 219 14 2 0 352 78 219 16 0 176 17 12 218 15 1 360 79 88 220 14 0 165 15 13 216 12 2 0 337 80 209 15 0 182 5 11 233 15 6 221 19 5 83 24 0 18 23 25 208 15 35 358 86 84 210 19 0 173 14 11 40 13 32 208 15 4 275 20 0 22 15 28 198 15 22 0 358 87 215 15 0 174 22 14 28 20 35 210 12 3 270 20 0 22 15 29 208 18 19 350 89 86 208 18 0 170 22 13 30 10 28 212 19 2 263 15 0 233 15 8 359 22 28 0 30 35 260 16 0 193 14 17 174 15 21 266 24 8 314 22 0 145 13 35 264 22 18 0 20 16 267 20 0 196 19 22 168 24 33 260 15 5 310 27 0 170 22 46 264 20 19 0 14 21 268 20 0 197 18 22 199 20 22 267 16 4 309 27 0 173 21 44 265 15 19 0 20 21 30 0 0 178 20 20 53 10 10 31 0 0 235 17 0 230 10 7 27 0 17 0 12 26 28 0 0 195 18 18 230 9 9 32 0 0 265 20 0 232 8 14 331 0 20 0 30 37 330 0 0 208 10 10 59 0 0 0 31 31 144 10 0 51 21 24 143 15 5 153 5 5 332 33 0 140 12 45 126 18 50 0 5 29 130 15 0 177 18 13 140 20 6 360 81 89 125 20 0 176 20 17 128 23 3 0 12 29 148 13 0 91 17 15 140 16 4 0 91 80 219 40 0 0 90 61 15 335 55

228 18 0 333 10 23 3 340 78

Sample: 6D

c e1 a1 e2 a2 e3 a3

N H K N H

N H

N H

321 14 0 269 28 22 252 20 20 318 15 1 155 88 0 258 18 88 320 16 77 0 270 25 187 104 0 322 14 66 2 68 15 282 56 25 107 52 0 17 0 52 235 24 69 48 26 43 309 25 0 236 24 29 258 19 19 32 99 75 111 37 0 203 44 90 272 97 86 27 0 37 89 46 0

304 13 0 359 20 16 140 14 27 301 16 3

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

22

161 108 0 24 25 55 29 3 70 311 19 56 345 96 0 317 14 84 1 8 17

311 17 0 283 13 8 312 15 2 0 99 78 316 15 0 282 16 9 13 15 14 3 24 78 184 53 0 12 15 68 3 19 38 25 323 43 80 25 0 0 303 85 233 8 76 24 1 24 11 15 0 311 27 23 314 18 16 1 12 4 106 48 0 313 3 78 29 3 47 332 16 60 163 85 0 191 20 67 333 17 78 0 272 18 98 16 0 330 12 25 2 73 89 19 2 16 152 28 0 2 80 66 20 10 35 15 3 30 328 18 0 282 17 14 5 15 11 33 25 74 105 75 0 202 75 85 25 3 74 33 25 79 103 73 0 192 73 84

322 15 0 285 21 13 277 24 17 325 17 2 158 79 0 100 22 68 325 16 85 0 280 25 180 83 0 321 16 85 0 1 84 182 72 20 318 15 0 358 20 13 87 20 32 317 20 5 82 14 0 93 17 4 308 19 30 0 2 14 213 85 0 320 20 89 360 34 67 19 0 85 314 14 0 2 14 11 93 16 28 313 16 2 101 15 0 94 15 2 310 15 29 0 1 15 207 82 0 33 11 26 13 0 82 1 15 84 18 50 0 15 0 50 360 16 35 100 16 50 313 15 0 90 20 33 2 15 12 313 15 0 201 87 0 2 14 80 312 20 86 0 275 21 312 18 0 94 15 31 2 15 14 315 20 2 198 87 0 4 14 79 314 17 86 274 18 83 315 18 0 89 21 36 4 15 14 312 16 2 202 92 0 0 10 79 316 17 81 0 260 22 316 16 0 85 19 32 358 16 11 312 10 6 310 15 0 90 19 32 1 11 12 286 11 7 206 60 0 153 15 52 288 14 59 305 40 73 286 15 0 132 19 33 161 16 27 285 14 1 203 52 0 160 15 42 286 15 52 3 11 44 285 11 0 133 15 25 154 15 24 282 11 1 204 40 0 284 15 40 318 12 46 15 8 48 194 15 0 184 14 3 195 15 0 0 3 18 310 13 0 15 15 15 95 19 31 312 15 2 48 20 0 90 18 14 311 15 26 0 16 15 209 91 0 309 17 86 0 15 76 162 78 13 310 16 0 16 14 16 100 15 30 315 16 1 42 21 0 105 16 20 308 15 26 0 16 14 210 79 0 309 19 83 0 13 90 112 22 79 310 20 0 14 16 19 97 16 34 315 18 3

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

23

46 21 0 95 18 16 330 15 22 0 4 18 175 87 0 33 20 9 16 0 87 8 16 77 325 36 0 15 0 36 25 9 32 265 21 31 331 15 0 7 14 9 267 15 16 33 25 76 106 10 0 152 67 89 203 25 88 18 0 10 95 101 0 183 25 77 16 0 79 179 9 80 321 37 0 15 0 37 180 8 43 252 15 34 329 10 0 19 21 16 95 22 29 33 28 81 98 10 0 172 74 87

333 10 0 12 19 13 95 20 27 33 28 80 97 10 0 202 74 87

325 16 0 8 19 13 93 30 42 33 25 76 100 10 0 202 72 87

328 10 0 359 14 7 93 20 27 330 10 0 29 46 0 287 17 52 33 26 49 14 0 46 137 112 0

325 15 0 39 20 21 291 17 9 33 26 77 105 38 0 20 112 86

329 11 0 37 20 19 294 17 10 33 27 80 104 38 0 191 11 86

325 15 0 30 15 16 284 18 12 33 26 77 104 31 0 171 16 88

307 17 0 2 10 14 262 16 13 310 15 2 145 23 0 269 17 35 33 9 73 16 0 23 79 85 0

310 19 0 23 16 21 260 16 15 304 18 2 66 17 0 262 15 32 33 2 81 20 0 17 99 85 0

350 26 0 200 14 39 46 15 21 348 37 11 25 46 0 53 16 33 349 35 25 0 42 18 40 48 0 33 50 53 31 0 48 35 17 31 49 21 0 30 0 21 59 11 10 54 20 2 352 31 0 46 20 25 60 20 29 33 50 59 126 44 0 17 45 70 21 3 45 351 35 72 29 46 0 47 20 28 3 3 43 350 30 28 19 44 0 54 21 29 346 32 23 0 47 14 41 48 0 347 34 37 0 55 33 18 52 18 128 28 0 0 39 60 16 60 73 163 50 81 120 40 0 18 62 76 153 47 81 32 0 40 117 63 0 153 50 80 27 0 63 42 15 60 96 25 0 30 0 25 49 14 18 56 18 16 79 24 0 29 0 24 46 12 15 59 20 8 11 27 0 32 0 27 46 16 16 40 24 13 346 30 0 42 14 25 54 20 29 33 44 60 121 40 0 12 55 74 213 44 84 31 0 40

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

24

117 61 0 193 46 83 29 0 61 44 13 58 91 21 0 23 0 21 48 15 14 59 19 11 360 25 0 50 12 19 60 20 22 33 52 64 120 49 0 11 62 85 223 46 85 28 0 49 129 62 0 213 27 75

345 33 0 48 10 30 67 19 35 148 10 43 344 31 0 48 13 28 58 20 31 141 11 41 345 30 0 38 12 25 97 13 37 151 9 39 342 31 0 40 13 26 100 15 40 150 10 41 346 31 0 52 15 28 351 14 17 3 3 28 345 30 0 42 12 25 20 10 22 340 31 3 16 49 0 21 12 37 344 30 27 0 49 12 35 24 0 346 31 23 0 53 35 15 23 8 122 34 0 0 55 77 122 72 80

345 28 0 56 11 26 100 13 35 343 46 71 122 52 0 122 73 75

346 28 0 48 11 25 98 12 34 3 3 25 345 25 0 46 15 22 96 12 31 33 45 65 117 35 0 152 83 84

345 31 0 46 16 27 101 16 40 33 46 60 124 42 0 152 83 78

345 29 0 34 16 22 104 16 39 33 46 62 120 38 0 152 85 82

344 31 0 38 16 25 109 16 42 348 32 2 25 38 0 102 14 37 33 46 54 34 0 38 120 71 0

344 32 0 36 10 27 108 20 46 33 40 59 125 37 0 122 84 77

348 32 0 325 11 22 93 15 38 350 30 2 160 38 0 98 16 33 348 30 68 0 240 56 344 27 0 53 21 27 345 28 1 238 63 73 342 32 0 62 26 37 346 24 8 225 59 77 345 28 0 50 24 27 345 24 4 0 234 62 347 25 0 54 25 27 138 14 38 346 25 0 213 21 0 326 18 54 347 28 43 0 235 43 346 26 0 60 22 29 142 15 40 343 24 2 245 50 0 19 69 88 25 40 60 40 0 30 350 27 0 52 15 24 140 12 38 348 25 2 324 44 0 15 63 81 22 37 72 40 0 36 342 23 0 50 20 24 329 17 7 340 25 2 201 91 0 37 13 77 341 25 70 268 21 83 343 25 0 68 20 30 141 15 39 345 24 1 197 10 0 140 16 79 340 36 44 0 228 25 345 29 0 54 20 28 140 16 44 344 28 1 122 38 0 21 69 71 30 42 81 40 0 42

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

25

344 29 0 60 24 32 147 20 48 340 30 2 82 38 0 22 66 87 22 41 72 41 0 42 344 25 0 64 15 27 140 10 34 339 29 5 204 22 0 330 21 48 41 16 43 340 31 40 202 26 0 332 20 43 40 15 40 345 31 33 198 25 0 144 15 65 43 12 44 346 34 30 199 23 0 140 16 66 40 10 48 350 32 32 211 24 0 145 21 66 62 15 44 346 30 39 205 27 0 140 20 63 52 10 44 348 28 34 205 23 0 146 20 69 50 16 43 347 27 38 209 20 0 147 19 70 350 3 58 350 30 40 205 18 0 146 20 73 343 26 45 0 233 36 345 25 0 50 20 24 141 18 42 347 30 5 202 32 0 330 17 39 350 28 28 0 229 46 344 31 0 52 20 29 325 25 11 340 35 5 88 38 0 21 49 79 30 36 70 41 0 38 350 32 0 50 25 28 50 16 27 343 30 4 142 48 0 15 62 31 31 38 6 45 0 32 340 32 0 48 22 31 148 18 50 348 27 6

Sample: 26N

c e1 a1 e2 a2 e3 a3

N H K N H

N H

N H

27 26 0 33 18 8 27 30 4 0 45 24 72 39 0 0 40 44 20 2 38 23 30 28 39 56 0 23 25 32 0 59 33 28 2 54 43 35 0 0 69 47 19 2 33 35 22 14 344 72 0 34 22 59 0 73 15

34 20 0 253 18 36 3 3 17 36 20 1 339 72 0 21 16 61 0 50 29

21 19 0 228 18 36 2 2 17 24 16 3 342 46 0 24 18 34 0 44 13

21 20 0 225 18 37 24 15 5 0 47 29 30 16 0 235 11 26 38 15 2 0 78 64 38 12 0 250 13 24 40 13 1 0 68 59 39 13 0 248 15 27 38 15 2 0 60 50 46 16 0 253 15 30 40 14 3 0 71 60 38 15 0 250 16 30 40 12 3 0 76 64 42 12 0 252 18 29 40 13 1 0 70 61 41 11 0 252 15 25 41 12 1 0 72 64 36 10 0 241 11 20 39 14 4 0 62 54 38 20 0 236 15 35 37 18 2 0 58 43 37 18 0 238 12 30 40 12 6 0 60 46 25 16 0 183 24 39 23 12 4 0 2 14

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

26

15 15 0 165 25 39 20 11 4 350 75 62 134 18 0 360 0 18 138 16 2 360 79 88 132 10 0 191 16 14 101 25 17 135 14 4 341 16 0 118 26 39 132 14 29 0 10 7 135 11 0 187 7 9 115 24 14 130 12 1 333 11 0 116 25 34 136 10 21 0 8 5 135 13 0 187 9 10 95 20 13 137 11 2 0 2 0 100 23 23 132 8 9 0 3 1 126 10 0 193 11 12 90 24 17 124 10 0 237 18 0 86 23 40 123 15 28 354 81 89 127 14 0 168 10 9 92 18 10 125 15 1 259 10 0 85 20 30 130 15 23 360 89 89 126 12 0 175 10 9 88 25 17 124 12 0 270 10 0 90 22 32 130 8 17 0 2 10 93 21 0 16 0 21 18 12 21 345 15 29 191 62 0 345 13 74 0 300 31

341 15 0 122 10 24 340 15 0 0 302 75 6 7 0 171 9 16 6 16 9 342 82 76 7 14 0 160 9 22 10 11 3 345 75 62 8 10 0 162 8 18 5 15 5 347 79 70 5 12 0 165 10 22 323 0 12 290 77 74 148 10 0 87 19 17 150 4 6 270 83 88 322 0 0 107 16 16 325 0 0 0 282 89 318 0 0 2 12 12 324 10 10 0 5 5 187 40 0 0 56 0 133 0 20 0 14 16 26 17 0 244 15 30 27 14 3 0 70 55 26 17 0 246 15 30 300 27 31 0 348 74 171 55 0 0 348 37 12 310 41 18 0 55 52 21 0 14 0 21 340 10 20 3 20 17 105 19 0 12 331 90 18 0 19 22 16 23 335 14 0 27 17 14 331 12 2 0 16 7 169 28 0 0 22 50 17 33 59 332 10 38 63 17 0 334 11 20 0 15 17 14 3 15 335 10 0 20 17 12 334 10 0 0 21 13 197 24 0 233 15 15 197 22 2 0 43 66 189 20 0 228 12 13 351 17 37 191 15 5 342 41 0 350 19 22 197 15 54 0 43 12 195 16 0 222 12 8 350 15 30 198 19 3 342 47 0 346 14 33 195 16 61 0 44 13 190 19 0 226 16 11 345 11 29 192 20 1 339 47 0 346 12 35 184 15 61 0 41 16 190 16 0 222 12 9 158 10 9 195 16 1 345 53 0 152 16 69 193 15 66 0 48 13 193 16 0 324 11 25 156 6 12 224 18 9 346 93 0 222 15 79 0 90 15

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

27

206 29 0 268 15 25 2 30 58

217 27 0 269 14 21 12 12 38 0 348 70 57 16 0 0 350 80 15 13 11 10 0 16 80 103 0 14 0 77 348 18 77 1 1 77 100 15 0 350 15 24 105 15 1 0 347 88 20 104 0 0 350 25

102 10 0 170 24 22 102 11 1 0 349 89 101 15 0 158 20 17 236 23 35 110 88 73 240 26 0 285 15 18 236 21 5 109 78 85 243 30 0 287 13 22 240 25 5 110 78 81 244 34 0 293 11 28 237 20 14 107 77 78 239 20 0 297 16 18 244 30 10 106 81 85 240 23 0 295 14 19 28 0 23 0 20 37 23 0 0 203 28 28 49 15 15 24 0 0 320 30 0 49 16 33 22 0 30 0 22 19 23 0 0 203 16 16 48 18 18 23 0 0 312 20 0 22 0 20 0 15 15

25 0 0 195 20 20 22 0 0 0 16 16 30 0 0 196 16 16 181 15 15 0 350 89 214 63 0 182 18 48 0 348 43 14 306 34 177 16 0 345 20 36 127 20 15 180 15 1 127 18 0 126 21 3 182 15 15 0 350 80 209 57 0 0 1 58

134 17 0 125 18 3 184 14 13 0 347 79 222 60 0 0 3 62

128 19 0 120 22 4 0 4 22

118 21 0 128 24 5 0 360 81

123 18 0 126 20 2 3 5 21

126 20 0 130 20 1 184 16 18 0 350 79 216 54 0 0 0 54 183 15 42 0 350 50 220 58 0 182 14 47 0 352 50 14 303 41 184 14 0 349 15 29 126 20 17 183 15 1 121 19 0 121 22 3 180 15 17 0 347 81 219 56 0 0 2 58

121 19 0 122 22 3 186 18 20 0 352 81 223 58 0 0 359 52

121 15 0 122 15 0 3 21 31

139 18 0 201 15 17 0 341 77 14 2 19 332 31 0 0 343 62 16 2 30 198 16 44 304 7 0 202 15 18 0 345 85

167 15 0 125 15 11 3 346 77

197 41 0 166 15 29 0 321 52

166 15 0 140 13 7 167 14 1 0 310 76 325 35 0 59 21 41 315 25 11 0 58 34 152 44 0 0 49 89 29 71 83

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

28

315 30 0 51 20 37 248 15 27 317 20 10 24 57 0 246 15 69 3 7 51 16 0 57 77 50 0

10 16 0 192 25 41 141 18 31 12 16 1 266 24 0 135 15 36 1 7 26 28 0 24 94 50 0

7 20 0 174 22 42 164 25 44 32 16 9 151 48 0 222 11 45 0 279 50

221 13 0 100 19 28 213 10 3 0 268 81 218 12 0 90 18 27 183 17 10 308 82 82 183 15 0 132 25 19 348 20 35 182 15 0 208 50 0 351 16 63 178 12 40 301 48 66 184 11 0 122 20 18 352 16 27 184 13 2 203 59 0 353 16 73 181 12 48 301 39 71 180 9 0 123 19 16 353 13 22 181 10 1 203 61 0 354 15 74 183 12 50 305 37 74 180 14 0 123 19 16 351 20 34 188 15 2 201 64 0 354 20 82 185 12 53 300 34 73 182 15 0 117 20 19 355 20 35 179 16 1 200 56 0 352 16 70 174 14 44 0 52 74 173 14 0 220 14 11 119 20 16 170 15 1 338 43 0 115 14 54 171 14 57 0 40 15

Sample: 261A

c e1 a1 e2 a2 e3 a3

N H K N H

N H

N H

78 15 0 134 20 17 287 0 15 77 11 4 203 42 0 295 0 42 77 12 50 0 317 53 78 16 0 140 20 19 290 0 16 77 15 1 211 46 0 288 0 46 73 17 59 0 34 77 101 71 0 13 0 71 36 9 67 7 73 88 105 35 0 10 7 36 284 16 51 0 47 63 278 15 0 221 15 14 280 15 1 0 45 45 282 17 0 222 16 16 131 9 25 0 4 17 135 6 0 184 15 12 130 7 1 0 4 9 132 9 0 183 15 12 137 5 4 0 263 85 315 5 0 96 10 14 140 9 14 270 85 81 141 6 0 92 12 9 285 0 6 284 86 89 143 7 0 101 10 7 140 6 1 273 85 90 141 6 0 98 10 7 140 10 4 284 86 89 140 8 0 92 15 11 139 5 3 282 85 89 146 7 0 101 10 7 122 25 19 147 10 3 192 79 0 125 20 72 142 9 73 0 299 17 149 8 0 118 17 11 3 6 13 146 12 4

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

29

202 66 0 3 5 71 146 9 61 0 302 33 144 10 0 217 25 24 0 10 19 142 10 0 197 75 0 13 11 86 348 9 83 0 311 23 10 9 0 156 12 20 11 9 0 335 80 73 10 10 0 154 12 21 223 16 25 351 79 70 218 15 0 176 29 20 224 16 2 346 79 88 222 15 0 168 21 17 223 15 0 345 80 88 222 16 0 168 20 17 218 14 2 0 347 79 220 15 0 170 20 15 224 16 1 344 80 89 222 15 0 166 25 21 224 16 1 348 80 89 190 11 0 343 11 21 86 11 17 196 14 3 190 10 0 345 10 20 85 15 20 195 10 1 144 17 0 85 15 16 192 13 13 0 344 77 204 94 0 1 14 73

154 19 0 82 15 20 197 14 13 0 356 74 329 21 0 0 350 71 14 1 20 196 15 33 111 16 0 38 18 20 0 351 85 12 40 45 110 10 0 10 22 26 16 0 10 66 18 13 25 15 0 64 16 10 20 12 3 0 65 52 209 31 0 22 18 49 0 67 85 16 53 83 70 32 0 0 71 63 8 54 46 14 160 72 100 123 0 15 40 68 9 162 89 15 0 57 178 35 0 10 165 57 15 0 35 119 15 30 154 158 0 12 0 22 120 15 35 40 12 20 162 13 0 122 15 10 41 10 20 255 15 20 340 51 0 252 13 52 0 50 15

255 15 0 232 18 7 250 15 1 0 52 57 250 15 0 232 20 7 251 15 0 0 52 58 8 20 0 81 12 20 298 17 21 8 15 5 15 77 0 302 22 72 4 18 59 0 80 15 171 64 0 4 5 69 16 0 64 83 15 64 324 30 0 15 0 30 75 15 38 310 18 13 5 18 0 77 16 20 302 20 20 10 20 3 12 83 0 299 25 77 1 13 70 16 0 83 156 48 0 30 22 63 16 0 48 86 16 44 4 34 0 18 0 34 78 15 33 320 24 23 20 16 0 88 15 17 15 18 2 0 78 63 61 25 0 0 80 69 15 18 18 15 0 25 143 25 0 19 0 25 88 18 20 2 324 72 144 25 0 203 15 21 207 16 22 140 25 2 349 87 0 186 15 79 140 17 78 0 105 11 141 18 0 280 11 27 188 20 15 140 20 2 349 102 0 187 21 58 214 14 68 0 2 80 89 33 0

10 68 0 213 16 83 0 85 20 11 34 34

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

30

210 15 0 56 12 26 213 15 1 0 57 70 344 29 0 0 49 22 11 28 13

13 51 0 201 14 65 0 56 12 11 26 25 126 20 0 183 25 22 132 25 5 0 7 25 126 20 0 185 26 23 36 16 25 140 22 5 277 24 0 30 17 34 135 20 42 0 4 24 137 22 0 181 25 17 35 20 32 140 20 2 274 24 0 33 18 36 138 19 40 0 5 24 137 20 0 187 34 26 31 18 30 140 20 1 279 30 0 30 20 41 10 16 34 0 322 85 87 16 0 0 331 88 20 8 15 15 0 16 350 21 0 14 0 21 306 16 14 8 14 9 154 41 0 8 15 54 0 320 55 15 6 46 106 48 0 19 10 48 15 0 48 315 20 66 7 14 0 312 16 14 10 14 1 0 308 75 34 87 0 0 304 34 16 8 79 90 18 77 162 55 0 82 15 54 0 310 40 16 8 62 88 19 0 307 15 32 82 20 2 0 304 88 36 96 0 0 116 37 20 9 87 94 14 89 28 109 0 96 15 77 0 110 34 35 9 80 93 15 0 116 31 18 95 19 4 0 118 90 42 84 0 0 118 42

98 15 0 299 20 34 95 15 1 0 120 89 95 13 0 133 20 13 96 15 2 0 120 90 39 115 0 0 68 60 13 157 36

112 16 0 68 17 12 324 20 35 110 15 1 16 71 0 328 18 60 11 121 19 18 0 71 168 114 0 18 0 66 70 15 65 1 31 36 211 15 0 334 18 29 210 27 12 209 16 1 322 155 0 211 25 28 211 16 24 0 155 72 210 15 0 336 19 30 35 25 40 251 15 10 211 14 0 343 16 27 38 27 41 207 15 1 299 37 0 153 15 50 210 17 40 0 21 32 206 11 0 201 31 20 156 13 10 208 12 1 301 36 0 158 15 49 198 10 39 0 39 35 353 25 0 0 41 16 20 2 23 13 10 16 23 45 0 197 11 56 0 42 16 18 1 44 205 10 0 40 24 34 204 13 3 0 40 49 349 20 0 0 39 20 21 1 19 19 11 12 31 39 0 13 0 39 0 34 19 16 1 38 17 0 0 35 20 20 175 26 26 0 83 83 288 26 0 0 110 81 15 3 26 171 26 44 24 91 0 176 25 67 0 94 24 20 3 88 178 26 0 95 18 29 343 26 52 0 9 35 344 25 0 197 15 38 345 30 5 0 6 19

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

31

341 25 0 194 13 37 346 31 6 0 5 20 11 20 0 70 18 19 144 16 33 11 15 5 19 77 0 323 24 65 10 18 59 0 72 19 164 41 0 13 11 51 0 73 68 20 318 59 73 18 0 0 70 66 18 324 79 21 343 78 114 84 0 15 346 81 18 0 84 87 19 67 351 15 0 197 15 29 352 20 5 0 99 74 134 21 0 0 21 39

12 14 0 74 20 18 9 11 3 0 65 51 65 14 0 0 72 67 18 1 13 11 12 12 17 75 0 20 20 55 0 66 18 24 15 60

MANUSCRIP

T

ACCEPTED

ACCEPTED MANUSCRIPT

32

Appendix A3

Summarized results of the fault-slip analysis around the Gani-Kalva and Kona faults from Tripathy and Saha (2013). The grey shaded rows are the samples from lower Cuddapah and rest are from Kurnool Group. E=Extensional, RE= Radial extension, C=Compressional, PSS=Pure Strike slip, TT=Transtensional, TP=Transpressional stress regimes.

Location name Site name Fault-slip data (Tripathy and Saha, 2013)

Type of tensor

σ1 σ2 σ3 Gani-Kalva fault

Narnuru g1 68/347 06/096 18/190 E g1_1 63/245 23/037 10/132 E

Venkatapuram g10 88/168 02/030 02/300 TT g10_1 07/202 82/045 02/293 TP

Yambayi g9 19/211 69/058 09/305 PSS g8 16/301 03/211 73/112 C

Gani-Kalva sector g5 10/106 80/281 01/197 PSS g5_1 10/027 09/120 77/254 TP g6 10/149 80/299 05/059 PSS g6a 08/310 65/202 23/044 PSS g7 02/242 81/140 09/332 PSS

Kalvabugga sector g4 12/065 12/333 73/197 C Kalvabugga- Ramalakota sector

g2 19/327 01/058 71/147 C g3 14/110 12/015 68/242 TP

Paniam g11 15/008 03/101 75/201 C Kona fault

Gudipadu k1 72/208 17/002 08/093 E k2 72/031 07/275 15/182 TT

Kona k3 86/192 00/094 02/005 RE k4 72/077 14/297 11/203 E k5 74/051 15/202 07/292 E k5_1 07/156 81/301 06/066 PSS k6 11/042 10/310 75/168 C

Kolimigundla k7 03/278 86/110 00/188 TT k8 04/213 04/303 85/090 C k8_1 13/044 68/167 18/313 TP k9 00/355 79/080 11/265 TP